forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			607 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			607 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ARM.cpp ------------------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InputFiles.h"
 | |
| #include "Symbols.h"
 | |
| #include "SyntheticSections.h"
 | |
| #include "Target.h"
 | |
| #include "Thunks.h"
 | |
| #include "lld/Common/ErrorHandler.h"
 | |
| #include "llvm/Object/ELF.h"
 | |
| #include "llvm/Support/Endian.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::support::endian;
 | |
| using namespace llvm::ELF;
 | |
| using namespace lld;
 | |
| using namespace lld::elf;
 | |
| 
 | |
| namespace {
 | |
| class ARM final : public TargetInfo {
 | |
| public:
 | |
|   ARM();
 | |
|   uint32_t calcEFlags() const override;
 | |
|   RelExpr getRelExpr(RelType type, const Symbol &s,
 | |
|                      const uint8_t *loc) const override;
 | |
|   RelType getDynRel(RelType type) const override;
 | |
|   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
 | |
|   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
 | |
|   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
 | |
|   void writePltHeader(uint8_t *buf) const override;
 | |
|   void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
 | |
|                 int32_t index, unsigned relOff) const override;
 | |
|   void addPltSymbols(InputSection &isec, uint64_t off) const override;
 | |
|   void addPltHeaderSymbols(InputSection &isd) const override;
 | |
|   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
 | |
|                   uint64_t branchAddr, const Symbol &s) const override;
 | |
|   uint32_t getThunkSectionSpacing() const override;
 | |
|   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
 | |
|   void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| ARM::ARM() {
 | |
|   copyRel = R_ARM_COPY;
 | |
|   relativeRel = R_ARM_RELATIVE;
 | |
|   iRelativeRel = R_ARM_IRELATIVE;
 | |
|   gotRel = R_ARM_GLOB_DAT;
 | |
|   noneRel = R_ARM_NONE;
 | |
|   pltRel = R_ARM_JUMP_SLOT;
 | |
|   symbolicRel = R_ARM_ABS32;
 | |
|   tlsGotRel = R_ARM_TLS_TPOFF32;
 | |
|   tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
 | |
|   tlsOffsetRel = R_ARM_TLS_DTPOFF32;
 | |
|   gotBaseSymInGotPlt = false;
 | |
|   pltEntrySize = 16;
 | |
|   pltHeaderSize = 32;
 | |
|   trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
 | |
|   needsThunks = true;
 | |
| }
 | |
| 
 | |
| uint32_t ARM::calcEFlags() const {
 | |
|   // The ABIFloatType is used by loaders to detect the floating point calling
 | |
|   // convention.
 | |
|   uint32_t abiFloatType = 0;
 | |
|   if (config->armVFPArgs == ARMVFPArgKind::Base ||
 | |
|       config->armVFPArgs == ARMVFPArgKind::Default)
 | |
|     abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
 | |
|   else if (config->armVFPArgs == ARMVFPArgKind::VFP)
 | |
|     abiFloatType = EF_ARM_ABI_FLOAT_HARD;
 | |
| 
 | |
|   // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
 | |
|   // but we don't have any firm guarantees of conformance. Linux AArch64
 | |
|   // kernels (as of 2016) require an EABI version to be set.
 | |
|   return EF_ARM_EABI_VER5 | abiFloatType;
 | |
| }
 | |
| 
 | |
| RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
 | |
|                         const uint8_t *loc) const {
 | |
|   switch (type) {
 | |
|   case R_ARM_THM_JUMP11:
 | |
|     return R_PC;
 | |
|   case R_ARM_CALL:
 | |
|   case R_ARM_JUMP24:
 | |
|   case R_ARM_PC24:
 | |
|   case R_ARM_PLT32:
 | |
|   case R_ARM_PREL31:
 | |
|   case R_ARM_THM_JUMP19:
 | |
|   case R_ARM_THM_JUMP24:
 | |
|   case R_ARM_THM_CALL:
 | |
|     return R_PLT_PC;
 | |
|   case R_ARM_GOTOFF32:
 | |
|     // (S + A) - GOT_ORG
 | |
|     return R_GOTREL;
 | |
|   case R_ARM_GOT_BREL:
 | |
|     // GOT(S) + A - GOT_ORG
 | |
|     return R_GOT_OFF;
 | |
|   case R_ARM_GOT_PREL:
 | |
|   case R_ARM_TLS_IE32:
 | |
|     // GOT(S) + A - P
 | |
|     return R_GOT_PC;
 | |
|   case R_ARM_SBREL32:
 | |
|     return R_ARM_SBREL;
 | |
|   case R_ARM_TARGET1:
 | |
|     return config->target1Rel ? R_PC : R_ABS;
 | |
|   case R_ARM_TARGET2:
 | |
|     if (config->target2 == Target2Policy::Rel)
 | |
|       return R_PC;
 | |
|     if (config->target2 == Target2Policy::Abs)
 | |
|       return R_ABS;
 | |
|     return R_GOT_PC;
 | |
|   case R_ARM_TLS_GD32:
 | |
|     return R_TLSGD_PC;
 | |
|   case R_ARM_TLS_LDM32:
 | |
|     return R_TLSLD_PC;
 | |
|   case R_ARM_BASE_PREL:
 | |
|     // B(S) + A - P
 | |
|     // FIXME: currently B(S) assumed to be .got, this may not hold for all
 | |
|     // platforms.
 | |
|     return R_GOTONLY_PC;
 | |
|   case R_ARM_MOVW_PREL_NC:
 | |
|   case R_ARM_MOVT_PREL:
 | |
|   case R_ARM_REL32:
 | |
|   case R_ARM_THM_MOVW_PREL_NC:
 | |
|   case R_ARM_THM_MOVT_PREL:
 | |
|     return R_PC;
 | |
|   case R_ARM_NONE:
 | |
|     return R_NONE;
 | |
|   case R_ARM_TLS_LE32:
 | |
|     return R_TLS;
 | |
|   case R_ARM_V4BX:
 | |
|     // V4BX is just a marker to indicate there's a "bx rN" instruction at the
 | |
|     // given address. It can be used to implement a special linker mode which
 | |
|     // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
 | |
|     // not ARMv4 output, we can just ignore it.
 | |
|     return R_HINT;
 | |
|   default:
 | |
|     return R_ABS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| RelType ARM::getDynRel(RelType type) const {
 | |
|   if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
 | |
|     return R_ARM_ABS32;
 | |
|   return R_ARM_NONE;
 | |
| }
 | |
| 
 | |
| void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
 | |
|   write32le(buf, in.plt->getVA());
 | |
| }
 | |
| 
 | |
| void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
 | |
|   // An ARM entry is the address of the ifunc resolver function.
 | |
|   write32le(buf, s.getVA());
 | |
| }
 | |
| 
 | |
| // Long form PLT Header that does not have any restrictions on the displacement
 | |
| // of the .plt from the .plt.got.
 | |
| static void writePltHeaderLong(uint8_t *buf) {
 | |
|   const uint8_t pltData[] = {
 | |
|       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
 | |
|       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
 | |
|       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
 | |
|       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
 | |
|       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
 | |
|       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
 | |
|       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
 | |
|       0xd4, 0xd4, 0xd4, 0xd4};
 | |
|   memcpy(buf, pltData, sizeof(pltData));
 | |
|   uint64_t gotPlt = in.gotPlt->getVA();
 | |
|   uint64_t l1 = in.plt->getVA() + 8;
 | |
|   write32le(buf + 16, gotPlt - l1 - 8);
 | |
| }
 | |
| 
 | |
| // The default PLT header requires the .plt.got to be within 128 Mb of the
 | |
| // .plt in the positive direction.
 | |
| void ARM::writePltHeader(uint8_t *buf) const {
 | |
|   // Use a similar sequence to that in writePlt(), the difference is the calling
 | |
|   // conventions mean we use lr instead of ip. The PLT entry is responsible for
 | |
|   // saving lr on the stack, the dynamic loader is responsible for reloading
 | |
|   // it.
 | |
|   const uint32_t pltData[] = {
 | |
|       0xe52de004, // L1: str lr, [sp,#-4]!
 | |
|       0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
 | |
|       0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
 | |
|       0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
 | |
|   };
 | |
| 
 | |
|   uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
 | |
|   if (!llvm::isUInt<27>(offset)) {
 | |
|     // We cannot encode the Offset, use the long form.
 | |
|     writePltHeaderLong(buf);
 | |
|     return;
 | |
|   }
 | |
|   write32le(buf + 0, pltData[0]);
 | |
|   write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
 | |
|   write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
 | |
|   write32le(buf + 12, pltData[3] | (offset & 0xfff));
 | |
|   memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
 | |
|   memcpy(buf + 20, trapInstr.data(), 4);
 | |
|   memcpy(buf + 24, trapInstr.data(), 4);
 | |
|   memcpy(buf + 28, trapInstr.data(), 4);
 | |
| }
 | |
| 
 | |
| void ARM::addPltHeaderSymbols(InputSection &isec) const {
 | |
|   addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
 | |
|   addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
 | |
| }
 | |
| 
 | |
| // Long form PLT entries that do not have any restrictions on the displacement
 | |
| // of the .plt from the .plt.got.
 | |
| static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
 | |
|                          uint64_t pltEntryAddr, int32_t index,
 | |
|                          unsigned relOff) {
 | |
|   const uint8_t pltData[] = {
 | |
|       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
 | |
|       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
 | |
|       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
 | |
|       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
 | |
|   };
 | |
|   memcpy(buf, pltData, sizeof(pltData));
 | |
|   uint64_t l1 = pltEntryAddr + 4;
 | |
|   write32le(buf + 12, gotPltEntryAddr - l1 - 8);
 | |
| }
 | |
| 
 | |
| // The default PLT entries require the .plt.got to be within 128 Mb of the
 | |
| // .plt in the positive direction.
 | |
| void ARM::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
 | |
|                    uint64_t pltEntryAddr, int32_t index,
 | |
|                    unsigned relOff) const {
 | |
|   // The PLT entry is similar to the example given in Appendix A of ELF for
 | |
|   // the Arm Architecture. Instead of using the Group Relocations to find the
 | |
|   // optimal rotation for the 8-bit immediate used in the add instructions we
 | |
|   // hard code the most compact rotations for simplicity. This saves a load
 | |
|   // instruction over the long plt sequences.
 | |
|   const uint32_t pltData[] = {
 | |
|       0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
 | |
|       0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
 | |
|       0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
 | |
|   };
 | |
| 
 | |
|   uint64_t offset = gotPltEntryAddr - pltEntryAddr - 8;
 | |
|   if (!llvm::isUInt<27>(offset)) {
 | |
|     // We cannot encode the Offset, use the long form.
 | |
|     writePltLong(buf, gotPltEntryAddr, pltEntryAddr, index, relOff);
 | |
|     return;
 | |
|   }
 | |
|   write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
 | |
|   write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
 | |
|   write32le(buf + 8, pltData[2] | (offset & 0xfff));
 | |
|   memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
 | |
| }
 | |
| 
 | |
| void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
 | |
|   addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
 | |
|   addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
 | |
| }
 | |
| 
 | |
| bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
 | |
|                      uint64_t branchAddr, const Symbol &s) const {
 | |
|   // If S is an undefined weak symbol and does not have a PLT entry then it
 | |
|   // will be resolved as a branch to the next instruction.
 | |
|   if (s.isUndefWeak() && !s.isInPlt())
 | |
|     return false;
 | |
|   // A state change from ARM to Thumb and vice versa must go through an
 | |
|   // interworking thunk if the relocation type is not R_ARM_CALL or
 | |
|   // R_ARM_THM_CALL.
 | |
|   switch (type) {
 | |
|   case R_ARM_PC24:
 | |
|   case R_ARM_PLT32:
 | |
|   case R_ARM_JUMP24:
 | |
|     // Source is ARM, all PLT entries are ARM so no interworking required.
 | |
|     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
 | |
|     if (expr == R_PC && ((s.getVA() & 1) == 1))
 | |
|       return true;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case R_ARM_CALL: {
 | |
|     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
 | |
|     return !inBranchRange(type, branchAddr, dst);
 | |
|   }
 | |
|   case R_ARM_THM_JUMP19:
 | |
|   case R_ARM_THM_JUMP24:
 | |
|     // Source is Thumb, all PLT entries are ARM so interworking is required.
 | |
|     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
 | |
|     if (expr == R_PLT_PC || ((s.getVA() & 1) == 0))
 | |
|       return true;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case R_ARM_THM_CALL: {
 | |
|     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
 | |
|     return !inBranchRange(type, branchAddr, dst);
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| uint32_t ARM::getThunkSectionSpacing() const {
 | |
|   // The placing of pre-created ThunkSections is controlled by the value
 | |
|   // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
 | |
|   // place the ThunkSection such that all branches from the InputSections
 | |
|   // prior to the ThunkSection can reach a Thunk placed at the end of the
 | |
|   // ThunkSection. Graphically:
 | |
|   // | up to thunkSectionSpacing .text input sections |
 | |
|   // | ThunkSection                                   |
 | |
|   // | up to thunkSectionSpacing .text input sections |
 | |
|   // | ThunkSection                                   |
 | |
| 
 | |
|   // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
 | |
|   // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
 | |
|   // B.W:
 | |
|   // ARM B, BL, BLX range +/- 32MiB
 | |
|   // Thumb B.W, BL, BLX range +/- 16MiB
 | |
|   // Thumb B<cc>.W range +/- 1MiB
 | |
|   // If a branch cannot reach a pre-created ThunkSection a new one will be
 | |
|   // created so we can handle the rare cases of a Thumb 2 conditional branch.
 | |
|   // We intentionally use a lower size for thunkSectionSpacing than the maximum
 | |
|   // branch range so the end of the ThunkSection is more likely to be within
 | |
|   // range of the branch instruction that is furthest away. The value we shorten
 | |
|   // thunkSectionSpacing by is set conservatively to allow us to create 16,384
 | |
|   // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
 | |
|   // one of the Thunks going out of range.
 | |
| 
 | |
|   // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
 | |
|   // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
 | |
|   // ARMv6T2) the range is +/- 4MiB.
 | |
| 
 | |
|   return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
 | |
|                                          : 0x400000 - 0x7500;
 | |
| }
 | |
| 
 | |
| bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
 | |
|   uint64_t range;
 | |
|   uint64_t instrSize;
 | |
| 
 | |
|   switch (type) {
 | |
|   case R_ARM_PC24:
 | |
|   case R_ARM_PLT32:
 | |
|   case R_ARM_JUMP24:
 | |
|   case R_ARM_CALL:
 | |
|     range = 0x2000000;
 | |
|     instrSize = 4;
 | |
|     break;
 | |
|   case R_ARM_THM_JUMP19:
 | |
|     range = 0x100000;
 | |
|     instrSize = 2;
 | |
|     break;
 | |
|   case R_ARM_THM_JUMP24:
 | |
|   case R_ARM_THM_CALL:
 | |
|     range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
 | |
|     instrSize = 2;
 | |
|     break;
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
|   // PC at Src is 2 instructions ahead, immediate of branch is signed
 | |
|   if (src > dst)
 | |
|     range -= 2 * instrSize;
 | |
|   else
 | |
|     range += instrSize;
 | |
| 
 | |
|   if ((dst & 0x1) == 0)
 | |
|     // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
 | |
|     // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
 | |
|     // destination will be 4 byte aligned.
 | |
|     src &= ~0x3;
 | |
|   else
 | |
|     // Bit 0 == 1 denotes Thumb state, it is not part of the range
 | |
|     dst &= ~0x1;
 | |
| 
 | |
|   uint64_t distance = (src > dst) ? src - dst : dst - src;
 | |
|   return distance <= range;
 | |
| }
 | |
| 
 | |
| void ARM::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
 | |
|   switch (type) {
 | |
|   case R_ARM_ABS32:
 | |
|   case R_ARM_BASE_PREL:
 | |
|   case R_ARM_GOTOFF32:
 | |
|   case R_ARM_GOT_BREL:
 | |
|   case R_ARM_GOT_PREL:
 | |
|   case R_ARM_REL32:
 | |
|   case R_ARM_RELATIVE:
 | |
|   case R_ARM_SBREL32:
 | |
|   case R_ARM_TARGET1:
 | |
|   case R_ARM_TARGET2:
 | |
|   case R_ARM_TLS_GD32:
 | |
|   case R_ARM_TLS_IE32:
 | |
|   case R_ARM_TLS_LDM32:
 | |
|   case R_ARM_TLS_LDO32:
 | |
|   case R_ARM_TLS_LE32:
 | |
|   case R_ARM_TLS_TPOFF32:
 | |
|   case R_ARM_TLS_DTPOFF32:
 | |
|     write32le(loc, val);
 | |
|     break;
 | |
|   case R_ARM_PREL31:
 | |
|     checkInt(loc, val, 31, type);
 | |
|     write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
 | |
|     break;
 | |
|   case R_ARM_CALL:
 | |
|     // R_ARM_CALL is used for BL and BLX instructions, depending on the
 | |
|     // value of bit 0 of Val, we must select a BL or BLX instruction
 | |
|     if (val & 1) {
 | |
|       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
 | |
|       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
 | |
|       checkInt(loc, val, 26, type);
 | |
|       write32le(loc, 0xfa000000 |                    // opcode
 | |
|                          ((val & 2) << 23) |         // H
 | |
|                          ((val >> 2) & 0x00ffffff)); // imm24
 | |
|       break;
 | |
|     }
 | |
|     if ((read32le(loc) & 0xfe000000) == 0xfa000000)
 | |
|       // BLX (always unconditional) instruction to an ARM Target, select an
 | |
|       // unconditional BL.
 | |
|       write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
 | |
|     // fall through as BL encoding is shared with B
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case R_ARM_JUMP24:
 | |
|   case R_ARM_PC24:
 | |
|   case R_ARM_PLT32:
 | |
|     checkInt(loc, val, 26, type);
 | |
|     write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
 | |
|     break;
 | |
|   case R_ARM_THM_JUMP11:
 | |
|     checkInt(loc, val, 12, type);
 | |
|     write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
 | |
|     break;
 | |
|   case R_ARM_THM_JUMP19:
 | |
|     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
 | |
|     checkInt(loc, val, 21, type);
 | |
|     write16le(loc,
 | |
|               (read16le(loc) & 0xfbc0) |   // opcode cond
 | |
|                   ((val >> 10) & 0x0400) | // S
 | |
|                   ((val >> 12) & 0x003f)); // imm6
 | |
|     write16le(loc + 2,
 | |
|               0x8000 |                    // opcode
 | |
|                   ((val >> 8) & 0x0800) | // J2
 | |
|                   ((val >> 5) & 0x2000) | // J1
 | |
|                   ((val >> 1) & 0x07ff)); // imm11
 | |
|     break;
 | |
|   case R_ARM_THM_CALL:
 | |
|     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
 | |
|     // value of bit 0 of Val, we must select a BL or BLX instruction
 | |
|     if ((val & 1) == 0) {
 | |
|       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
 | |
|       // only be two byte aligned. This must be done before overflow check
 | |
|       val = alignTo(val, 4);
 | |
|     }
 | |
|     // Bit 12 is 0 for BLX, 1 for BL
 | |
|     write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | (val & 1) << 12);
 | |
|     if (!config->armJ1J2BranchEncoding) {
 | |
|       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
 | |
|       // different encoding rules and range due to J1 and J2 always being 1.
 | |
|       checkInt(loc, val, 23, type);
 | |
|       write16le(loc,
 | |
|                 0xf000 |                     // opcode
 | |
|                     ((val >> 12) & 0x07ff)); // imm11
 | |
|       write16le(loc + 2,
 | |
|                 (read16le(loc + 2) & 0xd000) | // opcode
 | |
|                     0x2800 |                   // J1 == J2 == 1
 | |
|                     ((val >> 1) & 0x07ff));    // imm11
 | |
|       break;
 | |
|     }
 | |
|     // Fall through as rest of encoding is the same as B.W
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case R_ARM_THM_JUMP24:
 | |
|     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
 | |
|     checkInt(loc, val, 25, type);
 | |
|     write16le(loc,
 | |
|               0xf000 |                     // opcode
 | |
|                   ((val >> 14) & 0x0400) | // S
 | |
|                   ((val >> 12) & 0x03ff)); // imm10
 | |
|     write16le(loc + 2,
 | |
|               (read16le(loc + 2) & 0xd000) |                  // opcode
 | |
|                   (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
 | |
|                   (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
 | |
|                   ((val >> 1) & 0x07ff));                     // imm11
 | |
|     break;
 | |
|   case R_ARM_MOVW_ABS_NC:
 | |
|   case R_ARM_MOVW_PREL_NC:
 | |
|     write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
 | |
|                        (val & 0x0fff));
 | |
|     break;
 | |
|   case R_ARM_MOVT_ABS:
 | |
|   case R_ARM_MOVT_PREL:
 | |
|     write32le(loc, (read32le(loc) & ~0x000f0fff) |
 | |
|                        (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
 | |
|     break;
 | |
|   case R_ARM_THM_MOVT_ABS:
 | |
|   case R_ARM_THM_MOVT_PREL:
 | |
|     // Encoding T1: A = imm4:i:imm3:imm8
 | |
|     write16le(loc,
 | |
|               0xf2c0 |                     // opcode
 | |
|                   ((val >> 17) & 0x0400) | // i
 | |
|                   ((val >> 28) & 0x000f)); // imm4
 | |
|     write16le(loc + 2,
 | |
|               (read16le(loc + 2) & 0x8f00) | // opcode
 | |
|                   ((val >> 12) & 0x7000) |   // imm3
 | |
|                   ((val >> 16) & 0x00ff));   // imm8
 | |
|     break;
 | |
|   case R_ARM_THM_MOVW_ABS_NC:
 | |
|   case R_ARM_THM_MOVW_PREL_NC:
 | |
|     // Encoding T3: A = imm4:i:imm3:imm8
 | |
|     write16le(loc,
 | |
|               0xf240 |                     // opcode
 | |
|                   ((val >> 1) & 0x0400) |  // i
 | |
|                   ((val >> 12) & 0x000f)); // imm4
 | |
|     write16le(loc + 2,
 | |
|               (read16le(loc + 2) & 0x8f00) | // opcode
 | |
|                   ((val << 4) & 0x7000) |    // imm3
 | |
|                   (val & 0x00ff));           // imm8
 | |
|     break;
 | |
|   default:
 | |
|     error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
 | |
|   }
 | |
| }
 | |
| 
 | |
| int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
 | |
|   switch (type) {
 | |
|   default:
 | |
|     return 0;
 | |
|   case R_ARM_ABS32:
 | |
|   case R_ARM_BASE_PREL:
 | |
|   case R_ARM_GOTOFF32:
 | |
|   case R_ARM_GOT_BREL:
 | |
|   case R_ARM_GOT_PREL:
 | |
|   case R_ARM_REL32:
 | |
|   case R_ARM_TARGET1:
 | |
|   case R_ARM_TARGET2:
 | |
|   case R_ARM_TLS_GD32:
 | |
|   case R_ARM_TLS_LDM32:
 | |
|   case R_ARM_TLS_LDO32:
 | |
|   case R_ARM_TLS_IE32:
 | |
|   case R_ARM_TLS_LE32:
 | |
|     return SignExtend64<32>(read32le(buf));
 | |
|   case R_ARM_PREL31:
 | |
|     return SignExtend64<31>(read32le(buf));
 | |
|   case R_ARM_CALL:
 | |
|   case R_ARM_JUMP24:
 | |
|   case R_ARM_PC24:
 | |
|   case R_ARM_PLT32:
 | |
|     return SignExtend64<26>(read32le(buf) << 2);
 | |
|   case R_ARM_THM_JUMP11:
 | |
|     return SignExtend64<12>(read16le(buf) << 1);
 | |
|   case R_ARM_THM_JUMP19: {
 | |
|     // Encoding T3: A = S:J2:J1:imm10:imm6:0
 | |
|     uint16_t hi = read16le(buf);
 | |
|     uint16_t lo = read16le(buf + 2);
 | |
|     return SignExtend64<20>(((hi & 0x0400) << 10) | // S
 | |
|                             ((lo & 0x0800) << 8) |  // J2
 | |
|                             ((lo & 0x2000) << 5) |  // J1
 | |
|                             ((hi & 0x003f) << 12) | // imm6
 | |
|                             ((lo & 0x07ff) << 1));  // imm11:0
 | |
|   }
 | |
|   case R_ARM_THM_CALL:
 | |
|     if (!config->armJ1J2BranchEncoding) {
 | |
|       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
 | |
|       // different encoding rules and range due to J1 and J2 always being 1.
 | |
|       uint16_t hi = read16le(buf);
 | |
|       uint16_t lo = read16le(buf + 2);
 | |
|       return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
 | |
|                               ((lo & 0x7ff) << 1));  // imm11:0
 | |
|       break;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case R_ARM_THM_JUMP24: {
 | |
|     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
 | |
|     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
 | |
|     uint16_t hi = read16le(buf);
 | |
|     uint16_t lo = read16le(buf + 2);
 | |
|     return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
 | |
|                             (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
 | |
|                             (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
 | |
|                             ((hi & 0x003ff) << 12) |                   // imm0
 | |
|                             ((lo & 0x007ff) << 1)); // imm11:0
 | |
|   }
 | |
|   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
 | |
|   // MOVT is in the range -32768 <= A < 32768
 | |
|   case R_ARM_MOVW_ABS_NC:
 | |
|   case R_ARM_MOVT_ABS:
 | |
|   case R_ARM_MOVW_PREL_NC:
 | |
|   case R_ARM_MOVT_PREL: {
 | |
|     uint64_t val = read32le(buf) & 0x000f0fff;
 | |
|     return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
 | |
|   }
 | |
|   case R_ARM_THM_MOVW_ABS_NC:
 | |
|   case R_ARM_THM_MOVT_ABS:
 | |
|   case R_ARM_THM_MOVW_PREL_NC:
 | |
|   case R_ARM_THM_MOVT_PREL: {
 | |
|     // Encoding T3: A = imm4:i:imm3:imm8
 | |
|     uint16_t hi = read16le(buf);
 | |
|     uint16_t lo = read16le(buf + 2);
 | |
|     return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
 | |
|                             ((hi & 0x0400) << 1) |  // i
 | |
|                             ((lo & 0x7000) >> 4) |  // imm3
 | |
|                             (lo & 0x00ff));         // imm8
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TargetInfo *elf::getARMTargetInfo() {
 | |
|   static ARM target;
 | |
|   return ⌖
 | |
| }
 |