forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			929 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			929 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates machine instruction PHI nodes by inserting copy
 | 
						|
// instructions, using an intelligent copy-folding technique based on
 | 
						|
// dominator information.  This is technique is derived from:
 | 
						|
// 
 | 
						|
//    Budimlic, et al. Fast copy coalescing and live-range identification.
 | 
						|
//    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
 | 
						|
//    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
 | 
						|
//    PLDI '02. ACM, New York, NY, 25-32.
 | 
						|
//    DOI= http://doi.acm.org/10.1145/512529.512534
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "strongphielim"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterCoalescer.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
    // Waiting stores, for each MBB, the set of copies that need to
 | 
						|
    // be inserted into that MBB
 | 
						|
    DenseMap<MachineBasicBlock*,
 | 
						|
             std::map<unsigned, unsigned> > Waiting;
 | 
						|
    
 | 
						|
    // Stacks holds the renaming stack for each register
 | 
						|
    std::map<unsigned, std::vector<unsigned> > Stacks;
 | 
						|
    
 | 
						|
    // Registers in UsedByAnother are PHI nodes that are themselves
 | 
						|
    // used as operands to another another PHI node
 | 
						|
    std::set<unsigned> UsedByAnother;
 | 
						|
    
 | 
						|
    // RenameSets are the sets of operands (and their VNInfo IDs) to a PHI
 | 
						|
    // (the defining instruction of the key) that can be renamed without copies.
 | 
						|
    std::map<unsigned, std::map<unsigned, unsigned> > RenameSets;
 | 
						|
    
 | 
						|
    // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
 | 
						|
    // eliminating, indexed by the register defined by that phi.
 | 
						|
    std::map<unsigned, unsigned> PhiValueNumber;
 | 
						|
 | 
						|
    // Store the DFS-in number of each block
 | 
						|
    DenseMap<MachineBasicBlock*, unsigned> preorder;
 | 
						|
    
 | 
						|
    // Store the DFS-out number of each block
 | 
						|
    DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<LiveIntervals>();
 | 
						|
      
 | 
						|
      // TODO: Actually make this true.
 | 
						|
      AU.addPreserved<LiveIntervals>();
 | 
						|
      AU.addPreserved<RegisterCoalescer>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
    
 | 
						|
    virtual void releaseMemory() {
 | 
						|
      preorder.clear();
 | 
						|
      maxpreorder.clear();
 | 
						|
      
 | 
						|
      Waiting.clear();
 | 
						|
      Stacks.clear();
 | 
						|
      UsedByAnother.clear();
 | 
						|
      RenameSets.clear();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    
 | 
						|
    /// DomForestNode - Represents a node in the "dominator forest".  This is
 | 
						|
    /// a forest in which the nodes represent registers and the edges
 | 
						|
    /// represent a dominance relation in the block defining those registers.
 | 
						|
    struct DomForestNode {
 | 
						|
    private:
 | 
						|
      // Store references to our children
 | 
						|
      std::vector<DomForestNode*> children;
 | 
						|
      // The register we represent
 | 
						|
      unsigned reg;
 | 
						|
      
 | 
						|
      // Add another node as our child
 | 
						|
      void addChild(DomForestNode* DFN) { children.push_back(DFN); }
 | 
						|
      
 | 
						|
    public:
 | 
						|
      typedef std::vector<DomForestNode*>::iterator iterator;
 | 
						|
      
 | 
						|
      // Create a DomForestNode by providing the register it represents, and
 | 
						|
      // the node to be its parent.  The virtual root node has register 0
 | 
						|
      // and a null parent.
 | 
						|
      DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
 | 
						|
        if (parent)
 | 
						|
          parent->addChild(this);
 | 
						|
      }
 | 
						|
      
 | 
						|
      ~DomForestNode() {
 | 
						|
        for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
          delete *I;
 | 
						|
      }
 | 
						|
      
 | 
						|
      /// getReg - Return the regiser that this node represents
 | 
						|
      inline unsigned getReg() { return reg; }
 | 
						|
      
 | 
						|
      // Provide iterator access to our children
 | 
						|
      inline DomForestNode::iterator begin() { return children.begin(); }
 | 
						|
      inline DomForestNode::iterator end() { return children.end(); }
 | 
						|
    };
 | 
						|
    
 | 
						|
    void computeDFS(MachineFunction& MF);
 | 
						|
    void processBlock(MachineBasicBlock* MBB);
 | 
						|
    
 | 
						|
    std::vector<DomForestNode*> computeDomForest(std::map<unsigned, unsigned>& instrs,
 | 
						|
                                                 MachineRegisterInfo& MRI);
 | 
						|
    void processPHIUnion(MachineInstr* Inst,
 | 
						|
                         std::map<unsigned, unsigned>& PHIUnion,
 | 
						|
                         std::vector<StrongPHIElimination::DomForestNode*>& DF,
 | 
						|
                         std::vector<std::pair<unsigned, unsigned> >& locals);
 | 
						|
    void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
 | 
						|
    void InsertCopies(MachineBasicBlock* MBB,
 | 
						|
                      SmallPtrSet<MachineBasicBlock*, 16>& v);
 | 
						|
    void mergeLiveIntervals(unsigned primary, unsigned secondary, unsigned VN);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char StrongPHIElimination::ID = 0;
 | 
						|
static RegisterPass<StrongPHIElimination>
 | 
						|
X("strong-phi-node-elimination",
 | 
						|
  "Eliminate PHI nodes for register allocation, intelligently");
 | 
						|
 | 
						|
const PassInfo *const llvm::StrongPHIEliminationID = &X;
 | 
						|
 | 
						|
/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
 | 
						|
/// of the given MachineFunction.  These numbers are then used in other parts
 | 
						|
/// of the PHI elimination process.
 | 
						|
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
 | 
						|
  SmallPtrSet<MachineDomTreeNode*, 8> frontier;
 | 
						|
  SmallPtrSet<MachineDomTreeNode*, 8> visited;
 | 
						|
  
 | 
						|
  unsigned time = 0;
 | 
						|
  
 | 
						|
  MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
 | 
						|
  
 | 
						|
  MachineDomTreeNode* node = DT.getRootNode();
 | 
						|
  
 | 
						|
  std::vector<MachineDomTreeNode*> worklist;
 | 
						|
  worklist.push_back(node);
 | 
						|
  
 | 
						|
  while (!worklist.empty()) {
 | 
						|
    MachineDomTreeNode* currNode = worklist.back();
 | 
						|
    
 | 
						|
    if (!frontier.count(currNode)) {
 | 
						|
      frontier.insert(currNode);
 | 
						|
      ++time;
 | 
						|
      preorder.insert(std::make_pair(currNode->getBlock(), time));
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool inserted = false;
 | 
						|
    for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (!frontier.count(*I) && !visited.count(*I)) {
 | 
						|
        worklist.push_back(*I);
 | 
						|
        inserted = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    
 | 
						|
    if (!inserted) {
 | 
						|
      frontier.erase(currNode);
 | 
						|
      visited.insert(currNode);
 | 
						|
      maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
 | 
						|
      
 | 
						|
      worklist.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// PreorderSorter - a helper class that is used to sort registers
 | 
						|
/// according to the preorder number of their defining blocks
 | 
						|
class PreorderSorter {
 | 
						|
private:
 | 
						|
  DenseMap<MachineBasicBlock*, unsigned>& preorder;
 | 
						|
  MachineRegisterInfo& MRI;
 | 
						|
  
 | 
						|
public:
 | 
						|
  PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
 | 
						|
                MachineRegisterInfo& M) : preorder(p), MRI(M) { }
 | 
						|
  
 | 
						|
  bool operator()(unsigned A, unsigned B) {
 | 
						|
    if (A == B)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
 | 
						|
    MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
 | 
						|
    
 | 
						|
    if (preorder[ABlock] < preorder[BBlock])
 | 
						|
      return true;
 | 
						|
    else if (preorder[ABlock] > preorder[BBlock])
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// computeDomForest - compute the subforest of the DomTree corresponding
 | 
						|
/// to the defining blocks of the registers in question
 | 
						|
std::vector<StrongPHIElimination::DomForestNode*>
 | 
						|
StrongPHIElimination::computeDomForest(std::map<unsigned, unsigned>& regs, 
 | 
						|
                                       MachineRegisterInfo& MRI) {
 | 
						|
  // Begin by creating a virtual root node, since the actual results
 | 
						|
  // may well be a forest.  Assume this node has maximum DFS-out number.
 | 
						|
  DomForestNode* VirtualRoot = new DomForestNode(0, 0);
 | 
						|
  maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
 | 
						|
  
 | 
						|
  // Populate a worklist with the registers
 | 
						|
  std::vector<unsigned> worklist;
 | 
						|
  worklist.reserve(regs.size());
 | 
						|
  for (std::map<unsigned, unsigned>::iterator I = regs.begin(), E = regs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    worklist.push_back(I->first);
 | 
						|
  
 | 
						|
  // Sort the registers by the DFS-in number of their defining block
 | 
						|
  PreorderSorter PS(preorder, MRI);
 | 
						|
  std::sort(worklist.begin(), worklist.end(), PS);
 | 
						|
  
 | 
						|
  // Create a "current parent" stack, and put the virtual root on top of it
 | 
						|
  DomForestNode* CurrentParent = VirtualRoot;
 | 
						|
  std::vector<DomForestNode*> stack;
 | 
						|
  stack.push_back(VirtualRoot);
 | 
						|
  
 | 
						|
  // Iterate over all the registers in the previously computed order
 | 
						|
  for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
 | 
						|
    MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
 | 
						|
                 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
 | 
						|
                 0;
 | 
						|
    
 | 
						|
    // If the DFS-in number of the register is greater than the DFS-out number
 | 
						|
    // of the current parent, repeatedly pop the parent stack until it isn't.
 | 
						|
    while (pre > maxpreorder[parentBlock]) {
 | 
						|
      stack.pop_back();
 | 
						|
      CurrentParent = stack.back();
 | 
						|
      
 | 
						|
      parentBlock = CurrentParent->getReg() ?
 | 
						|
                   MRI.getVRegDef(CurrentParent->getReg())->getParent() :
 | 
						|
                   0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now that we've found the appropriate parent, create a DomForestNode for
 | 
						|
    // this register and attach it to the forest
 | 
						|
    DomForestNode* child = new DomForestNode(*I, CurrentParent);
 | 
						|
    
 | 
						|
    // Push this new node on the "current parent" stack
 | 
						|
    stack.push_back(child);
 | 
						|
    CurrentParent = child;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Return a vector containing the children of the virtual root node
 | 
						|
  std::vector<DomForestNode*> ret;
 | 
						|
  ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
/// isLiveIn - helper method that determines, from a regno, if a register
 | 
						|
/// is live into a block
 | 
						|
static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
 | 
						|
                     LiveIntervals& LI) {
 | 
						|
  LiveInterval& I = LI.getOrCreateInterval(r);
 | 
						|
  unsigned idx = LI.getMBBStartIdx(MBB);
 | 
						|
  return I.liveBeforeAndAt(idx);
 | 
						|
}
 | 
						|
 | 
						|
/// isLiveOut - help method that determines, from a regno, if a register is
 | 
						|
/// live out of a block.
 | 
						|
static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
 | 
						|
                      LiveIntervals& LI) {
 | 
						|
  for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
 | 
						|
       E = MBB->succ_end(); PI != E; ++PI) {
 | 
						|
    if (isLiveIn(r, *PI, LI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// interferes - checks for local interferences by scanning a block.  The only
 | 
						|
/// trick parameter is 'mode' which tells it the relationship of the two
 | 
						|
/// registers. 0 - defined in the same block, 1 - first properly dominates
 | 
						|
/// second, 2 - second properly dominates first 
 | 
						|
static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
 | 
						|
                       LiveIntervals& LV, unsigned mode) {
 | 
						|
  MachineInstr* def = 0;
 | 
						|
  MachineInstr* kill = 0;
 | 
						|
  
 | 
						|
  // The code is still in SSA form at this point, so there is only one
 | 
						|
  // definition per VReg.  Thus we can safely use MRI->getVRegDef().
 | 
						|
  const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
 | 
						|
  
 | 
						|
  bool interference = false;
 | 
						|
  
 | 
						|
  // Wallk the block, checking for interferences
 | 
						|
  for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
 | 
						|
       MBI != MBE; ++MBI) {
 | 
						|
    MachineInstr* curr = MBI;
 | 
						|
    
 | 
						|
    // Same defining block...
 | 
						|
    if (mode == 0) {
 | 
						|
      if (curr == MRI->getVRegDef(a)) {
 | 
						|
        // If we find our first definition, save it
 | 
						|
        if (!def) {
 | 
						|
          def = curr;
 | 
						|
        // If there's already an unkilled definition, then 
 | 
						|
        // this is an interference
 | 
						|
        } else if (!kill) {
 | 
						|
          interference = true;
 | 
						|
          break;
 | 
						|
        // If there's a definition followed by a KillInst, then
 | 
						|
        // they can't interfere
 | 
						|
        } else {
 | 
						|
          interference = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      // Symmetric with the above
 | 
						|
      } else if (curr == MRI->getVRegDef(b)) {
 | 
						|
        if (!def) {
 | 
						|
          def = curr;
 | 
						|
        } else if (!kill) {
 | 
						|
          interference = true;
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          interference = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      // Store KillInsts if they match up with the definition
 | 
						|
      } else if (curr->killsRegister(a)) {
 | 
						|
        if (def == MRI->getVRegDef(a)) {
 | 
						|
          kill = curr;
 | 
						|
        } else if (curr->killsRegister(b)) {
 | 
						|
          if (def == MRI->getVRegDef(b)) {
 | 
						|
            kill = curr;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    // First properly dominates second...
 | 
						|
    } else if (mode == 1) {
 | 
						|
      if (curr == MRI->getVRegDef(b)) {
 | 
						|
        // Definition of second without kill of first is an interference
 | 
						|
        if (!kill) {
 | 
						|
          interference = true;
 | 
						|
          break;
 | 
						|
        // Definition after a kill is a non-interference
 | 
						|
        } else {
 | 
						|
          interference = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      // Save KillInsts of First
 | 
						|
      } else if (curr->killsRegister(a)) {
 | 
						|
        kill = curr;
 | 
						|
      }
 | 
						|
    // Symmetric with the above
 | 
						|
    } else if (mode == 2) {
 | 
						|
      if (curr == MRI->getVRegDef(a)) {
 | 
						|
        if (!kill) {
 | 
						|
          interference = true;
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          interference = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (curr->killsRegister(b)) {
 | 
						|
        kill = curr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return interference;
 | 
						|
}
 | 
						|
 | 
						|
/// processBlock - Determine how to break up PHIs in the current block.  Each
 | 
						|
/// PHI is broken up by some combination of renaming its operands and inserting
 | 
						|
/// copies.  This method is responsible for determining which operands receive
 | 
						|
/// which treatment.
 | 
						|
void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
 | 
						|
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | 
						|
  MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
 | 
						|
  
 | 
						|
  // Holds names that have been added to a set in any PHI within this block
 | 
						|
  // before the current one.
 | 
						|
  std::set<unsigned> ProcessedNames;
 | 
						|
  
 | 
						|
  // Iterate over all the PHI nodes in this block
 | 
						|
  MachineBasicBlock::iterator P = MBB->begin();
 | 
						|
  while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
 | 
						|
    unsigned DestReg = P->getOperand(0).getReg();
 | 
						|
 | 
						|
    // Don't both doing PHI elimination for dead PHI's.
 | 
						|
    if (P->registerDefIsDead(DestReg)) {
 | 
						|
      ++P;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    LiveInterval& PI = LI.getOrCreateInterval(DestReg);
 | 
						|
    unsigned pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
 | 
						|
    VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
 | 
						|
    PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
 | 
						|
 | 
						|
    // PHIUnion is the set of incoming registers to the PHI node that
 | 
						|
    // are going to be renames rather than having copies inserted.  This set
 | 
						|
    // is refinded over the course of this function.  UnionedBlocks is the set
 | 
						|
    // of corresponding MBBs.
 | 
						|
    std::map<unsigned, unsigned> PHIUnion;
 | 
						|
    SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
 | 
						|
  
 | 
						|
    // Iterate over the operands of the PHI node
 | 
						|
    for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
 | 
						|
      unsigned SrcReg = P->getOperand(i-1).getReg();
 | 
						|
    
 | 
						|
      // Check for trivial interferences via liveness information, allowing us
 | 
						|
      // to avoid extra work later.  Any registers that interfere cannot both
 | 
						|
      // be in the renaming set, so choose one and add copies for it instead.
 | 
						|
      // The conditions are:
 | 
						|
      //   1) if the operand is live into the PHI node's block OR
 | 
						|
      //   2) if the PHI node is live out of the operand's defining block OR
 | 
						|
      //   3) if the operand is itself a PHI node and the original PHI is
 | 
						|
      //      live into the operand's defining block OR
 | 
						|
      //   4) if the operand is already being renamed for another PHI node
 | 
						|
      //      in this block OR
 | 
						|
      //   5) if any two operands are defined in the same block, insert copies
 | 
						|
      //      for one of them
 | 
						|
      if (isLiveIn(SrcReg, P->getParent(), LI) ||
 | 
						|
          isLiveOut(P->getOperand(0).getReg(),
 | 
						|
                    MRI.getVRegDef(SrcReg)->getParent(), LI) ||
 | 
						|
          ( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
            isLiveIn(P->getOperand(0).getReg(),
 | 
						|
                     MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
 | 
						|
          ProcessedNames.count(SrcReg) ||
 | 
						|
          UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
 | 
						|
        
 | 
						|
        // Add a copy for the selected register
 | 
						|
        MachineBasicBlock* From = P->getOperand(i).getMBB();
 | 
						|
        Waiting[From].insert(std::make_pair(SrcReg, DestReg));
 | 
						|
        UsedByAnother.insert(SrcReg);
 | 
						|
      } else {
 | 
						|
        // Otherwise, add it to the renaming set
 | 
						|
        LiveInterval& I = LI.getOrCreateInterval(SrcReg);
 | 
						|
        unsigned idx = LI.getMBBEndIdx(P->getOperand(i).getMBB()) - 1;
 | 
						|
        VNInfo* VN = I.getLiveRangeContaining(idx)->valno;
 | 
						|
        
 | 
						|
        assert(VN && "No VNInfo for register?");
 | 
						|
        
 | 
						|
        PHIUnion.insert(std::make_pair(SrcReg, VN->id));
 | 
						|
        UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Compute the dominator forest for the renaming set.  This is a forest
 | 
						|
    // where the nodes are the registers and the edges represent dominance 
 | 
						|
    // relations between the defining blocks of the registers
 | 
						|
    std::vector<StrongPHIElimination::DomForestNode*> DF = 
 | 
						|
                                                computeDomForest(PHIUnion, MRI);
 | 
						|
    
 | 
						|
    // Walk DomForest to resolve interferences at an inter-block level.  This
 | 
						|
    // will remove registers from the renaming set (and insert copies for them)
 | 
						|
    // if interferences are found.
 | 
						|
    std::vector<std::pair<unsigned, unsigned> > localInterferences;
 | 
						|
    processPHIUnion(P, PHIUnion, DF, localInterferences);
 | 
						|
    
 | 
						|
    // If one of the inputs is defined in the same block as the current PHI
 | 
						|
    // then we need to check for a local interference between that input and
 | 
						|
    // the PHI.
 | 
						|
    for (std::map<unsigned, unsigned>::iterator I = PHIUnion.begin(),
 | 
						|
         E = PHIUnion.end(); I != E; ++I)
 | 
						|
      if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
 | 
						|
        localInterferences.push_back(std::make_pair(I->first,
 | 
						|
                                                    P->getOperand(0).getReg()));
 | 
						|
    
 | 
						|
    // The dominator forest walk may have returned some register pairs whose
 | 
						|
    // interference cannot be determined from dominator analysis.  We now 
 | 
						|
    // examine these pairs for local interferences.
 | 
						|
    for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
 | 
						|
        localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
 | 
						|
      std::pair<unsigned, unsigned> p = *I;
 | 
						|
      
 | 
						|
      MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
 | 
						|
      
 | 
						|
      // Determine the block we need to scan and the relationship between
 | 
						|
      // the two registers
 | 
						|
      MachineBasicBlock* scan = 0;
 | 
						|
      unsigned mode = 0;
 | 
						|
      if (MRI.getVRegDef(p.first)->getParent() ==
 | 
						|
          MRI.getVRegDef(p.second)->getParent()) {
 | 
						|
        scan = MRI.getVRegDef(p.first)->getParent();
 | 
						|
        mode = 0; // Same block
 | 
						|
      } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
 | 
						|
                               MRI.getVRegDef(p.second)->getParent())) {
 | 
						|
        scan = MRI.getVRegDef(p.second)->getParent();
 | 
						|
        mode = 1; // First dominates second
 | 
						|
      } else {
 | 
						|
        scan = MRI.getVRegDef(p.first)->getParent();
 | 
						|
        mode = 2; // Second dominates first
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If there's an interference, we need to insert  copies
 | 
						|
      if (interferes(p.first, p.second, scan, LI, mode)) {
 | 
						|
        // Insert copies for First
 | 
						|
        for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
 | 
						|
          if (P->getOperand(i-1).getReg() == p.first) {
 | 
						|
            unsigned SrcReg = p.first;
 | 
						|
            MachineBasicBlock* From = P->getOperand(i).getMBB();
 | 
						|
            
 | 
						|
            Waiting[From].insert(std::make_pair(SrcReg,
 | 
						|
                                                P->getOperand(0).getReg()));
 | 
						|
            UsedByAnother.insert(SrcReg);
 | 
						|
            
 | 
						|
            PHIUnion.erase(SrcReg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the renaming set for this PHI node to our overall renaming information
 | 
						|
    RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
 | 
						|
    
 | 
						|
    // Remember which registers are already renamed, so that we don't try to 
 | 
						|
    // rename them for another PHI node in this block
 | 
						|
    for (std::map<unsigned, unsigned>::iterator I = PHIUnion.begin(),
 | 
						|
         E = PHIUnion.end(); I != E; ++I)
 | 
						|
      ProcessedNames.insert(I->first);
 | 
						|
    
 | 
						|
    ++P;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// processPHIUnion - Take a set of candidate registers to be coalesced when
 | 
						|
/// decomposing the PHI instruction.  Use the DominanceForest to remove the ones
 | 
						|
/// that are known to interfere, and flag others that need to be checked for
 | 
						|
/// local interferences.
 | 
						|
void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
 | 
						|
                                        std::map<unsigned, unsigned>& PHIUnion,
 | 
						|
                        std::vector<StrongPHIElimination::DomForestNode*>& DF,
 | 
						|
                        std::vector<std::pair<unsigned, unsigned> >& locals) {
 | 
						|
  
 | 
						|
  std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
 | 
						|
  SmallPtrSet<DomForestNode*, 4> visited;
 | 
						|
  
 | 
						|
  // Code is still in SSA form, so we can use MRI::getVRegDef()
 | 
						|
  MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
 | 
						|
  
 | 
						|
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | 
						|
  unsigned DestReg = Inst->getOperand(0).getReg();
 | 
						|
  
 | 
						|
  // DF walk on the DomForest
 | 
						|
  while (!worklist.empty()) {
 | 
						|
    DomForestNode* DFNode = worklist.back();
 | 
						|
    
 | 
						|
    visited.insert(DFNode);
 | 
						|
    
 | 
						|
    bool inserted = false;
 | 
						|
    for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
 | 
						|
         CI != CE; ++CI) {
 | 
						|
      DomForestNode* child = *CI;   
 | 
						|
      
 | 
						|
      // If the current node is live-out of the defining block of one of its
 | 
						|
      // children, insert a copy for it.  NOTE: The paper actually calls for
 | 
						|
      // a more elaborate heuristic for determining whether to insert copies
 | 
						|
      // for the child or the parent.  In the interest of simplicity, we're
 | 
						|
      // just always choosing the parent.
 | 
						|
      if (isLiveOut(DFNode->getReg(),
 | 
						|
          MRI.getVRegDef(child->getReg())->getParent(), LI)) {
 | 
						|
        // Insert copies for parent
 | 
						|
        for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
 | 
						|
          if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
 | 
						|
            unsigned SrcReg = DFNode->getReg();
 | 
						|
            MachineBasicBlock* From = Inst->getOperand(i).getMBB();
 | 
						|
            
 | 
						|
            Waiting[From].insert(std::make_pair(SrcReg, DestReg));
 | 
						|
            UsedByAnother.insert(SrcReg);
 | 
						|
            
 | 
						|
            PHIUnion.erase(SrcReg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      
 | 
						|
      // If a node is live-in to the defining block of one of its children, but
 | 
						|
      // not live-out, then we need to scan that block for local interferences.
 | 
						|
      } else if (isLiveIn(DFNode->getReg(),
 | 
						|
                          MRI.getVRegDef(child->getReg())->getParent(), LI) ||
 | 
						|
                 MRI.getVRegDef(DFNode->getReg())->getParent() ==
 | 
						|
                                 MRI.getVRegDef(child->getReg())->getParent()) {
 | 
						|
        // Add (p, c) to possible local interferences
 | 
						|
        locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!visited.count(child)) {
 | 
						|
        worklist.push_back(child);
 | 
						|
        inserted = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!inserted) worklist.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
 | 
						|
/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
 | 
						|
/// problems.
 | 
						|
///
 | 
						|
/// Based on "Practical Improvements to the Construction and Destruction
 | 
						|
/// of Static Single Assignment Form" by Briggs, et al.
 | 
						|
void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
 | 
						|
                                          std::set<unsigned>& pushed) {
 | 
						|
  // FIXME: This function needs to update LiveVariables
 | 
						|
  std::map<unsigned, unsigned>& copy_set= Waiting[MBB];
 | 
						|
  
 | 
						|
  std::map<unsigned, unsigned> worklist;
 | 
						|
  std::map<unsigned, unsigned> map;
 | 
						|
  
 | 
						|
  // Setup worklist of initial copies
 | 
						|
  for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
 | 
						|
       E = copy_set.end(); I != E; ) {
 | 
						|
    map.insert(std::make_pair(I->first, I->first));
 | 
						|
    map.insert(std::make_pair(I->second, I->second));
 | 
						|
         
 | 
						|
    if (!UsedByAnother.count(I->second)) {
 | 
						|
      worklist.insert(*I);
 | 
						|
      
 | 
						|
      // Avoid iterator invalidation
 | 
						|
      unsigned first = I->first;
 | 
						|
      ++I;
 | 
						|
      copy_set.erase(first);
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | 
						|
  MachineFunction* MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo& MRI = MF->getRegInfo();
 | 
						|
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
  
 | 
						|
  // Iterate over the worklist, inserting copies
 | 
						|
  while (!worklist.empty() || !copy_set.empty()) {
 | 
						|
    while (!worklist.empty()) {
 | 
						|
      std::pair<unsigned, unsigned> curr = *worklist.begin();
 | 
						|
      worklist.erase(curr.first);
 | 
						|
      
 | 
						|
      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
 | 
						|
      
 | 
						|
      if (isLiveOut(curr.second, MBB, LI)) {
 | 
						|
        // Create a temporary
 | 
						|
        unsigned t = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
        
 | 
						|
        // Insert copy from curr.second to a temporary at
 | 
						|
        // the Phi defining curr.second
 | 
						|
        MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
 | 
						|
        TII->copyRegToReg(*PI->getParent(), PI, t,
 | 
						|
                          curr.second, RC, RC);
 | 
						|
        
 | 
						|
        // Push temporary on Stacks
 | 
						|
        Stacks[curr.second].push_back(t);
 | 
						|
        
 | 
						|
        // Insert curr.second in pushed
 | 
						|
        pushed.insert(curr.second);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Insert copy from map[curr.first] to curr.second
 | 
						|
      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
 | 
						|
                        map[curr.first], RC, RC);
 | 
						|
      map[curr.first] = curr.second;
 | 
						|
      
 | 
						|
      // If curr.first is a destination in copy_set...
 | 
						|
      for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
 | 
						|
           E = copy_set.end(); I != E; )
 | 
						|
        if (curr.first == I->second) {
 | 
						|
          std::pair<unsigned, unsigned> temp = *I;
 | 
						|
          
 | 
						|
          // Avoid iterator invalidation
 | 
						|
          ++I;
 | 
						|
          copy_set.erase(temp.first);
 | 
						|
          worklist.insert(temp);
 | 
						|
          
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          ++I;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!copy_set.empty()) {
 | 
						|
      std::pair<unsigned, unsigned> curr = *copy_set.begin();
 | 
						|
      copy_set.erase(curr.first);
 | 
						|
      
 | 
						|
      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
 | 
						|
      
 | 
						|
      // Insert a copy from dest to a new temporary t at the end of b
 | 
						|
      unsigned t = MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
 | 
						|
                        curr.second, RC, RC);
 | 
						|
      map[curr.second] = t;
 | 
						|
      
 | 
						|
      worklist.insert(curr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// InsertCopies - insert copies into MBB and all of its successors
 | 
						|
void StrongPHIElimination::InsertCopies(MachineBasicBlock* MBB,
 | 
						|
                                 SmallPtrSet<MachineBasicBlock*, 16>& visited) {
 | 
						|
  visited.insert(MBB);
 | 
						|
  
 | 
						|
  std::set<unsigned> pushed;
 | 
						|
  
 | 
						|
  // Rewrite register uses from Stacks
 | 
						|
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | 
						|
      I != E; ++I)
 | 
						|
    for (unsigned i = 0; i < I->getNumOperands(); ++i)
 | 
						|
      if (I->getOperand(i).isRegister() &&
 | 
						|
          Stacks[I->getOperand(i).getReg()].size()) {
 | 
						|
        I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
 | 
						|
      }
 | 
						|
  
 | 
						|
  // Schedule the copies for this block
 | 
						|
  ScheduleCopies(MBB, pushed);
 | 
						|
  
 | 
						|
  // Recur to our successors
 | 
						|
  for (GraphTraits<MachineBasicBlock*>::ChildIteratorType I = 
 | 
						|
       GraphTraits<MachineBasicBlock*>::child_begin(MBB), E =
 | 
						|
       GraphTraits<MachineBasicBlock*>::child_end(MBB); I != E; ++I)
 | 
						|
    if (!visited.count(*I))
 | 
						|
      InsertCopies(*I, visited);
 | 
						|
  
 | 
						|
  // As we exit this block, pop the names we pushed while processing it
 | 
						|
  for (std::set<unsigned>::iterator I = pushed.begin(), 
 | 
						|
       E = pushed.end(); I != E; ++I)
 | 
						|
    Stacks[*I].pop_back();
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
 | 
						|
/// compute what the resultant value numbers for each value in the input two
 | 
						|
/// ranges will be.  This is complicated by copies between the two which can
 | 
						|
/// and will commonly cause multiple value numbers to be merged into one.
 | 
						|
///
 | 
						|
/// VN is the value number that we're trying to resolve.  InstDefiningValue
 | 
						|
/// keeps track of the new InstDefiningValue assignment for the result
 | 
						|
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
 | 
						|
/// whether a value in this or other is a copy from the opposite set.
 | 
						|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
 | 
						|
/// already been assigned.
 | 
						|
///
 | 
						|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
 | 
						|
/// contains the value number the copy is from.
 | 
						|
///
 | 
						|
static unsigned ComputeUltimateVN(VNInfo *VNI,
 | 
						|
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
 | 
						|
                                  SmallVector<int, 16> &ThisValNoAssignments,
 | 
						|
                                  SmallVector<int, 16> &OtherValNoAssignments) {
 | 
						|
  unsigned VN = VNI->id;
 | 
						|
 | 
						|
  // If the VN has already been computed, just return it.
 | 
						|
  if (ThisValNoAssignments[VN] >= 0)
 | 
						|
    return ThisValNoAssignments[VN];
 | 
						|
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
 | 
						|
 | 
						|
  // If this val is not a copy from the other val, then it must be a new value
 | 
						|
  // number in the destination.
 | 
						|
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
 | 
						|
  if (I == ThisFromOther.end()) {
 | 
						|
    NewVNInfo.push_back(VNI);
 | 
						|
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
  }
 | 
						|
  VNInfo *OtherValNo = I->second;
 | 
						|
 | 
						|
  // Otherwise, this *is* a copy from the RHS.  If the other side has already
 | 
						|
  // been computed, return it.
 | 
						|
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
 | 
						|
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
 | 
						|
  
 | 
						|
  // Mark this value number as currently being computed, then ask what the
 | 
						|
  // ultimate value # of the other value is.
 | 
						|
  ThisValNoAssignments[VN] = -2;
 | 
						|
  unsigned UltimateVN =
 | 
						|
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
 | 
						|
                      OtherValNoAssignments, ThisValNoAssignments);
 | 
						|
  return ThisValNoAssignments[VN] = UltimateVN;
 | 
						|
}
 | 
						|
 | 
						|
void StrongPHIElimination::mergeLiveIntervals(unsigned primary,
 | 
						|
                                              unsigned secondary,
 | 
						|
                                              unsigned secondaryVN) {
 | 
						|
  
 | 
						|
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | 
						|
  LiveInterval& LHS = LI.getOrCreateInterval(primary);
 | 
						|
  LiveInterval& RHS = LI.getOrCreateInterval(secondary);
 | 
						|
  
 | 
						|
  // Compute the final value assignment, assuming that the live ranges can be
 | 
						|
  // coalesced.
 | 
						|
  SmallVector<int, 16> LHSValNoAssignments;
 | 
						|
  SmallVector<int, 16> RHSValNoAssignments;
 | 
						|
  SmallVector<VNInfo*, 16> NewVNInfo;
 | 
						|
  
 | 
						|
  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
 | 
						|
  
 | 
						|
  for (LiveInterval::vni_iterator I = LHS.vni_begin(), E = LHS.vni_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    VNInfo *VNI = *I;
 | 
						|
    unsigned VN = VNI->id;
 | 
						|
    if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    NewVNInfo.push_back(VNI);
 | 
						|
    LHSValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (LiveInterval::vni_iterator I = RHS.vni_begin(), E = RHS.vni_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    VNInfo *VNI = *I;
 | 
						|
    unsigned VN = VNI->id;
 | 
						|
    if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
 | 
						|
      continue;
 | 
						|
      
 | 
						|
    NewVNInfo.push_back(VNI);
 | 
						|
    RHSValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, we know that we can coalesce the live ranges.  Ask the
 | 
						|
  // intervals to coalesce themselves now.
 | 
						|
 | 
						|
  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
 | 
						|
  LI.removeInterval(secondary);
 | 
						|
  
 | 
						|
  // The valno that was previously the input to the PHI node
 | 
						|
  // now has a PHIKill.
 | 
						|
  LHS.getValNumInfo(RHSValNoAssignments[secondaryVN])->hasPHIKill = true;
 | 
						|
}
 | 
						|
 | 
						|
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | 
						|
  
 | 
						|
  // Compute DFS numbers of each block
 | 
						|
  computeDFS(Fn);
 | 
						|
  
 | 
						|
  // Determine which phi node operands need copies
 | 
						|
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    if (!I->empty() &&
 | 
						|
        I->begin()->getOpcode() == TargetInstrInfo::PHI)
 | 
						|
      processBlock(I);
 | 
						|
  
 | 
						|
  // Insert copies
 | 
						|
  // FIXME: This process should probably preserve LiveVariables
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 16> visited;
 | 
						|
  InsertCopies(Fn.begin(), visited);
 | 
						|
  
 | 
						|
  // Perform renaming
 | 
						|
  typedef std::map<unsigned, std::map<unsigned, unsigned> > RenameSetType;
 | 
						|
  for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (std::map<unsigned, unsigned>::iterator SI = I->second.begin(),
 | 
						|
         SE = I->second.end(); SI != SE; ++SI) {
 | 
						|
      mergeLiveIntervals(I->first, SI->first, SI->second);
 | 
						|
      Fn.getRegInfo().replaceRegWith(SI->first, I->first);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // FIXME: Insert last-minute copies
 | 
						|
  
 | 
						|
  // Remove PHIs
 | 
						|
  std::vector<MachineInstr*> phis;
 | 
						|
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
 | 
						|
    for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
 | 
						|
         BI != BE; ++BI)
 | 
						|
      if (BI->getOpcode() == TargetInstrInfo::PHI)
 | 
						|
        phis.push_back(BI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
 | 
						|
       I != E; ) {
 | 
						|
    MachineInstr* PInstr = *(I++);
 | 
						|
    
 | 
						|
    // If this is a dead PHI node, then remove it from LiveIntervals.
 | 
						|
    unsigned DestReg = PInstr->getOperand(0).getReg();
 | 
						|
    LiveInterval& PI = LI.getInterval(DestReg);
 | 
						|
    if (PInstr->registerDefIsDead(DestReg)) {
 | 
						|
      if (PI.containsOneValue()) {
 | 
						|
        LI.removeInterval(DestReg);
 | 
						|
      } else {
 | 
						|
        unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
 | 
						|
        PI.removeRange(*PI.getLiveRangeContaining(idx), true);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If the PHI is not dead, then the valno defined by the PHI
 | 
						|
      // now has an unknown def.
 | 
						|
      unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
 | 
						|
      PI.getLiveRangeContaining(idx)->valno->def = ~0U;
 | 
						|
    }
 | 
						|
    
 | 
						|
    LI.RemoveMachineInstrFromMaps(PInstr);
 | 
						|
    PInstr->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  LI.computeNumbering();
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 |