forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1575 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1575 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for PowerPC,
 | |
| // converting from a legalized dag to a PPC dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-codegen"
 | |
| #include "PPC.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializePPCDAGToDAGISelPass(PassRegistry&);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | |
|   /// instructions for SelectionDAG operations.
 | |
|   ///
 | |
|   class PPCDAGToDAGISel : public SelectionDAGISel {
 | |
|     const PPCTargetMachine &TM;
 | |
|     const PPCTargetLowering &PPCLowering;
 | |
|     const PPCSubtarget &PPCSubTarget;
 | |
|     unsigned GlobalBaseReg;
 | |
|   public:
 | |
|     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
 | |
|       : SelectionDAGISel(tm), TM(tm),
 | |
|         PPCLowering(*TM.getTargetLowering()),
 | |
|         PPCSubTarget(*TM.getSubtargetImpl()) {
 | |
|       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseReg = 0;
 | |
|       SelectionDAGISel::runOnMachineFunction(MF);
 | |
| 
 | |
|       if (!PPCSubTarget.isSVR4ABI())
 | |
|         InsertVRSaveCode(MF);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual void PostprocessISelDAG();
 | |
| 
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDValue getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getI64Imm - Return a target constant with the specified value, of type
 | |
|     /// i64.
 | |
|     inline SDValue getI64Imm(uint64_t Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i64);
 | |
|     }
 | |
| 
 | |
|     /// getSmallIPtrImm - Return a target constant of pointer type.
 | |
|     inline SDValue getSmallIPtrImm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
 | |
|     }
 | |
| 
 | |
|     /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
 | |
|     /// with any number of 0s on either side.  The 1s are allowed to wrap from
 | |
|     /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
 | |
|     /// 0x0F0F0000 is not, since all 1s are not contiguous.
 | |
|     static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
 | |
| 
 | |
| 
 | |
|     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | |
|     /// rotate and mask opcode and mask operation.
 | |
|     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
 | |
|                                 unsigned &SH, unsigned &MB, unsigned &ME);
 | |
| 
 | |
|     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | |
|     /// base register.  Return the virtual register that holds this value.
 | |
|     SDNode *getGlobalBaseReg();
 | |
| 
 | |
|     // Select - Convert the specified operand from a target-independent to a
 | |
|     // target-specific node if it hasn't already been changed.
 | |
|     SDNode *Select(SDNode *N);
 | |
| 
 | |
|     SDNode *SelectBitfieldInsert(SDNode *N);
 | |
| 
 | |
|     /// SelectCC - Select a comparison of the specified values with the
 | |
|     /// specified condition code, returning the CR# of the expression.
 | |
|     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
 | |
| 
 | |
|     /// SelectAddrImm - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement [r+imm].
 | |
|     bool SelectAddrImm(SDValue N, SDValue &Disp,
 | |
|                        SDValue &Base) {
 | |
|       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | |
|     /// immediate field.  Note that the operand at this point is already the
 | |
|     /// result of a prior SelectAddressRegImm call.
 | |
|     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
 | |
|       if (N.getOpcode() == ISD::TargetConstant ||
 | |
|           N.getOpcode() == ISD::TargetGlobalAddress) {
 | |
|         Out = N;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | |
|     /// represented as an indexed [r+r] operation.  Returns false if it can
 | |
|     /// be represented by [r+imm], which are preferred.
 | |
|     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
 | |
|       return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | |
|     /// represented as an indexed [r+r] operation.
 | |
|     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
 | |
|       return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrImmX4 - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
 | |
|     /// Suitable for use by STD and friends.
 | |
|     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
 | |
|       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
 | |
|     }
 | |
| 
 | |
|     // Select an address into a single register.
 | |
|     bool SelectAddr(SDValue N, SDValue &Base) {
 | |
|       Base = N;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.  It is always correct to compute the value into
 | |
|     /// a register.  The case of adding a (possibly relocatable) constant to a
 | |
|     /// register can be improved, but it is wrong to substitute Reg+Reg for
 | |
|     /// Reg in an asm, because the load or store opcode would have to change.
 | |
|    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDValue> &OutOps) {
 | |
|       OutOps.push_back(Op);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     void InsertVRSaveCode(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|     }
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "PPCGenDAGISel.inc"
 | |
| 
 | |
| private:
 | |
|     SDNode *SelectSETCC(SDNode *N);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// InsertVRSaveCode - Once the entire function has been instruction selected,
 | |
| /// all virtual registers are created and all machine instructions are built,
 | |
| /// check to see if we need to save/restore VRSAVE.  If so, do it.
 | |
| void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
 | |
|   // Check to see if this function uses vector registers, which means we have to
 | |
|   // save and restore the VRSAVE register and update it with the regs we use.
 | |
|   //
 | |
|   // In this case, there will be virtual registers of vector type created
 | |
|   // by the scheduler.  Detect them now.
 | |
|   bool HasVectorVReg = false;
 | |
|   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
 | |
|       HasVectorVReg = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVectorVReg) return;  // nothing to do.
 | |
| 
 | |
|   // If we have a vector register, we want to emit code into the entry and exit
 | |
|   // blocks to save and restore the VRSAVE register.  We do this here (instead
 | |
|   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | |
|   //
 | |
|   // 1. This (trivially) reduces the load on the register allocator, by not
 | |
|   //    having to represent the live range of the VRSAVE register.
 | |
|   // 2. This (more significantly) allows us to create a temporary virtual
 | |
|   //    register to hold the saved VRSAVE value, allowing this temporary to be
 | |
|   //    register allocated, instead of forcing it to be spilled to the stack.
 | |
| 
 | |
|   // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | |
|   // function and one for the value after having bits or'd into it.
 | |
|   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
| 
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   MachineBasicBlock &EntryBB = *Fn.begin();
 | |
|   DebugLoc dl;
 | |
|   // Emit the following code into the entry block:
 | |
|   // InVRSAVE = MFVRSAVE
 | |
|   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | |
|   // MTVRSAVE UpdatedVRSAVE
 | |
|   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
 | |
|           UpdatedVRSAVE).addReg(InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | |
| 
 | |
|   // Find all return blocks, outputting a restore in each epilog.
 | |
|   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     if (!BB->empty() && BB->back().isReturn()) {
 | |
|       IP = BB->end(); --IP;
 | |
| 
 | |
|       // Skip over all terminator instructions, which are part of the return
 | |
|       // sequence.
 | |
|       MachineBasicBlock::iterator I2 = IP;
 | |
|       while (I2 != BB->begin() && (--I2)->isTerminator())
 | |
|         IP = I2;
 | |
| 
 | |
|       // Emit: MTVRSAVE InVRSave
 | |
|       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseReg) {
 | |
|     const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = MF->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     DebugLoc dl;
 | |
| 
 | |
|     if (PPCLowering.getPointerTy() == MVT::i32) {
 | |
|       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | |
|     } else {
 | |
|       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
 | |
|     }
 | |
|   }
 | |
|   return CurDAG->getRegister(GlobalBaseReg,
 | |
|                              PPCLowering.getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | |
|   if (N->getOpcode() != ISD::Constant)
 | |
|     return false;
 | |
| 
 | |
|   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| 
 | |
| static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | |
| /// operand.  If so Imm will receive the 64-bit value.
 | |
| static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isInt32Immediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | |
|   return isInt32Immediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | |
|   return N->getOpcode() == Opc
 | |
|          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   if (!Val)
 | |
|     return false;
 | |
| 
 | |
|   if (isShiftedMask_32(Val)) {
 | |
|     // look for the first non-zero bit
 | |
|     MB = countLeadingZeros(Val);
 | |
|     // look for the first zero bit after the run of ones
 | |
|     ME = countLeadingZeros((Val - 1) ^ Val);
 | |
|     return true;
 | |
|   } else {
 | |
|     Val = ~Val; // invert mask
 | |
|     if (isShiftedMask_32(Val)) {
 | |
|       // effectively look for the first zero bit
 | |
|       ME = countLeadingZeros(Val) - 1;
 | |
|       // effectively look for the first one bit after the run of zeros
 | |
|       MB = countLeadingZeros((Val - 1) ^ Val) + 1;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // no run present
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
 | |
|                                       bool isShiftMask, unsigned &SH,
 | |
|                                       unsigned &MB, unsigned &ME) {
 | |
|   // Don't even go down this path for i64, since different logic will be
 | |
|   // necessary for rldicl/rldicr/rldimi.
 | |
|   if (N->getValueType(0) != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Shift  = 32;
 | |
|   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (N->getNumOperands() != 2 ||
 | |
|       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
 | |
|     return false;
 | |
| 
 | |
|   if (Opcode == ISD::SHL) {
 | |
|     // apply shift left to mask if it comes first
 | |
|     if (isShiftMask) Mask = Mask << Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu << Shift);
 | |
|   } else if (Opcode == ISD::SRL) {
 | |
|     // apply shift right to mask if it comes first
 | |
|     if (isShiftMask) Mask = Mask >> Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | |
|     // adjust for the left rotate
 | |
|     Shift = 32 - Shift;
 | |
|   } else if (Opcode == ISD::ROTL) {
 | |
|     Indeterminant = 0;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // if the mask doesn't intersect any Indeterminant bits
 | |
|   if (Mask && !(Mask & Indeterminant)) {
 | |
|     SH = Shift & 31;
 | |
|     // make sure the mask is still a mask (wrap arounds may not be)
 | |
|     return isRunOfOnes(Mask, MB, ME);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   APInt LKZ, LKO, RKZ, RKO;
 | |
|   CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
 | |
|   CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
 | |
| 
 | |
|   unsigned TargetMask = LKZ.getZExtValue();
 | |
|   unsigned InsertMask = RKZ.getZExtValue();
 | |
| 
 | |
|   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | |
|     unsigned Op0Opc = Op0.getOpcode();
 | |
|     unsigned Op1Opc = Op1.getOpcode();
 | |
|     unsigned Value, SH = 0;
 | |
|     TargetMask = ~TargetMask;
 | |
|     InsertMask = ~InsertMask;
 | |
| 
 | |
|     // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | |
|     // RHS so that we can fold the shift into the insert.
 | |
|     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|           Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|             Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|           std::swap(Op0, Op1);
 | |
|           std::swap(Op0Opc, Op1Opc);
 | |
|           std::swap(TargetMask, InsertMask);
 | |
|         }
 | |
|       }
 | |
|     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | |
|       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|           Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(Op0Opc, Op1Opc);
 | |
|         std::swap(TargetMask, InsertMask);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned MB, ME;
 | |
|     if (isRunOfOnes(InsertMask, MB, ME)) {
 | |
|       SDValue Tmp1, Tmp2;
 | |
| 
 | |
|       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | |
|           isInt32Immediate(Op1.getOperand(1), Value)) {
 | |
|         Op1 = Op1.getOperand(0);
 | |
|         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | |
|       }
 | |
|       if (Op1Opc == ISD::AND) {
 | |
|         unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | |
|         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
 | |
|             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | |
| 	  // Note that Value must be in range here (less than 32) because
 | |
| 	  // otherwise there would not be any bits set in InsertMask.
 | |
|           Op1 = Op1.getOperand(0).getOperand(0);
 | |
|           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SH &= 31;
 | |
|       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
 | |
|                           getI32Imm(ME) };
 | |
|       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SelectCC - Select a comparison of the specified values with the specified
 | |
| /// condition code, returning the CR# of the expression.
 | |
| SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
 | |
|                                     ISD::CondCode CC, SDLoc dl) {
 | |
|   // Always select the LHS.
 | |
|   unsigned Opc;
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     unsigned Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt32Immediate(RHS, Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt<16>((int)Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | |
| 
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136
 | |
|         //   cmpw cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmplwi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
 | |
|                                            getI32Imm(Imm >> 16)), 0);
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
 | |
|                                               getI32Imm(Imm & 0xFFFF)), 0);
 | |
|       }
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                               getI32Imm(Imm & 0xFFFF)), 0);
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                               getI32Imm((int)SImm & 0xFFFF)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPW;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::i64) {
 | |
|     uint64_t Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | |
| 
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136
 | |
|         //   cmpd cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmpldi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         if (isUInt<32>(Imm)) {
 | |
|           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
 | |
|                                              getI64Imm(Imm >> 16)), 0);
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
 | |
|                                                 getI64Imm(Imm & 0xFFFF)), 0);
 | |
|         }
 | |
|       }
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                               getI64Imm(Imm & 0xFFFF)), 0);
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                               getI64Imm(SImm & 0xFFFF)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPD;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::f32) {
 | |
|     Opc = PPC::FCMPUS;
 | |
|   } else {
 | |
|     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | |
|     Opc = PPC::FCMPUD;
 | |
|   }
 | |
|   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
 | |
| }
 | |
| 
 | |
| static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETOGE:
 | |
|     llvm_unreachable("Should be lowered by legalize!");
 | |
|   default: llvm_unreachable("Unknown condition!");
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return PPC::PRED_EQ;
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  return PPC::PRED_NE;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return PPC::PRED_LT;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  return PPC::PRED_LE;
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return PPC::PRED_GT;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  return PPC::PRED_GE;
 | |
|   case ISD::SETO:   return PPC::PRED_NU;
 | |
|   case ISD::SETUO:  return PPC::PRED_UN;
 | |
|     // These two are invalid for floating point.  Assume we have int.
 | |
|   case ISD::SETULT: return PPC::PRED_LT;
 | |
|   case ISD::SETUGT: return PPC::PRED_GT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
 | |
|   Invert = false;
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown condition!");
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
 | |
|   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
 | |
|   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|     llvm_unreachable("Invalid branch code: should be expanded by legalize");
 | |
|   // These are invalid for floating point.  Assume integer.
 | |
|   case ISD::SETULT: return 0;
 | |
|   case ISD::SETUGT: return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getVCmpInst: return the vector compare instruction for the specified
 | |
| // vector type and condition code. Since this is for altivec specific code,
 | |
| // only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
 | |
| static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|     case ISD::SETEQ:
 | |
|     case ISD::SETUEQ:
 | |
|     case ISD::SETNE:
 | |
|     case ISD::SETUNE:
 | |
|       if (VecVT == MVT::v16i8)
 | |
|         return PPC::VCMPEQUB;
 | |
|       else if (VecVT == MVT::v8i16)
 | |
|         return PPC::VCMPEQUH;
 | |
|       else if (VecVT == MVT::v4i32)
 | |
|         return PPC::VCMPEQUW;
 | |
|       // v4f32 != v4f32 could be translate to unordered not equal
 | |
|       else if (VecVT == MVT::v4f32)
 | |
|         return PPC::VCMPEQFP;
 | |
|       break;
 | |
|     case ISD::SETLT:
 | |
|     case ISD::SETGT:
 | |
|     case ISD::SETLE:
 | |
|     case ISD::SETGE:
 | |
|       if (VecVT == MVT::v16i8)
 | |
|         return PPC::VCMPGTSB;
 | |
|       else if (VecVT == MVT::v8i16)
 | |
|         return PPC::VCMPGTSH;
 | |
|       else if (VecVT == MVT::v4i32)
 | |
|         return PPC::VCMPGTSW;
 | |
|       else if (VecVT == MVT::v4f32)
 | |
|         return PPC::VCMPGTFP;
 | |
|       break;
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETUGT:
 | |
|     case ISD::SETUGE:
 | |
|     case ISD::SETULE:
 | |
|       if (VecVT == MVT::v16i8)
 | |
|         return PPC::VCMPGTUB;
 | |
|       else if (VecVT == MVT::v8i16)
 | |
|         return PPC::VCMPGTUH;
 | |
|       else if (VecVT == MVT::v4i32)
 | |
|         return PPC::VCMPGTUW;
 | |
|       break;
 | |
|     case ISD::SETOEQ:
 | |
|       if (VecVT == MVT::v4f32)
 | |
|         return PPC::VCMPEQFP;
 | |
|       break;
 | |
|     case ISD::SETOLT:
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETOLE:
 | |
|       if (VecVT == MVT::v4f32)
 | |
|         return PPC::VCMPGTFP;
 | |
|       break;
 | |
|     case ISD::SETOGE:
 | |
|       if (VecVT == MVT::v4f32)
 | |
|         return PPC::VCMPGEFP;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
|   llvm_unreachable("Invalid integer vector compare condition");
 | |
| }
 | |
| 
 | |
| // getVCmpEQInst: return the equal compare instruction for the specified vector
 | |
| // type. Since this is for altivec specific code, only support the altivec
 | |
| // types (v16i8, v8i16, v4i32, and v4f32).
 | |
| static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
 | |
|   switch (VecVT) {
 | |
|     case MVT::v16i8:
 | |
|       return PPC::VCMPEQUB;
 | |
|     case MVT::v8i16:
 | |
|       return PPC::VCMPEQUH;
 | |
|     case MVT::v4i32:
 | |
|       return PPC::VCMPEQUW;
 | |
|     case MVT::v4f32:
 | |
|       return PPC::VCMPEQFP;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid integer vector compare condition");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   unsigned Imm;
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = (PtrVT == MVT::i64);
 | |
| 
 | |
|   if (isInt32Immediate(N->getOperand(1), Imm)) {
 | |
|     // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|     // Check for those cases here.
 | |
|     // setcc op, 0
 | |
|     if (Imm == 0) {
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ: {
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
 | |
|         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETNE: {
 | |
|         if (isPPC64) break;
 | |
|         SDValue AD =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                          Op, getI32Imm(~0U)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
 | |
|                                     AD.getValue(1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue T =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
 | |
|         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
 | |
|         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       }
 | |
|     } else if (Imm == ~0U) {        // setcc op, -1
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:
 | |
|         if (isPPC64) break;
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                             Op, getI32Imm(1)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | |
|                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
 | |
|                                                              MVT::i32,
 | |
|                                                              getI32Imm(0)), 0),
 | |
|                                       Op.getValue(1));
 | |
|       case ISD::SETNE: {
 | |
|         if (isPPC64) break;
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
 | |
|         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                             Op, getI32Imm(~0U));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
 | |
|                                     Op, SDValue(AD, 1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
 | |
|                                                     getI32Imm(1)), 0);
 | |
|         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
 | |
|                                                     Op), 0);
 | |
|         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
 | |
|                      0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
 | |
|                                     getI32Imm(1));
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|   // Altivec Vector compare instructions do not set any CR register by default and
 | |
|   // vector compare operations return the same type as the operands.
 | |
|   if (LHS.getValueType().isVector()) {
 | |
|     EVT VecVT = LHS.getValueType();
 | |
|     MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
 | |
|     unsigned int VCmpInst = getVCmpInst(VT, CC);
 | |
| 
 | |
|     switch (CC) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETOEQ:
 | |
|       case ISD::SETUEQ:
 | |
|         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | |
|       case ISD::SETNE:
 | |
|       case ISD::SETONE:
 | |
|       case ISD::SETUNE: {
 | |
|         SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
 | |
|       } 
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETOLT:
 | |
|       case ISD::SETULT:
 | |
|         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
 | |
|       case ISD::SETGT:
 | |
|       case ISD::SETOGT:
 | |
|       case ISD::SETUGT:
 | |
|         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | |
|       case ISD::SETGE:
 | |
|       case ISD::SETOGE:
 | |
|       case ISD::SETUGE: {
 | |
|         // Small optimization: Altivec provides a 'Vector Compare Greater Than
 | |
|         // or Equal To' instruction (vcmpgefp), so in this case there is no
 | |
|         // need for extra logic for the equal compare.
 | |
|         if (VecVT.getSimpleVT().isFloatingPoint()) {
 | |
|           return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | |
|         } else {
 | |
|           SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | |
|           unsigned int VCmpEQInst = getVCmpEQInst(VT);
 | |
|           SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
 | |
|           return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
 | |
|         }
 | |
|       }
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETOLE:
 | |
|       case ISD::SETULE: {
 | |
|         SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
 | |
|         unsigned int VCmpEQInst = getVCmpEQInst(VT);
 | |
|         SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
 | |
|       }
 | |
|       default:
 | |
|         llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Inv;
 | |
|   unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | |
|   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
 | |
|   SDValue IntCR;
 | |
| 
 | |
|   // Force the ccreg into CR7.
 | |
|   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | |
| 
 | |
|   SDValue InFlag(0, 0);  // Null incoming flag value.
 | |
|   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
 | |
|                                InFlag).getValue(1);
 | |
| 
 | |
|   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
 | |
|                                          CCReg), 0);
 | |
| 
 | |
|   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
 | |
|                       getI32Imm(31), getI32Imm(31) };
 | |
|   if (!Inv)
 | |
|     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
| 
 | |
|   // Get the specified bit.
 | |
|   SDValue Tmp =
 | |
|     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | |
|   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Select - Convert the specified operand from a target-independent to a
 | |
| // target-specific node if it hasn't already been changed.
 | |
| SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   if (N->isMachineOpcode()) {
 | |
|     N->setNodeId(-1);
 | |
|     return NULL;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     if (N->getValueType(0) == MVT::i64) {
 | |
|       // Get 64 bit value.
 | |
|       int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|       // Assume no remaining bits.
 | |
|       unsigned Remainder = 0;
 | |
|       // Assume no shift required.
 | |
|       unsigned Shift = 0;
 | |
| 
 | |
|       // If it can't be represented as a 32 bit value.
 | |
|       if (!isInt<32>(Imm)) {
 | |
|         Shift = countTrailingZeros<uint64_t>(Imm);
 | |
|         int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | |
| 
 | |
|         // If the shifted value fits 32 bits.
 | |
|         if (isInt<32>(ImmSh)) {
 | |
|           // Go with the shifted value.
 | |
|           Imm = ImmSh;
 | |
|         } else {
 | |
|           // Still stuck with a 64 bit value.
 | |
|           Remainder = Imm;
 | |
|           Shift = 32;
 | |
|           Imm >>= 32;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Intermediate operand.
 | |
|       SDNode *Result;
 | |
| 
 | |
|       // Handle first 32 bits.
 | |
|       unsigned Lo = Imm & 0xFFFF;
 | |
|       unsigned Hi = (Imm >> 16) & 0xFFFF;
 | |
| 
 | |
|       // Simple value.
 | |
|       if (isInt<16>(Imm)) {
 | |
|        // Just the Lo bits.
 | |
|         Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
 | |
|       } else if (Lo) {
 | |
|         // Handle the Hi bits.
 | |
|         unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | |
|         Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
 | |
|         // And Lo bits.
 | |
|         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                         SDValue(Result, 0), getI32Imm(Lo));
 | |
|       } else {
 | |
|        // Just the Hi bits.
 | |
|         Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
 | |
|       }
 | |
| 
 | |
|       // If no shift, we're done.
 | |
|       if (!Shift) return Result;
 | |
| 
 | |
|       // Shift for next step if the upper 32-bits were not zero.
 | |
|       if (Imm) {
 | |
|         Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
 | |
|                                         SDValue(Result, 0),
 | |
|                                         getI32Imm(Shift),
 | |
|                                         getI32Imm(63 - Shift));
 | |
|       }
 | |
| 
 | |
|       // Add in the last bits as required.
 | |
|       if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | |
|         Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
 | |
|                                         SDValue(Result, 0), getI32Imm(Hi));
 | |
|       }
 | |
|       if ((Lo = Remainder & 0xFFFF)) {
 | |
|         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                         SDValue(Result, 0), getI32Imm(Lo));
 | |
|       }
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SETCC:
 | |
|     return SelectSETCC(N);
 | |
|   case PPCISD::GlobalBaseReg:
 | |
|     return getGlobalBaseReg();
 | |
| 
 | |
|   case ISD::FrameIndex: {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
 | |
|     unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | |
|     if (N->hasOneUse())
 | |
|       return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
 | |
|                                   getSmallIPtrImm(0));
 | |
|     return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
 | |
|                                   getSmallIPtrImm(0));
 | |
|   }
 | |
| 
 | |
|   case PPCISD::MFOCRF: {
 | |
|     SDValue InFlag = N->getOperand(1);
 | |
|     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
 | |
|                                   N->getOperand(0), InFlag);
 | |
|   }
 | |
| 
 | |
|   case ISD::SDIV: {
 | |
|     // FIXME: since this depends on the setting of the carry flag from the srawi
 | |
|     //        we should really be making notes about that for the scheduler.
 | |
|     // FIXME: It sure would be nice if we could cheaply recognize the
 | |
|     //        srl/add/sra pattern the dag combiner will generate for this as
 | |
|     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | |
|     unsigned Imm;
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm)) {
 | |
|       SDValue N0 = N->getOperand(0);
 | |
|       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | |
|                                  N0, getI32Imm(Log2_32(Imm)));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | |
|                                     SDValue(Op, 0), SDValue(Op, 1));
 | |
|       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | |
|                                  N0, getI32Imm(Log2_32(-Imm)));
 | |
|         SDValue PT =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
 | |
|                                          SDValue(Op, 0), SDValue(Op, 1)),
 | |
|                     0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::LOAD: {
 | |
|     // Handle preincrement loads.
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     EVT LoadedVT = LD->getMemoryVT();
 | |
| 
 | |
|     // Normal loads are handled by code generated from the .td file.
 | |
|     if (LD->getAddressingMode() != ISD::PRE_INC)
 | |
|       break;
 | |
| 
 | |
|     SDValue Offset = LD->getOffset();
 | |
|     if (Offset.getOpcode() == ISD::TargetConstant ||
 | |
|         Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | |
| 
 | |
|       unsigned Opcode;
 | |
|       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|       if (LD->getValueType(0) != MVT::i64) {
 | |
|         // Handle PPC32 integer and normal FP loads.
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::f64: Opcode = PPC::LFDU; break;
 | |
|           case MVT::f32: Opcode = PPC::LFSU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU; break;
 | |
|         }
 | |
|       } else {
 | |
|         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::i64: Opcode = PPC::LDU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU8; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU8; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[] = { Offset, Base, Chain };
 | |
|       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
 | |
|                                     PPCLowering.getPointerTy(),
 | |
|                                     MVT::Other, Ops);
 | |
|     } else {
 | |
|       unsigned Opcode;
 | |
|       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|       if (LD->getValueType(0) != MVT::i64) {
 | |
|         // Handle PPC32 integer and normal FP loads.
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::f64: Opcode = PPC::LFDUX; break;
 | |
|           case MVT::f32: Opcode = PPC::LFSUX; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZUX; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZUX; break;
 | |
|         }
 | |
|       } else {
 | |
|         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | |
|         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
 | |
|                "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::i64: Opcode = PPC::LDUX; break;
 | |
|           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZUX8; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[] = { Base, Offset, Chain };
 | |
|       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
 | |
|                                     PPCLowering.getPointerTy(),
 | |
|                                     MVT::Other, Ops);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case ISD::AND: {
 | |
|     unsigned Imm, Imm2, SH, MB, ME;
 | |
|     uint64_t Imm64;
 | |
| 
 | |
|     // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | |
|     // with a mask, emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
 | |
|       SDValue Val = N->getOperand(0).getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     // If this is just a masked value where the input is not handled above, and
 | |
|     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRunOfOnes(Imm, MB, ME) &&
 | |
|         N->getOperand(0).getOpcode() != ISD::ROTL) {
 | |
|       SDValue Val = N->getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     // If this is a 64-bit zero-extension mask, emit rldicl.
 | |
|     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
 | |
|         isMask_64(Imm64)) {
 | |
|       SDValue Val = N->getOperand(0);
 | |
|       MB = 64 - CountTrailingOnes_64(Imm64);
 | |
|       SH = 0;
 | |
| 
 | |
|       // If the operand is a logical right shift, we can fold it into this
 | |
|       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
 | |
|       // for n <= mb. The right shift is really a left rotate followed by a
 | |
|       // mask, and this mask is a more-restrictive sub-mask of the mask implied
 | |
|       // by the shift.
 | |
|       if (Val.getOpcode() == ISD::SRL &&
 | |
|           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
 | |
|         assert(Imm < 64 && "Illegal shift amount");
 | |
|         Val = Val.getOperand(0);
 | |
|         SH = 64 - Imm;
 | |
|       }
 | |
| 
 | |
|       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
 | |
|     }
 | |
|     // AND X, 0 -> 0, not "rlwinm 32".
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | |
|       ReplaceUses(SDValue(N, 0), N->getOperand(1));
 | |
|       return NULL;
 | |
|     }
 | |
|     // ISD::OR doesn't get all the bitfield insertion fun.
 | |
|     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         N->getOperand(0).getOpcode() == ISD::OR &&
 | |
|         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | |
|       unsigned MB, ME;
 | |
|       Imm = ~(Imm^Imm2);
 | |
|       if (isRunOfOnes(Imm, MB, ME)) {
 | |
|         SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                             N->getOperand(0).getOperand(1),
 | |
|                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
 | |
|         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::OR:
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       if (SDNode *I = SelectBitfieldInsert(N))
 | |
|         return I;
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   case ISD::SHL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SRL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
|     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | |
|     bool isPPC64 = (PtrVT == MVT::i64);
 | |
| 
 | |
|     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | |
|     if (!isPPC64)
 | |
|       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | |
|           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | |
|             if (N1C->isNullValue() && N3C->isNullValue() &&
 | |
|                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
 | |
|                 // FIXME: Implement this optzn for PPC64.
 | |
|                 N->getValueType(0) == MVT::i32) {
 | |
|               SDNode *Tmp =
 | |
|                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                        N->getOperand(0), getI32Imm(~0U));
 | |
|               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | |
|                                           SDValue(Tmp, 0), N->getOperand(0),
 | |
|                                           SDValue(Tmp, 1));
 | |
|             }
 | |
| 
 | |
|     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | |
|     unsigned BROpc = getPredicateForSetCC(CC);
 | |
| 
 | |
|     unsigned SelectCCOp;
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       SelectCCOp = PPC::SELECT_CC_I4;
 | |
|     else if (N->getValueType(0) == MVT::i64)
 | |
|       SelectCCOp = PPC::SELECT_CC_I8;
 | |
|     else if (N->getValueType(0) == MVT::f32)
 | |
|       SelectCCOp = PPC::SELECT_CC_F4;
 | |
|     else if (N->getValueType(0) == MVT::f64)
 | |
|       SelectCCOp = PPC::SELECT_CC_F8;
 | |
|     else
 | |
|       SelectCCOp = PPC::SELECT_CC_VRRC;
 | |
| 
 | |
|     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | |
|                         getI32Imm(BROpc) };
 | |
|     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
 | |
|   }
 | |
|   case PPCISD::BDNZ:
 | |
|   case PPCISD::BDZ: {
 | |
|     bool IsPPC64 = PPCSubTarget.isPPC64();
 | |
|     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
 | |
|     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
 | |
|                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
 | |
|                                 MVT::Other, Ops, 2);
 | |
|   }
 | |
|   case PPCISD::COND_BRANCH: {
 | |
|     // Op #0 is the Chain.
 | |
|     // Op #1 is the PPC::PRED_* number.
 | |
|     // Op #2 is the CR#
 | |
|     // Op #3 is the Dest MBB
 | |
|     // Op #4 is the Flag.
 | |
|     // Prevent PPC::PRED_* from being selected into LI.
 | |
|     SDValue Pred =
 | |
|       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
 | |
|     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | |
|       N->getOperand(0), N->getOperand(4) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
 | |
|     SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
 | |
|                         N->getOperand(4), N->getOperand(0) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
 | |
|   }
 | |
|   case ISD::BRIND: {
 | |
|     // FIXME: Should custom lower this.
 | |
|     SDValue Chain = N->getOperand(0);
 | |
|     SDValue Target = N->getOperand(1);
 | |
|     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | |
|     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
 | |
|     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
 | |
|                                            Chain), 0);
 | |
|     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
 | |
|   }
 | |
|   case PPCISD::TOC_ENTRY: {
 | |
|     assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
 | |
| 
 | |
|     // For medium and large code model, we generate two instructions as
 | |
|     // described below.  Otherwise we allow SelectCodeCommon to handle this,
 | |
|     // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
 | |
|     CodeModel::Model CModel = TM.getCodeModel();
 | |
|     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
 | |
|       break;
 | |
| 
 | |
|     // The first source operand is a TargetGlobalAddress or a
 | |
|     // TargetJumpTable.  If it is an externally defined symbol, a symbol
 | |
|     // with common linkage, a function address, or a jump table address,
 | |
|     // or if we are generating code for large code model, we generate:
 | |
|     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
 | |
|     // Otherwise we generate:
 | |
|     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
 | |
|     SDValue GA = N->getOperand(0);
 | |
|     SDValue TOCbase = N->getOperand(1);
 | |
|     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
 | |
|                                         TOCbase, GA);
 | |
| 
 | |
|     if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
 | |
|       return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
 | |
|                                     SDValue(Tmp, 0));
 | |
| 
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
 | |
|       const GlobalValue *GValue = G->getGlobal();
 | |
|       const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
 | |
|       const GlobalValue *RealGValue = GAlias ?
 | |
|         GAlias->resolveAliasedGlobal(false) : GValue;
 | |
|       const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
 | |
|       assert((GVar || isa<Function>(RealGValue)) &&
 | |
|              "Unexpected global value subclass!");
 | |
| 
 | |
|       // An external variable is one without an initializer.  For these,
 | |
|       // for variables with common linkage, and for Functions, generate
 | |
|       // the LDtocL form.
 | |
|       if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
 | |
|           RealGValue->hasAvailableExternallyLinkage())
 | |
|         return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
 | |
|                                       SDValue(Tmp, 0));
 | |
|     }
 | |
| 
 | |
|     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
 | |
|                                   SDValue(Tmp, 0), GA);
 | |
|   }
 | |
|   case PPCISD::VADD_SPLAT: {
 | |
|     // This expands into one of three sequences, depending on whether
 | |
|     // the first operand is odd or even, positive or negative.
 | |
|     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
 | |
|            isa<ConstantSDNode>(N->getOperand(1)) &&
 | |
|            "Invalid operand on VADD_SPLAT!");
 | |
| 
 | |
|     int Elt     = N->getConstantOperandVal(0);
 | |
|     int EltSize = N->getConstantOperandVal(1);
 | |
|     unsigned Opc1, Opc2, Opc3;
 | |
|     EVT VT;
 | |
| 
 | |
|     if (EltSize == 1) {
 | |
|       Opc1 = PPC::VSPLTISB;
 | |
|       Opc2 = PPC::VADDUBM;
 | |
|       Opc3 = PPC::VSUBUBM;
 | |
|       VT = MVT::v16i8;
 | |
|     } else if (EltSize == 2) {
 | |
|       Opc1 = PPC::VSPLTISH;
 | |
|       Opc2 = PPC::VADDUHM;
 | |
|       Opc3 = PPC::VSUBUHM;
 | |
|       VT = MVT::v8i16;
 | |
|     } else {
 | |
|       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
 | |
|       Opc1 = PPC::VSPLTISW;
 | |
|       Opc2 = PPC::VADDUWM;
 | |
|       Opc3 = PPC::VSUBUWM;
 | |
|       VT = MVT::v4i32;
 | |
|     }
 | |
| 
 | |
|     if ((Elt & 1) == 0) {
 | |
|       // Elt is even, in the range [-32,-18] + [16,30].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp = VSPLTIS[BHW] elt
 | |
|       //          VADDU[BHW]M tmp, tmp
 | |
|       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
 | |
|       SDValue EltVal = getI32Imm(Elt >> 1);
 | |
|       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       SDValue TmpVal = SDValue(Tmp, 0);
 | |
|       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
 | |
| 
 | |
|     } else if (Elt > 0) {
 | |
|       // Elt is odd and positive, in the range [17,31].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp1 = VSPLTIS[BHW] elt-16
 | |
|       //          tmp2 = VSPLTIS[BHW] -16
 | |
|       //          VSUBU[BHW]M tmp1, tmp2
 | |
|       SDValue EltVal = getI32Imm(Elt - 16);
 | |
|       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       EltVal = getI32Imm(-16);
 | |
|       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
 | |
|                                     SDValue(Tmp2, 0));
 | |
| 
 | |
|     } else {
 | |
|       // Elt is odd and negative, in the range [-31,-17].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp1 = VSPLTIS[BHW] elt+16
 | |
|       //          tmp2 = VSPLTIS[BHW] -16
 | |
|       //          VADDU[BHW]M tmp1, tmp2
 | |
|       SDValue EltVal = getI32Imm(Elt + 16);
 | |
|       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       EltVal = getI32Imm(-16);
 | |
|       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
 | |
|                                     SDValue(Tmp2, 0));
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SelectCode(N);
 | |
| }
 | |
| 
 | |
| /// PostprocessISelDAG - Perform some late peephole optimizations
 | |
| /// on the DAG representation.
 | |
| void PPCDAGToDAGISel::PostprocessISelDAG() {
 | |
| 
 | |
|   // Skip peepholes at -O0.
 | |
|   if (TM.getOptLevel() == CodeGenOpt::None)
 | |
|     return;
 | |
| 
 | |
|   // These optimizations are currently supported only for 64-bit SVR4.
 | |
|   if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
 | |
|     return;
 | |
| 
 | |
|   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | |
|   ++Position;
 | |
| 
 | |
|   while (Position != CurDAG->allnodes_begin()) {
 | |
|     SDNode *N = --Position;
 | |
|     // Skip dead nodes and any non-machine opcodes.
 | |
|     if (N->use_empty() || !N->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned FirstOp;
 | |
|     unsigned StorageOpcode = N->getMachineOpcode();
 | |
| 
 | |
|     switch (StorageOpcode) {
 | |
|     default: continue;
 | |
| 
 | |
|     case PPC::LBZ:
 | |
|     case PPC::LBZ8:
 | |
|     case PPC::LD:
 | |
|     case PPC::LFD:
 | |
|     case PPC::LFS:
 | |
|     case PPC::LHA:
 | |
|     case PPC::LHA8:
 | |
|     case PPC::LHZ:
 | |
|     case PPC::LHZ8:
 | |
|     case PPC::LWA:
 | |
|     case PPC::LWZ:
 | |
|     case PPC::LWZ8:
 | |
|       FirstOp = 0;
 | |
|       break;
 | |
| 
 | |
|     case PPC::STB:
 | |
|     case PPC::STB8:
 | |
|     case PPC::STD:
 | |
|     case PPC::STFD:
 | |
|     case PPC::STFS:
 | |
|     case PPC::STH:
 | |
|     case PPC::STH8:
 | |
|     case PPC::STW:
 | |
|     case PPC::STW8:
 | |
|       FirstOp = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a load or store with a zero offset, we may be able to
 | |
|     // fold an add-immediate into the memory operation.
 | |
|     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
 | |
|         N->getConstantOperandVal(FirstOp) != 0)
 | |
|       continue;
 | |
| 
 | |
|     SDValue Base = N->getOperand(FirstOp + 1);
 | |
|     if (!Base.isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Flags = 0;
 | |
|     bool ReplaceFlags = true;
 | |
| 
 | |
|     // When the feeding operation is an add-immediate of some sort,
 | |
|     // determine whether we need to add relocation information to the
 | |
|     // target flags on the immediate operand when we fold it into the
 | |
|     // load instruction.
 | |
|     //
 | |
|     // For something like ADDItocL, the relocation information is
 | |
|     // inferred from the opcode; when we process it in the AsmPrinter,
 | |
|     // we add the necessary relocation there.  A load, though, can receive
 | |
|     // relocation from various flavors of ADDIxxx, so we need to carry
 | |
|     // the relocation information in the target flags.
 | |
|     switch (Base.getMachineOpcode()) {
 | |
|     default: continue;
 | |
| 
 | |
|     case PPC::ADDI8:
 | |
|     case PPC::ADDI:
 | |
|       // In some cases (such as TLS) the relocation information
 | |
|       // is already in place on the operand, so copying the operand
 | |
|       // is sufficient.
 | |
|       ReplaceFlags = false;
 | |
|       // For these cases, the immediate may not be divisible by 4, in
 | |
|       // which case the fold is illegal for DS-form instructions.  (The
 | |
|       // other cases provide aligned addresses and are always safe.)
 | |
|       if ((StorageOpcode == PPC::LWA ||
 | |
|            StorageOpcode == PPC::LD  ||
 | |
|            StorageOpcode == PPC::STD) &&
 | |
|           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
 | |
|            Base.getConstantOperandVal(1) % 4 != 0))
 | |
|         continue;
 | |
|       break;
 | |
|     case PPC::ADDIdtprelL:
 | |
|       Flags = PPCII::MO_DTPREL_LO;
 | |
|       break;
 | |
|     case PPC::ADDItlsldL:
 | |
|       Flags = PPCII::MO_TLSLD_LO;
 | |
|       break;
 | |
|     case PPC::ADDItocL:
 | |
|       Flags = PPCII::MO_TOC_LO;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We found an opportunity.  Reverse the operands from the add
 | |
|     // immediate and substitute them into the load or store.  If
 | |
|     // needed, update the target flags for the immediate operand to
 | |
|     // reflect the necessary relocation information.
 | |
|     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
 | |
|     DEBUG(Base->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\nN: ");
 | |
|     DEBUG(N->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\n");
 | |
| 
 | |
|     SDValue ImmOpnd = Base.getOperand(1);
 | |
| 
 | |
|     // If the relocation information isn't already present on the
 | |
|     // immediate operand, add it now.
 | |
|     if (ReplaceFlags) {
 | |
|       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
 | |
|         SDLoc dl(GA);
 | |
|         const GlobalValue *GV = GA->getGlobal();
 | |
|         // We can't perform this optimization for data whose alignment
 | |
|         // is insufficient for the instruction encoding.
 | |
|         if (GV->getAlignment() < 4 &&
 | |
|             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
 | |
|              StorageOpcode == PPC::LWA)) {
 | |
|           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
 | |
|           continue;
 | |
|         }
 | |
|         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
 | |
|       } else if (ConstantPoolSDNode *CP =
 | |
|                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
 | |
|         const Constant *C = CP->getConstVal();
 | |
|         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
 | |
|                                                 CP->getAlignment(),
 | |
|                                                 0, Flags);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (FirstOp == 1) // Store
 | |
|       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
 | |
|                                        Base.getOperand(0), N->getOperand(3));
 | |
|     else // Load
 | |
|       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
 | |
|                                        N->getOperand(2));
 | |
| 
 | |
|     // The add-immediate may now be dead, in which case remove it.
 | |
|     if (Base.getNode()->use_empty())
 | |
|       CurDAG->RemoveDeadNode(Base.getNode());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPCISelDag - This pass converts a legalized DAG into a
 | |
| /// PowerPC-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | |
|   return new PPCDAGToDAGISel(TM);
 | |
| }
 | |
| 
 | |
| static void initializePassOnce(PassRegistry &Registry) {
 | |
|   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
 | |
|                               false, false);
 | |
|   Registry.registerPass(*PI, true);
 | |
| }
 | |
| 
 | |
| void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
 | |
|   CALL_ONCE_INITIALIZATION(initializePassOnce);
 | |
| }
 | |
| 
 |