forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5252 lines
		
	
	
		
			209 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5252 lines
		
	
	
		
			209 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the implementation of the scalar evolution analysis
 | 
						|
// engine, which is used primarily to analyze expressions involving induction
 | 
						|
// variables in loops.
 | 
						|
//
 | 
						|
// There are several aspects to this library.  First is the representation of
 | 
						|
// scalar expressions, which are represented as subclasses of the SCEV class.
 | 
						|
// These classes are used to represent certain types of subexpressions that we
 | 
						|
// can handle. We only create one SCEV of a particular shape, so
 | 
						|
// pointer-comparisons for equality are legal.
 | 
						|
//
 | 
						|
// One important aspect of the SCEV objects is that they are never cyclic, even
 | 
						|
// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | 
						|
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | 
						|
// recurrence) then we represent it directly as a recurrence node, otherwise we
 | 
						|
// represent it as a SCEVUnknown node.
 | 
						|
//
 | 
						|
// In addition to being able to represent expressions of various types, we also
 | 
						|
// have folders that are used to build the *canonical* representation for a
 | 
						|
// particular expression.  These folders are capable of using a variety of
 | 
						|
// rewrite rules to simplify the expressions.
 | 
						|
//
 | 
						|
// Once the folders are defined, we can implement the more interesting
 | 
						|
// higher-level code, such as the code that recognizes PHI nodes of various
 | 
						|
// types, computes the execution count of a loop, etc.
 | 
						|
//
 | 
						|
// TODO: We should use these routines and value representations to implement
 | 
						|
// dependence analysis!
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// There are several good references for the techniques used in this analysis.
 | 
						|
//
 | 
						|
//  Chains of recurrences -- a method to expedite the evaluation
 | 
						|
//  of closed-form functions
 | 
						|
//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | 
						|
//
 | 
						|
//  On computational properties of chains of recurrences
 | 
						|
//  Eugene V. Zima
 | 
						|
//
 | 
						|
//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | 
						|
//  Robert A. van Engelen
 | 
						|
//
 | 
						|
//  Efficient Symbolic Analysis for Optimizing Compilers
 | 
						|
//  Robert A. van Engelen
 | 
						|
//
 | 
						|
//  Using the chains of recurrences algebra for data dependence testing and
 | 
						|
//  induction variable substitution
 | 
						|
//  MS Thesis, Johnie Birch
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalar-evolution"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/GlobalAlias.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumArrayLenItCounts,
 | 
						|
          "Number of trip counts computed with array length");
 | 
						|
STATISTIC(NumTripCountsComputed,
 | 
						|
          "Number of loops with predictable loop counts");
 | 
						|
STATISTIC(NumTripCountsNotComputed,
 | 
						|
          "Number of loops without predictable loop counts");
 | 
						|
STATISTIC(NumBruteForceTripCountsComputed,
 | 
						|
          "Number of loops with trip counts computed by force");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | 
						|
                        cl::desc("Maximum number of iterations SCEV will "
 | 
						|
                                 "symbolically execute a constant "
 | 
						|
                                 "derived loop"),
 | 
						|
                        cl::init(100));
 | 
						|
 | 
						|
static RegisterPass<ScalarEvolution>
 | 
						|
R("scalar-evolution", "Scalar Evolution Analysis", false, true);
 | 
						|
char ScalarEvolution::ID = 0;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           SCEV class definitions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Implementation of the SCEV class.
 | 
						|
//
 | 
						|
 | 
						|
SCEV::~SCEV() {}
 | 
						|
 | 
						|
void SCEV::dump() const {
 | 
						|
  print(errs());
 | 
						|
  errs() << '\n';
 | 
						|
}
 | 
						|
 | 
						|
bool SCEV::isZero() const {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | 
						|
    return SC->getValue()->isZero();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEV::isOne() const {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | 
						|
    return SC->getValue()->isOne();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEV::isAllOnesValue() const {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | 
						|
    return SC->getValue()->isAllOnesValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SCEVCouldNotCompute::SCEVCouldNotCompute() :
 | 
						|
  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
 | 
						|
  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVCouldNotCompute::getType() const {
 | 
						|
  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
 | 
						|
  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
 | 
						|
  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void SCEVCouldNotCompute::print(raw_ostream &OS) const {
 | 
						|
  OS << "***COULDNOTCOMPUTE***";
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | 
						|
  return S->getSCEVType() == scCouldNotCompute;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scConstant);
 | 
						|
  ID.AddPointer(V);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
 | 
						|
  new (S) SCEVConstant(ID, V);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
 | 
						|
  return getConstant(ConstantInt::get(getContext(), Val));
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
 | 
						|
  return getConstant(
 | 
						|
    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVConstant::getType() const { return V->getType(); }
 | 
						|
 | 
						|
void SCEVConstant::print(raw_ostream &OS) const {
 | 
						|
  WriteAsOperand(OS, V, false);
 | 
						|
}
 | 
						|
 | 
						|
SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
 | 
						|
                           unsigned SCEVTy, const SCEV *op, const Type *ty)
 | 
						|
  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
 | 
						|
 | 
						|
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return Op->dominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return Op->properlyDominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
 | 
						|
                                   const SCEV *op, const Type *ty)
 | 
						|
  : SCEVCastExpr(ID, scTruncate, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot truncate non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
void SCEVTruncateExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
 | 
						|
                                       const SCEV *op, const Type *ty)
 | 
						|
  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot zero extend non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
 | 
						|
                                       const SCEV *op, const Type *ty)
 | 
						|
  : SCEVCastExpr(ID, scSignExtend, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot sign extend non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
void SCEVSignExtendExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
void SCEVCommutativeExpr::print(raw_ostream &OS) const {
 | 
						|
  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
 | 
						|
  const char *OpStr = getOperationStr();
 | 
						|
  OS << "(" << *Operands[0];
 | 
						|
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | 
						|
    OS << OpStr << *Operands[i];
 | 
						|
  OS << ")";
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (!getOperand(i)->dominates(BB, DT))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (!getOperand(i)->properlyDominates(BB, DT))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
void SCEVUDivExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(" << *LHS << " /u " << *RHS << ")";
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVUDivExpr::getType() const {
 | 
						|
  // In most cases the types of LHS and RHS will be the same, but in some
 | 
						|
  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
 | 
						|
  // depend on the type for correctness, but handling types carefully can
 | 
						|
  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
 | 
						|
  // a pointer type than the RHS, so use the RHS' type here.
 | 
						|
  return RHS->getType();
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
 | 
						|
  // Add recurrences are never invariant in the function-body (null loop).
 | 
						|
  if (!QueryLoop)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
 | 
						|
  if (QueryLoop->contains(L->getHeader()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This recurrence is variant w.r.t. QueryLoop if any of its operands
 | 
						|
  // are variant.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!getOperand(i)->isLoopInvariant(QueryLoop))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Otherwise it's loop-invariant.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SCEVAddRecExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "{" << *Operands[0];
 | 
						|
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | 
						|
    OS << ",+," << *Operands[i];
 | 
						|
  OS << "}<" << L->getHeader()->getName() + ">";
 | 
						|
}
 | 
						|
 | 
						|
void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
 | 
						|
  // LLVM struct fields don't have names, so just print the field number.
 | 
						|
  OS << "offsetof(" << *STy << ", " << FieldNo << ")";
 | 
						|
}
 | 
						|
 | 
						|
void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "sizeof(" << *AllocTy << ")";
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
 | 
						|
  // All non-instruction values are loop invariant.  All instructions are loop
 | 
						|
  // invariant if they are not contained in the specified loop.
 | 
						|
  // Instructions are never considered invariant in the function body
 | 
						|
  // (null loop) because they are defined within the "loop".
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return L && !L->contains(I->getParent());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(getValue()))
 | 
						|
    return DT->dominates(I->getParent(), BB);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(getValue()))
 | 
						|
    return DT->properlyDominates(I->getParent(), BB);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVUnknown::getType() const {
 | 
						|
  return V->getType();
 | 
						|
}
 | 
						|
 | 
						|
void SCEVUnknown::print(raw_ostream &OS) const {
 | 
						|
  WriteAsOperand(OS, V, false);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               SCEV Utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool CompareTypes(const Type *A, const Type *B) {
 | 
						|
  if (A->getTypeID() != B->getTypeID())
 | 
						|
    return A->getTypeID() < B->getTypeID();
 | 
						|
  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
 | 
						|
    const IntegerType *BI = cast<IntegerType>(B);
 | 
						|
    return AI->getBitWidth() < BI->getBitWidth();
 | 
						|
  }
 | 
						|
  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
 | 
						|
    const PointerType *BI = cast<PointerType>(B);
 | 
						|
    return CompareTypes(AI->getElementType(), BI->getElementType());
 | 
						|
  }
 | 
						|
  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
 | 
						|
    const ArrayType *BI = cast<ArrayType>(B);
 | 
						|
    if (AI->getNumElements() != BI->getNumElements())
 | 
						|
      return AI->getNumElements() < BI->getNumElements();
 | 
						|
    return CompareTypes(AI->getElementType(), BI->getElementType());
 | 
						|
  }
 | 
						|
  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
 | 
						|
    const VectorType *BI = cast<VectorType>(B);
 | 
						|
    if (AI->getNumElements() != BI->getNumElements())
 | 
						|
      return AI->getNumElements() < BI->getNumElements();
 | 
						|
    return CompareTypes(AI->getElementType(), BI->getElementType());
 | 
						|
  }
 | 
						|
  if (const StructType *AI = dyn_cast<StructType>(A)) {
 | 
						|
    const StructType *BI = cast<StructType>(B);
 | 
						|
    if (AI->getNumElements() != BI->getNumElements())
 | 
						|
      return AI->getNumElements() < BI->getNumElements();
 | 
						|
    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
 | 
						|
      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
 | 
						|
          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
 | 
						|
        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
 | 
						|
  /// than the complexity of the RHS.  This comparator is used to canonicalize
 | 
						|
  /// expressions.
 | 
						|
  class SCEVComplexityCompare {
 | 
						|
    LoopInfo *LI;
 | 
						|
  public:
 | 
						|
    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
 | 
						|
 | 
						|
    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
 | 
						|
      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
 | 
						|
      if (LHS == RHS)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Primarily, sort the SCEVs by their getSCEVType().
 | 
						|
      if (LHS->getSCEVType() != RHS->getSCEVType())
 | 
						|
        return LHS->getSCEVType() < RHS->getSCEVType();
 | 
						|
 | 
						|
      // Aside from the getSCEVType() ordering, the particular ordering
 | 
						|
      // isn't very important except that it's beneficial to be consistent,
 | 
						|
      // so that (a + b) and (b + a) don't end up as different expressions.
 | 
						|
 | 
						|
      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
 | 
						|
      // not as complete as it could be.
 | 
						|
      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
 | 
						|
        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
 | 
						|
 | 
						|
        // Order pointer values after integer values. This helps SCEVExpander
 | 
						|
        // form GEPs.
 | 
						|
        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
 | 
						|
          return false;
 | 
						|
        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
 | 
						|
          return true;
 | 
						|
 | 
						|
        // Compare getValueID values.
 | 
						|
        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
 | 
						|
          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
 | 
						|
 | 
						|
        // Sort arguments by their position.
 | 
						|
        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
 | 
						|
          const Argument *RA = cast<Argument>(RU->getValue());
 | 
						|
          return LA->getArgNo() < RA->getArgNo();
 | 
						|
        }
 | 
						|
 | 
						|
        // For instructions, compare their loop depth, and their opcode.
 | 
						|
        // This is pretty loose.
 | 
						|
        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
 | 
						|
          Instruction *RV = cast<Instruction>(RU->getValue());
 | 
						|
 | 
						|
          // Compare loop depths.
 | 
						|
          if (LI->getLoopDepth(LV->getParent()) !=
 | 
						|
              LI->getLoopDepth(RV->getParent()))
 | 
						|
            return LI->getLoopDepth(LV->getParent()) <
 | 
						|
                   LI->getLoopDepth(RV->getParent());
 | 
						|
 | 
						|
          // Compare opcodes.
 | 
						|
          if (LV->getOpcode() != RV->getOpcode())
 | 
						|
            return LV->getOpcode() < RV->getOpcode();
 | 
						|
 | 
						|
          // Compare the number of operands.
 | 
						|
          if (LV->getNumOperands() != RV->getNumOperands())
 | 
						|
            return LV->getNumOperands() < RV->getNumOperands();
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Compare constant values.
 | 
						|
      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
 | 
						|
        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
 | 
						|
        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
 | 
						|
          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
 | 
						|
        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
 | 
						|
      }
 | 
						|
 | 
						|
      // Compare addrec loop depths.
 | 
						|
      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
 | 
						|
        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
 | 
						|
        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
 | 
						|
          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
 | 
						|
      }
 | 
						|
 | 
						|
      // Lexicographically compare n-ary expressions.
 | 
						|
      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
 | 
						|
        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
 | 
						|
        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
 | 
						|
          if (i >= RC->getNumOperands())
 | 
						|
            return false;
 | 
						|
          if (operator()(LC->getOperand(i), RC->getOperand(i)))
 | 
						|
            return true;
 | 
						|
          if (operator()(RC->getOperand(i), LC->getOperand(i)))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        return LC->getNumOperands() < RC->getNumOperands();
 | 
						|
      }
 | 
						|
 | 
						|
      // Lexicographically compare udiv expressions.
 | 
						|
      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
 | 
						|
        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
 | 
						|
        if (operator()(LC->getLHS(), RC->getLHS()))
 | 
						|
          return true;
 | 
						|
        if (operator()(RC->getLHS(), LC->getLHS()))
 | 
						|
          return false;
 | 
						|
        if (operator()(LC->getRHS(), RC->getRHS()))
 | 
						|
          return true;
 | 
						|
        if (operator()(RC->getRHS(), LC->getRHS()))
 | 
						|
          return false;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Compare cast expressions by operand.
 | 
						|
      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
 | 
						|
        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
 | 
						|
        return operator()(LC->getOperand(), RC->getOperand());
 | 
						|
      }
 | 
						|
 | 
						|
      // Compare offsetof expressions.
 | 
						|
      if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
 | 
						|
        const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
 | 
						|
        if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
 | 
						|
            CompareTypes(RA->getStructType(), LA->getStructType()))
 | 
						|
          return CompareTypes(LA->getStructType(), RA->getStructType());
 | 
						|
        return LA->getFieldNo() < RA->getFieldNo();
 | 
						|
      }
 | 
						|
 | 
						|
      // Compare sizeof expressions by the allocation type.
 | 
						|
      if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
 | 
						|
        const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
 | 
						|
        return CompareTypes(LA->getAllocType(), RA->getAllocType());
 | 
						|
      }
 | 
						|
 | 
						|
      llvm_unreachable("Unknown SCEV kind!");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// GroupByComplexity - Given a list of SCEV objects, order them by their
 | 
						|
/// complexity, and group objects of the same complexity together by value.
 | 
						|
/// When this routine is finished, we know that any duplicates in the vector are
 | 
						|
/// consecutive and that complexity is monotonically increasing.
 | 
						|
///
 | 
						|
/// Note that we go take special precautions to ensure that we get determinstic
 | 
						|
/// results from this routine.  In other words, we don't want the results of
 | 
						|
/// this to depend on where the addresses of various SCEV objects happened to
 | 
						|
/// land in memory.
 | 
						|
///
 | 
						|
static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                              LoopInfo *LI) {
 | 
						|
  if (Ops.size() < 2) return;  // Noop
 | 
						|
  if (Ops.size() == 2) {
 | 
						|
    // This is the common case, which also happens to be trivially simple.
 | 
						|
    // Special case it.
 | 
						|
    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
 | 
						|
      std::swap(Ops[0], Ops[1]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the rough sort by complexity.
 | 
						|
  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
 | 
						|
 | 
						|
  // Now that we are sorted by complexity, group elements of the same
 | 
						|
  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | 
						|
  // be extremely short in practice.  Note that we take this approach because we
 | 
						|
  // do not want to depend on the addresses of the objects we are grouping.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | 
						|
    const SCEV *S = Ops[i];
 | 
						|
    unsigned Complexity = S->getSCEVType();
 | 
						|
 | 
						|
    // If there are any objects of the same complexity and same value as this
 | 
						|
    // one, group them.
 | 
						|
    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | 
						|
      if (Ops[j] == S) { // Found a duplicate.
 | 
						|
        // Move it to immediately after i'th element.
 | 
						|
        std::swap(Ops[i+1], Ops[j]);
 | 
						|
        ++i;   // no need to rescan it.
 | 
						|
        if (i == e-2) return;  // Done!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Simple SCEV method implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
 | 
						|
/// Assume, K > 0.
 | 
						|
static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
 | 
						|
                                       ScalarEvolution &SE,
 | 
						|
                                       const Type* ResultTy) {
 | 
						|
  // Handle the simplest case efficiently.
 | 
						|
  if (K == 1)
 | 
						|
    return SE.getTruncateOrZeroExtend(It, ResultTy);
 | 
						|
 | 
						|
  // We are using the following formula for BC(It, K):
 | 
						|
  //
 | 
						|
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
 | 
						|
  //
 | 
						|
  // Suppose, W is the bitwidth of the return value.  We must be prepared for
 | 
						|
  // overflow.  Hence, we must assure that the result of our computation is
 | 
						|
  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
 | 
						|
  // safe in modular arithmetic.
 | 
						|
  //
 | 
						|
  // However, this code doesn't use exactly that formula; the formula it uses
 | 
						|
  // is something like the following, where T is the number of factors of 2 in
 | 
						|
  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
 | 
						|
  // exponentiation:
 | 
						|
  //
 | 
						|
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
 | 
						|
  //
 | 
						|
  // This formula is trivially equivalent to the previous formula.  However,
 | 
						|
  // this formula can be implemented much more efficiently.  The trick is that
 | 
						|
  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
 | 
						|
  // arithmetic.  To do exact division in modular arithmetic, all we have
 | 
						|
  // to do is multiply by the inverse.  Therefore, this step can be done at
 | 
						|
  // width W.
 | 
						|
  //
 | 
						|
  // The next issue is how to safely do the division by 2^T.  The way this
 | 
						|
  // is done is by doing the multiplication step at a width of at least W + T
 | 
						|
  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
 | 
						|
  // when we perform the division by 2^T (which is equivalent to a right shift
 | 
						|
  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
 | 
						|
  // truncated out after the division by 2^T.
 | 
						|
  //
 | 
						|
  // In comparison to just directly using the first formula, this technique
 | 
						|
  // is much more efficient; using the first formula requires W * K bits,
 | 
						|
  // but this formula less than W + K bits. Also, the first formula requires
 | 
						|
  // a division step, whereas this formula only requires multiplies and shifts.
 | 
						|
  //
 | 
						|
  // It doesn't matter whether the subtraction step is done in the calculation
 | 
						|
  // width or the input iteration count's width; if the subtraction overflows,
 | 
						|
  // the result must be zero anyway.  We prefer here to do it in the width of
 | 
						|
  // the induction variable because it helps a lot for certain cases; CodeGen
 | 
						|
  // isn't smart enough to ignore the overflow, which leads to much less
 | 
						|
  // efficient code if the width of the subtraction is wider than the native
 | 
						|
  // register width.
 | 
						|
  //
 | 
						|
  // (It's possible to not widen at all by pulling out factors of 2 before
 | 
						|
  // the multiplication; for example, K=2 can be calculated as
 | 
						|
  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
 | 
						|
  // extra arithmetic, so it's not an obvious win, and it gets
 | 
						|
  // much more complicated for K > 3.)
 | 
						|
 | 
						|
  // Protection from insane SCEVs; this bound is conservative,
 | 
						|
  // but it probably doesn't matter.
 | 
						|
  if (K > 1000)
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  unsigned W = SE.getTypeSizeInBits(ResultTy);
 | 
						|
 | 
						|
  // Calculate K! / 2^T and T; we divide out the factors of two before
 | 
						|
  // multiplying for calculating K! / 2^T to avoid overflow.
 | 
						|
  // Other overflow doesn't matter because we only care about the bottom
 | 
						|
  // W bits of the result.
 | 
						|
  APInt OddFactorial(W, 1);
 | 
						|
  unsigned T = 1;
 | 
						|
  for (unsigned i = 3; i <= K; ++i) {
 | 
						|
    APInt Mult(W, i);
 | 
						|
    unsigned TwoFactors = Mult.countTrailingZeros();
 | 
						|
    T += TwoFactors;
 | 
						|
    Mult = Mult.lshr(TwoFactors);
 | 
						|
    OddFactorial *= Mult;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need at least W + T bits for the multiplication step
 | 
						|
  unsigned CalculationBits = W + T;
 | 
						|
 | 
						|
  // Calcuate 2^T, at width T+W.
 | 
						|
  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
 | 
						|
 | 
						|
  // Calculate the multiplicative inverse of K! / 2^T;
 | 
						|
  // this multiplication factor will perform the exact division by
 | 
						|
  // K! / 2^T.
 | 
						|
  APInt Mod = APInt::getSignedMinValue(W+1);
 | 
						|
  APInt MultiplyFactor = OddFactorial.zext(W+1);
 | 
						|
  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
 | 
						|
  MultiplyFactor = MultiplyFactor.trunc(W);
 | 
						|
 | 
						|
  // Calculate the product, at width T+W
 | 
						|
  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
 | 
						|
                                                      CalculationBits);
 | 
						|
  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
 | 
						|
  for (unsigned i = 1; i != K; ++i) {
 | 
						|
    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
 | 
						|
    Dividend = SE.getMulExpr(Dividend,
 | 
						|
                             SE.getTruncateOrZeroExtend(S, CalculationTy));
 | 
						|
  }
 | 
						|
 | 
						|
  // Divide by 2^T
 | 
						|
  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
 | 
						|
 | 
						|
  // Truncate the result, and divide by K! / 2^T.
 | 
						|
 | 
						|
  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
 | 
						|
                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
 | 
						|
}
 | 
						|
 | 
						|
/// evaluateAtIteration - Return the value of this chain of recurrences at
 | 
						|
/// the specified iteration number.  We can evaluate this recurrence by
 | 
						|
/// multiplying each element in the chain by the binomial coefficient
 | 
						|
/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 | 
						|
///
 | 
						|
///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 | 
						|
///
 | 
						|
/// where BC(It, k) stands for binomial coefficient.
 | 
						|
///
 | 
						|
const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
 | 
						|
                                                ScalarEvolution &SE) const {
 | 
						|
  const SCEV *Result = getStart();
 | 
						|
  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
    // The computation is correct in the face of overflow provided that the
 | 
						|
    // multiplication is performed _after_ the evaluation of the binomial
 | 
						|
    // coefficient.
 | 
						|
    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
 | 
						|
    if (isa<SCEVCouldNotCompute>(Coeff))
 | 
						|
      return Coeff;
 | 
						|
 | 
						|
    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    SCEV Expression folder implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
 | 
						|
                                             const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not a truncating conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scTruncate);
 | 
						|
  ID.AddPointer(Op);
 | 
						|
  ID.AddPointer(Ty);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
 | 
						|
  // Fold if the operand is constant.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | 
						|
    return getConstant(
 | 
						|
      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
 | 
						|
 | 
						|
  // trunc(trunc(x)) --> trunc(x)
 | 
						|
  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
 | 
						|
    return getTruncateExpr(ST->getOperand(), Ty);
 | 
						|
 | 
						|
  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
 | 
						|
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | 
						|
    return getTruncateOrSignExtend(SS->getOperand(), Ty);
 | 
						|
 | 
						|
  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
 | 
						|
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | 
						|
    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
 | 
						|
 | 
						|
  // If the input value is a chrec scev, truncate the chrec's operands.
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | 
						|
    SmallVector<const SCEV *, 4> Operands;
 | 
						|
    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | 
						|
      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
 | 
						|
    return getAddRecExpr(Operands, AddRec->getLoop());
 | 
						|
  }
 | 
						|
 | 
						|
  // The cast wasn't folded; create an explicit cast node.
 | 
						|
  // Recompute the insert position, as it may have been invalidated.
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
 | 
						|
  new (S) SCEVTruncateExpr(ID, Op, Ty);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
 | 
						|
                                               const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not an extending conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  // Fold if the operand is constant.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
 | 
						|
    const Type *IntTy = getEffectiveSCEVType(Ty);
 | 
						|
    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
 | 
						|
    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
 | 
						|
    return getConstant(cast<ConstantInt>(C));
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(zext(x)) --> zext(x)
 | 
						|
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | 
						|
    return getZeroExtendExpr(SZ->getOperand(), Ty);
 | 
						|
 | 
						|
  // Before doing any expensive analysis, check to see if we've already
 | 
						|
  // computed a SCEV for this Op and Ty.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scZeroExtend);
 | 
						|
  ID.AddPointer(Op);
 | 
						|
  ID.AddPointer(Ty);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
 | 
						|
  // If the input value is a chrec scev, and we can prove that the value
 | 
						|
  // did not overflow the old, smaller, value, we can zero extend all of the
 | 
						|
  // operands (often constants).  This allows analysis of something like
 | 
						|
  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | 
						|
    if (AR->isAffine()) {
 | 
						|
      const SCEV *Start = AR->getStart();
 | 
						|
      const SCEV *Step = AR->getStepRecurrence(*this);
 | 
						|
      unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | 
						|
      const Loop *L = AR->getLoop();
 | 
						|
 | 
						|
      // If we have special knowledge that this addrec won't overflow,
 | 
						|
      // we don't need to do any further analysis.
 | 
						|
      if (AR->hasNoUnsignedWrap())
 | 
						|
        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                             getZeroExtendExpr(Step, Ty),
 | 
						|
                             L);
 | 
						|
 | 
						|
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | 
						|
      // Note that this serves two purposes: It filters out loops that are
 | 
						|
      // simply not analyzable, and it covers the case where this code is
 | 
						|
      // being called from within backedge-taken count analysis, such that
 | 
						|
      // attempting to ask for the backedge-taken count would likely result
 | 
						|
      // in infinite recursion. In the later case, the analysis code will
 | 
						|
      // cope with a conservative value, and it will take care to purge
 | 
						|
      // that value once it has finished.
 | 
						|
      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
 | 
						|
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | 
						|
        // Manually compute the final value for AR, checking for
 | 
						|
        // overflow.
 | 
						|
 | 
						|
        // Check whether the backedge-taken count can be losslessly casted to
 | 
						|
        // the addrec's type. The count is always unsigned.
 | 
						|
        const SCEV *CastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | 
						|
        const SCEV *RecastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
 | 
						|
        if (MaxBECount == RecastedMaxBECount) {
 | 
						|
          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | 
						|
          // Check whether Start+Step*MaxBECount has no unsigned overflow.
 | 
						|
          const SCEV *ZMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrZeroExtend(Step, Start->getType()));
 | 
						|
          const SCEV *Add = getAddExpr(Start, ZMul);
 | 
						|
          const SCEV *OperandExtendedAdd =
 | 
						|
            getAddExpr(getZeroExtendExpr(Start, WideTy),
 | 
						|
                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                  getZeroExtendExpr(Step, WideTy)));
 | 
						|
          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getZeroExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
 | 
						|
          // Similar to above, only this time treat the step value as signed.
 | 
						|
          // This covers loops that count down.
 | 
						|
          const SCEV *SMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrSignExtend(Step, Start->getType()));
 | 
						|
          Add = getAddExpr(Start, SMul);
 | 
						|
          OperandExtendedAdd =
 | 
						|
            getAddExpr(getZeroExtendExpr(Start, WideTy),
 | 
						|
                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                  getSignExtendExpr(Step, WideTy)));
 | 
						|
          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        }
 | 
						|
 | 
						|
        // If the backedge is guarded by a comparison with the pre-inc value
 | 
						|
        // the addrec is safe. Also, if the entry is guarded by a comparison
 | 
						|
        // with the start value and the backedge is guarded by a comparison
 | 
						|
        // with the post-inc value, the addrec is safe.
 | 
						|
        if (isKnownPositive(Step)) {
 | 
						|
          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
 | 
						|
                                      getUnsignedRange(Step).getUnsignedMax());
 | 
						|
          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
 | 
						|
              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
 | 
						|
               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
 | 
						|
                                           AR->getPostIncExpr(*this), N)))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getZeroExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        } else if (isKnownNegative(Step)) {
 | 
						|
          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
 | 
						|
                                      getSignedRange(Step).getSignedMin());
 | 
						|
          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
 | 
						|
              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
 | 
						|
               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
 | 
						|
                                           AR->getPostIncExpr(*this), N)))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // The cast wasn't folded; create an explicit cast node.
 | 
						|
  // Recompute the insert position, as it may have been invalidated.
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
 | 
						|
  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
 | 
						|
                                               const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not an extending conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  // Fold if the operand is constant.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
 | 
						|
    const Type *IntTy = getEffectiveSCEVType(Ty);
 | 
						|
    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
 | 
						|
    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
 | 
						|
    return getConstant(cast<ConstantInt>(C));
 | 
						|
  }
 | 
						|
 | 
						|
  // sext(sext(x)) --> sext(x)
 | 
						|
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | 
						|
    return getSignExtendExpr(SS->getOperand(), Ty);
 | 
						|
 | 
						|
  // Before doing any expensive analysis, check to see if we've already
 | 
						|
  // computed a SCEV for this Op and Ty.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scSignExtend);
 | 
						|
  ID.AddPointer(Op);
 | 
						|
  ID.AddPointer(Ty);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
 | 
						|
  // If the input value is a chrec scev, and we can prove that the value
 | 
						|
  // did not overflow the old, smaller, value, we can sign extend all of the
 | 
						|
  // operands (often constants).  This allows analysis of something like
 | 
						|
  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | 
						|
    if (AR->isAffine()) {
 | 
						|
      const SCEV *Start = AR->getStart();
 | 
						|
      const SCEV *Step = AR->getStepRecurrence(*this);
 | 
						|
      unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | 
						|
      const Loop *L = AR->getLoop();
 | 
						|
 | 
						|
      // If we have special knowledge that this addrec won't overflow,
 | 
						|
      // we don't need to do any further analysis.
 | 
						|
      if (AR->hasNoSignedWrap())
 | 
						|
        return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                             getSignExtendExpr(Step, Ty),
 | 
						|
                             L);
 | 
						|
 | 
						|
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | 
						|
      // Note that this serves two purposes: It filters out loops that are
 | 
						|
      // simply not analyzable, and it covers the case where this code is
 | 
						|
      // being called from within backedge-taken count analysis, such that
 | 
						|
      // attempting to ask for the backedge-taken count would likely result
 | 
						|
      // in infinite recursion. In the later case, the analysis code will
 | 
						|
      // cope with a conservative value, and it will take care to purge
 | 
						|
      // that value once it has finished.
 | 
						|
      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
 | 
						|
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | 
						|
        // Manually compute the final value for AR, checking for
 | 
						|
        // overflow.
 | 
						|
 | 
						|
        // Check whether the backedge-taken count can be losslessly casted to
 | 
						|
        // the addrec's type. The count is always unsigned.
 | 
						|
        const SCEV *CastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | 
						|
        const SCEV *RecastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
 | 
						|
        if (MaxBECount == RecastedMaxBECount) {
 | 
						|
          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | 
						|
          // Check whether Start+Step*MaxBECount has no signed overflow.
 | 
						|
          const SCEV *SMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrSignExtend(Step, Start->getType()));
 | 
						|
          const SCEV *Add = getAddExpr(Start, SMul);
 | 
						|
          const SCEV *OperandExtendedAdd =
 | 
						|
            getAddExpr(getSignExtendExpr(Start, WideTy),
 | 
						|
                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                  getSignExtendExpr(Step, WideTy)));
 | 
						|
          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
 | 
						|
          // Similar to above, only this time treat the step value as unsigned.
 | 
						|
          // This covers loops that count up with an unsigned step.
 | 
						|
          const SCEV *UMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrZeroExtend(Step, Start->getType()));
 | 
						|
          Add = getAddExpr(Start, UMul);
 | 
						|
          OperandExtendedAdd =
 | 
						|
            getAddExpr(getSignExtendExpr(Start, WideTy),
 | 
						|
                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                  getZeroExtendExpr(Step, WideTy)));
 | 
						|
          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                                 getZeroExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        }
 | 
						|
 | 
						|
        // If the backedge is guarded by a comparison with the pre-inc value
 | 
						|
        // the addrec is safe. Also, if the entry is guarded by a comparison
 | 
						|
        // with the start value and the backedge is guarded by a comparison
 | 
						|
        // with the post-inc value, the addrec is safe.
 | 
						|
        if (isKnownPositive(Step)) {
 | 
						|
          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
 | 
						|
                                      getSignedRange(Step).getSignedMax());
 | 
						|
          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
 | 
						|
              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
 | 
						|
               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
 | 
						|
                                           AR->getPostIncExpr(*this), N)))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        } else if (isKnownNegative(Step)) {
 | 
						|
          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
 | 
						|
                                      getSignedRange(Step).getSignedMin());
 | 
						|
          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
 | 
						|
              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
 | 
						|
               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
 | 
						|
                                           AR->getPostIncExpr(*this), N)))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 L);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // The cast wasn't folded; create an explicit cast node.
 | 
						|
  // Recompute the insert position, as it may have been invalidated.
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
 | 
						|
  new (S) SCEVSignExtendExpr(ID, Op, Ty);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
 | 
						|
/// unspecified bits out to the given type.
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
 | 
						|
                                              const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not an extending conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  // Sign-extend negative constants.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | 
						|
    if (SC->getValue()->getValue().isNegative())
 | 
						|
      return getSignExtendExpr(Op, Ty);
 | 
						|
 | 
						|
  // Peel off a truncate cast.
 | 
						|
  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
 | 
						|
    const SCEV *NewOp = T->getOperand();
 | 
						|
    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
 | 
						|
      return getAnyExtendExpr(NewOp, Ty);
 | 
						|
    return getTruncateOrNoop(NewOp, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  // Next try a zext cast. If the cast is folded, use it.
 | 
						|
  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
 | 
						|
  if (!isa<SCEVZeroExtendExpr>(ZExt))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // Next try a sext cast. If the cast is folded, use it.
 | 
						|
  const SCEV *SExt = getSignExtendExpr(Op, Ty);
 | 
						|
  if (!isa<SCEVSignExtendExpr>(SExt))
 | 
						|
    return SExt;
 | 
						|
 | 
						|
  // If the expression is obviously signed, use the sext cast value.
 | 
						|
  if (isa<SCEVSMaxExpr>(Op))
 | 
						|
    return SExt;
 | 
						|
 | 
						|
  // Absent any other information, use the zext cast value.
 | 
						|
  return ZExt;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectAddOperandsWithScales - Process the given Ops list, which is
 | 
						|
/// a list of operands to be added under the given scale, update the given
 | 
						|
/// map. This is a helper function for getAddRecExpr. As an example of
 | 
						|
/// what it does, given a sequence of operands that would form an add
 | 
						|
/// expression like this:
 | 
						|
///
 | 
						|
///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
 | 
						|
///
 | 
						|
/// where A and B are constants, update the map with these values:
 | 
						|
///
 | 
						|
///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
 | 
						|
///
 | 
						|
/// and add 13 + A*B*29 to AccumulatedConstant.
 | 
						|
/// This will allow getAddRecExpr to produce this:
 | 
						|
///
 | 
						|
///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
 | 
						|
///
 | 
						|
/// This form often exposes folding opportunities that are hidden in
 | 
						|
/// the original operand list.
 | 
						|
///
 | 
						|
/// Return true iff it appears that any interesting folding opportunities
 | 
						|
/// may be exposed. This helps getAddRecExpr short-circuit extra work in
 | 
						|
/// the common case where no interesting opportunities are present, and
 | 
						|
/// is also used as a check to avoid infinite recursion.
 | 
						|
///
 | 
						|
static bool
 | 
						|
CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
 | 
						|
                             SmallVector<const SCEV *, 8> &NewOps,
 | 
						|
                             APInt &AccumulatedConstant,
 | 
						|
                             const SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                             const APInt &Scale,
 | 
						|
                             ScalarEvolution &SE) {
 | 
						|
  bool Interesting = false;
 | 
						|
 | 
						|
  // Iterate over the add operands.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
 | 
						|
    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
 | 
						|
      APInt NewScale =
 | 
						|
        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
 | 
						|
      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
 | 
						|
        // A multiplication of a constant with another add; recurse.
 | 
						|
        Interesting |=
 | 
						|
          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | 
						|
                                       cast<SCEVAddExpr>(Mul->getOperand(1))
 | 
						|
                                         ->getOperands(),
 | 
						|
                                       NewScale, SE);
 | 
						|
      } else {
 | 
						|
        // A multiplication of a constant with some other value. Update
 | 
						|
        // the map.
 | 
						|
        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
 | 
						|
        const SCEV *Key = SE.getMulExpr(MulOps);
 | 
						|
        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
 | 
						|
          M.insert(std::make_pair(Key, NewScale));
 | 
						|
        if (Pair.second) {
 | 
						|
          NewOps.push_back(Pair.first->first);
 | 
						|
        } else {
 | 
						|
          Pair.first->second += NewScale;
 | 
						|
          // The map already had an entry for this value, which may indicate
 | 
						|
          // a folding opportunity.
 | 
						|
          Interesting = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | 
						|
      // Pull a buried constant out to the outside.
 | 
						|
      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
 | 
						|
        Interesting = true;
 | 
						|
      AccumulatedConstant += Scale * C->getValue()->getValue();
 | 
						|
    } else {
 | 
						|
      // An ordinary operand. Update the map.
 | 
						|
      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
 | 
						|
        M.insert(std::make_pair(Ops[i], Scale));
 | 
						|
      if (Pair.second) {
 | 
						|
        NewOps.push_back(Pair.first->first);
 | 
						|
      } else {
 | 
						|
        Pair.first->second += Scale;
 | 
						|
        // The map already had an entry for this value, which may indicate
 | 
						|
        // a folding opportunity.
 | 
						|
        Interesting = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Interesting;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct APIntCompare {
 | 
						|
    bool operator()(const APInt &LHS, const APInt &RHS) const {
 | 
						|
      return LHS.ult(RHS);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// getAddExpr - Get a canonical add expression, or something simpler if
 | 
						|
/// possible.
 | 
						|
const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                                        bool HasNUW, bool HasNSW) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty add!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
 | 
						|
           getEffectiveSCEVType(Ops[0]->getType()) &&
 | 
						|
           "SCEVAddExpr operand types don't match!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops, LI);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      Ops[0] = getConstant(LHSC->getValue()->getValue() +
 | 
						|
                           RHSC->getValue()->getValue());
 | 
						|
      if (Ops.size() == 2) return Ops[0];
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant zero being added, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, merge them together into an multiply expression.  Since we sorted the
 | 
						|
  // list, these values are required to be adjacent.
 | 
						|
  const Type *Ty = Ops[0]->getType();
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | 
						|
      // Found a match, merge the two values into a multiply, and add any
 | 
						|
      // remaining values to the result.
 | 
						|
      const SCEV *Two = getIntegerSCEV(2, Ty);
 | 
						|
      const SCEV *Mul = getMulExpr(Ops[i], Two);
 | 
						|
      if (Ops.size() == 2)
 | 
						|
        return Mul;
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | 
						|
      Ops.push_back(Mul);
 | 
						|
      return getAddExpr(Ops, HasNUW, HasNSW);
 | 
						|
    }
 | 
						|
 | 
						|
  // Check for truncates. If all the operands are truncated from the same
 | 
						|
  // type, see if factoring out the truncate would permit the result to be
 | 
						|
  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
 | 
						|
  // if the contents of the resulting outer trunc fold to something simple.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
 | 
						|
    const Type *DstType = Trunc->getType();
 | 
						|
    const Type *SrcType = Trunc->getOperand()->getType();
 | 
						|
    SmallVector<const SCEV *, 8> LargeOps;
 | 
						|
    bool Ok = true;
 | 
						|
    // Check all the operands to see if they can be represented in the
 | 
						|
    // source type of the truncate.
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
 | 
						|
        if (T->getOperand()->getType() != SrcType) {
 | 
						|
          Ok = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        LargeOps.push_back(T->getOperand());
 | 
						|
      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | 
						|
        // This could be either sign or zero extension, but sign extension
 | 
						|
        // is much more likely to be foldable here.
 | 
						|
        LargeOps.push_back(getSignExtendExpr(C, SrcType));
 | 
						|
      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
 | 
						|
        SmallVector<const SCEV *, 8> LargeMulOps;
 | 
						|
        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
 | 
						|
          if (const SCEVTruncateExpr *T =
 | 
						|
                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
 | 
						|
            if (T->getOperand()->getType() != SrcType) {
 | 
						|
              Ok = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            LargeMulOps.push_back(T->getOperand());
 | 
						|
          } else if (const SCEVConstant *C =
 | 
						|
                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
 | 
						|
            // This could be either sign or zero extension, but sign extension
 | 
						|
            // is much more likely to be foldable here.
 | 
						|
            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
 | 
						|
          } else {
 | 
						|
            Ok = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (Ok)
 | 
						|
          LargeOps.push_back(getMulExpr(LargeMulOps));
 | 
						|
      } else {
 | 
						|
        Ok = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Ok) {
 | 
						|
      // Evaluate the expression in the larger type.
 | 
						|
      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
 | 
						|
      // If it folds to something simple, use it. Otherwise, don't.
 | 
						|
      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
 | 
						|
        return getTruncateExpr(Fold, DstType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip past any other cast SCEVs.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // If there are add operands they would be next.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedAdd = false;
 | 
						|
    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | 
						|
      // If we have an add, expand the add operands onto the end of the operands
 | 
						|
      // list.
 | 
						|
      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedAdd = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we deleted at least one add, we added operands to the end of the list,
 | 
						|
    // and they are not necessarily sorted.  Recurse to resort and resimplify
 | 
						|
    // any operands we just aquired.
 | 
						|
    if (DeletedAdd)
 | 
						|
      return getAddExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the add expression until we get to a multiply.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Check to see if there are any folding opportunities present with
 | 
						|
  // operands multiplied by constant values.
 | 
						|
  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
 | 
						|
    uint64_t BitWidth = getTypeSizeInBits(Ty);
 | 
						|
    DenseMap<const SCEV *, APInt> M;
 | 
						|
    SmallVector<const SCEV *, 8> NewOps;
 | 
						|
    APInt AccumulatedConstant(BitWidth, 0);
 | 
						|
    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | 
						|
                                     Ops, APInt(BitWidth, 1), *this)) {
 | 
						|
      // Some interesting folding opportunity is present, so its worthwhile to
 | 
						|
      // re-generate the operands list. Group the operands by constant scale,
 | 
						|
      // to avoid multiplying by the same constant scale multiple times.
 | 
						|
      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
 | 
						|
      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
 | 
						|
           E = NewOps.end(); I != E; ++I)
 | 
						|
        MulOpLists[M.find(*I)->second].push_back(*I);
 | 
						|
      // Re-generate the operands list.
 | 
						|
      Ops.clear();
 | 
						|
      if (AccumulatedConstant != 0)
 | 
						|
        Ops.push_back(getConstant(AccumulatedConstant));
 | 
						|
      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
 | 
						|
           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
 | 
						|
        if (I->first != 0)
 | 
						|
          Ops.push_back(getMulExpr(getConstant(I->first),
 | 
						|
                                   getAddExpr(I->second)));
 | 
						|
      if (Ops.empty())
 | 
						|
        return getIntegerSCEV(0, Ty);
 | 
						|
      if (Ops.size() == 1)
 | 
						|
        return Ops[0];
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are adding something to a multiply expression, make sure the
 | 
						|
  // something is not already an operand of the multiply.  If so, merge it into
 | 
						|
  // the multiply.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | 
						|
    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | 
						|
      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | 
						|
      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | 
						|
        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
 | 
						|
          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | 
						|
          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
 | 
						|
          if (Mul->getNumOperands() != 2) {
 | 
						|
            // If the multiply has more than two operands, we must get the
 | 
						|
            // Y*Z term.
 | 
						|
            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
 | 
						|
            MulOps.erase(MulOps.begin()+MulOp);
 | 
						|
            InnerMul = getMulExpr(MulOps);
 | 
						|
          }
 | 
						|
          const SCEV *One = getIntegerSCEV(1, Ty);
 | 
						|
          const SCEV *AddOne = getAddExpr(InnerMul, One);
 | 
						|
          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
 | 
						|
          if (Ops.size() == 2) return OuterMul;
 | 
						|
          if (AddOp < Idx) {
 | 
						|
            Ops.erase(Ops.begin()+AddOp);
 | 
						|
            Ops.erase(Ops.begin()+Idx-1);
 | 
						|
          } else {
 | 
						|
            Ops.erase(Ops.begin()+Idx);
 | 
						|
            Ops.erase(Ops.begin()+AddOp-1);
 | 
						|
          }
 | 
						|
          Ops.push_back(OuterMul);
 | 
						|
          return getAddExpr(Ops);
 | 
						|
        }
 | 
						|
 | 
						|
      // Check this multiply against other multiplies being added together.
 | 
						|
      for (unsigned OtherMulIdx = Idx+1;
 | 
						|
           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | 
						|
           ++OtherMulIdx) {
 | 
						|
        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | 
						|
        // If MulOp occurs in OtherMul, we can fold the two multiplies
 | 
						|
        // together.
 | 
						|
        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | 
						|
             OMulOp != e; ++OMulOp)
 | 
						|
          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | 
						|
            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | 
						|
            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
 | 
						|
            if (Mul->getNumOperands() != 2) {
 | 
						|
              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
 | 
						|
                                                  Mul->op_end());
 | 
						|
              MulOps.erase(MulOps.begin()+MulOp);
 | 
						|
              InnerMul1 = getMulExpr(MulOps);
 | 
						|
            }
 | 
						|
            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | 
						|
            if (OtherMul->getNumOperands() != 2) {
 | 
						|
              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
 | 
						|
                                                  OtherMul->op_end());
 | 
						|
              MulOps.erase(MulOps.begin()+OMulOp);
 | 
						|
              InnerMul2 = getMulExpr(MulOps);
 | 
						|
            }
 | 
						|
            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
 | 
						|
            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
 | 
						|
            if (Ops.size() == 2) return OuterMul;
 | 
						|
            Ops.erase(Ops.begin()+Idx);
 | 
						|
            Ops.erase(Ops.begin()+OtherMulIdx-1);
 | 
						|
            Ops.push_back(OuterMul);
 | 
						|
            return getAddExpr(Ops);
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any add recurrences in the operands list, see if any other
 | 
						|
  // added values are loop invariant.  If so, we can fold them into the
 | 
						|
  // recurrence.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Scan over all recurrences, trying to fold loop invariants into them.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    // Scan all of the other operands to this add and add them to the vector if
 | 
						|
    // they are loop invariant w.r.t. the recurrence.
 | 
						|
    SmallVector<const SCEV *, 8> LIOps;
 | 
						|
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | 
						|
        LIOps.push_back(Ops[i]);
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
      }
 | 
						|
 | 
						|
    // If we found some loop invariants, fold them into the recurrence.
 | 
						|
    if (!LIOps.empty()) {
 | 
						|
      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
 | 
						|
      LIOps.push_back(AddRec->getStart());
 | 
						|
 | 
						|
      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
 | 
						|
                                           AddRec->op_end());
 | 
						|
      AddRecOps[0] = getAddExpr(LIOps);
 | 
						|
 | 
						|
      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
 | 
						|
      // If all of the other operands were loop invariant, we are done.
 | 
						|
      if (Ops.size() == 1) return NewRec;
 | 
						|
 | 
						|
      // Otherwise, add the folded AddRec by the non-liv parts.
 | 
						|
      for (unsigned i = 0;; ++i)
 | 
						|
        if (Ops[i] == AddRec) {
 | 
						|
          Ops[i] = NewRec;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if there weren't any loop invariants to be folded, check to see if
 | 
						|
    // there are multiple AddRec's with the same loop induction variable being
 | 
						|
    // added together.  If so, we can fold them.
 | 
						|
    for (unsigned OtherIdx = Idx+1;
 | 
						|
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | 
						|
      if (OtherIdx != Idx) {
 | 
						|
        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | 
						|
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | 
						|
          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
 | 
						|
          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
 | 
						|
                                              AddRec->op_end());
 | 
						|
          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
 | 
						|
            if (i >= NewOps.size()) {
 | 
						|
              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
 | 
						|
                            OtherAddRec->op_end());
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
 | 
						|
          }
 | 
						|
          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | 
						|
 | 
						|
          if (Ops.size() == 2) return NewAddRec;
 | 
						|
 | 
						|
          Ops.erase(Ops.begin()+Idx);
 | 
						|
          Ops.erase(Ops.begin()+OtherIdx-1);
 | 
						|
          Ops.push_back(NewAddRec);
 | 
						|
          return getAddExpr(Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | 
						|
    // next one.
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an add expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scAddExpr);
 | 
						|
  ID.AddInteger(Ops.size());
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    ID.AddPointer(Ops[i]);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
 | 
						|
  new (S) SCEVAddExpr(ID, Ops);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  if (HasNUW) S->setHasNoUnsignedWrap(true);
 | 
						|
  if (HasNSW) S->setHasNoSignedWrap(true);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getMulExpr - Get a canonical multiply expression, or something simpler if
 | 
						|
/// possible.
 | 
						|
const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                                        bool HasNUW, bool HasNSW) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty mul!");
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
 | 
						|
           getEffectiveSCEVType(Ops[0]->getType()) &&
 | 
						|
           "SCEVMulExpr operand types don't match!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops, LI);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
 | 
						|
    // C1*(C2+V) -> C1*C2 + C1*V
 | 
						|
    if (Ops.size() == 2)
 | 
						|
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | 
						|
        if (Add->getNumOperands() == 2 &&
 | 
						|
            isa<SCEVConstant>(Add->getOperand(0)))
 | 
						|
          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
 | 
						|
                            getMulExpr(LHSC, Add->getOperand(1)));
 | 
						|
 | 
						|
 | 
						|
    ++Idx;
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(getContext(),
 | 
						|
                                           LHSC->getValue()->getValue() *
 | 
						|
                                           RHSC->getValue()->getValue());
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant one being multiplied, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | 
						|
      // If we have a multiply of zero, it will always be zero.
 | 
						|
      return Ops[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the add expression until we get to a multiply.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  if (Ops.size() == 1)
 | 
						|
    return Ops[0];
 | 
						|
 | 
						|
  // If there are mul operands inline them all into this expression.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedMul = false;
 | 
						|
    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | 
						|
      // If we have an mul, expand the mul operands onto the end of the operands
 | 
						|
      // list.
 | 
						|
      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedMul = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we deleted at least one mul, we added operands to the end of the list,
 | 
						|
    // and they are not necessarily sorted.  Recurse to resort and resimplify
 | 
						|
    // any operands we just aquired.
 | 
						|
    if (DeletedMul)
 | 
						|
      return getMulExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any add recurrences in the operands list, see if any other
 | 
						|
  // added values are loop invariant.  If so, we can fold them into the
 | 
						|
  // recurrence.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Scan over all recurrences, trying to fold loop invariants into them.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    // Scan all of the other operands to this mul and add them to the vector if
 | 
						|
    // they are loop invariant w.r.t. the recurrence.
 | 
						|
    SmallVector<const SCEV *, 8> LIOps;
 | 
						|
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | 
						|
        LIOps.push_back(Ops[i]);
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
      }
 | 
						|
 | 
						|
    // If we found some loop invariants, fold them into the recurrence.
 | 
						|
    if (!LIOps.empty()) {
 | 
						|
      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
 | 
						|
      SmallVector<const SCEV *, 4> NewOps;
 | 
						|
      NewOps.reserve(AddRec->getNumOperands());
 | 
						|
      if (LIOps.size() == 1) {
 | 
						|
        const SCEV *Scale = LIOps[0];
 | 
						|
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | 
						|
          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | 
						|
          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
 | 
						|
          MulOps.push_back(AddRec->getOperand(i));
 | 
						|
          NewOps.push_back(getMulExpr(MulOps));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | 
						|
 | 
						|
      // If all of the other operands were loop invariant, we are done.
 | 
						|
      if (Ops.size() == 1) return NewRec;
 | 
						|
 | 
						|
      // Otherwise, multiply the folded AddRec by the non-liv parts.
 | 
						|
      for (unsigned i = 0;; ++i)
 | 
						|
        if (Ops[i] == AddRec) {
 | 
						|
          Ops[i] = NewRec;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      return getMulExpr(Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if there weren't any loop invariants to be folded, check to see if
 | 
						|
    // there are multiple AddRec's with the same loop induction variable being
 | 
						|
    // multiplied together.  If so, we can fold them.
 | 
						|
    for (unsigned OtherIdx = Idx+1;
 | 
						|
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | 
						|
      if (OtherIdx != Idx) {
 | 
						|
        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | 
						|
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | 
						|
          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
 | 
						|
          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
 | 
						|
          const SCEV *NewStart = getMulExpr(F->getStart(),
 | 
						|
                                                 G->getStart());
 | 
						|
          const SCEV *B = F->getStepRecurrence(*this);
 | 
						|
          const SCEV *D = G->getStepRecurrence(*this);
 | 
						|
          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
 | 
						|
                                          getMulExpr(G, B),
 | 
						|
                                          getMulExpr(B, D));
 | 
						|
          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
 | 
						|
                                               F->getLoop());
 | 
						|
          if (Ops.size() == 2) return NewAddRec;
 | 
						|
 | 
						|
          Ops.erase(Ops.begin()+Idx);
 | 
						|
          Ops.erase(Ops.begin()+OtherIdx-1);
 | 
						|
          Ops.push_back(NewAddRec);
 | 
						|
          return getMulExpr(Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | 
						|
    // next one.
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scMulExpr);
 | 
						|
  ID.AddInteger(Ops.size());
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    ID.AddPointer(Ops[i]);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
 | 
						|
  new (S) SCEVMulExpr(ID, Ops);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  if (HasNUW) S->setHasNoUnsignedWrap(true);
 | 
						|
  if (HasNSW) S->setHasNoSignedWrap(true);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// getUDivExpr - Get a canonical unsigned division expression, or something
 | 
						|
/// simpler if possible.
 | 
						|
const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
 | 
						|
                                         const SCEV *RHS) {
 | 
						|
  assert(getEffectiveSCEVType(LHS->getType()) ==
 | 
						|
         getEffectiveSCEVType(RHS->getType()) &&
 | 
						|
         "SCEVUDivExpr operand types don't match!");
 | 
						|
 | 
						|
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | 
						|
    if (RHSC->getValue()->equalsInt(1))
 | 
						|
      return LHS;                               // X udiv 1 --> x
 | 
						|
    if (RHSC->isZero())
 | 
						|
      return getIntegerSCEV(0, LHS->getType()); // value is undefined
 | 
						|
 | 
						|
    // Determine if the division can be folded into the operands of
 | 
						|
    // its operands.
 | 
						|
    // TODO: Generalize this to non-constants by using known-bits information.
 | 
						|
    const Type *Ty = LHS->getType();
 | 
						|
    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
 | 
						|
    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
 | 
						|
    // For non-power-of-two values, effectively round the value up to the
 | 
						|
    // nearest power of two.
 | 
						|
    if (!RHSC->getValue()->getValue().isPowerOf2())
 | 
						|
      ++MaxShiftAmt;
 | 
						|
    const IntegerType *ExtTy =
 | 
						|
      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
 | 
						|
    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
 | 
						|
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
 | 
						|
      if (const SCEVConstant *Step =
 | 
						|
            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
 | 
						|
        if (!Step->getValue()->getValue()
 | 
						|
              .urem(RHSC->getValue()->getValue()) &&
 | 
						|
            getZeroExtendExpr(AR, ExtTy) ==
 | 
						|
            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
 | 
						|
                          getZeroExtendExpr(Step, ExtTy),
 | 
						|
                          AR->getLoop())) {
 | 
						|
          SmallVector<const SCEV *, 4> Operands;
 | 
						|
          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
 | 
						|
            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
 | 
						|
          return getAddRecExpr(Operands, AR->getLoop());
 | 
						|
        }
 | 
						|
    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
 | 
						|
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
 | 
						|
      SmallVector<const SCEV *, 4> Operands;
 | 
						|
      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
 | 
						|
        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
 | 
						|
      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
 | 
						|
        // Find an operand that's safely divisible.
 | 
						|
        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
 | 
						|
          const SCEV *Op = M->getOperand(i);
 | 
						|
          const SCEV *Div = getUDivExpr(Op, RHSC);
 | 
						|
          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
 | 
						|
            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
 | 
						|
            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
 | 
						|
                                                  MOperands.end());
 | 
						|
            Operands[i] = Div;
 | 
						|
            return getMulExpr(Operands);
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
 | 
						|
    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
 | 
						|
      SmallVector<const SCEV *, 4> Operands;
 | 
						|
      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
 | 
						|
        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
 | 
						|
      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
 | 
						|
        Operands.clear();
 | 
						|
        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
 | 
						|
          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
 | 
						|
          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
 | 
						|
            break;
 | 
						|
          Operands.push_back(Op);
 | 
						|
        }
 | 
						|
        if (Operands.size() == A->getNumOperands())
 | 
						|
          return getAddExpr(Operands);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Fold if both operands are constant.
 | 
						|
    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | 
						|
      Constant *LHSCV = LHSC->getValue();
 | 
						|
      Constant *RHSCV = RHSC->getValue();
 | 
						|
      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
 | 
						|
                                                                 RHSCV)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scUDivExpr);
 | 
						|
  ID.AddPointer(LHS);
 | 
						|
  ID.AddPointer(RHS);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
 | 
						|
  new (S) SCEVUDivExpr(ID, LHS, RHS);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
 | 
						|
/// Simplify the expression as much as possible.
 | 
						|
const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
 | 
						|
                                           const SCEV *Step, const Loop *L,
 | 
						|
                                           bool HasNUW, bool HasNSW) {
 | 
						|
  SmallVector<const SCEV *, 4> Operands;
 | 
						|
  Operands.push_back(Start);
 | 
						|
  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | 
						|
    if (StepChrec->getLoop() == L) {
 | 
						|
      Operands.insert(Operands.end(), StepChrec->op_begin(),
 | 
						|
                      StepChrec->op_end());
 | 
						|
      return getAddRecExpr(Operands, L);
 | 
						|
    }
 | 
						|
 | 
						|
  Operands.push_back(Step);
 | 
						|
  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
 | 
						|
}
 | 
						|
 | 
						|
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
 | 
						|
/// Simplify the expression as much as possible.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | 
						|
                               const Loop *L,
 | 
						|
                               bool HasNUW, bool HasNSW) {
 | 
						|
  if (Operands.size() == 1) return Operands[0];
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | 
						|
    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
 | 
						|
           getEffectiveSCEVType(Operands[0]->getType()) &&
 | 
						|
           "SCEVAddRecExpr operand types don't match!");
 | 
						|
#endif
 | 
						|
 | 
						|
  if (Operands.back()->isZero()) {
 | 
						|
    Operands.pop_back();
 | 
						|
    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
 | 
						|
  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
 | 
						|
    const Loop* NestedLoop = NestedAR->getLoop();
 | 
						|
    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
 | 
						|
      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
 | 
						|
                                                NestedAR->op_end());
 | 
						|
      Operands[0] = NestedAR->getStart();
 | 
						|
      // AddRecs require their operands be loop-invariant with respect to their
 | 
						|
      // loops. Don't perform this transformation if it would break this
 | 
						|
      // requirement.
 | 
						|
      bool AllInvariant = true;
 | 
						|
      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
        if (!Operands[i]->isLoopInvariant(L)) {
 | 
						|
          AllInvariant = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (AllInvariant) {
 | 
						|
        NestedOperands[0] = getAddRecExpr(Operands, L);
 | 
						|
        AllInvariant = true;
 | 
						|
        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
 | 
						|
          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
 | 
						|
            AllInvariant = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        if (AllInvariant)
 | 
						|
          // Ok, both add recurrences are valid after the transformation.
 | 
						|
          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
 | 
						|
      }
 | 
						|
      // Reset Operands to its original state.
 | 
						|
      Operands[0] = NestedAR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scAddRecExpr);
 | 
						|
  ID.AddInteger(Operands.size());
 | 
						|
  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
    ID.AddPointer(Operands[i]);
 | 
						|
  ID.AddPointer(L);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
 | 
						|
  new (S) SCEVAddRecExpr(ID, Operands, L);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  if (HasNUW) S->setHasNoUnsignedWrap(true);
 | 
						|
  if (HasNSW) S->setHasNoSignedWrap(true);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
 | 
						|
                                         const SCEV *RHS) {
 | 
						|
  SmallVector<const SCEV *, 2> Ops;
 | 
						|
  Ops.push_back(LHS);
 | 
						|
  Ops.push_back(RHS);
 | 
						|
  return getSMaxExpr(Ops);
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty smax!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
 | 
						|
           getEffectiveSCEVType(Ops[0]->getType()) &&
 | 
						|
           "SCEVSMaxExpr operand types don't match!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops, LI);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(getContext(),
 | 
						|
                              APIntOps::smax(LHSC->getValue()->getValue(),
 | 
						|
                                             RHSC->getValue()->getValue()));
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant minimum-int, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
 | 
						|
      // If we have an smax with a constant maximum-int, it will always be
 | 
						|
      // maximum-int.
 | 
						|
      return Ops[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Find the first SMax
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Check to see if one of the operands is an SMax. If so, expand its operands
 | 
						|
  // onto our operand list, and recurse to simplify.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedSMax = false;
 | 
						|
    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
 | 
						|
      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedSMax = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeletedSMax)
 | 
						|
      return getSMaxExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, delete one.  Since we sorted the list, these values are required to
 | 
						|
  // be adjacent.
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | 
						|
      --i; --e;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  assert(!Ops.empty() && "Reduced smax down to nothing!");
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an smax expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scSMaxExpr);
 | 
						|
  ID.AddInteger(Ops.size());
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    ID.AddPointer(Ops[i]);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
 | 
						|
  new (S) SCEVSMaxExpr(ID, Ops);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
 | 
						|
                                         const SCEV *RHS) {
 | 
						|
  SmallVector<const SCEV *, 2> Ops;
 | 
						|
  Ops.push_back(LHS);
 | 
						|
  Ops.push_back(RHS);
 | 
						|
  return getUMaxExpr(Ops);
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty umax!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
 | 
						|
           getEffectiveSCEVType(Ops[0]->getType()) &&
 | 
						|
           "SCEVUMaxExpr operand types don't match!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops, LI);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(getContext(),
 | 
						|
                              APIntOps::umax(LHSC->getValue()->getValue(),
 | 
						|
                                             RHSC->getValue()->getValue()));
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant minimum-int, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
 | 
						|
      // If we have an umax with a constant maximum-int, it will always be
 | 
						|
      // maximum-int.
 | 
						|
      return Ops[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Find the first UMax
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Check to see if one of the operands is a UMax. If so, expand its operands
 | 
						|
  // onto our operand list, and recurse to simplify.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedUMax = false;
 | 
						|
    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
 | 
						|
      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedUMax = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeletedUMax)
 | 
						|
      return getUMaxExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, delete one.  Since we sorted the list, these values are required to
 | 
						|
  // be adjacent.
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | 
						|
      --i; --e;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  assert(!Ops.empty() && "Reduced umax down to nothing!");
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need a umax expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scUMaxExpr);
 | 
						|
  ID.AddInteger(Ops.size());
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    ID.AddPointer(Ops[i]);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
 | 
						|
  new (S) SCEVUMaxExpr(ID, Ops);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
 | 
						|
                                         const SCEV *RHS) {
 | 
						|
  // ~smax(~x, ~y) == smin(x, y).
 | 
						|
  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
 | 
						|
                                         const SCEV *RHS) {
 | 
						|
  // ~umax(~x, ~y) == umin(x, y)
 | 
						|
  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
 | 
						|
                                                unsigned FieldNo) {
 | 
						|
  // If we have TargetData we can determine the constant offset.
 | 
						|
  if (TD) {
 | 
						|
    const Type *IntPtrTy = TD->getIntPtrType(getContext());
 | 
						|
    const StructLayout &SL = *TD->getStructLayout(STy);
 | 
						|
    uint64_t Offset = SL.getElementOffset(FieldNo);
 | 
						|
    return getIntegerSCEV(Offset, IntPtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Field 0 is always at offset 0.
 | 
						|
  if (FieldNo == 0) {
 | 
						|
    const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
 | 
						|
    return getIntegerSCEV(0, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an offsetof expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scFieldOffset);
 | 
						|
  ID.AddPointer(STy);
 | 
						|
  ID.AddInteger(FieldNo);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
 | 
						|
  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
 | 
						|
  new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
 | 
						|
  // If we have TargetData we can determine the constant size.
 | 
						|
  if (TD && AllocTy->isSized()) {
 | 
						|
    const Type *IntPtrTy = TD->getIntPtrType(getContext());
 | 
						|
    return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand an array size into the element size times the number
 | 
						|
  // of elements.
 | 
						|
  if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
 | 
						|
    const SCEV *E = getAllocSizeExpr(ATy->getElementType());
 | 
						|
    return getMulExpr(
 | 
						|
      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
 | 
						|
                                      ATy->getNumElements())));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand a vector size into the element size times the number
 | 
						|
  // of elements.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
 | 
						|
    const SCEV *E = getAllocSizeExpr(VTy->getElementType());
 | 
						|
    return getMulExpr(
 | 
						|
      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
 | 
						|
                                      VTy->getNumElements())));
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need a sizeof expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scAllocSize);
 | 
						|
  ID.AddPointer(AllocTy);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
 | 
						|
  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
 | 
						|
  new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getUnknown(Value *V) {
 | 
						|
  // Don't attempt to do anything other than create a SCEVUnknown object
 | 
						|
  // here.  createSCEV only calls getUnknown after checking for all other
 | 
						|
  // interesting possibilities, and any other code that calls getUnknown
 | 
						|
  // is doing so in order to hide a value from SCEV canonicalization.
 | 
						|
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  ID.AddInteger(scUnknown);
 | 
						|
  ID.AddPointer(V);
 | 
						|
  void *IP = 0;
 | 
						|
  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | 
						|
  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
 | 
						|
  new (S) SCEVUnknown(ID, V);
 | 
						|
  UniqueSCEVs.InsertNode(S, IP);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Basic SCEV Analysis and PHI Idiom Recognition Code
 | 
						|
//
 | 
						|
 | 
						|
/// isSCEVable - Test if values of the given type are analyzable within
 | 
						|
/// the SCEV framework. This primarily includes integer types, and it
 | 
						|
/// can optionally include pointer types if the ScalarEvolution class
 | 
						|
/// has access to target-specific information.
 | 
						|
bool ScalarEvolution::isSCEVable(const Type *Ty) const {
 | 
						|
  // Integers and pointers are always SCEVable.
 | 
						|
  return Ty->isInteger() || isa<PointerType>(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeSizeInBits - Return the size in bits of the specified type,
 | 
						|
/// for which isSCEVable must return true.
 | 
						|
uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
 | 
						|
  assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | 
						|
 | 
						|
  // If we have a TargetData, use it!
 | 
						|
  if (TD)
 | 
						|
    return TD->getTypeSizeInBits(Ty);
 | 
						|
 | 
						|
  // Integer types have fixed sizes.
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return Ty->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  // The only other support type is pointer. Without TargetData, conservatively
 | 
						|
  // assume pointers are 64-bit.
 | 
						|
  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
 | 
						|
  return 64;
 | 
						|
}
 | 
						|
 | 
						|
/// getEffectiveSCEVType - Return a type with the same bitwidth as
 | 
						|
/// the given type and which represents how SCEV will treat the given
 | 
						|
/// type, for which isSCEVable must return true. For pointer types,
 | 
						|
/// this is the pointer-sized integer type.
 | 
						|
const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
 | 
						|
  assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | 
						|
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return Ty;
 | 
						|
 | 
						|
  // The only other support type is pointer.
 | 
						|
  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
 | 
						|
  if (TD) return TD->getIntPtrType(getContext());
 | 
						|
 | 
						|
  // Without TargetData, conservatively assume pointers are 64-bit.
 | 
						|
  return Type::getInt64Ty(getContext());
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::getCouldNotCompute() {
 | 
						|
  return &CouldNotCompute;
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | 
						|
/// expression and create a new one.
 | 
						|
const SCEV *ScalarEvolution::getSCEV(Value *V) {
 | 
						|
  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
 | 
						|
 | 
						|
  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
 | 
						|
  if (I != Scalars.end()) return I->second;
 | 
						|
  const SCEV *S = createSCEV(V);
 | 
						|
  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// getIntegerSCEV - Given a SCEVable type, create a constant for the
 | 
						|
/// specified signed integer value and return a SCEV for the constant.
 | 
						|
const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
 | 
						|
  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
 | 
						|
  return getConstant(ConstantInt::get(ITy, Val));
 | 
						|
}
 | 
						|
 | 
						|
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
 | 
						|
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | 
						|
    return getConstant(
 | 
						|
               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
 | 
						|
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
  return getMulExpr(V,
 | 
						|
                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
 | 
						|
}
 | 
						|
 | 
						|
/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
 | 
						|
const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
 | 
						|
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | 
						|
    return getConstant(
 | 
						|
                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
 | 
						|
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
  const SCEV *AllOnes =
 | 
						|
                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
 | 
						|
  return getMinusSCEV(AllOnes, V);
 | 
						|
}
 | 
						|
 | 
						|
/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
 | 
						|
                                          const SCEV *RHS) {
 | 
						|
  // X - Y --> X + -Y
 | 
						|
  return getAddExpr(LHS, getNegativeSCEV(RHS));
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is zero
 | 
						|
/// extended.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
 | 
						|
                                         const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot truncate or zero extend with non-integer arguments!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | 
						|
    return getTruncateExpr(V, Ty);
 | 
						|
  return getZeroExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is sign
 | 
						|
/// extended.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
 | 
						|
                                         const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot truncate or zero extend with non-integer arguments!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | 
						|
    return getTruncateExpr(V, Ty);
 | 
						|
  return getSignExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is zero
 | 
						|
/// extended.  The conversion must not be narrowing.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot noop or zero extend with non-integer arguments!");
 | 
						|
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | 
						|
         "getNoopOrZeroExtend cannot truncate!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  return getZeroExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is sign
 | 
						|
/// extended.  The conversion must not be narrowing.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot noop or sign extend with non-integer arguments!");
 | 
						|
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | 
						|
         "getNoopOrSignExtend cannot truncate!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  return getSignExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | 
						|
/// the input value to the specified type. If the type must be extended,
 | 
						|
/// it is extended with unspecified bits. The conversion must not be
 | 
						|
/// narrowing.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot noop or any extend with non-integer arguments!");
 | 
						|
  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | 
						|
         "getNoopOrAnyExtend cannot truncate!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  return getAnyExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  The conversion must not be widening.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot truncate or noop with non-integer arguments!");
 | 
						|
  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
 | 
						|
         "getTruncateOrNoop cannot extend!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  return getTruncateExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
/// the types using zero-extension, and then perform a umax operation
 | 
						|
/// with them.
 | 
						|
const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                                        const SCEV *RHS) {
 | 
						|
  const SCEV *PromotedLHS = LHS;
 | 
						|
  const SCEV *PromotedRHS = RHS;
 | 
						|
 | 
						|
  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
 | 
						|
    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
 | 
						|
  else
 | 
						|
    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
 | 
						|
 | 
						|
  return getUMaxExpr(PromotedLHS, PromotedRHS);
 | 
						|
}
 | 
						|
 | 
						|
/// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
/// the types using zero-extension, and then perform a umin operation
 | 
						|
/// with them.
 | 
						|
const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                                        const SCEV *RHS) {
 | 
						|
  const SCEV *PromotedLHS = LHS;
 | 
						|
  const SCEV *PromotedRHS = RHS;
 | 
						|
 | 
						|
  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
 | 
						|
    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
 | 
						|
  else
 | 
						|
    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
 | 
						|
 | 
						|
  return getUMinExpr(PromotedLHS, PromotedRHS);
 | 
						|
}
 | 
						|
 | 
						|
/// PushDefUseChildren - Push users of the given Instruction
 | 
						|
/// onto the given Worklist.
 | 
						|
static void
 | 
						|
PushDefUseChildren(Instruction *I,
 | 
						|
                   SmallVectorImpl<Instruction *> &Worklist) {
 | 
						|
  // Push the def-use children onto the Worklist stack.
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    Worklist.push_back(cast<Instruction>(UI));
 | 
						|
}
 | 
						|
 | 
						|
/// ForgetSymbolicValue - This looks up computed SCEV values for all
 | 
						|
/// instructions that depend on the given instruction and removes them from
 | 
						|
/// the Scalars map if they reference SymName. This is used during PHI
 | 
						|
/// resolution.
 | 
						|
void
 | 
						|
ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
 | 
						|
  SmallVector<Instruction *, 16> Worklist;
 | 
						|
  PushDefUseChildren(I, Worklist);
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 8> Visited;
 | 
						|
  Visited.insert(I);
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.pop_back_val();
 | 
						|
    if (!Visited.insert(I)) continue;
 | 
						|
 | 
						|
    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
 | 
						|
      Scalars.find(static_cast<Value *>(I));
 | 
						|
    if (It != Scalars.end()) {
 | 
						|
      // Short-circuit the def-use traversal if the symbolic name
 | 
						|
      // ceases to appear in expressions.
 | 
						|
      if (!It->second->hasOperand(SymName))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // SCEVUnknown for a PHI either means that it has an unrecognized
 | 
						|
      // structure, or it's a PHI that's in the progress of being computed
 | 
						|
      // by createNodeForPHI.  In the former case, additional loop trip
 | 
						|
      // count information isn't going to change anything. In the later
 | 
						|
      // case, createNodeForPHI will perform the necessary updates on its
 | 
						|
      // own when it gets to that point.
 | 
						|
      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
 | 
						|
        ValuesAtScopes.erase(It->second);
 | 
						|
        Scalars.erase(It);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    PushDefUseChildren(I, Worklist);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
 | 
						|
/// a loop header, making it a potential recurrence, or it doesn't.
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
 | 
						|
  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
 | 
						|
    if (const Loop *L = LI->getLoopFor(PN->getParent()))
 | 
						|
      if (L->getHeader() == PN->getParent()) {
 | 
						|
        // If it lives in the loop header, it has two incoming values, one
 | 
						|
        // from outside the loop, and one from inside.
 | 
						|
        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | 
						|
        unsigned BackEdge     = IncomingEdge^1;
 | 
						|
 | 
						|
        // While we are analyzing this PHI node, handle its value symbolically.
 | 
						|
        const SCEV *SymbolicName = getUnknown(PN);
 | 
						|
        assert(Scalars.find(PN) == Scalars.end() &&
 | 
						|
               "PHI node already processed?");
 | 
						|
        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
 | 
						|
 | 
						|
        // Using this symbolic name for the PHI, analyze the value coming around
 | 
						|
        // the back-edge.
 | 
						|
        Value *BEValueV = PN->getIncomingValue(BackEdge);
 | 
						|
        const SCEV *BEValue = getSCEV(BEValueV);
 | 
						|
 | 
						|
        // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | 
						|
        // has a special value for the first iteration of the loop.
 | 
						|
 | 
						|
        // If the value coming around the backedge is an add with the symbolic
 | 
						|
        // value we just inserted, then we found a simple induction variable!
 | 
						|
        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | 
						|
          // If there is a single occurrence of the symbolic value, replace it
 | 
						|
          // with a recurrence.
 | 
						|
          unsigned FoundIndex = Add->getNumOperands();
 | 
						|
          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
            if (Add->getOperand(i) == SymbolicName)
 | 
						|
              if (FoundIndex == e) {
 | 
						|
                FoundIndex = i;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
 | 
						|
          if (FoundIndex != Add->getNumOperands()) {
 | 
						|
            // Create an add with everything but the specified operand.
 | 
						|
            SmallVector<const SCEV *, 8> Ops;
 | 
						|
            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
              if (i != FoundIndex)
 | 
						|
                Ops.push_back(Add->getOperand(i));
 | 
						|
            const SCEV *Accum = getAddExpr(Ops);
 | 
						|
 | 
						|
            // This is not a valid addrec if the step amount is varying each
 | 
						|
            // loop iteration, but is not itself an addrec in this loop.
 | 
						|
            if (Accum->isLoopInvariant(L) ||
 | 
						|
                (isa<SCEVAddRecExpr>(Accum) &&
 | 
						|
                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | 
						|
              const SCEV *StartVal =
 | 
						|
                getSCEV(PN->getIncomingValue(IncomingEdge));
 | 
						|
              const SCEVAddRecExpr *PHISCEV =
 | 
						|
                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
 | 
						|
 | 
						|
              // If the increment doesn't overflow, then neither the addrec nor the
 | 
						|
              // post-increment will overflow.
 | 
						|
              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
 | 
						|
                if (OBO->getOperand(0) == PN &&
 | 
						|
                    getSCEV(OBO->getOperand(1)) ==
 | 
						|
                      PHISCEV->getStepRecurrence(*this)) {
 | 
						|
                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
 | 
						|
                  if (OBO->hasNoUnsignedWrap()) {
 | 
						|
                    const_cast<SCEVAddRecExpr *>(PHISCEV)
 | 
						|
                      ->setHasNoUnsignedWrap(true);
 | 
						|
                    const_cast<SCEVAddRecExpr *>(PostInc)
 | 
						|
                      ->setHasNoUnsignedWrap(true);
 | 
						|
                  }
 | 
						|
                  if (OBO->hasNoSignedWrap()) {
 | 
						|
                    const_cast<SCEVAddRecExpr *>(PHISCEV)
 | 
						|
                      ->setHasNoSignedWrap(true);
 | 
						|
                    const_cast<SCEVAddRecExpr *>(PostInc)
 | 
						|
                      ->setHasNoSignedWrap(true);
 | 
						|
                  }
 | 
						|
                }
 | 
						|
 | 
						|
              // Okay, for the entire analysis of this edge we assumed the PHI
 | 
						|
              // to be symbolic.  We now need to go back and purge all of the
 | 
						|
              // entries for the scalars that use the symbolic expression.
 | 
						|
              ForgetSymbolicName(PN, SymbolicName);
 | 
						|
              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
 | 
						|
              return PHISCEV;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (const SCEVAddRecExpr *AddRec =
 | 
						|
                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
 | 
						|
          // Otherwise, this could be a loop like this:
 | 
						|
          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
 | 
						|
          // In this case, j = {1,+,1}  and BEValue is j.
 | 
						|
          // Because the other in-value of i (0) fits the evolution of BEValue
 | 
						|
          // i really is an addrec evolution.
 | 
						|
          if (AddRec->getLoop() == L && AddRec->isAffine()) {
 | 
						|
            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | 
						|
 | 
						|
            // If StartVal = j.start - j.stride, we can use StartVal as the
 | 
						|
            // initial step of the addrec evolution.
 | 
						|
            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
 | 
						|
                                            AddRec->getOperand(1))) {
 | 
						|
              const SCEV *PHISCEV =
 | 
						|
                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
 | 
						|
 | 
						|
              // Okay, for the entire analysis of this edge we assumed the PHI
 | 
						|
              // to be symbolic.  We now need to go back and purge all of the
 | 
						|
              // entries for the scalars that use the symbolic expression.
 | 
						|
              ForgetSymbolicName(PN, SymbolicName);
 | 
						|
              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
 | 
						|
              return PHISCEV;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        return SymbolicName;
 | 
						|
      }
 | 
						|
 | 
						|
  // It's tempting to recognize PHIs with a unique incoming value, however
 | 
						|
  // this leads passes like indvars to break LCSSA form. Fortunately, such
 | 
						|
  // PHIs are rare, as instcombine zaps them.
 | 
						|
 | 
						|
  // If it's not a loop phi, we can't handle it yet.
 | 
						|
  return getUnknown(PN);
 | 
						|
}
 | 
						|
 | 
						|
/// createNodeForGEP - Expand GEP instructions into add and multiply
 | 
						|
/// operations. This allows them to be analyzed by regular SCEV code.
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
 | 
						|
 | 
						|
  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
 | 
						|
  Value *Base = GEP->getOperand(0);
 | 
						|
  // Don't attempt to analyze GEPs over unsized objects.
 | 
						|
  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
 | 
						|
    return getUnknown(GEP);
 | 
						|
  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
 | 
						|
                                      E = GEP->op_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Value *Index = *I;
 | 
						|
    // Compute the (potentially symbolic) offset in bytes for this index.
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | 
						|
      // For a struct, add the member offset.
 | 
						|
      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | 
						|
      TotalOffset = getAddExpr(TotalOffset,
 | 
						|
                               getFieldOffsetExpr(STy, FieldNo));
 | 
						|
    } else {
 | 
						|
      // For an array, add the element offset, explicitly scaled.
 | 
						|
      const SCEV *LocalOffset = getSCEV(Index);
 | 
						|
      if (!isa<PointerType>(LocalOffset->getType()))
 | 
						|
        // Getelementptr indicies are signed.
 | 
						|
        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
 | 
						|
      LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI));
 | 
						|
      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return getAddExpr(getSCEV(Base), TotalOffset);
 | 
						|
}
 | 
						|
 | 
						|
/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
 | 
						|
/// guaranteed to end in (at every loop iteration).  It is, at the same time,
 | 
						|
/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
 | 
						|
/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
 | 
						|
uint32_t
 | 
						|
ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | 
						|
    return C->getValue()->getValue().countTrailingZeros();
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
 | 
						|
    return std::min(GetMinTrailingZeros(T->getOperand()),
 | 
						|
                    (uint32_t)getTypeSizeInBits(T->getType()));
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | 
						|
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | 
						|
    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
 | 
						|
             getTypeSizeInBits(E->getType()) : OpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
 | 
						|
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | 
						|
    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
 | 
						|
             getTypeSizeInBits(E->getType()) : OpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    // The result is the sum of all operands results.
 | 
						|
    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
 | 
						|
    uint32_t BitWidth = getTypeSizeInBits(M->getType());
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands();
 | 
						|
         SumOpRes != BitWidth && i != e; ++i)
 | 
						|
      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
 | 
						|
                          BitWidth);
 | 
						|
    return SumOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | 
						|
    // For a SCEVUnknown, ask ValueTracking.
 | 
						|
    unsigned BitWidth = getTypeSizeInBits(U->getType());
 | 
						|
    APInt Mask = APInt::getAllOnesValue(BitWidth);
 | 
						|
    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
 | 
						|
    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
 | 
						|
    return Zeros.countTrailingOnes();
 | 
						|
  }
 | 
						|
 | 
						|
  // SCEVUDivExpr
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | 
						|
///
 | 
						|
ConstantRange
 | 
						|
ScalarEvolution::getUnsignedRange(const SCEV *S) {
 | 
						|
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | 
						|
    return ConstantRange(C->getValue()->getValue());
 | 
						|
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(Add->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.add(getUnsignedRange(Add->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(UDiv->getLHS());
 | 
						|
    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
 | 
						|
    return X.udiv(Y);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(ZExt->getOperand());
 | 
						|
    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(SExt->getOperand());
 | 
						|
    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | 
						|
    ConstantRange X = getUnsignedRange(Trunc->getOperand());
 | 
						|
    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
 | 
						|
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
 | 
						|
    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
 | 
						|
    if (!Trip) return FullSet;
 | 
						|
 | 
						|
    // TODO: non-affine addrec
 | 
						|
    if (AddRec->isAffine()) {
 | 
						|
      const Type *Ty = AddRec->getType();
 | 
						|
      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
 | 
						|
      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
 | 
						|
        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
 | 
						|
 | 
						|
        const SCEV *Start = AddRec->getStart();
 | 
						|
        const SCEV *Step = AddRec->getStepRecurrence(*this);
 | 
						|
        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
 | 
						|
 | 
						|
        // Check for overflow.
 | 
						|
        // TODO: This is very conservative.
 | 
						|
        if (!(Step->isOne() &&
 | 
						|
              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
 | 
						|
            !(Step->isAllOnesValue() &&
 | 
						|
              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
 | 
						|
          return FullSet;
 | 
						|
 | 
						|
        ConstantRange StartRange = getUnsignedRange(Start);
 | 
						|
        ConstantRange EndRange = getUnsignedRange(End);
 | 
						|
        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
 | 
						|
                                   EndRange.getUnsignedMin());
 | 
						|
        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
 | 
						|
                                   EndRange.getUnsignedMax());
 | 
						|
        if (Min.isMinValue() && Max.isMaxValue())
 | 
						|
          return FullSet;
 | 
						|
        return ConstantRange(Min, Max+1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | 
						|
    // For a SCEVUnknown, ask ValueTracking.
 | 
						|
    unsigned BitWidth = getTypeSizeInBits(U->getType());
 | 
						|
    APInt Mask = APInt::getAllOnesValue(BitWidth);
 | 
						|
    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
 | 
						|
    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
 | 
						|
    if (Ones == ~Zeros + 1)
 | 
						|
      return FullSet;
 | 
						|
    return ConstantRange(Ones, ~Zeros + 1);
 | 
						|
  }
 | 
						|
 | 
						|
  return FullSet;
 | 
						|
}
 | 
						|
 | 
						|
/// getSignedRange - Determine the signed range for a particular SCEV.
 | 
						|
///
 | 
						|
ConstantRange
 | 
						|
ScalarEvolution::getSignedRange(const SCEV *S) {
 | 
						|
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | 
						|
    return ConstantRange(C->getValue()->getValue());
 | 
						|
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(Add->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.add(getSignedRange(Add->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(Mul->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.multiply(getSignedRange(Mul->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(SMax->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.smax(getSignedRange(SMax->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(UMax->getOperand(0));
 | 
						|
    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
 | 
						|
      X = X.umax(getSignedRange(UMax->getOperand(i)));
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(UDiv->getLHS());
 | 
						|
    ConstantRange Y = getSignedRange(UDiv->getRHS());
 | 
						|
    return X.udiv(Y);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(ZExt->getOperand());
 | 
						|
    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(SExt->getOperand());
 | 
						|
    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | 
						|
    ConstantRange X = getSignedRange(Trunc->getOperand());
 | 
						|
    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
 | 
						|
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
 | 
						|
    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
 | 
						|
    if (!Trip) return FullSet;
 | 
						|
 | 
						|
    // TODO: non-affine addrec
 | 
						|
    if (AddRec->isAffine()) {
 | 
						|
      const Type *Ty = AddRec->getType();
 | 
						|
      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
 | 
						|
      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
 | 
						|
        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
 | 
						|
 | 
						|
        const SCEV *Start = AddRec->getStart();
 | 
						|
        const SCEV *Step = AddRec->getStepRecurrence(*this);
 | 
						|
        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
 | 
						|
 | 
						|
        // Check for overflow.
 | 
						|
        // TODO: This is very conservative.
 | 
						|
        if (!(Step->isOne() &&
 | 
						|
              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
 | 
						|
            !(Step->isAllOnesValue() &&
 | 
						|
              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
 | 
						|
          return FullSet;
 | 
						|
 | 
						|
        ConstantRange StartRange = getSignedRange(Start);
 | 
						|
        ConstantRange EndRange = getSignedRange(End);
 | 
						|
        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
 | 
						|
                                   EndRange.getSignedMin());
 | 
						|
        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
 | 
						|
                                   EndRange.getSignedMax());
 | 
						|
        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
 | 
						|
          return FullSet;
 | 
						|
        return ConstantRange(Min, Max+1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | 
						|
    // For a SCEVUnknown, ask ValueTracking.
 | 
						|
    unsigned BitWidth = getTypeSizeInBits(U->getType());
 | 
						|
    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
 | 
						|
    if (NS == 1)
 | 
						|
      return FullSet;
 | 
						|
    return
 | 
						|
      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
 | 
						|
                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
 | 
						|
  }
 | 
						|
 | 
						|
  return FullSet;
 | 
						|
}
 | 
						|
 | 
						|
/// createSCEV - We know that there is no SCEV for the specified value.
 | 
						|
/// Analyze the expression.
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::createSCEV(Value *V) {
 | 
						|
  if (!isSCEVable(V->getType()))
 | 
						|
    return getUnknown(V);
 | 
						|
 | 
						|
  unsigned Opcode = Instruction::UserOp1;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    Opcode = I->getOpcode();
 | 
						|
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    Opcode = CE->getOpcode();
 | 
						|
  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
    return getConstant(CI);
 | 
						|
  else if (isa<ConstantPointerNull>(V))
 | 
						|
    return getIntegerSCEV(0, V->getType());
 | 
						|
  else if (isa<UndefValue>(V))
 | 
						|
    return getIntegerSCEV(0, V->getType());
 | 
						|
  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | 
						|
    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
 | 
						|
  else
 | 
						|
    return getUnknown(V);
 | 
						|
 | 
						|
  Operator *U = cast<Operator>(V);
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    // Don't transfer the NSW and NUW bits from the Add instruction to the
 | 
						|
    // Add expression, because the Instruction may be guarded by control
 | 
						|
    // flow and the no-overflow bits may not be valid for the expression in
 | 
						|
    // any context.
 | 
						|
    return getAddExpr(getSCEV(U->getOperand(0)),
 | 
						|
                      getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::Mul:
 | 
						|
    // Don't transfer the NSW and NUW bits from the Mul instruction to the
 | 
						|
    // Mul expression, as with Add.
 | 
						|
    return getMulExpr(getSCEV(U->getOperand(0)),
 | 
						|
                      getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::UDiv:
 | 
						|
    return getUDivExpr(getSCEV(U->getOperand(0)),
 | 
						|
                       getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::Sub:
 | 
						|
    return getMinusSCEV(getSCEV(U->getOperand(0)),
 | 
						|
                        getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::And:
 | 
						|
    // For an expression like x&255 that merely masks off the high bits,
 | 
						|
    // use zext(trunc(x)) as the SCEV expression.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      if (CI->isNullValue())
 | 
						|
        return getSCEV(U->getOperand(1));
 | 
						|
      if (CI->isAllOnesValue())
 | 
						|
        return getSCEV(U->getOperand(0));
 | 
						|
      const APInt &A = CI->getValue();
 | 
						|
 | 
						|
      // Instcombine's ShrinkDemandedConstant may strip bits out of
 | 
						|
      // constants, obscuring what would otherwise be a low-bits mask.
 | 
						|
      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
 | 
						|
      // knew about to reconstruct a low-bits mask value.
 | 
						|
      unsigned LZ = A.countLeadingZeros();
 | 
						|
      unsigned BitWidth = A.getBitWidth();
 | 
						|
      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | 
						|
      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
 | 
						|
 | 
						|
      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
 | 
						|
 | 
						|
      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
 | 
						|
        return
 | 
						|
          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
 | 
						|
                                IntegerType::get(getContext(), BitWidth - LZ)),
 | 
						|
                            U->getType());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Or:
 | 
						|
    // If the RHS of the Or is a constant, we may have something like:
 | 
						|
    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
 | 
						|
    // optimizations will transparently handle this case.
 | 
						|
    //
 | 
						|
    // In order for this transformation to be safe, the LHS must be of the
 | 
						|
    // form X*(2^n) and the Or constant must be less than 2^n.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      const SCEV *LHS = getSCEV(U->getOperand(0));
 | 
						|
      const APInt &CIVal = CI->getValue();
 | 
						|
      if (GetMinTrailingZeros(LHS) >=
 | 
						|
          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
 | 
						|
        // Build a plain add SCEV.
 | 
						|
        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
 | 
						|
        // If the LHS of the add was an addrec and it has no-wrap flags,
 | 
						|
        // transfer the no-wrap flags, since an or won't introduce a wrap.
 | 
						|
        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
 | 
						|
          if (OldAR->hasNoUnsignedWrap())
 | 
						|
            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
 | 
						|
          if (OldAR->hasNoSignedWrap())
 | 
						|
            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
 | 
						|
        }
 | 
						|
        return S;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      // If the RHS of the xor is a signbit, then this is just an add.
 | 
						|
      // Instcombine turns add of signbit into xor as a strength reduction step.
 | 
						|
      if (CI->getValue().isSignBit())
 | 
						|
        return getAddExpr(getSCEV(U->getOperand(0)),
 | 
						|
                          getSCEV(U->getOperand(1)));
 | 
						|
 | 
						|
      // If the RHS of xor is -1, then this is a not operation.
 | 
						|
      if (CI->isAllOnesValue())
 | 
						|
        return getNotSCEV(getSCEV(U->getOperand(0)));
 | 
						|
 | 
						|
      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
 | 
						|
      // This is a variant of the check for xor with -1, and it handles
 | 
						|
      // the case where instcombine has trimmed non-demanded bits out
 | 
						|
      // of an xor with -1.
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
 | 
						|
        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
 | 
						|
          if (BO->getOpcode() == Instruction::And &&
 | 
						|
              LCI->getValue() == CI->getValue())
 | 
						|
            if (const SCEVZeroExtendExpr *Z =
 | 
						|
                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
 | 
						|
              const Type *UTy = U->getType();
 | 
						|
              const SCEV *Z0 = Z->getOperand();
 | 
						|
              const Type *Z0Ty = Z0->getType();
 | 
						|
              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
 | 
						|
 | 
						|
              // If C is a low-bits mask, the zero extend is zerving to
 | 
						|
              // mask off the high bits. Complement the operand and
 | 
						|
              // re-apply the zext.
 | 
						|
              if (APIntOps::isMask(Z0TySize, CI->getValue()))
 | 
						|
                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
 | 
						|
 | 
						|
              // If C is a single bit, it may be in the sign-bit position
 | 
						|
              // before the zero-extend. In this case, represent the xor
 | 
						|
              // using an add, which is equivalent, and re-apply the zext.
 | 
						|
              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
 | 
						|
              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
 | 
						|
                  Trunc.isSignBit())
 | 
						|
                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
 | 
						|
                                         UTy);
 | 
						|
            }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Turn shift left of a constant amount into a multiply.
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
      Constant *X = ConstantInt::get(getContext(),
 | 
						|
        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | 
						|
      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::LShr:
 | 
						|
    // Turn logical shift right of a constant into a unsigned divide.
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
      Constant *X = ConstantInt::get(getContext(),
 | 
						|
        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | 
						|
      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::AShr:
 | 
						|
    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
 | 
						|
      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
 | 
						|
        if (L->getOpcode() == Instruction::Shl &&
 | 
						|
            L->getOperand(1) == U->getOperand(1)) {
 | 
						|
          unsigned BitWidth = getTypeSizeInBits(U->getType());
 | 
						|
          uint64_t Amt = BitWidth - CI->getZExtValue();
 | 
						|
          if (Amt == BitWidth)
 | 
						|
            return getSCEV(L->getOperand(0));       // shift by zero --> noop
 | 
						|
          if (Amt > BitWidth)
 | 
						|
            return getIntegerSCEV(0, U->getType()); // value is undefined
 | 
						|
          return
 | 
						|
            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
 | 
						|
                                           IntegerType::get(getContext(), Amt)),
 | 
						|
                                 U->getType());
 | 
						|
        }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::SExt:
 | 
						|
    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // BitCasts are no-op casts so we just eliminate the cast.
 | 
						|
    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
 | 
						|
      return getSCEV(U->getOperand(0));
 | 
						|
    break;
 | 
						|
 | 
						|
    // It's tempting to handle inttoptr and ptrtoint, however this can
 | 
						|
    // lead to pointer expressions which cannot be expanded to GEPs
 | 
						|
    // (because they may overflow). For now, the only pointer-typed
 | 
						|
    // expressions we handle are GEPs and address literals.
 | 
						|
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return createNodeForGEP(U);
 | 
						|
 | 
						|
  case Instruction::PHI:
 | 
						|
    return createNodeForPHI(cast<PHINode>(U));
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    // This could be a smax or umax that was lowered earlier.
 | 
						|
    // Try to recover it.
 | 
						|
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
 | 
						|
      Value *LHS = ICI->getOperand(0);
 | 
						|
      Value *RHS = ICI->getOperand(1);
 | 
						|
      switch (ICI->getPredicate()) {
 | 
						|
      case ICmpInst::ICMP_SLT:
 | 
						|
      case ICmpInst::ICMP_SLE:
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
        // fall through
 | 
						|
      case ICmpInst::ICMP_SGT:
 | 
						|
      case ICmpInst::ICMP_SGE:
 | 
						|
        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | 
						|
          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | 
						|
          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_ULT:
 | 
						|
      case ICmpInst::ICMP_ULE:
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
        // fall through
 | 
						|
      case ICmpInst::ICMP_UGT:
 | 
						|
      case ICmpInst::ICMP_UGE:
 | 
						|
        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | 
						|
          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | 
						|
          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_NE:
 | 
						|
        // n != 0 ? n : 1  ->  umax(n, 1)
 | 
						|
        if (LHS == U->getOperand(1) &&
 | 
						|
            isa<ConstantInt>(U->getOperand(2)) &&
 | 
						|
            cast<ConstantInt>(U->getOperand(2))->isOne() &&
 | 
						|
            isa<ConstantInt>(RHS) &&
 | 
						|
            cast<ConstantInt>(RHS)->isZero())
 | 
						|
          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_EQ:
 | 
						|
        // n == 0 ? 1 : n  ->  umax(n, 1)
 | 
						|
        if (LHS == U->getOperand(2) &&
 | 
						|
            isa<ConstantInt>(U->getOperand(1)) &&
 | 
						|
            cast<ConstantInt>(U->getOperand(1))->isOne() &&
 | 
						|
            isa<ConstantInt>(RHS) &&
 | 
						|
            cast<ConstantInt>(RHS)->isZero())
 | 
						|
          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  default: // We cannot analyze this expression.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return getUnknown(V);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   Iteration Count Computation Code
 | 
						|
//
 | 
						|
 | 
						|
/// getBackedgeTakenCount - If the specified loop has a predictable
 | 
						|
/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | 
						|
/// object. The backedge-taken count is the number of times the loop header
 | 
						|
/// will be branched to from within the loop. This is one less than the
 | 
						|
/// trip count of the loop, since it doesn't count the first iteration,
 | 
						|
/// when the header is branched to from outside the loop.
 | 
						|
///
 | 
						|
/// Note that it is not valid to call this method on a loop without a
 | 
						|
/// loop-invariant backedge-taken count (see
 | 
						|
/// hasLoopInvariantBackedgeTakenCount).
 | 
						|
///
 | 
						|
const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
 | 
						|
  return getBackedgeTakenInfo(L).Exact;
 | 
						|
}
 | 
						|
 | 
						|
/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | 
						|
/// return the least SCEV value that is known never to be less than the
 | 
						|
/// actual backedge taken count.
 | 
						|
const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
 | 
						|
  return getBackedgeTakenInfo(L).Max;
 | 
						|
}
 | 
						|
 | 
						|
/// PushLoopPHIs - Push PHI nodes in the header of the given loop
 | 
						|
/// onto the given Worklist.
 | 
						|
static void
 | 
						|
PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  // Push all Loop-header PHIs onto the Worklist stack.
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    Worklist.push_back(PN);
 | 
						|
}
 | 
						|
 | 
						|
const ScalarEvolution::BackedgeTakenInfo &
 | 
						|
ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
 | 
						|
  // Initially insert a CouldNotCompute for this loop. If the insertion
 | 
						|
  // succeeds, procede to actually compute a backedge-taken count and
 | 
						|
  // update the value. The temporary CouldNotCompute value tells SCEV
 | 
						|
  // code elsewhere that it shouldn't attempt to request a new
 | 
						|
  // backedge-taken count, which could result in infinite recursion.
 | 
						|
  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
 | 
						|
    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
 | 
						|
  if (Pair.second) {
 | 
						|
    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
 | 
						|
    if (ItCount.Exact != getCouldNotCompute()) {
 | 
						|
      assert(ItCount.Exact->isLoopInvariant(L) &&
 | 
						|
             ItCount.Max->isLoopInvariant(L) &&
 | 
						|
             "Computed trip count isn't loop invariant for loop!");
 | 
						|
      ++NumTripCountsComputed;
 | 
						|
 | 
						|
      // Update the value in the map.
 | 
						|
      Pair.first->second = ItCount;
 | 
						|
    } else {
 | 
						|
      if (ItCount.Max != getCouldNotCompute())
 | 
						|
        // Update the value in the map.
 | 
						|
        Pair.first->second = ItCount;
 | 
						|
      if (isa<PHINode>(L->getHeader()->begin()))
 | 
						|
        // Only count loops that have phi nodes as not being computable.
 | 
						|
        ++NumTripCountsNotComputed;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we know more about the trip count for this loop, forget any
 | 
						|
    // existing SCEV values for PHI nodes in this loop since they are only
 | 
						|
    // conservative estimates made without the benefit of trip count
 | 
						|
    // information. This is similar to the code in forgetLoop, except that
 | 
						|
    // it handles SCEVUnknown PHI nodes specially.
 | 
						|
    if (ItCount.hasAnyInfo()) {
 | 
						|
      SmallVector<Instruction *, 16> Worklist;
 | 
						|
      PushLoopPHIs(L, Worklist);
 | 
						|
 | 
						|
      SmallPtrSet<Instruction *, 8> Visited;
 | 
						|
      while (!Worklist.empty()) {
 | 
						|
        Instruction *I = Worklist.pop_back_val();
 | 
						|
        if (!Visited.insert(I)) continue;
 | 
						|
 | 
						|
        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
 | 
						|
          Scalars.find(static_cast<Value *>(I));
 | 
						|
        if (It != Scalars.end()) {
 | 
						|
          // SCEVUnknown for a PHI either means that it has an unrecognized
 | 
						|
          // structure, or it's a PHI that's in the progress of being computed
 | 
						|
          // by createNodeForPHI.  In the former case, additional loop trip
 | 
						|
          // count information isn't going to change anything. In the later
 | 
						|
          // case, createNodeForPHI will perform the necessary updates on its
 | 
						|
          // own when it gets to that point.
 | 
						|
          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
 | 
						|
            ValuesAtScopes.erase(It->second);
 | 
						|
            Scalars.erase(It);
 | 
						|
          }
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
            ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
        }
 | 
						|
 | 
						|
        PushDefUseChildren(I, Worklist);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Pair.first->second;
 | 
						|
}
 | 
						|
 | 
						|
/// forgetLoop - This method should be called by the client when it has
 | 
						|
/// changed a loop in a way that may effect ScalarEvolution's ability to
 | 
						|
/// compute a trip count, or if the loop is deleted.
 | 
						|
void ScalarEvolution::forgetLoop(const Loop *L) {
 | 
						|
  // Drop any stored trip count value.
 | 
						|
  BackedgeTakenCounts.erase(L);
 | 
						|
 | 
						|
  // Drop information about expressions based on loop-header PHIs.
 | 
						|
  SmallVector<Instruction *, 16> Worklist;
 | 
						|
  PushLoopPHIs(L, Worklist);
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 8> Visited;
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.pop_back_val();
 | 
						|
    if (!Visited.insert(I)) continue;
 | 
						|
 | 
						|
    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
 | 
						|
      Scalars.find(static_cast<Value *>(I));
 | 
						|
    if (It != Scalars.end()) {
 | 
						|
      ValuesAtScopes.erase(It->second);
 | 
						|
      Scalars.erase(It);
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
        ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    PushDefUseChildren(I, Worklist);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCount - Compute the number of times the backedge
 | 
						|
/// of the specified loop will execute.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
 | 
						|
  SmallVector<BasicBlock*, 8> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  // Examine all exits and pick the most conservative values.
 | 
						|
  const SCEV *BECount = getCouldNotCompute();
 | 
						|
  const SCEV *MaxBECount = getCouldNotCompute();
 | 
						|
  bool CouldNotComputeBECount = false;
 | 
						|
  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
    BackedgeTakenInfo NewBTI =
 | 
						|
      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
 | 
						|
 | 
						|
    if (NewBTI.Exact == getCouldNotCompute()) {
 | 
						|
      // We couldn't compute an exact value for this exit, so
 | 
						|
      // we won't be able to compute an exact value for the loop.
 | 
						|
      CouldNotComputeBECount = true;
 | 
						|
      BECount = getCouldNotCompute();
 | 
						|
    } else if (!CouldNotComputeBECount) {
 | 
						|
      if (BECount == getCouldNotCompute())
 | 
						|
        BECount = NewBTI.Exact;
 | 
						|
      else
 | 
						|
        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
 | 
						|
    }
 | 
						|
    if (MaxBECount == getCouldNotCompute())
 | 
						|
      MaxBECount = NewBTI.Max;
 | 
						|
    else if (NewBTI.Max != getCouldNotCompute())
 | 
						|
      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
 | 
						|
  }
 | 
						|
 | 
						|
  return BackedgeTakenInfo(BECount, MaxBECount);
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
 | 
						|
/// of the specified loop will execute if it exits via the specified block.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
 | 
						|
                                                   BasicBlock *ExitingBlock) {
 | 
						|
 | 
						|
  // Okay, we've chosen an exiting block.  See what condition causes us to
 | 
						|
  // exit at this block.
 | 
						|
  //
 | 
						|
  // FIXME: we should be able to handle switch instructions (with a single exit)
 | 
						|
  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
  if (ExitBr == 0) return getCouldNotCompute();
 | 
						|
  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
 | 
						|
 | 
						|
  // At this point, we know we have a conditional branch that determines whether
 | 
						|
  // the loop is exited.  However, we don't know if the branch is executed each
 | 
						|
  // time through the loop.  If not, then the execution count of the branch will
 | 
						|
  // not be equal to the trip count of the loop.
 | 
						|
  //
 | 
						|
  // Currently we check for this by checking to see if the Exit branch goes to
 | 
						|
  // the loop header.  If so, we know it will always execute the same number of
 | 
						|
  // times as the loop.  We also handle the case where the exit block *is* the
 | 
						|
  // loop header.  This is common for un-rotated loops.
 | 
						|
  //
 | 
						|
  // If both of those tests fail, walk up the unique predecessor chain to the
 | 
						|
  // header, stopping if there is an edge that doesn't exit the loop. If the
 | 
						|
  // header is reached, the execution count of the branch will be equal to the
 | 
						|
  // trip count of the loop.
 | 
						|
  //
 | 
						|
  //  More extensive analysis could be done to handle more cases here.
 | 
						|
  //
 | 
						|
  if (ExitBr->getSuccessor(0) != L->getHeader() &&
 | 
						|
      ExitBr->getSuccessor(1) != L->getHeader() &&
 | 
						|
      ExitBr->getParent() != L->getHeader()) {
 | 
						|
    // The simple checks failed, try climbing the unique predecessor chain
 | 
						|
    // up to the header.
 | 
						|
    bool Ok = false;
 | 
						|
    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
 | 
						|
      BasicBlock *Pred = BB->getUniquePredecessor();
 | 
						|
      if (!Pred)
 | 
						|
        return getCouldNotCompute();
 | 
						|
      TerminatorInst *PredTerm = Pred->getTerminator();
 | 
						|
      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
 | 
						|
        if (PredSucc == BB)
 | 
						|
          continue;
 | 
						|
        // If the predecessor has a successor that isn't BB and isn't
 | 
						|
        // outside the loop, assume the worst.
 | 
						|
        if (L->contains(PredSucc))
 | 
						|
          return getCouldNotCompute();
 | 
						|
      }
 | 
						|
      if (Pred == L->getHeader()) {
 | 
						|
        Ok = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      BB = Pred;
 | 
						|
    }
 | 
						|
    if (!Ok)
 | 
						|
      return getCouldNotCompute();
 | 
						|
  }
 | 
						|
 | 
						|
  // Procede to the next level to examine the exit condition expression.
 | 
						|
  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
 | 
						|
                                               ExitBr->getSuccessor(0),
 | 
						|
                                               ExitBr->getSuccessor(1));
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
 | 
						|
/// backedge of the specified loop will execute if its exit condition
 | 
						|
/// were a conditional branch of ExitCond, TBB, and FBB.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
 | 
						|
                                                       Value *ExitCond,
 | 
						|
                                                       BasicBlock *TBB,
 | 
						|
                                                       BasicBlock *FBB) {
 | 
						|
  // Check if the controlling expression for this loop is an And or Or.
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
 | 
						|
    if (BO->getOpcode() == Instruction::And) {
 | 
						|
      // Recurse on the operands of the and.
 | 
						|
      BackedgeTakenInfo BTI0 =
 | 
						|
        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
 | 
						|
      BackedgeTakenInfo BTI1 =
 | 
						|
        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
 | 
						|
      const SCEV *BECount = getCouldNotCompute();
 | 
						|
      const SCEV *MaxBECount = getCouldNotCompute();
 | 
						|
      if (L->contains(TBB)) {
 | 
						|
        // Both conditions must be true for the loop to continue executing.
 | 
						|
        // Choose the less conservative count.
 | 
						|
        if (BTI0.Exact == getCouldNotCompute() ||
 | 
						|
            BTI1.Exact == getCouldNotCompute())
 | 
						|
          BECount = getCouldNotCompute();
 | 
						|
        else
 | 
						|
          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
 | 
						|
        if (BTI0.Max == getCouldNotCompute())
 | 
						|
          MaxBECount = BTI1.Max;
 | 
						|
        else if (BTI1.Max == getCouldNotCompute())
 | 
						|
          MaxBECount = BTI0.Max;
 | 
						|
        else
 | 
						|
          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
 | 
						|
      } else {
 | 
						|
        // Both conditions must be true for the loop to exit.
 | 
						|
        assert(L->contains(FBB) && "Loop block has no successor in loop!");
 | 
						|
        if (BTI0.Exact != getCouldNotCompute() &&
 | 
						|
            BTI1.Exact != getCouldNotCompute())
 | 
						|
          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
 | 
						|
        if (BTI0.Max != getCouldNotCompute() &&
 | 
						|
            BTI1.Max != getCouldNotCompute())
 | 
						|
          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
 | 
						|
      }
 | 
						|
 | 
						|
      return BackedgeTakenInfo(BECount, MaxBECount);
 | 
						|
    }
 | 
						|
    if (BO->getOpcode() == Instruction::Or) {
 | 
						|
      // Recurse on the operands of the or.
 | 
						|
      BackedgeTakenInfo BTI0 =
 | 
						|
        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
 | 
						|
      BackedgeTakenInfo BTI1 =
 | 
						|
        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
 | 
						|
      const SCEV *BECount = getCouldNotCompute();
 | 
						|
      const SCEV *MaxBECount = getCouldNotCompute();
 | 
						|
      if (L->contains(FBB)) {
 | 
						|
        // Both conditions must be false for the loop to continue executing.
 | 
						|
        // Choose the less conservative count.
 | 
						|
        if (BTI0.Exact == getCouldNotCompute() ||
 | 
						|
            BTI1.Exact == getCouldNotCompute())
 | 
						|
          BECount = getCouldNotCompute();
 | 
						|
        else
 | 
						|
          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
 | 
						|
        if (BTI0.Max == getCouldNotCompute())
 | 
						|
          MaxBECount = BTI1.Max;
 | 
						|
        else if (BTI1.Max == getCouldNotCompute())
 | 
						|
          MaxBECount = BTI0.Max;
 | 
						|
        else
 | 
						|
          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
 | 
						|
      } else {
 | 
						|
        // Both conditions must be false for the loop to exit.
 | 
						|
        assert(L->contains(TBB) && "Loop block has no successor in loop!");
 | 
						|
        if (BTI0.Exact != getCouldNotCompute() &&
 | 
						|
            BTI1.Exact != getCouldNotCompute())
 | 
						|
          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
 | 
						|
        if (BTI0.Max != getCouldNotCompute() &&
 | 
						|
            BTI1.Max != getCouldNotCompute())
 | 
						|
          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
 | 
						|
      }
 | 
						|
 | 
						|
      return BackedgeTakenInfo(BECount, MaxBECount);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // With an icmp, it may be feasible to compute an exact backedge-taken count.
 | 
						|
  // Procede to the next level to examine the icmp.
 | 
						|
  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
 | 
						|
    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
 | 
						|
 | 
						|
  // If it's not an integer or pointer comparison then compute it the hard way.
 | 
						|
  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
 | 
						|
/// backedge of the specified loop will execute if its exit condition
 | 
						|
/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
 | 
						|
                                                           ICmpInst *ExitCond,
 | 
						|
                                                           BasicBlock *TBB,
 | 
						|
                                                           BasicBlock *FBB) {
 | 
						|
 | 
						|
  // If the condition was exit on true, convert the condition to exit on false
 | 
						|
  ICmpInst::Predicate Cond;
 | 
						|
  if (!L->contains(FBB))
 | 
						|
    Cond = ExitCond->getPredicate();
 | 
						|
  else
 | 
						|
    Cond = ExitCond->getInversePredicate();
 | 
						|
 | 
						|
  // Handle common loops like: for (X = "string"; *X; ++X)
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | 
						|
    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | 
						|
      const SCEV *ItCnt =
 | 
						|
        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
 | 
						|
      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
 | 
						|
        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
 | 
						|
        return BackedgeTakenInfo(ItCnt,
 | 
						|
                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
 | 
						|
                                   getConstant(APInt::getMaxValue(BitWidth)-1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
 | 
						|
  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
 | 
						|
 | 
						|
  // Try to evaluate any dependencies out of the loop.
 | 
						|
  LHS = getSCEVAtScope(LHS, L);
 | 
						|
  RHS = getSCEVAtScope(RHS, L);
 | 
						|
 | 
						|
  // At this point, we would like to compute how many iterations of the
 | 
						|
  // loop the predicate will return true for these inputs.
 | 
						|
  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
 | 
						|
    // If there is a loop-invariant, force it into the RHS.
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Cond = ICmpInst::getSwappedPredicate(Cond);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a comparison of a chrec against a constant, try to use value
 | 
						|
  // ranges to answer this query.
 | 
						|
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | 
						|
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | 
						|
      if (AddRec->getLoop() == L) {
 | 
						|
        // Form the constant range.
 | 
						|
        ConstantRange CompRange(
 | 
						|
            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
 | 
						|
 | 
						|
        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
 | 
						|
        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | 
						|
      }
 | 
						|
 | 
						|
  switch (Cond) {
 | 
						|
  case ICmpInst::ICMP_NE: {                     // while (X != Y)
 | 
						|
    // Convert to: while (X-Y != 0)
 | 
						|
    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
 | 
						|
    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
 | 
						|
    // Convert to: while (X-Y == 0)
 | 
						|
    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
 | 
						|
    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SLT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SGT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
 | 
						|
                                             getNotSCEV(RHS), L, true);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_ULT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_UGT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
 | 
						|
                                             getNotSCEV(RHS), L, false);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
#if 0
 | 
						|
    errs() << "ComputeBackedgeTakenCount ";
 | 
						|
    if (ExitCond->getOperand(0)->getType()->isUnsigned())
 | 
						|
      errs() << "[unsigned] ";
 | 
						|
    errs() << *LHS << "   "
 | 
						|
         << Instruction::getOpcodeName(Instruction::ICmp)
 | 
						|
         << "   " << *RHS << "\n";
 | 
						|
#endif
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return
 | 
						|
    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
 | 
						|
}
 | 
						|
 | 
						|
static ConstantInt *
 | 
						|
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
 | 
						|
                                ScalarEvolution &SE) {
 | 
						|
  const SCEV *InVal = SE.getConstant(C);
 | 
						|
  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
 | 
						|
  assert(isa<SCEVConstant>(Val) &&
 | 
						|
         "Evaluation of SCEV at constant didn't fold correctly?");
 | 
						|
  return cast<SCEVConstant>(Val)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddressedElementFromGlobal - Given a global variable with an initializer
 | 
						|
/// and a GEP expression (missing the pointer index) indexing into it, return
 | 
						|
/// the addressed element of the initializer or null if the index expression is
 | 
						|
/// invalid.
 | 
						|
static Constant *
 | 
						|
GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
 | 
						|
                              const std::vector<ConstantInt*> &Indices) {
 | 
						|
  Constant *Init = GV->getInitializer();
 | 
						|
  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | 
						|
    uint64_t Idx = Indices[i]->getZExtValue();
 | 
						|
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
 | 
						|
      assert(Idx < CS->getNumOperands() && "Bad struct index!");
 | 
						|
      Init = cast<Constant>(CS->getOperand(Idx));
 | 
						|
    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
 | 
						|
      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
 | 
						|
      Init = cast<Constant>(CA->getOperand(Idx));
 | 
						|
    } else if (isa<ConstantAggregateZero>(Init)) {
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
 | 
						|
        assert(Idx < STy->getNumElements() && "Bad struct index!");
 | 
						|
        Init = Constant::getNullValue(STy->getElementType(Idx));
 | 
						|
      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
 | 
						|
        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
 | 
						|
        Init = Constant::getNullValue(ATy->getElementType());
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unknown constant aggregate type!");
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    } else {
 | 
						|
      return 0; // Unknown initializer type
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Init;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
 | 
						|
/// 'icmp op load X, cst', try to see if we can compute the backedge
 | 
						|
/// execution count.
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
 | 
						|
                                                LoadInst *LI,
 | 
						|
                                                Constant *RHS,
 | 
						|
                                                const Loop *L,
 | 
						|
                                                ICmpInst::Predicate predicate) {
 | 
						|
  if (LI->isVolatile()) return getCouldNotCompute();
 | 
						|
 | 
						|
  // Check to see if the loaded pointer is a getelementptr of a global.
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | 
						|
  if (!GEP) return getCouldNotCompute();
 | 
						|
 | 
						|
  // Make sure that it is really a constant global we are gepping, with an
 | 
						|
  // initializer, and make sure the first IDX is really 0.
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | 
						|
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | 
						|
      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | 
						|
      !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | 
						|
    return getCouldNotCompute();
 | 
						|
 | 
						|
  // Okay, we allow one non-constant index into the GEP instruction.
 | 
						|
  Value *VarIdx = 0;
 | 
						|
  std::vector<ConstantInt*> Indexes;
 | 
						|
  unsigned VarIdxNum = 0;
 | 
						|
  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | 
						|
      Indexes.push_back(CI);
 | 
						|
    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | 
						|
      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
 | 
						|
      VarIdx = GEP->getOperand(i);
 | 
						|
      VarIdxNum = i-2;
 | 
						|
      Indexes.push_back(0);
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | 
						|
  // Check to see if X is a loop variant variable value now.
 | 
						|
  const SCEV *Idx = getSCEV(VarIdx);
 | 
						|
  Idx = getSCEVAtScope(Idx, L);
 | 
						|
 | 
						|
  // We can only recognize very limited forms of loop index expressions, in
 | 
						|
  // particular, only affine AddRec's like {C1,+,C2}.
 | 
						|
  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | 
						|
  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
 | 
						|
      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | 
						|
      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | 
						|
    return getCouldNotCompute();
 | 
						|
 | 
						|
  unsigned MaxSteps = MaxBruteForceIterations;
 | 
						|
  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | 
						|
    ConstantInt *ItCst = ConstantInt::get(
 | 
						|
                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
 | 
						|
    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
 | 
						|
 | 
						|
    // Form the GEP offset.
 | 
						|
    Indexes[VarIdxNum] = Val;
 | 
						|
 | 
						|
    Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
 | 
						|
    if (Result == 0) break;  // Cannot compute!
 | 
						|
 | 
						|
    // Evaluate the condition for this iteration.
 | 
						|
    Result = ConstantExpr::getICmp(predicate, Result, RHS);
 | 
						|
    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
 | 
						|
    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
 | 
						|
#if 0
 | 
						|
      errs() << "\n***\n*** Computed loop count " << *ItCst
 | 
						|
             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
 | 
						|
             << "***\n";
 | 
						|
#endif
 | 
						|
      ++NumArrayLenItCounts;
 | 
						|
      return getConstant(ItCst);   // Found terminating iteration!
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CanConstantFold - Return true if we can constant fold an instruction of the
 | 
						|
/// specified type, assuming that all operands were constants.
 | 
						|
static bool CanConstantFold(const Instruction *I) {
 | 
						|
  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
 | 
						|
      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(I))
 | 
						|
    if (const Function *F = CI->getCalledFunction())
 | 
						|
      return canConstantFoldCallTo(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | 
						|
/// in the loop that V is derived from.  We allow arbitrary operations along the
 | 
						|
/// way, but the operands of an operation must either be constants or a value
 | 
						|
/// derived from a constant PHI.  If this expression does not fit with these
 | 
						|
/// constraints, return null.
 | 
						|
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | 
						|
  // If this is not an instruction, or if this is an instruction outside of the
 | 
						|
  // loop, it can't be derived from a loop PHI.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0 || !L->contains(I->getParent())) return 0;
 | 
						|
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    if (L->getHeader() == I->getParent())
 | 
						|
      return PN;
 | 
						|
    else
 | 
						|
      // We don't currently keep track of the control flow needed to evaluate
 | 
						|
      // PHIs, so we cannot handle PHIs inside of loops.
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we won't be able to constant fold this expression even if the operands
 | 
						|
  // are constants, return early.
 | 
						|
  if (!CanConstantFold(I)) return 0;
 | 
						|
 | 
						|
  // Otherwise, we can evaluate this instruction if all of its operands are
 | 
						|
  // constant or derived from a PHI node themselves.
 | 
						|
  PHINode *PHI = 0;
 | 
						|
  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
 | 
						|
    if (!(isa<Constant>(I->getOperand(Op)) ||
 | 
						|
          isa<GlobalValue>(I->getOperand(Op)))) {
 | 
						|
      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
 | 
						|
      if (P == 0) return 0;  // Not evolving from PHI
 | 
						|
      if (PHI == 0)
 | 
						|
        PHI = P;
 | 
						|
      else if (PHI != P)
 | 
						|
        return 0;  // Evolving from multiple different PHIs.
 | 
						|
    }
 | 
						|
 | 
						|
  // This is a expression evolving from a constant PHI!
 | 
						|
  return PHI;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateExpression - Given an expression that passes the
 | 
						|
/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | 
						|
/// in the loop has the value PHIVal.  If we can't fold this expression for some
 | 
						|
/// reason, return null.
 | 
						|
static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
 | 
						|
                                    const TargetData *TD) {
 | 
						|
  if (isa<PHINode>(V)) return PHIVal;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) return C;
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
 | 
						|
  std::vector<Constant*> Operands;
 | 
						|
  Operands.resize(I->getNumOperands());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
 | 
						|
    if (Operands[i] == 0) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
 | 
						|
                                           Operands[1], TD);
 | 
						|
  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                  &Operands[0], Operands.size(), TD);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | 
						|
/// in the header of its containing loop, we know the loop executes a
 | 
						|
/// constant number of times, and the PHI node is just a recurrence
 | 
						|
/// involving constants, fold it.
 | 
						|
Constant *
 | 
						|
ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
 | 
						|
                                                   const APInt& BEs,
 | 
						|
                                                   const Loop *L) {
 | 
						|
  std::map<PHINode*, Constant*>::iterator I =
 | 
						|
    ConstantEvolutionLoopExitValue.find(PN);
 | 
						|
  if (I != ConstantEvolutionLoopExitValue.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
 | 
						|
    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
 | 
						|
 | 
						|
  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | 
						|
 | 
						|
  // Since the loop is canonicalized, the PHI node must have two entries.  One
 | 
						|
  // entry must be a constant (coming in from outside of the loop), and the
 | 
						|
  // second must be derived from the same PHI.
 | 
						|
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | 
						|
  Constant *StartCST =
 | 
						|
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | 
						|
  if (StartCST == 0)
 | 
						|
    return RetVal = 0;  // Must be a constant.
 | 
						|
 | 
						|
  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | 
						|
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | 
						|
  if (PN2 != PN)
 | 
						|
    return RetVal = 0;  // Not derived from same PHI.
 | 
						|
 | 
						|
  // Execute the loop symbolically to determine the exit value.
 | 
						|
  if (BEs.getActiveBits() >= 32)
 | 
						|
    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
 | 
						|
 | 
						|
  unsigned NumIterations = BEs.getZExtValue(); // must be in range
 | 
						|
  unsigned IterationNum = 0;
 | 
						|
  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
 | 
						|
    if (IterationNum == NumIterations)
 | 
						|
      return RetVal = PHIVal;  // Got exit value!
 | 
						|
 | 
						|
    // Compute the value of the PHI node for the next iteration.
 | 
						|
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
 | 
						|
    if (NextPHI == PHIVal)
 | 
						|
      return RetVal = NextPHI;  // Stopped evolving!
 | 
						|
    if (NextPHI == 0)
 | 
						|
      return 0;        // Couldn't evaluate!
 | 
						|
    PHIVal = NextPHI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
 | 
						|
/// constant number of times (the condition evolves only from constants),
 | 
						|
/// try to evaluate a few iterations of the loop until we get the exit
 | 
						|
/// condition gets a value of ExitWhen (true or false).  If we cannot
 | 
						|
/// evaluate the trip count of the loop, return getCouldNotCompute().
 | 
						|
const SCEV *
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
 | 
						|
                                                       Value *Cond,
 | 
						|
                                                       bool ExitWhen) {
 | 
						|
  PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | 
						|
  if (PN == 0) return getCouldNotCompute();
 | 
						|
 | 
						|
  // Since the loop is canonicalized, the PHI node must have two entries.  One
 | 
						|
  // entry must be a constant (coming in from outside of the loop), and the
 | 
						|
  // second must be derived from the same PHI.
 | 
						|
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | 
						|
  Constant *StartCST =
 | 
						|
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | 
						|
  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
 | 
						|
 | 
						|
  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | 
						|
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | 
						|
  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
 | 
						|
 | 
						|
  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | 
						|
  // the loop symbolically to determine when the condition gets a value of
 | 
						|
  // "ExitWhen".
 | 
						|
  unsigned IterationNum = 0;
 | 
						|
  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | 
						|
  for (Constant *PHIVal = StartCST;
 | 
						|
       IterationNum != MaxIterations; ++IterationNum) {
 | 
						|
    ConstantInt *CondVal =
 | 
						|
      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
 | 
						|
 | 
						|
    // Couldn't symbolically evaluate.
 | 
						|
    if (!CondVal) return getCouldNotCompute();
 | 
						|
 | 
						|
    if (CondVal->getValue() == uint64_t(ExitWhen)) {
 | 
						|
      ++NumBruteForceTripCountsComputed;
 | 
						|
      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the value of the PHI node for the next iteration.
 | 
						|
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
 | 
						|
    if (NextPHI == 0 || NextPHI == PHIVal)
 | 
						|
      return getCouldNotCompute();// Couldn't evaluate or not making progress...
 | 
						|
    PHIVal = NextPHI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Too many iterations were needed to evaluate.
 | 
						|
  return getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEVAtScope - Return a SCEV expression for the specified value
 | 
						|
/// at the specified scope in the program.  The L value specifies a loop
 | 
						|
/// nest to evaluate the expression at, where null is the top-level or a
 | 
						|
/// specified loop is immediately inside of the loop.
 | 
						|
///
 | 
						|
/// This method can be used to compute the exit value for a variable defined
 | 
						|
/// in a loop by querying what the value will hold in the parent loop.
 | 
						|
///
 | 
						|
/// In the case that a relevant loop exit value cannot be computed, the
 | 
						|
/// original value V is returned.
 | 
						|
const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
 | 
						|
  // Check to see if we've folded this expression at this loop before.
 | 
						|
  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
 | 
						|
  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
 | 
						|
    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
 | 
						|
  if (!Pair.second)
 | 
						|
    return Pair.first->second ? Pair.first->second : V;
 | 
						|
 | 
						|
  // Otherwise compute it.
 | 
						|
  const SCEV *C = computeSCEVAtScope(V, L);
 | 
						|
  ValuesAtScopes[V][L] = C;
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
 | 
						|
  if (isa<SCEVConstant>(V)) return V;
 | 
						|
 | 
						|
  // If this instruction is evolved from a constant-evolving PHI, compute the
 | 
						|
  // exit value from the loop without using SCEVs.
 | 
						|
  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | 
						|
      const Loop *LI = (*this->LI)[I->getParent()];
 | 
						|
      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
          if (PN->getParent() == LI->getHeader()) {
 | 
						|
            // Okay, there is no closed form solution for the PHI node.  Check
 | 
						|
            // to see if the loop that contains it has a known backedge-taken
 | 
						|
            // count.  If so, we may be able to force computation of the exit
 | 
						|
            // value.
 | 
						|
            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
 | 
						|
            if (const SCEVConstant *BTCC =
 | 
						|
                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
 | 
						|
              // Okay, we know how many times the containing loop executes.  If
 | 
						|
              // this is a constant evolving PHI node, get the final value at
 | 
						|
              // the specified iteration number.
 | 
						|
              Constant *RV = getConstantEvolutionLoopExitValue(PN,
 | 
						|
                                                   BTCC->getValue()->getValue(),
 | 
						|
                                                               LI);
 | 
						|
              if (RV) return getSCEV(RV);
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
      // Okay, this is an expression that we cannot symbolically evaluate
 | 
						|
      // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | 
						|
      // the arguments into constants, and if so, try to constant propagate the
 | 
						|
      // result.  This is particularly useful for computing loop exit values.
 | 
						|
      if (CanConstantFold(I)) {
 | 
						|
        std::vector<Constant*> Operands;
 | 
						|
        Operands.reserve(I->getNumOperands());
 | 
						|
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
          Value *Op = I->getOperand(i);
 | 
						|
          if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
            Operands.push_back(C);
 | 
						|
          } else {
 | 
						|
            // If any of the operands is non-constant and if they are
 | 
						|
            // non-integer and non-pointer, don't even try to analyze them
 | 
						|
            // with scev techniques.
 | 
						|
            if (!isSCEVable(Op->getType()))
 | 
						|
              return V;
 | 
						|
 | 
						|
            const SCEV* OpV = getSCEVAtScope(Op, L);
 | 
						|
            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
 | 
						|
              Constant *C = SC->getValue();
 | 
						|
              if (C->getType() != Op->getType())
 | 
						|
                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | 
						|
                                                                  Op->getType(),
 | 
						|
                                                                  false),
 | 
						|
                                          C, Op->getType());
 | 
						|
              Operands.push_back(C);
 | 
						|
            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
 | 
						|
              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
 | 
						|
                if (C->getType() != Op->getType())
 | 
						|
                  C =
 | 
						|
                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | 
						|
                                                                  Op->getType(),
 | 
						|
                                                                  false),
 | 
						|
                                          C, Op->getType());
 | 
						|
                Operands.push_back(C);
 | 
						|
              } else
 | 
						|
                return V;
 | 
						|
            } else {
 | 
						|
              return V;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        Constant *C;
 | 
						|
        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
 | 
						|
                                              Operands[0], Operands[1], TD);
 | 
						|
        else
 | 
						|
          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                       &Operands[0], Operands.size(), TD);
 | 
						|
        return getSCEV(C);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // This is some other type of SCEVUnknown, just return it.
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | 
						|
    // Avoid performing the look-up in the common case where the specified
 | 
						|
    // expression has no loop-variant portions.
 | 
						|
    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | 
						|
      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | 
						|
      if (OpAtScope != Comm->getOperand(i)) {
 | 
						|
        // Okay, at least one of these operands is loop variant but might be
 | 
						|
        // foldable.  Build a new instance of the folded commutative expression.
 | 
						|
        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
 | 
						|
                                            Comm->op_begin()+i);
 | 
						|
        NewOps.push_back(OpAtScope);
 | 
						|
 | 
						|
        for (++i; i != e; ++i) {
 | 
						|
          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | 
						|
          NewOps.push_back(OpAtScope);
 | 
						|
        }
 | 
						|
        if (isa<SCEVAddExpr>(Comm))
 | 
						|
          return getAddExpr(NewOps);
 | 
						|
        if (isa<SCEVMulExpr>(Comm))
 | 
						|
          return getMulExpr(NewOps);
 | 
						|
        if (isa<SCEVSMaxExpr>(Comm))
 | 
						|
          return getSMaxExpr(NewOps);
 | 
						|
        if (isa<SCEVUMaxExpr>(Comm))
 | 
						|
          return getUMaxExpr(NewOps);
 | 
						|
        llvm_unreachable("Unknown commutative SCEV type!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we got here, all operands are loop invariant.
 | 
						|
    return Comm;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
 | 
						|
    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
 | 
						|
    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
 | 
						|
    if (LHS == Div->getLHS() && RHS == Div->getRHS())
 | 
						|
      return Div;   // must be loop invariant
 | 
						|
    return getUDivExpr(LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a loop recurrence for a loop that does not contain L, then we
 | 
						|
  // are dealing with the final value computed by the loop.
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | 
						|
    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
 | 
						|
      // To evaluate this recurrence, we need to know how many times the AddRec
 | 
						|
      // loop iterates.  Compute this now.
 | 
						|
      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
 | 
						|
      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
 | 
						|
 | 
						|
      // Then, evaluate the AddRec.
 | 
						|
      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
 | 
						|
    }
 | 
						|
    return AddRec;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
 | 
						|
    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getZeroExtendExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
 | 
						|
    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getSignExtendExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
 | 
						|
    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getTruncateExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<SCEVTargetDataConstant>(V))
 | 
						|
    return V;
 | 
						|
 | 
						|
  llvm_unreachable("Unknown SCEV type!");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEVAtScope - This is a convenience function which does
 | 
						|
/// getSCEVAtScope(getSCEV(V), L).
 | 
						|
const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
 | 
						|
  return getSCEVAtScope(getSCEV(V), L);
 | 
						|
}
 | 
						|
 | 
						|
/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
 | 
						|
/// following equation:
 | 
						|
///
 | 
						|
///     A * X = B (mod N)
 | 
						|
///
 | 
						|
/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 | 
						|
/// A and B isn't important.
 | 
						|
///
 | 
						|
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 | 
						|
static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
 | 
						|
                                               ScalarEvolution &SE) {
 | 
						|
  uint32_t BW = A.getBitWidth();
 | 
						|
  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
 | 
						|
  assert(A != 0 && "A must be non-zero.");
 | 
						|
 | 
						|
  // 1. D = gcd(A, N)
 | 
						|
  //
 | 
						|
  // The gcd of A and N may have only one prime factor: 2. The number of
 | 
						|
  // trailing zeros in A is its multiplicity
 | 
						|
  uint32_t Mult2 = A.countTrailingZeros();
 | 
						|
  // D = 2^Mult2
 | 
						|
 | 
						|
  // 2. Check if B is divisible by D.
 | 
						|
  //
 | 
						|
  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
 | 
						|
  // is not less than multiplicity of this prime factor for D.
 | 
						|
  if (B.countTrailingZeros() < Mult2)
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
 | 
						|
  // modulo (N / D).
 | 
						|
  //
 | 
						|
  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
 | 
						|
  // bit width during computations.
 | 
						|
  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
 | 
						|
  APInt Mod(BW + 1, 0);
 | 
						|
  Mod.set(BW - Mult2);  // Mod = N / D
 | 
						|
  APInt I = AD.multiplicativeInverse(Mod);
 | 
						|
 | 
						|
  // 4. Compute the minimum unsigned root of the equation:
 | 
						|
  // I * (B / D) mod (N / D)
 | 
						|
  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
 | 
						|
 | 
						|
  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
 | 
						|
  // bits.
 | 
						|
  return SE.getConstant(Result.trunc(BW));
 | 
						|
}
 | 
						|
 | 
						|
/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
 | 
						|
/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
 | 
						|
/// might be the same) or two SCEVCouldNotCompute objects.
 | 
						|
///
 | 
						|
static std::pair<const SCEV *,const SCEV *>
 | 
						|
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
 | 
						|
  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | 
						|
  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | 
						|
  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | 
						|
  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | 
						|
 | 
						|
  // We currently can only solve this if the coefficients are constants.
 | 
						|
  if (!LC || !MC || !NC) {
 | 
						|
    const SCEV *CNC = SE.getCouldNotCompute();
 | 
						|
    return std::make_pair(CNC, CNC);
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
 | 
						|
  const APInt &L = LC->getValue()->getValue();
 | 
						|
  const APInt &M = MC->getValue()->getValue();
 | 
						|
  const APInt &N = NC->getValue()->getValue();
 | 
						|
  APInt Two(BitWidth, 2);
 | 
						|
  APInt Four(BitWidth, 4);
 | 
						|
 | 
						|
  {
 | 
						|
    using namespace APIntOps;
 | 
						|
    const APInt& C = L;
 | 
						|
    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
 | 
						|
    // The B coefficient is M-N/2
 | 
						|
    APInt B(M);
 | 
						|
    B -= sdiv(N,Two);
 | 
						|
 | 
						|
    // The A coefficient is N/2
 | 
						|
    APInt A(N.sdiv(Two));
 | 
						|
 | 
						|
    // Compute the B^2-4ac term.
 | 
						|
    APInt SqrtTerm(B);
 | 
						|
    SqrtTerm *= B;
 | 
						|
    SqrtTerm -= Four * (A * C);
 | 
						|
 | 
						|
    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
 | 
						|
    // integer value or else APInt::sqrt() will assert.
 | 
						|
    APInt SqrtVal(SqrtTerm.sqrt());
 | 
						|
 | 
						|
    // Compute the two solutions for the quadratic formula.
 | 
						|
    // The divisions must be performed as signed divisions.
 | 
						|
    APInt NegB(-B);
 | 
						|
    APInt TwoA( A << 1 );
 | 
						|
    if (TwoA.isMinValue()) {
 | 
						|
      const SCEV *CNC = SE.getCouldNotCompute();
 | 
						|
      return std::make_pair(CNC, CNC);
 | 
						|
    }
 | 
						|
 | 
						|
    LLVMContext &Context = SE.getContext();
 | 
						|
 | 
						|
    ConstantInt *Solution1 =
 | 
						|
      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
 | 
						|
    ConstantInt *Solution2 =
 | 
						|
      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
 | 
						|
 | 
						|
    return std::make_pair(SE.getConstant(Solution1),
 | 
						|
                          SE.getConstant(Solution2));
 | 
						|
    } // end APIntOps namespace
 | 
						|
}
 | 
						|
 | 
						|
/// HowFarToZero - Return the number of times a backedge comparing the specified
 | 
						|
/// value to zero will execute.  If not computable, return CouldNotCompute.
 | 
						|
const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
 | 
						|
  // If the value is a constant
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    // If the value is already zero, the branch will execute zero times.
 | 
						|
    if (C->getValue()->isZero()) return C;
 | 
						|
    return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return getCouldNotCompute();
 | 
						|
 | 
						|
  if (AddRec->isAffine()) {
 | 
						|
    // If this is an affine expression, the execution count of this branch is
 | 
						|
    // the minimum unsigned root of the following equation:
 | 
						|
    //
 | 
						|
    //     Start + Step*N = 0 (mod 2^BW)
 | 
						|
    //
 | 
						|
    // equivalent to:
 | 
						|
    //
 | 
						|
    //             Step*N = -Start (mod 2^BW)
 | 
						|
    //
 | 
						|
    // where BW is the common bit width of Start and Step.
 | 
						|
 | 
						|
    // Get the initial value for the loop.
 | 
						|
    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
 | 
						|
                                       L->getParentLoop());
 | 
						|
    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
 | 
						|
                                      L->getParentLoop());
 | 
						|
 | 
						|
    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
 | 
						|
      // For now we handle only constant steps.
 | 
						|
 | 
						|
      // First, handle unitary steps.
 | 
						|
      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
 | 
						|
        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
 | 
						|
      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
 | 
						|
        return Start;                           //    N = Start (as unsigned)
 | 
						|
 | 
						|
      // Then, try to solve the above equation provided that Start is constant.
 | 
						|
      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
 | 
						|
        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
 | 
						|
                                            -StartC->getValue()->getValue(),
 | 
						|
                                            *this);
 | 
						|
    }
 | 
						|
  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
 | 
						|
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | 
						|
    // the quadratic equation to solve it.
 | 
						|
    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
 | 
						|
                                                                    *this);
 | 
						|
    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | 
						|
    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | 
						|
    if (R1) {
 | 
						|
#if 0
 | 
						|
      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
 | 
						|
             << "  sol#2: " << *R2 << "\n";
 | 
						|
#endif
 | 
						|
      // Pick the smallest positive root value.
 | 
						|
      if (ConstantInt *CB =
 | 
						|
          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
 | 
						|
                                   R1->getValue(), R2->getValue()))) {
 | 
						|
        if (CB->getZExtValue() == false)
 | 
						|
          std::swap(R1, R2);   // R1 is the minimum root now.
 | 
						|
 | 
						|
        // We can only use this value if the chrec ends up with an exact zero
 | 
						|
        // value at this index.  When solving for "X*X != 5", for example, we
 | 
						|
        // should not accept a root of 2.
 | 
						|
        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
 | 
						|
        if (Val->isZero())
 | 
						|
          return R1;  // We found a quadratic root!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
/// HowFarToNonZero - Return the number of times a backedge checking the
 | 
						|
/// specified value for nonzero will execute.  If not computable, return
 | 
						|
/// CouldNotCompute
 | 
						|
const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
 | 
						|
  // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | 
						|
  // handle them yet except for the trivial case.  This could be expanded in the
 | 
						|
  // future as needed.
 | 
						|
 | 
						|
  // If the value is a constant, check to see if it is known to be non-zero
 | 
						|
  // already.  If so, the backedge will execute zero times.
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    if (!C->getValue()->isNullValue())
 | 
						|
      return getIntegerSCEV(0, C->getType());
 | 
						|
    return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | 
						|
  }
 | 
						|
 | 
						|
  // We could implement others, but I really doubt anyone writes loops like
 | 
						|
  // this, and if they did, they would already be constant folded.
 | 
						|
  return getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopPredecessor - If the given loop's header has exactly one unique
 | 
						|
/// predecessor outside the loop, return it. Otherwise return null.
 | 
						|
///
 | 
						|
BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Pred = 0;
 | 
						|
  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
 | 
						|
       PI != E; ++PI)
 | 
						|
    if (!L->contains(*PI)) {
 | 
						|
      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
 | 
						|
      Pred = *PI;
 | 
						|
    }
 | 
						|
  return Pred;
 | 
						|
}
 | 
						|
 | 
						|
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | 
						|
/// (which may not be an immediate predecessor) which has exactly one
 | 
						|
/// successor from which BB is reachable, or null if no such block is
 | 
						|
/// found.
 | 
						|
///
 | 
						|
BasicBlock *
 | 
						|
ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
 | 
						|
  // If the block has a unique predecessor, then there is no path from the
 | 
						|
  // predecessor to the block that does not go through the direct edge
 | 
						|
  // from the predecessor to the block.
 | 
						|
  if (BasicBlock *Pred = BB->getSinglePredecessor())
 | 
						|
    return Pred;
 | 
						|
 | 
						|
  // A loop's header is defined to be a block that dominates the loop.
 | 
						|
  // If the header has a unique predecessor outside the loop, it must be
 | 
						|
  // a block that has exactly one successor that can reach the loop.
 | 
						|
  if (Loop *L = LI->getLoopFor(BB))
 | 
						|
    return getLoopPredecessor(L);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// HasSameValue - SCEV structural equivalence is usually sufficient for
 | 
						|
/// testing whether two expressions are equal, however for the purposes of
 | 
						|
/// looking for a condition guarding a loop, it can be useful to be a little
 | 
						|
/// more general, since a front-end may have replicated the controlling
 | 
						|
/// expression.
 | 
						|
///
 | 
						|
static bool HasSameValue(const SCEV *A, const SCEV *B) {
 | 
						|
  // Quick check to see if they are the same SCEV.
 | 
						|
  if (A == B) return true;
 | 
						|
 | 
						|
  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
 | 
						|
  // two different instructions with the same value. Check for this case.
 | 
						|
  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
 | 
						|
    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
 | 
						|
      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
 | 
						|
        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
 | 
						|
          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
 | 
						|
            return true;
 | 
						|
 | 
						|
  // Otherwise assume they may have a different value.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownNegative(const SCEV *S) {
 | 
						|
  return getSignedRange(S).getSignedMax().isNegative();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownPositive(const SCEV *S) {
 | 
						|
  return getSignedRange(S).getSignedMin().isStrictlyPositive();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
 | 
						|
  return !getSignedRange(S).getSignedMin().isNegative();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
 | 
						|
  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
 | 
						|
  return isKnownNegative(S) || isKnownPositive(S);
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
 | 
						|
                                       const SCEV *LHS, const SCEV *RHS) {
 | 
						|
 | 
						|
  if (HasSameValue(LHS, RHS))
 | 
						|
    return ICmpInst::isTrueWhenEqual(Pred);
 | 
						|
 | 
						|
  switch (Pred) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    Pred = ICmpInst::ICMP_SLT;
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  case ICmpInst::ICMP_SLT: {
 | 
						|
    ConstantRange LHSRange = getSignedRange(LHS);
 | 
						|
    ConstantRange RHSRange = getSignedRange(RHS);
 | 
						|
    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
 | 
						|
      return true;
 | 
						|
    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    Pred = ICmpInst::ICMP_SLE;
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  case ICmpInst::ICMP_SLE: {
 | 
						|
    ConstantRange LHSRange = getSignedRange(LHS);
 | 
						|
    ConstantRange RHSRange = getSignedRange(RHS);
 | 
						|
    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
 | 
						|
      return true;
 | 
						|
    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    Pred = ICmpInst::ICMP_ULT;
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  case ICmpInst::ICMP_ULT: {
 | 
						|
    ConstantRange LHSRange = getUnsignedRange(LHS);
 | 
						|
    ConstantRange RHSRange = getUnsignedRange(RHS);
 | 
						|
    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
 | 
						|
      return true;
 | 
						|
    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    Pred = ICmpInst::ICMP_ULE;
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  case ICmpInst::ICMP_ULE: {
 | 
						|
    ConstantRange LHSRange = getUnsignedRange(LHS);
 | 
						|
    ConstantRange RHSRange = getUnsignedRange(RHS);
 | 
						|
    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
 | 
						|
      return true;
 | 
						|
    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_NE: {
 | 
						|
    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
 | 
						|
      return true;
 | 
						|
    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
 | 
						|
      return true;
 | 
						|
 | 
						|
    const SCEV *Diff = getMinusSCEV(LHS, RHS);
 | 
						|
    if (isKnownNonZero(Diff))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
    // The check at the top of the function catches the case where
 | 
						|
    // the values are known to be equal.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | 
						|
/// protected by a conditional between LHS and RHS.  This is used to
 | 
						|
/// to eliminate casts.
 | 
						|
bool
 | 
						|
ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
 | 
						|
                                             ICmpInst::Predicate Pred,
 | 
						|
                                             const SCEV *LHS, const SCEV *RHS) {
 | 
						|
  // Interpret a null as meaning no loop, where there is obviously no guard
 | 
						|
  // (interprocedural conditions notwithstanding).
 | 
						|
  if (!L) return true;
 | 
						|
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *LoopContinuePredicate =
 | 
						|
    dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!LoopContinuePredicate ||
 | 
						|
      LoopContinuePredicate->isUnconditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
 | 
						|
                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopGuardedByCond - Test whether entry to the loop is protected
 | 
						|
/// by a conditional between LHS and RHS.  This is used to help avoid max
 | 
						|
/// expressions in loop trip counts, and to eliminate casts.
 | 
						|
bool
 | 
						|
ScalarEvolution::isLoopGuardedByCond(const Loop *L,
 | 
						|
                                     ICmpInst::Predicate Pred,
 | 
						|
                                     const SCEV *LHS, const SCEV *RHS) {
 | 
						|
  // Interpret a null as meaning no loop, where there is obviously no guard
 | 
						|
  // (interprocedural conditions notwithstanding).
 | 
						|
  if (!L) return false;
 | 
						|
 | 
						|
  BasicBlock *Predecessor = getLoopPredecessor(L);
 | 
						|
  BasicBlock *PredecessorDest = L->getHeader();
 | 
						|
 | 
						|
  // Starting at the loop predecessor, climb up the predecessor chain, as long
 | 
						|
  // as there are predecessors that can be found that have unique successors
 | 
						|
  // leading to the original header.
 | 
						|
  for (; Predecessor;
 | 
						|
       PredecessorDest = Predecessor,
 | 
						|
       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
 | 
						|
 | 
						|
    BranchInst *LoopEntryPredicate =
 | 
						|
      dyn_cast<BranchInst>(Predecessor->getTerminator());
 | 
						|
    if (!LoopEntryPredicate ||
 | 
						|
        LoopEntryPredicate->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
 | 
						|
                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isImpliedCond - Test whether the condition described by Pred, LHS,
 | 
						|
/// and RHS is true whenever the given Cond value evaluates to true.
 | 
						|
bool ScalarEvolution::isImpliedCond(Value *CondValue,
 | 
						|
                                    ICmpInst::Predicate Pred,
 | 
						|
                                    const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                    bool Inverse) {
 | 
						|
  // Recursivly handle And and Or conditions.
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
 | 
						|
    if (BO->getOpcode() == Instruction::And) {
 | 
						|
      if (!Inverse)
 | 
						|
        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
 | 
						|
               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
 | 
						|
    } else if (BO->getOpcode() == Instruction::Or) {
 | 
						|
      if (Inverse)
 | 
						|
        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
 | 
						|
               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
 | 
						|
  if (!ICI) return false;
 | 
						|
 | 
						|
  // Bail if the ICmp's operands' types are wider than the needed type
 | 
						|
  // before attempting to call getSCEV on them. This avoids infinite
 | 
						|
  // recursion, since the analysis of widening casts can require loop
 | 
						|
  // exit condition information for overflow checking, which would
 | 
						|
  // lead back here.
 | 
						|
  if (getTypeSizeInBits(LHS->getType()) <
 | 
						|
      getTypeSizeInBits(ICI->getOperand(0)->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now that we found a conditional branch that dominates the loop, check to
 | 
						|
  // see if it is the comparison we are looking for.
 | 
						|
  ICmpInst::Predicate FoundPred;
 | 
						|
  if (Inverse)
 | 
						|
    FoundPred = ICI->getInversePredicate();
 | 
						|
  else
 | 
						|
    FoundPred = ICI->getPredicate();
 | 
						|
 | 
						|
  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
 | 
						|
  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
 | 
						|
 | 
						|
  // Balance the types. The case where FoundLHS' type is wider than
 | 
						|
  // LHS' type is checked for above.
 | 
						|
  if (getTypeSizeInBits(LHS->getType()) >
 | 
						|
      getTypeSizeInBits(FoundLHS->getType())) {
 | 
						|
    if (CmpInst::isSigned(Pred)) {
 | 
						|
      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
 | 
						|
      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
 | 
						|
    } else {
 | 
						|
      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
 | 
						|
      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize the query to match the way instcombine will have
 | 
						|
  // canonicalized the comparison.
 | 
						|
  // First, put a constant operand on the right.
 | 
						|
  if (isa<SCEVConstant>(LHS)) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
  // Then, canonicalize comparisons with boundary cases.
 | 
						|
  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
 | 
						|
    const APInt &RA = RC->getValue()->getValue();
 | 
						|
    switch (Pred) {
 | 
						|
    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | 
						|
    case ICmpInst::ICMP_EQ:
 | 
						|
    case ICmpInst::ICMP_NE:
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      if ((RA - 1).isMinValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        RHS = getConstant(RA - 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMinValue()) return true;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      if ((RA + 1).isMaxValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        RHS = getConstant(RA + 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMinValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxValue()) return true;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      if ((RA - 1).isMinSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        RHS = getConstant(RA - 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMinSignedValue()) return true;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      if ((RA + 1).isMaxSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        RHS = getConstant(RA + 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMinSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxSignedValue()) return true;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      if (RA.isMinValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if ((RA + 1).isMaxValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        RHS = getConstant(RA + 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxValue()) return false;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
      if (RA.isMaxValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if ((RA - 1).isMinValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        RHS = getConstant(RA - 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMinValue()) return false;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      if (RA.isMinSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if ((RA + 1).isMaxSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
        RHS = getConstant(RA + 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (RA.isMaxSignedValue()) return false;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      if (RA.isMaxSignedValue()) {
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if ((RA - 1).isMinSignedValue()) {
 | 
						|
       Pred = ICmpInst::ICMP_EQ;
 | 
						|
       RHS = getConstant(RA - 1);
 | 
						|
       break;
 | 
						|
      }
 | 
						|
      if (RA.isMinSignedValue()) return false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if we can make the LHS or RHS match.
 | 
						|
  if (LHS == FoundRHS || RHS == FoundLHS) {
 | 
						|
    if (isa<SCEVConstant>(RHS)) {
 | 
						|
      std::swap(FoundLHS, FoundRHS);
 | 
						|
      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
 | 
						|
    } else {
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
      Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the found predicate is the same as the desired predicate.
 | 
						|
  if (FoundPred == Pred)
 | 
						|
    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
 | 
						|
 | 
						|
  // Check whether swapping the found predicate makes it the same as the
 | 
						|
  // desired predicate.
 | 
						|
  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
 | 
						|
    if (isa<SCEVConstant>(RHS))
 | 
						|
      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
 | 
						|
    else
 | 
						|
      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
 | 
						|
                                   RHS, LHS, FoundLHS, FoundRHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the actual condition is beyond sufficient.
 | 
						|
  if (FoundPred == ICmpInst::ICMP_EQ)
 | 
						|
    if (ICmpInst::isTrueWhenEqual(Pred))
 | 
						|
      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
 | 
						|
        return true;
 | 
						|
  if (Pred == ICmpInst::ICMP_NE)
 | 
						|
    if (!ICmpInst::isTrueWhenEqual(FoundPred))
 | 
						|
      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // Otherwise assume the worst.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isImpliedCondOperands - Test whether the condition described by Pred,
 | 
						|
/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
 | 
						|
/// and FoundRHS is true.
 | 
						|
bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
 | 
						|
                                            const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                            const SCEV *FoundLHS,
 | 
						|
                                            const SCEV *FoundRHS) {
 | 
						|
  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | 
						|
                                     FoundLHS, FoundRHS) ||
 | 
						|
         // ~x < ~y --> x > y
 | 
						|
         isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | 
						|
                                     getNotSCEV(FoundRHS),
 | 
						|
                                     getNotSCEV(FoundLHS));
 | 
						|
}
 | 
						|
 | 
						|
/// isImpliedCondOperandsHelper - Test whether the condition described by
 | 
						|
/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
 | 
						|
/// FoundLHS, and FoundRHS is true.
 | 
						|
bool
 | 
						|
ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | 
						|
                                             const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                             const SCEV *FoundLHS,
 | 
						|
                                             const SCEV *FoundRHS) {
 | 
						|
  switch (Pred) {
 | 
						|
  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
  case ICmpInst::ICMP_NE:
 | 
						|
    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
 | 
						|
        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
 | 
						|
        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
 | 
						|
        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
 | 
						|
        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getBECount - Subtract the end and start values and divide by the step,
 | 
						|
/// rounding up, to get the number of times the backedge is executed. Return
 | 
						|
/// CouldNotCompute if an intermediate computation overflows.
 | 
						|
const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
 | 
						|
                                        const SCEV *End,
 | 
						|
                                        const SCEV *Step,
 | 
						|
                                        bool NoWrap) {
 | 
						|
  const Type *Ty = Start->getType();
 | 
						|
  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
 | 
						|
  const SCEV *Diff = getMinusSCEV(End, Start);
 | 
						|
  const SCEV *RoundUp = getAddExpr(Step, NegOne);
 | 
						|
 | 
						|
  // Add an adjustment to the difference between End and Start so that
 | 
						|
  // the division will effectively round up.
 | 
						|
  const SCEV *Add = getAddExpr(Diff, RoundUp);
 | 
						|
 | 
						|
  if (!NoWrap) {
 | 
						|
    // Check Add for unsigned overflow.
 | 
						|
    // TODO: More sophisticated things could be done here.
 | 
						|
    const Type *WideTy = IntegerType::get(getContext(),
 | 
						|
                                          getTypeSizeInBits(Ty) + 1);
 | 
						|
    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
 | 
						|
    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
 | 
						|
    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
 | 
						|
    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
 | 
						|
      return getCouldNotCompute();
 | 
						|
  }
 | 
						|
 | 
						|
  return getUDivExpr(Add, Step);
 | 
						|
}
 | 
						|
 | 
						|
/// HowManyLessThans - Return the number of times a backedge containing the
 | 
						|
/// specified less-than comparison will execute.  If not computable, return
 | 
						|
/// CouldNotCompute.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                  const Loop *L, bool isSigned) {
 | 
						|
  // Only handle:  "ADDREC < LoopInvariant".
 | 
						|
  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return getCouldNotCompute();
 | 
						|
 | 
						|
  // Check to see if we have a flag which makes analysis easy.
 | 
						|
  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
 | 
						|
                           AddRec->hasNoUnsignedWrap();
 | 
						|
 | 
						|
  if (AddRec->isAffine()) {
 | 
						|
    // FORNOW: We only support unit strides.
 | 
						|
    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
 | 
						|
    const SCEV *Step = AddRec->getStepRecurrence(*this);
 | 
						|
 | 
						|
    // TODO: handle non-constant strides.
 | 
						|
    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
 | 
						|
    if (!CStep || CStep->isZero())
 | 
						|
      return getCouldNotCompute();
 | 
						|
    if (CStep->isOne()) {
 | 
						|
      // With unit stride, the iteration never steps past the limit value.
 | 
						|
    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
 | 
						|
      if (NoWrap) {
 | 
						|
        // We know the iteration won't step past the maximum value for its type.
 | 
						|
        ;
 | 
						|
      } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
 | 
						|
        // Test whether a positive iteration iteration can step past the limit
 | 
						|
        // value and past the maximum value for its type in a single step.
 | 
						|
        if (isSigned) {
 | 
						|
          APInt Max = APInt::getSignedMaxValue(BitWidth);
 | 
						|
          if ((Max - CStep->getValue()->getValue())
 | 
						|
                .slt(CLimit->getValue()->getValue()))
 | 
						|
            return getCouldNotCompute();
 | 
						|
        } else {
 | 
						|
          APInt Max = APInt::getMaxValue(BitWidth);
 | 
						|
          if ((Max - CStep->getValue()->getValue())
 | 
						|
                .ult(CLimit->getValue()->getValue()))
 | 
						|
            return getCouldNotCompute();
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        // TODO: handle non-constant limit values below.
 | 
						|
        return getCouldNotCompute();
 | 
						|
    } else
 | 
						|
      // TODO: handle negative strides below.
 | 
						|
      return getCouldNotCompute();
 | 
						|
 | 
						|
    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
 | 
						|
    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
 | 
						|
    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
 | 
						|
    // treat m-n as signed nor unsigned due to overflow possibility.
 | 
						|
 | 
						|
    // First, we get the value of the LHS in the first iteration: n
 | 
						|
    const SCEV *Start = AddRec->getOperand(0);
 | 
						|
 | 
						|
    // Determine the minimum constant start value.
 | 
						|
    const SCEV *MinStart = getConstant(isSigned ?
 | 
						|
      getSignedRange(Start).getSignedMin() :
 | 
						|
      getUnsignedRange(Start).getUnsignedMin());
 | 
						|
 | 
						|
    // If we know that the condition is true in order to enter the loop,
 | 
						|
    // then we know that it will run exactly (m-n)/s times. Otherwise, we
 | 
						|
    // only know that it will execute (max(m,n)-n)/s times. In both cases,
 | 
						|
    // the division must round up.
 | 
						|
    const SCEV *End = RHS;
 | 
						|
    if (!isLoopGuardedByCond(L,
 | 
						|
                             isSigned ? ICmpInst::ICMP_SLT :
 | 
						|
                                        ICmpInst::ICMP_ULT,
 | 
						|
                             getMinusSCEV(Start, Step), RHS))
 | 
						|
      End = isSigned ? getSMaxExpr(RHS, Start)
 | 
						|
                     : getUMaxExpr(RHS, Start);
 | 
						|
 | 
						|
    // Determine the maximum constant end value.
 | 
						|
    const SCEV *MaxEnd = getConstant(isSigned ?
 | 
						|
      getSignedRange(End).getSignedMax() :
 | 
						|
      getUnsignedRange(End).getUnsignedMax());
 | 
						|
 | 
						|
    // Finally, we subtract these two values and divide, rounding up, to get
 | 
						|
    // the number of times the backedge is executed.
 | 
						|
    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
 | 
						|
 | 
						|
    // The maximum backedge count is similar, except using the minimum start
 | 
						|
    // value and the maximum end value.
 | 
						|
    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
 | 
						|
 | 
						|
    return BackedgeTakenInfo(BECount, MaxBECount);
 | 
						|
  }
 | 
						|
 | 
						|
  return getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
/// getNumIterationsInRange - Return the number of iterations of this loop that
 | 
						|
/// produce values in the specified constant range.  Another way of looking at
 | 
						|
/// this is that it returns the first iteration number where the value is not in
 | 
						|
/// the condition, thus computing the exit count. If the iteration count can't
 | 
						|
/// be computed, an instance of SCEVCouldNotCompute is returned.
 | 
						|
const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
 | 
						|
                                                    ScalarEvolution &SE) const {
 | 
						|
  if (Range.isFullSet())  // Infinite loop.
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  // If the start is a non-zero constant, shift the range to simplify things.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | 
						|
    if (!SC->getValue()->isZero()) {
 | 
						|
      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
 | 
						|
      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
 | 
						|
      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
 | 
						|
      if (const SCEVAddRecExpr *ShiftedAddRec =
 | 
						|
            dyn_cast<SCEVAddRecExpr>(Shifted))
 | 
						|
        return ShiftedAddRec->getNumIterationsInRange(
 | 
						|
                           Range.subtract(SC->getValue()->getValue()), SE);
 | 
						|
      // This is strange and shouldn't happen.
 | 
						|
      return SE.getCouldNotCompute();
 | 
						|
    }
 | 
						|
 | 
						|
  // The only time we can solve this is when we have all constant indices.
 | 
						|
  // Otherwise, we cannot determine the overflow conditions.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!isa<SCEVConstant>(getOperand(i)))
 | 
						|
      return SE.getCouldNotCompute();
 | 
						|
 | 
						|
 | 
						|
  // Okay at this point we know that all elements of the chrec are constants and
 | 
						|
  // that the start element is zero.
 | 
						|
 | 
						|
  // First check to see if the range contains zero.  If not, the first
 | 
						|
  // iteration exits.
 | 
						|
  unsigned BitWidth = SE.getTypeSizeInBits(getType());
 | 
						|
  if (!Range.contains(APInt(BitWidth, 0)))
 | 
						|
    return SE.getIntegerSCEV(0, getType());
 | 
						|
 | 
						|
  if (isAffine()) {
 | 
						|
    // If this is an affine expression then we have this situation:
 | 
						|
    //   Solve {0,+,A} in Range  ===  Ax in Range
 | 
						|
 | 
						|
    // We know that zero is in the range.  If A is positive then we know that
 | 
						|
    // the upper value of the range must be the first possible exit value.
 | 
						|
    // If A is negative then the lower of the range is the last possible loop
 | 
						|
    // value.  Also note that we already checked for a full range.
 | 
						|
    APInt One(BitWidth,1);
 | 
						|
    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
 | 
						|
    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
 | 
						|
 | 
						|
    // The exit value should be (End+A)/A.
 | 
						|
    APInt ExitVal = (End + A).udiv(A);
 | 
						|
    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
 | 
						|
 | 
						|
    // Evaluate at the exit value.  If we really did fall out of the valid
 | 
						|
    // range, then we computed our trip count, otherwise wrap around or other
 | 
						|
    // things must have happened.
 | 
						|
    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
 | 
						|
    if (Range.contains(Val->getValue()))
 | 
						|
      return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
 | 
						|
    // Ensure that the previous value is in the range.  This is a sanity check.
 | 
						|
    assert(Range.contains(
 | 
						|
           EvaluateConstantChrecAtConstant(this,
 | 
						|
           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
 | 
						|
           "Linear scev computation is off in a bad way!");
 | 
						|
    return SE.getConstant(ExitValue);
 | 
						|
  } else if (isQuadratic()) {
 | 
						|
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
 | 
						|
    // quadratic equation to solve it.  To do this, we must frame our problem in
 | 
						|
    // terms of figuring out when zero is crossed, instead of when
 | 
						|
    // Range.getUpper() is crossed.
 | 
						|
    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
 | 
						|
    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
 | 
						|
    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
 | 
						|
 | 
						|
    // Next, solve the constructed addrec
 | 
						|
    std::pair<const SCEV *,const SCEV *> Roots =
 | 
						|
      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
 | 
						|
    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | 
						|
    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | 
						|
    if (R1) {
 | 
						|
      // Pick the smallest positive root value.
 | 
						|
      if (ConstantInt *CB =
 | 
						|
          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
 | 
						|
                         R1->getValue(), R2->getValue()))) {
 | 
						|
        if (CB->getZExtValue() == false)
 | 
						|
          std::swap(R1, R2);   // R1 is the minimum root now.
 | 
						|
 | 
						|
        // Make sure the root is not off by one.  The returned iteration should
 | 
						|
        // not be in the range, but the previous one should be.  When solving
 | 
						|
        // for "X*X < 5", for example, we should not return a root of 2.
 | 
						|
        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
 | 
						|
                                                             R1->getValue(),
 | 
						|
                                                             SE);
 | 
						|
        if (Range.contains(R1Val->getValue())) {
 | 
						|
          // The next iteration must be out of the range...
 | 
						|
          ConstantInt *NextVal =
 | 
						|
                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
 | 
						|
 | 
						|
          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | 
						|
          if (!Range.contains(R1Val->getValue()))
 | 
						|
            return SE.getConstant(NextVal);
 | 
						|
          return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
        }
 | 
						|
 | 
						|
        // If R1 was not in the range, then it is a good return value.  Make
 | 
						|
        // sure that R1-1 WAS in the range though, just in case.
 | 
						|
        ConstantInt *NextVal =
 | 
						|
               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
 | 
						|
        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | 
						|
        if (Range.contains(R1Val->getValue()))
 | 
						|
          return R1;
 | 
						|
        return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SE.getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   SCEVCallbackVH Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ScalarEvolution::SCEVCallbackVH::deleted() {
 | 
						|
  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
 | 
						|
    SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
  SE->Scalars.erase(getValPtr());
 | 
						|
  // this now dangles!
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
 | 
						|
  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | 
						|
 | 
						|
  // Forget all the expressions associated with users of the old value,
 | 
						|
  // so that future queries will recompute the expressions using the new
 | 
						|
  // value.
 | 
						|
  SmallVector<User *, 16> Worklist;
 | 
						|
  SmallPtrSet<User *, 8> Visited;
 | 
						|
  Value *Old = getValPtr();
 | 
						|
  bool DeleteOld = false;
 | 
						|
  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    Worklist.push_back(*UI);
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    User *U = Worklist.pop_back_val();
 | 
						|
    // Deleting the Old value will cause this to dangle. Postpone
 | 
						|
    // that until everything else is done.
 | 
						|
    if (U == Old) {
 | 
						|
      DeleteOld = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (!Visited.insert(U))
 | 
						|
      continue;
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(U))
 | 
						|
      SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
    SE->Scalars.erase(U);
 | 
						|
    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
 | 
						|
         UI != UE; ++UI)
 | 
						|
      Worklist.push_back(*UI);
 | 
						|
  }
 | 
						|
  // Delete the Old value if it (indirectly) references itself.
 | 
						|
  if (DeleteOld) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(Old))
 | 
						|
      SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
    SE->Scalars.erase(Old);
 | 
						|
    // this now dangles!
 | 
						|
  }
 | 
						|
  // this may dangle!
 | 
						|
}
 | 
						|
 | 
						|
ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
 | 
						|
  : CallbackVH(V), SE(se) {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   ScalarEvolution Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ScalarEvolution::ScalarEvolution()
 | 
						|
  : FunctionPass(&ID) {
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::runOnFunction(Function &F) {
 | 
						|
  this->F = &F;
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::releaseMemory() {
 | 
						|
  Scalars.clear();
 | 
						|
  BackedgeTakenCounts.clear();
 | 
						|
  ConstantEvolutionLoopExitValue.clear();
 | 
						|
  ValuesAtScopes.clear();
 | 
						|
  UniqueSCEVs.clear();
 | 
						|
  SCEVAllocator.Reset();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<LoopInfo>();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
 | 
						|
  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
 | 
						|
}
 | 
						|
 | 
						|
static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
 | 
						|
                          const Loop *L) {
 | 
						|
  // Print all inner loops first
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    PrintLoopInfo(OS, SE, *I);
 | 
						|
 | 
						|
  OS << "Loop " << L->getHeader()->getName() << ": ";
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1)
 | 
						|
    OS << "<multiple exits> ";
 | 
						|
 | 
						|
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | 
						|
    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
 | 
						|
  } else {
 | 
						|
    OS << "Unpredictable backedge-taken count. ";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
  OS << "Loop " << L->getHeader()->getName() << ": ";
 | 
						|
 | 
						|
  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
 | 
						|
    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
 | 
						|
  } else {
 | 
						|
    OS << "Unpredictable max backedge-taken count. ";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
 | 
						|
  // ScalarEvolution's implementaiton of the print method is to print
 | 
						|
  // out SCEV values of all instructions that are interesting. Doing
 | 
						|
  // this potentially causes it to create new SCEV objects though,
 | 
						|
  // which technically conflicts with the const qualifier. This isn't
 | 
						|
  // observable from outside the class though, so casting away the
 | 
						|
  // const isn't dangerous.
 | 
						|
  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
 | 
						|
 | 
						|
  OS << "Classifying expressions for: " << F->getName() << "\n";
 | 
						|
  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | 
						|
    if (isSCEVable(I->getType())) {
 | 
						|
      OS << *I << '\n';
 | 
						|
      OS << "  -->  ";
 | 
						|
      const SCEV *SV = SE.getSCEV(&*I);
 | 
						|
      SV->print(OS);
 | 
						|
 | 
						|
      const Loop *L = LI->getLoopFor((*I).getParent());
 | 
						|
 | 
						|
      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
 | 
						|
      if (AtUse != SV) {
 | 
						|
        OS << "  -->  ";
 | 
						|
        AtUse->print(OS);
 | 
						|
      }
 | 
						|
 | 
						|
      if (L) {
 | 
						|
        OS << "\t\t" "Exits: ";
 | 
						|
        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
 | 
						|
        if (!ExitValue->isLoopInvariant(L)) {
 | 
						|
          OS << "<<Unknown>>";
 | 
						|
        } else {
 | 
						|
          OS << *ExitValue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      OS << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
  OS << "Determining loop execution counts for: " << F->getName() << "\n";
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    PrintLoopInfo(OS, &SE, *I);
 | 
						|
}
 | 
						|
 |