forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1152 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1152 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
 | 
						|
//
 | 
						|
// This file defines a simple peephole instruction selector for the x86 platform
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iOperators.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace MOTy;  // Get Use, Def, UseAndDef
 | 
						|
 | 
						|
 | 
						|
/// BMI - A special BuildMI variant that takes an iterator to insert the
 | 
						|
/// instruction at as well as a basic block.
 | 
						|
/// this is the version for when you have a destination register in mind.
 | 
						|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator &I,
 | 
						|
                                      MachineOpCode Opcode,
 | 
						|
                                      unsigned NumOperands,
 | 
						|
                                      unsigned DestReg) {
 | 
						|
  assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
 | 
						|
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
 | 
						|
  I = MBB->insert(I, MI)+1;
 | 
						|
  return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
 | 
						|
}
 | 
						|
 | 
						|
/// BMI - A special BuildMI variant that takes an iterator to insert the
 | 
						|
/// instruction at as well as a basic block.
 | 
						|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator &I,
 | 
						|
                                      MachineOpCode Opcode,
 | 
						|
                                      unsigned NumOperands) {
 | 
						|
  assert(I > MBB->begin() && I <= MBB->end() && "Bad iterator!");
 | 
						|
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
 | 
						|
  I = MBB->insert(I, MI)+1;
 | 
						|
  return MachineInstrBuilder(MI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ISel : public FunctionPass, InstVisitor<ISel> {
 | 
						|
    TargetMachine &TM;
 | 
						|
    MachineFunction *F;                    // The function we are compiling into
 | 
						|
    MachineBasicBlock *BB;                 // The current MBB we are compiling
 | 
						|
 | 
						|
    unsigned CurReg;
 | 
						|
    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
 | 
						|
 | 
						|
    // MBBMap - Mapping between LLVM BB -> Machine BB
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | 
						|
 | 
						|
    ISel(TargetMachine &tm)
 | 
						|
      : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
 | 
						|
 | 
						|
    /// runOnFunction - Top level implementation of instruction selection for
 | 
						|
    /// the entire function.
 | 
						|
    ///
 | 
						|
    bool runOnFunction(Function &Fn) {
 | 
						|
      F = &MachineFunction::construct(&Fn, TM);
 | 
						|
 | 
						|
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | 
						|
 | 
						|
      // Emit instructions to load the arguments...  The function's arguments
 | 
						|
      // look like this:
 | 
						|
      //
 | 
						|
      // [EBP]     -- copy of old EBP
 | 
						|
      // [EBP + 4] -- return address
 | 
						|
      // [EBP + 8] -- first argument (leftmost lexically)
 | 
						|
      //
 | 
						|
      // So we want to start with counter = 2.
 | 
						|
      //
 | 
						|
      BB = &F->front();
 | 
						|
      unsigned ArgOffset = 8;
 | 
						|
      for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E;
 | 
						|
           ++I, ArgOffset += 4) {
 | 
						|
        unsigned Reg = getReg(*I);
 | 
						|
 | 
						|
	// Load it out of the stack frame at EBP + 4*argPos.
 | 
						|
 | 
						|
        // FIXME: This should load the argument of the appropriate size!!
 | 
						|
	addRegOffset(BuildMI(BB, X86::MOVmr32, 4, Reg), X86::EBP, ArgOffset);
 | 
						|
      }
 | 
						|
 | 
						|
      // Instruction select everything except PHI nodes
 | 
						|
      visit(Fn);
 | 
						|
 | 
						|
      // Select the PHI nodes
 | 
						|
      SelectPHINodes();
 | 
						|
 | 
						|
      RegMap.clear();
 | 
						|
      MBBMap.clear();
 | 
						|
      CurReg = MRegisterInfo::FirstVirtualRegister;
 | 
						|
      F = 0;
 | 
						|
      return false;  // We never modify the LLVM itself.
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Simple Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
    /// visitBasicBlock - This method is called when we are visiting a new basic
 | 
						|
    /// block.  This simply creates a new MachineBasicBlock to emit code into
 | 
						|
    /// and adds it to the current MachineFunction.  Subsequent visit* for
 | 
						|
    /// instructions will be invoked for all instructions in the basic block.
 | 
						|
    ///
 | 
						|
    void visitBasicBlock(BasicBlock &LLVM_BB) {
 | 
						|
      BB = MBBMap[&LLVM_BB];
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
    /// because we have to generate our sources into the source basic blocks,
 | 
						|
    /// not the current one.
 | 
						|
    ///
 | 
						|
    void SelectPHINodes();
 | 
						|
 | 
						|
    // Visitation methods for various instructions.  These methods simply emit
 | 
						|
    // fixed X86 code for each instruction.
 | 
						|
    //
 | 
						|
 | 
						|
    // Control flow operators
 | 
						|
    void visitReturnInst(ReturnInst &RI);
 | 
						|
    void visitBranchInst(BranchInst &BI);
 | 
						|
    void visitCallInst(CallInst &I);
 | 
						|
 | 
						|
    // Arithmetic operators
 | 
						|
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | 
						|
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | 
						|
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | 
						|
    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
 | 
						|
                    unsigned destReg, const Type *resultType,
 | 
						|
		    unsigned op0Reg, unsigned op1Reg);
 | 
						|
    void visitMul(BinaryOperator &B);
 | 
						|
 | 
						|
    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitDivRem(BinaryOperator &B);
 | 
						|
 | 
						|
    // Bitwise operators
 | 
						|
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | 
						|
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | 
						|
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | 
						|
 | 
						|
    // Binary comparison operators
 | 
						|
    void visitSetCCInst(SetCondInst &I, unsigned OpNum);
 | 
						|
    void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
 | 
						|
    void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
 | 
						|
    void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
 | 
						|
    void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
 | 
						|
    void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
 | 
						|
    void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
 | 
						|
 | 
						|
    // Memory Instructions
 | 
						|
    void visitLoadInst(LoadInst &I);
 | 
						|
    void visitStoreInst(StoreInst &I);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
    void visitMallocInst(MallocInst &I);
 | 
						|
    void visitFreeInst(FreeInst &I);
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    
 | 
						|
    // Other operators
 | 
						|
    void visitShiftInst(ShiftInst &I);
 | 
						|
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | 
						|
    void visitCastInst(CastInst &I);
 | 
						|
 | 
						|
    void visitInstruction(Instruction &I) {
 | 
						|
      std::cerr << "Cannot instruction select: " << I;
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
    /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | 
						|
    void promote32 (const unsigned targetReg, Value *v);
 | 
						|
    
 | 
						|
    // emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | 
						|
    // constant expression GEP support.
 | 
						|
    //
 | 
						|
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
 | 
						|
                          Value *Src, User::op_iterator IdxBegin,
 | 
						|
                          User::op_iterator IdxEnd, unsigned TargetReg);
 | 
						|
 | 
						|
    /// copyConstantToRegister - Output the instructions required to put the
 | 
						|
    /// specified constant into the specified register.
 | 
						|
    ///
 | 
						|
    void copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                MachineBasicBlock::iterator &MBBI,
 | 
						|
                                Constant *C, unsigned Reg);
 | 
						|
 | 
						|
    /// makeAnotherReg - This method returns the next register number
 | 
						|
    /// we haven't yet used.
 | 
						|
    unsigned makeAnotherReg(const Type *Ty) {
 | 
						|
      // Add the mapping of regnumber => reg class to MachineFunction
 | 
						|
      F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
 | 
						|
      return CurReg++;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getReg - This method turns an LLVM value into a register number.  This
 | 
						|
    /// is guaranteed to produce the same register number for a particular value
 | 
						|
    /// every time it is queried.
 | 
						|
    ///
 | 
						|
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | 
						|
    unsigned getReg(Value *V) {
 | 
						|
      // Just append to the end of the current bb.
 | 
						|
      MachineBasicBlock::iterator It = BB->end();
 | 
						|
      return getReg(V, BB, It);
 | 
						|
    }
 | 
						|
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | 
						|
                    MachineBasicBlock::iterator &IPt) {
 | 
						|
      unsigned &Reg = RegMap[V];
 | 
						|
      if (Reg == 0) {
 | 
						|
        Reg = makeAnotherReg(V->getType());
 | 
						|
        RegMap[V] = Reg;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this operand is a constant, emit the code to copy the constant into
 | 
						|
      // the register here...
 | 
						|
      //
 | 
						|
      if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
        copyConstantToRegister(MBB, IPt, C, Reg);
 | 
						|
        RegMap.erase(V);  // Assign a new name to this constant if ref'd again
 | 
						|
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
        // Move the address of the global into the register
 | 
						|
        BMI(MBB, IPt, X86::MOVir32, 1, Reg).addReg(GV);
 | 
						|
        RegMap.erase(V);  // Assign a new name to this address if ref'd again
 | 
						|
      }
 | 
						|
 | 
						|
      return Reg;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
 | 
						|
/// Representation.
 | 
						|
///
 | 
						|
enum TypeClass {
 | 
						|
  cByte, cShort, cInt, cLong, cFloat, cDouble
 | 
						|
};
 | 
						|
 | 
						|
/// getClass - Turn a primitive type into a "class" number which is based on the
 | 
						|
/// size of the type, and whether or not it is floating point.
 | 
						|
///
 | 
						|
static inline TypeClass getClass(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
 | 
						|
 | 
						|
  case Type::LongTyID:
 | 
						|
  case Type::ULongTyID:   //return cLong;      // Longs are class #3
 | 
						|
    return cInt;          // FIXME: LONGS ARE TREATED AS INTS!
 | 
						|
 | 
						|
  case Type::FloatTyID:   return cFloat;     // Float is class #4
 | 
						|
  case Type::DoubleTyID:  return cDouble;    // Doubles are class #5
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid type to getClass!");
 | 
						|
    return cByte;  // not reached
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getClassB - Just like getClass, but treat boolean values as bytes.
 | 
						|
static inline TypeClass getClassB(const Type *Ty) {
 | 
						|
  if (Ty == Type::BoolTy) return cByte;
 | 
						|
  return getClass(Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// copyConstantToRegister - Output the instructions required to put the
 | 
						|
/// specified constant into the specified register.
 | 
						|
///
 | 
						|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                  MachineBasicBlock::iterator &IP,
 | 
						|
                                  Constant *C, unsigned R) {
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
      emitGEPOperation(MBB, IP, CE->getOperand(0),
 | 
						|
                       CE->op_begin()+1, CE->op_end(), R);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    std::cerr << "Offending expr: " << C << "\n";
 | 
						|
    assert (0 && "Constant expressions not yet handled!\n");
 | 
						|
  }
 | 
						|
 | 
						|
  if (C->getType()->isIntegral()) {
 | 
						|
    unsigned Class = getClassB(C->getType());
 | 
						|
    assert(Class != 3 && "Type not handled yet!");
 | 
						|
 | 
						|
    static const unsigned IntegralOpcodeTab[] = {
 | 
						|
      X86::MOVir8, X86::MOVir16, X86::MOVir32
 | 
						|
    };
 | 
						|
 | 
						|
    if (C->getType() == Type::BoolTy) {
 | 
						|
      BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
 | 
						|
    } else if (C->getType()->isSigned()) {
 | 
						|
      ConstantSInt *CSI = cast<ConstantSInt>(C);
 | 
						|
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
 | 
						|
    } else {
 | 
						|
      ConstantUInt *CUI = cast<ConstantUInt>(C);
 | 
						|
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
 | 
						|
    }
 | 
						|
  } else if (isa<ConstantPointerNull>(C)) {
 | 
						|
    // Copy zero (null pointer) to the register.
 | 
						|
    BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
 | 
						|
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
 | 
						|
    unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
 | 
						|
    BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
 | 
						|
  } else {
 | 
						|
    std::cerr << "Offending constant: " << C << "\n";
 | 
						|
    assert(0 && "Type not handled yet!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
/// because we have to generate our sources into the source basic blocks, not
 | 
						|
/// the current one.
 | 
						|
///
 | 
						|
void ISel::SelectPHINodes() {
 | 
						|
  const Function &LF = *F->getFunction();  // The LLVM function...
 | 
						|
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | 
						|
    const BasicBlock *BB = I;
 | 
						|
    MachineBasicBlock *MBB = MBBMap[I];
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes in the LLVM basic block...
 | 
						|
    unsigned NumPHIs = 0;
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin();
 | 
						|
         PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
 | 
						|
      // Create a new machine instr PHI node, and insert it.
 | 
						|
      MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
 | 
						|
      MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
 | 
						|
 | 
						|
        // Get the incoming value into a virtual register.  If it is not already
 | 
						|
        // available in a virtual register, insert the computation code into
 | 
						|
        // PredMBB
 | 
						|
        //
 | 
						|
 | 
						|
        MachineBasicBlock::iterator PI = PredMBB->begin();
 | 
						|
        while ((*PI)->getOpcode() == X86::PHI) ++PI;
 | 
						|
        
 | 
						|
        MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI));
 | 
						|
        MI->addMachineBasicBlockOperand(PredMBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
 | 
						|
/// register, then move it to wherever the result should be. 
 | 
						|
/// We handle FP setcc instructions by pushing them, doing a
 | 
						|
/// compare-and-pop-twice, and then copying the concodes to the main
 | 
						|
/// processor's concodes (I didn't make this up, it's in the Intel manual)
 | 
						|
///
 | 
						|
void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
 | 
						|
  // The arguments are already supposed to be of the same type.
 | 
						|
  const Type *CompTy = I.getOperand(0)->getType();
 | 
						|
  unsigned reg1 = getReg(I.getOperand(0));
 | 
						|
  unsigned reg2 = getReg(I.getOperand(1));
 | 
						|
 | 
						|
  unsigned Class = getClass(CompTy);
 | 
						|
  switch (Class) {
 | 
						|
    // Emit: cmp <var1>, <var2> (do the comparison).  We can
 | 
						|
    // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
 | 
						|
    // 32-bit.
 | 
						|
  case cByte:
 | 
						|
    BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
 | 
						|
    break;
 | 
						|
  case cShort:
 | 
						|
    BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
 | 
						|
    break;
 | 
						|
  case cInt:
 | 
						|
    BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
 | 
						|
    break;
 | 
						|
 | 
						|
    // Push the variables on the stack with fldl opcodes.
 | 
						|
    // FIXME: assuming var1, var2 are in memory, if not, spill to
 | 
						|
    // stack first
 | 
						|
  case cFloat:  // Floats
 | 
						|
    BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
 | 
						|
    BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
 | 
						|
    break;
 | 
						|
  case cDouble:  // Doubles
 | 
						|
    BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
 | 
						|
    BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
 | 
						|
    break;
 | 
						|
  case cLong:
 | 
						|
  default:
 | 
						|
    visitInstruction(I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CompTy->isFloatingPoint()) {
 | 
						|
    // (Non-trapping) compare and pop twice.
 | 
						|
    BuildMI (BB, X86::FUCOMPP, 0);
 | 
						|
    // Move fp status word (concodes) to ax.
 | 
						|
    BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
 | 
						|
    // Load real concodes from ax.
 | 
						|
    BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit setOp instruction (extract concode; clobbers ax),
 | 
						|
  // using the following mapping:
 | 
						|
  // LLVM  -> X86 signed  X86 unsigned
 | 
						|
  // -----    -----       -----
 | 
						|
  // seteq -> sete        sete
 | 
						|
  // setne -> setne       setne
 | 
						|
  // setlt -> setl        setb
 | 
						|
  // setgt -> setg        seta
 | 
						|
  // setle -> setle       setbe
 | 
						|
  // setge -> setge       setae
 | 
						|
 | 
						|
  static const unsigned OpcodeTab[2][6] = {
 | 
						|
    {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
 | 
						|
    {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
 | 
						|
  };
 | 
						|
 | 
						|
  BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, getReg(I));
 | 
						|
}
 | 
						|
 | 
						|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | 
						|
/// operand, in the specified target register.
 | 
						|
void
 | 
						|
ISel::promote32 (unsigned targetReg, Value *v)
 | 
						|
{
 | 
						|
  unsigned vReg = getReg (v);
 | 
						|
  unsigned Class = getClass (v->getType ());
 | 
						|
  bool isUnsigned = v->getType ()->isUnsigned ();
 | 
						|
  assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
 | 
						|
	  && "Unpromotable operand class in promote32");
 | 
						|
  switch (Class)
 | 
						|
    {
 | 
						|
    case cByte:
 | 
						|
      // Extend value into target register (8->32)
 | 
						|
      if (isUnsigned)
 | 
						|
	BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
 | 
						|
      else
 | 
						|
	BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
 | 
						|
      break;
 | 
						|
    case cShort:
 | 
						|
      // Extend value into target register (16->32)
 | 
						|
      if (isUnsigned)
 | 
						|
	BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
 | 
						|
      else
 | 
						|
	BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
 | 
						|
      break;
 | 
						|
    case cInt:
 | 
						|
      // Move value into target register (32->32)
 | 
						|
      BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
 | 
						|
/// we have the following possibilities:
 | 
						|
///
 | 
						|
///   ret void: No return value, simply emit a 'ret' instruction
 | 
						|
///   ret sbyte, ubyte : Extend value into EAX and return
 | 
						|
///   ret short, ushort: Extend value into EAX and return
 | 
						|
///   ret int, uint    : Move value into EAX and return
 | 
						|
///   ret pointer      : Move value into EAX and return
 | 
						|
///   ret long, ulong  : Move value into EAX/EDX and return
 | 
						|
///   ret float/double : Top of FP stack
 | 
						|
///
 | 
						|
void
 | 
						|
ISel::visitReturnInst (ReturnInst &I)
 | 
						|
{
 | 
						|
  if (I.getNumOperands () == 0)
 | 
						|
    {
 | 
						|
      // Emit a 'ret' instruction
 | 
						|
      BuildMI (BB, X86::RET, 0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  Value *rv = I.getOperand (0);
 | 
						|
  unsigned Class = getClass (rv->getType ());
 | 
						|
  switch (Class)
 | 
						|
    {
 | 
						|
      // integral return values: extend or move into EAX and return. 
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt:
 | 
						|
      promote32 (X86::EAX, rv);
 | 
						|
      break;
 | 
						|
      // ret float/double: top of FP stack
 | 
						|
      // FLD <val>
 | 
						|
    case cFloat:		// Floats
 | 
						|
      BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
 | 
						|
      break;
 | 
						|
    case cDouble:		// Doubles
 | 
						|
      BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
 | 
						|
      break;
 | 
						|
    case cLong:
 | 
						|
      // ret long: use EAX(least significant 32 bits)/EDX (most
 | 
						|
      // significant 32)...uh, I think so Brain, but how do i call
 | 
						|
      // up the two parts of the value from inside this mouse
 | 
						|
      // cage? *zort*
 | 
						|
    default:
 | 
						|
      visitInstruction (I);
 | 
						|
    }
 | 
						|
  // Emit a 'ret' instruction
 | 
						|
  BuildMI (BB, X86::RET, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | 
						|
/// that since code layout is frozen at this point, that if we are trying to
 | 
						|
/// jump to a block that is the immediate successor of the current block, we can
 | 
						|
/// just make a fall-through. (but we don't currently).
 | 
						|
///
 | 
						|
void
 | 
						|
ISel::visitBranchInst (BranchInst & BI)
 | 
						|
{
 | 
						|
  if (BI.isConditional ())
 | 
						|
    {
 | 
						|
      BasicBlock *ifTrue = BI.getSuccessor (0);
 | 
						|
      BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious 
 | 
						|
 | 
						|
      // simplest thing I can think of: compare condition with zero,
 | 
						|
      // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
 | 
						|
      // ifTrue
 | 
						|
      unsigned int condReg = getReg (BI.getCondition ());
 | 
						|
      BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
 | 
						|
      BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
 | 
						|
      BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
 | 
						|
    }
 | 
						|
  else // unconditional branch
 | 
						|
    {
 | 
						|
      BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// visitCallInst - Push args on stack and do a procedure call instruction.
 | 
						|
void
 | 
						|
ISel::visitCallInst (CallInst & CI)
 | 
						|
{
 | 
						|
  // keep a counter of how many bytes we pushed on the stack
 | 
						|
  unsigned bytesPushed = 0;
 | 
						|
 | 
						|
  // Push the arguments on the stack in reverse order, as specified by
 | 
						|
  // the ABI.
 | 
						|
  for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
 | 
						|
    {
 | 
						|
      Value *v = CI.getOperand (i);
 | 
						|
      switch (getClass (v->getType ()))
 | 
						|
	{
 | 
						|
	case cByte:
 | 
						|
	case cShort:
 | 
						|
	  // Promote V to 32 bits wide, and move the result into EAX,
 | 
						|
	  // then push EAX.
 | 
						|
	  promote32 (X86::EAX, v);
 | 
						|
	  BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
 | 
						|
          bytesPushed += 4;
 | 
						|
	  break;
 | 
						|
	case cInt:
 | 
						|
	case cFloat: {
 | 
						|
          unsigned Reg = getReg(v);
 | 
						|
          BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
 | 
						|
          bytesPushed += 4;
 | 
						|
	  break;
 | 
						|
        }
 | 
						|
	default:
 | 
						|
	  // FIXME: long/ulong/double args not handled.
 | 
						|
	  visitInstruction (CI);
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  if (Function *F = CI.getCalledFunction()) {
 | 
						|
    // Emit a CALL instruction with PC-relative displacement.
 | 
						|
    BuildMI(BB, X86::CALLpcrel32, 1).addPCDisp(F);
 | 
						|
  } else {
 | 
						|
    unsigned Reg = getReg(CI.getCalledValue());
 | 
						|
    BuildMI(BB, X86::CALLr32, 1).addReg(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the stack by `bytesPushed' amount if non-zero
 | 
						|
  if (bytesPushed > 0)
 | 
						|
    BuildMI (BB, X86::ADDri32,2,X86::ESP).addReg(X86::ESP).addZImm(bytesPushed);
 | 
						|
 | 
						|
  // If there is a return value, scavenge the result from the location the call
 | 
						|
  // leaves it in...
 | 
						|
  //
 | 
						|
  if (CI.getType() != Type::VoidTy) {
 | 
						|
    unsigned resultTypeClass = getClass (CI.getType ());
 | 
						|
    switch (resultTypeClass) {
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt: {
 | 
						|
      // Integral results are in %eax, or the appropriate portion
 | 
						|
      // thereof.
 | 
						|
      static const unsigned regRegMove[] = {
 | 
						|
	X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
 | 
						|
      };
 | 
						|
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
 | 
						|
      BuildMI (BB, regRegMove[resultTypeClass], 1,
 | 
						|
	       getReg (CI)).addReg (AReg[resultTypeClass]);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case cFloat:
 | 
						|
      // Floating-point return values live in %st(0) (i.e., the top of
 | 
						|
      // the FP stack.) The general way to approach this is to do a
 | 
						|
      // FSTP to save the top of the FP stack on the real stack, then
 | 
						|
      // do a MOV to load the top of the real stack into the target
 | 
						|
      // register.
 | 
						|
      visitInstruction (CI); // FIXME: add the right args for the calls below
 | 
						|
      // BuildMI (BB, X86::FSTPm32, 0);
 | 
						|
      // BuildMI (BB, X86::MOVmr32, 0);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      std::cerr << "Cannot get return value for call of type '"
 | 
						|
                << *CI.getType() << "'\n";
 | 
						|
      visitInstruction(CI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitSimpleBinary - Implement simple binary operators for integral types...
 | 
						|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
 | 
						|
/// 4 for Xor.
 | 
						|
///
 | 
						|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | 
						|
  if (B.getType() == Type::BoolTy)  // FIXME: Handle bools for logicals
 | 
						|
    visitInstruction(B);
 | 
						|
 | 
						|
  unsigned Class = getClass(B.getType());
 | 
						|
  if (Class > 2)  // FIXME: Handle longs
 | 
						|
    visitInstruction(B);
 | 
						|
 | 
						|
  static const unsigned OpcodeTab[][4] = {
 | 
						|
    // Arithmetic operators
 | 
						|
    { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 },  // ADD
 | 
						|
    { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 },  // SUB
 | 
						|
 | 
						|
    // Bitwise operators
 | 
						|
    { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
 | 
						|
    { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
 | 
						|
    { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
 | 
						|
  };
 | 
						|
  
 | 
						|
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | 
						|
  unsigned Op0r = getReg(B.getOperand(0));
 | 
						|
  unsigned Op1r = getReg(B.getOperand(1));
 | 
						|
  BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
 | 
						|
}
 | 
						|
 | 
						|
/// doMultiply - Emit appropriate instructions to multiply together
 | 
						|
/// the registers op0Reg and op1Reg, and put the result in destReg.
 | 
						|
/// The type of the result should be given as resultType.
 | 
						|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
 | 
						|
                      unsigned destReg, const Type *resultType,
 | 
						|
                      unsigned op0Reg, unsigned op1Reg) {
 | 
						|
  unsigned Class = getClass (resultType);
 | 
						|
 | 
						|
  // FIXME:
 | 
						|
  assert (Class <= 2 && "Someday, we will learn how to multiply"
 | 
						|
	  "longs and floating-point numbers. This is not that day.");
 | 
						|
 
 | 
						|
  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
 | 
						|
  static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
 | 
						|
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
 | 
						|
  unsigned Reg     = Regs[Class];
 | 
						|
 | 
						|
  // Emit a MOV to put the first operand into the appropriately-sized
 | 
						|
  // subreg of EAX.
 | 
						|
  BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg (op0Reg);
 | 
						|
  
 | 
						|
  // Emit the appropriate multiply instruction.
 | 
						|
  BMI(MBB, MBBI, MulOpcode[Class], 1).addReg (op1Reg);
 | 
						|
 | 
						|
  // Emit another MOV to put the result into the destination register.
 | 
						|
  BMI(MBB, MBBI, MovOpcode[Class], 1, destReg).addReg (Reg);
 | 
						|
}
 | 
						|
 | 
						|
/// visitMul - Multiplies are not simple binary operators because they must deal
 | 
						|
/// with the EAX register explicitly.
 | 
						|
///
 | 
						|
void ISel::visitMul(BinaryOperator &I) {
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
  unsigned Op0Reg  = getReg(I.getOperand(0));
 | 
						|
  unsigned Op1Reg  = getReg(I.getOperand(1));
 | 
						|
  MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
  doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitDivRem - Handle division and remainder instructions... these
 | 
						|
/// instruction both require the same instructions to be generated, they just
 | 
						|
/// select the result from a different register.  Note that both of these
 | 
						|
/// instructions work differently for signed and unsigned operands.
 | 
						|
///
 | 
						|
void ISel::visitDivRem(BinaryOperator &I) {
 | 
						|
  unsigned Class = getClass(I.getType());
 | 
						|
  if (Class > 2)  // FIXME: Handle longs
 | 
						|
    visitInstruction(I);
 | 
						|
 | 
						|
  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
 | 
						|
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
 | 
						|
  static const unsigned ExtOpcode[]={ X86::CBW   , X86::CWD    , X86::CDQ     };
 | 
						|
  static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
 | 
						|
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };
 | 
						|
 | 
						|
  static const unsigned DivOpcode[][4] = {
 | 
						|
    { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 },  // Unsigned division
 | 
						|
    { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 },  // Signed division
 | 
						|
  };
 | 
						|
 | 
						|
  bool isSigned   = I.getType()->isSigned();
 | 
						|
  unsigned Reg    = Regs[Class];
 | 
						|
  unsigned ExtReg = ExtRegs[Class];
 | 
						|
  unsigned Op0Reg = getReg(I.getOperand(0));
 | 
						|
  unsigned Op1Reg = getReg(I.getOperand(1));
 | 
						|
 | 
						|
  // Put the first operand into one of the A registers...
 | 
						|
  BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
 | 
						|
 | 
						|
  if (isSigned) {
 | 
						|
    // Emit a sign extension instruction...
 | 
						|
    BuildMI(BB, ExtOpcode[Class], 0);
 | 
						|
  } else {
 | 
						|
    // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
 | 
						|
    BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the appropriate divide or remainder instruction...
 | 
						|
  BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
 | 
						|
 | 
						|
  // Figure out which register we want to pick the result out of...
 | 
						|
  unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
 | 
						|
  
 | 
						|
  // Put the result into the destination register...
 | 
						|
  BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | 
						|
/// for constant immediate shift values, and for constant immediate
 | 
						|
/// shift values equal to 1. Even the general case is sort of special,
 | 
						|
/// because the shift amount has to be in CL, not just any old register.
 | 
						|
///
 | 
						|
void ISel::visitShiftInst (ShiftInst &I) {
 | 
						|
  unsigned Op0r = getReg (I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | 
						|
  bool isOperandSigned = I.getType()->isUnsigned();
 | 
						|
  unsigned OperandClass = getClass(I.getType());
 | 
						|
 | 
						|
  if (OperandClass > 2)
 | 
						|
    visitInstruction(I); // Can't handle longs yet!
 | 
						|
 | 
						|
  if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
 | 
						|
    {
 | 
						|
      // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | 
						|
      assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | 
						|
      unsigned char shAmt = CUI->getValue();
 | 
						|
 | 
						|
      static const unsigned ConstantOperand[][4] = {
 | 
						|
        { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 },  // SHR
 | 
						|
        { X86::SARir8, X86::SARir16, X86::SARir32, 0 },  // SAR
 | 
						|
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SHL
 | 
						|
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SAL = SHL
 | 
						|
      };
 | 
						|
 | 
						|
      const unsigned *OpTab = // Figure out the operand table to use
 | 
						|
        ConstantOperand[isLeftShift*2+isOperandSigned];
 | 
						|
 | 
						|
      // Emit: <insn> reg, shamt  (shift-by-immediate opcode "ir" form.)
 | 
						|
      BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      // The shift amount is non-constant.
 | 
						|
      //
 | 
						|
      // In fact, you can only shift with a variable shift amount if
 | 
						|
      // that amount is already in the CL register, so we have to put it
 | 
						|
      // there first.
 | 
						|
      //
 | 
						|
 | 
						|
      // Emit: move cl, shiftAmount (put the shift amount in CL.)
 | 
						|
      BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
 | 
						|
 | 
						|
      // This is a shift right (SHR).
 | 
						|
      static const unsigned NonConstantOperand[][4] = {
 | 
						|
        { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 },  // SHR
 | 
						|
        { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 },  // SAR
 | 
						|
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SHL
 | 
						|
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SAL = SHL
 | 
						|
      };
 | 
						|
 | 
						|
      const unsigned *OpTab = // Figure out the operand table to use
 | 
						|
        NonConstantOperand[isLeftShift*2+isOperandSigned];
 | 
						|
 | 
						|
      BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
 | 
						|
/// instruction.  The load and store instructions are the only place where we
 | 
						|
/// need to worry about the memory layout of the target machine.
 | 
						|
///
 | 
						|
void ISel::visitLoadInst(LoadInst &I) {
 | 
						|
  bool isLittleEndian  = TM.getTargetData().isLittleEndian();
 | 
						|
  bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
 | 
						|
 | 
						|
  unsigned Class = getClass(I.getType());
 | 
						|
  if (Class > 2)  // FIXME: Handle longs and others...
 | 
						|
    visitInstruction(I);
 | 
						|
 | 
						|
  static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
 | 
						|
  unsigned SrcAddrReg = getReg(I.getOperand(0));
 | 
						|
 | 
						|
  // We need to adjust the input pointer if we are emulating a big-endian
 | 
						|
  // long-pointer target.  On these systems, the pointer that we are interested
 | 
						|
  // in is in the upper part of the eight byte memory image of the pointer.  It
 | 
						|
  // also happens to be byte-swapped, but this will be handled later.
 | 
						|
  //
 | 
						|
  if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
 | 
						|
    unsigned R = makeAnotherReg(Type::UIntTy);
 | 
						|
    BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
 | 
						|
    SrcAddrReg = R;
 | 
						|
  }
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
  unsigned IReg = DestReg;
 | 
						|
  if (!isLittleEndian) {  // If big endian we need an intermediate stage
 | 
						|
    IReg = makeAnotherReg(I.getType());
 | 
						|
    std::swap(IReg, DestReg);
 | 
						|
  }
 | 
						|
  addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
 | 
						|
 | 
						|
  if (!isLittleEndian) {
 | 
						|
    // Emit the byte swap instruction...
 | 
						|
    static const unsigned BSWAPOpcode[] = { X86::MOVrr8, X86::BSWAPr16, X86::BSWAPr32 };
 | 
						|
    BuildMI(BB, BSWAPOpcode[Class], 1, IReg).addReg(DestReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
 | 
						|
/// instruction.
 | 
						|
///
 | 
						|
void ISel::visitStoreInst(StoreInst &I) {
 | 
						|
  bool isLittleEndian  = TM.getTargetData().isLittleEndian();
 | 
						|
  bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
 | 
						|
  unsigned Class = getClass(I.getOperand(0)->getType());
 | 
						|
  if (Class > 2)  // FIXME: Handle longs and others...
 | 
						|
    visitInstruction(I);
 | 
						|
 | 
						|
  static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
 | 
						|
 | 
						|
  unsigned ValReg = getReg(I.getOperand(0));
 | 
						|
  unsigned AddressReg = getReg(I.getOperand(1));
 | 
						|
 | 
						|
  if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getOperand(0)->getType())) {
 | 
						|
    unsigned R = makeAnotherReg(Type::UIntTy);
 | 
						|
    BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
 | 
						|
    AddressReg = R;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isLittleEndian && Class) {
 | 
						|
    // Emit the byte swap instruction...
 | 
						|
    static const unsigned BSWAPOpcode[] = { X86::MOVrr8, X86::BSWAPr16, X86::BSWAPr32 };
 | 
						|
    unsigned R = makeAnotherReg(I.getOperand(0)->getType());
 | 
						|
    BuildMI(BB, BSWAPOpcode[Class], 1, R).addReg(ValReg);
 | 
						|
    ValReg = R;
 | 
						|
  }
 | 
						|
 | 
						|
  addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCastInst - Here we have various kinds of copying with or without
 | 
						|
/// sign extension going on.
 | 
						|
void
 | 
						|
ISel::visitCastInst (CastInst &CI)
 | 
						|
{
 | 
						|
  const Type *targetType = CI.getType ();
 | 
						|
  Value *operand = CI.getOperand (0);
 | 
						|
  unsigned int operandReg = getReg (operand);
 | 
						|
  const Type *sourceType = operand->getType ();
 | 
						|
  unsigned int destReg = getReg (CI);
 | 
						|
  //
 | 
						|
  // Currently we handle:
 | 
						|
  //
 | 
						|
  // 1) cast * to bool
 | 
						|
  //
 | 
						|
  // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
 | 
						|
  //    cast {short, ushort} to {ushort, short}
 | 
						|
  //    cast {int, uint, ptr} to {int, uint, ptr}
 | 
						|
  //
 | 
						|
  // 3) cast {sbyte, ubyte} to {ushort, short}
 | 
						|
  //    cast {sbyte, ubyte} to {int, uint, ptr}
 | 
						|
  //    cast {short, ushort} to {int, uint, ptr}
 | 
						|
  //
 | 
						|
  // 4) cast {int, uint, ptr} to {short, ushort}
 | 
						|
  //    cast {int, uint, ptr} to {sbyte, ubyte}
 | 
						|
  //    cast {short, ushort} to {sbyte, ubyte}
 | 
						|
 | 
						|
  // 1) Implement casts to bool by using compare on the operand followed
 | 
						|
  // by set if not zero on the result.
 | 
						|
  if (targetType == Type::BoolTy)
 | 
						|
    {
 | 
						|
      BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
 | 
						|
      BuildMI (BB, X86::SETNEr, 1, destReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // 2) Implement casts between values of the same type class (as determined
 | 
						|
  // by getClass) by using a register-to-register move.
 | 
						|
  unsigned srcClass = getClassB (sourceType);
 | 
						|
  unsigned targClass = getClass (targetType);
 | 
						|
  static const unsigned regRegMove[] = {
 | 
						|
    X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
 | 
						|
  };
 | 
						|
  if ((srcClass < cLong) && (targClass < cLong) && (srcClass == targClass))
 | 
						|
    {
 | 
						|
      BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  // 3) Handle cast of SMALLER int to LARGER int using a move with sign
 | 
						|
  // extension or zero extension, depending on whether the source type
 | 
						|
  // was signed.
 | 
						|
  if ((srcClass < cLong) && (targClass < cLong) && (srcClass < targClass))
 | 
						|
    {
 | 
						|
      static const unsigned ops[] = {
 | 
						|
	X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
 | 
						|
	X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
 | 
						|
      };
 | 
						|
      unsigned srcSigned = sourceType->isSigned ();
 | 
						|
      BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
 | 
						|
	       destReg).addReg (operandReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
 | 
						|
  // followed by a move out of AX or AL.
 | 
						|
  if ((srcClass < cLong) && (targClass < cLong) && (srcClass > targClass))
 | 
						|
    {
 | 
						|
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
 | 
						|
      BuildMI (BB, regRegMove[srcClass], 1,
 | 
						|
	       AReg[srcClass]).addReg (operandReg);
 | 
						|
      BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  // Anything we haven't handled already, we can't (yet) handle at all.
 | 
						|
  //
 | 
						|
  // FP to integral casts can be handled with FISTP to store onto the
 | 
						|
  // stack while converting to integer, followed by a MOV to load from
 | 
						|
  // the stack into the result register. Integral to FP casts can be
 | 
						|
  // handled with MOV to store onto the stack, followed by a FILD to
 | 
						|
  // load from the stack while converting to FP. For the moment, I
 | 
						|
  // can't quite get straight in my head how to borrow myself some
 | 
						|
  // stack space and write on it. Otherwise, this would be trivial.
 | 
						|
  visitInstruction (CI);
 | 
						|
}
 | 
						|
 | 
						|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | 
						|
// returns zero when the input is not exactly a power of two.
 | 
						|
static unsigned ExactLog2(unsigned Val) {
 | 
						|
  if (Val == 0) return 0;
 | 
						|
  unsigned Count = 0;
 | 
						|
  while (Val != 1) {
 | 
						|
    if (Val & 1) return 0;
 | 
						|
    Val >>= 1;
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count+1;
 | 
						|
}
 | 
						|
 | 
						|
/// visitGetElementPtrInst - I don't know, most programs don't have
 | 
						|
/// getelementptr instructions, right? That means we can put off
 | 
						|
/// implementing this, right? Right. This method emits machine
 | 
						|
/// instructions to perform type-safe pointer arithmetic. I am
 | 
						|
/// guessing this could be cleaned up somewhat to use fewer temporary
 | 
						|
/// registers.
 | 
						|
void
 | 
						|
ISel::visitGetElementPtrInst (GetElementPtrInst &I)
 | 
						|
{
 | 
						|
  unsigned outputReg = getReg (I);
 | 
						|
  MachineBasicBlock::iterator MI = BB->end();
 | 
						|
  emitGEPOperation(BB, MI, I.getOperand(0),
 | 
						|
                   I.op_begin()+1, I.op_end(), outputReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator &IP,
 | 
						|
                            Value *Src, User::op_iterator IdxBegin,
 | 
						|
                            User::op_iterator IdxEnd, unsigned TargetReg) {
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
  const Type *Ty = Src->getType();
 | 
						|
  unsigned basePtrReg = getReg(Src, MBB, IP);
 | 
						|
 | 
						|
  // GEPs have zero or more indices; we must perform a struct access
 | 
						|
  // or array access for each one.
 | 
						|
  for (GetElementPtrInst::op_iterator oi = IdxBegin,
 | 
						|
         oe = IdxEnd; oi != oe; ++oi) {
 | 
						|
    Value *idx = *oi;
 | 
						|
    unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
 | 
						|
    if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
 | 
						|
      // It's a struct access.  idx is the index into the structure,
 | 
						|
      // which names the field. This index must have ubyte type.
 | 
						|
      const ConstantUInt *CUI = cast <ConstantUInt> (idx);
 | 
						|
      assert (CUI->getType () == Type::UByteTy
 | 
						|
	      && "Funny-looking structure index in GEP");
 | 
						|
      // Use the TargetData structure to pick out what the layout of
 | 
						|
      // the structure is in memory.  Since the structure index must
 | 
						|
      // be constant, we can get its value and use it to find the
 | 
						|
      // right byte offset from the StructLayout class's list of
 | 
						|
      // structure member offsets.
 | 
						|
      unsigned idxValue = CUI->getValue();
 | 
						|
      unsigned memberOffset =
 | 
						|
	TD.getStructLayout (StTy)->MemberOffsets[idxValue];
 | 
						|
      // Emit an ADD to add memberOffset to the basePtr.
 | 
						|
      BMI(MBB, IP, X86::ADDri32, 2,
 | 
						|
          nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
 | 
						|
      // The next type is the member of the structure selected by the
 | 
						|
      // index.
 | 
						|
      Ty = StTy->getElementTypes ()[idxValue];
 | 
						|
    } else if (const SequentialType *SqTy = cast <SequentialType>(Ty)) {
 | 
						|
      // It's an array or pointer access: [ArraySize x ElementType].
 | 
						|
 | 
						|
      // idx is the index into the array.  Unlike with structure
 | 
						|
      // indices, we may not know its actual value at code-generation
 | 
						|
      // time.
 | 
						|
      assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
 | 
						|
 | 
						|
      // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
 | 
						|
      // must find the size of the pointed-to type (Not coincidentally, the next
 | 
						|
      // type is the type of the elements in the array).
 | 
						|
      Ty = SqTy->getElementType();
 | 
						|
      unsigned elementSize = TD.getTypeSize(Ty);
 | 
						|
 | 
						|
      // If idxReg is a constant, we don't need to perform the multiply!
 | 
						|
      if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
 | 
						|
        if (CSI->isNullValue()) {
 | 
						|
          BMI(MBB, IP, X86::MOVrr32, 1, nextBasePtrReg).addReg(basePtrReg);
 | 
						|
        } else {
 | 
						|
          unsigned Offset = elementSize*CSI->getValue();
 | 
						|
 | 
						|
          BMI(MBB, IP, X86::ADDri32, 2,
 | 
						|
              nextBasePtrReg).addReg(basePtrReg).addZImm(Offset);
 | 
						|
        }
 | 
						|
      } else if (elementSize == 1) {
 | 
						|
        // If the element size is 1, we don't have to multiply, just add
 | 
						|
        unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
        BMI(MBB, IP, X86::ADDrr32, 2,
 | 
						|
            nextBasePtrReg).addReg(basePtrReg).addReg(idxReg);
 | 
						|
      } else {
 | 
						|
        unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
 | 
						|
        if (unsigned Shift = ExactLog2(elementSize)) {
 | 
						|
          // If the element size is exactly a power of 2, use a shift to get it.
 | 
						|
 | 
						|
          BMI(MBB, IP, X86::SHLir32, 2,
 | 
						|
              OffsetReg).addReg(idxReg).addZImm(Shift-1);
 | 
						|
        } else {
 | 
						|
          // Most general case, emit a multiply...
 | 
						|
          unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
 | 
						|
          BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
 | 
						|
        
 | 
						|
          // Emit a MUL to multiply the register holding the index by
 | 
						|
          // elementSize, putting the result in OffsetReg.
 | 
						|
          doMultiply(MBB, IP, OffsetReg, Type::LongTy, idxReg, elementSizeReg);
 | 
						|
        }
 | 
						|
        // Emit an ADD to add OffsetReg to the basePtr.
 | 
						|
        BMI(MBB, IP, X86::ADDrr32, 2,
 | 
						|
            nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Now that we are here, further indices refer to subtypes of this
 | 
						|
    // one, so we don't need to worry about basePtrReg itself, anymore.
 | 
						|
    basePtrReg = nextBasePtrReg;
 | 
						|
  }
 | 
						|
  // After we have processed all the indices, the result is left in
 | 
						|
  // basePtrReg.  Move it to the register where we were expected to
 | 
						|
  // put the answer.  A 32-bit move should do it, because we are in
 | 
						|
  // ILP32 land.
 | 
						|
  BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitMallocInst - I know that personally, whenever I want to remember
 | 
						|
/// something, I have to clear off some space in my brain.
 | 
						|
void
 | 
						|
ISel::visitMallocInst (MallocInst &I)
 | 
						|
{
 | 
						|
  // We assume that by this point, malloc instructions have been
 | 
						|
  // lowered to calls, and dlsym will magically find malloc for us.
 | 
						|
  // So we do not want to see malloc instructions here.
 | 
						|
  visitInstruction (I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitFreeInst - same story as MallocInst
 | 
						|
void
 | 
						|
ISel::visitFreeInst (FreeInst &I)
 | 
						|
{
 | 
						|
  // We assume that by this point, free instructions have been
 | 
						|
  // lowered to calls, and dlsym will magically find free for us.
 | 
						|
  // So we do not want to see free instructions here.
 | 
						|
  visitInstruction (I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitAllocaInst - I want some stack space. Come on, man, I said I
 | 
						|
/// want some freakin' stack space.
 | 
						|
void
 | 
						|
ISel::visitAllocaInst (AllocaInst &I)
 | 
						|
{
 | 
						|
  // Find the data size of the alloca inst's getAllocatedType.
 | 
						|
  const Type *allocatedType = I.getAllocatedType ();
 | 
						|
  const TargetData &TD = TM.DataLayout;
 | 
						|
  unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
 | 
						|
  // Keep stack 32-bit aligned.
 | 
						|
  unsigned int allocatedTypeWords = allocatedTypeSize / 4;
 | 
						|
  if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
 | 
						|
  // Subtract size from stack pointer, thereby allocating some space.
 | 
						|
  BuildMI(BB, X86::SUBri32, 2,
 | 
						|
          X86::ESP).addReg(X86::ESP).addZImm(allocatedTypeWords * 4);
 | 
						|
  // Put a pointer to the space into the result register, by copying
 | 
						|
  // the stack pointer.
 | 
						|
  BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
 | 
						|
}
 | 
						|
    
 | 
						|
 | 
						|
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
 | 
						|
/// into a machine code representation is a very simple peep-hole fashion.  The
 | 
						|
/// generated code sucks but the implementation is nice and simple.
 | 
						|
///
 | 
						|
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
 | 
						|
  return new ISel(TM);
 | 
						|
}
 |