forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2981 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2981 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the X86 implementation of the TargetInstrInfo class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86GenInstrInfo.inc"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetAsmInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  cl::opt<bool>
 | 
						|
  NoFusing("disable-spill-fusing",
 | 
						|
           cl::desc("Disable fusing of spill code into instructions"));
 | 
						|
  cl::opt<bool>
 | 
						|
  PrintFailedFusing("print-failed-fuse-candidates",
 | 
						|
                    cl::desc("Print instructions that the allocator wants to"
 | 
						|
                             " fuse, but the X86 backend currently can't"),
 | 
						|
                    cl::Hidden);
 | 
						|
  cl::opt<bool>
 | 
						|
  ReMatPICStubLoad("remat-pic-stub-load",
 | 
						|
                   cl::desc("Re-materialize load from stub in PIC mode"),
 | 
						|
                   cl::init(false), cl::Hidden);
 | 
						|
}
 | 
						|
 | 
						|
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 | 
						|
  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
 | 
						|
    TM(tm), RI(tm, *this) {
 | 
						|
  SmallVector<unsigned,16> AmbEntries;
 | 
						|
  static const unsigned OpTbl2Addr[][2] = {
 | 
						|
    { X86::ADC32ri,     X86::ADC32mi },
 | 
						|
    { X86::ADC32ri8,    X86::ADC32mi8 },
 | 
						|
    { X86::ADC32rr,     X86::ADC32mr },
 | 
						|
    { X86::ADC64ri32,   X86::ADC64mi32 },
 | 
						|
    { X86::ADC64ri8,    X86::ADC64mi8 },
 | 
						|
    { X86::ADC64rr,     X86::ADC64mr },
 | 
						|
    { X86::ADD16ri,     X86::ADD16mi },
 | 
						|
    { X86::ADD16ri8,    X86::ADD16mi8 },
 | 
						|
    { X86::ADD16rr,     X86::ADD16mr },
 | 
						|
    { X86::ADD32ri,     X86::ADD32mi },
 | 
						|
    { X86::ADD32ri8,    X86::ADD32mi8 },
 | 
						|
    { X86::ADD32rr,     X86::ADD32mr },
 | 
						|
    { X86::ADD64ri32,   X86::ADD64mi32 },
 | 
						|
    { X86::ADD64ri8,    X86::ADD64mi8 },
 | 
						|
    { X86::ADD64rr,     X86::ADD64mr },
 | 
						|
    { X86::ADD8ri,      X86::ADD8mi },
 | 
						|
    { X86::ADD8rr,      X86::ADD8mr },
 | 
						|
    { X86::AND16ri,     X86::AND16mi },
 | 
						|
    { X86::AND16ri8,    X86::AND16mi8 },
 | 
						|
    { X86::AND16rr,     X86::AND16mr },
 | 
						|
    { X86::AND32ri,     X86::AND32mi },
 | 
						|
    { X86::AND32ri8,    X86::AND32mi8 },
 | 
						|
    { X86::AND32rr,     X86::AND32mr },
 | 
						|
    { X86::AND64ri32,   X86::AND64mi32 },
 | 
						|
    { X86::AND64ri8,    X86::AND64mi8 },
 | 
						|
    { X86::AND64rr,     X86::AND64mr },
 | 
						|
    { X86::AND8ri,      X86::AND8mi },
 | 
						|
    { X86::AND8rr,      X86::AND8mr },
 | 
						|
    { X86::DEC16r,      X86::DEC16m },
 | 
						|
    { X86::DEC32r,      X86::DEC32m },
 | 
						|
    { X86::DEC64_16r,   X86::DEC64_16m },
 | 
						|
    { X86::DEC64_32r,   X86::DEC64_32m },
 | 
						|
    { X86::DEC64r,      X86::DEC64m },
 | 
						|
    { X86::DEC8r,       X86::DEC8m },
 | 
						|
    { X86::INC16r,      X86::INC16m },
 | 
						|
    { X86::INC32r,      X86::INC32m },
 | 
						|
    { X86::INC64_16r,   X86::INC64_16m },
 | 
						|
    { X86::INC64_32r,   X86::INC64_32m },
 | 
						|
    { X86::INC64r,      X86::INC64m },
 | 
						|
    { X86::INC8r,       X86::INC8m },
 | 
						|
    { X86::NEG16r,      X86::NEG16m },
 | 
						|
    { X86::NEG32r,      X86::NEG32m },
 | 
						|
    { X86::NEG64r,      X86::NEG64m },
 | 
						|
    { X86::NEG8r,       X86::NEG8m },
 | 
						|
    { X86::NOT16r,      X86::NOT16m },
 | 
						|
    { X86::NOT32r,      X86::NOT32m },
 | 
						|
    { X86::NOT64r,      X86::NOT64m },
 | 
						|
    { X86::NOT8r,       X86::NOT8m },
 | 
						|
    { X86::OR16ri,      X86::OR16mi },
 | 
						|
    { X86::OR16ri8,     X86::OR16mi8 },
 | 
						|
    { X86::OR16rr,      X86::OR16mr },
 | 
						|
    { X86::OR32ri,      X86::OR32mi },
 | 
						|
    { X86::OR32ri8,     X86::OR32mi8 },
 | 
						|
    { X86::OR32rr,      X86::OR32mr },
 | 
						|
    { X86::OR64ri32,    X86::OR64mi32 },
 | 
						|
    { X86::OR64ri8,     X86::OR64mi8 },
 | 
						|
    { X86::OR64rr,      X86::OR64mr },
 | 
						|
    { X86::OR8ri,       X86::OR8mi },
 | 
						|
    { X86::OR8rr,       X86::OR8mr },
 | 
						|
    { X86::ROL16r1,     X86::ROL16m1 },
 | 
						|
    { X86::ROL16rCL,    X86::ROL16mCL },
 | 
						|
    { X86::ROL16ri,     X86::ROL16mi },
 | 
						|
    { X86::ROL32r1,     X86::ROL32m1 },
 | 
						|
    { X86::ROL32rCL,    X86::ROL32mCL },
 | 
						|
    { X86::ROL32ri,     X86::ROL32mi },
 | 
						|
    { X86::ROL64r1,     X86::ROL64m1 },
 | 
						|
    { X86::ROL64rCL,    X86::ROL64mCL },
 | 
						|
    { X86::ROL64ri,     X86::ROL64mi },
 | 
						|
    { X86::ROL8r1,      X86::ROL8m1 },
 | 
						|
    { X86::ROL8rCL,     X86::ROL8mCL },
 | 
						|
    { X86::ROL8ri,      X86::ROL8mi },
 | 
						|
    { X86::ROR16r1,     X86::ROR16m1 },
 | 
						|
    { X86::ROR16rCL,    X86::ROR16mCL },
 | 
						|
    { X86::ROR16ri,     X86::ROR16mi },
 | 
						|
    { X86::ROR32r1,     X86::ROR32m1 },
 | 
						|
    { X86::ROR32rCL,    X86::ROR32mCL },
 | 
						|
    { X86::ROR32ri,     X86::ROR32mi },
 | 
						|
    { X86::ROR64r1,     X86::ROR64m1 },
 | 
						|
    { X86::ROR64rCL,    X86::ROR64mCL },
 | 
						|
    { X86::ROR64ri,     X86::ROR64mi },
 | 
						|
    { X86::ROR8r1,      X86::ROR8m1 },
 | 
						|
    { X86::ROR8rCL,     X86::ROR8mCL },
 | 
						|
    { X86::ROR8ri,      X86::ROR8mi },
 | 
						|
    { X86::SAR16r1,     X86::SAR16m1 },
 | 
						|
    { X86::SAR16rCL,    X86::SAR16mCL },
 | 
						|
    { X86::SAR16ri,     X86::SAR16mi },
 | 
						|
    { X86::SAR32r1,     X86::SAR32m1 },
 | 
						|
    { X86::SAR32rCL,    X86::SAR32mCL },
 | 
						|
    { X86::SAR32ri,     X86::SAR32mi },
 | 
						|
    { X86::SAR64r1,     X86::SAR64m1 },
 | 
						|
    { X86::SAR64rCL,    X86::SAR64mCL },
 | 
						|
    { X86::SAR64ri,     X86::SAR64mi },
 | 
						|
    { X86::SAR8r1,      X86::SAR8m1 },
 | 
						|
    { X86::SAR8rCL,     X86::SAR8mCL },
 | 
						|
    { X86::SAR8ri,      X86::SAR8mi },
 | 
						|
    { X86::SBB32ri,     X86::SBB32mi },
 | 
						|
    { X86::SBB32ri8,    X86::SBB32mi8 },
 | 
						|
    { X86::SBB32rr,     X86::SBB32mr },
 | 
						|
    { X86::SBB64ri32,   X86::SBB64mi32 },
 | 
						|
    { X86::SBB64ri8,    X86::SBB64mi8 },
 | 
						|
    { X86::SBB64rr,     X86::SBB64mr },
 | 
						|
    { X86::SHL16rCL,    X86::SHL16mCL },
 | 
						|
    { X86::SHL16ri,     X86::SHL16mi },
 | 
						|
    { X86::SHL32rCL,    X86::SHL32mCL },
 | 
						|
    { X86::SHL32ri,     X86::SHL32mi },
 | 
						|
    { X86::SHL64rCL,    X86::SHL64mCL },
 | 
						|
    { X86::SHL64ri,     X86::SHL64mi },
 | 
						|
    { X86::SHL8rCL,     X86::SHL8mCL },
 | 
						|
    { X86::SHL8ri,      X86::SHL8mi },
 | 
						|
    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
 | 
						|
    { X86::SHLD16rri8,  X86::SHLD16mri8 },
 | 
						|
    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
 | 
						|
    { X86::SHLD32rri8,  X86::SHLD32mri8 },
 | 
						|
    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
 | 
						|
    { X86::SHLD64rri8,  X86::SHLD64mri8 },
 | 
						|
    { X86::SHR16r1,     X86::SHR16m1 },
 | 
						|
    { X86::SHR16rCL,    X86::SHR16mCL },
 | 
						|
    { X86::SHR16ri,     X86::SHR16mi },
 | 
						|
    { X86::SHR32r1,     X86::SHR32m1 },
 | 
						|
    { X86::SHR32rCL,    X86::SHR32mCL },
 | 
						|
    { X86::SHR32ri,     X86::SHR32mi },
 | 
						|
    { X86::SHR64r1,     X86::SHR64m1 },
 | 
						|
    { X86::SHR64rCL,    X86::SHR64mCL },
 | 
						|
    { X86::SHR64ri,     X86::SHR64mi },
 | 
						|
    { X86::SHR8r1,      X86::SHR8m1 },
 | 
						|
    { X86::SHR8rCL,     X86::SHR8mCL },
 | 
						|
    { X86::SHR8ri,      X86::SHR8mi },
 | 
						|
    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
 | 
						|
    { X86::SHRD16rri8,  X86::SHRD16mri8 },
 | 
						|
    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
 | 
						|
    { X86::SHRD32rri8,  X86::SHRD32mri8 },
 | 
						|
    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
 | 
						|
    { X86::SHRD64rri8,  X86::SHRD64mri8 },
 | 
						|
    { X86::SUB16ri,     X86::SUB16mi },
 | 
						|
    { X86::SUB16ri8,    X86::SUB16mi8 },
 | 
						|
    { X86::SUB16rr,     X86::SUB16mr },
 | 
						|
    { X86::SUB32ri,     X86::SUB32mi },
 | 
						|
    { X86::SUB32ri8,    X86::SUB32mi8 },
 | 
						|
    { X86::SUB32rr,     X86::SUB32mr },
 | 
						|
    { X86::SUB64ri32,   X86::SUB64mi32 },
 | 
						|
    { X86::SUB64ri8,    X86::SUB64mi8 },
 | 
						|
    { X86::SUB64rr,     X86::SUB64mr },
 | 
						|
    { X86::SUB8ri,      X86::SUB8mi },
 | 
						|
    { X86::SUB8rr,      X86::SUB8mr },
 | 
						|
    { X86::XOR16ri,     X86::XOR16mi },
 | 
						|
    { X86::XOR16ri8,    X86::XOR16mi8 },
 | 
						|
    { X86::XOR16rr,     X86::XOR16mr },
 | 
						|
    { X86::XOR32ri,     X86::XOR32mi },
 | 
						|
    { X86::XOR32ri8,    X86::XOR32mi8 },
 | 
						|
    { X86::XOR32rr,     X86::XOR32mr },
 | 
						|
    { X86::XOR64ri32,   X86::XOR64mi32 },
 | 
						|
    { X86::XOR64ri8,    X86::XOR64mi8 },
 | 
						|
    { X86::XOR64rr,     X86::XOR64mr },
 | 
						|
    { X86::XOR8ri,      X86::XOR8mi },
 | 
						|
    { X86::XOR8rr,      X86::XOR8mr }
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
 | 
						|
    unsigned RegOp = OpTbl2Addr[i][0];
 | 
						|
    unsigned MemOp = OpTbl2Addr[i][1];
 | 
						|
    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
 | 
						|
                                                     MemOp)).second)
 | 
						|
      assert(false && "Duplicated entries?");
 | 
						|
    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
 | 
						|
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | 
						|
                                                std::make_pair(RegOp,
 | 
						|
                                                              AuxInfo))).second)
 | 
						|
      AmbEntries.push_back(MemOp);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the third value is 1, then it's folding either a load or a store.
 | 
						|
  static const unsigned OpTbl0[][3] = {
 | 
						|
    { X86::CALL32r,     X86::CALL32m, 1 },
 | 
						|
    { X86::CALL64r,     X86::CALL64m, 1 },
 | 
						|
    { X86::CMP16ri,     X86::CMP16mi, 1 },
 | 
						|
    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
 | 
						|
    { X86::CMP16rr,     X86::CMP16mr, 1 },
 | 
						|
    { X86::CMP32ri,     X86::CMP32mi, 1 },
 | 
						|
    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
 | 
						|
    { X86::CMP32rr,     X86::CMP32mr, 1 },
 | 
						|
    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
 | 
						|
    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
 | 
						|
    { X86::CMP64rr,     X86::CMP64mr, 1 },
 | 
						|
    { X86::CMP8ri,      X86::CMP8mi, 1 },
 | 
						|
    { X86::CMP8rr,      X86::CMP8mr, 1 },
 | 
						|
    { X86::DIV16r,      X86::DIV16m, 1 },
 | 
						|
    { X86::DIV32r,      X86::DIV32m, 1 },
 | 
						|
    { X86::DIV64r,      X86::DIV64m, 1 },
 | 
						|
    { X86::DIV8r,       X86::DIV8m, 1 },
 | 
						|
    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
 | 
						|
    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
 | 
						|
    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
 | 
						|
    { X86::IDIV16r,     X86::IDIV16m, 1 },
 | 
						|
    { X86::IDIV32r,     X86::IDIV32m, 1 },
 | 
						|
    { X86::IDIV64r,     X86::IDIV64m, 1 },
 | 
						|
    { X86::IDIV8r,      X86::IDIV8m, 1 },
 | 
						|
    { X86::IMUL16r,     X86::IMUL16m, 1 },
 | 
						|
    { X86::IMUL32r,     X86::IMUL32m, 1 },
 | 
						|
    { X86::IMUL64r,     X86::IMUL64m, 1 },
 | 
						|
    { X86::IMUL8r,      X86::IMUL8m, 1 },
 | 
						|
    { X86::JMP32r,      X86::JMP32m, 1 },
 | 
						|
    { X86::JMP64r,      X86::JMP64m, 1 },
 | 
						|
    { X86::MOV16ri,     X86::MOV16mi, 0 },
 | 
						|
    { X86::MOV16rr,     X86::MOV16mr, 0 },
 | 
						|
    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
 | 
						|
    { X86::MOV32ri,     X86::MOV32mi, 0 },
 | 
						|
    { X86::MOV32rr,     X86::MOV32mr, 0 },
 | 
						|
    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
 | 
						|
    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
 | 
						|
    { X86::MOV64rr,     X86::MOV64mr, 0 },
 | 
						|
    { X86::MOV8ri,      X86::MOV8mi, 0 },
 | 
						|
    { X86::MOV8rr,      X86::MOV8mr, 0 },
 | 
						|
    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
 | 
						|
    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
 | 
						|
    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
 | 
						|
    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
 | 
						|
    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
 | 
						|
    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
 | 
						|
    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
 | 
						|
    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
 | 
						|
    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
 | 
						|
    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
 | 
						|
    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
 | 
						|
    { X86::MUL16r,      X86::MUL16m, 1 },
 | 
						|
    { X86::MUL32r,      X86::MUL32m, 1 },
 | 
						|
    { X86::MUL64r,      X86::MUL64m, 1 },
 | 
						|
    { X86::MUL8r,       X86::MUL8m, 1 },
 | 
						|
    { X86::SETAEr,      X86::SETAEm, 0 },
 | 
						|
    { X86::SETAr,       X86::SETAm, 0 },
 | 
						|
    { X86::SETBEr,      X86::SETBEm, 0 },
 | 
						|
    { X86::SETBr,       X86::SETBm, 0 },
 | 
						|
    { X86::SETEr,       X86::SETEm, 0 },
 | 
						|
    { X86::SETGEr,      X86::SETGEm, 0 },
 | 
						|
    { X86::SETGr,       X86::SETGm, 0 },
 | 
						|
    { X86::SETLEr,      X86::SETLEm, 0 },
 | 
						|
    { X86::SETLr,       X86::SETLm, 0 },
 | 
						|
    { X86::SETNEr,      X86::SETNEm, 0 },
 | 
						|
    { X86::SETNPr,      X86::SETNPm, 0 },
 | 
						|
    { X86::SETNSr,      X86::SETNSm, 0 },
 | 
						|
    { X86::SETPr,       X86::SETPm, 0 },
 | 
						|
    { X86::SETSr,       X86::SETSm, 0 },
 | 
						|
    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
 | 
						|
    { X86::TEST16ri,    X86::TEST16mi, 1 },
 | 
						|
    { X86::TEST32ri,    X86::TEST32mi, 1 },
 | 
						|
    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
 | 
						|
    { X86::TEST8ri,     X86::TEST8mi, 1 }
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
 | 
						|
    unsigned RegOp = OpTbl0[i][0];
 | 
						|
    unsigned MemOp = OpTbl0[i][1];
 | 
						|
    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
 | 
						|
                                                 MemOp)).second)
 | 
						|
      assert(false && "Duplicated entries?");
 | 
						|
    unsigned FoldedLoad = OpTbl0[i][2];
 | 
						|
    // Index 0, folded load or store.
 | 
						|
    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
 | 
						|
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
 | 
						|
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | 
						|
                                     std::make_pair(RegOp, AuxInfo))).second)
 | 
						|
        AmbEntries.push_back(MemOp);
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned OpTbl1[][2] = {
 | 
						|
    { X86::CMP16rr,         X86::CMP16rm },
 | 
						|
    { X86::CMP32rr,         X86::CMP32rm },
 | 
						|
    { X86::CMP64rr,         X86::CMP64rm },
 | 
						|
    { X86::CMP8rr,          X86::CMP8rm },
 | 
						|
    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
 | 
						|
    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
 | 
						|
    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
 | 
						|
    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
 | 
						|
    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
 | 
						|
    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
 | 
						|
    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
 | 
						|
    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
 | 
						|
    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
 | 
						|
    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
 | 
						|
    { X86::FsMOVAPDrr,      X86::MOVSDrm },
 | 
						|
    { X86::FsMOVAPSrr,      X86::MOVSSrm },
 | 
						|
    { X86::IMUL16rri,       X86::IMUL16rmi },
 | 
						|
    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
 | 
						|
    { X86::IMUL32rri,       X86::IMUL32rmi },
 | 
						|
    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
 | 
						|
    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
 | 
						|
    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
 | 
						|
    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
 | 
						|
    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
 | 
						|
    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
 | 
						|
    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
 | 
						|
    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
 | 
						|
    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
 | 
						|
    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
 | 
						|
    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
 | 
						|
    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
 | 
						|
    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
 | 
						|
    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
 | 
						|
    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
 | 
						|
    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
 | 
						|
    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
 | 
						|
    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
 | 
						|
    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
 | 
						|
    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
 | 
						|
    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
 | 
						|
    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
 | 
						|
    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
 | 
						|
    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
 | 
						|
    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
 | 
						|
    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
 | 
						|
    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
 | 
						|
    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
 | 
						|
    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
 | 
						|
    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
 | 
						|
    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
 | 
						|
    { X86::MOV16rr,         X86::MOV16rm },
 | 
						|
    { X86::MOV16to16_,      X86::MOV16_rm },
 | 
						|
    { X86::MOV32rr,         X86::MOV32rm },
 | 
						|
    { X86::MOV32to32_,      X86::MOV32_rm },
 | 
						|
    { X86::MOV64rr,         X86::MOV64rm },
 | 
						|
    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
 | 
						|
    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
 | 
						|
    { X86::MOV8rr,          X86::MOV8rm },
 | 
						|
    { X86::MOVAPDrr,        X86::MOVAPDrm },
 | 
						|
    { X86::MOVAPSrr,        X86::MOVAPSrm },
 | 
						|
    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
 | 
						|
    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
 | 
						|
    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
 | 
						|
    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
 | 
						|
    { X86::MOVSDrr,         X86::MOVSDrm },
 | 
						|
    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
 | 
						|
    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
 | 
						|
    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
 | 
						|
    { X86::MOVSSrr,         X86::MOVSSrm },
 | 
						|
    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
 | 
						|
    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
 | 
						|
    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
 | 
						|
    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
 | 
						|
    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
 | 
						|
    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
 | 
						|
    { X86::MOVUPDrr,        X86::MOVUPDrm },
 | 
						|
    { X86::MOVUPSrr,        X86::MOVUPSrm },
 | 
						|
    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
 | 
						|
    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
 | 
						|
    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
 | 
						|
    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
 | 
						|
    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
 | 
						|
    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
 | 
						|
    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
 | 
						|
    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
 | 
						|
    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
 | 
						|
    { X86::PSHUFDri,        X86::PSHUFDmi },
 | 
						|
    { X86::PSHUFHWri,       X86::PSHUFHWmi },
 | 
						|
    { X86::PSHUFLWri,       X86::PSHUFLWmi },
 | 
						|
    { X86::RCPPSr,          X86::RCPPSm },
 | 
						|
    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
 | 
						|
    { X86::RSQRTPSr,        X86::RSQRTPSm },
 | 
						|
    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
 | 
						|
    { X86::RSQRTSSr,        X86::RSQRTSSm },
 | 
						|
    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
 | 
						|
    { X86::SQRTPDr,         X86::SQRTPDm },
 | 
						|
    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
 | 
						|
    { X86::SQRTPSr,         X86::SQRTPSm },
 | 
						|
    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
 | 
						|
    { X86::SQRTSDr,         X86::SQRTSDm },
 | 
						|
    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
 | 
						|
    { X86::SQRTSSr,         X86::SQRTSSm },
 | 
						|
    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
 | 
						|
    { X86::TEST16rr,        X86::TEST16rm },
 | 
						|
    { X86::TEST32rr,        X86::TEST32rm },
 | 
						|
    { X86::TEST64rr,        X86::TEST64rm },
 | 
						|
    { X86::TEST8rr,         X86::TEST8rm },
 | 
						|
    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
 | 
						|
    { X86::UCOMISDrr,       X86::UCOMISDrm },
 | 
						|
    { X86::UCOMISSrr,       X86::UCOMISSrm }
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
 | 
						|
    unsigned RegOp = OpTbl1[i][0];
 | 
						|
    unsigned MemOp = OpTbl1[i][1];
 | 
						|
    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
 | 
						|
                                                 MemOp)).second)
 | 
						|
      assert(false && "Duplicated entries?");
 | 
						|
    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
 | 
						|
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
 | 
						|
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | 
						|
                                     std::make_pair(RegOp, AuxInfo))).second)
 | 
						|
        AmbEntries.push_back(MemOp);
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned OpTbl2[][2] = {
 | 
						|
    { X86::ADC32rr,         X86::ADC32rm },
 | 
						|
    { X86::ADC64rr,         X86::ADC64rm },
 | 
						|
    { X86::ADD16rr,         X86::ADD16rm },
 | 
						|
    { X86::ADD32rr,         X86::ADD32rm },
 | 
						|
    { X86::ADD64rr,         X86::ADD64rm },
 | 
						|
    { X86::ADD8rr,          X86::ADD8rm },
 | 
						|
    { X86::ADDPDrr,         X86::ADDPDrm },
 | 
						|
    { X86::ADDPSrr,         X86::ADDPSrm },
 | 
						|
    { X86::ADDSDrr,         X86::ADDSDrm },
 | 
						|
    { X86::ADDSSrr,         X86::ADDSSrm },
 | 
						|
    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
 | 
						|
    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
 | 
						|
    { X86::AND16rr,         X86::AND16rm },
 | 
						|
    { X86::AND32rr,         X86::AND32rm },
 | 
						|
    { X86::AND64rr,         X86::AND64rm },
 | 
						|
    { X86::AND8rr,          X86::AND8rm },
 | 
						|
    { X86::ANDNPDrr,        X86::ANDNPDrm },
 | 
						|
    { X86::ANDNPSrr,        X86::ANDNPSrm },
 | 
						|
    { X86::ANDPDrr,         X86::ANDPDrm },
 | 
						|
    { X86::ANDPSrr,         X86::ANDPSrm },
 | 
						|
    { X86::CMOVA16rr,       X86::CMOVA16rm },
 | 
						|
    { X86::CMOVA32rr,       X86::CMOVA32rm },
 | 
						|
    { X86::CMOVA64rr,       X86::CMOVA64rm },
 | 
						|
    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
 | 
						|
    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
 | 
						|
    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
 | 
						|
    { X86::CMOVB16rr,       X86::CMOVB16rm },
 | 
						|
    { X86::CMOVB32rr,       X86::CMOVB32rm },
 | 
						|
    { X86::CMOVB64rr,       X86::CMOVB64rm },
 | 
						|
    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
 | 
						|
    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
 | 
						|
    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
 | 
						|
    { X86::CMOVE16rr,       X86::CMOVE16rm },
 | 
						|
    { X86::CMOVE32rr,       X86::CMOVE32rm },
 | 
						|
    { X86::CMOVE64rr,       X86::CMOVE64rm },
 | 
						|
    { X86::CMOVG16rr,       X86::CMOVG16rm },
 | 
						|
    { X86::CMOVG32rr,       X86::CMOVG32rm },
 | 
						|
    { X86::CMOVG64rr,       X86::CMOVG64rm },
 | 
						|
    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
 | 
						|
    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
 | 
						|
    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
 | 
						|
    { X86::CMOVL16rr,       X86::CMOVL16rm },
 | 
						|
    { X86::CMOVL32rr,       X86::CMOVL32rm },
 | 
						|
    { X86::CMOVL64rr,       X86::CMOVL64rm },
 | 
						|
    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
 | 
						|
    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
 | 
						|
    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
 | 
						|
    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
 | 
						|
    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
 | 
						|
    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
 | 
						|
    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
 | 
						|
    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
 | 
						|
    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
 | 
						|
    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
 | 
						|
    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
 | 
						|
    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
 | 
						|
    { X86::CMOVP16rr,       X86::CMOVP16rm },
 | 
						|
    { X86::CMOVP32rr,       X86::CMOVP32rm },
 | 
						|
    { X86::CMOVP64rr,       X86::CMOVP64rm },
 | 
						|
    { X86::CMOVS16rr,       X86::CMOVS16rm },
 | 
						|
    { X86::CMOVS32rr,       X86::CMOVS32rm },
 | 
						|
    { X86::CMOVS64rr,       X86::CMOVS64rm },
 | 
						|
    { X86::CMPPDrri,        X86::CMPPDrmi },
 | 
						|
    { X86::CMPPSrri,        X86::CMPPSrmi },
 | 
						|
    { X86::CMPSDrr,         X86::CMPSDrm },
 | 
						|
    { X86::CMPSSrr,         X86::CMPSSrm },
 | 
						|
    { X86::DIVPDrr,         X86::DIVPDrm },
 | 
						|
    { X86::DIVPSrr,         X86::DIVPSrm },
 | 
						|
    { X86::DIVSDrr,         X86::DIVSDrm },
 | 
						|
    { X86::DIVSSrr,         X86::DIVSSrm },
 | 
						|
    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
 | 
						|
    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
 | 
						|
    { X86::FsANDPDrr,       X86::FsANDPDrm },
 | 
						|
    { X86::FsANDPSrr,       X86::FsANDPSrm },
 | 
						|
    { X86::FsORPDrr,        X86::FsORPDrm },
 | 
						|
    { X86::FsORPSrr,        X86::FsORPSrm },
 | 
						|
    { X86::FsXORPDrr,       X86::FsXORPDrm },
 | 
						|
    { X86::FsXORPSrr,       X86::FsXORPSrm },
 | 
						|
    { X86::HADDPDrr,        X86::HADDPDrm },
 | 
						|
    { X86::HADDPSrr,        X86::HADDPSrm },
 | 
						|
    { X86::HSUBPDrr,        X86::HSUBPDrm },
 | 
						|
    { X86::HSUBPSrr,        X86::HSUBPSrm },
 | 
						|
    { X86::IMUL16rr,        X86::IMUL16rm },
 | 
						|
    { X86::IMUL32rr,        X86::IMUL32rm },
 | 
						|
    { X86::IMUL64rr,        X86::IMUL64rm },
 | 
						|
    { X86::MAXPDrr,         X86::MAXPDrm },
 | 
						|
    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
 | 
						|
    { X86::MAXPSrr,         X86::MAXPSrm },
 | 
						|
    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
 | 
						|
    { X86::MAXSDrr,         X86::MAXSDrm },
 | 
						|
    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
 | 
						|
    { X86::MAXSSrr,         X86::MAXSSrm },
 | 
						|
    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
 | 
						|
    { X86::MINPDrr,         X86::MINPDrm },
 | 
						|
    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
 | 
						|
    { X86::MINPSrr,         X86::MINPSrm },
 | 
						|
    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
 | 
						|
    { X86::MINSDrr,         X86::MINSDrm },
 | 
						|
    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
 | 
						|
    { X86::MINSSrr,         X86::MINSSrm },
 | 
						|
    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
 | 
						|
    { X86::MULPDrr,         X86::MULPDrm },
 | 
						|
    { X86::MULPSrr,         X86::MULPSrm },
 | 
						|
    { X86::MULSDrr,         X86::MULSDrm },
 | 
						|
    { X86::MULSSrr,         X86::MULSSrm },
 | 
						|
    { X86::OR16rr,          X86::OR16rm },
 | 
						|
    { X86::OR32rr,          X86::OR32rm },
 | 
						|
    { X86::OR64rr,          X86::OR64rm },
 | 
						|
    { X86::OR8rr,           X86::OR8rm },
 | 
						|
    { X86::ORPDrr,          X86::ORPDrm },
 | 
						|
    { X86::ORPSrr,          X86::ORPSrm },
 | 
						|
    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
 | 
						|
    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
 | 
						|
    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
 | 
						|
    { X86::PADDBrr,         X86::PADDBrm },
 | 
						|
    { X86::PADDDrr,         X86::PADDDrm },
 | 
						|
    { X86::PADDQrr,         X86::PADDQrm },
 | 
						|
    { X86::PADDSBrr,        X86::PADDSBrm },
 | 
						|
    { X86::PADDSWrr,        X86::PADDSWrm },
 | 
						|
    { X86::PADDWrr,         X86::PADDWrm },
 | 
						|
    { X86::PANDNrr,         X86::PANDNrm },
 | 
						|
    { X86::PANDrr,          X86::PANDrm },
 | 
						|
    { X86::PAVGBrr,         X86::PAVGBrm },
 | 
						|
    { X86::PAVGWrr,         X86::PAVGWrm },
 | 
						|
    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
 | 
						|
    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
 | 
						|
    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
 | 
						|
    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
 | 
						|
    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
 | 
						|
    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
 | 
						|
    { X86::PINSRWrri,       X86::PINSRWrmi },
 | 
						|
    { X86::PMADDWDrr,       X86::PMADDWDrm },
 | 
						|
    { X86::PMAXSWrr,        X86::PMAXSWrm },
 | 
						|
    { X86::PMAXUBrr,        X86::PMAXUBrm },
 | 
						|
    { X86::PMINSWrr,        X86::PMINSWrm },
 | 
						|
    { X86::PMINUBrr,        X86::PMINUBrm },
 | 
						|
    { X86::PMULDQrr,        X86::PMULDQrm },
 | 
						|
    { X86::PMULDQrr_int,    X86::PMULDQrm_int },
 | 
						|
    { X86::PMULHUWrr,       X86::PMULHUWrm },
 | 
						|
    { X86::PMULHWrr,        X86::PMULHWrm },
 | 
						|
    { X86::PMULLDrr,        X86::PMULLDrm },
 | 
						|
    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
 | 
						|
    { X86::PMULLWrr,        X86::PMULLWrm },
 | 
						|
    { X86::PMULUDQrr,       X86::PMULUDQrm },
 | 
						|
    { X86::PORrr,           X86::PORrm },
 | 
						|
    { X86::PSADBWrr,        X86::PSADBWrm },
 | 
						|
    { X86::PSLLDrr,         X86::PSLLDrm },
 | 
						|
    { X86::PSLLQrr,         X86::PSLLQrm },
 | 
						|
    { X86::PSLLWrr,         X86::PSLLWrm },
 | 
						|
    { X86::PSRADrr,         X86::PSRADrm },
 | 
						|
    { X86::PSRAWrr,         X86::PSRAWrm },
 | 
						|
    { X86::PSRLDrr,         X86::PSRLDrm },
 | 
						|
    { X86::PSRLQrr,         X86::PSRLQrm },
 | 
						|
    { X86::PSRLWrr,         X86::PSRLWrm },
 | 
						|
    { X86::PSUBBrr,         X86::PSUBBrm },
 | 
						|
    { X86::PSUBDrr,         X86::PSUBDrm },
 | 
						|
    { X86::PSUBSBrr,        X86::PSUBSBrm },
 | 
						|
    { X86::PSUBSWrr,        X86::PSUBSWrm },
 | 
						|
    { X86::PSUBWrr,         X86::PSUBWrm },
 | 
						|
    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
 | 
						|
    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
 | 
						|
    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
 | 
						|
    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
 | 
						|
    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
 | 
						|
    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
 | 
						|
    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
 | 
						|
    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
 | 
						|
    { X86::PXORrr,          X86::PXORrm },
 | 
						|
    { X86::SBB32rr,         X86::SBB32rm },
 | 
						|
    { X86::SBB64rr,         X86::SBB64rm },
 | 
						|
    { X86::SHUFPDrri,       X86::SHUFPDrmi },
 | 
						|
    { X86::SHUFPSrri,       X86::SHUFPSrmi },
 | 
						|
    { X86::SUB16rr,         X86::SUB16rm },
 | 
						|
    { X86::SUB32rr,         X86::SUB32rm },
 | 
						|
    { X86::SUB64rr,         X86::SUB64rm },
 | 
						|
    { X86::SUB8rr,          X86::SUB8rm },
 | 
						|
    { X86::SUBPDrr,         X86::SUBPDrm },
 | 
						|
    { X86::SUBPSrr,         X86::SUBPSrm },
 | 
						|
    { X86::SUBSDrr,         X86::SUBSDrm },
 | 
						|
    { X86::SUBSSrr,         X86::SUBSSrm },
 | 
						|
    // FIXME: TEST*rr -> swapped operand of TEST*mr.
 | 
						|
    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
 | 
						|
    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
 | 
						|
    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
 | 
						|
    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
 | 
						|
    { X86::XOR16rr,         X86::XOR16rm },
 | 
						|
    { X86::XOR32rr,         X86::XOR32rm },
 | 
						|
    { X86::XOR64rr,         X86::XOR64rm },
 | 
						|
    { X86::XOR8rr,          X86::XOR8rm },
 | 
						|
    { X86::XORPDrr,         X86::XORPDrm },
 | 
						|
    { X86::XORPSrr,         X86::XORPSrm }
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
 | 
						|
    unsigned RegOp = OpTbl2[i][0];
 | 
						|
    unsigned MemOp = OpTbl2[i][1];
 | 
						|
    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
 | 
						|
                                                 MemOp)).second)
 | 
						|
      assert(false && "Duplicated entries?");
 | 
						|
    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
 | 
						|
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
 | 
						|
                                   std::make_pair(RegOp, AuxInfo))).second)
 | 
						|
      AmbEntries.push_back(MemOp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove ambiguous entries.
 | 
						|
  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
 | 
						|
                               unsigned& sourceReg,
 | 
						|
                               unsigned& destReg) const {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::MOV8rr:
 | 
						|
  case X86::MOV16rr:
 | 
						|
  case X86::MOV32rr: 
 | 
						|
  case X86::MOV64rr:
 | 
						|
  case X86::MOV16to16_:
 | 
						|
  case X86::MOV32to32_:
 | 
						|
  case X86::MOVSSrr:
 | 
						|
  case X86::MOVSDrr:
 | 
						|
 | 
						|
  // FP Stack register class copies
 | 
						|
  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
 | 
						|
  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
 | 
						|
  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
 | 
						|
      
 | 
						|
  case X86::FsMOVAPSrr:
 | 
						|
  case X86::FsMOVAPDrr:
 | 
						|
  case X86::MOVAPSrr:
 | 
						|
  case X86::MOVAPDrr:
 | 
						|
  case X86::MOVSS2PSrr:
 | 
						|
  case X86::MOVSD2PDrr:
 | 
						|
  case X86::MOVPS2SSrr:
 | 
						|
  case X86::MOVPD2SDrr:
 | 
						|
  case X86::MMX_MOVD64rr:
 | 
						|
  case X86::MMX_MOVQ64rr:
 | 
						|
    assert(MI.getNumOperands() >= 2 &&
 | 
						|
           MI.getOperand(0).isReg() &&
 | 
						|
           MI.getOperand(1).isReg() &&
 | 
						|
           "invalid register-register move instruction");
 | 
						|
    sourceReg = MI.getOperand(1).getReg();
 | 
						|
    destReg = MI.getOperand(0).getReg();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, 
 | 
						|
                                           int &FrameIndex) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case X86::MOV8rm:
 | 
						|
  case X86::MOV16rm:
 | 
						|
  case X86::MOV16_rm:
 | 
						|
  case X86::MOV32rm:
 | 
						|
  case X86::MOV32_rm:
 | 
						|
  case X86::MOV64rm:
 | 
						|
  case X86::LD_Fp64m:
 | 
						|
  case X86::MOVSSrm:
 | 
						|
  case X86::MOVSDrm:
 | 
						|
  case X86::MOVAPSrm:
 | 
						|
  case X86::MOVAPDrm:
 | 
						|
  case X86::MMX_MOVD64rm:
 | 
						|
  case X86::MMX_MOVQ64rm:
 | 
						|
    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
 | 
						|
        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
 | 
						|
        MI->getOperand(2).getImm() == 1 &&
 | 
						|
        MI->getOperand(3).getReg() == 0 &&
 | 
						|
        MI->getOperand(4).getImm() == 0) {
 | 
						|
      FrameIndex = MI->getOperand(1).getIndex();
 | 
						|
      return MI->getOperand(0).getReg();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
 | 
						|
                                          int &FrameIndex) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case X86::MOV8mr:
 | 
						|
  case X86::MOV16mr:
 | 
						|
  case X86::MOV16_mr:
 | 
						|
  case X86::MOV32mr:
 | 
						|
  case X86::MOV32_mr:
 | 
						|
  case X86::MOV64mr:
 | 
						|
  case X86::ST_FpP64m:
 | 
						|
  case X86::MOVSSmr:
 | 
						|
  case X86::MOVSDmr:
 | 
						|
  case X86::MOVAPSmr:
 | 
						|
  case X86::MOVAPDmr:
 | 
						|
  case X86::MMX_MOVD64mr:
 | 
						|
  case X86::MMX_MOVQ64mr:
 | 
						|
  case X86::MMX_MOVNTQmr:
 | 
						|
    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
 | 
						|
        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
 | 
						|
        MI->getOperand(1).getImm() == 1 &&
 | 
						|
        MI->getOperand(2).getReg() == 0 &&
 | 
						|
        MI->getOperand(3).getImm() == 0) {
 | 
						|
      FrameIndex = MI->getOperand(0).getIndex();
 | 
						|
      return MI->getOperand(4).getReg();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
 | 
						|
/// X86::MOVPC32r.
 | 
						|
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
 | 
						|
  bool isPICBase = false;
 | 
						|
  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | 
						|
         E = MRI.def_end(); I != E; ++I) {
 | 
						|
    MachineInstr *DefMI = I.getOperand().getParent();
 | 
						|
    if (DefMI->getOpcode() != X86::MOVPC32r)
 | 
						|
      return false;
 | 
						|
    assert(!isPICBase && "More than one PIC base?");
 | 
						|
    isPICBase = true;
 | 
						|
  }
 | 
						|
  return isPICBase;
 | 
						|
}
 | 
						|
 | 
						|
/// isGVStub - Return true if the GV requires an extra load to get the
 | 
						|
/// real address.
 | 
						|
static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
 | 
						|
  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
 | 
						|
}
 | 
						|
 
 | 
						|
bool
 | 
						|
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
    case X86::MOV8rm:
 | 
						|
    case X86::MOV16rm:
 | 
						|
    case X86::MOV16_rm:
 | 
						|
    case X86::MOV32rm:
 | 
						|
    case X86::MOV32_rm:
 | 
						|
    case X86::MOV64rm:
 | 
						|
    case X86::LD_Fp64m:
 | 
						|
    case X86::MOVSSrm:
 | 
						|
    case X86::MOVSDrm:
 | 
						|
    case X86::MOVAPSrm:
 | 
						|
    case X86::MOVAPDrm:
 | 
						|
    case X86::MMX_MOVD64rm:
 | 
						|
    case X86::MMX_MOVQ64rm: {
 | 
						|
      // Loads from constant pools are trivially rematerializable.
 | 
						|
      if (MI->getOperand(1).isReg() &&
 | 
						|
          MI->getOperand(2).isImm() &&
 | 
						|
          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | 
						|
          (MI->getOperand(4).isCPI() ||
 | 
						|
           (MI->getOperand(4).isGlobal() &&
 | 
						|
            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
 | 
						|
        unsigned BaseReg = MI->getOperand(1).getReg();
 | 
						|
        if (BaseReg == 0)
 | 
						|
          return true;
 | 
						|
        // Allow re-materialization of PIC load.
 | 
						|
        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
 | 
						|
          return false;
 | 
						|
        const MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
        const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
        bool isPICBase = false;
 | 
						|
        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | 
						|
               E = MRI.def_end(); I != E; ++I) {
 | 
						|
          MachineInstr *DefMI = I.getOperand().getParent();
 | 
						|
          if (DefMI->getOpcode() != X86::MOVPC32r)
 | 
						|
            return false;
 | 
						|
          assert(!isPICBase && "More than one PIC base?");
 | 
						|
          isPICBase = true;
 | 
						|
        }
 | 
						|
        return isPICBase;
 | 
						|
      } 
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 
 | 
						|
     case X86::LEA32r:
 | 
						|
     case X86::LEA64r: {
 | 
						|
       if (MI->getOperand(2).isImm() &&
 | 
						|
           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | 
						|
           !MI->getOperand(4).isReg()) {
 | 
						|
         // lea fi#, lea GV, etc. are all rematerializable.
 | 
						|
         if (!MI->getOperand(1).isReg())
 | 
						|
           return true;
 | 
						|
         unsigned BaseReg = MI->getOperand(1).getReg();
 | 
						|
         if (BaseReg == 0)
 | 
						|
           return true;
 | 
						|
         // Allow re-materialization of lea PICBase + x.
 | 
						|
         const MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
         const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
         return regIsPICBase(BaseReg, MRI);
 | 
						|
       }
 | 
						|
       return false;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  // All other instructions marked M_REMATERIALIZABLE are always trivially
 | 
						|
  // rematerializable.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
 | 
						|
/// would clobber the EFLAGS condition register. Note the result may be
 | 
						|
/// conservative. If it cannot definitely determine the safety after visiting
 | 
						|
/// two instructions it assumes it's not safe.
 | 
						|
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
 | 
						|
                                  MachineBasicBlock::iterator I) {
 | 
						|
  // For compile time consideration, if we are not able to determine the
 | 
						|
  // safety after visiting 2 instructions, we will assume it's not safe.
 | 
						|
  for (unsigned i = 0; i < 2; ++i) {
 | 
						|
    if (I == MBB.end())
 | 
						|
      // Reached end of block, it's safe.
 | 
						|
      return true;
 | 
						|
    bool SeenDef = false;
 | 
						|
    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
 | 
						|
      MachineOperand &MO = I->getOperand(j);
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
      if (MO.getReg() == X86::EFLAGS) {
 | 
						|
        if (MO.isUse())
 | 
						|
          return false;
 | 
						|
        SeenDef = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SeenDef)
 | 
						|
      // This instruction defines EFLAGS, no need to look any further.
 | 
						|
      return true;
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conservative answer.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
 | 
						|
                                 MachineBasicBlock::iterator I,
 | 
						|
                                 unsigned DestReg,
 | 
						|
                                 const MachineInstr *Orig) const {
 | 
						|
  unsigned SubIdx = Orig->getOperand(0).isReg()
 | 
						|
    ? Orig->getOperand(0).getSubReg() : 0;
 | 
						|
  bool ChangeSubIdx = SubIdx != 0;
 | 
						|
  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
 | 
						|
    DestReg = RI.getSubReg(DestReg, SubIdx);
 | 
						|
    SubIdx = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // MOV32r0 etc. are implemented with xor which clobbers condition code.
 | 
						|
  // Re-materialize them as movri instructions to avoid side effects.
 | 
						|
  bool Emitted = false;
 | 
						|
  switch (Orig->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case X86::MOV8r0:
 | 
						|
  case X86::MOV16r0:
 | 
						|
  case X86::MOV32r0:
 | 
						|
  case X86::MOV64r0: {
 | 
						|
    if (!isSafeToClobberEFLAGS(MBB, I)) {
 | 
						|
      unsigned Opc = 0;
 | 
						|
      switch (Orig->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
 | 
						|
      case X86::MOV16r0: Opc = X86::MOV16ri; break;
 | 
						|
      case X86::MOV32r0: Opc = X86::MOV32ri; break;
 | 
						|
      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
 | 
						|
      }
 | 
						|
      BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
 | 
						|
      Emitted = true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Emitted) {
 | 
						|
    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | 
						|
    MI->getOperand(0).setReg(DestReg);
 | 
						|
    MBB.insert(I, MI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ChangeSubIdx) {
 | 
						|
    MachineInstr *NewMI = prior(I);
 | 
						|
    NewMI->getOperand(0).setSubReg(SubIdx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isInvariantLoad - Return true if the specified instruction (which is marked
 | 
						|
/// mayLoad) is loading from a location whose value is invariant across the
 | 
						|
/// function.  For example, loading a value from the constant pool or from
 | 
						|
/// from the argument area of a function if it does not change.  This should
 | 
						|
/// only return true of *all* loads the instruction does are invariant (if it
 | 
						|
/// does multiple loads).
 | 
						|
bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
 | 
						|
  // This code cares about loads from three cases: constant pool entries,
 | 
						|
  // invariant argument slots, and global stubs.  In order to handle these cases
 | 
						|
  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
 | 
						|
  // operand and base our analysis on it.  This is safe because the address of
 | 
						|
  // none of these three cases is ever used as anything other than a load base
 | 
						|
  // and X86 doesn't have any instructions that load from multiple places.
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    // Loads from constant pools are trivially invariant.
 | 
						|
    if (MO.isCPI())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (MO.isGlobal())
 | 
						|
      return isGVStub(MO.getGlobal(), TM);
 | 
						|
 | 
						|
    // If this is a load from an invariant stack slot, the load is a constant.
 | 
						|
    if (MO.isFI()) {
 | 
						|
      const MachineFrameInfo &MFI =
 | 
						|
        *MI->getParent()->getParent()->getFrameInfo();
 | 
						|
      int Idx = MO.getIndex();
 | 
						|
      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // All other instances of these instructions are presumed to have other
 | 
						|
  // issues.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
 | 
						|
/// is not marked dead.
 | 
						|
static bool hasLiveCondCodeDef(MachineInstr *MI) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isDef() &&
 | 
						|
        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// convertToThreeAddress - This method must be implemented by targets that
 | 
						|
/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | 
						|
/// may be able to convert a two-address instruction into a true
 | 
						|
/// three-address instruction on demand.  This allows the X86 target (for
 | 
						|
/// example) to convert ADD and SHL instructions into LEA instructions if they
 | 
						|
/// would require register copies due to two-addressness.
 | 
						|
///
 | 
						|
/// This method returns a null pointer if the transformation cannot be
 | 
						|
/// performed, otherwise it returns the new instruction.
 | 
						|
///
 | 
						|
MachineInstr *
 | 
						|
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | 
						|
                                    MachineBasicBlock::iterator &MBBI,
 | 
						|
                                    LiveVariables *LV) const {
 | 
						|
  MachineInstr *MI = MBBI;
 | 
						|
  MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
  // All instructions input are two-addr instructions.  Get the known operands.
 | 
						|
  unsigned Dest = MI->getOperand(0).getReg();
 | 
						|
  unsigned Src = MI->getOperand(1).getReg();
 | 
						|
  bool isDead = MI->getOperand(0).isDead();
 | 
						|
  bool isKill = MI->getOperand(1).isKill();
 | 
						|
 | 
						|
  MachineInstr *NewMI = NULL;
 | 
						|
  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
 | 
						|
  // we have better subtarget support, enable the 16-bit LEA generation here.
 | 
						|
  bool DisableLEA16 = true;
 | 
						|
 | 
						|
  unsigned MIOpc = MI->getOpcode();
 | 
						|
  switch (MIOpc) {
 | 
						|
  case X86::SHUFPSrri: {
 | 
						|
    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
 | 
						|
    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | 
						|
    
 | 
						|
    unsigned B = MI->getOperand(1).getReg();
 | 
						|
    unsigned C = MI->getOperand(2).getReg();
 | 
						|
    if (B != C) return 0;
 | 
						|
    unsigned A = MI->getOperand(0).getReg();
 | 
						|
    unsigned M = MI->getOperand(3).getImm();
 | 
						|
    NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
 | 
						|
      .addReg(B, false, false, isKill).addImm(M);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::SHL64ri: {
 | 
						|
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | 
						|
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | 
						|
    // the flags produced by a shift yet, so this is safe.
 | 
						|
    unsigned ShAmt = MI->getOperand(2).getImm();
 | 
						|
    if (ShAmt == 0 || ShAmt >= 4) return 0;
 | 
						|
 | 
						|
    NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
 | 
						|
      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::SHL32ri: {
 | 
						|
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | 
						|
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | 
						|
    // the flags produced by a shift yet, so this is safe.
 | 
						|
    unsigned ShAmt = MI->getOperand(2).getImm();
 | 
						|
    if (ShAmt == 0 || ShAmt >= 4) return 0;
 | 
						|
 | 
						|
    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
 | 
						|
      X86::LEA64_32r : X86::LEA32r;
 | 
						|
    NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
 | 
						|
      .addReg(0).addImm(1 << ShAmt)
 | 
						|
      .addReg(Src, false, false, isKill).addImm(0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::SHL16ri: {
 | 
						|
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | 
						|
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | 
						|
    // the flags produced by a shift yet, so this is safe.
 | 
						|
    unsigned ShAmt = MI->getOperand(2).getImm();
 | 
						|
    if (ShAmt == 0 || ShAmt >= 4) return 0;
 | 
						|
 | 
						|
    if (DisableLEA16) {
 | 
						|
      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
 | 
						|
      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
 | 
						|
      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
 | 
						|
        ? X86::LEA64_32r : X86::LEA32r;
 | 
						|
      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | 
						|
      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | 
						|
            
 | 
						|
      // Build and insert into an implicit UNDEF value. This is OK because
 | 
						|
      // well be shifting and then extracting the lower 16-bits. 
 | 
						|
      BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);      
 | 
						|
      MachineInstr *InsMI =  BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
 | 
						|
        .addReg(leaInReg).addReg(Src, false, false, isKill)
 | 
						|
        .addImm(X86::SUBREG_16BIT);
 | 
						|
      
 | 
						|
      NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
 | 
						|
        .addReg(leaInReg, false, false, true).addImm(0);
 | 
						|
      
 | 
						|
      MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
 | 
						|
        .addReg(Dest, true, false, false, isDead)
 | 
						|
        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
 | 
						|
      if (LV) {
 | 
						|
        // Update live variables
 | 
						|
        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
 | 
						|
        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
 | 
						|
        if (isKill)
 | 
						|
          LV->replaceKillInstruction(Src, MI, InsMI);
 | 
						|
        if (isDead)
 | 
						|
          LV->replaceKillInstruction(Dest, MI, ExtMI);
 | 
						|
      }
 | 
						|
      return ExtMI;
 | 
						|
    } else {
 | 
						|
      NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
 | 
						|
        .addReg(0).addImm(1 << ShAmt)
 | 
						|
        .addReg(Src, false, false, isKill).addImm(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default: {
 | 
						|
    // The following opcodes also sets the condition code register(s). Only
 | 
						|
    // convert them to equivalent lea if the condition code register def's
 | 
						|
    // are dead!
 | 
						|
    if (hasLiveCondCodeDef(MI))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | 
						|
    switch (MIOpc) {
 | 
						|
    default: return 0;
 | 
						|
    case X86::INC64r:
 | 
						|
    case X86::INC32r: {
 | 
						|
      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | 
						|
      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
 | 
						|
        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | 
						|
      NewMI = addRegOffset(BuildMI(MF, get(Opc))
 | 
						|
                           .addReg(Dest, true, false, false, isDead),
 | 
						|
                           Src, isKill, 1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86::INC16r:
 | 
						|
    case X86::INC64_16r:
 | 
						|
      if (DisableLEA16) return 0;
 | 
						|
      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | 
						|
      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
 | 
						|
                           .addReg(Dest, true, false, false, isDead),
 | 
						|
                           Src, isKill, 1);
 | 
						|
      break;
 | 
						|
    case X86::DEC64r:
 | 
						|
    case X86::DEC32r: {
 | 
						|
      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | 
						|
      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
 | 
						|
        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | 
						|
      NewMI = addRegOffset(BuildMI(MF, get(Opc))
 | 
						|
                           .addReg(Dest, true, false, false, isDead),
 | 
						|
                           Src, isKill, -1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86::DEC16r:
 | 
						|
    case X86::DEC64_16r:
 | 
						|
      if (DisableLEA16) return 0;
 | 
						|
      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | 
						|
      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
 | 
						|
                           .addReg(Dest, true, false, false, isDead),
 | 
						|
                           Src, isKill, -1);
 | 
						|
      break;
 | 
						|
    case X86::ADD64rr:
 | 
						|
    case X86::ADD32rr: {
 | 
						|
      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | 
						|
      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
 | 
						|
        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | 
						|
      unsigned Src2 = MI->getOperand(2).getReg();
 | 
						|
      bool isKill2 = MI->getOperand(2).isKill();
 | 
						|
      NewMI = addRegReg(BuildMI(MF, get(Opc))
 | 
						|
                        .addReg(Dest, true, false, false, isDead),
 | 
						|
                        Src, isKill, Src2, isKill2);
 | 
						|
      if (LV && isKill2)
 | 
						|
        LV->replaceKillInstruction(Src2, MI, NewMI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86::ADD16rr: {
 | 
						|
      if (DisableLEA16) return 0;
 | 
						|
      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | 
						|
      unsigned Src2 = MI->getOperand(2).getReg();
 | 
						|
      bool isKill2 = MI->getOperand(2).isKill();
 | 
						|
      NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
 | 
						|
                        .addReg(Dest, true, false, false, isDead),
 | 
						|
                        Src, isKill, Src2, isKill2);
 | 
						|
      if (LV && isKill2)
 | 
						|
        LV->replaceKillInstruction(Src2, MI, NewMI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86::ADD64ri32:
 | 
						|
    case X86::ADD64ri8:
 | 
						|
      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | 
						|
      if (MI->getOperand(2).isImm())
 | 
						|
        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
 | 
						|
                             .addReg(Dest, true, false, false, isDead),
 | 
						|
                             Src, isKill, MI->getOperand(2).getImm());
 | 
						|
      break;
 | 
						|
    case X86::ADD32ri:
 | 
						|
    case X86::ADD32ri8:
 | 
						|
      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | 
						|
      if (MI->getOperand(2).isImm()) {
 | 
						|
        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | 
						|
        NewMI = addRegOffset(BuildMI(MF, get(Opc))
 | 
						|
                             .addReg(Dest, true, false, false, isDead),
 | 
						|
                             Src, isKill, MI->getOperand(2).getImm());
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case X86::ADD16ri:
 | 
						|
    case X86::ADD16ri8:
 | 
						|
      if (DisableLEA16) return 0;
 | 
						|
      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | 
						|
      if (MI->getOperand(2).isImm())
 | 
						|
        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
 | 
						|
                             .addReg(Dest, true, false, false, isDead),
 | 
						|
                             Src, isKill, MI->getOperand(2).getImm());
 | 
						|
      break;
 | 
						|
    case X86::SHL16ri:
 | 
						|
      if (DisableLEA16) return 0;
 | 
						|
    case X86::SHL32ri:
 | 
						|
    case X86::SHL64ri: {
 | 
						|
      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
 | 
						|
             "Unknown shl instruction!");
 | 
						|
      unsigned ShAmt = MI->getOperand(2).getImm();
 | 
						|
      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
 | 
						|
        X86AddressMode AM;
 | 
						|
        AM.Scale = 1 << ShAmt;
 | 
						|
        AM.IndexReg = Src;
 | 
						|
        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
 | 
						|
          : (MIOpc == X86::SHL32ri
 | 
						|
             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
 | 
						|
        NewMI = addFullAddress(BuildMI(MF, get(Opc))
 | 
						|
                               .addReg(Dest, true, false, false, isDead), AM);
 | 
						|
        if (isKill)
 | 
						|
          NewMI->getOperand(3).setIsKill(true);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NewMI) return 0;
 | 
						|
 | 
						|
  if (LV) {  // Update live variables
 | 
						|
    if (isKill)
 | 
						|
      LV->replaceKillInstruction(Src, MI, NewMI);
 | 
						|
    if (isDead)
 | 
						|
      LV->replaceKillInstruction(Dest, MI, NewMI);
 | 
						|
  }
 | 
						|
 | 
						|
  MFI->insert(MBBI, NewMI);          // Insert the new inst    
 | 
						|
  return NewMI;
 | 
						|
}
 | 
						|
 | 
						|
/// commuteInstruction - We have a few instructions that must be hacked on to
 | 
						|
/// commute them.
 | 
						|
///
 | 
						|
MachineInstr *
 | 
						|
X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
 | 
						|
  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
 | 
						|
  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
 | 
						|
  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
 | 
						|
  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
 | 
						|
  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
 | 
						|
    unsigned Opc;
 | 
						|
    unsigned Size;
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: assert(0 && "Unreachable!");
 | 
						|
    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
 | 
						|
    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
 | 
						|
    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
 | 
						|
    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
 | 
						|
    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
 | 
						|
    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
 | 
						|
    }
 | 
						|
    unsigned Amt = MI->getOperand(3).getImm();
 | 
						|
    if (NewMI) {
 | 
						|
      MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
      MI = MF.CloneMachineInstr(MI);
 | 
						|
      NewMI = false;
 | 
						|
    }
 | 
						|
    MI->setDesc(get(Opc));
 | 
						|
    MI->getOperand(3).setImm(Size-Amt);
 | 
						|
    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | 
						|
  }
 | 
						|
  case X86::CMOVB16rr:
 | 
						|
  case X86::CMOVB32rr:
 | 
						|
  case X86::CMOVB64rr:
 | 
						|
  case X86::CMOVAE16rr:
 | 
						|
  case X86::CMOVAE32rr:
 | 
						|
  case X86::CMOVAE64rr:
 | 
						|
  case X86::CMOVE16rr:
 | 
						|
  case X86::CMOVE32rr:
 | 
						|
  case X86::CMOVE64rr:
 | 
						|
  case X86::CMOVNE16rr:
 | 
						|
  case X86::CMOVNE32rr:
 | 
						|
  case X86::CMOVNE64rr:
 | 
						|
  case X86::CMOVBE16rr:
 | 
						|
  case X86::CMOVBE32rr:
 | 
						|
  case X86::CMOVBE64rr:
 | 
						|
  case X86::CMOVA16rr:
 | 
						|
  case X86::CMOVA32rr:
 | 
						|
  case X86::CMOVA64rr:
 | 
						|
  case X86::CMOVL16rr:
 | 
						|
  case X86::CMOVL32rr:
 | 
						|
  case X86::CMOVL64rr:
 | 
						|
  case X86::CMOVGE16rr:
 | 
						|
  case X86::CMOVGE32rr:
 | 
						|
  case X86::CMOVGE64rr:
 | 
						|
  case X86::CMOVLE16rr:
 | 
						|
  case X86::CMOVLE32rr:
 | 
						|
  case X86::CMOVLE64rr:
 | 
						|
  case X86::CMOVG16rr:
 | 
						|
  case X86::CMOVG32rr:
 | 
						|
  case X86::CMOVG64rr:
 | 
						|
  case X86::CMOVS16rr:
 | 
						|
  case X86::CMOVS32rr:
 | 
						|
  case X86::CMOVS64rr:
 | 
						|
  case X86::CMOVNS16rr:
 | 
						|
  case X86::CMOVNS32rr:
 | 
						|
  case X86::CMOVNS64rr:
 | 
						|
  case X86::CMOVP16rr:
 | 
						|
  case X86::CMOVP32rr:
 | 
						|
  case X86::CMOVP64rr:
 | 
						|
  case X86::CMOVNP16rr:
 | 
						|
  case X86::CMOVNP32rr:
 | 
						|
  case X86::CMOVNP64rr: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
 | 
						|
    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
 | 
						|
    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
 | 
						|
    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
 | 
						|
    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
 | 
						|
    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
 | 
						|
    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
 | 
						|
    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
 | 
						|
    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
 | 
						|
    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
 | 
						|
    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
 | 
						|
    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
 | 
						|
    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
 | 
						|
    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
 | 
						|
    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
 | 
						|
    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
 | 
						|
    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
 | 
						|
    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
 | 
						|
    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
 | 
						|
    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
 | 
						|
    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
 | 
						|
    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
 | 
						|
    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
 | 
						|
    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
 | 
						|
    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
 | 
						|
    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
 | 
						|
    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
 | 
						|
    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
 | 
						|
    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
 | 
						|
    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
 | 
						|
    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
 | 
						|
    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
 | 
						|
    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
 | 
						|
    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
 | 
						|
    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
 | 
						|
    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
 | 
						|
    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
 | 
						|
    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
 | 
						|
    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
 | 
						|
    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
 | 
						|
    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
 | 
						|
    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
 | 
						|
    }
 | 
						|
    if (NewMI) {
 | 
						|
      MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
      MI = MF.CloneMachineInstr(MI);
 | 
						|
      NewMI = false;
 | 
						|
    }
 | 
						|
    MI->setDesc(get(Opc));
 | 
						|
    // Fallthrough intended.
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
 | 
						|
  switch (BrOpc) {
 | 
						|
  default: return X86::COND_INVALID;
 | 
						|
  case X86::JE:  return X86::COND_E;
 | 
						|
  case X86::JNE: return X86::COND_NE;
 | 
						|
  case X86::JL:  return X86::COND_L;
 | 
						|
  case X86::JLE: return X86::COND_LE;
 | 
						|
  case X86::JG:  return X86::COND_G;
 | 
						|
  case X86::JGE: return X86::COND_GE;
 | 
						|
  case X86::JB:  return X86::COND_B;
 | 
						|
  case X86::JBE: return X86::COND_BE;
 | 
						|
  case X86::JA:  return X86::COND_A;
 | 
						|
  case X86::JAE: return X86::COND_AE;
 | 
						|
  case X86::JS:  return X86::COND_S;
 | 
						|
  case X86::JNS: return X86::COND_NS;
 | 
						|
  case X86::JP:  return X86::COND_P;
 | 
						|
  case X86::JNP: return X86::COND_NP;
 | 
						|
  case X86::JO:  return X86::COND_O;
 | 
						|
  case X86::JNO: return X86::COND_NO;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Illegal condition code!");
 | 
						|
  case X86::COND_E:  return X86::JE;
 | 
						|
  case X86::COND_NE: return X86::JNE;
 | 
						|
  case X86::COND_L:  return X86::JL;
 | 
						|
  case X86::COND_LE: return X86::JLE;
 | 
						|
  case X86::COND_G:  return X86::JG;
 | 
						|
  case X86::COND_GE: return X86::JGE;
 | 
						|
  case X86::COND_B:  return X86::JB;
 | 
						|
  case X86::COND_BE: return X86::JBE;
 | 
						|
  case X86::COND_A:  return X86::JA;
 | 
						|
  case X86::COND_AE: return X86::JAE;
 | 
						|
  case X86::COND_S:  return X86::JS;
 | 
						|
  case X86::COND_NS: return X86::JNS;
 | 
						|
  case X86::COND_P:  return X86::JP;
 | 
						|
  case X86::COND_NP: return X86::JNP;
 | 
						|
  case X86::COND_O:  return X86::JO;
 | 
						|
  case X86::COND_NO: return X86::JNO;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetOppositeBranchCondition - Return the inverse of the specified condition,
 | 
						|
/// e.g. turning COND_E to COND_NE.
 | 
						|
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Illegal condition code!");
 | 
						|
  case X86::COND_E:  return X86::COND_NE;
 | 
						|
  case X86::COND_NE: return X86::COND_E;
 | 
						|
  case X86::COND_L:  return X86::COND_GE;
 | 
						|
  case X86::COND_LE: return X86::COND_G;
 | 
						|
  case X86::COND_G:  return X86::COND_LE;
 | 
						|
  case X86::COND_GE: return X86::COND_L;
 | 
						|
  case X86::COND_B:  return X86::COND_AE;
 | 
						|
  case X86::COND_BE: return X86::COND_A;
 | 
						|
  case X86::COND_A:  return X86::COND_BE;
 | 
						|
  case X86::COND_AE: return X86::COND_B;
 | 
						|
  case X86::COND_S:  return X86::COND_NS;
 | 
						|
  case X86::COND_NS: return X86::COND_S;
 | 
						|
  case X86::COND_P:  return X86::COND_NP;
 | 
						|
  case X86::COND_NP: return X86::COND_P;
 | 
						|
  case X86::COND_O:  return X86::COND_NO;
 | 
						|
  case X86::COND_NO: return X86::COND_O;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | 
						|
  const TargetInstrDesc &TID = MI->getDesc();
 | 
						|
  if (!TID.isTerminator()) return false;
 | 
						|
  
 | 
						|
  // Conditional branch is a special case.
 | 
						|
  if (TID.isBranch() && !TID.isBarrier())
 | 
						|
    return true;
 | 
						|
  if (!TID.isPredicable())
 | 
						|
    return true;
 | 
						|
  return !isPredicated(MI);
 | 
						|
}
 | 
						|
 | 
						|
// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
 | 
						|
static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
 | 
						|
                                               const X86InstrInfo &TII) {
 | 
						|
  if (MI->getOpcode() == X86::FP_REG_KILL)
 | 
						|
    return false;
 | 
						|
  return TII.isUnpredicatedTerminator(MI);
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 
 | 
						|
                                 MachineBasicBlock *&TBB,
 | 
						|
                                 MachineBasicBlock *&FBB,
 | 
						|
                                 SmallVectorImpl<MachineOperand> &Cond) const {
 | 
						|
  // If the block has no terminators, it just falls into the block after it.
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the last instruction in the block.
 | 
						|
  MachineInstr *LastInst = I;
 | 
						|
  
 | 
						|
  // If there is only one terminator instruction, process it.
 | 
						|
  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
 | 
						|
    if (!LastInst->getDesc().isBranch())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // If the block ends with a branch there are 3 possibilities:
 | 
						|
    // it's an unconditional, conditional, or indirect branch.
 | 
						|
    
 | 
						|
    if (LastInst->getOpcode() == X86::JMP) {
 | 
						|
      TBB = LastInst->getOperand(0).getMBB();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
 | 
						|
    if (BranchCode == X86::COND_INVALID)
 | 
						|
      return true;  // Can't handle indirect branch.
 | 
						|
 | 
						|
    // Otherwise, block ends with fall-through condbranch.
 | 
						|
    TBB = LastInst->getOperand(0).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Get the instruction before it if it's a terminator.
 | 
						|
  MachineInstr *SecondLastInst = I;
 | 
						|
  
 | 
						|
  // If there are three terminators, we don't know what sort of block this is.
 | 
						|
  if (SecondLastInst && I != MBB.begin() &&
 | 
						|
      isBrAnalysisUnpredicatedTerminator(--I, *this))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the block ends with X86::JMP and a conditional branch, handle it.
 | 
						|
  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
 | 
						|
  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
 | 
						|
    TBB = SecondLastInst->getOperand(0).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | 
						|
    FBB = LastInst->getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the block ends with two X86::JMPs, handle it.  The second one is not
 | 
						|
  // executed, so remove it.
 | 
						|
  if (SecondLastInst->getOpcode() == X86::JMP && 
 | 
						|
      LastInst->getOpcode() == X86::JMP) {
 | 
						|
    TBB = SecondLastInst->getOperand(0).getMBB();
 | 
						|
    I = LastInst;
 | 
						|
    I->eraseFromParent();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, can't handle this.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  if (I == MBB.begin()) return 0;
 | 
						|
  --I;
 | 
						|
  if (I->getOpcode() != X86::JMP && 
 | 
						|
      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Remove the branch.
 | 
						|
  I->eraseFromParent();
 | 
						|
  
 | 
						|
  I = MBB.end();
 | 
						|
  
 | 
						|
  if (I == MBB.begin()) return 1;
 | 
						|
  --I;
 | 
						|
  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | 
						|
    return 1;
 | 
						|
  
 | 
						|
  // Remove the branch.
 | 
						|
  I->eraseFromParent();
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
 | 
						|
                                                     const MachineOperand &MO) {
 | 
						|
  if (MO.isReg())
 | 
						|
    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
 | 
						|
                     MO.isKill(), MO.isDead(), MO.getSubReg());
 | 
						|
  else if (MO.isImm())
 | 
						|
    MIB = MIB.addImm(MO.getImm());
 | 
						|
  else if (MO.isFI())
 | 
						|
    MIB = MIB.addFrameIndex(MO.getIndex());
 | 
						|
  else if (MO.isGlobal())
 | 
						|
    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
 | 
						|
  else if (MO.isCPI())
 | 
						|
    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
 | 
						|
  else if (MO.isJTI())
 | 
						|
    MIB = MIB.addJumpTableIndex(MO.getIndex());
 | 
						|
  else if (MO.isSymbol())
 | 
						|
    MIB = MIB.addExternalSymbol(MO.getSymbolName());
 | 
						|
  else
 | 
						|
    assert(0 && "Unknown operand for X86InstrAddOperand!");
 | 
						|
 | 
						|
  return MIB;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | 
						|
                           MachineBasicBlock *FBB,
 | 
						|
                           const SmallVectorImpl<MachineOperand> &Cond) const {
 | 
						|
  // Shouldn't be a fall through.
 | 
						|
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | 
						|
  assert((Cond.size() == 1 || Cond.size() == 0) &&
 | 
						|
         "X86 branch conditions have one component!");
 | 
						|
 | 
						|
  if (FBB == 0) { // One way branch.
 | 
						|
    if (Cond.empty()) {
 | 
						|
      // Unconditional branch?
 | 
						|
      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
 | 
						|
    } else {
 | 
						|
      // Conditional branch.
 | 
						|
      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
 | 
						|
      BuildMI(&MBB, get(Opc)).addMBB(TBB);
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Two-way Conditional branch.
 | 
						|
  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
 | 
						|
  BuildMI(&MBB, get(Opc)).addMBB(TBB);
 | 
						|
  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
 | 
						|
                                MachineBasicBlock::iterator MI,
 | 
						|
                                unsigned DestReg, unsigned SrcReg,
 | 
						|
                                const TargetRegisterClass *DestRC,
 | 
						|
                                const TargetRegisterClass *SrcRC) const {
 | 
						|
  if (DestRC == SrcRC) {
 | 
						|
    unsigned Opc;
 | 
						|
    if (DestRC == &X86::GR64RegClass) {
 | 
						|
      Opc = X86::MOV64rr;
 | 
						|
    } else if (DestRC == &X86::GR32RegClass) {
 | 
						|
      Opc = X86::MOV32rr;
 | 
						|
    } else if (DestRC == &X86::GR16RegClass) {
 | 
						|
      Opc = X86::MOV16rr;
 | 
						|
    } else if (DestRC == &X86::GR8RegClass) {
 | 
						|
      Opc = X86::MOV8rr;
 | 
						|
    } else if (DestRC == &X86::GR32_RegClass) {
 | 
						|
      Opc = X86::MOV32_rr;
 | 
						|
    } else if (DestRC == &X86::GR16_RegClass) {
 | 
						|
      Opc = X86::MOV16_rr;
 | 
						|
    } else if (DestRC == &X86::RFP32RegClass) {
 | 
						|
      Opc = X86::MOV_Fp3232;
 | 
						|
    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
 | 
						|
      Opc = X86::MOV_Fp6464;
 | 
						|
    } else if (DestRC == &X86::RFP80RegClass) {
 | 
						|
      Opc = X86::MOV_Fp8080;
 | 
						|
    } else if (DestRC == &X86::FR32RegClass) {
 | 
						|
      Opc = X86::FsMOVAPSrr;
 | 
						|
    } else if (DestRC == &X86::FR64RegClass) {
 | 
						|
      Opc = X86::FsMOVAPDrr;
 | 
						|
    } else if (DestRC == &X86::VR128RegClass) {
 | 
						|
      Opc = X86::MOVAPSrr;
 | 
						|
    } else if (DestRC == &X86::VR64RegClass) {
 | 
						|
      Opc = X86::MMX_MOVQ64rr;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Moving EFLAGS to / from another register requires a push and a pop.
 | 
						|
  if (SrcRC == &X86::CCRRegClass) {
 | 
						|
    if (SrcReg != X86::EFLAGS)
 | 
						|
      return false;
 | 
						|
    if (DestRC == &X86::GR64RegClass) {
 | 
						|
      BuildMI(MBB, MI, get(X86::PUSHFQ));
 | 
						|
      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
 | 
						|
      return true;
 | 
						|
    } else if (DestRC == &X86::GR32RegClass) {
 | 
						|
      BuildMI(MBB, MI, get(X86::PUSHFD));
 | 
						|
      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (DestRC == &X86::CCRRegClass) {
 | 
						|
    if (DestReg != X86::EFLAGS)
 | 
						|
      return false;
 | 
						|
    if (SrcRC == &X86::GR64RegClass) {
 | 
						|
      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
 | 
						|
      BuildMI(MBB, MI, get(X86::POPFQ));
 | 
						|
      return true;
 | 
						|
    } else if (SrcRC == &X86::GR32RegClass) {
 | 
						|
      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
 | 
						|
      BuildMI(MBB, MI, get(X86::POPFD));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Moving from ST(0) turns into FpGET_ST0_32 etc.
 | 
						|
  if (SrcRC == &X86::RSTRegClass) {
 | 
						|
    // Copying from ST(0)/ST(1).
 | 
						|
    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
 | 
						|
      // Can only copy from ST(0)/ST(1) right now
 | 
						|
      return false;
 | 
						|
    bool isST0 = SrcReg == X86::ST0;
 | 
						|
    unsigned Opc;
 | 
						|
    if (DestRC == &X86::RFP32RegClass)
 | 
						|
      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
 | 
						|
    else if (DestRC == &X86::RFP64RegClass)
 | 
						|
      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
 | 
						|
    else {
 | 
						|
      if (DestRC != &X86::RFP80RegClass)
 | 
						|
        return false;
 | 
						|
      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
 | 
						|
    }
 | 
						|
    BuildMI(MBB, MI, get(Opc), DestReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Moving to ST(0) turns into FpSET_ST0_32 etc.
 | 
						|
  if (DestRC == &X86::RSTRegClass) {
 | 
						|
    // Copying to ST(0).  FIXME: handle ST(1) also
 | 
						|
    if (DestReg != X86::ST0)
 | 
						|
      // Can only copy to TOS right now
 | 
						|
      return false;
 | 
						|
    unsigned Opc;
 | 
						|
    if (SrcRC == &X86::RFP32RegClass)
 | 
						|
      Opc = X86::FpSET_ST0_32;
 | 
						|
    else if (SrcRC == &X86::RFP64RegClass)
 | 
						|
      Opc = X86::FpSET_ST0_64;
 | 
						|
    else {
 | 
						|
      if (SrcRC != &X86::RFP80RegClass)
 | 
						|
        return false;
 | 
						|
      Opc = X86::FpSET_ST0_80;
 | 
						|
    }
 | 
						|
    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Not yet supported!
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
 | 
						|
                                  bool isStackAligned) {
 | 
						|
  unsigned Opc = 0;
 | 
						|
  if (RC == &X86::GR64RegClass) {
 | 
						|
    Opc = X86::MOV64mr;
 | 
						|
  } else if (RC == &X86::GR32RegClass) {
 | 
						|
    Opc = X86::MOV32mr;
 | 
						|
  } else if (RC == &X86::GR16RegClass) {
 | 
						|
    Opc = X86::MOV16mr;
 | 
						|
  } else if (RC == &X86::GR8RegClass) {
 | 
						|
    Opc = X86::MOV8mr;
 | 
						|
  } else if (RC == &X86::GR32_RegClass) {
 | 
						|
    Opc = X86::MOV32_mr;
 | 
						|
  } else if (RC == &X86::GR16_RegClass) {
 | 
						|
    Opc = X86::MOV16_mr;
 | 
						|
  } else if (RC == &X86::RFP80RegClass) {
 | 
						|
    Opc = X86::ST_FpP80m;   // pops
 | 
						|
  } else if (RC == &X86::RFP64RegClass) {
 | 
						|
    Opc = X86::ST_Fp64m;
 | 
						|
  } else if (RC == &X86::RFP32RegClass) {
 | 
						|
    Opc = X86::ST_Fp32m;
 | 
						|
  } else if (RC == &X86::FR32RegClass) {
 | 
						|
    Opc = X86::MOVSSmr;
 | 
						|
  } else if (RC == &X86::FR64RegClass) {
 | 
						|
    Opc = X86::MOVSDmr;
 | 
						|
  } else if (RC == &X86::VR128RegClass) {
 | 
						|
    // If stack is realigned we can use aligned stores.
 | 
						|
    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
 | 
						|
  } else if (RC == &X86::VR64RegClass) {
 | 
						|
    Opc = X86::MMX_MOVQ64mr;
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown regclass");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | 
						|
                                       MachineBasicBlock::iterator MI,
 | 
						|
                                       unsigned SrcReg, bool isKill, int FrameIdx,
 | 
						|
                                       const TargetRegisterClass *RC) const {
 | 
						|
  const MachineFunction &MF = *MBB.getParent();
 | 
						|
  bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
    RI.needsStackRealignment(MF);
 | 
						|
  unsigned Opc = getStoreRegOpcode(RC, isAligned);
 | 
						|
  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
 | 
						|
    .addReg(SrcReg, false, false, isKill);
 | 
						|
}
 | 
						|
 | 
						|
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
 | 
						|
                                  bool isKill,
 | 
						|
                                  SmallVectorImpl<MachineOperand> &Addr,
 | 
						|
                                  const TargetRegisterClass *RC,
 | 
						|
                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | 
						|
  bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
    RI.needsStackRealignment(MF);
 | 
						|
  unsigned Opc = getStoreRegOpcode(RC, isAligned);
 | 
						|
  MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
 | 
						|
  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, Addr[i]);
 | 
						|
  MIB.addReg(SrcReg, false, false, isKill);
 | 
						|
  NewMIs.push_back(MIB);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
 | 
						|
                                 bool isStackAligned) {
 | 
						|
  unsigned Opc = 0;
 | 
						|
  if (RC == &X86::GR64RegClass) {
 | 
						|
    Opc = X86::MOV64rm;
 | 
						|
  } else if (RC == &X86::GR32RegClass) {
 | 
						|
    Opc = X86::MOV32rm;
 | 
						|
  } else if (RC == &X86::GR16RegClass) {
 | 
						|
    Opc = X86::MOV16rm;
 | 
						|
  } else if (RC == &X86::GR8RegClass) {
 | 
						|
    Opc = X86::MOV8rm;
 | 
						|
  } else if (RC == &X86::GR32_RegClass) {
 | 
						|
    Opc = X86::MOV32_rm;
 | 
						|
  } else if (RC == &X86::GR16_RegClass) {
 | 
						|
    Opc = X86::MOV16_rm;
 | 
						|
  } else if (RC == &X86::RFP80RegClass) {
 | 
						|
    Opc = X86::LD_Fp80m;
 | 
						|
  } else if (RC == &X86::RFP64RegClass) {
 | 
						|
    Opc = X86::LD_Fp64m;
 | 
						|
  } else if (RC == &X86::RFP32RegClass) {
 | 
						|
    Opc = X86::LD_Fp32m;
 | 
						|
  } else if (RC == &X86::FR32RegClass) {
 | 
						|
    Opc = X86::MOVSSrm;
 | 
						|
  } else if (RC == &X86::FR64RegClass) {
 | 
						|
    Opc = X86::MOVSDrm;
 | 
						|
  } else if (RC == &X86::VR128RegClass) {
 | 
						|
    // If stack is realigned we can use aligned loads.
 | 
						|
    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
 | 
						|
  } else if (RC == &X86::VR64RegClass) {
 | 
						|
    Opc = X86::MMX_MOVQ64rm;
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown regclass");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | 
						|
                                        MachineBasicBlock::iterator MI,
 | 
						|
                                        unsigned DestReg, int FrameIdx,
 | 
						|
                                        const TargetRegisterClass *RC) const{
 | 
						|
  const MachineFunction &MF = *MBB.getParent();
 | 
						|
  bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
    RI.needsStackRealignment(MF);
 | 
						|
  unsigned Opc = getLoadRegOpcode(RC, isAligned);
 | 
						|
  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
 | 
						|
}
 | 
						|
 | 
						|
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | 
						|
                                 SmallVectorImpl<MachineOperand> &Addr,
 | 
						|
                                 const TargetRegisterClass *RC,
 | 
						|
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | 
						|
  bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
    RI.needsStackRealignment(MF);
 | 
						|
  unsigned Opc = getLoadRegOpcode(RC, isAligned);
 | 
						|
  MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
 | 
						|
  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, Addr[i]);
 | 
						|
  NewMIs.push_back(MIB);
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
 | 
						|
                                                MachineBasicBlock::iterator MI,
 | 
						|
                                const std::vector<CalleeSavedInfo> &CSI) const {
 | 
						|
  if (CSI.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | 
						|
  unsigned SlotSize = is64Bit ? 8 : 4;
 | 
						|
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
 | 
						|
  
 | 
						|
  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
 | 
						|
  for (unsigned i = CSI.size(); i != 0; --i) {
 | 
						|
    unsigned Reg = CSI[i-1].getReg();
 | 
						|
    // Add the callee-saved register as live-in. It's killed at the spill.
 | 
						|
    MBB.addLiveIn(Reg);
 | 
						|
    BuildMI(MBB, MI, get(Opc)).addReg(Reg);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
 | 
						|
                                                 MachineBasicBlock::iterator MI,
 | 
						|
                                const std::vector<CalleeSavedInfo> &CSI) const {
 | 
						|
  if (CSI.empty())
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | 
						|
 | 
						|
  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
 | 
						|
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = CSI[i].getReg();
 | 
						|
    BuildMI(MBB, MI, get(Opc), Reg);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
 | 
						|
                                     const SmallVector<MachineOperand,4> &MOs,
 | 
						|
                                 MachineInstr *MI, const TargetInstrInfo &TII) {
 | 
						|
  // Create the base instruction with the memory operand as the first part.
 | 
						|
  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
 | 
						|
  MachineInstrBuilder MIB(NewMI);
 | 
						|
  unsigned NumAddrOps = MOs.size();
 | 
						|
  for (unsigned i = 0; i != NumAddrOps; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, MOs[i]);
 | 
						|
  if (NumAddrOps < 4)  // FrameIndex only
 | 
						|
    MIB.addImm(1).addReg(0).addImm(0);
 | 
						|
  
 | 
						|
  // Loop over the rest of the ri operands, converting them over.
 | 
						|
  unsigned NumOps = MI->getDesc().getNumOperands()-2;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i+2);
 | 
						|
    MIB = X86InstrAddOperand(MIB, MO);
 | 
						|
  }
 | 
						|
  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    MIB = X86InstrAddOperand(MIB, MO);
 | 
						|
  }
 | 
						|
  return MIB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr *FuseInst(MachineFunction &MF,
 | 
						|
                              unsigned Opcode, unsigned OpNo,
 | 
						|
                              const SmallVector<MachineOperand,4> &MOs,
 | 
						|
                              MachineInstr *MI, const TargetInstrInfo &TII) {
 | 
						|
  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
 | 
						|
  MachineInstrBuilder MIB(NewMI);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (i == OpNo) {
 | 
						|
      assert(MO.isReg() && "Expected to fold into reg operand!");
 | 
						|
      unsigned NumAddrOps = MOs.size();
 | 
						|
      for (unsigned i = 0; i != NumAddrOps; ++i)
 | 
						|
        MIB = X86InstrAddOperand(MIB, MOs[i]);
 | 
						|
      if (NumAddrOps < 4)  // FrameIndex only
 | 
						|
        MIB.addImm(1).addReg(0).addImm(0);
 | 
						|
    } else {
 | 
						|
      MIB = X86InstrAddOperand(MIB, MO);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MIB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
 | 
						|
                                const SmallVector<MachineOperand,4> &MOs,
 | 
						|
                                MachineInstr *MI) {
 | 
						|
  MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
  MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
 | 
						|
 | 
						|
  unsigned NumAddrOps = MOs.size();
 | 
						|
  for (unsigned i = 0; i != NumAddrOps; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, MOs[i]);
 | 
						|
  if (NumAddrOps < 4)  // FrameIndex only
 | 
						|
    MIB.addImm(1).addReg(0).addImm(0);
 | 
						|
  return MIB.addImm(0);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr*
 | 
						|
X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
 | 
						|
                                MachineInstr *MI, unsigned i,
 | 
						|
                                const SmallVector<MachineOperand,4> &MOs) const{
 | 
						|
  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
 | 
						|
  bool isTwoAddrFold = false;
 | 
						|
  unsigned NumOps = MI->getDesc().getNumOperands();
 | 
						|
  bool isTwoAddr = NumOps > 1 &&
 | 
						|
    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
 | 
						|
 | 
						|
  MachineInstr *NewMI = NULL;
 | 
						|
  // Folding a memory location into the two-address part of a two-address
 | 
						|
  // instruction is different than folding it other places.  It requires
 | 
						|
  // replacing the *two* registers with the memory location.
 | 
						|
  if (isTwoAddr && NumOps >= 2 && i < 2 &&
 | 
						|
      MI->getOperand(0).isReg() &&
 | 
						|
      MI->getOperand(1).isReg() &&
 | 
						|
      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | 
						|
    isTwoAddrFold = true;
 | 
						|
  } else if (i == 0) { // If operand 0
 | 
						|
    if (MI->getOpcode() == X86::MOV16r0)
 | 
						|
      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
 | 
						|
    else if (MI->getOpcode() == X86::MOV32r0)
 | 
						|
      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
 | 
						|
    else if (MI->getOpcode() == X86::MOV64r0)
 | 
						|
      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
 | 
						|
    else if (MI->getOpcode() == X86::MOV8r0)
 | 
						|
      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
 | 
						|
    if (NewMI)
 | 
						|
      return NewMI;
 | 
						|
    
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable0;
 | 
						|
  } else if (i == 1) {
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable1;
 | 
						|
  } else if (i == 2) {
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable2;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If table selected...
 | 
						|
  if (OpcodeTablePtr) {
 | 
						|
    // Find the Opcode to fuse
 | 
						|
    DenseMap<unsigned*, unsigned>::iterator I =
 | 
						|
      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
 | 
						|
    if (I != OpcodeTablePtr->end()) {
 | 
						|
      if (isTwoAddrFold)
 | 
						|
        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
 | 
						|
      else
 | 
						|
        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
 | 
						|
      return NewMI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // No fusion 
 | 
						|
  if (PrintFailedFusing)
 | 
						|
    cerr << "We failed to fuse operand " << i << *MI;
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
 | 
						|
                                              MachineInstr *MI,
 | 
						|
                                        const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                              int FrameIndex) const {
 | 
						|
  // Check switch flag 
 | 
						|
  if (NoFusing) return NULL;
 | 
						|
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
 | 
						|
  // FIXME: Move alignment requirement into tables?
 | 
						|
  if (Alignment < 16) {
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    // Not always safe to fold movsd into these instructions since their load
 | 
						|
    // folding variants expects the address to be 16 byte aligned.
 | 
						|
    case X86::FsANDNPDrr:
 | 
						|
    case X86::FsANDNPSrr:
 | 
						|
    case X86::FsANDPDrr:
 | 
						|
    case X86::FsANDPSrr:
 | 
						|
    case X86::FsORPDrr:
 | 
						|
    case X86::FsORPSrr:
 | 
						|
    case X86::FsXORPDrr:
 | 
						|
    case X86::FsXORPSrr:
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | 
						|
    unsigned NewOpc = 0;
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: return NULL;
 | 
						|
    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
 | 
						|
    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
 | 
						|
    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
 | 
						|
    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
 | 
						|
    }
 | 
						|
    // Change to CMPXXri r, 0 first.
 | 
						|
    MI->setDesc(get(NewOpc));
 | 
						|
    MI->getOperand(1).ChangeToImmediate(0);
 | 
						|
  } else if (Ops.size() != 1)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SmallVector<MachineOperand,4> MOs;
 | 
						|
  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
 | 
						|
  return foldMemoryOperand(MF, MI, Ops[0], MOs);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
 | 
						|
                                              MachineInstr *MI,
 | 
						|
                                        const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                              MachineInstr *LoadMI) const {
 | 
						|
  // Check switch flag 
 | 
						|
  if (NoFusing) return NULL;
 | 
						|
 | 
						|
  // Determine the alignment of the load.
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (LoadMI->hasOneMemOperand())
 | 
						|
    Alignment = LoadMI->memoperands_begin()->getAlignment();
 | 
						|
 | 
						|
  // FIXME: Move alignment requirement into tables?
 | 
						|
  if (Alignment < 16) {
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    // Not always safe to fold movsd into these instructions since their load
 | 
						|
    // folding variants expects the address to be 16 byte aligned.
 | 
						|
    case X86::FsANDNPDrr:
 | 
						|
    case X86::FsANDNPSrr:
 | 
						|
    case X86::FsANDPDrr:
 | 
						|
    case X86::FsANDPSrr:
 | 
						|
    case X86::FsORPDrr:
 | 
						|
    case X86::FsORPSrr:
 | 
						|
    case X86::FsXORPDrr:
 | 
						|
    case X86::FsXORPSrr:
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | 
						|
    unsigned NewOpc = 0;
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: return NULL;
 | 
						|
    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
 | 
						|
    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
 | 
						|
    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
 | 
						|
    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
 | 
						|
    }
 | 
						|
    // Change to CMPXXri r, 0 first.
 | 
						|
    MI->setDesc(get(NewOpc));
 | 
						|
    MI->getOperand(1).ChangeToImmediate(0);
 | 
						|
  } else if (Ops.size() != 1)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SmallVector<MachineOperand,4> MOs;
 | 
						|
  unsigned NumOps = LoadMI->getDesc().getNumOperands();
 | 
						|
  for (unsigned i = NumOps - 4; i != NumOps; ++i)
 | 
						|
    MOs.push_back(LoadMI->getOperand(i));
 | 
						|
  return foldMemoryOperand(MF, MI, Ops[0], MOs);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
 | 
						|
                                  const SmallVectorImpl<unsigned> &Ops) const {
 | 
						|
  // Check switch flag 
 | 
						|
  if (NoFusing) return 0;
 | 
						|
 | 
						|
  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default: return false;
 | 
						|
    case X86::TEST8rr: 
 | 
						|
    case X86::TEST16rr:
 | 
						|
    case X86::TEST32rr:
 | 
						|
    case X86::TEST64rr:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned OpNum = Ops[0];
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  unsigned NumOps = MI->getDesc().getNumOperands();
 | 
						|
  bool isTwoAddr = NumOps > 1 &&
 | 
						|
    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
 | 
						|
 | 
						|
  // Folding a memory location into the two-address part of a two-address
 | 
						|
  // instruction is different than folding it other places.  It requires
 | 
						|
  // replacing the *two* registers with the memory location.
 | 
						|
  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
 | 
						|
  if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | 
						|
  } else if (OpNum == 0) { // If operand 0
 | 
						|
    switch (Opc) {
 | 
						|
    case X86::MOV16r0:
 | 
						|
    case X86::MOV32r0:
 | 
						|
    case X86::MOV64r0:
 | 
						|
    case X86::MOV8r0:
 | 
						|
      return true;
 | 
						|
    default: break;
 | 
						|
    }
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable0;
 | 
						|
  } else if (OpNum == 1) {
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable1;
 | 
						|
  } else if (OpNum == 2) {
 | 
						|
    OpcodeTablePtr = &RegOp2MemOpTable2;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (OpcodeTablePtr) {
 | 
						|
    // Find the Opcode to fuse
 | 
						|
    DenseMap<unsigned*, unsigned>::iterator I =
 | 
						|
      OpcodeTablePtr->find((unsigned*)Opc);
 | 
						|
    if (I != OpcodeTablePtr->end())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
 | 
						|
                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
 | 
						|
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | 
						|
  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
 | 
						|
    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
 | 
						|
  if (I == MemOp2RegOpTable.end())
 | 
						|
    return false;
 | 
						|
  unsigned Opc = I->second.first;
 | 
						|
  unsigned Index = I->second.second & 0xf;
 | 
						|
  bool FoldedLoad = I->second.second & (1 << 4);
 | 
						|
  bool FoldedStore = I->second.second & (1 << 5);
 | 
						|
  if (UnfoldLoad && !FoldedLoad)
 | 
						|
    return false;
 | 
						|
  UnfoldLoad &= FoldedLoad;
 | 
						|
  if (UnfoldStore && !FoldedStore)
 | 
						|
    return false;
 | 
						|
  UnfoldStore &= FoldedStore;
 | 
						|
 | 
						|
  const TargetInstrDesc &TID = get(Opc);
 | 
						|
  const TargetOperandInfo &TOI = TID.OpInfo[Index];
 | 
						|
  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
 | 
						|
    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
 | 
						|
  SmallVector<MachineOperand,4> AddrOps;
 | 
						|
  SmallVector<MachineOperand,2> BeforeOps;
 | 
						|
  SmallVector<MachineOperand,2> AfterOps;
 | 
						|
  SmallVector<MachineOperand,4> ImpOps;
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &Op = MI->getOperand(i);
 | 
						|
    if (i >= Index && i < Index+4)
 | 
						|
      AddrOps.push_back(Op);
 | 
						|
    else if (Op.isReg() && Op.isImplicit())
 | 
						|
      ImpOps.push_back(Op);
 | 
						|
    else if (i < Index)
 | 
						|
      BeforeOps.push_back(Op);
 | 
						|
    else if (i > Index)
 | 
						|
      AfterOps.push_back(Op);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the load instruction.
 | 
						|
  if (UnfoldLoad) {
 | 
						|
    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
 | 
						|
    if (UnfoldStore) {
 | 
						|
      // Address operands cannot be marked isKill.
 | 
						|
      for (unsigned i = 1; i != 5; ++i) {
 | 
						|
        MachineOperand &MO = NewMIs[0]->getOperand(i);
 | 
						|
        if (MO.isReg())
 | 
						|
          MO.setIsKill(false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the data processing instruction.
 | 
						|
  MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
 | 
						|
  MachineInstrBuilder MIB(DataMI);
 | 
						|
  
 | 
						|
  if (FoldedStore)
 | 
						|
    MIB.addReg(Reg, true);
 | 
						|
  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
 | 
						|
  if (FoldedLoad)
 | 
						|
    MIB.addReg(Reg);
 | 
						|
  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
 | 
						|
    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
 | 
						|
  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = ImpOps[i];
 | 
						|
    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
 | 
						|
  }
 | 
						|
  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
 | 
						|
  unsigned NewOpc = 0;
 | 
						|
  switch (DataMI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case X86::CMP64ri32:
 | 
						|
  case X86::CMP32ri:
 | 
						|
  case X86::CMP16ri:
 | 
						|
  case X86::CMP8ri: {
 | 
						|
    MachineOperand &MO0 = DataMI->getOperand(0);
 | 
						|
    MachineOperand &MO1 = DataMI->getOperand(1);
 | 
						|
    if (MO1.getImm() == 0) {
 | 
						|
      switch (DataMI->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
 | 
						|
      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
 | 
						|
      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
 | 
						|
      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
 | 
						|
      }
 | 
						|
      DataMI->setDesc(get(NewOpc));
 | 
						|
      MO1.ChangeToRegister(MO0.getReg(), false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
  NewMIs.push_back(DataMI);
 | 
						|
 | 
						|
  // Emit the store instruction.
 | 
						|
  if (UnfoldStore) {
 | 
						|
    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
 | 
						|
    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
 | 
						|
      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
 | 
						|
    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 | 
						|
                                     SmallVectorImpl<SDNode*> &NewNodes) const {
 | 
						|
  if (!N->isMachineOpcode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
 | 
						|
    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
 | 
						|
  if (I == MemOp2RegOpTable.end())
 | 
						|
    return false;
 | 
						|
  unsigned Opc = I->second.first;
 | 
						|
  unsigned Index = I->second.second & 0xf;
 | 
						|
  bool FoldedLoad = I->second.second & (1 << 4);
 | 
						|
  bool FoldedStore = I->second.second & (1 << 5);
 | 
						|
  const TargetInstrDesc &TID = get(Opc);
 | 
						|
  const TargetOperandInfo &TOI = TID.OpInfo[Index];
 | 
						|
  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
 | 
						|
    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
 | 
						|
  std::vector<SDValue> AddrOps;
 | 
						|
  std::vector<SDValue> BeforeOps;
 | 
						|
  std::vector<SDValue> AfterOps;
 | 
						|
  unsigned NumOps = N->getNumOperands();
 | 
						|
  for (unsigned i = 0; i != NumOps-1; ++i) {
 | 
						|
    SDValue Op = N->getOperand(i);
 | 
						|
    if (i >= Index && i < Index+4)
 | 
						|
      AddrOps.push_back(Op);
 | 
						|
    else if (i < Index)
 | 
						|
      BeforeOps.push_back(Op);
 | 
						|
    else if (i > Index)
 | 
						|
      AfterOps.push_back(Op);
 | 
						|
  }
 | 
						|
  SDValue Chain = N->getOperand(NumOps-1);
 | 
						|
  AddrOps.push_back(Chain);
 | 
						|
 | 
						|
  // Emit the load instruction.
 | 
						|
  SDNode *Load = 0;
 | 
						|
  const MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  if (FoldedLoad) {
 | 
						|
    MVT VT = *RC->vt_begin();
 | 
						|
    bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
      RI.needsStackRealignment(MF);
 | 
						|
    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
 | 
						|
                             VT, MVT::Other,
 | 
						|
                             &AddrOps[0], AddrOps.size());
 | 
						|
    NewNodes.push_back(Load);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the data processing instruction.
 | 
						|
  std::vector<MVT> VTs;
 | 
						|
  const TargetRegisterClass *DstRC = 0;
 | 
						|
  if (TID.getNumDefs() > 0) {
 | 
						|
    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
 | 
						|
    DstRC = DstTOI.isLookupPtrRegClass()
 | 
						|
      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
 | 
						|
    VTs.push_back(*DstRC->vt_begin());
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | 
						|
    MVT VT = N->getValueType(i);
 | 
						|
    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
 | 
						|
      VTs.push_back(VT);
 | 
						|
  }
 | 
						|
  if (Load)
 | 
						|
    BeforeOps.push_back(SDValue(Load, 0));
 | 
						|
  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
 | 
						|
  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
 | 
						|
  NewNodes.push_back(NewNode);
 | 
						|
 | 
						|
  // Emit the store instruction.
 | 
						|
  if (FoldedStore) {
 | 
						|
    AddrOps.pop_back();
 | 
						|
    AddrOps.push_back(SDValue(NewNode, 0));
 | 
						|
    AddrOps.push_back(Chain);
 | 
						|
    bool isAligned = (RI.getStackAlignment() >= 16) ||
 | 
						|
      RI.needsStackRealignment(MF);
 | 
						|
    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
 | 
						|
                                      MVT::Other, &AddrOps[0], AddrOps.size());
 | 
						|
    NewNodes.push_back(Store);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
 | 
						|
                                      bool UnfoldLoad, bool UnfoldStore) const {
 | 
						|
  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
 | 
						|
    MemOp2RegOpTable.find((unsigned*)Opc);
 | 
						|
  if (I == MemOp2RegOpTable.end())
 | 
						|
    return 0;
 | 
						|
  bool FoldedLoad = I->second.second & (1 << 4);
 | 
						|
  bool FoldedStore = I->second.second & (1 << 5);
 | 
						|
  if (UnfoldLoad && !FoldedLoad)
 | 
						|
    return 0;
 | 
						|
  if (UnfoldStore && !FoldedStore)
 | 
						|
    return 0;
 | 
						|
  return I->second.first;
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
 | 
						|
  if (MBB.empty()) return false;
 | 
						|
  
 | 
						|
  switch (MBB.back().getOpcode()) {
 | 
						|
  case X86::TCRETURNri:
 | 
						|
  case X86::TCRETURNdi:
 | 
						|
  case X86::RET:     // Return.
 | 
						|
  case X86::RETI:
 | 
						|
  case X86::TAILJMPd:
 | 
						|
  case X86::TAILJMPr:
 | 
						|
  case X86::TAILJMPm:
 | 
						|
  case X86::JMP:     // Uncond branch.
 | 
						|
  case X86::JMP32r:  // Indirect branch.
 | 
						|
  case X86::JMP64r:  // Indirect branch (64-bit).
 | 
						|
  case X86::JMP32m:  // Indirect branch through mem.
 | 
						|
  case X86::JMP64m:  // Indirect branch through mem (64-bit).
 | 
						|
    return true;
 | 
						|
  default: return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86InstrInfo::
 | 
						|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | 
						|
  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
 | 
						|
  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
 | 
						|
  Cond[0].setImm(GetOppositeBranchCondition(CC));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
 | 
						|
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
  if (Subtarget->is64Bit())
 | 
						|
    return &X86::GR64RegClass;
 | 
						|
  else
 | 
						|
    return &X86::GR32RegClass;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
 | 
						|
  switch (Desc->TSFlags & X86II::ImmMask) {
 | 
						|
  case X86II::Imm8:   return 1;
 | 
						|
  case X86II::Imm16:  return 2;
 | 
						|
  case X86II::Imm32:  return 4;
 | 
						|
  case X86II::Imm64:  return 8;
 | 
						|
  default: assert(0 && "Immediate size not set!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
 | 
						|
/// e.g. r8, xmm8, etc.
 | 
						|
bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
 | 
						|
  if (!MO.isReg()) return false;
 | 
						|
  switch (MO.getReg()) {
 | 
						|
  default: break;
 | 
						|
  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
 | 
						|
  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
 | 
						|
  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
 | 
						|
  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
 | 
						|
  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
 | 
						|
  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
 | 
						|
  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
 | 
						|
  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
 | 
						|
  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
 | 
						|
  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
 | 
						|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | 
						|
/// size, and 3) use of X86-64 extended registers.
 | 
						|
unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
 | 
						|
  unsigned REX = 0;
 | 
						|
  const TargetInstrDesc &Desc = MI.getDesc();
 | 
						|
 | 
						|
  // Pseudo instructions do not need REX prefix byte.
 | 
						|
  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
 | 
						|
    return 0;
 | 
						|
  if (Desc.TSFlags & X86II::REX_W)
 | 
						|
    REX |= 1 << 3;
 | 
						|
 | 
						|
  unsigned NumOps = Desc.getNumOperands();
 | 
						|
  if (NumOps) {
 | 
						|
    bool isTwoAddr = NumOps > 1 &&
 | 
						|
      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
 | 
						|
 | 
						|
    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | 
						|
    unsigned i = isTwoAddr ? 1 : 0;
 | 
						|
    for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
      const MachineOperand& MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (isX86_64NonExtLowByteReg(Reg))
 | 
						|
          REX |= 0x40;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Desc.TSFlags & X86II::FormMask) {
 | 
						|
    case X86II::MRMInitReg:
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= (1 << 0) | (1 << 2);
 | 
						|
      break;
 | 
						|
    case X86II::MRMSrcReg: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (isX86_64ExtendedReg(MO))
 | 
						|
          REX |= 1 << 0;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86II::MRMSrcMem: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      unsigned Bit = 0;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (; i != NumOps; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (MO.isReg()) {
 | 
						|
          if (isX86_64ExtendedReg(MO))
 | 
						|
            REX |= 1 << Bit;
 | 
						|
          Bit++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
    case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
    case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
    case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
    case X86II::MRMDestMem: {
 | 
						|
      unsigned e = isTwoAddr ? 5 : 4;
 | 
						|
      i = isTwoAddr ? 1 : 0;
 | 
						|
      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
 | 
						|
        REX |= 1 << 2;
 | 
						|
      unsigned Bit = 0;
 | 
						|
      for (; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (MO.isReg()) {
 | 
						|
          if (isX86_64ExtendedReg(MO))
 | 
						|
            REX |= 1 << Bit;
 | 
						|
          Bit++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      if (isX86_64ExtendedReg(MI.getOperand(0)))
 | 
						|
        REX |= 1 << 0;
 | 
						|
      i = isTwoAddr ? 2 : 1;
 | 
						|
      for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
        const MachineOperand& MO = MI.getOperand(i);
 | 
						|
        if (isX86_64ExtendedReg(MO))
 | 
						|
          REX |= 1 << 2;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return REX;
 | 
						|
}
 | 
						|
 | 
						|
/// sizePCRelativeBlockAddress - This method returns the size of a PC
 | 
						|
/// relative block address instruction
 | 
						|
///
 | 
						|
static unsigned sizePCRelativeBlockAddress() {
 | 
						|
  return 4;
 | 
						|
}
 | 
						|
 | 
						|
/// sizeGlobalAddress - Give the size of the emission of this global address
 | 
						|
///
 | 
						|
static unsigned sizeGlobalAddress(bool dword) {
 | 
						|
  return dword ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
/// sizeConstPoolAddress - Give the size of the emission of this constant
 | 
						|
/// pool address
 | 
						|
///
 | 
						|
static unsigned sizeConstPoolAddress(bool dword) {
 | 
						|
  return dword ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
/// sizeExternalSymbolAddress - Give the size of the emission of this external
 | 
						|
/// symbol
 | 
						|
///
 | 
						|
static unsigned sizeExternalSymbolAddress(bool dword) {
 | 
						|
  return dword ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
/// sizeJumpTableAddress - Give the size of the emission of this jump
 | 
						|
/// table address
 | 
						|
///
 | 
						|
static unsigned sizeJumpTableAddress(bool dword) {
 | 
						|
  return dword ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned sizeConstant(unsigned Size) {
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned sizeRegModRMByte(){
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned sizeSIBByte(){
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
 | 
						|
  unsigned FinalSize = 0;
 | 
						|
  // If this is a simple integer displacement that doesn't require a relocation.
 | 
						|
  if (!RelocOp) {
 | 
						|
    FinalSize += sizeConstant(4);
 | 
						|
    return FinalSize;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, this is something that requires a relocation.
 | 
						|
  if (RelocOp->isGlobal()) {
 | 
						|
    FinalSize += sizeGlobalAddress(false);
 | 
						|
  } else if (RelocOp->isCPI()) {
 | 
						|
    FinalSize += sizeConstPoolAddress(false);
 | 
						|
  } else if (RelocOp->isJTI()) {
 | 
						|
    FinalSize += sizeJumpTableAddress(false);
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown value to relocate!");
 | 
						|
  }
 | 
						|
  return FinalSize;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
 | 
						|
                                    bool IsPIC, bool Is64BitMode) {
 | 
						|
  const MachineOperand &Op3 = MI.getOperand(Op+3);
 | 
						|
  int DispVal = 0;
 | 
						|
  const MachineOperand *DispForReloc = 0;
 | 
						|
  unsigned FinalSize = 0;
 | 
						|
  
 | 
						|
  // Figure out what sort of displacement we have to handle here.
 | 
						|
  if (Op3.isGlobal()) {
 | 
						|
    DispForReloc = &Op3;
 | 
						|
  } else if (Op3.isCPI()) {
 | 
						|
    if (Is64BitMode || IsPIC) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal = 1;
 | 
						|
    }
 | 
						|
  } else if (Op3.isJTI()) {
 | 
						|
    if (Is64BitMode || IsPIC) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal = 1; 
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    DispVal = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineOperand &Base     = MI.getOperand(Op);
 | 
						|
  const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | 
						|
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
 | 
						|
  // Is a SIB byte needed?
 | 
						|
  if (IndexReg.getReg() == 0 &&
 | 
						|
      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
 | 
						|
    if (BaseReg == 0) {  // Just a displacement?
 | 
						|
      // Emit special case [disp32] encoding
 | 
						|
      ++FinalSize; 
 | 
						|
      FinalSize += getDisplacementFieldSize(DispForReloc);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
 | 
						|
      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | 
						|
        // Emit simple indirect register encoding... [EAX] f.e.
 | 
						|
        ++FinalSize;
 | 
						|
      // Be pessimistic and assume it's a disp32, not a disp8
 | 
						|
      } else {
 | 
						|
        // Emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
        ++FinalSize;
 | 
						|
        FinalSize += getDisplacementFieldSize(DispForReloc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
    assert(IndexReg.getReg() != X86::ESP &&
 | 
						|
           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
    bool ForceDisp32 = false;
 | 
						|
    if (BaseReg == 0 || DispForReloc) {
 | 
						|
      // Emit the normal disp32 encoding.
 | 
						|
      ++FinalSize;
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else {
 | 
						|
      ++FinalSize;
 | 
						|
    }
 | 
						|
 | 
						|
    FinalSize += sizeSIBByte();
 | 
						|
 | 
						|
    // Do we need to output a displacement?
 | 
						|
    if (DispVal != 0 || ForceDisp32) {
 | 
						|
      FinalSize += getDisplacementFieldSize(DispForReloc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FinalSize;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
 | 
						|
                                    const TargetInstrDesc *Desc,
 | 
						|
                                    bool IsPIC, bool Is64BitMode) {
 | 
						|
  
 | 
						|
  unsigned Opcode = Desc->Opcode;
 | 
						|
  unsigned FinalSize = 0;
 | 
						|
 | 
						|
  // Emit the lock opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
 | 
						|
 | 
						|
  // Emit segment overrid opcode prefix as needed.
 | 
						|
  switch (Desc->TSFlags & X86II::SegOvrMask) {
 | 
						|
  case X86II::FS:
 | 
						|
  case X86II::GS:
 | 
						|
   ++FinalSize;
 | 
						|
   break;
 | 
						|
  default: assert(0 && "Invalid segment!");
 | 
						|
  case 0: break;  // No segment override!
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
 | 
						|
 | 
						|
  // Emit the address size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
 | 
						|
 | 
						|
  bool Need0FPrefix = false;
 | 
						|
  switch (Desc->TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TB:  // Two-byte opcode prefix
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
  case X86II::TA:  // 0F 3A
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::REP: break; // already handled.
 | 
						|
  case X86II::XS:   // F3 0F
 | 
						|
    ++FinalSize;
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2 0F
 | 
						|
    ++FinalSize;
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | 
						|
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | 
						|
    ++FinalSize;
 | 
						|
    break; // Two-byte opcode prefix
 | 
						|
  default: assert(0 && "Invalid prefix!");
 | 
						|
  case 0: break;  // No prefix!
 | 
						|
  }
 | 
						|
 | 
						|
  if (Is64BitMode) {
 | 
						|
    // REX prefix
 | 
						|
    unsigned REX = X86InstrInfo::determineREX(MI);
 | 
						|
    if (REX)
 | 
						|
      ++FinalSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // 0x0F escape code must be emitted just before the opcode.
 | 
						|
  if (Need0FPrefix)
 | 
						|
    ++FinalSize;
 | 
						|
 | 
						|
  switch (Desc->TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
    ++FinalSize;
 | 
						|
    break;
 | 
						|
  case X86II::TA:    // 0F 3A
 | 
						|
    ++FinalSize;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a two-address instruction, skip one of the register operands.
 | 
						|
  unsigned NumOps = Desc->getNumOperands();
 | 
						|
  unsigned CurOp = 0;
 | 
						|
  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | 
						|
    CurOp++;
 | 
						|
 | 
						|
  switch (Desc->TSFlags & X86II::FormMask) {
 | 
						|
  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
    // Remember the current PC offset, this is the PIC relocation
 | 
						|
    // base address.
 | 
						|
    switch (Opcode) {
 | 
						|
    default: 
 | 
						|
      break;
 | 
						|
    case TargetInstrInfo::INLINEASM: {
 | 
						|
      const MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
      const char *AsmStr = MI.getOperand(0).getSymbolName();
 | 
						|
      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
 | 
						|
      FinalSize += AI->getInlineAsmLength(AsmStr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TargetInstrInfo::DBG_LABEL:
 | 
						|
    case TargetInstrInfo::EH_LABEL:
 | 
						|
      break;
 | 
						|
    case TargetInstrInfo::IMPLICIT_DEF:
 | 
						|
    case TargetInstrInfo::DECLARE:
 | 
						|
    case X86::DWARF_LOC:
 | 
						|
    case X86::FP_REG_KILL:
 | 
						|
      break;
 | 
						|
    case X86::MOVPC32r: {
 | 
						|
      // This emits the "call" portion of this pseudo instruction.
 | 
						|
      ++FinalSize;
 | 
						|
      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    CurOp = NumOps;
 | 
						|
    break;
 | 
						|
  case X86II::RawFrm:
 | 
						|
    ++FinalSize;
 | 
						|
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
      if (MO.isMBB()) {
 | 
						|
        FinalSize += sizePCRelativeBlockAddress();
 | 
						|
      } else if (MO.isGlobal()) {
 | 
						|
        FinalSize += sizeGlobalAddress(false);
 | 
						|
      } else if (MO.isSymbol()) {
 | 
						|
        FinalSize += sizeExternalSymbolAddress(false);
 | 
						|
      } else if (MO.isImm()) {
 | 
						|
        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown RawFrm operand!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    ++FinalSize;
 | 
						|
    ++CurOp;
 | 
						|
    
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
      if (MO1.isImm())
 | 
						|
        FinalSize += sizeConstant(Size);
 | 
						|
      else {
 | 
						|
        bool dword = false;
 | 
						|
        if (Opcode == X86::MOV64ri)
 | 
						|
          dword = true; 
 | 
						|
        if (MO1.isGlobal()) {
 | 
						|
          FinalSize += sizeGlobalAddress(dword);
 | 
						|
        } else if (MO1.isSymbol())
 | 
						|
          FinalSize += sizeExternalSymbolAddress(dword);
 | 
						|
        else if (MO1.isCPI())
 | 
						|
          FinalSize += sizeConstPoolAddress(dword);
 | 
						|
        else if (MO1.isJTI())
 | 
						|
          FinalSize += sizeJumpTableAddress(dword);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestReg: {
 | 
						|
    ++FinalSize; 
 | 
						|
    FinalSize += sizeRegModRMByte();
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      ++CurOp;
 | 
						|
      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    ++FinalSize;
 | 
						|
    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
 | 
						|
    CurOp += 5;
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      ++CurOp;
 | 
						|
      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    ++FinalSize;
 | 
						|
    FinalSize += sizeRegModRMByte();
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      ++CurOp;
 | 
						|
      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
 | 
						|
    ++FinalSize;
 | 
						|
    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
 | 
						|
    CurOp += 5;
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      ++CurOp;
 | 
						|
      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
    ++FinalSize;
 | 
						|
    ++CurOp;
 | 
						|
    FinalSize += sizeRegModRMByte();
 | 
						|
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
      if (MO1.isImm())
 | 
						|
        FinalSize += sizeConstant(Size);
 | 
						|
      else {
 | 
						|
        bool dword = false;
 | 
						|
        if (Opcode == X86::MOV64ri32)
 | 
						|
          dword = true;
 | 
						|
        if (MO1.isGlobal()) {
 | 
						|
          FinalSize += sizeGlobalAddress(dword);
 | 
						|
        } else if (MO1.isSymbol())
 | 
						|
          FinalSize += sizeExternalSymbolAddress(dword);
 | 
						|
        else if (MO1.isCPI())
 | 
						|
          FinalSize += sizeConstPoolAddress(dword);
 | 
						|
        else if (MO1.isJTI())
 | 
						|
          FinalSize += sizeJumpTableAddress(dword);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m: {
 | 
						|
    
 | 
						|
    ++FinalSize;
 | 
						|
    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
 | 
						|
    CurOp += 4;
 | 
						|
 | 
						|
    if (CurOp != NumOps) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
      if (MO.isImm())
 | 
						|
        FinalSize += sizeConstant(Size);
 | 
						|
      else {
 | 
						|
        bool dword = false;
 | 
						|
        if (Opcode == X86::MOV64mi32)
 | 
						|
          dword = true;
 | 
						|
        if (MO.isGlobal()) {
 | 
						|
          FinalSize += sizeGlobalAddress(dword);
 | 
						|
        } else if (MO.isSymbol())
 | 
						|
          FinalSize += sizeExternalSymbolAddress(dword);
 | 
						|
        else if (MO.isCPI())
 | 
						|
          FinalSize += sizeConstPoolAddress(dword);
 | 
						|
        else if (MO.isJTI())
 | 
						|
          FinalSize += sizeJumpTableAddress(dword);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMInitReg:
 | 
						|
    ++FinalSize;
 | 
						|
    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | 
						|
    FinalSize += sizeRegModRMByte();
 | 
						|
    ++CurOp;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Desc->isVariadic() && CurOp != NumOps) {
 | 
						|
    cerr << "Cannot determine size: ";
 | 
						|
    MI.dump();
 | 
						|
    cerr << '\n';
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  
 | 
						|
 | 
						|
  return FinalSize;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
 | 
						|
  const TargetInstrDesc &Desc = MI->getDesc();
 | 
						|
  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
 | 
						|
  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
 | 
						|
  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
 | 
						|
  if (Desc.getOpcode() == X86::MOVPC32r) {
 | 
						|
    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
 | 
						|
  }
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalBaseReg - Return a virtual register initialized with the
 | 
						|
/// the global base register value. Output instructions required to
 | 
						|
/// initialize the register in the function entry block, if necessary.
 | 
						|
///
 | 
						|
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
 | 
						|
  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
 | 
						|
         "X86-64 PIC uses RIP relative addressing");
 | 
						|
 | 
						|
  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
 | 
						|
  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | 
						|
  if (GlobalBaseReg != 0)
 | 
						|
    return GlobalBaseReg;
 | 
						|
 | 
						|
  // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
  MachineBasicBlock &FirstMBB = MF->front();
 | 
						|
  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | 
						|
  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | 
						|
  
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  // Operand of MovePCtoStack is completely ignored by asm printer. It's
 | 
						|
  // only used in JIT code emission as displacement to pc.
 | 
						|
  BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
 | 
						|
  
 | 
						|
  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
 | 
						|
  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
 | 
						|
    GlobalBaseReg =
 | 
						|
      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | 
						|
    BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
 | 
						|
      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
 | 
						|
  } else {
 | 
						|
    GlobalBaseReg = PC;
 | 
						|
  }
 | 
						|
 | 
						|
  X86FI->setGlobalBaseReg(GlobalBaseReg);
 | 
						|
  return GlobalBaseReg;
 | 
						|
}
 |