forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			360 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			360 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a wrapper around MCSchedModel that allows the interface
 | 
						|
// to benefit from information currently only available in TargetInstrInfo.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/TargetSchedule.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/MC/MCSchedule.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
 | 
						|
  cl::desc("Use TargetSchedModel for latency lookup"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
 | 
						|
  cl::desc("Use InstrItineraryData for latency lookup"));
 | 
						|
 | 
						|
bool TargetSchedModel::hasInstrSchedModel() const {
 | 
						|
  return EnableSchedModel && SchedModel.hasInstrSchedModel();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetSchedModel::hasInstrItineraries() const {
 | 
						|
  return EnableSchedItins && !InstrItins.isEmpty();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned gcd(unsigned Dividend, unsigned Divisor) {
 | 
						|
  // Dividend and Divisor will be naturally swapped as needed.
 | 
						|
  while (Divisor) {
 | 
						|
    unsigned Rem = Dividend % Divisor;
 | 
						|
    Dividend = Divisor;
 | 
						|
    Divisor = Rem;
 | 
						|
  };
 | 
						|
  return Dividend;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned lcm(unsigned A, unsigned B) {
 | 
						|
  unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
 | 
						|
  assert((LCM >= A && LCM >= B) && "LCM overflow");
 | 
						|
  return LCM;
 | 
						|
}
 | 
						|
 | 
						|
void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
 | 
						|
  STI = TSInfo;
 | 
						|
  SchedModel = TSInfo->getSchedModel();
 | 
						|
  TII = TSInfo->getInstrInfo();
 | 
						|
  STI->initInstrItins(InstrItins);
 | 
						|
 | 
						|
  unsigned NumRes = SchedModel.getNumProcResourceKinds();
 | 
						|
  ResourceFactors.resize(NumRes);
 | 
						|
  ResourceLCM = SchedModel.IssueWidth;
 | 
						|
  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
 | 
						|
    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
 | 
						|
    if (NumUnits > 0)
 | 
						|
      ResourceLCM = lcm(ResourceLCM, NumUnits);
 | 
						|
  }
 | 
						|
  MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
 | 
						|
  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
 | 
						|
    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
 | 
						|
    ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true only if instruction is specified as single issue.
 | 
						|
bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
 | 
						|
                                     const MCSchedClassDesc *SC) const {
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    if (!SC)
 | 
						|
      SC = resolveSchedClass(MI);
 | 
						|
    if (SC->isValid())
 | 
						|
      return SC->BeginGroup;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
 | 
						|
                                     const MCSchedClassDesc *SC) const {
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    if (!SC)
 | 
						|
      SC = resolveSchedClass(MI);
 | 
						|
    if (SC->isValid())
 | 
						|
      return SC->EndGroup;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
 | 
						|
                                          const MCSchedClassDesc *SC) const {
 | 
						|
  if (hasInstrItineraries()) {
 | 
						|
    int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
 | 
						|
    return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
 | 
						|
  }
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    if (!SC)
 | 
						|
      SC = resolveSchedClass(MI);
 | 
						|
    if (SC->isValid())
 | 
						|
      return SC->NumMicroOps;
 | 
						|
  }
 | 
						|
  return MI->isTransient() ? 0 : 1;
 | 
						|
}
 | 
						|
 | 
						|
// The machine model may explicitly specify an invalid latency, which
 | 
						|
// effectively means infinite latency. Since users of the TargetSchedule API
 | 
						|
// don't know how to handle this, we convert it to a very large latency that is
 | 
						|
// easy to distinguish when debugging the DAG but won't induce overflow.
 | 
						|
static unsigned capLatency(int Cycles) {
 | 
						|
  return Cycles >= 0 ? Cycles : 1000;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
 | 
						|
/// evaluation of predicates that depend on instruction operands or flags.
 | 
						|
const MCSchedClassDesc *TargetSchedModel::
 | 
						|
resolveSchedClass(const MachineInstr *MI) const {
 | 
						|
  // Get the definition's scheduling class descriptor from this machine model.
 | 
						|
  unsigned SchedClass = MI->getDesc().getSchedClass();
 | 
						|
  const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
 | 
						|
  if (!SCDesc->isValid())
 | 
						|
    return SCDesc;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  unsigned NIter = 0;
 | 
						|
#endif
 | 
						|
  while (SCDesc->isVariant()) {
 | 
						|
    assert(++NIter < 6 && "Variants are nested deeper than the magic number");
 | 
						|
 | 
						|
    SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
 | 
						|
    SCDesc = SchedModel.getSchedClassDesc(SchedClass);
 | 
						|
  }
 | 
						|
  return SCDesc;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the def index of this operand. This index maps to the machine model and
 | 
						|
/// is independent of use operands. Def operands may be reordered with uses or
 | 
						|
/// merged with uses without affecting the def index (e.g. before/after
 | 
						|
/// regalloc). However, an instruction's def operands must never be reordered
 | 
						|
/// with respect to each other.
 | 
						|
static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
 | 
						|
  unsigned DefIdx = 0;
 | 
						|
  for (unsigned i = 0; i != DefOperIdx; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isDef())
 | 
						|
      ++DefIdx;
 | 
						|
  }
 | 
						|
  return DefIdx;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the use index of this operand. This is independent of the instruction's
 | 
						|
/// def operands.
 | 
						|
///
 | 
						|
/// Note that uses are not determined by the operand's isUse property, which
 | 
						|
/// is simply the inverse of isDef. Here we consider any readsReg operand to be
 | 
						|
/// a "use". The machine model allows an operand to be both a Def and Use.
 | 
						|
static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
 | 
						|
  unsigned UseIdx = 0;
 | 
						|
  for (unsigned i = 0; i != UseOperIdx; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.readsReg() && !MO.isDef())
 | 
						|
      ++UseIdx;
 | 
						|
  }
 | 
						|
  return UseIdx;
 | 
						|
}
 | 
						|
 | 
						|
// Top-level API for clients that know the operand indices.
 | 
						|
unsigned TargetSchedModel::computeOperandLatency(
 | 
						|
  const MachineInstr *DefMI, unsigned DefOperIdx,
 | 
						|
  const MachineInstr *UseMI, unsigned UseOperIdx) const {
 | 
						|
 | 
						|
  if (!hasInstrSchedModel() && !hasInstrItineraries())
 | 
						|
    return TII->defaultDefLatency(SchedModel, *DefMI);
 | 
						|
 | 
						|
  if (hasInstrItineraries()) {
 | 
						|
    int OperLatency = 0;
 | 
						|
    if (UseMI) {
 | 
						|
      OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
 | 
						|
                                           *UseMI, UseOperIdx);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      unsigned DefClass = DefMI->getDesc().getSchedClass();
 | 
						|
      OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
 | 
						|
    }
 | 
						|
    if (OperLatency >= 0)
 | 
						|
      return OperLatency;
 | 
						|
 | 
						|
    // No operand latency was found.
 | 
						|
    unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
 | 
						|
 | 
						|
    // Expected latency is the max of the stage latency and itinerary props.
 | 
						|
    // Rather than directly querying InstrItins stage latency, we call a TII
 | 
						|
    // hook to allow subtargets to specialize latency. This hook is only
 | 
						|
    // applicable to the InstrItins model. InstrSchedModel should model all
 | 
						|
    // special cases without TII hooks.
 | 
						|
    InstrLatency =
 | 
						|
        std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
 | 
						|
    return InstrLatency;
 | 
						|
  }
 | 
						|
  // hasInstrSchedModel()
 | 
						|
  const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
 | 
						|
  unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
 | 
						|
  if (DefIdx < SCDesc->NumWriteLatencyEntries) {
 | 
						|
    // Lookup the definition's write latency in SubtargetInfo.
 | 
						|
    const MCWriteLatencyEntry *WLEntry =
 | 
						|
      STI->getWriteLatencyEntry(SCDesc, DefIdx);
 | 
						|
    unsigned WriteID = WLEntry->WriteResourceID;
 | 
						|
    unsigned Latency = capLatency(WLEntry->Cycles);
 | 
						|
    if (!UseMI)
 | 
						|
      return Latency;
 | 
						|
 | 
						|
    // Lookup the use's latency adjustment in SubtargetInfo.
 | 
						|
    const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
 | 
						|
    if (UseDesc->NumReadAdvanceEntries == 0)
 | 
						|
      return Latency;
 | 
						|
    unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
 | 
						|
    int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
 | 
						|
    if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
 | 
						|
      return 0;
 | 
						|
    return Latency - Advance;
 | 
						|
  }
 | 
						|
  // If DefIdx does not exist in the model (e.g. implicit defs), then return
 | 
						|
  // unit latency (defaultDefLatency may be too conservative).
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
 | 
						|
      && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
 | 
						|
      && SchedModel.isComplete()) {
 | 
						|
    errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
 | 
						|
           << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
 | 
						|
    llvm_unreachable("incomplete machine model");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  // FIXME: Automatically giving all implicit defs defaultDefLatency is
 | 
						|
  // undesirable. We should only do it for defs that are known to the MC
 | 
						|
  // desc like flags. Truly implicit defs should get 1 cycle latency.
 | 
						|
  return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
 | 
						|
  return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
 | 
						|
  assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
 | 
						|
  unsigned SCIdx = TII->get(Opcode).getSchedClass();
 | 
						|
  return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
 | 
						|
  if (hasInstrSchedModel())
 | 
						|
    return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
 | 
						|
  return computeInstrLatency(Inst.getOpcode());
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
 | 
						|
                                      bool UseDefaultDefLatency) const {
 | 
						|
  // For the itinerary model, fall back to the old subtarget hook.
 | 
						|
  // Allow subtargets to compute Bundle latencies outside the machine model.
 | 
						|
  if (hasInstrItineraries() || MI->isBundle() ||
 | 
						|
      (!hasInstrSchedModel() && !UseDefaultDefLatency))
 | 
						|
    return TII->getInstrLatency(&InstrItins, *MI);
 | 
						|
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
 | 
						|
    if (SCDesc->isValid())
 | 
						|
      return computeInstrLatency(*SCDesc);
 | 
						|
  }
 | 
						|
  return TII->defaultDefLatency(SchedModel, *MI);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetSchedModel::
 | 
						|
computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
 | 
						|
                     const MachineInstr *DepMI) const {
 | 
						|
  if (!SchedModel.isOutOfOrder())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // Out-of-order processor can dispatch WAW dependencies in the same cycle.
 | 
						|
 | 
						|
  // Treat predication as a data dependency for out-of-order cpus. In-order
 | 
						|
  // cpus do not need to treat predicated writes specially.
 | 
						|
  //
 | 
						|
  // TODO: The following hack exists because predication passes do not
 | 
						|
  // correctly append imp-use operands, and readsReg() strangely returns false
 | 
						|
  // for predicated defs.
 | 
						|
  unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
 | 
						|
  const MachineFunction &MF = *DefMI->getMF();
 | 
						|
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
 | 
						|
    return computeInstrLatency(DefMI);
 | 
						|
 | 
						|
  // If we have a per operand scheduling model, check if this def is writing
 | 
						|
  // an unbuffered resource. If so, it treated like an in-order cpu.
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
 | 
						|
    if (SCDesc->isValid()) {
 | 
						|
      for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
 | 
						|
             *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
 | 
						|
        if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
 | 
						|
          return 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
 | 
						|
  if (hasInstrItineraries()) {
 | 
						|
    unsigned SchedClass = MI->getDesc().getSchedClass();
 | 
						|
    return MCSchedModel::getReciprocalThroughput(SchedClass,
 | 
						|
                                                 *getInstrItineraries());
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasInstrSchedModel())
 | 
						|
    return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
 | 
						|
 | 
						|
  return 0.0;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
 | 
						|
  unsigned SchedClass = TII->get(Opcode).getSchedClass();
 | 
						|
  if (hasInstrItineraries())
 | 
						|
    return MCSchedModel::getReciprocalThroughput(SchedClass,
 | 
						|
                                                 *getInstrItineraries());
 | 
						|
  if (hasInstrSchedModel()) {
 | 
						|
    const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
 | 
						|
    if (SCDesc.isValid() && !SCDesc.isVariant())
 | 
						|
      return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
 | 
						|
  }
 | 
						|
 | 
						|
  return 0.0;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
 | 
						|
  if (hasInstrSchedModel())
 | 
						|
    return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
 | 
						|
  return computeReciprocalThroughput(MI.getOpcode());
 | 
						|
}
 | 
						|
 |