forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1493 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1493 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Linker/IRMover.h"
 | 
						|
#include "LinkDiagnosticInfo.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DiagnosticPrinter.h"
 | 
						|
#include "llvm/IR/GVMaterializer.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/TypeFinder.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <utility>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TypeMap implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class TypeMapTy : public ValueMapTypeRemapper {
 | 
						|
  /// This is a mapping from a source type to a destination type to use.
 | 
						|
  DenseMap<Type *, Type *> MappedTypes;
 | 
						|
 | 
						|
  /// When checking to see if two subgraphs are isomorphic, we speculatively
 | 
						|
  /// add types to MappedTypes, but keep track of them here in case we need to
 | 
						|
  /// roll back.
 | 
						|
  SmallVector<Type *, 16> SpeculativeTypes;
 | 
						|
 | 
						|
  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
 | 
						|
 | 
						|
  /// This is a list of non-opaque structs in the source module that are mapped
 | 
						|
  /// to an opaque struct in the destination module.
 | 
						|
  SmallVector<StructType *, 16> SrcDefinitionsToResolve;
 | 
						|
 | 
						|
  /// This is the set of opaque types in the destination modules who are
 | 
						|
  /// getting a body from the source module.
 | 
						|
  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
 | 
						|
 | 
						|
public:
 | 
						|
  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
 | 
						|
      : DstStructTypesSet(DstStructTypesSet) {}
 | 
						|
 | 
						|
  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
 | 
						|
  /// Indicate that the specified type in the destination module is conceptually
 | 
						|
  /// equivalent to the specified type in the source module.
 | 
						|
  void addTypeMapping(Type *DstTy, Type *SrcTy);
 | 
						|
 | 
						|
  /// Produce a body for an opaque type in the dest module from a type
 | 
						|
  /// definition in the source module.
 | 
						|
  void linkDefinedTypeBodies();
 | 
						|
 | 
						|
  /// Return the mapped type to use for the specified input type from the
 | 
						|
  /// source module.
 | 
						|
  Type *get(Type *SrcTy);
 | 
						|
  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
 | 
						|
 | 
						|
  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
 | 
						|
 | 
						|
  FunctionType *get(FunctionType *T) {
 | 
						|
    return cast<FunctionType>(get((Type *)T));
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  Type *remapType(Type *SrcTy) override { return get(SrcTy); }
 | 
						|
 | 
						|
  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
 | 
						|
  assert(SpeculativeTypes.empty());
 | 
						|
  assert(SpeculativeDstOpaqueTypes.empty());
 | 
						|
 | 
						|
  // Check to see if these types are recursively isomorphic and establish a
 | 
						|
  // mapping between them if so.
 | 
						|
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
 | 
						|
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
 | 
						|
    // any speculative mappings we've established.
 | 
						|
    for (Type *Ty : SpeculativeTypes)
 | 
						|
      MappedTypes.erase(Ty);
 | 
						|
 | 
						|
    SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
 | 
						|
                                   SpeculativeDstOpaqueTypes.size());
 | 
						|
    for (StructType *Ty : SpeculativeDstOpaqueTypes)
 | 
						|
      DstResolvedOpaqueTypes.erase(Ty);
 | 
						|
  } else {
 | 
						|
    // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
 | 
						|
    // and all its descendants to lower amount of renaming in LLVM context
 | 
						|
    // Renaming occurs because we load all source modules to the same context
 | 
						|
    // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
 | 
						|
    // As a result we may get several different types in the destination
 | 
						|
    // module, which are in fact the same.
 | 
						|
    for (Type *Ty : SpeculativeTypes)
 | 
						|
      if (auto *STy = dyn_cast<StructType>(Ty))
 | 
						|
        if (STy->hasName())
 | 
						|
          STy->setName("");
 | 
						|
  }
 | 
						|
  SpeculativeTypes.clear();
 | 
						|
  SpeculativeDstOpaqueTypes.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively walk this pair of types, returning true if they are isomorphic,
 | 
						|
/// false if they are not.
 | 
						|
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
 | 
						|
  // Two types with differing kinds are clearly not isomorphic.
 | 
						|
  if (DstTy->getTypeID() != SrcTy->getTypeID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have an entry in the MappedTypes table, then we have our answer.
 | 
						|
  Type *&Entry = MappedTypes[SrcTy];
 | 
						|
  if (Entry)
 | 
						|
    return Entry == DstTy;
 | 
						|
 | 
						|
  // Two identical types are clearly isomorphic.  Remember this
 | 
						|
  // non-speculatively.
 | 
						|
  if (DstTy == SrcTy) {
 | 
						|
    Entry = DstTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have two types with identical kinds that we haven't seen before.
 | 
						|
 | 
						|
  // If this is an opaque struct type, special case it.
 | 
						|
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
 | 
						|
    // Mapping an opaque type to any struct, just keep the dest struct.
 | 
						|
    if (SSTy->isOpaque()) {
 | 
						|
      Entry = DstTy;
 | 
						|
      SpeculativeTypes.push_back(SrcTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Mapping a non-opaque source type to an opaque dest.  If this is the first
 | 
						|
    // type that we're mapping onto this destination type then we succeed.  Keep
 | 
						|
    // the dest, but fill it in later. If this is the second (different) type
 | 
						|
    // that we're trying to map onto the same opaque type then we fail.
 | 
						|
    if (cast<StructType>(DstTy)->isOpaque()) {
 | 
						|
      // We can only map one source type onto the opaque destination type.
 | 
						|
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
 | 
						|
        return false;
 | 
						|
      SrcDefinitionsToResolve.push_back(SSTy);
 | 
						|
      SpeculativeTypes.push_back(SrcTy);
 | 
						|
      SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
 | 
						|
      Entry = DstTy;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the number of subtypes disagree between the two types, then we fail.
 | 
						|
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Fail if any of the extra properties (e.g. array size) of the type disagree.
 | 
						|
  if (isa<IntegerType>(DstTy))
 | 
						|
    return false; // bitwidth disagrees.
 | 
						|
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
 | 
						|
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
 | 
						|
      return false;
 | 
						|
  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
 | 
						|
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
 | 
						|
      return false;
 | 
						|
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
 | 
						|
    StructType *SSTy = cast<StructType>(SrcTy);
 | 
						|
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
 | 
						|
        DSTy->isPacked() != SSTy->isPacked())
 | 
						|
      return false;
 | 
						|
  } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
 | 
						|
    if (DSeqTy->getNumElements() !=
 | 
						|
        cast<SequentialType>(SrcTy)->getNumElements())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we speculate that these two types will line up and recursively
 | 
						|
  // check the subelements.
 | 
						|
  Entry = DstTy;
 | 
						|
  SpeculativeTypes.push_back(SrcTy);
 | 
						|
 | 
						|
  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
 | 
						|
    if (!areTypesIsomorphic(DstTy->getContainedType(I),
 | 
						|
                            SrcTy->getContainedType(I)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If everything seems to have lined up, then everything is great.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void TypeMapTy::linkDefinedTypeBodies() {
 | 
						|
  SmallVector<Type *, 16> Elements;
 | 
						|
  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
 | 
						|
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
 | 
						|
    assert(DstSTy->isOpaque());
 | 
						|
 | 
						|
    // Map the body of the source type over to a new body for the dest type.
 | 
						|
    Elements.resize(SrcSTy->getNumElements());
 | 
						|
    for (unsigned I = 0, E = Elements.size(); I != E; ++I)
 | 
						|
      Elements[I] = get(SrcSTy->getElementType(I));
 | 
						|
 | 
						|
    DstSTy->setBody(Elements, SrcSTy->isPacked());
 | 
						|
    DstStructTypesSet.switchToNonOpaque(DstSTy);
 | 
						|
  }
 | 
						|
  SrcDefinitionsToResolve.clear();
 | 
						|
  DstResolvedOpaqueTypes.clear();
 | 
						|
}
 | 
						|
 | 
						|
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
 | 
						|
                           ArrayRef<Type *> ETypes) {
 | 
						|
  DTy->setBody(ETypes, STy->isPacked());
 | 
						|
 | 
						|
  // Steal STy's name.
 | 
						|
  if (STy->hasName()) {
 | 
						|
    SmallString<16> TmpName = STy->getName();
 | 
						|
    STy->setName("");
 | 
						|
    DTy->setName(TmpName);
 | 
						|
  }
 | 
						|
 | 
						|
  DstStructTypesSet.addNonOpaque(DTy);
 | 
						|
}
 | 
						|
 | 
						|
Type *TypeMapTy::get(Type *Ty) {
 | 
						|
  SmallPtrSet<StructType *, 8> Visited;
 | 
						|
  return get(Ty, Visited);
 | 
						|
}
 | 
						|
 | 
						|
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
 | 
						|
  // If we already have an entry for this type, return it.
 | 
						|
  Type **Entry = &MappedTypes[Ty];
 | 
						|
  if (*Entry)
 | 
						|
    return *Entry;
 | 
						|
 | 
						|
  // These are types that LLVM itself will unique.
 | 
						|
  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
 | 
						|
 | 
						|
  if (!IsUniqued) {
 | 
						|
    StructType *STy = cast<StructType>(Ty);
 | 
						|
    // This is actually a type from the destination module, this can be reached
 | 
						|
    // when this type is loaded in another module, added to DstStructTypesSet,
 | 
						|
    // and then we reach the same type in another module where it has not been
 | 
						|
    // added to MappedTypes. (PR37684)
 | 
						|
    if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
 | 
						|
        DstStructTypesSet.hasType(STy))
 | 
						|
      return *Entry = STy;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    for (auto &Pair : MappedTypes) {
 | 
						|
      assert(!(Pair.first != Ty && Pair.second == Ty) &&
 | 
						|
             "mapping to a source type");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if (!Visited.insert(STy).second) {
 | 
						|
      StructType *DTy = StructType::create(Ty->getContext());
 | 
						|
      return *Entry = DTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is not a recursive type, then just map all of the elements and
 | 
						|
  // then rebuild the type from inside out.
 | 
						|
  SmallVector<Type *, 4> ElementTypes;
 | 
						|
 | 
						|
  // If there are no element types to map, then the type is itself.  This is
 | 
						|
  // true for the anonymous {} struct, things like 'float', integers, etc.
 | 
						|
  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
 | 
						|
    return *Entry = Ty;
 | 
						|
 | 
						|
  // Remap all of the elements, keeping track of whether any of them change.
 | 
						|
  bool AnyChange = false;
 | 
						|
  ElementTypes.resize(Ty->getNumContainedTypes());
 | 
						|
  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
 | 
						|
    ElementTypes[I] = get(Ty->getContainedType(I), Visited);
 | 
						|
    AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found our type while recursively processing stuff, just use it.
 | 
						|
  Entry = &MappedTypes[Ty];
 | 
						|
  if (*Entry) {
 | 
						|
    if (auto *DTy = dyn_cast<StructType>(*Entry)) {
 | 
						|
      if (DTy->isOpaque()) {
 | 
						|
        auto *STy = cast<StructType>(Ty);
 | 
						|
        finishType(DTy, STy, ElementTypes);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return *Entry;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of the element types mapped directly over and the type is not
 | 
						|
  // a named struct, then the type is usable as-is.
 | 
						|
  if (!AnyChange && IsUniqued)
 | 
						|
    return *Entry = Ty;
 | 
						|
 | 
						|
  // Otherwise, rebuild a modified type.
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unknown derived type to remap");
 | 
						|
  case Type::ArrayTyID:
 | 
						|
    return *Entry = ArrayType::get(ElementTypes[0],
 | 
						|
                                   cast<ArrayType>(Ty)->getNumElements());
 | 
						|
  case Type::VectorTyID:
 | 
						|
    return *Entry = VectorType::get(ElementTypes[0],
 | 
						|
                                    cast<VectorType>(Ty)->getNumElements());
 | 
						|
  case Type::PointerTyID:
 | 
						|
    return *Entry = PointerType::get(ElementTypes[0],
 | 
						|
                                     cast<PointerType>(Ty)->getAddressSpace());
 | 
						|
  case Type::FunctionTyID:
 | 
						|
    return *Entry = FunctionType::get(ElementTypes[0],
 | 
						|
                                      makeArrayRef(ElementTypes).slice(1),
 | 
						|
                                      cast<FunctionType>(Ty)->isVarArg());
 | 
						|
  case Type::StructTyID: {
 | 
						|
    auto *STy = cast<StructType>(Ty);
 | 
						|
    bool IsPacked = STy->isPacked();
 | 
						|
    if (IsUniqued)
 | 
						|
      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
 | 
						|
 | 
						|
    // If the type is opaque, we can just use it directly.
 | 
						|
    if (STy->isOpaque()) {
 | 
						|
      DstStructTypesSet.addOpaque(STy);
 | 
						|
      return *Entry = Ty;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StructType *OldT =
 | 
						|
            DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
 | 
						|
      STy->setName("");
 | 
						|
      return *Entry = OldT;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!AnyChange) {
 | 
						|
      DstStructTypesSet.addNonOpaque(STy);
 | 
						|
      return *Entry = Ty;
 | 
						|
    }
 | 
						|
 | 
						|
    StructType *DTy = StructType::create(Ty->getContext());
 | 
						|
    finishType(DTy, STy, ElementTypes);
 | 
						|
    return *Entry = DTy;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
 | 
						|
                                       const Twine &Msg)
 | 
						|
    : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
 | 
						|
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// IRLinker implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class IRLinker;
 | 
						|
 | 
						|
/// Creates prototypes for functions that are lazily linked on the fly. This
 | 
						|
/// speeds up linking for modules with many/ lazily linked functions of which
 | 
						|
/// few get used.
 | 
						|
class GlobalValueMaterializer final : public ValueMaterializer {
 | 
						|
  IRLinker &TheIRLinker;
 | 
						|
 | 
						|
public:
 | 
						|
  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
 | 
						|
  Value *materialize(Value *V) override;
 | 
						|
};
 | 
						|
 | 
						|
class LocalValueMaterializer final : public ValueMaterializer {
 | 
						|
  IRLinker &TheIRLinker;
 | 
						|
 | 
						|
public:
 | 
						|
  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
 | 
						|
  Value *materialize(Value *V) override;
 | 
						|
};
 | 
						|
 | 
						|
/// Type of the Metadata map in \a ValueToValueMapTy.
 | 
						|
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
 | 
						|
 | 
						|
/// This is responsible for keeping track of the state used for moving data
 | 
						|
/// from SrcM to DstM.
 | 
						|
class IRLinker {
 | 
						|
  Module &DstM;
 | 
						|
  std::unique_ptr<Module> SrcM;
 | 
						|
 | 
						|
  /// See IRMover::move().
 | 
						|
  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
 | 
						|
 | 
						|
  TypeMapTy TypeMap;
 | 
						|
  GlobalValueMaterializer GValMaterializer;
 | 
						|
  LocalValueMaterializer LValMaterializer;
 | 
						|
 | 
						|
  /// A metadata map that's shared between IRLinker instances.
 | 
						|
  MDMapT &SharedMDs;
 | 
						|
 | 
						|
  /// Mapping of values from what they used to be in Src, to what they are now
 | 
						|
  /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
 | 
						|
  /// due to the use of Value handles which the Linker doesn't actually need,
 | 
						|
  /// but this allows us to reuse the ValueMapper code.
 | 
						|
  ValueToValueMapTy ValueMap;
 | 
						|
  ValueToValueMapTy AliasValueMap;
 | 
						|
 | 
						|
  DenseSet<GlobalValue *> ValuesToLink;
 | 
						|
  std::vector<GlobalValue *> Worklist;
 | 
						|
 | 
						|
  void maybeAdd(GlobalValue *GV) {
 | 
						|
    if (ValuesToLink.insert(GV).second)
 | 
						|
      Worklist.push_back(GV);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Whether we are importing globals for ThinLTO, as opposed to linking the
 | 
						|
  /// source module. If this flag is set, it means that we can rely on some
 | 
						|
  /// other object file to define any non-GlobalValue entities defined by the
 | 
						|
  /// source module. This currently causes us to not link retained types in
 | 
						|
  /// debug info metadata and module inline asm.
 | 
						|
  bool IsPerformingImport;
 | 
						|
 | 
						|
  /// Set to true when all global value body linking is complete (including
 | 
						|
  /// lazy linking). Used to prevent metadata linking from creating new
 | 
						|
  /// references.
 | 
						|
  bool DoneLinkingBodies = false;
 | 
						|
 | 
						|
  /// The Error encountered during materialization. We use an Optional here to
 | 
						|
  /// avoid needing to manage an unconsumed success value.
 | 
						|
  Optional<Error> FoundError;
 | 
						|
  void setError(Error E) {
 | 
						|
    if (E)
 | 
						|
      FoundError = std::move(E);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Most of the errors produced by this module are inconvertible StringErrors.
 | 
						|
  /// This convenience function lets us return one of those more easily.
 | 
						|
  Error stringErr(const Twine &T) {
 | 
						|
    return make_error<StringError>(T, inconvertibleErrorCode());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Entry point for mapping values and alternate context for mapping aliases.
 | 
						|
  ValueMapper Mapper;
 | 
						|
  unsigned AliasMCID;
 | 
						|
 | 
						|
  /// Handles cloning of a global values from the source module into
 | 
						|
  /// the destination module, including setting the attributes and visibility.
 | 
						|
  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
 | 
						|
 | 
						|
  void emitWarning(const Twine &Message) {
 | 
						|
    SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Given a global in the source module, return the global in the
 | 
						|
  /// destination module that is being linked to, if any.
 | 
						|
  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
 | 
						|
    // If the source has no name it can't link.  If it has local linkage,
 | 
						|
    // there is no name match-up going on.
 | 
						|
    if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Otherwise see if we have a match in the destination module's symtab.
 | 
						|
    GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
 | 
						|
    if (!DGV)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If we found a global with the same name in the dest module, but it has
 | 
						|
    // internal linkage, we are really not doing any linkage here.
 | 
						|
    if (DGV->hasLocalLinkage())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Otherwise, we do in fact link to the destination global.
 | 
						|
    return DGV;
 | 
						|
  }
 | 
						|
 | 
						|
  void computeTypeMapping();
 | 
						|
 | 
						|
  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
 | 
						|
                                             const GlobalVariable *SrcGV);
 | 
						|
 | 
						|
  /// Given the GlobaValue \p SGV in the source module, and the matching
 | 
						|
  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
 | 
						|
  /// into the destination module.
 | 
						|
  ///
 | 
						|
  /// Note this code may call the client-provided \p AddLazyFor.
 | 
						|
  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
 | 
						|
  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
 | 
						|
 | 
						|
  Error linkModuleFlagsMetadata();
 | 
						|
 | 
						|
  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
 | 
						|
  Error linkFunctionBody(Function &Dst, Function &Src);
 | 
						|
  void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
 | 
						|
  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
 | 
						|
 | 
						|
  /// Functions that take care of cloning a specific global value type
 | 
						|
  /// into the destination module.
 | 
						|
  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
 | 
						|
  Function *copyFunctionProto(const Function *SF);
 | 
						|
  GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
 | 
						|
 | 
						|
  /// When importing for ThinLTO, prevent importing of types listed on
 | 
						|
  /// the DICompileUnit that we don't need a copy of in the importing
 | 
						|
  /// module.
 | 
						|
  void prepareCompileUnitsForImport();
 | 
						|
  void linkNamedMDNodes();
 | 
						|
 | 
						|
public:
 | 
						|
  IRLinker(Module &DstM, MDMapT &SharedMDs,
 | 
						|
           IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
 | 
						|
           ArrayRef<GlobalValue *> ValuesToLink,
 | 
						|
           std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
 | 
						|
           bool IsPerformingImport)
 | 
						|
      : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
 | 
						|
        TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
 | 
						|
        SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
 | 
						|
        Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
 | 
						|
               &GValMaterializer),
 | 
						|
        AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
 | 
						|
                                                         &LValMaterializer)) {
 | 
						|
    ValueMap.getMDMap() = std::move(SharedMDs);
 | 
						|
    for (GlobalValue *GV : ValuesToLink)
 | 
						|
      maybeAdd(GV);
 | 
						|
    if (IsPerformingImport)
 | 
						|
      prepareCompileUnitsForImport();
 | 
						|
  }
 | 
						|
  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
 | 
						|
 | 
						|
  Error run();
 | 
						|
  Value *materialize(Value *V, bool ForAlias);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
 | 
						|
/// table. This is good for all clients except for us. Go through the trouble
 | 
						|
/// to force this back.
 | 
						|
static void forceRenaming(GlobalValue *GV, StringRef Name) {
 | 
						|
  // If the global doesn't force its name or if it already has the right name,
 | 
						|
  // there is nothing for us to do.
 | 
						|
  if (GV->hasLocalLinkage() || GV->getName() == Name)
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = GV->getParent();
 | 
						|
 | 
						|
  // If there is a conflict, rename the conflict.
 | 
						|
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
 | 
						|
    GV->takeName(ConflictGV);
 | 
						|
    ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
 | 
						|
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
 | 
						|
  } else {
 | 
						|
    GV->setName(Name); // Force the name back
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *GlobalValueMaterializer::materialize(Value *SGV) {
 | 
						|
  return TheIRLinker.materialize(SGV, false);
 | 
						|
}
 | 
						|
 | 
						|
Value *LocalValueMaterializer::materialize(Value *SGV) {
 | 
						|
  return TheIRLinker.materialize(SGV, true);
 | 
						|
}
 | 
						|
 | 
						|
Value *IRLinker::materialize(Value *V, bool ForAlias) {
 | 
						|
  auto *SGV = dyn_cast<GlobalValue>(V);
 | 
						|
  if (!SGV)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
 | 
						|
  if (!NewProto) {
 | 
						|
    setError(NewProto.takeError());
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (!*NewProto)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
 | 
						|
  if (!New)
 | 
						|
    return *NewProto;
 | 
						|
 | 
						|
  // If we already created the body, just return.
 | 
						|
  if (auto *F = dyn_cast<Function>(New)) {
 | 
						|
    if (!F->isDeclaration())
 | 
						|
      return New;
 | 
						|
  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
 | 
						|
    if (V->hasInitializer() || V->hasAppendingLinkage())
 | 
						|
      return New;
 | 
						|
  } else {
 | 
						|
    auto *A = cast<GlobalAlias>(New);
 | 
						|
    if (A->getAliasee())
 | 
						|
      return New;
 | 
						|
  }
 | 
						|
 | 
						|
  // When linking a global for an alias, it will always be linked. However we
 | 
						|
  // need to check if it was not already scheduled to satisfy a reference from a
 | 
						|
  // regular global value initializer. We know if it has been schedule if the
 | 
						|
  // "New" GlobalValue that is mapped here for the alias is the same as the one
 | 
						|
  // already mapped. If there is an entry in the ValueMap but the value is
 | 
						|
  // different, it means that the value already had a definition in the
 | 
						|
  // destination module (linkonce for instance), but we need a new definition
 | 
						|
  // for the alias ("New" will be different.
 | 
						|
  if (ForAlias && ValueMap.lookup(SGV) == New)
 | 
						|
    return New;
 | 
						|
 | 
						|
  if (ForAlias || shouldLink(New, *SGV))
 | 
						|
    setError(linkGlobalValueBody(*New, *SGV));
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// Loop through the global variables in the src module and merge them into the
 | 
						|
/// dest module.
 | 
						|
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
 | 
						|
  // No linking to be performed or linking from the source: simply create an
 | 
						|
  // identical version of the symbol over in the dest module... the
 | 
						|
  // initializer will be filled in later by LinkGlobalInits.
 | 
						|
  GlobalVariable *NewDGV =
 | 
						|
      new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
 | 
						|
                         SGVar->isConstant(), GlobalValue::ExternalLinkage,
 | 
						|
                         /*init*/ nullptr, SGVar->getName(),
 | 
						|
                         /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
 | 
						|
                         SGVar->getType()->getAddressSpace());
 | 
						|
  NewDGV->setAlignment(SGVar->getAlignment());
 | 
						|
  NewDGV->copyAttributesFrom(SGVar);
 | 
						|
  return NewDGV;
 | 
						|
}
 | 
						|
 | 
						|
/// Link the function in the source module into the destination module if
 | 
						|
/// needed, setting up mapping information.
 | 
						|
Function *IRLinker::copyFunctionProto(const Function *SF) {
 | 
						|
  // If there is no linkage to be performed or we are linking from the source,
 | 
						|
  // bring SF over.
 | 
						|
  auto *F =
 | 
						|
      Function::Create(TypeMap.get(SF->getFunctionType()),
 | 
						|
                       GlobalValue::ExternalLinkage, SF->getName(), &DstM);
 | 
						|
  F->copyAttributesFrom(SF);
 | 
						|
  return F;
 | 
						|
}
 | 
						|
 | 
						|
/// Set up prototypes for any aliases that come over from the source module.
 | 
						|
GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
 | 
						|
  // If there is no linkage to be performed or we're linking from the source,
 | 
						|
  // bring over SGA.
 | 
						|
  auto *Ty = TypeMap.get(SGA->getValueType());
 | 
						|
  auto *GA =
 | 
						|
      GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
 | 
						|
                          GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
 | 
						|
  GA->copyAttributesFrom(SGA);
 | 
						|
  return GA;
 | 
						|
}
 | 
						|
 | 
						|
GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
 | 
						|
                                            bool ForDefinition) {
 | 
						|
  GlobalValue *NewGV;
 | 
						|
  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
 | 
						|
    NewGV = copyGlobalVariableProto(SGVar);
 | 
						|
  } else if (auto *SF = dyn_cast<Function>(SGV)) {
 | 
						|
    NewGV = copyFunctionProto(SF);
 | 
						|
  } else {
 | 
						|
    if (ForDefinition)
 | 
						|
      NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
 | 
						|
    else if (SGV->getValueType()->isFunctionTy())
 | 
						|
      NewGV =
 | 
						|
          Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
 | 
						|
                           GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
 | 
						|
    else
 | 
						|
      NewGV = new GlobalVariable(
 | 
						|
          DstM, TypeMap.get(SGV->getValueType()),
 | 
						|
          /*isConstant*/ false, GlobalValue::ExternalLinkage,
 | 
						|
          /*init*/ nullptr, SGV->getName(),
 | 
						|
          /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
 | 
						|
          SGV->getType()->getAddressSpace());
 | 
						|
  }
 | 
						|
 | 
						|
  if (ForDefinition)
 | 
						|
    NewGV->setLinkage(SGV->getLinkage());
 | 
						|
  else if (SGV->hasExternalWeakLinkage())
 | 
						|
    NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
 | 
						|
 | 
						|
  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
 | 
						|
    // Metadata for global variables and function declarations is copied eagerly.
 | 
						|
    if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
 | 
						|
      NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove these copied constants in case this stays a declaration, since
 | 
						|
  // they point to the source module. If the def is linked the values will
 | 
						|
  // be mapped in during linkFunctionBody.
 | 
						|
  if (auto *NewF = dyn_cast<Function>(NewGV)) {
 | 
						|
    NewF->setPersonalityFn(nullptr);
 | 
						|
    NewF->setPrefixData(nullptr);
 | 
						|
    NewF->setPrologueData(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewGV;
 | 
						|
}
 | 
						|
 | 
						|
static StringRef getTypeNamePrefix(StringRef Name) {
 | 
						|
  size_t DotPos = Name.rfind('.');
 | 
						|
  return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
 | 
						|
          !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
 | 
						|
             ? Name
 | 
						|
             : Name.substr(0, DotPos);
 | 
						|
}
 | 
						|
 | 
						|
/// Loop over all of the linked values to compute type mappings.  For example,
 | 
						|
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
 | 
						|
/// types 'Foo' but one got renamed when the module was loaded into the same
 | 
						|
/// LLVMContext.
 | 
						|
void IRLinker::computeTypeMapping() {
 | 
						|
  for (GlobalValue &SGV : SrcM->globals()) {
 | 
						|
    GlobalValue *DGV = getLinkedToGlobal(&SGV);
 | 
						|
    if (!DGV)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
 | 
						|
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Unify the element type of appending arrays.
 | 
						|
    ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
 | 
						|
    ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
 | 
						|
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
 | 
						|
  }
 | 
						|
 | 
						|
  for (GlobalValue &SGV : *SrcM)
 | 
						|
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
 | 
						|
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | 
						|
 | 
						|
  for (GlobalValue &SGV : SrcM->aliases())
 | 
						|
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
 | 
						|
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | 
						|
 | 
						|
  // Incorporate types by name, scanning all the types in the source module.
 | 
						|
  // At this point, the destination module may have a type "%foo = { i32 }" for
 | 
						|
  // example.  When the source module got loaded into the same LLVMContext, if
 | 
						|
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
 | 
						|
  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
 | 
						|
  for (StructType *ST : Types) {
 | 
						|
    if (!ST->hasName())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (TypeMap.DstStructTypesSet.hasType(ST)) {
 | 
						|
      // This is actually a type from the destination module.
 | 
						|
      // getIdentifiedStructTypes() can have found it by walking debug info
 | 
						|
      // metadata nodes, some of which get linked by name when ODR Type Uniquing
 | 
						|
      // is enabled on the Context, from the source to the destination module.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto STTypePrefix = getTypeNamePrefix(ST->getName());
 | 
						|
    if (STTypePrefix.size()== ST->getName().size())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check to see if the destination module has a struct with the prefix name.
 | 
						|
    StructType *DST = DstM.getTypeByName(STTypePrefix);
 | 
						|
    if (!DST)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't use it if this actually came from the source module. They're in
 | 
						|
    // the same LLVMContext after all. Also don't use it unless the type is
 | 
						|
    // actually used in the destination module. This can happen in situations
 | 
						|
    // like this:
 | 
						|
    //
 | 
						|
    //      Module A                         Module B
 | 
						|
    //      --------                         --------
 | 
						|
    //   %Z = type { %A }                %B = type { %C.1 }
 | 
						|
    //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
 | 
						|
    //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
 | 
						|
    //   %C = type { i8* }               %B.3 = type { %C.1 }
 | 
						|
    //
 | 
						|
    // When we link Module B with Module A, the '%B' in Module B is
 | 
						|
    // used. However, that would then use '%C.1'. But when we process '%C.1',
 | 
						|
    // we prefer to take the '%C' version. So we are then left with both
 | 
						|
    // '%C.1' and '%C' being used for the same types. This leads to some
 | 
						|
    // variables using one type and some using the other.
 | 
						|
    if (TypeMap.DstStructTypesSet.hasType(DST))
 | 
						|
      TypeMap.addTypeMapping(DST, ST);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have discovered all of the type equivalences, get a body for
 | 
						|
  // any 'opaque' types in the dest module that are now resolved.
 | 
						|
  TypeMap.linkDefinedTypeBodies();
 | 
						|
}
 | 
						|
 | 
						|
static void getArrayElements(const Constant *C,
 | 
						|
                             SmallVectorImpl<Constant *> &Dest) {
 | 
						|
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumElements; ++i)
 | 
						|
    Dest.push_back(C->getAggregateElement(i));
 | 
						|
}
 | 
						|
 | 
						|
/// If there were any appending global variables, link them together now.
 | 
						|
Expected<Constant *>
 | 
						|
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
 | 
						|
                                const GlobalVariable *SrcGV) {
 | 
						|
  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
 | 
						|
                    ->getElementType();
 | 
						|
 | 
						|
  // FIXME: This upgrade is done during linking to support the C API.  Once the
 | 
						|
  // old form is deprecated, we should move this upgrade to
 | 
						|
  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
 | 
						|
  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
 | 
						|
  StringRef Name = SrcGV->getName();
 | 
						|
  bool IsNewStructor = false;
 | 
						|
  bool IsOldStructor = false;
 | 
						|
  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
 | 
						|
    if (cast<StructType>(EltTy)->getNumElements() == 3)
 | 
						|
      IsNewStructor = true;
 | 
						|
    else
 | 
						|
      IsOldStructor = true;
 | 
						|
  }
 | 
						|
 | 
						|
  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
 | 
						|
  if (IsOldStructor) {
 | 
						|
    auto &ST = *cast<StructType>(EltTy);
 | 
						|
    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
 | 
						|
    EltTy = StructType::get(SrcGV->getContext(), Tys, false);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t DstNumElements = 0;
 | 
						|
  if (DstGV) {
 | 
						|
    ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
 | 
						|
    DstNumElements = DstTy->getNumElements();
 | 
						|
 | 
						|
    if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
 | 
						|
      return stringErr(
 | 
						|
          "Linking globals named '" + SrcGV->getName() +
 | 
						|
          "': can only link appending global with another appending "
 | 
						|
          "global!");
 | 
						|
 | 
						|
    // Check to see that they two arrays agree on type.
 | 
						|
    if (EltTy != DstTy->getElementType())
 | 
						|
      return stringErr("Appending variables with different element types!");
 | 
						|
    if (DstGV->isConstant() != SrcGV->isConstant())
 | 
						|
      return stringErr("Appending variables linked with different const'ness!");
 | 
						|
 | 
						|
    if (DstGV->getAlignment() != SrcGV->getAlignment())
 | 
						|
      return stringErr(
 | 
						|
          "Appending variables with different alignment need to be linked!");
 | 
						|
 | 
						|
    if (DstGV->getVisibility() != SrcGV->getVisibility())
 | 
						|
      return stringErr(
 | 
						|
          "Appending variables with different visibility need to be linked!");
 | 
						|
 | 
						|
    if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
 | 
						|
      return stringErr(
 | 
						|
          "Appending variables with different unnamed_addr need to be linked!");
 | 
						|
 | 
						|
    if (DstGV->getSection() != SrcGV->getSection())
 | 
						|
      return stringErr(
 | 
						|
          "Appending variables with different section name need to be linked!");
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Constant *, 16> SrcElements;
 | 
						|
  getArrayElements(SrcGV->getInitializer(), SrcElements);
 | 
						|
 | 
						|
  if (IsNewStructor) {
 | 
						|
    auto It = remove_if(SrcElements, [this](Constant *E) {
 | 
						|
      auto *Key =
 | 
						|
          dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
 | 
						|
      if (!Key)
 | 
						|
        return false;
 | 
						|
      GlobalValue *DGV = getLinkedToGlobal(Key);
 | 
						|
      return !shouldLink(DGV, *Key);
 | 
						|
    });
 | 
						|
    SrcElements.erase(It, SrcElements.end());
 | 
						|
  }
 | 
						|
  uint64_t NewSize = DstNumElements + SrcElements.size();
 | 
						|
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
 | 
						|
 | 
						|
  // Create the new global variable.
 | 
						|
  GlobalVariable *NG = new GlobalVariable(
 | 
						|
      DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
 | 
						|
      /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
 | 
						|
      SrcGV->getType()->getAddressSpace());
 | 
						|
 | 
						|
  NG->copyAttributesFrom(SrcGV);
 | 
						|
  forceRenaming(NG, SrcGV->getName());
 | 
						|
 | 
						|
  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
 | 
						|
 | 
						|
  Mapper.scheduleMapAppendingVariable(*NG,
 | 
						|
                                      DstGV ? DstGV->getInitializer() : nullptr,
 | 
						|
                                      IsOldStructor, SrcElements);
 | 
						|
 | 
						|
  // Replace any uses of the two global variables with uses of the new
 | 
						|
  // global.
 | 
						|
  if (DstGV) {
 | 
						|
    DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
 | 
						|
    DstGV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
 | 
						|
  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (DGV && !DGV->isDeclarationForLinker())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SGV.isDeclaration() || DoneLinkingBodies)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Callback to the client to give a chance to lazily add the Global to the
 | 
						|
  // list of value to link.
 | 
						|
  bool LazilyAdded = false;
 | 
						|
  AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
 | 
						|
    maybeAdd(&GV);
 | 
						|
    LazilyAdded = true;
 | 
						|
  });
 | 
						|
  return LazilyAdded;
 | 
						|
}
 | 
						|
 | 
						|
Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
 | 
						|
                                                    bool ForAlias) {
 | 
						|
  GlobalValue *DGV = getLinkedToGlobal(SGV);
 | 
						|
 | 
						|
  bool ShouldLink = shouldLink(DGV, *SGV);
 | 
						|
 | 
						|
  // just missing from map
 | 
						|
  if (ShouldLink) {
 | 
						|
    auto I = ValueMap.find(SGV);
 | 
						|
    if (I != ValueMap.end())
 | 
						|
      return cast<Constant>(I->second);
 | 
						|
 | 
						|
    I = AliasValueMap.find(SGV);
 | 
						|
    if (I != AliasValueMap.end())
 | 
						|
      return cast<Constant>(I->second);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ShouldLink && ForAlias)
 | 
						|
    DGV = nullptr;
 | 
						|
 | 
						|
  // Handle the ultra special appending linkage case first.
 | 
						|
  assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
 | 
						|
  if (SGV->hasAppendingLinkage())
 | 
						|
    return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
 | 
						|
                                 cast<GlobalVariable>(SGV));
 | 
						|
 | 
						|
  GlobalValue *NewGV;
 | 
						|
  if (DGV && !ShouldLink) {
 | 
						|
    NewGV = DGV;
 | 
						|
  } else {
 | 
						|
    // If we are done linking global value bodies (i.e. we are performing
 | 
						|
    // metadata linking), don't link in the global value due to this
 | 
						|
    // reference, simply map it to null.
 | 
						|
    if (DoneLinkingBodies)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
 | 
						|
    if (ShouldLink || !ForAlias)
 | 
						|
      forceRenaming(NewGV, SGV->getName());
 | 
						|
  }
 | 
						|
 | 
						|
  // Overloaded intrinsics have overloaded types names as part of their
 | 
						|
  // names. If we renamed overloaded types we should rename the intrinsic
 | 
						|
  // as well.
 | 
						|
  if (Function *F = dyn_cast<Function>(NewGV))
 | 
						|
    if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
 | 
						|
      NewGV = Remangled.getValue();
 | 
						|
 | 
						|
  if (ShouldLink || ForAlias) {
 | 
						|
    if (const Comdat *SC = SGV->getComdat()) {
 | 
						|
      if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
 | 
						|
        Comdat *DC = DstM.getOrInsertComdat(SC->getName());
 | 
						|
        DC->setSelectionKind(SC->getSelectionKind());
 | 
						|
        GO->setComdat(DC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ShouldLink && ForAlias)
 | 
						|
    NewGV->setLinkage(GlobalValue::InternalLinkage);
 | 
						|
 | 
						|
  Constant *C = NewGV;
 | 
						|
  // Only create a bitcast if necessary. In particular, with
 | 
						|
  // DebugTypeODRUniquing we may reach metadata in the destination module
 | 
						|
  // containing a GV from the source module, in which case SGV will be
 | 
						|
  // the same as DGV and NewGV, and TypeMap.get() will assert since it
 | 
						|
  // assumes it is being invoked on a type in the source module.
 | 
						|
  if (DGV && NewGV != SGV) {
 | 
						|
    C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | 
						|
      NewGV, TypeMap.get(SGV->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (DGV && NewGV != DGV) {
 | 
						|
    DGV->replaceAllUsesWith(
 | 
						|
      ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()));
 | 
						|
    DGV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the initializers in the Dest module now that all globals that may be
 | 
						|
/// referenced are in Dest.
 | 
						|
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
 | 
						|
  // Figure out what the initializer looks like in the dest module.
 | 
						|
  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
 | 
						|
}
 | 
						|
 | 
						|
/// Copy the source function over into the dest function and fix up references
 | 
						|
/// to values. At this point we know that Dest is an external function, and
 | 
						|
/// that Src is not.
 | 
						|
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
 | 
						|
  assert(Dst.isDeclaration() && !Src.isDeclaration());
 | 
						|
 | 
						|
  // Materialize if needed.
 | 
						|
  if (Error Err = Src.materialize())
 | 
						|
    return Err;
 | 
						|
 | 
						|
  // Link in the operands without remapping.
 | 
						|
  if (Src.hasPrefixData())
 | 
						|
    Dst.setPrefixData(Src.getPrefixData());
 | 
						|
  if (Src.hasPrologueData())
 | 
						|
    Dst.setPrologueData(Src.getPrologueData());
 | 
						|
  if (Src.hasPersonalityFn())
 | 
						|
    Dst.setPersonalityFn(Src.getPersonalityFn());
 | 
						|
 | 
						|
  // Copy over the metadata attachments without remapping.
 | 
						|
  Dst.copyMetadata(&Src, 0);
 | 
						|
 | 
						|
  // Steal arguments and splice the body of Src into Dst.
 | 
						|
  Dst.stealArgumentListFrom(Src);
 | 
						|
  Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
 | 
						|
 | 
						|
  // Everything has been moved over.  Remap it.
 | 
						|
  Mapper.scheduleRemapFunction(Dst);
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
 | 
						|
  Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
 | 
						|
}
 | 
						|
 | 
						|
Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
 | 
						|
  if (auto *F = dyn_cast<Function>(&Src))
 | 
						|
    return linkFunctionBody(cast<Function>(Dst), *F);
 | 
						|
  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
 | 
						|
    linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
 | 
						|
    return Error::success();
 | 
						|
  }
 | 
						|
  linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void IRLinker::prepareCompileUnitsForImport() {
 | 
						|
  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
 | 
						|
  if (!SrcCompileUnits)
 | 
						|
    return;
 | 
						|
  // When importing for ThinLTO, prevent importing of types listed on
 | 
						|
  // the DICompileUnit that we don't need a copy of in the importing
 | 
						|
  // module. They will be emitted by the originating module.
 | 
						|
  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
 | 
						|
    auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
 | 
						|
    assert(CU && "Expected valid compile unit");
 | 
						|
    // Enums, macros, and retained types don't need to be listed on the
 | 
						|
    // imported DICompileUnit. This means they will only be imported
 | 
						|
    // if reached from the mapped IR. Do this by setting their value map
 | 
						|
    // entries to nullptr, which will automatically prevent their importing
 | 
						|
    // when reached from the DICompileUnit during metadata mapping.
 | 
						|
    ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
 | 
						|
    ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
 | 
						|
    ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
 | 
						|
    // The original definition (or at least its debug info - if the variable is
 | 
						|
    // internalized an optimized away) will remain in the source module, so
 | 
						|
    // there's no need to import them.
 | 
						|
    // If LLVM ever does more advanced optimizations on global variables
 | 
						|
    // (removing/localizing write operations, for instance) that can track
 | 
						|
    // through debug info, this decision may need to be revisited - but do so
 | 
						|
    // with care when it comes to debug info size. Emitting small CUs containing
 | 
						|
    // only a few imported entities into every destination module may be very
 | 
						|
    // size inefficient.
 | 
						|
    ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
 | 
						|
 | 
						|
    // Imported entities only need to be mapped in if they have local
 | 
						|
    // scope, as those might correspond to an imported entity inside a
 | 
						|
    // function being imported (any locally scoped imported entities that
 | 
						|
    // don't end up referenced by an imported function will not be emitted
 | 
						|
    // into the object). Imported entities not in a local scope
 | 
						|
    // (e.g. on the namespace) only need to be emitted by the originating
 | 
						|
    // module. Create a list of the locally scoped imported entities, and
 | 
						|
    // replace the source CUs imported entity list with the new list, so
 | 
						|
    // only those are mapped in.
 | 
						|
    // FIXME: Locally-scoped imported entities could be moved to the
 | 
						|
    // functions they are local to instead of listing them on the CU, and
 | 
						|
    // we would naturally only link in those needed by function importing.
 | 
						|
    SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
 | 
						|
    bool ReplaceImportedEntities = false;
 | 
						|
    for (auto *IE : CU->getImportedEntities()) {
 | 
						|
      DIScope *Scope = IE->getScope();
 | 
						|
      assert(Scope && "Invalid Scope encoding!");
 | 
						|
      if (isa<DILocalScope>(Scope))
 | 
						|
        AllImportedModules.emplace_back(IE);
 | 
						|
      else
 | 
						|
        ReplaceImportedEntities = true;
 | 
						|
    }
 | 
						|
    if (ReplaceImportedEntities) {
 | 
						|
      if (!AllImportedModules.empty())
 | 
						|
        CU->replaceImportedEntities(MDTuple::get(
 | 
						|
            CU->getContext(),
 | 
						|
            SmallVector<Metadata *, 16>(AllImportedModules.begin(),
 | 
						|
                                        AllImportedModules.end())));
 | 
						|
      else
 | 
						|
        // If there were no local scope imported entities, we can map
 | 
						|
        // the whole list to nullptr.
 | 
						|
        ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert all of the named MDNodes in Src into the Dest module.
 | 
						|
void IRLinker::linkNamedMDNodes() {
 | 
						|
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | 
						|
  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
 | 
						|
    // Don't link module flags here. Do them separately.
 | 
						|
    if (&NMD == SrcModFlags)
 | 
						|
      continue;
 | 
						|
    NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
 | 
						|
    // Add Src elements into Dest node.
 | 
						|
    for (const MDNode *Op : NMD.operands())
 | 
						|
      DestNMD->addOperand(Mapper.mapMDNode(*Op));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Merge the linker flags in Src into the Dest module.
 | 
						|
Error IRLinker::linkModuleFlagsMetadata() {
 | 
						|
  // If the source module has no module flags, we are done.
 | 
						|
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | 
						|
  if (!SrcModFlags)
 | 
						|
    return Error::success();
 | 
						|
 | 
						|
  // If the destination module doesn't have module flags yet, then just copy
 | 
						|
  // over the source module's flags.
 | 
						|
  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
 | 
						|
  if (DstModFlags->getNumOperands() == 0) {
 | 
						|
    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
 | 
						|
      DstModFlags->addOperand(SrcModFlags->getOperand(I));
 | 
						|
 | 
						|
    return Error::success();
 | 
						|
  }
 | 
						|
 | 
						|
  // First build a map of the existing module flags and requirements.
 | 
						|
  DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
 | 
						|
  SmallSetVector<MDNode *, 16> Requirements;
 | 
						|
  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
 | 
						|
    MDNode *Op = DstModFlags->getOperand(I);
 | 
						|
    ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
 | 
						|
    MDString *ID = cast<MDString>(Op->getOperand(1));
 | 
						|
 | 
						|
    if (Behavior->getZExtValue() == Module::Require) {
 | 
						|
      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
 | 
						|
    } else {
 | 
						|
      Flags[ID] = std::make_pair(Op, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge in the flags from the source module, and also collect its set of
 | 
						|
  // requirements.
 | 
						|
  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
 | 
						|
    MDNode *SrcOp = SrcModFlags->getOperand(I);
 | 
						|
    ConstantInt *SrcBehavior =
 | 
						|
        mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
 | 
						|
    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
 | 
						|
    MDNode *DstOp;
 | 
						|
    unsigned DstIndex;
 | 
						|
    std::tie(DstOp, DstIndex) = Flags.lookup(ID);
 | 
						|
    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
 | 
						|
 | 
						|
    // If this is a requirement, add it and continue.
 | 
						|
    if (SrcBehaviorValue == Module::Require) {
 | 
						|
      // If the destination module does not already have this requirement, add
 | 
						|
      // it.
 | 
						|
      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
 | 
						|
        DstModFlags->addOperand(SrcOp);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is no existing flag with this ID, just add it.
 | 
						|
    if (!DstOp) {
 | 
						|
      Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
 | 
						|
      DstModFlags->addOperand(SrcOp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, perform a merge.
 | 
						|
    ConstantInt *DstBehavior =
 | 
						|
        mdconst::extract<ConstantInt>(DstOp->getOperand(0));
 | 
						|
    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
 | 
						|
 | 
						|
    auto overrideDstValue = [&]() {
 | 
						|
      DstModFlags->setOperand(DstIndex, SrcOp);
 | 
						|
      Flags[ID].first = SrcOp;
 | 
						|
    };
 | 
						|
 | 
						|
    // If either flag has override behavior, handle it first.
 | 
						|
    if (DstBehaviorValue == Module::Override) {
 | 
						|
      // Diagnose inconsistent flags which both have override behavior.
 | 
						|
      if (SrcBehaviorValue == Module::Override &&
 | 
						|
          SrcOp->getOperand(2) != DstOp->getOperand(2))
 | 
						|
        return stringErr("linking module flags '" + ID->getString() +
 | 
						|
                         "': IDs have conflicting override values");
 | 
						|
      continue;
 | 
						|
    } else if (SrcBehaviorValue == Module::Override) {
 | 
						|
      // Update the destination flag to that of the source.
 | 
						|
      overrideDstValue();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Diagnose inconsistent merge behavior types.
 | 
						|
    if (SrcBehaviorValue != DstBehaviorValue)
 | 
						|
      return stringErr("linking module flags '" + ID->getString() +
 | 
						|
                       "': IDs have conflicting behaviors");
 | 
						|
 | 
						|
    auto replaceDstValue = [&](MDNode *New) {
 | 
						|
      Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
 | 
						|
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
 | 
						|
      DstModFlags->setOperand(DstIndex, Flag);
 | 
						|
      Flags[ID].first = Flag;
 | 
						|
    };
 | 
						|
 | 
						|
    // Perform the merge for standard behavior types.
 | 
						|
    switch (SrcBehaviorValue) {
 | 
						|
    case Module::Require:
 | 
						|
    case Module::Override:
 | 
						|
      llvm_unreachable("not possible");
 | 
						|
    case Module::Error: {
 | 
						|
      // Emit an error if the values differ.
 | 
						|
      if (SrcOp->getOperand(2) != DstOp->getOperand(2))
 | 
						|
        return stringErr("linking module flags '" + ID->getString() +
 | 
						|
                         "': IDs have conflicting values");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case Module::Warning: {
 | 
						|
      // Emit a warning if the values differ.
 | 
						|
      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
 | 
						|
        std::string str;
 | 
						|
        raw_string_ostream(str)
 | 
						|
            << "linking module flags '" << ID->getString()
 | 
						|
            << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
 | 
						|
            << "' from " << SrcM->getModuleIdentifier() << " with '"
 | 
						|
            << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
 | 
						|
            << ')';
 | 
						|
        emitWarning(str);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case Module::Max: {
 | 
						|
      ConstantInt *DstValue =
 | 
						|
          mdconst::extract<ConstantInt>(DstOp->getOperand(2));
 | 
						|
      ConstantInt *SrcValue =
 | 
						|
          mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
 | 
						|
      if (SrcValue->getZExtValue() > DstValue->getZExtValue())
 | 
						|
        overrideDstValue();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Module::Append: {
 | 
						|
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | 
						|
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | 
						|
      SmallVector<Metadata *, 8> MDs;
 | 
						|
      MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
 | 
						|
      MDs.append(DstValue->op_begin(), DstValue->op_end());
 | 
						|
      MDs.append(SrcValue->op_begin(), SrcValue->op_end());
 | 
						|
 | 
						|
      replaceDstValue(MDNode::get(DstM.getContext(), MDs));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Module::AppendUnique: {
 | 
						|
      SmallSetVector<Metadata *, 16> Elts;
 | 
						|
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | 
						|
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | 
						|
      Elts.insert(DstValue->op_begin(), DstValue->op_end());
 | 
						|
      Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
 | 
						|
 | 
						|
      replaceDstValue(MDNode::get(DstM.getContext(),
 | 
						|
                                  makeArrayRef(Elts.begin(), Elts.end())));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check all of the requirements.
 | 
						|
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
 | 
						|
    MDNode *Requirement = Requirements[I];
 | 
						|
    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | 
						|
    Metadata *ReqValue = Requirement->getOperand(1);
 | 
						|
 | 
						|
    MDNode *Op = Flags[Flag].first;
 | 
						|
    if (!Op || Op->getOperand(2) != ReqValue)
 | 
						|
      return stringErr("linking module flags '" + Flag->getString() +
 | 
						|
                       "': does not have the required value");
 | 
						|
  }
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
/// Return InlineAsm adjusted with target-specific directives if required.
 | 
						|
/// For ARM and Thumb, we have to add directives to select the appropriate ISA
 | 
						|
/// to support mixing module-level inline assembly from ARM and Thumb modules.
 | 
						|
static std::string adjustInlineAsm(const std::string &InlineAsm,
 | 
						|
                                   const Triple &Triple) {
 | 
						|
  if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
 | 
						|
    return ".text\n.balign 2\n.thumb\n" + InlineAsm;
 | 
						|
  if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
 | 
						|
    return ".text\n.balign 4\n.arm\n" + InlineAsm;
 | 
						|
  return InlineAsm;
 | 
						|
}
 | 
						|
 | 
						|
Error IRLinker::run() {
 | 
						|
  // Ensure metadata materialized before value mapping.
 | 
						|
  if (SrcM->getMaterializer())
 | 
						|
    if (Error Err = SrcM->getMaterializer()->materializeMetadata())
 | 
						|
      return Err;
 | 
						|
 | 
						|
  // Inherit the target data from the source module if the destination module
 | 
						|
  // doesn't have one already.
 | 
						|
  if (DstM.getDataLayout().isDefault())
 | 
						|
    DstM.setDataLayout(SrcM->getDataLayout());
 | 
						|
 | 
						|
  if (SrcM->getDataLayout() != DstM.getDataLayout()) {
 | 
						|
    emitWarning("Linking two modules of different data layouts: '" +
 | 
						|
                SrcM->getModuleIdentifier() + "' is '" +
 | 
						|
                SrcM->getDataLayoutStr() + "' whereas '" +
 | 
						|
                DstM.getModuleIdentifier() + "' is '" +
 | 
						|
                DstM.getDataLayoutStr() + "'\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the target triple from the source to dest if the dest's is empty.
 | 
						|
  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
 | 
						|
    DstM.setTargetTriple(SrcM->getTargetTriple());
 | 
						|
 | 
						|
  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
 | 
						|
 | 
						|
  if (!SrcM->getTargetTriple().empty()&&
 | 
						|
      !SrcTriple.isCompatibleWith(DstTriple))
 | 
						|
    emitWarning("Linking two modules of different target triples: " +
 | 
						|
                SrcM->getModuleIdentifier() + "' is '" +
 | 
						|
                SrcM->getTargetTriple() + "' whereas '" +
 | 
						|
                DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
 | 
						|
                "'\n");
 | 
						|
 | 
						|
  DstM.setTargetTriple(SrcTriple.merge(DstTriple));
 | 
						|
 | 
						|
  // Append the module inline asm string.
 | 
						|
  if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
 | 
						|
    std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
 | 
						|
                                                     SrcTriple);
 | 
						|
    if (DstM.getModuleInlineAsm().empty())
 | 
						|
      DstM.setModuleInlineAsm(SrcModuleInlineAsm);
 | 
						|
    else
 | 
						|
      DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
 | 
						|
                              SrcModuleInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the linked values to compute type mappings.
 | 
						|
  computeTypeMapping();
 | 
						|
 | 
						|
  std::reverse(Worklist.begin(), Worklist.end());
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    GlobalValue *GV = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    // Already mapped.
 | 
						|
    if (ValueMap.find(GV) != ValueMap.end() ||
 | 
						|
        AliasValueMap.find(GV) != AliasValueMap.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(!GV->isDeclaration());
 | 
						|
    Mapper.mapValue(*GV);
 | 
						|
    if (FoundError)
 | 
						|
      return std::move(*FoundError);
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that we are done linking global value bodies. This prevents
 | 
						|
  // metadata linking from creating new references.
 | 
						|
  DoneLinkingBodies = true;
 | 
						|
  Mapper.addFlags(RF_NullMapMissingGlobalValues);
 | 
						|
 | 
						|
  // Remap all of the named MDNodes in Src into the DstM module. We do this
 | 
						|
  // after linking GlobalValues so that MDNodes that reference GlobalValues
 | 
						|
  // are properly remapped.
 | 
						|
  linkNamedMDNodes();
 | 
						|
 | 
						|
  // Merge the module flags into the DstM module.
 | 
						|
  return linkModuleFlagsMetadata();
 | 
						|
}
 | 
						|
 | 
						|
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
 | 
						|
    : ETypes(E), IsPacked(P) {}
 | 
						|
 | 
						|
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
 | 
						|
    : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
 | 
						|
 | 
						|
bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
 | 
						|
  return IsPacked == That.IsPacked && ETypes == That.ETypes;
 | 
						|
}
 | 
						|
 | 
						|
bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
 | 
						|
  return !this->operator==(That);
 | 
						|
}
 | 
						|
 | 
						|
StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
 | 
						|
  return DenseMapInfo<StructType *>::getEmptyKey();
 | 
						|
}
 | 
						|
 | 
						|
StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
 | 
						|
  return DenseMapInfo<StructType *>::getTombstoneKey();
 | 
						|
}
 | 
						|
 | 
						|
unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
 | 
						|
  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
 | 
						|
                      Key.IsPacked);
 | 
						|
}
 | 
						|
 | 
						|
unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
 | 
						|
  return getHashValue(KeyTy(ST));
 | 
						|
}
 | 
						|
 | 
						|
bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
 | 
						|
                                         const StructType *RHS) {
 | 
						|
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | 
						|
    return false;
 | 
						|
  return LHS == KeyTy(RHS);
 | 
						|
}
 | 
						|
 | 
						|
bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
 | 
						|
                                         const StructType *RHS) {
 | 
						|
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | 
						|
    return LHS == RHS;
 | 
						|
  return KeyTy(LHS) == KeyTy(RHS);
 | 
						|
}
 | 
						|
 | 
						|
void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
 | 
						|
  assert(!Ty->isOpaque());
 | 
						|
  NonOpaqueStructTypes.insert(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
 | 
						|
  assert(!Ty->isOpaque());
 | 
						|
  NonOpaqueStructTypes.insert(Ty);
 | 
						|
  bool Removed = OpaqueStructTypes.erase(Ty);
 | 
						|
  (void)Removed;
 | 
						|
  assert(Removed);
 | 
						|
}
 | 
						|
 | 
						|
void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
 | 
						|
  assert(Ty->isOpaque());
 | 
						|
  OpaqueStructTypes.insert(Ty);
 | 
						|
}
 | 
						|
 | 
						|
StructType *
 | 
						|
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
 | 
						|
                                                bool IsPacked) {
 | 
						|
  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
 | 
						|
  auto I = NonOpaqueStructTypes.find_as(Key);
 | 
						|
  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
 | 
						|
}
 | 
						|
 | 
						|
bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
 | 
						|
  if (Ty->isOpaque())
 | 
						|
    return OpaqueStructTypes.count(Ty);
 | 
						|
  auto I = NonOpaqueStructTypes.find(Ty);
 | 
						|
  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
 | 
						|
}
 | 
						|
 | 
						|
IRMover::IRMover(Module &M) : Composite(M) {
 | 
						|
  TypeFinder StructTypes;
 | 
						|
  StructTypes.run(M, /* OnlyNamed */ false);
 | 
						|
  for (StructType *Ty : StructTypes) {
 | 
						|
    if (Ty->isOpaque())
 | 
						|
      IdentifiedStructTypes.addOpaque(Ty);
 | 
						|
    else
 | 
						|
      IdentifiedStructTypes.addNonOpaque(Ty);
 | 
						|
  }
 | 
						|
  // Self-map metadatas in the destination module. This is needed when
 | 
						|
  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
 | 
						|
  // destination module may be reached from the source module.
 | 
						|
  for (auto *MD : StructTypes.getVisitedMetadata()) {
 | 
						|
    SharedMDs[MD].reset(const_cast<MDNode *>(MD));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Error IRMover::move(
 | 
						|
    std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
 | 
						|
    std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
 | 
						|
    bool IsPerformingImport) {
 | 
						|
  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
 | 
						|
                       std::move(Src), ValuesToLink, std::move(AddLazyFor),
 | 
						|
                       IsPerformingImport);
 | 
						|
  Error E = TheIRLinker.run();
 | 
						|
  Composite.dropTriviallyDeadConstantArrays();
 | 
						|
  return E;
 | 
						|
}
 |