forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			34752 lines
		
	
	
		
			1.3 MiB
		
	
	
	
	
	
			
		
		
	
	
			34752 lines
		
	
	
		
			1.3 MiB
		
	
	
	
	
	
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the interfaces that X86 uses to lower LLVM code into a
 | 
						|
// selection DAG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86ISelLowering.h"
 | 
						|
#include "Utils/X86ShuffleDecode.h"
 | 
						|
#include "X86CallingConv.h"
 | 
						|
#include "X86FrameLowering.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86IntrinsicsInfo.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "X86ShuffleDecodeConstantPool.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "X86TargetObjectFile.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <bitset>
 | 
						|
#include <cctype>
 | 
						|
#include <numeric>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-isel"
 | 
						|
 | 
						|
STATISTIC(NumTailCalls, "Number of tail calls");
 | 
						|
 | 
						|
static cl::opt<bool> ExperimentalVectorWideningLegalization(
 | 
						|
    "x86-experimental-vector-widening-legalization", cl::init(false),
 | 
						|
    cl::desc("Enable an experimental vector type legalization through widening "
 | 
						|
             "rather than promotion."),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
 | 
						|
                                     const X86Subtarget &STI)
 | 
						|
    : TargetLowering(TM), Subtarget(STI) {
 | 
						|
  bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
 | 
						|
  X86ScalarSSEf64 = Subtarget.hasSSE2();
 | 
						|
  X86ScalarSSEf32 = Subtarget.hasSSE1();
 | 
						|
  MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
 | 
						|
 | 
						|
  // Set up the TargetLowering object.
 | 
						|
 | 
						|
  // X86 is weird. It always uses i8 for shift amounts and setcc results.
 | 
						|
  setBooleanContents(ZeroOrOneBooleanContent);
 | 
						|
  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
 | 
						|
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | 
						|
 | 
						|
  // For 64-bit, since we have so many registers, use the ILP scheduler.
 | 
						|
  // For 32-bit, use the register pressure specific scheduling.
 | 
						|
  // For Atom, always use ILP scheduling.
 | 
						|
  if (Subtarget.isAtom())
 | 
						|
    setSchedulingPreference(Sched::ILP);
 | 
						|
  else if (Subtarget.is64Bit())
 | 
						|
    setSchedulingPreference(Sched::ILP);
 | 
						|
  else
 | 
						|
    setSchedulingPreference(Sched::RegPressure);
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
 | 
						|
 | 
						|
  // Bypass expensive divides on Atom when compiling with O2.
 | 
						|
  if (TM.getOptLevel() >= CodeGenOpt::Default) {
 | 
						|
    if (Subtarget.hasSlowDivide32())
 | 
						|
      addBypassSlowDiv(32, 8);
 | 
						|
    if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
 | 
						|
      addBypassSlowDiv(64, 16);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isTargetKnownWindowsMSVC() ||
 | 
						|
      Subtarget.isTargetWindowsItanium()) {
 | 
						|
    // Setup Windows compiler runtime calls.
 | 
						|
    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
 | 
						|
    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
 | 
						|
    setLibcallName(RTLIB::SREM_I64, "_allrem");
 | 
						|
    setLibcallName(RTLIB::UREM_I64, "_aullrem");
 | 
						|
    setLibcallName(RTLIB::MUL_I64, "_allmul");
 | 
						|
    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
 | 
						|
    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
 | 
						|
    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
 | 
						|
    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
 | 
						|
    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isTargetDarwin()) {
 | 
						|
    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
 | 
						|
    setUseUnderscoreSetJmp(false);
 | 
						|
    setUseUnderscoreLongJmp(false);
 | 
						|
  } else if (Subtarget.isTargetWindowsGNU()) {
 | 
						|
    // MS runtime is weird: it exports _setjmp, but longjmp!
 | 
						|
    setUseUnderscoreSetJmp(true);
 | 
						|
    setUseUnderscoreLongJmp(false);
 | 
						|
  } else {
 | 
						|
    setUseUnderscoreSetJmp(true);
 | 
						|
    setUseUnderscoreLongJmp(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i8, &X86::GR8RegClass);
 | 
						|
  addRegisterClass(MVT::i16, &X86::GR16RegClass);
 | 
						|
  addRegisterClass(MVT::i32, &X86::GR32RegClass);
 | 
						|
  if (Subtarget.is64Bit())
 | 
						|
    addRegisterClass(MVT::i64, &X86::GR64RegClass);
 | 
						|
 | 
						|
  for (MVT VT : MVT::integer_valuetypes())
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
 | 
						|
  // We don't accept any truncstore of integer registers.
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
 | 
						|
  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
 | 
						|
  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  // SETOEQ and SETUNE require checking two conditions.
 | 
						|
  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
 | 
						|
 | 
						|
  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
 | 
						|
  // operation.
 | 
						|
  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512())
 | 
						|
      // f32/f64 are legal, f80 is custom.
 | 
						|
      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
 | 
						|
    else
 | 
						|
      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
 | 
						|
  } else if (!Subtarget.useSoftFloat()) {
 | 
						|
    // We have an algorithm for SSE2->double, and we turn this into a
 | 
						|
    // 64-bit FILD followed by conditional FADD for other targets.
 | 
						|
    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
 | 
						|
    // We have an algorithm for SSE2, and we turn this into a 64-bit
 | 
						|
    // FILD or VCVTUSI2SS/SD for other targets.
 | 
						|
    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
 | 
						|
  // this operation.
 | 
						|
  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat()) {
 | 
						|
    // SSE has no i16 to fp conversion, only i32.
 | 
						|
    if (X86ScalarSSEf32) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | 
						|
      // f32 and f64 cases are Legal, f80 case is not
 | 
						|
      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
 | 
						|
  }
 | 
						|
 | 
						|
  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
 | 
						|
  // this operation.
 | 
						|
  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat()) {
 | 
						|
    // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
 | 
						|
    // are Legal, f80 is custom lowered.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
 | 
						|
 | 
						|
    if (X86ScalarSSEf32) {
 | 
						|
      setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
 | 
						|
      // f32 and f64 cases are Legal, f80 case is not
 | 
						|
      setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle FP_TO_UINT by promoting the destination to a larger signed
 | 
						|
  // conversion.
 | 
						|
  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
 | 
						|
      // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Custom);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Expand);
 | 
						|
    }
 | 
						|
  } else if (!Subtarget.useSoftFloat()) {
 | 
						|
    // Since AVX is a superset of SSE3, only check for SSE here.
 | 
						|
    if (Subtarget.hasSSE1() && !Subtarget.hasSSE3())
 | 
						|
      // Expand FP_TO_UINT into a select.
 | 
						|
      // FIXME: We would like to use a Custom expander here eventually to do
 | 
						|
      // the optimal thing for SSE vs. the default expansion in the legalizer.
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
 | 
						|
    else
 | 
						|
      // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
 | 
						|
      // With SSE3 we can use fisttpll to convert to a signed i64; without
 | 
						|
      // SSE, we're stuck with a fistpll.
 | 
						|
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
 | 
						|
  if (!X86ScalarSSEf64) {
 | 
						|
    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
 | 
						|
    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
 | 
						|
      // Without SSE, i64->f64 goes through memory.
 | 
						|
      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
 | 
						|
    }
 | 
						|
  } else if (!Subtarget.is64Bit())
 | 
						|
    setOperationAction(ISD::BITCAST      , MVT::i64  , Custom);
 | 
						|
 | 
						|
  // Scalar integer divide and remainder are lowered to use operations that
 | 
						|
  // produce two results, to match the available instructions. This exposes
 | 
						|
  // the two-result form to trivial CSE, which is able to combine x/y and x%y
 | 
						|
  // into a single instruction.
 | 
						|
  //
 | 
						|
  // Scalar integer multiply-high is also lowered to use two-result
 | 
						|
  // operations, to match the available instructions. However, plain multiply
 | 
						|
  // (low) operations are left as Legal, as there are single-result
 | 
						|
  // instructions for this in x86. Using the two-result multiply instructions
 | 
						|
  // when both high and low results are needed must be arranged by dagcombine.
 | 
						|
  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
    setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
    setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    if (VT == MVT::i64 && !Subtarget.is64Bit())
 | 
						|
      continue;
 | 
						|
    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
 | 
						|
    setOperationAction(ISD::ADDC, VT, Custom);
 | 
						|
    setOperationAction(ISD::ADDE, VT, Custom);
 | 
						|
    setOperationAction(ISD::SUBC, VT, Custom);
 | 
						|
    setOperationAction(ISD::SUBE, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
 | 
						|
  for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
 | 
						|
                   MVT::i8,  MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    setOperationAction(ISD::BR_CC,     VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
  }
 | 
						|
  if (Subtarget.is64Bit())
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
 | 
						|
  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
 | 
						|
  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
 | 
						|
  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
 | 
						|
  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
 | 
						|
 | 
						|
  // Promote the i8 variants and force them on up to i32 which has a shorter
 | 
						|
  // encoding.
 | 
						|
  setOperationPromotedToType(ISD::CTTZ           , MVT::i8   , MVT::i32);
 | 
						|
  setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
 | 
						|
  if (!Subtarget.hasBMI()) {
 | 
						|
    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
 | 
						|
    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
 | 
						|
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Legal);
 | 
						|
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Legal);
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasLZCNT()) {
 | 
						|
    // When promoting the i8 variants, force them to i32 for a shorter
 | 
						|
    // encoding.
 | 
						|
    setOperationPromotedToType(ISD::CTLZ           , MVT::i8   , MVT::i32);
 | 
						|
    setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
 | 
						|
    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
 | 
						|
    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
 | 
						|
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
 | 
						|
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
 | 
						|
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
 | 
						|
      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special handling for half-precision floating point conversions.
 | 
						|
  // If we don't have F16C support, then lower half float conversions
 | 
						|
  // into library calls.
 | 
						|
  if (Subtarget.useSoftFloat() ||
 | 
						|
      (!Subtarget.hasF16C() && !Subtarget.hasAVX512())) {
 | 
						|
    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // There's never any support for operations beyond MVT::f32.
 | 
						|
  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
 | 
						|
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f80, MVT::f16, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasPOPCNT()) {
 | 
						|
    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
 | 
						|
    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
 | 
						|
    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
 | 
						|
    if (Subtarget.is64Bit())
 | 
						|
      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
 | 
						|
 | 
						|
  if (!Subtarget.hasMOVBE())
 | 
						|
    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
 | 
						|
 | 
						|
  // These should be promoted to a larger select which is supported.
 | 
						|
  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
 | 
						|
  // X86 wants to expand cmov itself.
 | 
						|
  for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
 | 
						|
    setOperationAction(ISD::SELECT, VT, Custom);
 | 
						|
    setOperationAction(ISD::SETCC, VT, Custom);
 | 
						|
  }
 | 
						|
  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    if (VT == MVT::i64 && !Subtarget.is64Bit())
 | 
						|
      continue;
 | 
						|
    setOperationAction(ISD::SELECT, VT, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,  VT, Custom);
 | 
						|
    setOperationAction(ISD::SETCCE, VT, Custom);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
 | 
						|
  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
 | 
						|
  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
 | 
						|
  // support continuation, user-level threading, and etc.. As a result, no
 | 
						|
  // other SjLj exception interfaces are implemented and please don't build
 | 
						|
  // your own exception handling based on them.
 | 
						|
  // LLVM/Clang supports zero-cost DWARF exception handling.
 | 
						|
  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
 | 
						|
  if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
 | 
						|
    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
 | 
						|
 | 
						|
  // Darwin ABI issue.
 | 
						|
  for (auto VT : { MVT::i32, MVT::i64 }) {
 | 
						|
    if (VT == MVT::i64 && !Subtarget.is64Bit())
 | 
						|
      continue;
 | 
						|
    setOperationAction(ISD::ConstantPool    , VT, Custom);
 | 
						|
    setOperationAction(ISD::JumpTable       , VT, Custom);
 | 
						|
    setOperationAction(ISD::GlobalAddress   , VT, Custom);
 | 
						|
    setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
 | 
						|
    setOperationAction(ISD::ExternalSymbol  , VT, Custom);
 | 
						|
    setOperationAction(ISD::BlockAddress    , VT, Custom);
 | 
						|
  }
 | 
						|
  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
 | 
						|
  for (auto VT : { MVT::i32, MVT::i64 }) {
 | 
						|
    if (VT == MVT::i64 && !Subtarget.is64Bit())
 | 
						|
      continue;
 | 
						|
    setOperationAction(ISD::SHL_PARTS, VT, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, VT, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasSSE1())
 | 
						|
    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
 | 
						|
 | 
						|
  // Expand certain atomics
 | 
						|
  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
 | 
						|
    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasCmpxchg16b()) {
 | 
						|
    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME - use subtarget debug flags
 | 
						|
  if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
 | 
						|
      !Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() &&
 | 
						|
      TM.Options.ExceptionModel != ExceptionHandling::SjLj) {
 | 
						|
    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
 | 
						|
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | 
						|
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | 
						|
  bool Is64Bit = Subtarget.is64Bit();
 | 
						|
  setOperationAction(ISD::VAARG,  MVT::Other, Is64Bit ? Custom : Expand);
 | 
						|
  setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
 | 
						|
 | 
						|
  // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
 | 
						|
  setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
 | 
						|
    // f32 and f64 use SSE.
 | 
						|
    // Set up the FP register classes.
 | 
						|
    addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
 | 
						|
                                                     : &X86::FR32RegClass);
 | 
						|
    addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass
 | 
						|
                                                     : &X86::FR64RegClass);
 | 
						|
 | 
						|
    for (auto VT : { MVT::f32, MVT::f64 }) {
 | 
						|
      // Use ANDPD to simulate FABS.
 | 
						|
      setOperationAction(ISD::FABS, VT, Custom);
 | 
						|
 | 
						|
      // Use XORP to simulate FNEG.
 | 
						|
      setOperationAction(ISD::FNEG, VT, Custom);
 | 
						|
 | 
						|
      // Use ANDPD and ORPD to simulate FCOPYSIGN.
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, VT, Custom);
 | 
						|
 | 
						|
      // We don't support sin/cos/fmod
 | 
						|
      setOperationAction(ISD::FSIN   , VT, Expand);
 | 
						|
      setOperationAction(ISD::FCOS   , VT, Expand);
 | 
						|
      setOperationAction(ISD::FSINCOS, VT, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    // Lower this to MOVMSK plus an AND.
 | 
						|
    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
 | 
						|
 | 
						|
    // Expand FP immediates into loads from the stack, except for the special
 | 
						|
    // cases we handle.
 | 
						|
    addLegalFPImmediate(APFloat(+0.0)); // xorpd
 | 
						|
    addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | 
						|
  } else if (UseX87 && X86ScalarSSEf32) {
 | 
						|
    // Use SSE for f32, x87 for f64.
 | 
						|
    // Set up the FP register classes.
 | 
						|
    addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
 | 
						|
                                                     : &X86::FR32RegClass);
 | 
						|
    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
 | 
						|
 | 
						|
    // Use ANDPS to simulate FABS.
 | 
						|
    setOperationAction(ISD::FABS , MVT::f32, Custom);
 | 
						|
 | 
						|
    // Use XORP to simulate FNEG.
 | 
						|
    setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | 
						|
 | 
						|
    // Use ANDPS and ORPS to simulate FCOPYSIGN.
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | 
						|
 | 
						|
    // We don't support sin/cos/fmod
 | 
						|
    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | 
						|
 | 
						|
    // Special cases we handle for FP constants.
 | 
						|
    addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | 
						|
    addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | 
						|
    addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | 
						|
    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | 
						|
    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | 
						|
 | 
						|
    if (!TM.Options.UnsafeFPMath) {
 | 
						|
      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
 | 
						|
      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
 | 
						|
      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | 
						|
    }
 | 
						|
  } else if (UseX87) {
 | 
						|
    // f32 and f64 in x87.
 | 
						|
    // Set up the FP register classes.
 | 
						|
    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
 | 
						|
    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
 | 
						|
 | 
						|
    for (auto VT : { MVT::f32, MVT::f64 }) {
 | 
						|
      setOperationAction(ISD::UNDEF,     VT, Expand);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
 | 
						|
 | 
						|
      if (!TM.Options.UnsafeFPMath) {
 | 
						|
        setOperationAction(ISD::FSIN   , VT, Expand);
 | 
						|
        setOperationAction(ISD::FCOS   , VT, Expand);
 | 
						|
        setOperationAction(ISD::FSINCOS, VT, Expand);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | 
						|
    addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | 
						|
    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | 
						|
    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | 
						|
    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
 | 
						|
    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
 | 
						|
    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
 | 
						|
    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't support FMA.
 | 
						|
  setOperationAction(ISD::FMA, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FMA, MVT::f32, Expand);
 | 
						|
 | 
						|
  // Long double always uses X87, except f128 in MMX.
 | 
						|
  if (UseX87) {
 | 
						|
    if (Subtarget.is64Bit() && Subtarget.hasMMX()) {
 | 
						|
      addRegisterClass(MVT::f128, &X86::FR128RegClass);
 | 
						|
      ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
 | 
						|
      setOperationAction(ISD::FABS , MVT::f128, Custom);
 | 
						|
      setOperationAction(ISD::FNEG , MVT::f128, Custom);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
 | 
						|
    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
 | 
						|
    {
 | 
						|
      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
 | 
						|
      addLegalFPImmediate(TmpFlt);  // FLD0
 | 
						|
      TmpFlt.changeSign();
 | 
						|
      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
 | 
						|
 | 
						|
      bool ignored;
 | 
						|
      APFloat TmpFlt2(+1.0);
 | 
						|
      TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
 | 
						|
                      &ignored);
 | 
						|
      addLegalFPImmediate(TmpFlt2);  // FLD1
 | 
						|
      TmpFlt2.changeSign();
 | 
						|
      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
 | 
						|
    }
 | 
						|
 | 
						|
    if (!TM.Options.UnsafeFPMath) {
 | 
						|
      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
 | 
						|
      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
 | 
						|
      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
 | 
						|
    setOperationAction(ISD::FMA, MVT::f80, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Always use a library call for pow.
 | 
						|
  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
 | 
						|
  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
 | 
						|
  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FLOG, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FEXP, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
 | 
						|
  setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
 | 
						|
 | 
						|
  // Some FP actions are always expanded for vector types.
 | 
						|
  for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
 | 
						|
                   MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
 | 
						|
    setOperationAction(ISD::FSIN,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FSINCOS,   VT, Expand);
 | 
						|
    setOperationAction(ISD::FCOS,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FREM,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FPOWI,     VT, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
 | 
						|
    setOperationAction(ISD::FPOW,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2,     VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10,    VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP,      VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2,     VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // First set operation action for all vector types to either promote
 | 
						|
  // (for widening) or expand (for scalarization). Then we will selectively
 | 
						|
  // turn on ones that can be effectively codegen'd.
 | 
						|
  for (MVT VT : MVT::vector_valuetypes()) {
 | 
						|
    setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | 
						|
    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
 | 
						|
    setOperationAction(ISD::FMA,  VT, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL, VT, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC, VT, Expand);
 | 
						|
    setOperationAction(ISD::FRINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
    setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
    setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
    setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
    setOperationAction(ISD::ROTL, VT, Expand);
 | 
						|
    setOperationAction(ISD::ROTR, VT, Expand);
 | 
						|
    setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
    setOperationAction(ISD::SETCC, VT, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
 | 
						|
    setOperationAction(ISD::TRUNCATE, VT, Expand);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
    for (MVT InnerVT : MVT::vector_valuetypes()) {
 | 
						|
      setTruncStoreAction(InnerVT, VT, Expand);
 | 
						|
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
 | 
						|
 | 
						|
      // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
 | 
						|
      // types, we have to deal with them whether we ask for Expansion or not.
 | 
						|
      // Setting Expand causes its own optimisation problems though, so leave
 | 
						|
      // them legal.
 | 
						|
      if (VT.getVectorElementType() == MVT::i1)
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
 | 
						|
 | 
						|
      // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
 | 
						|
      // split/scalarized right now.
 | 
						|
      if (VT.getVectorElementType() == MVT::f16)
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
 | 
						|
  // with -msoft-float, disable use of MMX as well.
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
 | 
						|
    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
 | 
						|
    // No operations on x86mmx supported, everything uses intrinsics.
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
 | 
						|
    addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN,          MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
 | 
						|
    addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
 | 
						|
    // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
 | 
						|
    // registers cannot be used even for integer operations.
 | 
						|
    addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
    addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
    addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
    addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass
 | 
						|
                                                    : &X86::VR128RegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
 | 
						|
    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MULHU,              MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::MULHS,              MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
 | 
						|
    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN,          MVT::v2f64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v16i8, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v16i8, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::CTPOP,              MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::CTPOP,              MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::CTPOP,              MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::CTPOP,              MVT::v2i64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::CTTZ,               MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::CTTZ,               MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::CTTZ,               MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::CTTZ,               MVT::v2i64, Custom);
 | 
						|
 | 
						|
    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | 
						|
    for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | 
						|
      setOperationAction(ISD::VSELECT,            VT, Custom);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // We support custom legalizing of sext and anyext loads for specific
 | 
						|
    // memory vector types which we can load as a scalar (or sequence of
 | 
						|
    // scalars) and extend in-register to a legal 128-bit vector type. For sext
 | 
						|
    // loads these must work with a single scalar load.
 | 
						|
    for (MVT VT : MVT::integer_vector_valuetypes()) {
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | 
						|
      setOperationAction(ISD::VSELECT,            VT, Custom);
 | 
						|
 | 
						|
      if (VT == MVT::v2i64 && !Subtarget.is64Bit())
 | 
						|
        continue;
 | 
						|
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
 | 
						|
    for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
 | 
						|
      setOperationPromotedToType(ISD::AND,    VT, MVT::v2i64);
 | 
						|
      setOperationPromotedToType(ISD::OR,     VT, MVT::v2i64);
 | 
						|
      setOperationPromotedToType(ISD::XOR,    VT, MVT::v2i64);
 | 
						|
      setOperationPromotedToType(ISD::LOAD,   VT, MVT::v2i64);
 | 
						|
      setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64);
 | 
						|
    }
 | 
						|
 | 
						|
    // Custom lower v2i64 and v2f64 selects.
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v2i32, Custom);
 | 
						|
 | 
						|
    // Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion.
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v2f32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
 | 
						|
    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
 | 
						|
 | 
						|
    for (MVT VT : MVT::fp_vector_valuetypes())
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
 | 
						|
    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v8i16, MVT::v16i8 }) {
 | 
						|
      setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // In the customized shift lowering, the legal cases in AVX2 will be
 | 
						|
    // recognized.
 | 
						|
    for (auto VT : { MVT::v4i32, MVT::v2i64 }) {
 | 
						|
      setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
 | 
						|
    setOperationAction(ISD::BITREVERSE,         MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::CTLZ,               MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::CTLZ,               MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::CTLZ,               MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::CTLZ,               MVT::v2i64, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
 | 
						|
    for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
 | 
						|
      setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal);
 | 
						|
      setOperationAction(ISD::FCEIL,            RoundedTy,  Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal);
 | 
						|
      setOperationAction(ISD::FRINT,            RoundedTy,  Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v16i8, Legal);
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v16i8, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v4i32, Legal);
 | 
						|
 | 
						|
    // FIXME: Do we need to handle scalar-to-vector here?
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
 | 
						|
 | 
						|
    // We directly match byte blends in the backend as they match the VSELECT
 | 
						|
    // condition form.
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
 | 
						|
 | 
						|
    // SSE41 brings specific instructions for doing vector sign extend even in
 | 
						|
    // cases where we don't have SRA.
 | 
						|
    for (MVT VT : MVT::integer_vector_valuetypes()) {
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
 | 
						|
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
 | 
						|
 | 
						|
    // i8 vectors are custom because the source register and source
 | 
						|
    // source memory operand types are not the same width.
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
 | 
						|
    for (auto VT : { MVT::v16i8, MVT::v8i16,  MVT::v4i32, MVT::v2i64,
 | 
						|
                     MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
 | 
						|
      setOperationAction(ISD::ROTL, VT, Custom);
 | 
						|
 | 
						|
    // XOP can efficiently perform BITREVERSE with VPPERM.
 | 
						|
    for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
 | 
						|
      setOperationAction(ISD::BITREVERSE, VT, Custom);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v16i8, MVT::v8i16,  MVT::v4i32, MVT::v2i64,
 | 
						|
                     MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
 | 
						|
      setOperationAction(ISD::BITREVERSE, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasFp256()) {
 | 
						|
    bool HasInt256 = Subtarget.hasInt256();
 | 
						|
 | 
						|
    addRegisterClass(MVT::v32i8,  Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
    addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
    addRegisterClass(MVT::v8i32,  Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
    addRegisterClass(MVT::v8f32,  Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
    addRegisterClass(MVT::v4i64,  Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
    addRegisterClass(MVT::v4f64,  Subtarget.hasVLX() ? &X86::VR256XRegClass
 | 
						|
                                                     : &X86::VR256RegClass);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
 | 
						|
      setOperationAction(ISD::FFLOOR,     VT, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL,      VT, Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC,     VT, Legal);
 | 
						|
      setOperationAction(ISD::FRINT,      VT, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, VT, Legal);
 | 
						|
      setOperationAction(ISD::FNEG,       VT, Custom);
 | 
						|
      setOperationAction(ISD::FABS,       VT, Custom);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN,  VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
 | 
						|
    // even though v8i16 is a legal type.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
 | 
						|
 | 
						|
    for (MVT VT : MVT::fp_vector_valuetypes())
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16 }) {
 | 
						|
      setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::BITREVERSE,        MVT::v32i8, Custom);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
 | 
						|
      setOperationAction(ISD::CTPOP,           VT, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ,            VT, Custom);
 | 
						|
      setOperationAction(ISD::CTLZ,            VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasAnyFMA()) {
 | 
						|
      for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
 | 
						|
                       MVT::v2f64, MVT::v4f64 })
 | 
						|
        setOperationAction(ISD::FMA, VT, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
 | 
						|
      setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
 | 
						|
      setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL,       MVT::v4i64,  Custom);
 | 
						|
    setOperationAction(ISD::MUL,       MVT::v8i32,  HasInt256 ? Legal : Custom);
 | 
						|
    setOperationAction(ISD::MUL,       MVT::v16i16, HasInt256 ? Legal : Custom);
 | 
						|
    setOperationAction(ISD::MUL,       MVT::v32i8,  Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::UMUL_LOHI, MVT::v8i32,  Custom);
 | 
						|
    setOperationAction(ISD::SMUL_LOHI, MVT::v8i32,  Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::MULHU,     MVT::v16i16, HasInt256 ? Legal : Custom);
 | 
						|
    setOperationAction(ISD::MULHS,     MVT::v16i16, HasInt256 ? Legal : Custom);
 | 
						|
    setOperationAction(ISD::MULHU,     MVT::v32i8,  Custom);
 | 
						|
    setOperationAction(ISD::MULHS,     MVT::v32i8,  Custom);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
 | 
						|
      setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
 | 
						|
      setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
 | 
						|
      setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
 | 
						|
      setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasInt256) {
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64,  Custom);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32,  Custom);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom);
 | 
						|
 | 
						|
      // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
 | 
						|
      // when we have a 256bit-wide blend with immediate.
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
 | 
						|
 | 
						|
      // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
 | 
						|
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    // In the customized shift lowering, the legal cases in AVX2 will be
 | 
						|
    // recognized.
 | 
						|
    for (auto VT : { MVT::v8i32, MVT::v4i64 }) {
 | 
						|
      setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
 | 
						|
                     MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
 | 
						|
      setOperationAction(ISD::MLOAD,  VT, Legal);
 | 
						|
      setOperationAction(ISD::MSTORE, VT, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    // Extract subvector is special because the value type
 | 
						|
    // (result) is 128-bit but the source is 256-bit wide.
 | 
						|
    for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
 | 
						|
                     MVT::v4f32, MVT::v2f64 }) {
 | 
						|
      setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // Custom lower several nodes for 256-bit types.
 | 
						|
    for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
 | 
						|
                    MVT::v8f32, MVT::v4f64 }) {
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | 
						|
      setOperationAction(ISD::VSELECT,            VT, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
 | 
						|
      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasInt256)
 | 
						|
      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
 | 
						|
 | 
						|
    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
 | 
						|
      setOperationPromotedToType(ISD::AND,    VT, MVT::v4i64);
 | 
						|
      setOperationPromotedToType(ISD::OR,     VT, MVT::v4i64);
 | 
						|
      setOperationPromotedToType(ISD::XOR,    VT, MVT::v4i64);
 | 
						|
      setOperationPromotedToType(ISD::LOAD,   VT, MVT::v4i64);
 | 
						|
      setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
 | 
						|
    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
 | 
						|
    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
 | 
						|
    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
 | 
						|
    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
 | 
						|
 | 
						|
    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
 | 
						|
    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
 | 
						|
    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
 | 
						|
 | 
						|
    for (MVT VT : MVT::fp_vector_valuetypes())
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
 | 
						|
 | 
						|
    for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
 | 
						|
      setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8,  Legal);
 | 
						|
      setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
 | 
						|
      setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8,  Legal);
 | 
						|
      setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i8,   Legal);
 | 
						|
      setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i16,  Legal);
 | 
						|
      setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i32,  Legal);
 | 
						|
    }
 | 
						|
    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
 | 
						|
    setOperationAction(ISD::SETCCE,             MVT::i1,    Custom);
 | 
						|
    setOperationAction(ISD::SELECT_CC,          MVT::i1,    Expand);
 | 
						|
    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
 | 
						|
    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
 | 
						|
    setOperationAction(ISD::AND,                MVT::i1,    Legal);
 | 
						|
    setOperationAction(ISD::SUB,                MVT::i1,    Custom);
 | 
						|
    setOperationAction(ISD::ADD,                MVT::i1,    Custom);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::i1,    Custom);
 | 
						|
 | 
						|
    for (MVT VT : {MVT::v2i64, MVT::v4i32, MVT::v8i32, MVT::v4i64, MVT::v8i16,
 | 
						|
                   MVT::v16i8, MVT::v16i16, MVT::v32i8, MVT::v16i32,
 | 
						|
                   MVT::v8i64, MVT::v32i16, MVT::v64i8}) {
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MaskVT, Custom);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, VT, MaskVT, Custom);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD,  VT, MaskVT, Custom);
 | 
						|
      setTruncStoreAction(VT, MaskVT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
 | 
						|
      setOperationAction(ISD::FNEG,  VT, Custom);
 | 
						|
      setOperationAction(ISD::FABS,  VT, Custom);
 | 
						|
      setOperationAction(ISD::FMA,   VT, Legal);
 | 
						|
      setOperationAction(ISD::FCOPYSIGN, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT,         MVT::v2i32, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,   Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1,  Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i8,  Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i16, Promote);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,  Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i1,  Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i1,  Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i1,  Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP,         MVT::v2i1,  Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP,         MVT::v2i1,  Custom);
 | 
						|
    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
 | 
						|
    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
 | 
						|
 | 
						|
    setTruncStoreAction(MVT::v8i64,   MVT::v8i8,   Legal);
 | 
						|
    setTruncStoreAction(MVT::v8i64,   MVT::v8i16,  Legal);
 | 
						|
    setTruncStoreAction(MVT::v8i64,   MVT::v8i32,  Legal);
 | 
						|
    setTruncStoreAction(MVT::v16i32,  MVT::v16i8,  Legal);
 | 
						|
    setTruncStoreAction(MVT::v16i32,  MVT::v16i16, Legal);
 | 
						|
    if (Subtarget.hasVLX()){
 | 
						|
      setTruncStoreAction(MVT::v4i64, MVT::v4i8,  Legal);
 | 
						|
      setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
 | 
						|
      setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
 | 
						|
      setTruncStoreAction(MVT::v8i32, MVT::v8i8,  Legal);
 | 
						|
      setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
 | 
						|
 | 
						|
      setTruncStoreAction(MVT::v2i64, MVT::v2i8,  Legal);
 | 
						|
      setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
 | 
						|
      setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
 | 
						|
      setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
 | 
						|
      setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
 | 
						|
    } else {
 | 
						|
      for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
 | 
						|
           MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) {
 | 
						|
        setOperationAction(ISD::MLOAD,  VT, Custom);
 | 
						|
        setOperationAction(ISD::MSTORE, VT, Custom);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i1,  Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v8i1,  Expand);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v16i1, Expand);
 | 
						|
    if (Subtarget.hasDQI()) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP,       MVT::v8i64, Legal);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP,       MVT::v4i64, Legal);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP,       MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP,       MVT::v8i64, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP,       MVT::v4i64, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP,       MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT,       MVT::v8i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT,       MVT::v4i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT,       MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT,       MVT::v8i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT,       MVT::v4i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT,       MVT::v2i64, Legal);
 | 
						|
 | 
						|
      if (Subtarget.hasVLX()) {
 | 
						|
        // Fast v2f32 SINT_TO_FP( v2i32 ) custom conversion.
 | 
						|
        setOperationAction(ISD::SINT_TO_FP,    MVT::v2f32, Custom);
 | 
						|
        setOperationAction(ISD::FP_TO_SINT,    MVT::v2f32, Custom);
 | 
						|
        setOperationAction(ISD::FP_TO_UINT,    MVT::v2f32, Custom);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Subtarget.hasVLX()) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP,       MVT::v8i32, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP,       MVT::v8i32, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT,       MVT::v8i32, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT,       MVT::v8i32, Legal);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP,       MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT,       MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT,       MVT::v4i32, Legal);
 | 
						|
      setOperationAction(ISD::ZERO_EXTEND,      MVT::v4i32, Custom);
 | 
						|
      setOperationAction(ISD::ZERO_EXTEND,      MVT::v2i64, Custom);
 | 
						|
 | 
						|
      // FIXME. This commands are available on SSE/AVX2, add relevant patterns.
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v8i32, MVT::v8i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,         MVT::v16i32, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,         MVT::v8i64, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
 | 
						|
    if (Subtarget.hasDQI()) {
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND,        MVT::v4i32, Custom);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND,        MVT::v2i64, Custom);
 | 
						|
    }
 | 
						|
    for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
 | 
						|
      setOperationAction(ISD::FFLOOR,     VT, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL,      VT, Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC,     VT, Legal);
 | 
						|
      setOperationAction(ISD::FRINT,      VT, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, VT, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i64,  Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i32, Custom);
 | 
						|
 | 
						|
    // Without BWI we need to use custom lowering to handle MVT::v64i8 input.
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1,   Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v16i1, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v8i1,  Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v8i64, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v8i64, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v8i64, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v16i32, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v8i64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::ADD,                MVT::v8i1,  Expand);
 | 
						|
    setOperationAction(ISD::ADD,                MVT::v16i1, Expand);
 | 
						|
    setOperationAction(ISD::SUB,                MVT::v8i1,  Expand);
 | 
						|
    setOperationAction(ISD::SUB,                MVT::v16i1, Expand);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v8i1,  Expand);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v16i1, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
 | 
						|
      setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
      setOperationAction(ISD::CTPOP, VT, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // Need to promote to 64-bit even though we have 32-bit masked instructions
 | 
						|
    // because the IR optimizers rearrange bitcasts around logic ops leaving
 | 
						|
    // too many variations to handle if we don't promote them.
 | 
						|
    setOperationPromotedToType(ISD::AND, MVT::v16i32, MVT::v8i64);
 | 
						|
    setOperationPromotedToType(ISD::OR,  MVT::v16i32, MVT::v8i64);
 | 
						|
    setOperationPromotedToType(ISD::XOR, MVT::v16i32, MVT::v8i64);
 | 
						|
 | 
						|
    if (Subtarget.hasCDI()) {
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v8i64,  Legal);
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v8i16,  Custom);
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v16i8,  Custom);
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v16i16, Custom);
 | 
						|
      setOperationAction(ISD::CTLZ,             MVT::v32i8,  Custom);
 | 
						|
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i64,  Custom);
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v16i32, Custom);
 | 
						|
 | 
						|
      if (Subtarget.hasVLX()) {
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v4i64, Legal);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v8i32, Legal);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v4i32, Legal);
 | 
						|
      } else {
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v4i64, Custom);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v8i32, Custom);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v2i64, Custom);
 | 
						|
        setOperationAction(ISD::CTLZ,             MVT::v4i32, Custom);
 | 
						|
      }
 | 
						|
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i64, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i32, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v2i64, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i32, Custom);
 | 
						|
    } // Subtarget.hasCDI()
 | 
						|
 | 
						|
    if (Subtarget.hasDQI()) {
 | 
						|
      // NonVLX sub-targets extend 128/256 vectors to use the 512 version.
 | 
						|
      setOperationAction(ISD::MUL,             MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::MUL,             MVT::v4i64, Legal);
 | 
						|
      setOperationAction(ISD::MUL,             MVT::v8i64, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    // Custom lower several nodes.
 | 
						|
    for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
 | 
						|
                     MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
 | 
						|
      setOperationAction(ISD::MGATHER,  VT, Custom);
 | 
						|
      setOperationAction(ISD::MSCATTER, VT, Custom);
 | 
						|
    }
 | 
						|
    // Extract subvector is special because the value type
 | 
						|
    // (result) is 256-bit but the source is 512-bit wide.
 | 
						|
    // 128-bit was made Custom under AVX1.
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
 | 
						|
                     MVT::v8f32, MVT::v4f64 })
 | 
						|
      setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
 | 
						|
    for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1,
 | 
						|
                     MVT::v16i1, MVT::v32i1, MVT::v64i1 })
 | 
						|
      setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
 | 
						|
      setOperationAction(ISD::VSELECT,             VT, Legal);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
 | 
						|
      setOperationAction(ISD::MLOAD,               VT, Legal);
 | 
						|
      setOperationAction(ISD::MSTORE,              VT, Legal);
 | 
						|
      setOperationAction(ISD::MGATHER,             VT, Legal);
 | 
						|
      setOperationAction(ISD::MSCATTER,            VT, Custom);
 | 
						|
    }
 | 
						|
    for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
 | 
						|
      setOperationPromotedToType(ISD::LOAD,   VT, MVT::v8i64);
 | 
						|
      setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64);
 | 
						|
    }
 | 
						|
  }// has  AVX-512
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
 | 
						|
    addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
 | 
						|
    addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v32i1,  &X86::VK32RegClass);
 | 
						|
    addRegisterClass(MVT::v64i1,  &X86::VK64RegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::ADD,                MVT::v32i1, Expand);
 | 
						|
    setOperationAction(ISD::ADD,                MVT::v64i1, Expand);
 | 
						|
    setOperationAction(ISD::SUB,                MVT::v32i1, Expand);
 | 
						|
    setOperationAction(ISD::SUB,                MVT::v64i1, Expand);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v32i1, Expand);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v64i1, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::SETCC,              MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::MUL,                MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::MULHS,              MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::MULHU,              MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i1,  Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::SELECT,             MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i8, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i8, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::ANY_EXTEND,         MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND,        MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::ZERO_EXTEND,        MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i16, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i8, Custom);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v64i8, Legal);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::TRUNCATE,           MVT::v32i8, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v32i1, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v64i1, Custom);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v32i1, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT,            MVT::v64i1, Expand);
 | 
						|
    setOperationAction(ISD::BITREVERSE,         MVT::v64i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v64i8, Legal);
 | 
						|
    setOperationAction(ISD::SMAX,               MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v64i8, Legal);
 | 
						|
    setOperationAction(ISD::UMAX,               MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v64i8, Legal);
 | 
						|
    setOperationAction(ISD::SMIN,               MVT::v32i16, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v64i8, Legal);
 | 
						|
    setOperationAction(ISD::UMIN,               MVT::v32i16, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
 | 
						|
 | 
						|
    setTruncStoreAction(MVT::v32i16,  MVT::v32i8, Legal);
 | 
						|
    if (Subtarget.hasVLX()) {
 | 
						|
      setTruncStoreAction(MVT::v16i16,  MVT::v16i8, Legal);
 | 
						|
      setTruncStoreAction(MVT::v8i16,   MVT::v8i8,  Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    LegalizeAction Action = Subtarget.hasVLX() ? Legal : Custom;
 | 
						|
    for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
 | 
						|
      setOperationAction(ISD::MLOAD,               VT, Action);
 | 
						|
      setOperationAction(ISD::MSTORE,              VT, Action);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasCDI()) {
 | 
						|
      setOperationAction(ISD::CTLZ,            MVT::v32i16, Custom);
 | 
						|
      setOperationAction(ISD::CTLZ,            MVT::v64i8,  Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
 | 
						|
      setOperationAction(ISD::VSELECT,      VT, Legal);
 | 
						|
      setOperationAction(ISD::SRL,          VT, Custom);
 | 
						|
      setOperationAction(ISD::SHL,          VT, Custom);
 | 
						|
      setOperationAction(ISD::SRA,          VT, Custom);
 | 
						|
      setOperationAction(ISD::MLOAD,        VT, Legal);
 | 
						|
      setOperationAction(ISD::MSTORE,       VT, Legal);
 | 
						|
      setOperationAction(ISD::CTPOP,        VT, Custom);
 | 
						|
      setOperationAction(ISD::CTTZ,         VT, Custom);
 | 
						|
 | 
						|
      setOperationPromotedToType(ISD::AND,  VT, MVT::v8i64);
 | 
						|
      setOperationPromotedToType(ISD::OR,   VT, MVT::v8i64);
 | 
						|
      setOperationPromotedToType(ISD::XOR,  VT, MVT::v8i64);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
 | 
						|
      setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
 | 
						|
      if (Subtarget.hasVLX()) {
 | 
						|
        // FIXME. This commands are available on SSE/AVX2, add relevant patterns.
 | 
						|
        setLoadExtAction(ExtType, MVT::v16i16, MVT::v16i8, Legal);
 | 
						|
        setLoadExtAction(ExtType, MVT::v8i16,  MVT::v8i8,  Legal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
 | 
						|
    addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
 | 
						|
    addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v2i1, MVT::v4i1 }) {
 | 
						|
      setOperationAction(ISD::ADD,                VT, Expand);
 | 
						|
      setOperationAction(ISD::SUB,                VT, Expand);
 | 
						|
      setOperationAction(ISD::MUL,                VT, Expand);
 | 
						|
      setOperationAction(ISD::VSELECT,            VT, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::TRUNCATE,           VT, Custom);
 | 
						|
      setOperationAction(ISD::SETCC,              VT, Custom);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
 | 
						|
      setOperationAction(ISD::SELECT,             VT, Custom);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom);
 | 
						|
 | 
						|
    for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
 | 
						|
      setOperationAction(ISD::SMAX, VT, Legal);
 | 
						|
      setOperationAction(ISD::UMAX, VT, Legal);
 | 
						|
      setOperationAction(ISD::SMIN, VT, Legal);
 | 
						|
      setOperationAction(ISD::UMIN, VT, Legal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | 
						|
  if (!Subtarget.is64Bit()) {
 | 
						|
    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
 | 
						|
  // handle type legalization for these operations here.
 | 
						|
  //
 | 
						|
  // FIXME: We really should do custom legalization for addition and
 | 
						|
  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
 | 
						|
  // than generic legalization for 64-bit multiplication-with-overflow, though.
 | 
						|
  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
 | 
						|
    if (VT == MVT::i64 && !Subtarget.is64Bit())
 | 
						|
      continue;
 | 
						|
    // Add/Sub/Mul with overflow operations are custom lowered.
 | 
						|
    setOperationAction(ISD::SADDO, VT, Custom);
 | 
						|
    setOperationAction(ISD::UADDO, VT, Custom);
 | 
						|
    setOperationAction(ISD::SSUBO, VT, Custom);
 | 
						|
    setOperationAction(ISD::USUBO, VT, Custom);
 | 
						|
    setOperationAction(ISD::SMULO, VT, Custom);
 | 
						|
    setOperationAction(ISD::UMULO, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.is64Bit()) {
 | 
						|
    // These libcalls are not available in 32-bit.
 | 
						|
    setLibcallName(RTLIB::SHL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRA_I128, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine sin / cos into one node or libcall if possible.
 | 
						|
  if (Subtarget.hasSinCos()) {
 | 
						|
    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
 | 
						|
    setLibcallName(RTLIB::SINCOS_F64, "sincos");
 | 
						|
    if (Subtarget.isTargetDarwin()) {
 | 
						|
      // For MacOSX, we don't want the normal expansion of a libcall to sincos.
 | 
						|
      // We want to issue a libcall to __sincos_stret to avoid memory traffic.
 | 
						|
      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
 | 
						|
      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isTargetWin64()) {
 | 
						|
    setOperationAction(ISD::SDIV, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::UDIV, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::SREM, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
 | 
						|
    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
 | 
						|
  // is. We should promote the value to 64-bits to solve this.
 | 
						|
  // This is what the CRT headers do - `fmodf` is an inline header
 | 
						|
  // function casting to f64 and calling `fmod`.
 | 
						|
  if (Subtarget.is32Bit() && (Subtarget.isTargetKnownWindowsMSVC() ||
 | 
						|
                              Subtarget.isTargetWindowsItanium()))
 | 
						|
    for (ISD::NodeType Op :
 | 
						|
         {ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG,
 | 
						|
          ISD::FLOG10, ISD::FPOW, ISD::FSIN})
 | 
						|
      if (isOperationExpand(Op, MVT::f32))
 | 
						|
        setOperationAction(Op, MVT::f32, Promote);
 | 
						|
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | 
						|
  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
 | 
						|
  setTargetDAGCombine(ISD::BITCAST);
 | 
						|
  setTargetDAGCombine(ISD::VSELECT);
 | 
						|
  setTargetDAGCombine(ISD::SELECT);
 | 
						|
  setTargetDAGCombine(ISD::SHL);
 | 
						|
  setTargetDAGCombine(ISD::SRA);
 | 
						|
  setTargetDAGCombine(ISD::SRL);
 | 
						|
  setTargetDAGCombine(ISD::OR);
 | 
						|
  setTargetDAGCombine(ISD::AND);
 | 
						|
  setTargetDAGCombine(ISD::ADD);
 | 
						|
  setTargetDAGCombine(ISD::FADD);
 | 
						|
  setTargetDAGCombine(ISD::FSUB);
 | 
						|
  setTargetDAGCombine(ISD::FNEG);
 | 
						|
  setTargetDAGCombine(ISD::FMA);
 | 
						|
  setTargetDAGCombine(ISD::FMINNUM);
 | 
						|
  setTargetDAGCombine(ISD::FMAXNUM);
 | 
						|
  setTargetDAGCombine(ISD::SUB);
 | 
						|
  setTargetDAGCombine(ISD::LOAD);
 | 
						|
  setTargetDAGCombine(ISD::MLOAD);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::MSTORE);
 | 
						|
  setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
  setTargetDAGCombine(ISD::ZERO_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ANY_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::SIGN_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::UINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::SETCC);
 | 
						|
  setTargetDAGCombine(ISD::MUL);
 | 
						|
  setTargetDAGCombine(ISD::XOR);
 | 
						|
  setTargetDAGCombine(ISD::MSCATTER);
 | 
						|
  setTargetDAGCombine(ISD::MGATHER);
 | 
						|
 | 
						|
  computeRegisterProperties(Subtarget.getRegisterInfo());
 | 
						|
 | 
						|
  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
 | 
						|
  MaxStoresPerMemsetOptSize = 8;
 | 
						|
  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
 | 
						|
  MaxStoresPerMemcpyOptSize = 4;
 | 
						|
  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
 | 
						|
  MaxStoresPerMemmoveOptSize = 4;
 | 
						|
  setPrefLoopAlignment(4); // 2^4 bytes.
 | 
						|
 | 
						|
  // An out-of-order CPU can speculatively execute past a predictable branch,
 | 
						|
  // but a conditional move could be stalled by an expensive earlier operation.
 | 
						|
  PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
 | 
						|
  EnableExtLdPromotion = true;
 | 
						|
  setPrefFunctionAlignment(4); // 2^4 bytes.
 | 
						|
 | 
						|
  verifyIntrinsicTables();
 | 
						|
}
 | 
						|
 | 
						|
// This has so far only been implemented for 64-bit MachO.
 | 
						|
bool X86TargetLowering::useLoadStackGuardNode() const {
 | 
						|
  return Subtarget.isTargetMachO() && Subtarget.is64Bit();
 | 
						|
}
 | 
						|
 | 
						|
TargetLoweringBase::LegalizeTypeAction
 | 
						|
X86TargetLowering::getPreferredVectorAction(EVT VT) const {
 | 
						|
  if (ExperimentalVectorWideningLegalization &&
 | 
						|
      VT.getVectorNumElements() != 1 &&
 | 
						|
      VT.getVectorElementType().getSimpleVT() != MVT::i1)
 | 
						|
    return TypeWidenVector;
 | 
						|
 | 
						|
  return TargetLoweringBase::getPreferredVectorAction(VT);
 | 
						|
}
 | 
						|
 | 
						|
EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
 | 
						|
                                          LLVMContext& Context,
 | 
						|
                                          EVT VT) const {
 | 
						|
  if (!VT.isVector())
 | 
						|
    return Subtarget.hasAVX512() ? MVT::i1: MVT::i8;
 | 
						|
 | 
						|
  if (VT.isSimple()) {
 | 
						|
    MVT VVT = VT.getSimpleVT();
 | 
						|
    const unsigned NumElts = VVT.getVectorNumElements();
 | 
						|
    MVT EltVT = VVT.getVectorElementType();
 | 
						|
    if (VVT.is512BitVector()) {
 | 
						|
      if (Subtarget.hasAVX512())
 | 
						|
        if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
 | 
						|
            EltVT == MVT::f32 || EltVT == MVT::f64)
 | 
						|
          switch(NumElts) {
 | 
						|
          case  8: return MVT::v8i1;
 | 
						|
          case 16: return MVT::v16i1;
 | 
						|
        }
 | 
						|
      if (Subtarget.hasBWI())
 | 
						|
        if (EltVT == MVT::i8 || EltVT == MVT::i16)
 | 
						|
          switch(NumElts) {
 | 
						|
          case 32: return MVT::v32i1;
 | 
						|
          case 64: return MVT::v64i1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasBWI() && Subtarget.hasVLX())
 | 
						|
      return MVT::getVectorVT(MVT::i1, NumElts);
 | 
						|
 | 
						|
    if (!isTypeLegal(VT) && getTypeAction(Context, VT) == TypePromoteInteger) {
 | 
						|
      EVT LegalVT = getTypeToTransformTo(Context, VT);
 | 
						|
      EltVT = LegalVT.getVectorElementType().getSimpleVT();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasVLX() && EltVT.getSizeInBits() >= 32)
 | 
						|
      switch(NumElts) {
 | 
						|
      case 2: return MVT::v2i1;
 | 
						|
      case 4: return MVT::v4i1;
 | 
						|
      case 8: return MVT::v8i1;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return VT.changeVectorElementTypeToInteger();
 | 
						|
}
 | 
						|
 | 
						|
/// Helper for getByValTypeAlignment to determine
 | 
						|
/// the desired ByVal argument alignment.
 | 
						|
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
 | 
						|
  if (MaxAlign == 16)
 | 
						|
    return;
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | 
						|
    if (VTy->getBitWidth() == 128)
 | 
						|
      MaxAlign = 16;
 | 
						|
  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    unsigned EltAlign = 0;
 | 
						|
    getMaxByValAlign(ATy->getElementType(), EltAlign);
 | 
						|
    if (EltAlign > MaxAlign)
 | 
						|
      MaxAlign = EltAlign;
 | 
						|
  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (auto *EltTy : STy->elements()) {
 | 
						|
      unsigned EltAlign = 0;
 | 
						|
      getMaxByValAlign(EltTy, EltAlign);
 | 
						|
      if (EltAlign > MaxAlign)
 | 
						|
        MaxAlign = EltAlign;
 | 
						|
      if (MaxAlign == 16)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return the desired alignment for ByVal aggregate
 | 
						|
/// function arguments in the caller parameter area. For X86, aggregates
 | 
						|
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
 | 
						|
/// are at 4-byte boundaries.
 | 
						|
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
 | 
						|
                                                  const DataLayout &DL) const {
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    // Max of 8 and alignment of type.
 | 
						|
    unsigned TyAlign = DL.getABITypeAlignment(Ty);
 | 
						|
    if (TyAlign > 8)
 | 
						|
      return TyAlign;
 | 
						|
    return 8;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Align = 4;
 | 
						|
  if (Subtarget.hasSSE1())
 | 
						|
    getMaxByValAlign(Ty, Align);
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the target specific optimal type for load
 | 
						|
/// and store operations as a result of memset, memcpy, and memmove
 | 
						|
/// lowering. If DstAlign is zero that means it's safe to destination
 | 
						|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | 
						|
/// means there isn't a need to check it against alignment requirement,
 | 
						|
/// probably because the source does not need to be loaded. If 'IsMemset' is
 | 
						|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
 | 
						|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
 | 
						|
/// source is constant so it does not need to be loaded.
 | 
						|
/// It returns EVT::Other if the type should be determined using generic
 | 
						|
/// target-independent logic.
 | 
						|
EVT
 | 
						|
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
 | 
						|
                                       unsigned DstAlign, unsigned SrcAlign,
 | 
						|
                                       bool IsMemset, bool ZeroMemset,
 | 
						|
                                       bool MemcpyStrSrc,
 | 
						|
                                       MachineFunction &MF) const {
 | 
						|
  const Function *F = MF.getFunction();
 | 
						|
  if (!F->hasFnAttribute(Attribute::NoImplicitFloat)) {
 | 
						|
    if (Size >= 16 &&
 | 
						|
        (!Subtarget.isUnalignedMem16Slow() ||
 | 
						|
         ((DstAlign == 0 || DstAlign >= 16) &&
 | 
						|
          (SrcAlign == 0 || SrcAlign >= 16)))) {
 | 
						|
      // FIXME: Check if unaligned 32-byte accesses are slow.
 | 
						|
      if (Size >= 32 && Subtarget.hasAVX()) {
 | 
						|
        // Although this isn't a well-supported type for AVX1, we'll let
 | 
						|
        // legalization and shuffle lowering produce the optimal codegen. If we
 | 
						|
        // choose an optimal type with a vector element larger than a byte,
 | 
						|
        // getMemsetStores() may create an intermediate splat (using an integer
 | 
						|
        // multiply) before we splat as a vector.
 | 
						|
        return MVT::v32i8;
 | 
						|
      }
 | 
						|
      if (Subtarget.hasSSE2())
 | 
						|
        return MVT::v16i8;
 | 
						|
      // TODO: Can SSE1 handle a byte vector?
 | 
						|
      if (Subtarget.hasSSE1())
 | 
						|
        return MVT::v4f32;
 | 
						|
    } else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
 | 
						|
               !Subtarget.is64Bit() && Subtarget.hasSSE2()) {
 | 
						|
      // Do not use f64 to lower memcpy if source is string constant. It's
 | 
						|
      // better to use i32 to avoid the loads.
 | 
						|
      // Also, do not use f64 to lower memset unless this is a memset of zeros.
 | 
						|
      // The gymnastics of splatting a byte value into an XMM register and then
 | 
						|
      // only using 8-byte stores (because this is a CPU with slow unaligned
 | 
						|
      // 16-byte accesses) makes that a loser.
 | 
						|
      return MVT::f64;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // This is a compromise. If we reach here, unaligned accesses may be slow on
 | 
						|
  // this target. However, creating smaller, aligned accesses could be even
 | 
						|
  // slower and would certainly be a lot more code.
 | 
						|
  if (Subtarget.is64Bit() && Size >= 8)
 | 
						|
    return MVT::i64;
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
 | 
						|
  if (VT == MVT::f32)
 | 
						|
    return X86ScalarSSEf32;
 | 
						|
  else if (VT == MVT::f64)
 | 
						|
    return X86ScalarSSEf64;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | 
						|
                                                  unsigned,
 | 
						|
                                                  unsigned,
 | 
						|
                                                  bool *Fast) const {
 | 
						|
  if (Fast) {
 | 
						|
    switch (VT.getSizeInBits()) {
 | 
						|
    default:
 | 
						|
      // 8-byte and under are always assumed to be fast.
 | 
						|
      *Fast = true;
 | 
						|
      break;
 | 
						|
    case 128:
 | 
						|
      *Fast = !Subtarget.isUnalignedMem16Slow();
 | 
						|
      break;
 | 
						|
    case 256:
 | 
						|
      *Fast = !Subtarget.isUnalignedMem32Slow();
 | 
						|
      break;
 | 
						|
    // TODO: What about AVX-512 (512-bit) accesses?
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Misaligned accesses of any size are always allowed.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the entry encoding for a jump table in the
 | 
						|
/// current function.  The returned value is a member of the
 | 
						|
/// MachineJumpTableInfo::JTEntryKind enum.
 | 
						|
unsigned X86TargetLowering::getJumpTableEncoding() const {
 | 
						|
  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
 | 
						|
  // symbol.
 | 
						|
  if (isPositionIndependent() && Subtarget.isPICStyleGOT())
 | 
						|
    return MachineJumpTableInfo::EK_Custom32;
 | 
						|
 | 
						|
  // Otherwise, use the normal jump table encoding heuristics.
 | 
						|
  return TargetLowering::getJumpTableEncoding();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::useSoftFloat() const {
 | 
						|
  return Subtarget.useSoftFloat();
 | 
						|
}
 | 
						|
 | 
						|
const MCExpr *
 | 
						|
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
 | 
						|
                                             const MachineBasicBlock *MBB,
 | 
						|
                                             unsigned uid,MCContext &Ctx) const{
 | 
						|
  assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
 | 
						|
  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
 | 
						|
  // entries.
 | 
						|
  return MCSymbolRefExpr::create(MBB->getSymbol(),
 | 
						|
                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns relocation base for the given PIC jumptable.
 | 
						|
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  if (!Subtarget.is64Bit())
 | 
						|
    // This doesn't have SDLoc associated with it, but is not really the
 | 
						|
    // same as a Register.
 | 
						|
    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
 | 
						|
                       getPointerTy(DAG.getDataLayout()));
 | 
						|
  return Table;
 | 
						|
}
 | 
						|
 | 
						|
/// This returns the relocation base for the given PIC jumptable,
 | 
						|
/// the same as getPICJumpTableRelocBase, but as an MCExpr.
 | 
						|
const MCExpr *X86TargetLowering::
 | 
						|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
 | 
						|
                             MCContext &Ctx) const {
 | 
						|
  // X86-64 uses RIP relative addressing based on the jump table label.
 | 
						|
  if (Subtarget.isPICStyleRIPRel())
 | 
						|
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | 
						|
 | 
						|
  // Otherwise, the reference is relative to the PIC base.
 | 
						|
  return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<const TargetRegisterClass *, uint8_t>
 | 
						|
X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
 | 
						|
                                           MVT VT) const {
 | 
						|
  const TargetRegisterClass *RRC = nullptr;
 | 
						|
  uint8_t Cost = 1;
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  default:
 | 
						|
    return TargetLowering::findRepresentativeClass(TRI, VT);
 | 
						|
  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
 | 
						|
    RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
 | 
						|
    break;
 | 
						|
  case MVT::x86mmx:
 | 
						|
    RRC = &X86::VR64RegClass;
 | 
						|
    break;
 | 
						|
  case MVT::f32: case MVT::f64:
 | 
						|
  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
 | 
						|
  case MVT::v4f32: case MVT::v2f64:
 | 
						|
  case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
 | 
						|
  case MVT::v8f32: case MVT::v4f64:
 | 
						|
  case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
 | 
						|
  case MVT::v16f32: case MVT::v8f64:
 | 
						|
    RRC = &X86::VR128XRegClass;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return std::make_pair(RRC, Cost);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TargetLowering::getAddressSpace() const {
 | 
						|
  if (Subtarget.is64Bit())
 | 
						|
    return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
 | 
						|
  return 256;
 | 
						|
}
 | 
						|
 | 
						|
Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
 | 
						|
  // glibc has a special slot for the stack guard in tcbhead_t, use it instead
 | 
						|
  // of the usual global variable (see sysdeps/{i386,x86_64}/nptl/tls.h)
 | 
						|
  if (!Subtarget.isTargetGlibc())
 | 
						|
    return TargetLowering::getIRStackGuard(IRB);
 | 
						|
 | 
						|
  // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
 | 
						|
  // %gs:0x14 on i386
 | 
						|
  unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
 | 
						|
  unsigned AddressSpace = getAddressSpace();
 | 
						|
  return ConstantExpr::getIntToPtr(
 | 
						|
      ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
 | 
						|
      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetLowering::insertSSPDeclarations(Module &M) const {
 | 
						|
  // MSVC CRT provides functionalities for stack protection.
 | 
						|
  if (Subtarget.getTargetTriple().isOSMSVCRT()) {
 | 
						|
    // MSVC CRT has a global variable holding security cookie.
 | 
						|
    M.getOrInsertGlobal("__security_cookie",
 | 
						|
                        Type::getInt8PtrTy(M.getContext()));
 | 
						|
 | 
						|
    // MSVC CRT has a function to validate security cookie.
 | 
						|
    auto *SecurityCheckCookie = cast<Function>(
 | 
						|
        M.getOrInsertFunction("__security_check_cookie",
 | 
						|
                              Type::getVoidTy(M.getContext()),
 | 
						|
                              Type::getInt8PtrTy(M.getContext()), nullptr));
 | 
						|
    SecurityCheckCookie->setCallingConv(CallingConv::X86_FastCall);
 | 
						|
    SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // glibc has a special slot for the stack guard.
 | 
						|
  if (Subtarget.isTargetGlibc())
 | 
						|
    return;
 | 
						|
  TargetLowering::insertSSPDeclarations(M);
 | 
						|
}
 | 
						|
 | 
						|
Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
 | 
						|
  // MSVC CRT has a global variable holding security cookie.
 | 
						|
  if (Subtarget.getTargetTriple().isOSMSVCRT())
 | 
						|
    return M.getGlobalVariable("__security_cookie");
 | 
						|
  return TargetLowering::getSDagStackGuard(M);
 | 
						|
}
 | 
						|
 | 
						|
Value *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
 | 
						|
  // MSVC CRT has a function to validate security cookie.
 | 
						|
  if (Subtarget.getTargetTriple().isOSMSVCRT())
 | 
						|
    return M.getFunction("__security_check_cookie");
 | 
						|
  return TargetLowering::getSSPStackGuardCheck(M);
 | 
						|
}
 | 
						|
 | 
						|
Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
 | 
						|
  if (Subtarget.getTargetTriple().isOSContiki())
 | 
						|
    return getDefaultSafeStackPointerLocation(IRB, false);
 | 
						|
 | 
						|
  if (!Subtarget.isTargetAndroid())
 | 
						|
    return TargetLowering::getSafeStackPointerLocation(IRB);
 | 
						|
 | 
						|
  // Android provides a fixed TLS slot for the SafeStack pointer. See the
 | 
						|
  // definition of TLS_SLOT_SAFESTACK in
 | 
						|
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
 | 
						|
  unsigned AddressSpace, Offset;
 | 
						|
 | 
						|
  // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
 | 
						|
  // %gs:0x24 on i386
 | 
						|
  Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
 | 
						|
  AddressSpace = getAddressSpace();
 | 
						|
  return ConstantExpr::getIntToPtr(
 | 
						|
      ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
 | 
						|
      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
 | 
						|
                                            unsigned DestAS) const {
 | 
						|
  assert(SrcAS != DestAS && "Expected different address spaces!");
 | 
						|
 | 
						|
  return SrcAS < 256 && DestAS < 256;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//               Return Value Calling Convention Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86GenCallingConv.inc"
 | 
						|
 | 
						|
bool X86TargetLowering::CanLowerReturn(
 | 
						|
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | 
						|
  return CCInfo.CheckReturn(Outs, RetCC_X86);
 | 
						|
}
 | 
						|
 | 
						|
const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
 | 
						|
  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
 | 
						|
  return ScratchRegs;
 | 
						|
}
 | 
						|
 | 
						|
/// Lowers masks values (v*i1) to the local register values
 | 
						|
/// \returns DAG node after lowering to register type
 | 
						|
static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
 | 
						|
                               const SDLoc &Dl, SelectionDAG &DAG) {
 | 
						|
  EVT ValVT = ValArg.getValueType();
 | 
						|
 | 
						|
  if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
 | 
						|
      (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
 | 
						|
    // Two stage lowering might be required
 | 
						|
    // bitcast:   v8i1 -> i8 / v16i1 -> i16
 | 
						|
    // anyextend: i8   -> i32 / i16   -> i32
 | 
						|
    EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
 | 
						|
    SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
 | 
						|
    if (ValLoc == MVT::i32)
 | 
						|
      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy);
 | 
						|
    return ValToCopy;
 | 
						|
  } else if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
 | 
						|
             (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
 | 
						|
    // One stage lowering is required
 | 
						|
    // bitcast:   v32i1 -> i32 / v64i1 -> i64
 | 
						|
    return DAG.getBitcast(ValLoc, ValArg);
 | 
						|
  } else
 | 
						|
    return DAG.getNode(ISD::SIGN_EXTEND, Dl, ValLoc, ValArg);
 | 
						|
}
 | 
						|
 | 
						|
/// Breaks v64i1 value into two registers and adds the new node to the DAG
 | 
						|
static void Passv64i1ArgInRegs(
 | 
						|
    const SDLoc &Dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg,
 | 
						|
    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, CCValAssign &VA,
 | 
						|
    CCValAssign &NextVA, const X86Subtarget &Subtarget) {
 | 
						|
  assert((Subtarget.hasBWI() || Subtarget.hasBMI()) &&
 | 
						|
         "Expected AVX512BW or AVX512BMI target!");
 | 
						|
  assert(Subtarget.is32Bit() && "Expecting 32 bit target");
 | 
						|
  assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
 | 
						|
  assert(VA.isRegLoc() && NextVA.isRegLoc() &&
 | 
						|
         "The value should reside in two registers");
 | 
						|
 | 
						|
  // Before splitting the value we cast it to i64
 | 
						|
  Arg = DAG.getBitcast(MVT::i64, Arg);
 | 
						|
 | 
						|
  // Splitting the value into two i32 types
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
 | 
						|
                   DAG.getConstant(0, Dl, MVT::i32));
 | 
						|
  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
 | 
						|
                   DAG.getConstant(1, Dl, MVT::i32));
 | 
						|
 | 
						|
  // Attach the two i32 types into corresponding registers
 | 
						|
  RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
 | 
						|
  RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                               bool isVarArg,
 | 
						|
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                               const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                               const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
 | 
						|
  if (CallConv == CallingConv::X86_INTR && !Outs.empty())
 | 
						|
    report_fatal_error("X86 interrupts may not return any value");
 | 
						|
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 6> RetOps;
 | 
						|
  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
 | 
						|
  // Operand #1 = Bytes To Pop
 | 
						|
  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
 | 
						|
                   MVT::i32));
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
 | 
						|
       ++I, ++OutsIndex) {
 | 
						|
    CCValAssign &VA = RVLocs[I];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
    SDValue ValToCopy = OutVals[OutsIndex];
 | 
						|
    EVT ValVT = ValToCopy.getValueType();
 | 
						|
 | 
						|
    // Promote values to the appropriate types.
 | 
						|
    if (VA.getLocInfo() == CCValAssign::SExt)
 | 
						|
      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
 | 
						|
    else if (VA.getLocInfo() == CCValAssign::ZExt)
 | 
						|
      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
 | 
						|
    else if (VA.getLocInfo() == CCValAssign::AExt) {
 | 
						|
      if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
 | 
						|
        ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
 | 
						|
      else
 | 
						|
        ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
 | 
						|
    }
 | 
						|
    else if (VA.getLocInfo() == CCValAssign::BCvt)
 | 
						|
      ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
 | 
						|
 | 
						|
    assert(VA.getLocInfo() != CCValAssign::FPExt &&
 | 
						|
           "Unexpected FP-extend for return value.");
 | 
						|
 | 
						|
    // If this is x86-64, and we disabled SSE, we can't return FP values,
 | 
						|
    // or SSE or MMX vectors.
 | 
						|
    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
 | 
						|
         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
 | 
						|
          (Subtarget.is64Bit() && !Subtarget.hasSSE1())) {
 | 
						|
      report_fatal_error("SSE register return with SSE disabled");
 | 
						|
    }
 | 
						|
    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
 | 
						|
    // llvm-gcc has never done it right and no one has noticed, so this
 | 
						|
    // should be OK for now.
 | 
						|
    if (ValVT == MVT::f64 &&
 | 
						|
        (Subtarget.is64Bit() && !Subtarget.hasSSE2()))
 | 
						|
      report_fatal_error("SSE2 register return with SSE2 disabled");
 | 
						|
 | 
						|
    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
 | 
						|
    // the RET instruction and handled by the FP Stackifier.
 | 
						|
    if (VA.getLocReg() == X86::FP0 ||
 | 
						|
        VA.getLocReg() == X86::FP1) {
 | 
						|
      // If this is a copy from an xmm register to ST(0), use an FPExtend to
 | 
						|
      // change the value to the FP stack register class.
 | 
						|
      if (isScalarFPTypeInSSEReg(VA.getValVT()))
 | 
						|
        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
 | 
						|
      RetOps.push_back(ValToCopy);
 | 
						|
      // Don't emit a copytoreg.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
 | 
						|
    // which is returned in RAX / RDX.
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      if (ValVT == MVT::x86mmx) {
 | 
						|
        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
 | 
						|
          ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
 | 
						|
          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
 | 
						|
                                  ValToCopy);
 | 
						|
          // If we don't have SSE2 available, convert to v4f32 so the generated
 | 
						|
          // register is legal.
 | 
						|
          if (!Subtarget.hasSSE2())
 | 
						|
            ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      assert(VA.getValVT() == MVT::v64i1 &&
 | 
						|
             "Currently the only custom case is when we split v64i1 to 2 regs");
 | 
						|
 | 
						|
      Passv64i1ArgInRegs(dl, DAG, Chain, ValToCopy, RegsToPass, VA, RVLocs[++I],
 | 
						|
                         Subtarget);
 | 
						|
 | 
						|
      assert(2 == RegsToPass.size() &&
 | 
						|
             "Expecting two registers after Pass64BitArgInRegs");
 | 
						|
    } else {
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add nodes to the DAG and add the values into the RetOps list
 | 
						|
    for (auto &Reg : RegsToPass) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag);
 | 
						|
      Flag = Chain.getValue(1);
 | 
						|
      RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Swift calling convention does not require we copy the sret argument
 | 
						|
  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
 | 
						|
 | 
						|
  // All x86 ABIs require that for returning structs by value we copy
 | 
						|
  // the sret argument into %rax/%eax (depending on ABI) for the return.
 | 
						|
  // We saved the argument into a virtual register in the entry block,
 | 
						|
  // so now we copy the value out and into %rax/%eax.
 | 
						|
  //
 | 
						|
  // Checking Function.hasStructRetAttr() here is insufficient because the IR
 | 
						|
  // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
 | 
						|
  // false, then an sret argument may be implicitly inserted in the SelDAG. In
 | 
						|
  // either case FuncInfo->setSRetReturnReg() will have been called.
 | 
						|
  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
 | 
						|
    // When we have both sret and another return value, we should use the
 | 
						|
    // original Chain stored in RetOps[0], instead of the current Chain updated
 | 
						|
    // in the above loop. If we only have sret, RetOps[0] equals to Chain.
 | 
						|
 | 
						|
    // For the case of sret and another return value, we have
 | 
						|
    //   Chain_0 at the function entry
 | 
						|
    //   Chain_1 = getCopyToReg(Chain_0) in the above loop
 | 
						|
    // If we use Chain_1 in getCopyFromReg, we will have
 | 
						|
    //   Val = getCopyFromReg(Chain_1)
 | 
						|
    //   Chain_2 = getCopyToReg(Chain_1, Val) from below
 | 
						|
 | 
						|
    // getCopyToReg(Chain_0) will be glued together with
 | 
						|
    // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
 | 
						|
    // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
 | 
						|
    //   Data dependency from Unit B to Unit A due to usage of Val in
 | 
						|
    //     getCopyToReg(Chain_1, Val)
 | 
						|
    //   Chain dependency from Unit A to Unit B
 | 
						|
 | 
						|
    // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
 | 
						|
    SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
 | 
						|
                                     getPointerTy(MF.getDataLayout()));
 | 
						|
 | 
						|
    unsigned RetValReg
 | 
						|
        = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
 | 
						|
          X86::RAX : X86::EAX;
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
 | 
						|
    // RAX/EAX now acts like a return value.
 | 
						|
    RetOps.push_back(
 | 
						|
        DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
 | 
						|
  }
 | 
						|
 | 
						|
  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const MCPhysReg *I =
 | 
						|
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
 | 
						|
  if (I) {
 | 
						|
    for (; *I; ++I) {
 | 
						|
      if (X86::GR64RegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
 | 
						|
      else
 | 
						|
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain;  // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  X86ISD::NodeType opcode = X86ISD::RET_FLAG;
 | 
						|
  if (CallConv == CallingConv::X86_INTR)
 | 
						|
    opcode = X86ISD::IRET;
 | 
						|
  return DAG.getNode(opcode, dl, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
 | 
						|
  if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue TCChain = Chain;
 | 
						|
  SDNode *Copy = *N->use_begin();
 | 
						|
  if (Copy->getOpcode() == ISD::CopyToReg) {
 | 
						|
    // If the copy has a glue operand, we conservatively assume it isn't safe to
 | 
						|
    // perform a tail call.
 | 
						|
    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
 | 
						|
      return false;
 | 
						|
    TCChain = Copy->getOperand(0);
 | 
						|
  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool HasRet = false;
 | 
						|
  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    if (UI->getOpcode() != X86ISD::RET_FLAG)
 | 
						|
      return false;
 | 
						|
    // If we are returning more than one value, we can definitely
 | 
						|
    // not make a tail call see PR19530
 | 
						|
    if (UI->getNumOperands() > 4)
 | 
						|
      return false;
 | 
						|
    if (UI->getNumOperands() == 4 &&
 | 
						|
        UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
 | 
						|
      return false;
 | 
						|
    HasRet = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HasRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Chain = TCChain;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
 | 
						|
                                           ISD::NodeType ExtendKind) const {
 | 
						|
  MVT ReturnMVT = MVT::i32;
 | 
						|
 | 
						|
  bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
 | 
						|
  if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
 | 
						|
    // The ABI does not require i1, i8 or i16 to be extended.
 | 
						|
    //
 | 
						|
    // On Darwin, there is code in the wild relying on Clang's old behaviour of
 | 
						|
    // always extending i8/i16 return values, so keep doing that for now.
 | 
						|
    // (PR26665).
 | 
						|
    ReturnMVT = MVT::i8;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT MinVT = getRegisterType(Context, ReturnMVT);
 | 
						|
  return VT.bitsLT(MinVT) ? MinVT : VT;
 | 
						|
}
 | 
						|
 | 
						|
/// Reads two 32 bit registers and creates a 64 bit mask value.
 | 
						|
/// \param VA The current 32 bit value that need to be assigned.
 | 
						|
/// \param NextVA The next 32 bit value that need to be assigned.
 | 
						|
/// \param Root The parent DAG node.
 | 
						|
/// \param [in,out] InFlag Represents SDvalue in the parent DAG node for
 | 
						|
///                        glue purposes. In the case the DAG is already using
 | 
						|
///                        physical register instead of virtual, we should glue
 | 
						|
///                        our new SDValue to InFlag SDvalue.
 | 
						|
/// \return a new SDvalue of size 64bit.
 | 
						|
static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
 | 
						|
                                SDValue &Root, SelectionDAG &DAG,
 | 
						|
                                const SDLoc &Dl, const X86Subtarget &Subtarget,
 | 
						|
                                SDValue *InFlag = nullptr) {
 | 
						|
  assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
 | 
						|
  assert(Subtarget.is32Bit() && "Expecting 32 bit target");
 | 
						|
  assert(VA.getValVT() == MVT::v64i1 &&
 | 
						|
         "Expecting first location of 64 bit width type");
 | 
						|
  assert(NextVA.getValVT() == VA.getValVT() &&
 | 
						|
         "The locations should have the same type");
 | 
						|
  assert(VA.isRegLoc() && NextVA.isRegLoc() &&
 | 
						|
         "The values should reside in two registers");
 | 
						|
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  unsigned Reg;
 | 
						|
  SDValue ArgValueLo, ArgValueHi;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const TargetRegisterClass *RC = &X86::GR32RegClass;
 | 
						|
 | 
						|
  // Read a 32 bit value from the registers
 | 
						|
  if (nullptr == InFlag) {
 | 
						|
    // When no physical register is present,
 | 
						|
    // create an intermediate virtual register
 | 
						|
    Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
    ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
 | 
						|
    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
 | 
						|
    ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
 | 
						|
  } else {
 | 
						|
    // When a physical register is available read the value from it and glue
 | 
						|
    // the reads together.
 | 
						|
    ArgValueLo =
 | 
						|
      DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag);
 | 
						|
    *InFlag = ArgValueLo.getValue(2);
 | 
						|
    ArgValueHi =
 | 
						|
      DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag);
 | 
						|
    *InFlag = ArgValueHi.getValue(2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the i32 type into v32i1 type
 | 
						|
  Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
 | 
						|
 | 
						|
  // Convert the i32 type into v32i1 type
 | 
						|
  Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
 | 
						|
 | 
						|
  // Concantenate the two values together
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
/// The function will lower a register of various sizes (8/16/32/64)
 | 
						|
/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
 | 
						|
/// \returns a DAG node contains the operand after lowering to mask type.
 | 
						|
static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
 | 
						|
                               const EVT &ValLoc, const SDLoc &Dl,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  SDValue ValReturned = ValArg;
 | 
						|
 | 
						|
  if (ValVT == MVT::v64i1) {
 | 
						|
    // In 32 bit machine, this case is handled by getv64i1Argument
 | 
						|
    assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
 | 
						|
    // In 64 bit machine, There is no need to truncate the value only bitcast
 | 
						|
  } else {
 | 
						|
    MVT maskLen;
 | 
						|
    switch (ValVT.getSimpleVT().SimpleTy) {
 | 
						|
    case MVT::v8i1:
 | 
						|
      maskLen = MVT::i8;
 | 
						|
      break;
 | 
						|
    case MVT::v16i1:
 | 
						|
      maskLen = MVT::i16;
 | 
						|
      break;
 | 
						|
    case MVT::v32i1:
 | 
						|
      maskLen = MVT::i32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Expecting a vector of i1 types");
 | 
						|
    }
 | 
						|
 | 
						|
    ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getBitcast(ValVT, ValReturned);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower the result values of a call into the
 | 
						|
/// appropriate copies out of appropriate physical registers.
 | 
						|
///
 | 
						|
SDValue X86TargetLowering::LowerCallResult(
 | 
						|
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
 | 
						|
  // Assign locations to each value returned by this call.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  bool Is64Bit = Subtarget.is64Bit();
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
 | 
						|
       ++I, ++InsIndex) {
 | 
						|
    CCValAssign &VA = RVLocs[I];
 | 
						|
    EVT CopyVT = VA.getLocVT();
 | 
						|
 | 
						|
    // If this is x86-64, and we disabled SSE, we can't return FP values
 | 
						|
    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
 | 
						|
        ((Is64Bit || Ins[InsIndex].Flags.isInReg()) && !Subtarget.hasSSE1())) {
 | 
						|
      report_fatal_error("SSE register return with SSE disabled");
 | 
						|
    }
 | 
						|
 | 
						|
    // If we prefer to use the value in xmm registers, copy it out as f80 and
 | 
						|
    // use a truncate to move it from fp stack reg to xmm reg.
 | 
						|
    bool RoundAfterCopy = false;
 | 
						|
    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
 | 
						|
        isScalarFPTypeInSSEReg(VA.getValVT())) {
 | 
						|
      if (!Subtarget.hasX87())
 | 
						|
        report_fatal_error("X87 register return with X87 disabled");
 | 
						|
      CopyVT = MVT::f80;
 | 
						|
      RoundAfterCopy = (CopyVT != VA.getLocVT());
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue Val;
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      assert(VA.getValVT() == MVT::v64i1 &&
 | 
						|
             "Currently the only custom case is when we split v64i1 to 2 regs");
 | 
						|
      Val =
 | 
						|
          getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag);
 | 
						|
    } else {
 | 
						|
      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag)
 | 
						|
                  .getValue(1);
 | 
						|
      Val = Chain.getValue(0);
 | 
						|
      InFlag = Chain.getValue(2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RoundAfterCopy)
 | 
						|
      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
 | 
						|
                        // This truncation won't change the value.
 | 
						|
                        DAG.getIntPtrConstant(1, dl));
 | 
						|
 | 
						|
    if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) {
 | 
						|
      if (VA.getValVT().isVector() &&
 | 
						|
          ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
 | 
						|
           (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
 | 
						|
        // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
 | 
						|
        Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
 | 
						|
      } else
 | 
						|
        Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                C & StdCall & Fast Calling Convention implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  StdCall calling convention seems to be standard for many Windows' API
 | 
						|
//  routines and around. It differs from C calling convention just a little:
 | 
						|
//  callee should clean up the stack, not caller. Symbols should be also
 | 
						|
//  decorated in some fancy way :) It doesn't support any vector arguments.
 | 
						|
//  For info on fast calling convention see Fast Calling Convention (tail call)
 | 
						|
//  implementation LowerX86_32FastCCCallTo.
 | 
						|
 | 
						|
/// CallIsStructReturn - Determines whether a call uses struct return
 | 
						|
/// semantics.
 | 
						|
enum StructReturnType {
 | 
						|
  NotStructReturn,
 | 
						|
  RegStructReturn,
 | 
						|
  StackStructReturn
 | 
						|
};
 | 
						|
static StructReturnType
 | 
						|
callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) {
 | 
						|
  if (Outs.empty())
 | 
						|
    return NotStructReturn;
 | 
						|
 | 
						|
  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
 | 
						|
  if (!Flags.isSRet())
 | 
						|
    return NotStructReturn;
 | 
						|
  if (Flags.isInReg() || IsMCU)
 | 
						|
    return RegStructReturn;
 | 
						|
  return StackStructReturn;
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether a function uses struct return semantics.
 | 
						|
static StructReturnType
 | 
						|
argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) {
 | 
						|
  if (Ins.empty())
 | 
						|
    return NotStructReturn;
 | 
						|
 | 
						|
  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
 | 
						|
  if (!Flags.isSRet())
 | 
						|
    return NotStructReturn;
 | 
						|
  if (Flags.isInReg() || IsMCU)
 | 
						|
    return RegStructReturn;
 | 
						|
  return StackStructReturn;
 | 
						|
}
 | 
						|
 | 
						|
/// Make a copy of an aggregate at address specified by "Src" to address
 | 
						|
/// "Dst" with size and alignment information specified by the specific
 | 
						|
/// parameter attribute. The copy will be passed as a byval function parameter.
 | 
						|
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
 | 
						|
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
 | 
						|
                                         SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | 
						|
 | 
						|
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | 
						|
                       /*isVolatile*/false, /*AlwaysInline=*/true,
 | 
						|
                       /*isTailCall*/false,
 | 
						|
                       MachinePointerInfo(), MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the calling convention is one that we can guarantee TCO for.
 | 
						|
static bool canGuaranteeTCO(CallingConv::ID CC) {
 | 
						|
  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
 | 
						|
          CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
 | 
						|
          CC == CallingConv::HHVM);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we might ever do TCO for calls with this calling convention.
 | 
						|
static bool mayTailCallThisCC(CallingConv::ID CC) {
 | 
						|
  switch (CC) {
 | 
						|
  // C calling conventions:
 | 
						|
  case CallingConv::C:
 | 
						|
  case CallingConv::X86_64_Win64:
 | 
						|
  case CallingConv::X86_64_SysV:
 | 
						|
  // Callee pop conventions:
 | 
						|
  case CallingConv::X86_ThisCall:
 | 
						|
  case CallingConv::X86_StdCall:
 | 
						|
  case CallingConv::X86_VectorCall:
 | 
						|
  case CallingConv::X86_FastCall:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return canGuaranteeTCO(CC);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the function is being made into a tailcall target by
 | 
						|
/// changing its ABI.
 | 
						|
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
 | 
						|
  return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | 
						|
  auto Attr =
 | 
						|
      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
 | 
						|
  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallSite CS(CI);
 | 
						|
  CallingConv::ID CalleeCC = CS.getCallingConv();
 | 
						|
  if (!mayTailCallThisCC(CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                    const SDLoc &dl, SelectionDAG &DAG,
 | 
						|
                                    const CCValAssign &VA,
 | 
						|
                                    MachineFrameInfo &MFI, unsigned i) const {
 | 
						|
  // Create the nodes corresponding to a load from this parameter slot.
 | 
						|
  ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | 
						|
  bool AlwaysUseMutable = shouldGuaranteeTCO(
 | 
						|
      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
 | 
						|
  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
 | 
						|
  EVT ValVT;
 | 
						|
 | 
						|
  // If value is passed by pointer we have address passed instead of the value
 | 
						|
  // itself. No need to extend if the mask value and location share the same
 | 
						|
  // absolute size.
 | 
						|
  bool ExtendedInMem =
 | 
						|
      VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
 | 
						|
      VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();
 | 
						|
 | 
						|
  if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
 | 
						|
    ValVT = VA.getLocVT();
 | 
						|
  else
 | 
						|
    ValVT = VA.getValVT();
 | 
						|
 | 
						|
  // Calculate SP offset of interrupt parameter, re-arrange the slot normally
 | 
						|
  // taken by a return address.
 | 
						|
  int Offset = 0;
 | 
						|
  if (CallConv == CallingConv::X86_INTR) {
 | 
						|
    const X86Subtarget& Subtarget =
 | 
						|
        static_cast<const X86Subtarget&>(DAG.getSubtarget());
 | 
						|
    // X86 interrupts may take one or two arguments.
 | 
						|
    // On the stack there will be no return address as in regular call.
 | 
						|
    // Offset of last argument need to be set to -4/-8 bytes.
 | 
						|
    // Where offset of the first argument out of two, should be set to 0 bytes.
 | 
						|
    Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: For now, all byval parameter objects are marked mutable. This can be
 | 
						|
  // changed with more analysis.
 | 
						|
  // In case of tail call optimization mark all arguments mutable. Since they
 | 
						|
  // could be overwritten by lowering of arguments in case of a tail call.
 | 
						|
  if (Flags.isByVal()) {
 | 
						|
    unsigned Bytes = Flags.getByValSize();
 | 
						|
    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
 | 
						|
    int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
 | 
						|
    // Adjust SP offset of interrupt parameter.
 | 
						|
    if (CallConv == CallingConv::X86_INTR) {
 | 
						|
      MFI.setObjectOffset(FI, Offset);
 | 
						|
    }
 | 
						|
    return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | 
						|
  } else {
 | 
						|
    int FI = MFI.CreateFixedObject(ValVT.getSizeInBits()/8,
 | 
						|
                                   VA.getLocMemOffset(), isImmutable);
 | 
						|
 | 
						|
    // Set SExt or ZExt flag.
 | 
						|
    if (VA.getLocInfo() == CCValAssign::ZExt) {
 | 
						|
      MFI.setObjectZExt(FI, true);
 | 
						|
    } else if (VA.getLocInfo() == CCValAssign::SExt) {
 | 
						|
      MFI.setObjectSExt(FI, true);
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust SP offset of interrupt parameter.
 | 
						|
    if (CallConv == CallingConv::X86_INTR) {
 | 
						|
      MFI.setObjectOffset(FI, Offset);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | 
						|
    SDValue Val = DAG.getLoad(
 | 
						|
        ValVT, dl, Chain, FIN,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
 | 
						|
    return ExtendedInMem ?
 | 
						|
      DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Get this from tablegen.
 | 
						|
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
 | 
						|
                                                const X86Subtarget &Subtarget) {
 | 
						|
  assert(Subtarget.is64Bit());
 | 
						|
 | 
						|
  if (Subtarget.isCallingConvWin64(CallConv)) {
 | 
						|
    static const MCPhysReg GPR64ArgRegsWin64[] = {
 | 
						|
      X86::RCX, X86::RDX, X86::R8,  X86::R9
 | 
						|
    };
 | 
						|
    return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
 | 
						|
  }
 | 
						|
 | 
						|
  static const MCPhysReg GPR64ArgRegs64Bit[] = {
 | 
						|
    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
 | 
						|
  };
 | 
						|
  return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Get this from tablegen.
 | 
						|
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
 | 
						|
                                                CallingConv::ID CallConv,
 | 
						|
                                                const X86Subtarget &Subtarget) {
 | 
						|
  assert(Subtarget.is64Bit());
 | 
						|
  if (Subtarget.isCallingConvWin64(CallConv)) {
 | 
						|
    // The XMM registers which might contain var arg parameters are shadowed
 | 
						|
    // in their paired GPR.  So we only need to save the GPR to their home
 | 
						|
    // slots.
 | 
						|
    // TODO: __vectorcall will change this.
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  const Function *Fn = MF.getFunction();
 | 
						|
  bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
 | 
						|
  bool isSoftFloat = Subtarget.useSoftFloat();
 | 
						|
  assert(!(isSoftFloat && NoImplicitFloatOps) &&
 | 
						|
         "SSE register cannot be used when SSE is disabled!");
 | 
						|
  if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
 | 
						|
    // Kernel mode asks for SSE to be disabled, so there are no XMM argument
 | 
						|
    // registers.
 | 
						|
    return None;
 | 
						|
 | 
						|
  static const MCPhysReg XMMArgRegs64Bit[] = {
 | 
						|
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | 
						|
    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | 
						|
  };
 | 
						|
  return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
 | 
						|
}
 | 
						|
 | 
						|
static bool isSortedByValueNo(const SmallVectorImpl<CCValAssign> &ArgLocs) {
 | 
						|
  return std::is_sorted(ArgLocs.begin(), ArgLocs.end(),
 | 
						|
                        [](const CCValAssign &A, const CCValAssign &B) -> bool {
 | 
						|
                          return A.getValNo() < B.getValNo();
 | 
						|
                        });
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
 | 
						|
 | 
						|
  const Function *Fn = MF.getFunction();
 | 
						|
  if (Fn->hasExternalLinkage() &&
 | 
						|
      Subtarget.isTargetCygMing() &&
 | 
						|
      Fn->getName() == "main")
 | 
						|
    FuncInfo->setForceFramePointer(true);
 | 
						|
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  bool Is64Bit = Subtarget.is64Bit();
 | 
						|
  bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
 | 
						|
 | 
						|
  assert(
 | 
						|
      !(isVarArg && canGuaranteeTCO(CallConv)) &&
 | 
						|
      "Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
 | 
						|
 | 
						|
  if (CallConv == CallingConv::X86_INTR) {
 | 
						|
    bool isLegal = Ins.size() == 1 ||
 | 
						|
                   (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
 | 
						|
                                        (!Is64Bit && Ins[1].VT == MVT::i32)));
 | 
						|
    if (!isLegal)
 | 
						|
      report_fatal_error("X86 interrupts may take one or two arguments");
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Allocate shadow area for Win64.
 | 
						|
  if (IsWin64)
 | 
						|
    CCInfo.AllocateStack(32, 8);
 | 
						|
 | 
						|
  CCInfo.AnalyzeArguments(Ins, CC_X86);
 | 
						|
 | 
						|
  // In vectorcall calling convention a second pass is required for the HVA
 | 
						|
  // types.
 | 
						|
  if (CallingConv::X86_VectorCall == CallConv) {
 | 
						|
    CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
 | 
						|
  }
 | 
						|
 | 
						|
  // The next loop assumes that the locations are in the same order of the
 | 
						|
  // input arguments.
 | 
						|
  if (!isSortedByValueNo(ArgLocs))
 | 
						|
    llvm_unreachable("Argument Location list must be sorted before lowering");
 | 
						|
 | 
						|
  SDValue ArgValue;
 | 
						|
  for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
 | 
						|
       ++I, ++InsIndex) {
 | 
						|
    assert(InsIndex < Ins.size() && "Invalid Ins index");
 | 
						|
    CCValAssign &VA = ArgLocs[I];
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      EVT RegVT = VA.getLocVT();
 | 
						|
      if (VA.needsCustom()) {
 | 
						|
        assert(
 | 
						|
            VA.getValVT() == MVT::v64i1 &&
 | 
						|
            "Currently the only custom case is when we split v64i1 to 2 regs");
 | 
						|
 | 
						|
        // v64i1 values, in regcall calling convention, that are
 | 
						|
        // compiled to 32 bit arch, are splited up into two registers.
 | 
						|
        ArgValue =
 | 
						|
            getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
 | 
						|
      } else {
 | 
						|
        const TargetRegisterClass *RC;
 | 
						|
        if (RegVT == MVT::i32)
 | 
						|
          RC = &X86::GR32RegClass;
 | 
						|
        else if (Is64Bit && RegVT == MVT::i64)
 | 
						|
          RC = &X86::GR64RegClass;
 | 
						|
        else if (RegVT == MVT::f32)
 | 
						|
          RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
 | 
						|
        else if (RegVT == MVT::f64)
 | 
						|
          RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
 | 
						|
        else if (RegVT == MVT::f80)
 | 
						|
          RC = &X86::RFP80RegClass;
 | 
						|
        else if (RegVT == MVT::f128)
 | 
						|
          RC = &X86::FR128RegClass;
 | 
						|
        else if (RegVT.is512BitVector())
 | 
						|
          RC = &X86::VR512RegClass;
 | 
						|
        else if (RegVT.is256BitVector())
 | 
						|
          RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
 | 
						|
        else if (RegVT.is128BitVector())
 | 
						|
          RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
 | 
						|
        else if (RegVT == MVT::x86mmx)
 | 
						|
          RC = &X86::VR64RegClass;
 | 
						|
        else if (RegVT == MVT::i1)
 | 
						|
          RC = &X86::VK1RegClass;
 | 
						|
        else if (RegVT == MVT::v8i1)
 | 
						|
          RC = &X86::VK8RegClass;
 | 
						|
        else if (RegVT == MVT::v16i1)
 | 
						|
          RC = &X86::VK16RegClass;
 | 
						|
        else if (RegVT == MVT::v32i1)
 | 
						|
          RC = &X86::VK32RegClass;
 | 
						|
        else if (RegVT == MVT::v64i1)
 | 
						|
          RC = &X86::VK64RegClass;
 | 
						|
        else
 | 
						|
          llvm_unreachable("Unknown argument type!");
 | 
						|
 | 
						|
        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | 
						|
      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | 
						|
      // right size.
 | 
						|
      if (VA.getLocInfo() == CCValAssign::SExt)
 | 
						|
        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | 
						|
                               DAG.getValueType(VA.getValVT()));
 | 
						|
      else if (VA.getLocInfo() == CCValAssign::ZExt)
 | 
						|
        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | 
						|
                               DAG.getValueType(VA.getValVT()));
 | 
						|
      else if (VA.getLocInfo() == CCValAssign::BCvt)
 | 
						|
        ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
 | 
						|
 | 
						|
      if (VA.isExtInLoc()) {
 | 
						|
        // Handle MMX values passed in XMM regs.
 | 
						|
        if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
 | 
						|
          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
 | 
						|
        else if (VA.getValVT().isVector() &&
 | 
						|
                 VA.getValVT().getScalarType() == MVT::i1 &&
 | 
						|
                 ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
 | 
						|
                  (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
 | 
						|
          // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
 | 
						|
          ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
 | 
						|
        } else
 | 
						|
          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      ArgValue =
 | 
						|
          LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
 | 
						|
    }
 | 
						|
 | 
						|
    // If value is passed via pointer - do a load.
 | 
						|
    if (VA.getLocInfo() == CCValAssign::Indirect)
 | 
						|
      ArgValue =
 | 
						|
          DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
 | 
						|
 | 
						|
    InVals.push_back(ArgValue);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
 | 
						|
    // Swift calling convention does not require we copy the sret argument
 | 
						|
    // into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
 | 
						|
    if (CallConv == CallingConv::Swift)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // All x86 ABIs require that for returning structs by value we copy the
 | 
						|
    // sret argument into %rax/%eax (depending on ABI) for the return. Save
 | 
						|
    // the argument into a virtual register so that we can access it from the
 | 
						|
    // return points.
 | 
						|
    if (Ins[I].Flags.isSRet()) {
 | 
						|
      unsigned Reg = FuncInfo->getSRetReturnReg();
 | 
						|
      if (!Reg) {
 | 
						|
        MVT PtrTy = getPointerTy(DAG.getDataLayout());
 | 
						|
        Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
 | 
						|
        FuncInfo->setSRetReturnReg(Reg);
 | 
						|
      }
 | 
						|
      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
 | 
						|
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned StackSize = CCInfo.getNextStackOffset();
 | 
						|
  // Align stack specially for tail calls.
 | 
						|
  if (shouldGuaranteeTCO(CallConv,
 | 
						|
                         MF.getTarget().Options.GuaranteedTailCallOpt))
 | 
						|
    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start. We
 | 
						|
  // can skip this if there are no va_start calls.
 | 
						|
  if (MFI.hasVAStart() &&
 | 
						|
      (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
 | 
						|
                   CallConv != CallingConv::X86_ThisCall))) {
 | 
						|
    FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out if XMM registers are in use.
 | 
						|
  assert(!(Subtarget.useSoftFloat() &&
 | 
						|
           Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
 | 
						|
         "SSE register cannot be used when SSE is disabled!");
 | 
						|
 | 
						|
  // 64-bit calling conventions support varargs and register parameters, so we
 | 
						|
  // have to do extra work to spill them in the prologue.
 | 
						|
  if (Is64Bit && isVarArg && MFI.hasVAStart()) {
 | 
						|
    // Find the first unallocated argument registers.
 | 
						|
    ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
 | 
						|
    ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
 | 
						|
    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
 | 
						|
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
 | 
						|
    assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
 | 
						|
           "SSE register cannot be used when SSE is disabled!");
 | 
						|
 | 
						|
    // Gather all the live in physical registers.
 | 
						|
    SmallVector<SDValue, 6> LiveGPRs;
 | 
						|
    SmallVector<SDValue, 8> LiveXMMRegs;
 | 
						|
    SDValue ALVal;
 | 
						|
    for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
 | 
						|
      unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
 | 
						|
      LiveGPRs.push_back(
 | 
						|
          DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
 | 
						|
    }
 | 
						|
    if (!ArgXMMs.empty()) {
 | 
						|
      unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
 | 
						|
      ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
 | 
						|
      for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
 | 
						|
        unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
 | 
						|
        LiveXMMRegs.push_back(
 | 
						|
            DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsWin64) {
 | 
						|
      // Get to the caller-allocated home save location.  Add 8 to account
 | 
						|
      // for the return address.
 | 
						|
      int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
 | 
						|
      FuncInfo->setRegSaveFrameIndex(
 | 
						|
          MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
 | 
						|
      // Fixup to set vararg frame on shadow area (4 x i64).
 | 
						|
      if (NumIntRegs < 4)
 | 
						|
        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
 | 
						|
    } else {
 | 
						|
      // For X86-64, if there are vararg parameters that are passed via
 | 
						|
      // registers, then we must store them to their spots on the stack so
 | 
						|
      // they may be loaded by dereferencing the result of va_next.
 | 
						|
      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
 | 
						|
      FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
 | 
						|
      FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject(
 | 
						|
          ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
 | 
						|
    }
 | 
						|
 | 
						|
    // Store the integer parameter registers.
 | 
						|
    SmallVector<SDValue, 8> MemOps;
 | 
						|
    SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
 | 
						|
                                      getPointerTy(DAG.getDataLayout()));
 | 
						|
    unsigned Offset = FuncInfo->getVarArgsGPOffset();
 | 
						|
    for (SDValue Val : LiveGPRs) {
 | 
						|
      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                                RSFIN, DAG.getIntPtrConstant(Offset, dl));
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | 
						|
                       MachinePointerInfo::getFixedStack(
 | 
						|
                           DAG.getMachineFunction(),
 | 
						|
                           FuncInfo->getRegSaveFrameIndex(), Offset));
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      Offset += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
 | 
						|
      // Now store the XMM (fp + vector) parameter registers.
 | 
						|
      SmallVector<SDValue, 12> SaveXMMOps;
 | 
						|
      SaveXMMOps.push_back(Chain);
 | 
						|
      SaveXMMOps.push_back(ALVal);
 | 
						|
      SaveXMMOps.push_back(DAG.getIntPtrConstant(
 | 
						|
                             FuncInfo->getRegSaveFrameIndex(), dl));
 | 
						|
      SaveXMMOps.push_back(DAG.getIntPtrConstant(
 | 
						|
                             FuncInfo->getVarArgsFPOffset(), dl));
 | 
						|
      SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
 | 
						|
                        LiveXMMRegs.end());
 | 
						|
      MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
 | 
						|
                                   MVT::Other, SaveXMMOps));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MemOps.empty())
 | 
						|
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isVarArg && MFI.hasMustTailInVarArgFunc()) {
 | 
						|
    // Find the largest legal vector type.
 | 
						|
    MVT VecVT = MVT::Other;
 | 
						|
    // FIXME: Only some x86_32 calling conventions support AVX512.
 | 
						|
    if (Subtarget.hasAVX512() &&
 | 
						|
        (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
 | 
						|
                     CallConv == CallingConv::Intel_OCL_BI)))
 | 
						|
      VecVT = MVT::v16f32;
 | 
						|
    else if (Subtarget.hasAVX())
 | 
						|
      VecVT = MVT::v8f32;
 | 
						|
    else if (Subtarget.hasSSE2())
 | 
						|
      VecVT = MVT::v4f32;
 | 
						|
 | 
						|
    // We forward some GPRs and some vector types.
 | 
						|
    SmallVector<MVT, 2> RegParmTypes;
 | 
						|
    MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
 | 
						|
    RegParmTypes.push_back(IntVT);
 | 
						|
    if (VecVT != MVT::Other)
 | 
						|
      RegParmTypes.push_back(VecVT);
 | 
						|
 | 
						|
    // Compute the set of forwarded registers. The rest are scratch.
 | 
						|
    SmallVectorImpl<ForwardedRegister> &Forwards =
 | 
						|
        FuncInfo->getForwardedMustTailRegParms();
 | 
						|
    CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
 | 
						|
 | 
						|
    // Conservatively forward AL on x86_64, since it might be used for varargs.
 | 
						|
    if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
 | 
						|
      unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
 | 
						|
      Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy all forwards from physical to virtual registers.
 | 
						|
    for (ForwardedRegister &F : Forwards) {
 | 
						|
      // FIXME: Can we use a less constrained schedule?
 | 
						|
      SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
 | 
						|
      F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Some CCs need callee pop.
 | 
						|
  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
 | 
						|
                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
 | 
						|
    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
 | 
						|
  } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
 | 
						|
    // X86 interrupts must pop the error code if present
 | 
						|
    FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4);
 | 
						|
  } else {
 | 
						|
    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
 | 
						|
    // If this is an sret function, the return should pop the hidden pointer.
 | 
						|
    if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
 | 
						|
        !Subtarget.getTargetTriple().isOSMSVCRT() &&
 | 
						|
        argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
 | 
						|
      FuncInfo->setBytesToPopOnReturn(4);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Is64Bit) {
 | 
						|
    // RegSaveFrameIndex is X86-64 only.
 | 
						|
    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
 | 
						|
    if (CallConv == CallingConv::X86_FastCall ||
 | 
						|
        CallConv == CallingConv::X86_ThisCall)
 | 
						|
      // fastcc functions can't have varargs.
 | 
						|
      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
 | 
						|
  }
 | 
						|
 | 
						|
  FuncInfo->setArgumentStackSize(StackSize);
 | 
						|
 | 
						|
  if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
 | 
						|
    EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
 | 
						|
    if (Personality == EHPersonality::CoreCLR) {
 | 
						|
      assert(Is64Bit);
 | 
						|
      // TODO: Add a mechanism to frame lowering that will allow us to indicate
 | 
						|
      // that we'd prefer this slot be allocated towards the bottom of the frame
 | 
						|
      // (i.e. near the stack pointer after allocating the frame).  Every
 | 
						|
      // funclet needs a copy of this slot in its (mostly empty) frame, and the
 | 
						|
      // offset from the bottom of this and each funclet's frame must be the
 | 
						|
      // same, so the size of funclets' (mostly empty) frames is dictated by
 | 
						|
      // how far this slot is from the bottom (since they allocate just enough
 | 
						|
      // space to accommodate holding this slot at the correct offset).
 | 
						|
      int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false);
 | 
						|
      EHInfo->PSPSymFrameIdx = PSPSymFI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
 | 
						|
                                            SDValue Arg, const SDLoc &dl,
 | 
						|
                                            SelectionDAG &DAG,
 | 
						|
                                            const CCValAssign &VA,
 | 
						|
                                            ISD::ArgFlagsTy Flags) const {
 | 
						|
  unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | 
						|
  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                       StackPtr, PtrOff);
 | 
						|
  if (Flags.isByVal())
 | 
						|
    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 | 
						|
 | 
						|
  return DAG.getStore(
 | 
						|
      Chain, dl, Arg, PtrOff,
 | 
						|
      MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a load of return address if tail call
 | 
						|
/// optimization is performed and it is required.
 | 
						|
SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
 | 
						|
    SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
 | 
						|
    bool Is64Bit, int FPDiff, const SDLoc &dl) const {
 | 
						|
  // Adjust the Return address stack slot.
 | 
						|
  EVT VT = getPointerTy(DAG.getDataLayout());
 | 
						|
  OutRetAddr = getReturnAddressFrameIndex(DAG);
 | 
						|
 | 
						|
  // Load the "old" Return address.
 | 
						|
  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
 | 
						|
  return SDValue(OutRetAddr.getNode(), 1);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a store of the return address if tail call
 | 
						|
/// optimization is performed and it is required (FPDiff!=0).
 | 
						|
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
 | 
						|
                                        SDValue Chain, SDValue RetAddrFrIdx,
 | 
						|
                                        EVT PtrVT, unsigned SlotSize,
 | 
						|
                                        int FPDiff, const SDLoc &dl) {
 | 
						|
  // Store the return address to the appropriate stack slot.
 | 
						|
  if (!FPDiff) return Chain;
 | 
						|
  // Calculate the new stack slot for the return address.
 | 
						|
  int NewReturnAddrFI =
 | 
						|
    MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
 | 
						|
                                         false);
 | 
						|
  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
 | 
						|
  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
 | 
						|
                       MachinePointerInfo::getFixedStack(
 | 
						|
                           DAG.getMachineFunction(), NewReturnAddrFI));
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector_shuffle mask for an movs{s|d}, movd
 | 
						|
/// operation of specified width.
 | 
						|
static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
 | 
						|
                       SDValue V2) {
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  SmallVector<int, 8> Mask;
 | 
						|
  Mask.push_back(NumElems);
 | 
						|
  for (unsigned i = 1; i != NumElems; ++i)
 | 
						|
    Mask.push_back(i);
 | 
						|
  return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                             SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG                     = CLI.DAG;
 | 
						|
  SDLoc &dl                             = CLI.DL;
 | 
						|
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | 
						|
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | 
						|
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | 
						|
  SDValue Chain                         = CLI.Chain;
 | 
						|
  SDValue Callee                        = CLI.Callee;
 | 
						|
  CallingConv::ID CallConv              = CLI.CallConv;
 | 
						|
  bool &isTailCall                      = CLI.IsTailCall;
 | 
						|
  bool isVarArg                         = CLI.IsVarArg;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool Is64Bit        = Subtarget.is64Bit();
 | 
						|
  bool IsWin64        = Subtarget.isCallingConvWin64(CallConv);
 | 
						|
  StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
 | 
						|
  bool IsSibcall      = false;
 | 
						|
  X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
 | 
						|
 | 
						|
  if (CallConv == CallingConv::X86_INTR)
 | 
						|
    report_fatal_error("X86 interrupts may not be called directly");
 | 
						|
 | 
						|
  if (Attr.getValueAsString() == "true")
 | 
						|
    isTailCall = false;
 | 
						|
 | 
						|
  if (Subtarget.isPICStyleGOT() &&
 | 
						|
      !MF.getTarget().Options.GuaranteedTailCallOpt) {
 | 
						|
    // If we are using a GOT, disable tail calls to external symbols with
 | 
						|
    // default visibility. Tail calling such a symbol requires using a GOT
 | 
						|
    // relocation, which forces early binding of the symbol. This breaks code
 | 
						|
    // that require lazy function symbol resolution. Using musttail or
 | 
						|
    // GuaranteedTailCallOpt will override this.
 | 
						|
    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | 
						|
    if (!G || (!G->getGlobal()->hasLocalLinkage() &&
 | 
						|
               G->getGlobal()->hasDefaultVisibility()))
 | 
						|
      isTailCall = false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
 | 
						|
  if (IsMustTail) {
 | 
						|
    // Force this to be a tail call.  The verifier rules are enough to ensure
 | 
						|
    // that we can lower this successfully without moving the return address
 | 
						|
    // around.
 | 
						|
    isTailCall = true;
 | 
						|
  } else if (isTailCall) {
 | 
						|
    // Check if it's really possible to do a tail call.
 | 
						|
    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | 
						|
                    isVarArg, SR != NotStructReturn,
 | 
						|
                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
 | 
						|
                    Outs, OutVals, Ins, DAG);
 | 
						|
 | 
						|
    // Sibcalls are automatically detected tailcalls which do not require
 | 
						|
    // ABI changes.
 | 
						|
    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
 | 
						|
      IsSibcall = true;
 | 
						|
 | 
						|
    if (isTailCall)
 | 
						|
      ++NumTailCalls;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
 | 
						|
         "Var args not supported with calling convention fastcc, ghc or hipe");
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Allocate shadow area for Win64.
 | 
						|
  if (IsWin64)
 | 
						|
    CCInfo.AllocateStack(32, 8);
 | 
						|
 | 
						|
  CCInfo.AnalyzeArguments(Outs, CC_X86);
 | 
						|
 | 
						|
  // In vectorcall calling convention a second pass is required for the HVA
 | 
						|
  // types.
 | 
						|
  if (CallingConv::X86_VectorCall == CallConv) {
 | 
						|
    CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
 | 
						|
  if (IsSibcall)
 | 
						|
    // This is a sibcall. The memory operands are available in caller's
 | 
						|
    // own caller's stack.
 | 
						|
    NumBytes = 0;
 | 
						|
  else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
 | 
						|
           canGuaranteeTCO(CallConv))
 | 
						|
    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
 | 
						|
 | 
						|
  int FPDiff = 0;
 | 
						|
  if (isTailCall && !IsSibcall && !IsMustTail) {
 | 
						|
    // Lower arguments at fp - stackoffset + fpdiff.
 | 
						|
    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
 | 
						|
 | 
						|
    FPDiff = NumBytesCallerPushed - NumBytes;
 | 
						|
 | 
						|
    // Set the delta of movement of the returnaddr stackslot.
 | 
						|
    // But only set if delta is greater than previous delta.
 | 
						|
    if (FPDiff < X86Info->getTCReturnAddrDelta())
 | 
						|
      X86Info->setTCReturnAddrDelta(FPDiff);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumBytesToPush = NumBytes;
 | 
						|
  unsigned NumBytesToPop = NumBytes;
 | 
						|
 | 
						|
  // If we have an inalloca argument, all stack space has already been allocated
 | 
						|
  // for us and be right at the top of the stack.  We don't support multiple
 | 
						|
  // arguments passed in memory when using inalloca.
 | 
						|
  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
 | 
						|
    NumBytesToPush = 0;
 | 
						|
    if (!ArgLocs.back().isMemLoc())
 | 
						|
      report_fatal_error("cannot use inalloca attribute on a register "
 | 
						|
                         "parameter");
 | 
						|
    if (ArgLocs.back().getLocMemOffset() != 0)
 | 
						|
      report_fatal_error("any parameter with the inalloca attribute must be "
 | 
						|
                         "the only memory argument");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsSibcall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(
 | 
						|
        Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl);
 | 
						|
 | 
						|
  SDValue RetAddrFrIdx;
 | 
						|
  // Load return address for tail calls.
 | 
						|
  if (isTailCall && FPDiff)
 | 
						|
    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
 | 
						|
                                    Is64Bit, FPDiff, dl);
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  SDValue StackPtr;
 | 
						|
 | 
						|
  // The next loop assumes that the locations are in the same order of the
 | 
						|
  // input arguments.
 | 
						|
  if (!isSortedByValueNo(ArgLocs))
 | 
						|
    llvm_unreachable("Argument Location list must be sorted before lowering");
 | 
						|
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | 
						|
  // of tail call optimization arguments are handle later.
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
 | 
						|
       ++I, ++OutIndex) {
 | 
						|
    assert(OutIndex < Outs.size() && "Invalid Out index");
 | 
						|
    // Skip inalloca arguments, they have already been written.
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
 | 
						|
    if (Flags.isInAlloca())
 | 
						|
      continue;
 | 
						|
 | 
						|
    CCValAssign &VA = ArgLocs[I];
 | 
						|
    EVT RegVT = VA.getLocVT();
 | 
						|
    SDValue Arg = OutVals[OutIndex];
 | 
						|
    bool isByVal = Flags.isByVal();
 | 
						|
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      if (Arg.getValueType().isVector() &&
 | 
						|
          Arg.getValueType().getVectorElementType() == MVT::i1)
 | 
						|
        Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
 | 
						|
      else if (RegVT.is128BitVector()) {
 | 
						|
        // Special case: passing MMX values in XMM registers.
 | 
						|
        Arg = DAG.getBitcast(MVT::i64, Arg);
 | 
						|
        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
 | 
						|
        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
 | 
						|
      } else
 | 
						|
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Arg = DAG.getBitcast(RegVT, Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::Indirect: {
 | 
						|
      // Store the argument.
 | 
						|
      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
 | 
						|
      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | 
						|
      Chain = DAG.getStore(
 | 
						|
          Chain, dl, Arg, SpillSlot,
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
 | 
						|
      Arg = SpillSlot;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      assert(VA.getValVT() == MVT::v64i1 &&
 | 
						|
             "Currently the only custom case is when we split v64i1 to 2 regs");
 | 
						|
      // Split v64i1 value into two registers
 | 
						|
      Passv64i1ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++I],
 | 
						|
                         Subtarget);
 | 
						|
    } else if (VA.isRegLoc()) {
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
      if (isVarArg && IsWin64) {
 | 
						|
        // Win64 ABI requires argument XMM reg to be copied to the corresponding
 | 
						|
        // shadow reg if callee is a varargs function.
 | 
						|
        unsigned ShadowReg = 0;
 | 
						|
        switch (VA.getLocReg()) {
 | 
						|
        case X86::XMM0: ShadowReg = X86::RCX; break;
 | 
						|
        case X86::XMM1: ShadowReg = X86::RDX; break;
 | 
						|
        case X86::XMM2: ShadowReg = X86::R8; break;
 | 
						|
        case X86::XMM3: ShadowReg = X86::R9; break;
 | 
						|
        }
 | 
						|
        if (ShadowReg)
 | 
						|
          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
 | 
						|
      }
 | 
						|
    } else if (!IsSibcall && (!isTailCall || isByVal)) {
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      if (!StackPtr.getNode())
 | 
						|
        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
 | 
						|
                                      getPointerTy(DAG.getDataLayout()));
 | 
						|
      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | 
						|
                                             dl, DAG, VA, Flags));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  if (Subtarget.isPICStyleGOT()) {
 | 
						|
    // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | 
						|
    // GOT pointer.
 | 
						|
    if (!isTailCall) {
 | 
						|
      RegsToPass.push_back(std::make_pair(
 | 
						|
          unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
 | 
						|
                                          getPointerTy(DAG.getDataLayout()))));
 | 
						|
    } else {
 | 
						|
      // If we are tail calling and generating PIC/GOT style code load the
 | 
						|
      // address of the callee into ECX. The value in ecx is used as target of
 | 
						|
      // the tail jump. This is done to circumvent the ebx/callee-saved problem
 | 
						|
      // for tail calls on PIC/GOT architectures. Normally we would just put the
 | 
						|
      // address of GOT into ebx and then call target@PLT. But for tail calls
 | 
						|
      // ebx would be restored (since ebx is callee saved) before jumping to the
 | 
						|
      // target@PLT.
 | 
						|
 | 
						|
      // Note: The actual moving to ECX is done further down.
 | 
						|
      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | 
						|
      if (G && !G->getGlobal()->hasLocalLinkage() &&
 | 
						|
          G->getGlobal()->hasDefaultVisibility())
 | 
						|
        Callee = LowerGlobalAddress(Callee, DAG);
 | 
						|
      else if (isa<ExternalSymbolSDNode>(Callee))
 | 
						|
        Callee = LowerExternalSymbol(Callee, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
 | 
						|
    // From AMD64 ABI document:
 | 
						|
    // For calls that may call functions that use varargs or stdargs
 | 
						|
    // (prototype-less calls or calls to functions containing ellipsis (...) in
 | 
						|
    // the declaration) %al is used as hidden argument to specify the number
 | 
						|
    // of SSE registers used. The contents of %al do not need to match exactly
 | 
						|
    // the number of registers, but must be an ubound on the number of SSE
 | 
						|
    // registers used and is in the range 0 - 8 inclusive.
 | 
						|
 | 
						|
    // Count the number of XMM registers allocated.
 | 
						|
    static const MCPhysReg XMMArgRegs[] = {
 | 
						|
      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | 
						|
      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | 
						|
    };
 | 
						|
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
 | 
						|
    assert((Subtarget.hasSSE1() || !NumXMMRegs)
 | 
						|
           && "SSE registers cannot be used when SSE is disabled");
 | 
						|
 | 
						|
    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
 | 
						|
                                        DAG.getConstant(NumXMMRegs, dl,
 | 
						|
                                                        MVT::i8)));
 | 
						|
  }
 | 
						|
 | 
						|
  if (isVarArg && IsMustTail) {
 | 
						|
    const auto &Forwards = X86Info->getForwardedMustTailRegParms();
 | 
						|
    for (const auto &F : Forwards) {
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
 | 
						|
      RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
 | 
						|
  // don't need this because the eligibility check rejects calls that require
 | 
						|
  // shuffling arguments passed in memory.
 | 
						|
  if (!IsSibcall && isTailCall) {
 | 
						|
    // Force all the incoming stack arguments to be loaded from the stack
 | 
						|
    // before any new outgoing arguments are stored to the stack, because the
 | 
						|
    // outgoing stack slots may alias the incoming argument stack slots, and
 | 
						|
    // the alias isn't otherwise explicit. This is slightly more conservative
 | 
						|
    // than necessary, because it means that each store effectively depends
 | 
						|
    // on every argument instead of just those arguments it would clobber.
 | 
						|
    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
 | 
						|
 | 
						|
    SmallVector<SDValue, 8> MemOpChains2;
 | 
						|
    SDValue FIN;
 | 
						|
    int FI = 0;
 | 
						|
    for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
 | 
						|
         ++I, ++OutsIndex) {
 | 
						|
      CCValAssign &VA = ArgLocs[I];
 | 
						|
 | 
						|
      if (VA.isRegLoc()) {
 | 
						|
        if (VA.needsCustom()) {
 | 
						|
          assert((CallConv == CallingConv::X86_RegCall) &&
 | 
						|
                 "Expecting custome case only in regcall calling convention");
 | 
						|
          // This means that we are in special case where one argument was
 | 
						|
          // passed through two register locations - Skip the next location
 | 
						|
          ++I;
 | 
						|
        }
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      SDValue Arg = OutVals[OutsIndex];
 | 
						|
      ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
 | 
						|
      // Skip inalloca arguments.  They don't require any work.
 | 
						|
      if (Flags.isInAlloca())
 | 
						|
        continue;
 | 
						|
      // Create frame index.
 | 
						|
      int32_t Offset = VA.getLocMemOffset()+FPDiff;
 | 
						|
      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
 | 
						|
      FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
 | 
						|
      FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // Copy relative to framepointer.
 | 
						|
        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
 | 
						|
        if (!StackPtr.getNode())
 | 
						|
          StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
 | 
						|
                                        getPointerTy(DAG.getDataLayout()));
 | 
						|
        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                             StackPtr, Source);
 | 
						|
 | 
						|
        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
 | 
						|
                                                         ArgChain,
 | 
						|
                                                         Flags, DAG, dl));
 | 
						|
      } else {
 | 
						|
        // Store relative to framepointer.
 | 
						|
        MemOpChains2.push_back(DAG.getStore(
 | 
						|
            ArgChain, dl, Arg, FIN,
 | 
						|
            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MemOpChains2.empty())
 | 
						|
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
 | 
						|
 | 
						|
    // Store the return address to the appropriate stack slot.
 | 
						|
    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
 | 
						|
                                     getPointerTy(DAG.getDataLayout()),
 | 
						|
                                     RegInfo->getSlotSize(), FPDiff, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into registers.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
 | 
						|
    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
 | 
						|
    // In the 64-bit large code model, we have to make all calls
 | 
						|
    // through a register, since the call instruction's 32-bit
 | 
						|
    // pc-relative offset may not be large enough to hold the whole
 | 
						|
    // address.
 | 
						|
  } else if (Callee->getOpcode() == ISD::GlobalAddress) {
 | 
						|
    // If the callee is a GlobalAddress node (quite common, every direct call
 | 
						|
    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
 | 
						|
    // it.
 | 
						|
    GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
 | 
						|
 | 
						|
    // We should use extra load for direct calls to dllimported functions in
 | 
						|
    // non-JIT mode.
 | 
						|
    const GlobalValue *GV = G->getGlobal();
 | 
						|
    if (!GV->hasDLLImportStorageClass()) {
 | 
						|
      unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
 | 
						|
 | 
						|
      Callee = DAG.getTargetGlobalAddress(
 | 
						|
          GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
 | 
						|
 | 
						|
      if (OpFlags == X86II::MO_GOTPCREL) {
 | 
						|
        // Add a wrapper.
 | 
						|
        Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
 | 
						|
          getPointerTy(DAG.getDataLayout()), Callee);
 | 
						|
        // Add extra indirection
 | 
						|
        Callee = DAG.getLoad(
 | 
						|
            getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
 | 
						|
            MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
 | 
						|
    unsigned char OpFlags =
 | 
						|
        Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
 | 
						|
 | 
						|
    Callee = DAG.getTargetExternalSymbol(
 | 
						|
        S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
 | 
						|
  } else if (Subtarget.isTarget64BitILP32() &&
 | 
						|
             Callee->getValueType(0) == MVT::i32) {
 | 
						|
    // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
 | 
						|
    Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a chain & a flag for retval copy to use.
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
 | 
						|
  if (!IsSibcall && isTailCall) {
 | 
						|
    Chain = DAG.getCALLSEQ_END(Chain,
 | 
						|
                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
 | 
						|
                               DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
 | 
						|
  if (isTailCall)
 | 
						|
    Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
 | 
						|
  // Add a register mask operand representing the call-preserved registers.
 | 
						|
  const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
 | 
						|
  // If this is an invoke in a 32-bit function using a funclet-based
 | 
						|
  // personality, assume the function clobbers all registers. If an exception
 | 
						|
  // is thrown, the runtime will not restore CSRs.
 | 
						|
  // FIXME: Model this more precisely so that we can register allocate across
 | 
						|
  // the normal edge and spill and fill across the exceptional edge.
 | 
						|
  if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) {
 | 
						|
    const Function *CallerFn = MF.getFunction();
 | 
						|
    EHPersonality Pers =
 | 
						|
        CallerFn->hasPersonalityFn()
 | 
						|
            ? classifyEHPersonality(CallerFn->getPersonalityFn())
 | 
						|
            : EHPersonality::Unknown;
 | 
						|
    if (isFuncletEHPersonality(Pers))
 | 
						|
      Mask = RegInfo->getNoPreservedMask();
 | 
						|
  }
 | 
						|
 | 
						|
  Ops.push_back(DAG.getRegisterMask(Mask));
 | 
						|
 | 
						|
  if (InFlag.getNode())
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
 | 
						|
  if (isTailCall) {
 | 
						|
    // We used to do:
 | 
						|
    //// If this is the first return lowered for this function, add the regs
 | 
						|
    //// to the liveout set for the function.
 | 
						|
    // This isn't right, although it's probably harmless on x86; liveouts
 | 
						|
    // should be computed from returns not tail calls.  Consider a void
 | 
						|
    // function making a tail call to a function returning int.
 | 
						|
    MF.getFrameInfo().setHasTailCall();
 | 
						|
    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  // Create the CALLSEQ_END node.
 | 
						|
  unsigned NumBytesForCalleeToPop;
 | 
						|
  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
 | 
						|
                       DAG.getTarget().Options.GuaranteedTailCallOpt))
 | 
						|
    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
 | 
						|
  else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
 | 
						|
           !Subtarget.getTargetTriple().isOSMSVCRT() &&
 | 
						|
           SR == StackStructReturn)
 | 
						|
    // If this is a call to a struct-return function, the callee
 | 
						|
    // pops the hidden struct pointer, so we have to push it back.
 | 
						|
    // This is common for Darwin/X86, Linux & Mingw32 targets.
 | 
						|
    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
 | 
						|
    NumBytesForCalleeToPop = 4;
 | 
						|
  else
 | 
						|
    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
 | 
						|
 | 
						|
  if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
 | 
						|
    // No need to reset the stack after the call if the call doesn't return. To
 | 
						|
    // make the MI verify, we'll pretend the callee does it for us.
 | 
						|
    NumBytesForCalleeToPop = NumBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a flag for retval copy to use.
 | 
						|
  if (!IsSibcall) {
 | 
						|
    Chain = DAG.getCALLSEQ_END(Chain,
 | 
						|
                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
 | 
						|
                               DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
 | 
						|
                                                     true),
 | 
						|
                               InFlag, dl);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle result values, copying them out of physregs into vregs that we
 | 
						|
  // return.
 | 
						|
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | 
						|
                         Ins, dl, DAG, InVals);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                Fast Calling Convention (tail call) implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//  Like std call, callee cleans arguments, convention except that ECX is
 | 
						|
//  reserved for storing the tail called function address. Only 2 registers are
 | 
						|
//  free for argument passing (inreg). Tail call optimization is performed
 | 
						|
//  provided:
 | 
						|
//                * tailcallopt is enabled
 | 
						|
//                * caller/callee are fastcc
 | 
						|
//  On X86_64 architecture with GOT-style position independent code only local
 | 
						|
//  (within module) calls are supported at the moment.
 | 
						|
//  To keep the stack aligned according to platform abi the function
 | 
						|
//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
 | 
						|
//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
 | 
						|
//  If a tail called function callee has more arguments than the caller the
 | 
						|
//  caller needs to make sure that there is room to move the RETADDR to. This is
 | 
						|
//  achieved by reserving an area the size of the argument delta right after the
 | 
						|
//  original RETADDR, but before the saved framepointer or the spilled registers
 | 
						|
//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
 | 
						|
//  stack layout:
 | 
						|
//    arg1
 | 
						|
//    arg2
 | 
						|
//    RETADDR
 | 
						|
//    [ new RETADDR
 | 
						|
//      move area ]
 | 
						|
//    (possible EBP)
 | 
						|
//    ESI
 | 
						|
//    EDI
 | 
						|
//    local1 ..
 | 
						|
 | 
						|
/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
 | 
						|
/// requirement.
 | 
						|
unsigned
 | 
						|
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
 | 
						|
                                               SelectionDAG& DAG) const {
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
 | 
						|
  unsigned StackAlignment = TFI.getStackAlignment();
 | 
						|
  uint64_t AlignMask = StackAlignment - 1;
 | 
						|
  int64_t Offset = StackSize;
 | 
						|
  unsigned SlotSize = RegInfo->getSlotSize();
 | 
						|
  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
 | 
						|
    // Number smaller than 12 so just add the difference.
 | 
						|
    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
 | 
						|
  } else {
 | 
						|
    // Mask out lower bits, add stackalignment once plus the 12 bytes.
 | 
						|
    Offset = ((~AlignMask) & Offset) + StackAlignment +
 | 
						|
      (StackAlignment-SlotSize);
 | 
						|
  }
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the given stack call argument is already available in the
 | 
						|
/// same position (relatively) of the caller's incoming argument stack.
 | 
						|
static
 | 
						|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | 
						|
                         MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
 | 
						|
                         const X86InstrInfo *TII, const CCValAssign &VA) {
 | 
						|
  unsigned Bytes = Arg.getValueSizeInBits() / 8;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    // Look through nodes that don't alter the bits of the incoming value.
 | 
						|
    unsigned Op = Arg.getOpcode();
 | 
						|
    if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
 | 
						|
      Arg = Arg.getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (Op == ISD::TRUNCATE) {
 | 
						|
      const SDValue &TruncInput = Arg.getOperand(0);
 | 
						|
      if (TruncInput.getOpcode() == ISD::AssertZext &&
 | 
						|
          cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
 | 
						|
              Arg.getValueType()) {
 | 
						|
        Arg = TruncInput.getOperand(0);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  int FI = INT_MAX;
 | 
						|
  if (Arg.getOpcode() == ISD::CopyFromReg) {
 | 
						|
    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(VR))
 | 
						|
      return false;
 | 
						|
    MachineInstr *Def = MRI->getVRegDef(VR);
 | 
						|
    if (!Def)
 | 
						|
      return false;
 | 
						|
    if (!Flags.isByVal()) {
 | 
						|
      if (!TII->isLoadFromStackSlot(*Def, FI))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      unsigned Opcode = Def->getOpcode();
 | 
						|
      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
 | 
						|
           Opcode == X86::LEA64_32r) &&
 | 
						|
          Def->getOperand(1).isFI()) {
 | 
						|
        FI = Def->getOperand(1).getIndex();
 | 
						|
        Bytes = Flags.getByValSize();
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | 
						|
    if (Flags.isByVal())
 | 
						|
      // ByVal argument is passed in as a pointer but it's now being
 | 
						|
      // dereferenced. e.g.
 | 
						|
      // define @foo(%struct.X* %A) {
 | 
						|
      //   tail call @bar(%struct.X* byval %A)
 | 
						|
      // }
 | 
						|
      return false;
 | 
						|
    SDValue Ptr = Ld->getBasePtr();
 | 
						|
    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | 
						|
    if (!FINode)
 | 
						|
      return false;
 | 
						|
    FI = FINode->getIndex();
 | 
						|
  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
 | 
						|
    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
 | 
						|
    FI = FINode->getIndex();
 | 
						|
    Bytes = Flags.getByValSize();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(FI != INT_MAX);
 | 
						|
  if (!MFI.isFixedObjectIndex(FI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Offset != MFI.getObjectOffset(FI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
 | 
						|
    // If the argument location is wider than the argument type, check that any
 | 
						|
    // extension flags match.
 | 
						|
    if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
 | 
						|
        Flags.isSExt() != MFI.isObjectSExt(FI)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Bytes == MFI.getObjectSize(FI);
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the call is eligible for tail call optimization. Targets
 | 
						|
/// that want to do tail call optimization should implement this function.
 | 
						|
bool X86TargetLowering::IsEligibleForTailCallOptimization(
 | 
						|
    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
 | 
						|
    bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
 | 
						|
  if (!mayTailCallThisCC(CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If -tailcallopt is specified, make fastcc functions tail-callable.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const Function *CallerF = MF.getFunction();
 | 
						|
 | 
						|
  // If the function return type is x86_fp80 and the callee return type is not,
 | 
						|
  // then the FP_EXTEND of the call result is not a nop. It's not safe to
 | 
						|
  // perform a tailcall optimization here.
 | 
						|
  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallingConv::ID CallerCC = CallerF->getCallingConv();
 | 
						|
  bool CCMatch = CallerCC == CalleeCC;
 | 
						|
  bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
 | 
						|
  bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
 | 
						|
 | 
						|
  // Win64 functions have extra shadow space for argument homing. Don't do the
 | 
						|
  // sibcall if the caller and callee have mismatched expectations for this
 | 
						|
  // space.
 | 
						|
  if (IsCalleeWin64 != IsCallerWin64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
 | 
						|
    if (canGuaranteeTCO(CalleeCC) && CCMatch)
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for obvious safe cases to perform tail call optimization that do not
 | 
						|
  // require ABI changes. This is what gcc calls sibcall.
 | 
						|
 | 
						|
  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
 | 
						|
  // emit a special epilogue.
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  if (RegInfo->needsStackRealignment(MF))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also avoid sibcall optimization if either caller or callee uses struct
 | 
						|
  // return semantics.
 | 
						|
  if (isCalleeStructRet || isCallerStructRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sibcall optimize vararg calls unless all arguments are passed via
 | 
						|
  // registers.
 | 
						|
  LLVMContext &C = *DAG.getContext();
 | 
						|
  if (isVarArg && !Outs.empty()) {
 | 
						|
    // Optimizing for varargs on Win64 is unlikely to be safe without
 | 
						|
    // additional testing.
 | 
						|
    if (IsCalleeWin64 || IsCallerWin64)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
 | 
						|
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
 | 
						|
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
 | 
						|
      if (!ArgLocs[i].isRegLoc())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the call result is in ST0 / ST1, it needs to be popped off the x87
 | 
						|
  // stack.  Therefore, if it's not used by the call it is not safe to optimize
 | 
						|
  // this into a sibcall.
 | 
						|
  bool Unused = false;
 | 
						|
  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | 
						|
    if (!Ins[i].Used) {
 | 
						|
      Unused = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Unused) {
 | 
						|
    SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
    CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
 | 
						|
    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | 
						|
    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | 
						|
      CCValAssign &VA = RVLocs[i];
 | 
						|
      if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the call results are passed in the same way.
 | 
						|
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
 | 
						|
                                  RetCC_X86, RetCC_X86))
 | 
						|
    return false;
 | 
						|
  // The callee has to preserve all registers the caller needs to preserve.
 | 
						|
  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
 | 
						|
  if (!CCMatch) {
 | 
						|
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
 | 
						|
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned StackArgsSize = 0;
 | 
						|
 | 
						|
  // If the callee takes no arguments then go on to check the results of the
 | 
						|
  // call.
 | 
						|
  if (!Outs.empty()) {
 | 
						|
    // Check if stack adjustment is needed. For now, do not do this if any
 | 
						|
    // argument is passed on the stack.
 | 
						|
    SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
 | 
						|
 | 
						|
    // Allocate shadow area for Win64
 | 
						|
    if (IsCalleeWin64)
 | 
						|
      CCInfo.AllocateStack(32, 8);
 | 
						|
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
 | 
						|
    StackArgsSize = CCInfo.getNextStackOffset();
 | 
						|
 | 
						|
    if (CCInfo.getNextStackOffset()) {
 | 
						|
      // Check if the arguments are already laid out in the right way as
 | 
						|
      // the caller's fixed stack objects.
 | 
						|
      MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
      const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | 
						|
      const X86InstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
        CCValAssign &VA = ArgLocs[i];
 | 
						|
        SDValue Arg = OutVals[i];
 | 
						|
        ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
        if (VA.getLocInfo() == CCValAssign::Indirect)
 | 
						|
          return false;
 | 
						|
        if (!VA.isRegLoc()) {
 | 
						|
          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | 
						|
                                   MFI, MRI, TII, VA))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool PositionIndependent = isPositionIndependent();
 | 
						|
    // If the tailcall address may be in a register, then make sure it's
 | 
						|
    // possible to register allocate for it. In 32-bit, the call address can
 | 
						|
    // only target EAX, EDX, or ECX since the tail call must be scheduled after
 | 
						|
    // callee-saved registers are restored. These happen to be the same
 | 
						|
    // registers used to pass 'inreg' arguments so watch out for those.
 | 
						|
    if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
 | 
						|
                                  !isa<ExternalSymbolSDNode>(Callee)) ||
 | 
						|
                                 PositionIndependent)) {
 | 
						|
      unsigned NumInRegs = 0;
 | 
						|
      // In PIC we need an extra register to formulate the address computation
 | 
						|
      // for the callee.
 | 
						|
      unsigned MaxInRegs = PositionIndependent ? 2 : 3;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
        CCValAssign &VA = ArgLocs[i];
 | 
						|
        if (!VA.isRegLoc())
 | 
						|
          continue;
 | 
						|
        unsigned Reg = VA.getLocReg();
 | 
						|
        switch (Reg) {
 | 
						|
        default: break;
 | 
						|
        case X86::EAX: case X86::EDX: case X86::ECX:
 | 
						|
          if (++NumInRegs == MaxInRegs)
 | 
						|
            return false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
    if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool CalleeWillPop =
 | 
						|
      X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
 | 
						|
                       MF.getTarget().Options.GuaranteedTailCallOpt);
 | 
						|
 | 
						|
  if (unsigned BytesToPop =
 | 
						|
          MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
 | 
						|
    // If we have bytes to pop, the callee must pop them.
 | 
						|
    bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
 | 
						|
    if (!CalleePopMatches)
 | 
						|
      return false;
 | 
						|
  } else if (CalleeWillPop && StackArgsSize > 0) {
 | 
						|
    // If we don't have bytes to pop, make sure the callee doesn't pop any.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FastISel *
 | 
						|
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
 | 
						|
                                  const TargetLibraryInfo *libInfo) const {
 | 
						|
  return X86::createFastISel(funcInfo, libInfo);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           Other Lowering Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool MayFoldLoad(SDValue Op) {
 | 
						|
  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
 | 
						|
}
 | 
						|
 | 
						|
static bool MayFoldIntoStore(SDValue Op) {
 | 
						|
  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
 | 
						|
}
 | 
						|
 | 
						|
static bool MayFoldIntoZeroExtend(SDValue Op) {
 | 
						|
  if (Op.hasOneUse()) {
 | 
						|
    unsigned Opcode = Op.getNode()->use_begin()->getOpcode();
 | 
						|
    return (ISD::ZERO_EXTEND == Opcode);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTargetShuffle(unsigned Opcode) {
 | 
						|
  switch(Opcode) {
 | 
						|
  default: return false;
 | 
						|
  case X86ISD::BLENDI:
 | 
						|
  case X86ISD::PSHUFB:
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
  case X86ISD::SHUFP:
 | 
						|
  case X86ISD::INSERTPS:
 | 
						|
  case X86ISD::PALIGNR:
 | 
						|
  case X86ISD::VSHLDQ:
 | 
						|
  case X86ISD::VSRLDQ:
 | 
						|
  case X86ISD::MOVLHPS:
 | 
						|
  case X86ISD::MOVLHPD:
 | 
						|
  case X86ISD::MOVHLPS:
 | 
						|
  case X86ISD::MOVLPS:
 | 
						|
  case X86ISD::MOVLPD:
 | 
						|
  case X86ISD::MOVSHDUP:
 | 
						|
  case X86ISD::MOVSLDUP:
 | 
						|
  case X86ISD::MOVDDUP:
 | 
						|
  case X86ISD::MOVSS:
 | 
						|
  case X86ISD::MOVSD:
 | 
						|
  case X86ISD::UNPCKL:
 | 
						|
  case X86ISD::UNPCKH:
 | 
						|
  case X86ISD::VBROADCAST:
 | 
						|
  case X86ISD::VPERMILPI:
 | 
						|
  case X86ISD::VPERMILPV:
 | 
						|
  case X86ISD::VPERM2X128:
 | 
						|
  case X86ISD::VPERMIL2:
 | 
						|
  case X86ISD::VPERMI:
 | 
						|
  case X86ISD::VPPERM:
 | 
						|
  case X86ISD::VPERMV:
 | 
						|
  case X86ISD::VPERMV3:
 | 
						|
  case X86ISD::VPERMIV3:
 | 
						|
  case X86ISD::VZEXT_MOVL:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isTargetShuffleVariableMask(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return false;
 | 
						|
  // Target Shuffles.
 | 
						|
  case X86ISD::PSHUFB:
 | 
						|
  case X86ISD::VPERMILPV:
 | 
						|
  case X86ISD::VPERMIL2:
 | 
						|
  case X86ISD::VPPERM:
 | 
						|
  case X86ISD::VPERMV:
 | 
						|
  case X86ISD::VPERMV3:
 | 
						|
  case X86ISD::VPERMIV3:
 | 
						|
    return true;
 | 
						|
  // 'Faux' Target Shuffles.
 | 
						|
  case ISD::AND:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  int ReturnAddrIndex = FuncInfo->getRAIndex();
 | 
						|
 | 
						|
  if (ReturnAddrIndex == 0) {
 | 
						|
    // Set up a frame object for the return address.
 | 
						|
    unsigned SlotSize = RegInfo->getSlotSize();
 | 
						|
    ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize,
 | 
						|
                                                          -(int64_t)SlotSize,
 | 
						|
                                                          false);
 | 
						|
    FuncInfo->setRAIndex(ReturnAddrIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
 | 
						|
}
 | 
						|
 | 
						|
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
 | 
						|
                                       bool hasSymbolicDisplacement) {
 | 
						|
  // Offset should fit into 32 bit immediate field.
 | 
						|
  if (!isInt<32>(Offset))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we don't have a symbolic displacement - we don't have any extra
 | 
						|
  // restrictions.
 | 
						|
  if (!hasSymbolicDisplacement)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // FIXME: Some tweaks might be needed for medium code model.
 | 
						|
  if (M != CodeModel::Small && M != CodeModel::Kernel)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // For small code model we assume that latest object is 16MB before end of 31
 | 
						|
  // bits boundary. We may also accept pretty large negative constants knowing
 | 
						|
  // that all objects are in the positive half of address space.
 | 
						|
  if (M == CodeModel::Small && Offset < 16*1024*1024)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For kernel code model we know that all object resist in the negative half
 | 
						|
  // of 32bits address space. We may not accept negative offsets, since they may
 | 
						|
  // be just off and we may accept pretty large positive ones.
 | 
						|
  if (M == CodeModel::Kernel && Offset >= 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether the callee is required to pop its own arguments.
 | 
						|
/// Callee pop is necessary to support tail calls.
 | 
						|
bool X86::isCalleePop(CallingConv::ID CallingConv,
 | 
						|
                      bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
 | 
						|
  // If GuaranteeTCO is true, we force some calls to be callee pop so that we
 | 
						|
  // can guarantee TCO.
 | 
						|
  if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (CallingConv) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case CallingConv::X86_StdCall:
 | 
						|
  case CallingConv::X86_FastCall:
 | 
						|
  case CallingConv::X86_ThisCall:
 | 
						|
  case CallingConv::X86_VectorCall:
 | 
						|
    return !is64Bit;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return true if the condition is an unsigned comparison operation.
 | 
						|
static bool isX86CCUnsigned(unsigned X86CC) {
 | 
						|
  switch (X86CC) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid integer condition!");
 | 
						|
  case X86::COND_E:
 | 
						|
  case X86::COND_NE:
 | 
						|
  case X86::COND_B:
 | 
						|
  case X86::COND_A:
 | 
						|
  case X86::COND_BE:
 | 
						|
  case X86::COND_AE:
 | 
						|
    return true;
 | 
						|
  case X86::COND_G:
 | 
						|
  case X86::COND_GE:
 | 
						|
  case X86::COND_L:
 | 
						|
  case X86::COND_LE:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Invalid integer condition!");
 | 
						|
  case ISD::SETEQ:  return X86::COND_E;
 | 
						|
  case ISD::SETGT:  return X86::COND_G;
 | 
						|
  case ISD::SETGE:  return X86::COND_GE;
 | 
						|
  case ISD::SETLT:  return X86::COND_L;
 | 
						|
  case ISD::SETLE:  return X86::COND_LE;
 | 
						|
  case ISD::SETNE:  return X86::COND_NE;
 | 
						|
  case ISD::SETULT: return X86::COND_B;
 | 
						|
  case ISD::SETUGT: return X86::COND_A;
 | 
						|
  case ISD::SETULE: return X86::COND_BE;
 | 
						|
  case ISD::SETUGE: return X86::COND_AE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
 | 
						|
/// condition code, returning the condition code and the LHS/RHS of the
 | 
						|
/// comparison to make.
 | 
						|
static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
 | 
						|
                               bool isFP, SDValue &LHS, SDValue &RHS,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  if (!isFP) {
 | 
						|
    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | 
						|
      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
 | 
						|
        // X > -1   -> X == 0, jump !sign.
 | 
						|
        RHS = DAG.getConstant(0, DL, RHS.getValueType());
 | 
						|
        return X86::COND_NS;
 | 
						|
      }
 | 
						|
      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
 | 
						|
        // X < 0   -> X == 0, jump on sign.
 | 
						|
        return X86::COND_S;
 | 
						|
      }
 | 
						|
      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
 | 
						|
        // X < 1   -> X <= 0
 | 
						|
        RHS = DAG.getConstant(0, DL, RHS.getValueType());
 | 
						|
        return X86::COND_LE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return TranslateIntegerX86CC(SetCCOpcode);
 | 
						|
  }
 | 
						|
 | 
						|
  // First determine if it is required or is profitable to flip the operands.
 | 
						|
 | 
						|
  // If LHS is a foldable load, but RHS is not, flip the condition.
 | 
						|
  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
 | 
						|
      !ISD::isNON_EXTLoad(RHS.getNode())) {
 | 
						|
    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETUGE:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // On a floating point condition, the flags are set as follows:
 | 
						|
  // ZF  PF  CF   op
 | 
						|
  //  0 | 0 | 0 | X > Y
 | 
						|
  //  0 | 0 | 1 | X < Y
 | 
						|
  //  1 | 0 | 0 | X == Y
 | 
						|
  //  1 | 1 | 1 | unordered
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Condcode should be pre-legalized away");
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETEQ:   return X86::COND_E;
 | 
						|
  case ISD::SETOLT:              // flipped
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:   return X86::COND_A;
 | 
						|
  case ISD::SETOLE:              // flipped
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:   return X86::COND_AE;
 | 
						|
  case ISD::SETUGT:              // flipped
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:   return X86::COND_B;
 | 
						|
  case ISD::SETUGE:              // flipped
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:   return X86::COND_BE;
 | 
						|
  case ISD::SETONE:
 | 
						|
  case ISD::SETNE:   return X86::COND_NE;
 | 
						|
  case ISD::SETUO:   return X86::COND_P;
 | 
						|
  case ISD::SETO:    return X86::COND_NP;
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETUNE:  return X86::COND_INVALID;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Is there a floating point cmov for the specific X86 condition code?
 | 
						|
/// Current x86 isa includes the following FP cmov instructions:
 | 
						|
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
 | 
						|
static bool hasFPCMov(unsigned X86CC) {
 | 
						|
  switch (X86CC) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::COND_B:
 | 
						|
  case X86::COND_BE:
 | 
						|
  case X86::COND_E:
 | 
						|
  case X86::COND_P:
 | 
						|
  case X86::COND_A:
 | 
						|
  case X86::COND_AE:
 | 
						|
  case X86::COND_NE:
 | 
						|
  case X86::COND_NP:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                           const CallInst &I,
 | 
						|
                                           unsigned Intrinsic) const {
 | 
						|
 | 
						|
  const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
 | 
						|
  if (!IntrData)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
  Info.readMem = false;
 | 
						|
  Info.writeMem = false;
 | 
						|
  Info.vol = false;
 | 
						|
  Info.offset = 0;
 | 
						|
 | 
						|
  switch (IntrData->Type) {
 | 
						|
  case EXPAND_FROM_MEM: {
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.memVT = MVT::getVT(I.getType());
 | 
						|
    Info.align = 1;
 | 
						|
    Info.readMem = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case COMPRESS_TO_MEM: {
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.memVT = MVT::getVT(I.getArgOperand(1)->getType());
 | 
						|
    Info.align = 1;
 | 
						|
    Info.writeMem = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TRUNCATE_TO_MEM_VI8:
 | 
						|
  case TRUNCATE_TO_MEM_VI16:
 | 
						|
  case TRUNCATE_TO_MEM_VI32: {
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    MVT VT  = MVT::getVT(I.getArgOperand(1)->getType());
 | 
						|
    MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
 | 
						|
    if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
 | 
						|
      ScalarVT = MVT::i8;
 | 
						|
    else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
 | 
						|
      ScalarVT = MVT::i16;
 | 
						|
    else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
 | 
						|
      ScalarVT = MVT::i32;
 | 
						|
 | 
						|
    Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
 | 
						|
    Info.align = 1;
 | 
						|
    Info.writeMem = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the target can instruction select the
 | 
						|
/// specified FP immediate natively. If false, the legalizer will
 | 
						|
/// materialize the FP immediate as a load from a constant pool.
 | 
						|
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | 
						|
  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
 | 
						|
    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
 | 
						|
                                              ISD::LoadExtType ExtTy,
 | 
						|
                                              EVT NewVT) const {
 | 
						|
  // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
 | 
						|
  // relocation target a movq or addq instruction: don't let the load shrink.
 | 
						|
  SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
 | 
						|
  if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
 | 
						|
    if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
 | 
						|
      return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns true if it is beneficial to convert a load of a constant
 | 
						|
/// to just the constant itself.
 | 
						|
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | 
						|
                                                          Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0 || BitSize > 64)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
 | 
						|
                                                unsigned Index) const {
 | 
						|
  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (Index == 0 || Index == ResVT.getVectorNumElements());
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isCheapToSpeculateCttz() const {
 | 
						|
  // Speculate cttz only if we can directly use TZCNT.
 | 
						|
  return Subtarget.hasBMI();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isCheapToSpeculateCtlz() const {
 | 
						|
  // Speculate ctlz only if we can directly use LZCNT.
 | 
						|
  return Subtarget.hasLZCNT();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isCtlzFast() const {
 | 
						|
  return Subtarget.hasFastLZCNT();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
 | 
						|
  if (!Subtarget.hasBMI())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // There are only 32-bit and 64-bit forms for 'andn'.
 | 
						|
  EVT VT = Y.getValueType();
 | 
						|
  if (VT != MVT::i32 && VT != MVT::i64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Val is the undef sentinel value or equal to the specified value.
 | 
						|
static bool isUndefOrEqual(int Val, int CmpVal) {
 | 
						|
  return ((Val == SM_SentinelUndef) || (Val == CmpVal));
 | 
						|
}
 | 
						|
 | 
						|
/// Val is either the undef or zero sentinel value.
 | 
						|
static bool isUndefOrZero(int Val) {
 | 
						|
  return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero));
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask, beginning
 | 
						|
/// from position Pos and ending in Pos+Size is the undef sentinel value.
 | 
						|
static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
 | 
						|
  for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
 | 
						|
    if (Mask[i] != SM_SentinelUndef)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if Val is undef or if its value falls within the
 | 
						|
/// specified range (L, H].
 | 
						|
static bool isUndefOrInRange(int Val, int Low, int Hi) {
 | 
						|
  return (Val == SM_SentinelUndef) || (Val >= Low && Val < Hi);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask is undef or if its value
 | 
						|
/// falls within the specified range (L, H].
 | 
						|
static bool isUndefOrInRange(ArrayRef<int> Mask,
 | 
						|
                             int Low, int Hi) {
 | 
						|
  for (int M : Mask)
 | 
						|
    if (!isUndefOrInRange(M, Low, Hi))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if Val is undef, zero or if its value falls within the
 | 
						|
/// specified range (L, H].
 | 
						|
static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) {
 | 
						|
  return isUndefOrZero(Val) || (Val >= Low && Val < Hi);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask is undef, zero or if its value
 | 
						|
/// falls within the specified range (L, H].
 | 
						|
static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
 | 
						|
  for (int M : Mask)
 | 
						|
    if (!isUndefOrZeroOrInRange(M, Low, Hi))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask, beginning
 | 
						|
/// from position Pos and ending in Pos+Size, falls within the specified
 | 
						|
/// sequential range (Low, Low+Size]. or is undef.
 | 
						|
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
 | 
						|
                                       unsigned Pos, unsigned Size, int Low) {
 | 
						|
  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
 | 
						|
    if (!isUndefOrEqual(Mask[i], Low))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask, beginning
 | 
						|
/// from position Pos and ending in Pos+Size, falls within the specified
 | 
						|
/// sequential range (Low, Low+Size], or is undef or is zero.
 | 
						|
static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
 | 
						|
                                             unsigned Size, int Low) {
 | 
						|
  for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low)
 | 
						|
    if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if every element in Mask, beginning
 | 
						|
/// from position Pos and ending in Pos+Size is undef or is zero.
 | 
						|
static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
 | 
						|
                                 unsigned Size) {
 | 
						|
  for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
 | 
						|
    if (!isUndefOrZero(Mask[i]))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function to test whether a shuffle mask could be
 | 
						|
/// simplified by widening the elements being shuffled.
 | 
						|
///
 | 
						|
/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
 | 
						|
/// leaves it in an unspecified state.
 | 
						|
///
 | 
						|
/// NOTE: This must handle normal vector shuffle masks and *target* vector
 | 
						|
/// shuffle masks. The latter have the special property of a '-2' representing
 | 
						|
/// a zero-ed lane of a vector.
 | 
						|
static bool canWidenShuffleElements(ArrayRef<int> Mask,
 | 
						|
                                    SmallVectorImpl<int> &WidenedMask) {
 | 
						|
  WidenedMask.assign(Mask.size() / 2, 0);
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
 | 
						|
    // If both elements are undef, its trivial.
 | 
						|
    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
 | 
						|
      WidenedMask[i / 2] = SM_SentinelUndef;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for an undef mask and a mask value properly aligned to fit with
 | 
						|
    // a pair of values. If we find such a case, use the non-undef mask's value.
 | 
						|
    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 &&
 | 
						|
        Mask[i + 1] % 2 == 1) {
 | 
						|
      WidenedMask[i / 2] = Mask[i + 1] / 2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
 | 
						|
      WidenedMask[i / 2] = Mask[i] / 2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // When zeroing, we need to spread the zeroing across both lanes to widen.
 | 
						|
    if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
 | 
						|
      if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
 | 
						|
          (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
 | 
						|
        WidenedMask[i / 2] = SM_SentinelZero;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally check if the two mask values are adjacent and aligned with
 | 
						|
    // a pair.
 | 
						|
    if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 &&
 | 
						|
        Mask[i] + 1 == Mask[i + 1]) {
 | 
						|
      WidenedMask[i / 2] = Mask[i] / 2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we can't safely widen the elements used in this shuffle.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  assert(WidenedMask.size() == Mask.size() / 2 &&
 | 
						|
         "Incorrect size of mask after widening the elements!");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to scale a shuffle or target shuffle mask, replacing each
 | 
						|
/// mask index with the scaled sequential indices for an equivalent narrowed
 | 
						|
/// mask. This is the reverse process to canWidenShuffleElements, but can always
 | 
						|
/// succeed.
 | 
						|
static void scaleShuffleMask(int Scale, ArrayRef<int> Mask,
 | 
						|
                             SmallVectorImpl<int> &ScaledMask) {
 | 
						|
  assert(0 < Scale && "Unexpected scaling factor");
 | 
						|
  int NumElts = Mask.size();
 | 
						|
  ScaledMask.assign(NumElts * Scale, -1);
 | 
						|
 | 
						|
  for (int i = 0; i != NumElts; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
 | 
						|
    // Repeat sentinel values in every mask element.
 | 
						|
    if (M < 0) {
 | 
						|
      for (int s = 0; s != Scale; ++s)
 | 
						|
        ScaledMask[(Scale * i) + s] = M;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Scale mask element and increment across each mask element.
 | 
						|
    for (int s = 0; s != Scale; ++s)
 | 
						|
      ScaledMask[(Scale * i) + s] = (Scale * M) + s;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector
 | 
						|
/// extract that is suitable for instruction that extract 128 or 256 bit vectors
 | 
						|
static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
 | 
						|
  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
 | 
						|
  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The index should be aligned on a vecWidth-bit boundary.
 | 
						|
  uint64_t Index =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
 | 
						|
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  unsigned ElSize = VT.getScalarSizeInBits();
 | 
						|
  bool Result = (Index * ElSize) % vecWidth == 0;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified INSERT_SUBVECTOR
 | 
						|
/// operand specifies a subvector insert that is suitable for input to
 | 
						|
/// insertion of 128 or 256-bit subvectors
 | 
						|
static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
 | 
						|
  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
 | 
						|
  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
 | 
						|
    return false;
 | 
						|
  // The index should be aligned on a vecWidth-bit boundary.
 | 
						|
  uint64_t Index =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
 | 
						|
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  unsigned ElSize = VT.getScalarSizeInBits();
 | 
						|
  bool Result = (Index * ElSize) % vecWidth == 0;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool X86::isVINSERT128Index(SDNode *N) {
 | 
						|
  return isVINSERTIndex(N, 128);
 | 
						|
}
 | 
						|
 | 
						|
bool X86::isVINSERT256Index(SDNode *N) {
 | 
						|
  return isVINSERTIndex(N, 256);
 | 
						|
}
 | 
						|
 | 
						|
bool X86::isVEXTRACT128Index(SDNode *N) {
 | 
						|
  return isVEXTRACTIndex(N, 128);
 | 
						|
}
 | 
						|
 | 
						|
bool X86::isVEXTRACT256Index(SDNode *N) {
 | 
						|
  return isVEXTRACTIndex(N, 256);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
 | 
						|
  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
 | 
						|
  assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) &&
 | 
						|
         "Illegal extract subvector for VEXTRACT");
 | 
						|
 | 
						|
  uint64_t Index =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
 | 
						|
 | 
						|
  MVT VecVT = N->getOperand(0).getSimpleValueType();
 | 
						|
  MVT ElVT = VecVT.getVectorElementType();
 | 
						|
 | 
						|
  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
 | 
						|
  return Index / NumElemsPerChunk;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
 | 
						|
  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
 | 
						|
  assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) &&
 | 
						|
         "Illegal insert subvector for VINSERT");
 | 
						|
 | 
						|
  uint64_t Index =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
 | 
						|
 | 
						|
  MVT VecVT = N->getSimpleValueType(0);
 | 
						|
  MVT ElVT = VecVT.getVectorElementType();
 | 
						|
 | 
						|
  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
 | 
						|
  return Index / NumElemsPerChunk;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the appropriate immediate to extract the specified
 | 
						|
/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions.
 | 
						|
unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
 | 
						|
  return getExtractVEXTRACTImmediate(N, 128);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the appropriate immediate to extract the specified
 | 
						|
/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions.
 | 
						|
unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
 | 
						|
  return getExtractVEXTRACTImmediate(N, 256);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the appropriate immediate to insert at the specified
 | 
						|
/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions.
 | 
						|
unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
 | 
						|
  return getInsertVINSERTImmediate(N, 128);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the appropriate immediate to insert at the specified
 | 
						|
/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions.
 | 
						|
unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
 | 
						|
  return getInsertVINSERTImmediate(N, 256);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if Elt is a constant zero or a floating point constant +0.0.
 | 
						|
bool X86::isZeroNode(SDValue Elt) {
 | 
						|
  return isNullConstant(Elt) || isNullFPConstant(Elt);
 | 
						|
}
 | 
						|
 | 
						|
// Build a vector of constants
 | 
						|
// Use an UNDEF node if MaskElt == -1.
 | 
						|
// Spilt 64-bit constants in the 32-bit mode.
 | 
						|
static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG,
 | 
						|
                              const SDLoc &dl, bool IsMask = false) {
 | 
						|
 | 
						|
  SmallVector<SDValue, 32>  Ops;
 | 
						|
  bool Split = false;
 | 
						|
 | 
						|
  MVT ConstVecVT = VT;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
 | 
						|
  if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
 | 
						|
    ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
 | 
						|
    Split = true;
 | 
						|
  }
 | 
						|
 | 
						|
  MVT EltVT = ConstVecVT.getVectorElementType();
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    bool IsUndef = Values[i] < 0 && IsMask;
 | 
						|
    SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
 | 
						|
      DAG.getConstant(Values[i], dl, EltVT);
 | 
						|
    Ops.push_back(OpNode);
 | 
						|
    if (Split)
 | 
						|
      Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
 | 
						|
                    DAG.getConstant(0, dl, EltVT));
 | 
						|
  }
 | 
						|
  SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
 | 
						|
  if (Split)
 | 
						|
    ConstsNode = DAG.getBitcast(VT, ConstsNode);
 | 
						|
  return ConstsNode;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getConstVector(ArrayRef<APInt> Bits, SmallBitVector &Undefs,
 | 
						|
                              MVT VT, SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert(Bits.size() == Undefs.size() && "Unequal constant and undef arrays");
 | 
						|
  SmallVector<SDValue, 32> Ops;
 | 
						|
  bool Split = false;
 | 
						|
 | 
						|
  MVT ConstVecVT = VT;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
 | 
						|
  if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
 | 
						|
    ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
 | 
						|
    Split = true;
 | 
						|
  }
 | 
						|
 | 
						|
  MVT EltVT = ConstVecVT.getVectorElementType();
 | 
						|
  for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
 | 
						|
    if (Undefs[i]) {
 | 
						|
      Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    const APInt &V = Bits[i];
 | 
						|
    assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes");
 | 
						|
    if (Split) {
 | 
						|
      Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
 | 
						|
      Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
 | 
						|
    } else if (EltVT == MVT::f32) {
 | 
						|
      APFloat FV(APFloat::IEEEsingle(), V);
 | 
						|
      Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
 | 
						|
    } else if (EltVT == MVT::f64) {
 | 
						|
      APFloat FV(APFloat::IEEEdouble(), V);
 | 
						|
      Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
 | 
						|
    } else {
 | 
						|
      Ops.push_back(DAG.getConstant(V, dl, EltVT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
 | 
						|
  return DAG.getBitcast(VT, ConstsNode);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector of specified type with all zero elements.
 | 
						|
static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
 | 
						|
                             SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
 | 
						|
          VT.getVectorElementType() == MVT::i1) &&
 | 
						|
         "Unexpected vector type");
 | 
						|
 | 
						|
  // Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
 | 
						|
  // type. This ensures they get CSE'd. But if the integer type is not
 | 
						|
  // available, use a floating-point +0.0 instead.
 | 
						|
  SDValue Vec;
 | 
						|
  if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
 | 
						|
    Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
 | 
						|
  } else if (VT.getVectorElementType() == MVT::i1) {
 | 
						|
    assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
 | 
						|
           "Unexpected vector type");
 | 
						|
    assert((Subtarget.hasVLX() || VT.getVectorNumElements() >= 8) &&
 | 
						|
           "Unexpected vector type");
 | 
						|
    Vec = DAG.getConstant(0, dl, VT);
 | 
						|
  } else {
 | 
						|
    unsigned Num32BitElts = VT.getSizeInBits() / 32;
 | 
						|
    Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
 | 
						|
  }
 | 
						|
  return DAG.getBitcast(VT, Vec);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
 | 
						|
                                const SDLoc &dl, unsigned vectorWidth) {
 | 
						|
  EVT VT = Vec.getValueType();
 | 
						|
  EVT ElVT = VT.getVectorElementType();
 | 
						|
  unsigned Factor = VT.getSizeInBits()/vectorWidth;
 | 
						|
  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
 | 
						|
                                  VT.getVectorNumElements()/Factor);
 | 
						|
 | 
						|
  // Extract from UNDEF is UNDEF.
 | 
						|
  if (Vec.isUndef())
 | 
						|
    return DAG.getUNDEF(ResultVT);
 | 
						|
 | 
						|
  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
 | 
						|
  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
 | 
						|
  assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
 | 
						|
 | 
						|
  // This is the index of the first element of the vectorWidth-bit chunk
 | 
						|
  // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
 | 
						|
  IdxVal &= ~(ElemsPerChunk - 1);
 | 
						|
 | 
						|
  // If the input is a buildvector just emit a smaller one.
 | 
						|
  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
 | 
						|
    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
 | 
						|
                       makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk));
 | 
						|
 | 
						|
  SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
 | 
						|
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
 | 
						|
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
 | 
						|
/// instructions or a simple subregister reference. Idx is an index in the
 | 
						|
/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
 | 
						|
/// lowering EXTRACT_VECTOR_ELT operations easier.
 | 
						|
static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
 | 
						|
                                   SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert((Vec.getValueType().is256BitVector() ||
 | 
						|
          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
 | 
						|
  return extractSubVector(Vec, IdxVal, DAG, dl, 128);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate a DAG to grab 256-bits from a 512-bit vector.
 | 
						|
static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
 | 
						|
                                   SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
 | 
						|
  return extractSubVector(Vec, IdxVal, DAG, dl, 256);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal,
 | 
						|
                               SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                               unsigned vectorWidth) {
 | 
						|
  assert((vectorWidth == 128 || vectorWidth == 256) &&
 | 
						|
         "Unsupported vector width");
 | 
						|
  // Inserting UNDEF is Result
 | 
						|
  if (Vec.isUndef())
 | 
						|
    return Result;
 | 
						|
  EVT VT = Vec.getValueType();
 | 
						|
  EVT ElVT = VT.getVectorElementType();
 | 
						|
  EVT ResultVT = Result.getValueType();
 | 
						|
 | 
						|
  // Insert the relevant vectorWidth bits.
 | 
						|
  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
 | 
						|
  assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
 | 
						|
 | 
						|
  // This is the index of the first element of the vectorWidth-bit chunk
 | 
						|
  // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
 | 
						|
  IdxVal &= ~(ElemsPerChunk - 1);
 | 
						|
 | 
						|
  SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
 | 
						|
  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
 | 
						|
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
 | 
						|
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
 | 
						|
/// simple superregister reference.  Idx is an index in the 128 bits
 | 
						|
/// we want.  It need not be aligned to a 128-bit boundary.  That makes
 | 
						|
/// lowering INSERT_VECTOR_ELT operations easier.
 | 
						|
static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
 | 
						|
                                  SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
 | 
						|
 | 
						|
  // For insertion into the zero index (low half) of a 256-bit vector, it is
 | 
						|
  // more efficient to generate a blend with immediate instead of an insert*128.
 | 
						|
  // We are still creating an INSERT_SUBVECTOR below with an undef node to
 | 
						|
  // extend the subvector to the size of the result vector. Make sure that
 | 
						|
  // we are not recursing on that node by checking for undef here.
 | 
						|
  if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
 | 
						|
      !Result.isUndef()) {
 | 
						|
    EVT ResultVT = Result.getValueType();
 | 
						|
    SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl);
 | 
						|
    SDValue Undef = DAG.getUNDEF(ResultVT);
 | 
						|
    SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
 | 
						|
                                 Vec, ZeroIndex);
 | 
						|
 | 
						|
    // The blend instruction, and therefore its mask, depend on the data type.
 | 
						|
    MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT();
 | 
						|
    if (ScalarType.isFloatingPoint()) {
 | 
						|
      // Choose either vblendps (float) or vblendpd (double).
 | 
						|
      unsigned ScalarSize = ScalarType.getSizeInBits();
 | 
						|
      assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
 | 
						|
      unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
 | 
						|
      SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8);
 | 
						|
      return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
 | 
						|
    }
 | 
						|
 | 
						|
    const X86Subtarget &Subtarget =
 | 
						|
    static_cast<const X86Subtarget &>(DAG.getSubtarget());
 | 
						|
 | 
						|
    // AVX2 is needed for 256-bit integer blend support.
 | 
						|
    // Integers must be cast to 32-bit because there is only vpblendd;
 | 
						|
    // vpblendw can't be used for this because it has a handicapped mask.
 | 
						|
 | 
						|
    // If we don't have AVX2, then cast to float. Using a wrong domain blend
 | 
						|
    // is still more efficient than using the wrong domain vinsertf128 that
 | 
						|
    // will be created by InsertSubVector().
 | 
						|
    MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
 | 
						|
 | 
						|
    SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
 | 
						|
    Result = DAG.getBitcast(CastVT, Result);
 | 
						|
    Vec256 = DAG.getBitcast(CastVT, Vec256);
 | 
						|
    Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
 | 
						|
    return DAG.getBitcast(ResultVT, Vec256);
 | 
						|
  }
 | 
						|
 | 
						|
  return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
 | 
						|
                                  SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
 | 
						|
  return insertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
 | 
						|
}
 | 
						|
 | 
						|
/// Insert i1-subvector to i1-vector.
 | 
						|
static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                const X86Subtarget &Subtarget) {
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  SDValue SubVec = Op.getOperand(1);
 | 
						|
  SDValue Idx = Op.getOperand(2);
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(Idx))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  if (IdxVal == 0  && Vec.isUndef()) // the operation is legal
 | 
						|
    return Op;
 | 
						|
 | 
						|
  MVT OpVT = Op.getSimpleValueType();
 | 
						|
  MVT SubVecVT = SubVec.getSimpleValueType();
 | 
						|
  unsigned NumElems = OpVT.getVectorNumElements();
 | 
						|
  unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
 | 
						|
 | 
						|
  assert(IdxVal + SubVecNumElems <= NumElems &&
 | 
						|
         IdxVal % SubVecVT.getSizeInBits() == 0 &&
 | 
						|
         "Unexpected index value in INSERT_SUBVECTOR");
 | 
						|
 | 
						|
  // There are 3 possible cases:
 | 
						|
  // 1. Subvector should be inserted in the lower part (IdxVal == 0)
 | 
						|
  // 2. Subvector should be inserted in the upper part
 | 
						|
  //    (IdxVal + SubVecNumElems == NumElems)
 | 
						|
  // 3. Subvector should be inserted in the middle (for example v2i1
 | 
						|
  //    to v16i1, index 2)
 | 
						|
 | 
						|
  // extend to natively supported kshift
 | 
						|
  MVT MinVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
 | 
						|
  MVT WideOpVT = OpVT;
 | 
						|
  if (OpVT.getSizeInBits() < MinVT.getStoreSizeInBits())
 | 
						|
    WideOpVT = MinVT;
 | 
						|
 | 
						|
  SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
 | 
						|
  SDValue Undef = DAG.getUNDEF(WideOpVT);
 | 
						|
  SDValue WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
 | 
						|
                                   Undef, SubVec, ZeroIdx);
 | 
						|
 | 
						|
  // Extract sub-vector if require.
 | 
						|
  auto ExtractSubVec = [&](SDValue V) {
 | 
						|
    return (WideOpVT == OpVT) ? V : DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
 | 
						|
                                                OpVT, V, ZeroIdx);
 | 
						|
  };
 | 
						|
 | 
						|
  if (Vec.isUndef()) {
 | 
						|
    if (IdxVal != 0) {
 | 
						|
      SDValue ShiftBits = DAG.getConstant(IdxVal, dl, MVT::i8);
 | 
						|
      WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec, ShiftBits);
 | 
						|
    }
 | 
						|
    return ExtractSubVec(WideSubVec);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
 | 
						|
    NumElems = WideOpVT.getVectorNumElements();
 | 
						|
    unsigned ShiftLeft = NumElems - SubVecNumElems;
 | 
						|
    unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec,
 | 
						|
                             DAG.getConstant(ShiftLeft, dl, MVT::i8));
 | 
						|
    Vec = ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec,
 | 
						|
      DAG.getConstant(ShiftRight, dl, MVT::i8)) : Vec;
 | 
						|
    return ExtractSubVec(Vec);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IdxVal == 0) {
 | 
						|
    // Zero lower bits of the Vec
 | 
						|
    SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
 | 
						|
    Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
 | 
						|
    Vec = DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec, ShiftBits);
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, Vec, ShiftBits);
 | 
						|
    // Merge them together, SubVec should be zero extended.
 | 
						|
    WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
 | 
						|
                             getZeroVector(WideOpVT, Subtarget, DAG, dl),
 | 
						|
                             SubVec, ZeroIdx);
 | 
						|
    Vec =  DAG.getNode(ISD::OR, dl, WideOpVT, Vec, WideSubVec);
 | 
						|
    return ExtractSubVec(Vec);
 | 
						|
  }
 | 
						|
 | 
						|
  // Simple case when we put subvector in the upper part
 | 
						|
  if (IdxVal + SubVecNumElems == NumElems) {
 | 
						|
    // Zero upper bits of the Vec
 | 
						|
    WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec,
 | 
						|
                             DAG.getConstant(IdxVal, dl, MVT::i8));
 | 
						|
    SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
 | 
						|
    Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, Vec, ShiftBits);
 | 
						|
    Vec = DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec, ShiftBits);
 | 
						|
    Vec = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, WideSubVec);
 | 
						|
    return ExtractSubVec(Vec);
 | 
						|
  }
 | 
						|
  // Subvector should be inserted in the middle - use shuffle
 | 
						|
  WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
 | 
						|
                           SubVec, ZeroIdx);
 | 
						|
  SmallVector<int, 64> Mask;
 | 
						|
  for (unsigned i = 0; i < NumElems; ++i)
 | 
						|
    Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ?
 | 
						|
                    i : i + NumElems);
 | 
						|
  return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask);
 | 
						|
}
 | 
						|
 | 
						|
/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
 | 
						|
/// instructions. This is used because creating CONCAT_VECTOR nodes of
 | 
						|
/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
 | 
						|
/// large BUILD_VECTORS.
 | 
						|
static SDValue concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
 | 
						|
                                   unsigned NumElems, SelectionDAG &DAG,
 | 
						|
                                   const SDLoc &dl) {
 | 
						|
  SDValue V = insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
 | 
						|
  return insert128BitVector(V, V2, NumElems / 2, DAG, dl);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
 | 
						|
                                   unsigned NumElems, SelectionDAG &DAG,
 | 
						|
                                   const SDLoc &dl) {
 | 
						|
  SDValue V = insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
 | 
						|
  return insert256BitVector(V, V2, NumElems / 2, DAG, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector of specified type with all bits set.
 | 
						|
/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
 | 
						|
/// no AVX2 support, use two <4 x i32> inserted in a <8 x i32> appropriately.
 | 
						|
/// Then bitcast to their original type, ensuring they get CSE'd.
 | 
						|
static SDValue getOnesVector(EVT VT, const X86Subtarget &Subtarget,
 | 
						|
                             SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
 | 
						|
         "Expected a 128/256/512-bit vector type");
 | 
						|
 | 
						|
  APInt Ones = APInt::getAllOnesValue(32);
 | 
						|
  unsigned NumElts = VT.getSizeInBits() / 32;
 | 
						|
  SDValue Vec;
 | 
						|
  if (!Subtarget.hasInt256() && NumElts == 8) {
 | 
						|
    Vec = DAG.getConstant(Ones, dl, MVT::v4i32);
 | 
						|
    Vec = concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
 | 
						|
  } else {
 | 
						|
    Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
 | 
						|
  }
 | 
						|
  return DAG.getBitcast(VT, Vec);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate unpacklo/unpackhi shuffle mask.
 | 
						|
static void createUnpackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo,
 | 
						|
                                    bool Unary) {
 | 
						|
  assert(Mask.empty() && "Expected an empty shuffle mask vector");
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  int NumEltsInLane = 128 / VT.getScalarSizeInBits();
 | 
						|
 | 
						|
  for (int i = 0; i < NumElts; ++i) {
 | 
						|
    unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
 | 
						|
    int Pos = (i % NumEltsInLane) / 2 + LaneStart;
 | 
						|
    Pos += (Unary ? 0 : NumElts * (i % 2));
 | 
						|
    Pos += (Lo ? 0 : NumEltsInLane / 2);
 | 
						|
    Mask.push_back(Pos);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector_shuffle node for an unpackl operation.
 | 
						|
static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
 | 
						|
                          SDValue V1, SDValue V2) {
 | 
						|
  SmallVector<int, 8> Mask;
 | 
						|
  createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false);
 | 
						|
  return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector_shuffle node for an unpackh operation.
 | 
						|
static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
 | 
						|
                          SDValue V1, SDValue V2) {
 | 
						|
  SmallVector<int, 8> Mask;
 | 
						|
  createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false);
 | 
						|
  return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
/// Return a vector_shuffle of the specified vector of zero or undef vector.
 | 
						|
/// This produces a shuffle where the low element of V2 is swizzled into the
 | 
						|
/// zero/undef vector, landing at element Idx.
 | 
						|
/// This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
 | 
						|
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx,
 | 
						|
                                           bool IsZero,
 | 
						|
                                           const X86Subtarget &Subtarget,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  MVT VT = V2.getSimpleValueType();
 | 
						|
  SDValue V1 = IsZero
 | 
						|
    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
 | 
						|
  int NumElems = VT.getVectorNumElements();
 | 
						|
  SmallVector<int, 16> MaskVec(NumElems);
 | 
						|
  for (int i = 0; i != NumElems; ++i)
 | 
						|
    // If this is the insertion idx, put the low elt of V2 here.
 | 
						|
    MaskVec[i] = (i == Idx) ? NumElems : i;
 | 
						|
  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue peekThroughBitcasts(SDValue V) {
 | 
						|
  while (V.getNode() && V.getOpcode() == ISD::BITCAST)
 | 
						|
    V = V.getOperand(0);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue peekThroughOneUseBitcasts(SDValue V) {
 | 
						|
  while (V.getNode() && V.getOpcode() == ISD::BITCAST &&
 | 
						|
         V.getOperand(0).hasOneUse())
 | 
						|
    V = V.getOperand(0);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
static const Constant *getTargetConstantFromNode(SDValue Op) {
 | 
						|
  Op = peekThroughBitcasts(Op);
 | 
						|
 | 
						|
  auto *Load = dyn_cast<LoadSDNode>(Op);
 | 
						|
  if (!Load)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SDValue Ptr = Load->getBasePtr();
 | 
						|
  if (Ptr->getOpcode() == X86ISD::Wrapper ||
 | 
						|
      Ptr->getOpcode() == X86ISD::WrapperRIP)
 | 
						|
    Ptr = Ptr->getOperand(0);
 | 
						|
 | 
						|
  auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
 | 
						|
  if (!CNode || CNode->isMachineConstantPoolEntry())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return dyn_cast<Constant>(CNode->getConstVal());
 | 
						|
}
 | 
						|
 | 
						|
// Extract raw constant bits from constant pools.
 | 
						|
static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits,
 | 
						|
                                          SmallBitVector &UndefElts,
 | 
						|
                                          SmallVectorImpl<APInt> &EltBits) {
 | 
						|
  assert(UndefElts.empty() && "Expected an empty UndefElts vector");
 | 
						|
  assert(EltBits.empty() && "Expected an empty EltBits vector");
 | 
						|
 | 
						|
  Op = peekThroughBitcasts(Op);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned SizeInBits = VT.getSizeInBits();
 | 
						|
  assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!");
 | 
						|
  unsigned NumElts = SizeInBits / EltSizeInBits;
 | 
						|
 | 
						|
  // Extract all the undef/constant element data and pack into single bitsets.
 | 
						|
  APInt UndefBits(SizeInBits, 0);
 | 
						|
  APInt MaskBits(SizeInBits, 0);
 | 
						|
 | 
						|
  // Split the undef/constant single bitset data into the target elements.
 | 
						|
  auto SplitBitData = [&]() {
 | 
						|
    UndefElts = SmallBitVector(NumElts, false);
 | 
						|
    EltBits.resize(NumElts, APInt(EltSizeInBits, 0));
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      APInt UndefEltBits = UndefBits.lshr(i * EltSizeInBits);
 | 
						|
      UndefEltBits = UndefEltBits.zextOrTrunc(EltSizeInBits);
 | 
						|
 | 
						|
      // Only treat an element as UNDEF if all bits are UNDEF, otherwise
 | 
						|
      // treat it as zero.
 | 
						|
      if (UndefEltBits.isAllOnesValue()) {
 | 
						|
        UndefElts[i] = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      APInt Bits = MaskBits.lshr(i * EltSizeInBits);
 | 
						|
      Bits = Bits.zextOrTrunc(EltSizeInBits);
 | 
						|
      EltBits[i] = Bits.getZExtValue();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  auto ExtractConstantBits = [SizeInBits](const Constant *Cst, APInt &Mask,
 | 
						|
                                          APInt &Undefs) {
 | 
						|
    if (!Cst)
 | 
						|
      return false;
 | 
						|
    unsigned CstSizeInBits = Cst->getType()->getPrimitiveSizeInBits();
 | 
						|
    if (isa<UndefValue>(Cst)) {
 | 
						|
      Mask = APInt::getNullValue(SizeInBits);
 | 
						|
      Undefs = APInt::getLowBitsSet(SizeInBits, CstSizeInBits);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
 | 
						|
      Mask = CInt->getValue().zextOrTrunc(SizeInBits);
 | 
						|
      Undefs = APInt::getNullValue(SizeInBits);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
 | 
						|
      Mask = CFP->getValueAPF().bitcastToAPInt().zextOrTrunc(SizeInBits);
 | 
						|
      Undefs = APInt::getNullValue(SizeInBits);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Extract constant bits from constant pool vector.
 | 
						|
  if (auto *Cst = getTargetConstantFromNode(Op)) {
 | 
						|
    Type *CstTy = Cst->getType();
 | 
						|
    if (!CstTy->isVectorTy() || (SizeInBits != CstTy->getPrimitiveSizeInBits()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned CstEltSizeInBits = CstTy->getScalarSizeInBits();
 | 
						|
    for (unsigned i = 0, e = CstTy->getVectorNumElements(); i != e; ++i) {
 | 
						|
      APInt Bits, Undefs;
 | 
						|
      if (!ExtractConstantBits(Cst->getAggregateElement(i), Bits, Undefs))
 | 
						|
        return false;
 | 
						|
      MaskBits |= Bits.shl(i * CstEltSizeInBits);
 | 
						|
      UndefBits |= Undefs.shl(i * CstEltSizeInBits);
 | 
						|
    }
 | 
						|
 | 
						|
    return SplitBitData();
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract constant bits from a broadcasted constant pool scalar.
 | 
						|
  if (Op.getOpcode() == X86ISD::VBROADCAST &&
 | 
						|
      EltSizeInBits <= Op.getScalarValueSizeInBits()) {
 | 
						|
    if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) {
 | 
						|
      APInt Bits, Undefs;
 | 
						|
      if (ExtractConstantBits(Broadcast, Bits, Undefs)) {
 | 
						|
        unsigned NumBroadcastBits = Op.getScalarValueSizeInBits();
 | 
						|
        unsigned NumBroadcastElts = SizeInBits / NumBroadcastBits;
 | 
						|
        for (unsigned i = 0; i != NumBroadcastElts; ++i) {
 | 
						|
          MaskBits |= Bits.shl(i * NumBroadcastBits);
 | 
						|
          UndefBits |= Undefs.shl(i * NumBroadcastBits);
 | 
						|
        }
 | 
						|
        return SplitBitData();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Merge more of this with getTargetConstantBitsFromNode.
 | 
						|
static bool getTargetShuffleMaskIndices(SDValue MaskNode,
 | 
						|
                                        unsigned MaskEltSizeInBits,
 | 
						|
                                        SmallVectorImpl<uint64_t> &RawMask) {
 | 
						|
  MaskNode = peekThroughBitcasts(MaskNode);
 | 
						|
 | 
						|
  MVT VT = MaskNode.getSimpleValueType();
 | 
						|
  assert(VT.isVector() && "Can't produce a non-vector with a build_vector!");
 | 
						|
  unsigned NumMaskElts = VT.getSizeInBits() / MaskEltSizeInBits;
 | 
						|
 | 
						|
  // Split an APInt element into MaskEltSizeInBits sized pieces and
 | 
						|
  // insert into the shuffle mask.
 | 
						|
  auto SplitElementToMask = [&](APInt Element) {
 | 
						|
    // Note that this is x86 and so always little endian: the low byte is
 | 
						|
    // the first byte of the mask.
 | 
						|
    int Split = VT.getScalarSizeInBits() / MaskEltSizeInBits;
 | 
						|
    for (int i = 0; i < Split; ++i) {
 | 
						|
      APInt RawElt = Element.getLoBits(MaskEltSizeInBits);
 | 
						|
      Element = Element.lshr(MaskEltSizeInBits);
 | 
						|
      RawMask.push_back(RawElt.getZExtValue());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (MaskNode.getOpcode() == X86ISD::VBROADCAST) {
 | 
						|
    // TODO: Handle (MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0
 | 
						|
    // TODO: Handle (VT.getScalarSizeInBits() % MaskEltSizeInBits) == 0
 | 
						|
    if (VT.getScalarSizeInBits() != MaskEltSizeInBits)
 | 
						|
      return false;
 | 
						|
    if (auto *CN = dyn_cast<ConstantSDNode>(MaskNode.getOperand(0))) {
 | 
						|
      const APInt &MaskElement = CN->getAPIntValue();
 | 
						|
      for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | 
						|
        APInt RawElt = MaskElement.getLoBits(MaskEltSizeInBits);
 | 
						|
        RawMask.push_back(RawElt.getZExtValue());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaskNode.getOpcode() == X86ISD::VZEXT_MOVL &&
 | 
						|
      MaskNode.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | 
						|
    SDValue MaskOp = MaskNode.getOperand(0).getOperand(0);
 | 
						|
    if (auto *CN = dyn_cast<ConstantSDNode>(MaskOp)) {
 | 
						|
      if ((MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0) {
 | 
						|
        RawMask.push_back(CN->getZExtValue());
 | 
						|
        RawMask.append(NumMaskElts - 1, 0);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((VT.getScalarSizeInBits() % MaskEltSizeInBits) == 0) {
 | 
						|
        unsigned ElementSplit = VT.getScalarSizeInBits() / MaskEltSizeInBits;
 | 
						|
        SplitElementToMask(CN->getAPIntValue());
 | 
						|
        RawMask.append((VT.getVectorNumElements() - 1) * ElementSplit, 0);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaskNode.getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can always decode if the buildvector is all zero constants,
 | 
						|
  // but can't use isBuildVectorAllZeros as it might contain UNDEFs.
 | 
						|
  if (all_of(MaskNode->ops(), X86::isZeroNode)) {
 | 
						|
    RawMask.append(NumMaskElts, 0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Handle (MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0
 | 
						|
  if ((VT.getScalarSizeInBits() % MaskEltSizeInBits) != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (SDValue Op : MaskNode->ops()) {
 | 
						|
    if (auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()))
 | 
						|
      SplitElementToMask(CN->getAPIntValue());
 | 
						|
    else if (auto *CFN = dyn_cast<ConstantFPSDNode>(Op.getNode()))
 | 
						|
      SplitElementToMask(CFN->getValueAPF().bitcastToAPInt());
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculates the shuffle mask corresponding to the target-specific opcode.
 | 
						|
/// If the mask could be calculated, returns it in \p Mask, returns the shuffle
 | 
						|
/// operands in \p Ops, and returns true.
 | 
						|
/// Sets \p IsUnary to true if only one source is used. Note that this will set
 | 
						|
/// IsUnary for shuffles which use a single input multiple times, and in those
 | 
						|
/// cases it will adjust the mask to only have indices within that single input.
 | 
						|
/// It is an error to call this with non-empty Mask/Ops vectors.
 | 
						|
static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
 | 
						|
                                 SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  SDValue ImmN;
 | 
						|
 | 
						|
  assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
 | 
						|
  assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
 | 
						|
 | 
						|
  IsUnary = false;
 | 
						|
  bool IsFakeUnary = false;
 | 
						|
  switch(N->getOpcode()) {
 | 
						|
  case X86ISD::BLENDI:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    break;
 | 
						|
  case X86ISD::SHUFP:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::INSERTPS:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::UNPCKH:
 | 
						|
    DecodeUNPCKHMask(VT, Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::UNPCKL:
 | 
						|
    DecodeUNPCKLMask(VT, Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVHLPS:
 | 
						|
    DecodeMOVHLPSMask(NumElems, Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVLHPS:
 | 
						|
    DecodeMOVLHPSMask(NumElems, Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::PALIGNR:
 | 
						|
    assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
    break;
 | 
						|
  case X86ISD::VSHLDQ:
 | 
						|
    assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
 | 
						|
    ImmN = N->getOperand(N->getNumOperands() - 1);
 | 
						|
    DecodePSLLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::VSRLDQ:
 | 
						|
    assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
 | 
						|
    ImmN = N->getOperand(N->getNumOperands() - 1);
 | 
						|
    DecodePSRLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
  case X86ISD::VPERMILPI:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::VZEXT_MOVL:
 | 
						|
    DecodeZeroMoveLowMask(VT, Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::VBROADCAST: {
 | 
						|
    // We only decode broadcasts of same-sized vectors at the moment.
 | 
						|
    if (N->getOperand(0).getValueType() == VT) {
 | 
						|
      DecodeVectorBroadcast(VT, Mask);
 | 
						|
      IsUnary = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPERMILPV: {
 | 
						|
    IsUnary = true;
 | 
						|
    SDValue MaskNode = N->getOperand(1);
 | 
						|
    unsigned MaskEltSize = VT.getScalarSizeInBits();
 | 
						|
    SmallVector<uint64_t, 32> RawMask;
 | 
						|
    if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
 | 
						|
      DecodeVPERMILPMask(VT, RawMask, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodeVPERMILPMask(C, MaskEltSize, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::PSHUFB: {
 | 
						|
    IsUnary = true;
 | 
						|
    SDValue MaskNode = N->getOperand(1);
 | 
						|
    SmallVector<uint64_t, 32> RawMask;
 | 
						|
    if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
 | 
						|
      DecodePSHUFBMask(RawMask, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodePSHUFBMask(C, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPERMI:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodeVPERMMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVSS:
 | 
						|
  case X86ISD::MOVSD:
 | 
						|
    DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
 | 
						|
    break;
 | 
						|
  case X86ISD::VPERM2X128:
 | 
						|
    ImmN = N->getOperand(N->getNumOperands()-1);
 | 
						|
    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVSLDUP:
 | 
						|
    DecodeMOVSLDUPMask(VT, Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVSHDUP:
 | 
						|
    DecodeMOVSHDUPMask(VT, Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVDDUP:
 | 
						|
    DecodeMOVDDUPMask(VT, Mask);
 | 
						|
    IsUnary = true;
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVLHPD:
 | 
						|
  case X86ISD::MOVLPD:
 | 
						|
  case X86ISD::MOVLPS:
 | 
						|
    // Not yet implemented
 | 
						|
    return false;
 | 
						|
  case X86ISD::VPERMIL2: {
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    unsigned MaskEltSize = VT.getScalarSizeInBits();
 | 
						|
    SDValue MaskNode = N->getOperand(2);
 | 
						|
    SDValue CtrlNode = N->getOperand(3);
 | 
						|
    if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) {
 | 
						|
      unsigned CtrlImm = CtrlOp->getZExtValue();
 | 
						|
      SmallVector<uint64_t, 32> RawMask;
 | 
						|
      if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
 | 
						|
        DecodeVPERMIL2PMask(VT, CtrlImm, RawMask, Mask);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
        DecodeVPERMIL2PMask(C, CtrlImm, MaskEltSize, Mask);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPPERM: {
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
 | 
						|
    SDValue MaskNode = N->getOperand(2);
 | 
						|
    SmallVector<uint64_t, 32> RawMask;
 | 
						|
    if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
 | 
						|
      DecodeVPPERMMask(RawMask, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodeVPPERMMask(C, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPERMV: {
 | 
						|
    IsUnary = true;
 | 
						|
    // Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
    SDValue MaskNode = N->getOperand(0);
 | 
						|
    SmallVector<uint64_t, 32> RawMask;
 | 
						|
    unsigned MaskEltSize = VT.getScalarSizeInBits();
 | 
						|
    if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
 | 
						|
      DecodeVPERMVMask(RawMask, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodeVPERMVMask(C, MaskEltSize, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPERMV3: {
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
 | 
						|
    // Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
    Ops.push_back(N->getOperand(2));
 | 
						|
    SDValue MaskNode = N->getOperand(1);
 | 
						|
    unsigned MaskEltSize = VT.getScalarSizeInBits();
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodeVPERMV3Mask(C, MaskEltSize, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case X86ISD::VPERMIV3: {
 | 
						|
    IsUnary = IsFakeUnary = N->getOperand(1) == N->getOperand(2);
 | 
						|
    // Unlike most shuffle nodes, VPERMIV3's mask operand is the first one.
 | 
						|
    Ops.push_back(N->getOperand(1));
 | 
						|
    Ops.push_back(N->getOperand(2));
 | 
						|
    SDValue MaskNode = N->getOperand(0);
 | 
						|
    unsigned MaskEltSize = VT.getScalarSizeInBits();
 | 
						|
    if (auto *C = getTargetConstantFromNode(MaskNode)) {
 | 
						|
      DecodeVPERMV3Mask(C, MaskEltSize, Mask);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  default: llvm_unreachable("unknown target shuffle node");
 | 
						|
  }
 | 
						|
 | 
						|
  // Empty mask indicates the decode failed.
 | 
						|
  if (Mask.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if we're getting a shuffle mask with zero'd elements.
 | 
						|
  if (!AllowSentinelZero)
 | 
						|
    if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If we have a fake unary shuffle, the shuffle mask is spread across two
 | 
						|
  // inputs that are actually the same node. Re-map the mask to always point
 | 
						|
  // into the first input.
 | 
						|
  if (IsFakeUnary)
 | 
						|
    for (int &M : Mask)
 | 
						|
      if (M >= (int)Mask.size())
 | 
						|
        M -= Mask.size();
 | 
						|
 | 
						|
  // If we didn't already add operands in the opcode-specific code, default to
 | 
						|
  // adding 1 or 2 operands starting at 0.
 | 
						|
  if (Ops.empty()) {
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
    if (!IsUnary || IsFakeUnary)
 | 
						|
      Ops.push_back(N->getOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check a target shuffle mask's inputs to see if we can set any values to
 | 
						|
/// SM_SentinelZero - this is for elements that are known to be zero
 | 
						|
/// (not just zeroable) from their inputs.
 | 
						|
/// Returns true if the target shuffle mask was decoded.
 | 
						|
static bool setTargetShuffleZeroElements(SDValue N,
 | 
						|
                                         SmallVectorImpl<int> &Mask,
 | 
						|
                                         SmallVectorImpl<SDValue> &Ops) {
 | 
						|
  bool IsUnary;
 | 
						|
  if (!isTargetShuffle(N.getOpcode()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT VT = N.getSimpleValueType();
 | 
						|
  if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue V1 = Ops[0];
 | 
						|
  SDValue V2 = IsUnary ? V1 : Ops[1];
 | 
						|
 | 
						|
  V1 = peekThroughBitcasts(V1);
 | 
						|
  V2 = peekThroughBitcasts(V2);
 | 
						|
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
 | 
						|
    // Already decoded as SM_SentinelZero / SM_SentinelUndef.
 | 
						|
    if (M < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine shuffle input and normalize the mask.
 | 
						|
    SDValue V = M < Size ? V1 : V2;
 | 
						|
    M %= Size;
 | 
						|
 | 
						|
    // We are referencing an UNDEF input.
 | 
						|
    if (V.isUndef()) {
 | 
						|
      Mask[i] = SM_SentinelUndef;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
 | 
						|
    if (V.getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the BUILD_VECTOR has fewer elements then the (larger) source
 | 
						|
    // element must be UNDEF/ZERO.
 | 
						|
    // TODO: Is it worth testing the individual bits of a constant?
 | 
						|
    if ((Size % V.getNumOperands()) == 0) {
 | 
						|
      int Scale = Size / V->getNumOperands();
 | 
						|
      SDValue Op = V.getOperand(M / Scale);
 | 
						|
      if (Op.isUndef())
 | 
						|
        Mask[i] = SM_SentinelUndef;
 | 
						|
      else if (X86::isZeroNode(Op))
 | 
						|
        Mask[i] = SM_SentinelZero;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the BUILD_VECTOR has more elements then all the (smaller) source
 | 
						|
    // elements must be all UNDEF or all ZERO.
 | 
						|
    if ((V.getNumOperands() % Size) == 0) {
 | 
						|
      int Scale = V->getNumOperands() / Size;
 | 
						|
      bool AllUndef = true;
 | 
						|
      bool AllZero = true;
 | 
						|
      for (int j = 0; j < Scale; ++j) {
 | 
						|
        SDValue Op = V.getOperand((M * Scale) + j);
 | 
						|
        AllUndef &= Op.isUndef();
 | 
						|
        AllZero &= X86::isZeroNode(Op);
 | 
						|
      }
 | 
						|
      if (AllUndef)
 | 
						|
        Mask[i] = SM_SentinelUndef;
 | 
						|
      else if (AllZero)
 | 
						|
        Mask[i] = SM_SentinelZero;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT.getVectorNumElements() == Mask.size() &&
 | 
						|
         "Different mask size from vector size!");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to decode ops that could be represented as a shuffle mask.
 | 
						|
// The decoded shuffle mask may contain a different number of elements to the
 | 
						|
// destination value type.
 | 
						|
static bool getFauxShuffleMask(SDValue N, SmallVectorImpl<int> &Mask,
 | 
						|
                               SmallVectorImpl<SDValue> &Ops) {
 | 
						|
  Mask.clear();
 | 
						|
  Ops.clear();
 | 
						|
 | 
						|
  MVT VT = N.getSimpleValueType();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned NumSizeInBits = VT.getSizeInBits();
 | 
						|
  unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | 
						|
  assert((NumBitsPerElt % 8) == 0 && (NumSizeInBits % 8) == 0 &&
 | 
						|
         "Expected byte aligned value types");
 | 
						|
 | 
						|
  unsigned Opcode = N.getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case ISD::AND: {
 | 
						|
    // Attempt to decode as a per-byte mask.
 | 
						|
    SmallBitVector UndefElts;
 | 
						|
    SmallVector<APInt, 32> EltBits;
 | 
						|
    if (!getTargetConstantBitsFromNode(N.getOperand(1), 8, UndefElts, EltBits))
 | 
						|
      return false;
 | 
						|
    for (int i = 0, e = (int)EltBits.size(); i != e; ++i) {
 | 
						|
      if (UndefElts[i]) {
 | 
						|
        Mask.push_back(SM_SentinelUndef);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      uint64_t ByteBits = EltBits[i].getZExtValue();
 | 
						|
      if (ByteBits != 0 && ByteBits != 255)
 | 
						|
        return false;
 | 
						|
      Mask.push_back(ByteBits == 0 ? SM_SentinelZero : i);
 | 
						|
    }
 | 
						|
    Ops.push_back(N.getOperand(0));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case X86ISD::VSHLI:
 | 
						|
  case X86ISD::VSRLI: {
 | 
						|
    uint64_t ShiftVal = N.getConstantOperandVal(1);
 | 
						|
    // Out of range bit shifts are guaranteed to be zero.
 | 
						|
    if (NumBitsPerElt <= ShiftVal) {
 | 
						|
      Mask.append(NumElts, SM_SentinelZero);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can only decode 'whole byte' bit shifts as shuffles.
 | 
						|
    if ((ShiftVal % 8) != 0)
 | 
						|
      break;
 | 
						|
 | 
						|
    uint64_t ByteShift = ShiftVal / 8;
 | 
						|
    unsigned NumBytes = NumSizeInBits / 8;
 | 
						|
    unsigned NumBytesPerElt = NumBitsPerElt / 8;
 | 
						|
    Ops.push_back(N.getOperand(0));
 | 
						|
 | 
						|
    // Clear mask to all zeros and insert the shifted byte indices.
 | 
						|
    Mask.append(NumBytes, SM_SentinelZero);
 | 
						|
 | 
						|
    if (X86ISD::VSHLI == Opcode) {
 | 
						|
      for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
 | 
						|
        for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
 | 
						|
          Mask[i + j] = i + j - ByteShift;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
 | 
						|
        for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
 | 
						|
          Mask[i + j - ByteShift] = i + j;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case X86ISD::VZEXT: {
 | 
						|
    // TODO - add support for VPMOVZX with smaller input vector types.
 | 
						|
    SDValue Src = N.getOperand(0);
 | 
						|
    MVT SrcVT = Src.getSimpleValueType();
 | 
						|
    if (NumSizeInBits != SrcVT.getSizeInBits())
 | 
						|
      break;
 | 
						|
    DecodeZeroExtendMask(SrcVT.getScalarType(), VT, Mask);
 | 
						|
    Ops.push_back(Src);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs
 | 
						|
/// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the
 | 
						|
/// remaining input indices in case we now have a unary shuffle and adjust the
 | 
						|
/// Op0/Op1 inputs accordingly.
 | 
						|
/// Returns true if the target shuffle mask was decoded.
 | 
						|
static bool resolveTargetShuffleInputs(SDValue Op, SDValue &Op0, SDValue &Op1,
 | 
						|
                                       SmallVectorImpl<int> &Mask) {
 | 
						|
  SmallVector<SDValue, 2> Ops;
 | 
						|
  if (!setTargetShuffleZeroElements(Op, Mask, Ops))
 | 
						|
    if (!getFauxShuffleMask(Op, Mask, Ops))
 | 
						|
      return false;
 | 
						|
 | 
						|
  int NumElts = Mask.size();
 | 
						|
  bool Op0InUse = any_of(Mask, [NumElts](int Idx) {
 | 
						|
    return 0 <= Idx && Idx < NumElts;
 | 
						|
  });
 | 
						|
  bool Op1InUse = any_of(Mask, [NumElts](int Idx) { return NumElts <= Idx; });
 | 
						|
 | 
						|
  Op0 = Op0InUse ? Ops[0] : SDValue();
 | 
						|
  Op1 = Op1InUse ? Ops[1] : SDValue();
 | 
						|
 | 
						|
  // We're only using Op1 - commute the mask and inputs.
 | 
						|
  if (!Op0InUse && Op1InUse) {
 | 
						|
    for (int &M : Mask)
 | 
						|
      if (NumElts <= M)
 | 
						|
        M -= NumElts;
 | 
						|
    Op0 = Op1;
 | 
						|
    Op1 = SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the scalar element that will make up the ith
 | 
						|
/// element of the result of the vector shuffle.
 | 
						|
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
 | 
						|
                                   unsigned Depth) {
 | 
						|
  if (Depth == 6)
 | 
						|
    return SDValue();  // Limit search depth.
 | 
						|
 | 
						|
  SDValue V = SDValue(N, 0);
 | 
						|
  EVT VT = V.getValueType();
 | 
						|
  unsigned Opcode = V.getOpcode();
 | 
						|
 | 
						|
  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
 | 
						|
  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
 | 
						|
    int Elt = SV->getMaskElt(Index);
 | 
						|
 | 
						|
    if (Elt < 0)
 | 
						|
      return DAG.getUNDEF(VT.getVectorElementType());
 | 
						|
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
 | 
						|
                                         : SV->getOperand(1);
 | 
						|
    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Recurse into target specific vector shuffles to find scalars.
 | 
						|
  if (isTargetShuffle(Opcode)) {
 | 
						|
    MVT ShufVT = V.getSimpleValueType();
 | 
						|
    MVT ShufSVT = ShufVT.getVectorElementType();
 | 
						|
    int NumElems = (int)ShufVT.getVectorNumElements();
 | 
						|
    SmallVector<int, 16> ShuffleMask;
 | 
						|
    SmallVector<SDValue, 16> ShuffleOps;
 | 
						|
    bool IsUnary;
 | 
						|
 | 
						|
    if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    int Elt = ShuffleMask[Index];
 | 
						|
    if (Elt == SM_SentinelZero)
 | 
						|
      return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
 | 
						|
                                 : DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
 | 
						|
    if (Elt == SM_SentinelUndef)
 | 
						|
      return DAG.getUNDEF(ShufSVT);
 | 
						|
 | 
						|
    assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
 | 
						|
    SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
 | 
						|
    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
 | 
						|
                               Depth+1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Actual nodes that may contain scalar elements
 | 
						|
  if (Opcode == ISD::BITCAST) {
 | 
						|
    V = V.getOperand(0);
 | 
						|
    EVT SrcVT = V.getValueType();
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | 
						|
    return (Index == 0) ? V.getOperand(0)
 | 
						|
                        : DAG.getUNDEF(VT.getVectorElementType());
 | 
						|
 | 
						|
  if (V.getOpcode() == ISD::BUILD_VECTOR)
 | 
						|
    return V.getOperand(Index);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lower build_vector of v16i8.
 | 
						|
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
 | 
						|
                                       unsigned NumNonZero, unsigned NumZero,
 | 
						|
                                       SelectionDAG &DAG,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       const TargetLowering &TLI) {
 | 
						|
  if (NumNonZero > 8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V;
 | 
						|
  bool First = true;
 | 
						|
 | 
						|
  // SSE4.1 - use PINSRB to insert each byte directly.
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    for (unsigned i = 0; i < 16; ++i) {
 | 
						|
      bool isNonZero = (NonZeros & (1 << i)) != 0;
 | 
						|
      if (isNonZero) {
 | 
						|
        if (First) {
 | 
						|
          if (NumZero)
 | 
						|
            V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
 | 
						|
          else
 | 
						|
            V = DAG.getUNDEF(MVT::v16i8);
 | 
						|
          First = false;
 | 
						|
        }
 | 
						|
        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
 | 
						|
                        MVT::v16i8, V, Op.getOperand(i),
 | 
						|
                        DAG.getIntPtrConstant(i, dl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
 | 
						|
  for (unsigned i = 0; i < 16; ++i) {
 | 
						|
    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
 | 
						|
    if (ThisIsNonZero && First) {
 | 
						|
      if (NumZero)
 | 
						|
        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
 | 
						|
      else
 | 
						|
        V = DAG.getUNDEF(MVT::v8i16);
 | 
						|
      First = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((i & 1) != 0) {
 | 
						|
      SDValue ThisElt, LastElt;
 | 
						|
      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
 | 
						|
      if (LastIsNonZero) {
 | 
						|
        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
 | 
						|
                              MVT::i16, Op.getOperand(i-1));
 | 
						|
      }
 | 
						|
      if (ThisIsNonZero) {
 | 
						|
        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
 | 
						|
        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
 | 
						|
                              ThisElt, DAG.getConstant(8, dl, MVT::i8));
 | 
						|
        if (LastIsNonZero)
 | 
						|
          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
 | 
						|
      } else
 | 
						|
        ThisElt = LastElt;
 | 
						|
 | 
						|
      if (ThisElt.getNode())
 | 
						|
        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
 | 
						|
                        DAG.getIntPtrConstant(i/2, dl));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getBitcast(MVT::v16i8, V);
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lower build_vector of v8i16.
 | 
						|
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
 | 
						|
                                     unsigned NumNonZero, unsigned NumZero,
 | 
						|
                                     SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget,
 | 
						|
                                     const TargetLowering &TLI) {
 | 
						|
  if (NumNonZero > 4)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V;
 | 
						|
  bool First = true;
 | 
						|
  for (unsigned i = 0; i < 8; ++i) {
 | 
						|
    bool isNonZero = (NonZeros & (1 << i)) != 0;
 | 
						|
    if (isNonZero) {
 | 
						|
      if (First) {
 | 
						|
        if (NumZero)
 | 
						|
          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
 | 
						|
        else
 | 
						|
          V = DAG.getUNDEF(MVT::v8i16);
 | 
						|
        First = false;
 | 
						|
      }
 | 
						|
      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
 | 
						|
                      MVT::v8i16, V, Op.getOperand(i),
 | 
						|
                      DAG.getIntPtrConstant(i, dl));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lower build_vector of v4i32 or v4f32.
 | 
						|
static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget,
 | 
						|
                                     const TargetLowering &TLI) {
 | 
						|
  // Find all zeroable elements.
 | 
						|
  std::bitset<4> Zeroable;
 | 
						|
  for (int i=0; i < 4; ++i) {
 | 
						|
    SDValue Elt = Op->getOperand(i);
 | 
						|
    Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
 | 
						|
  }
 | 
						|
  assert(Zeroable.size() - Zeroable.count() > 1 &&
 | 
						|
         "We expect at least two non-zero elements!");
 | 
						|
 | 
						|
  // We only know how to deal with build_vector nodes where elements are either
 | 
						|
  // zeroable or extract_vector_elt with constant index.
 | 
						|
  SDValue FirstNonZero;
 | 
						|
  unsigned FirstNonZeroIdx;
 | 
						|
  for (unsigned i=0; i < 4; ++i) {
 | 
						|
    if (Zeroable[i])
 | 
						|
      continue;
 | 
						|
    SDValue Elt = Op->getOperand(i);
 | 
						|
    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
        !isa<ConstantSDNode>(Elt.getOperand(1)))
 | 
						|
      return SDValue();
 | 
						|
    // Make sure that this node is extracting from a 128-bit vector.
 | 
						|
    MVT VT = Elt.getOperand(0).getSimpleValueType();
 | 
						|
    if (!VT.is128BitVector())
 | 
						|
      return SDValue();
 | 
						|
    if (!FirstNonZero.getNode()) {
 | 
						|
      FirstNonZero = Elt;
 | 
						|
      FirstNonZeroIdx = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
 | 
						|
  SDValue V1 = FirstNonZero.getOperand(0);
 | 
						|
  MVT VT = V1.getSimpleValueType();
 | 
						|
 | 
						|
  // See if this build_vector can be lowered as a blend with zero.
 | 
						|
  SDValue Elt;
 | 
						|
  unsigned EltMaskIdx, EltIdx;
 | 
						|
  int Mask[4];
 | 
						|
  for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
 | 
						|
    if (Zeroable[EltIdx]) {
 | 
						|
      // The zero vector will be on the right hand side.
 | 
						|
      Mask[EltIdx] = EltIdx+4;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Elt = Op->getOperand(EltIdx);
 | 
						|
    // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
 | 
						|
    EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
 | 
						|
    if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
 | 
						|
      break;
 | 
						|
    Mask[EltIdx] = EltIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  if (EltIdx == 4) {
 | 
						|
    // Let the shuffle legalizer deal with blend operations.
 | 
						|
    SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
 | 
						|
    if (V1.getSimpleValueType() != VT)
 | 
						|
      V1 = DAG.getBitcast(VT, V1);
 | 
						|
    return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can lower this build_vector to a INSERTPS.
 | 
						|
  if (!Subtarget.hasSSE41())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue V2 = Elt.getOperand(0);
 | 
						|
  if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
 | 
						|
    V1 = SDValue();
 | 
						|
 | 
						|
  bool CanFold = true;
 | 
						|
  for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
 | 
						|
    if (Zeroable[i])
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Current = Op->getOperand(i);
 | 
						|
    SDValue SrcVector = Current->getOperand(0);
 | 
						|
    if (!V1.getNode())
 | 
						|
      V1 = SrcVector;
 | 
						|
    CanFold = SrcVector == V1 &&
 | 
						|
      cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CanFold)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(V1.getNode() && "Expected at least two non-zero elements!");
 | 
						|
  if (V1.getSimpleValueType() != MVT::v4f32)
 | 
						|
    V1 = DAG.getBitcast(MVT::v4f32, V1);
 | 
						|
  if (V2.getSimpleValueType() != MVT::v4f32)
 | 
						|
    V2 = DAG.getBitcast(MVT::v4f32, V2);
 | 
						|
 | 
						|
  // Ok, we can emit an INSERTPS instruction.
 | 
						|
  unsigned ZMask = Zeroable.to_ulong();
 | 
						|
 | 
						|
  unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
 | 
						|
  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
 | 
						|
                               DAG.getIntPtrConstant(InsertPSMask, DL));
 | 
						|
  return DAG.getBitcast(VT, Result);
 | 
						|
}
 | 
						|
 | 
						|
/// Return a vector logical shift node.
 | 
						|
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits,
 | 
						|
                         SelectionDAG &DAG, const TargetLowering &TLI,
 | 
						|
                         const SDLoc &dl) {
 | 
						|
  assert(VT.is128BitVector() && "Unknown type for VShift");
 | 
						|
  MVT ShVT = MVT::v16i8;
 | 
						|
  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
 | 
						|
  SrcOp = DAG.getBitcast(ShVT, SrcOp);
 | 
						|
  MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT);
 | 
						|
  assert(NumBits % 8 == 0 && "Only support byte sized shifts");
 | 
						|
  SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
 | 
						|
  return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
 | 
						|
  // Check if the scalar load can be widened into a vector load. And if
 | 
						|
  // the address is "base + cst" see if the cst can be "absorbed" into
 | 
						|
  // the shuffle mask.
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
 | 
						|
    SDValue Ptr = LD->getBasePtr();
 | 
						|
    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
 | 
						|
      return SDValue();
 | 
						|
    EVT PVT = LD->getValueType(0);
 | 
						|
    if (PVT != MVT::i32 && PVT != MVT::f32)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    int FI = -1;
 | 
						|
    int64_t Offset = 0;
 | 
						|
    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
 | 
						|
      FI = FINode->getIndex();
 | 
						|
      Offset = 0;
 | 
						|
    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
 | 
						|
               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
 | 
						|
      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | 
						|
      Offset = Ptr.getConstantOperandVal(1);
 | 
						|
      Ptr = Ptr.getOperand(0);
 | 
						|
    } else {
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: 256-bit vector instructions don't require a strict alignment,
 | 
						|
    // improve this code to support it better.
 | 
						|
    unsigned RequiredAlign = VT.getSizeInBits()/8;
 | 
						|
    SDValue Chain = LD->getChain();
 | 
						|
    // Make sure the stack object alignment is at least 16 or 32.
 | 
						|
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
 | 
						|
      if (MFI.isFixedObjectIndex(FI)) {
 | 
						|
        // Can't change the alignment. FIXME: It's possible to compute
 | 
						|
        // the exact stack offset and reference FI + adjust offset instead.
 | 
						|
        // If someone *really* cares about this. That's the way to implement it.
 | 
						|
        return SDValue();
 | 
						|
      } else {
 | 
						|
        MFI.setObjectAlignment(FI, RequiredAlign);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // (Offset % 16 or 32) must be multiple of 4. Then address is then
 | 
						|
    // Ptr + (Offset & ~15).
 | 
						|
    if (Offset < 0)
 | 
						|
      return SDValue();
 | 
						|
    if ((Offset % RequiredAlign) & 3)
 | 
						|
      return SDValue();
 | 
						|
    int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
 | 
						|
    if (StartOffset) {
 | 
						|
      SDLoc DL(Ptr);
 | 
						|
      Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
 | 
						|
                        DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
 | 
						|
    }
 | 
						|
 | 
						|
    int EltNo = (Offset - StartOffset) >> 2;
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
 | 
						|
    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
 | 
						|
                             LD->getPointerInfo().getWithOffset(StartOffset));
 | 
						|
 | 
						|
    SmallVector<int, 8> Mask(NumElems, EltNo);
 | 
						|
 | 
						|
    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
 | 
						|
/// elements can be replaced by a single large load which has the same value as
 | 
						|
/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
 | 
						|
///
 | 
						|
/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
 | 
						|
static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
 | 
						|
                                        SDLoc &DL, SelectionDAG &DAG,
 | 
						|
                                        bool isAfterLegalize) {
 | 
						|
  unsigned NumElems = Elts.size();
 | 
						|
 | 
						|
  int LastLoadedElt = -1;
 | 
						|
  SmallBitVector LoadMask(NumElems, false);
 | 
						|
  SmallBitVector ZeroMask(NumElems, false);
 | 
						|
  SmallBitVector UndefMask(NumElems, false);
 | 
						|
 | 
						|
  // For each element in the initializer, see if we've found a load, zero or an
 | 
						|
  // undef.
 | 
						|
  for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
    SDValue Elt = peekThroughBitcasts(Elts[i]);
 | 
						|
    if (!Elt.getNode())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (Elt.isUndef())
 | 
						|
      UndefMask[i] = true;
 | 
						|
    else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode()))
 | 
						|
      ZeroMask[i] = true;
 | 
						|
    else if (ISD::isNON_EXTLoad(Elt.getNode())) {
 | 
						|
      LoadMask[i] = true;
 | 
						|
      LastLoadedElt = i;
 | 
						|
      // Each loaded element must be the correct fractional portion of the
 | 
						|
      // requested vector load.
 | 
						|
      if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits())
 | 
						|
        return SDValue();
 | 
						|
    } else
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  assert((ZeroMask | UndefMask | LoadMask).count() == NumElems &&
 | 
						|
         "Incomplete element masks");
 | 
						|
 | 
						|
  // Handle Special Cases - all undef or undef/zero.
 | 
						|
  if (UndefMask.count() == NumElems)
 | 
						|
    return DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  // FIXME: Should we return this as a BUILD_VECTOR instead?
 | 
						|
  if ((ZeroMask | UndefMask).count() == NumElems)
 | 
						|
    return VT.isInteger() ? DAG.getConstant(0, DL, VT)
 | 
						|
                          : DAG.getConstantFP(0.0, DL, VT);
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  int FirstLoadedElt = LoadMask.find_first();
 | 
						|
  SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
 | 
						|
  LoadSDNode *LDBase = cast<LoadSDNode>(EltBase);
 | 
						|
  EVT LDBaseVT = EltBase.getValueType();
 | 
						|
 | 
						|
  // Consecutive loads can contain UNDEFS but not ZERO elements.
 | 
						|
  // Consecutive loads with UNDEFs and ZEROs elements require a
 | 
						|
  // an additional shuffle stage to clear the ZERO elements.
 | 
						|
  bool IsConsecutiveLoad = true;
 | 
						|
  bool IsConsecutiveLoadWithZeros = true;
 | 
						|
  for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
 | 
						|
    if (LoadMask[i]) {
 | 
						|
      SDValue Elt = peekThroughBitcasts(Elts[i]);
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(Elt);
 | 
						|
      if (!DAG.areNonVolatileConsecutiveLoads(
 | 
						|
              LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8,
 | 
						|
              i - FirstLoadedElt)) {
 | 
						|
        IsConsecutiveLoad = false;
 | 
						|
        IsConsecutiveLoadWithZeros = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (ZeroMask[i]) {
 | 
						|
      IsConsecutiveLoad = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto CreateLoad = [&DAG, &DL](EVT VT, LoadSDNode *LDBase) {
 | 
						|
    auto MMOFlags = LDBase->getMemOperand()->getFlags();
 | 
						|
    assert(!(MMOFlags & MachineMemOperand::MOVolatile) &&
 | 
						|
           "Cannot merge volatile loads.");
 | 
						|
    SDValue NewLd =
 | 
						|
        DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
 | 
						|
                    LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags);
 | 
						|
 | 
						|
    if (LDBase->hasAnyUseOfValue(1)) {
 | 
						|
      SDValue NewChain =
 | 
						|
          DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1),
 | 
						|
                      SDValue(NewLd.getNode(), 1));
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
 | 
						|
      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
 | 
						|
                             SDValue(NewLd.getNode(), 1));
 | 
						|
    }
 | 
						|
 | 
						|
    return NewLd;
 | 
						|
  };
 | 
						|
 | 
						|
  // LOAD - all consecutive load/undefs (must start/end with a load).
 | 
						|
  // If we have found an entire vector of loads and undefs, then return a large
 | 
						|
  // load of the entire vector width starting at the base pointer.
 | 
						|
  // If the vector contains zeros, then attempt to shuffle those elements.
 | 
						|
  if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) &&
 | 
						|
      (IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
 | 
						|
    assert(LDBase && "Did not find base load for merging consecutive loads");
 | 
						|
    EVT EltVT = LDBase->getValueType(0);
 | 
						|
    // Ensure that the input vector size for the merged loads matches the
 | 
						|
    // cumulative size of the input elements.
 | 
						|
    if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (IsConsecutiveLoad)
 | 
						|
      return CreateLoad(VT, LDBase);
 | 
						|
 | 
						|
    // IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
 | 
						|
    // vector and a zero vector to clear out the zero elements.
 | 
						|
    if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) {
 | 
						|
      SmallVector<int, 4> ClearMask(NumElems, -1);
 | 
						|
      for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
        if (ZeroMask[i])
 | 
						|
          ClearMask[i] = i + NumElems;
 | 
						|
        else if (LoadMask[i])
 | 
						|
          ClearMask[i] = i;
 | 
						|
      }
 | 
						|
      SDValue V = CreateLoad(VT, LDBase);
 | 
						|
      SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
 | 
						|
                                 : DAG.getConstantFP(0.0, DL, VT);
 | 
						|
      return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int LoadSize =
 | 
						|
      (1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits();
 | 
						|
 | 
						|
  // VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs.
 | 
						|
  if (IsConsecutiveLoad && FirstLoadedElt == 0 &&
 | 
						|
      (LoadSize == 32 || LoadSize == 64) &&
 | 
						|
      ((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
 | 
						|
    MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSize)
 | 
						|
                                      : MVT::getIntegerVT(LoadSize);
 | 
						|
    MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSize);
 | 
						|
    if (TLI.isTypeLegal(VecVT)) {
 | 
						|
      SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
 | 
						|
      SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
 | 
						|
      SDValue ResNode =
 | 
						|
          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
 | 
						|
                                  LDBase->getPointerInfo(),
 | 
						|
                                  LDBase->getAlignment(),
 | 
						|
                                  false/*isVolatile*/, true/*ReadMem*/,
 | 
						|
                                  false/*WriteMem*/);
 | 
						|
 | 
						|
      // Make sure the newly-created LOAD is in the same position as LDBase in
 | 
						|
      // terms of dependency. We create a TokenFactor for LDBase and ResNode,
 | 
						|
      // and update uses of LDBase's output chain to use the TokenFactor.
 | 
						|
      if (LDBase->hasAnyUseOfValue(1)) {
 | 
						|
        SDValue NewChain =
 | 
						|
            DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1),
 | 
						|
                        SDValue(ResNode.getNode(), 1));
 | 
						|
        DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
 | 
						|
        DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
 | 
						|
                               SDValue(ResNode.getNode(), 1));
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getBitcast(VT, ResNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static Constant *getConstantVector(MVT VT, APInt SplatValue,
 | 
						|
                                   unsigned SplatBitSize, LLVMContext &C) {
 | 
						|
  unsigned ScalarSize = VT.getScalarSizeInBits();
 | 
						|
  unsigned NumElm = SplatBitSize / ScalarSize;
 | 
						|
 | 
						|
  SmallVector<Constant *, 32> ConstantVec;
 | 
						|
  for (unsigned i = 0; i < NumElm; i++) {
 | 
						|
    APInt Val = SplatValue.lshr(ScalarSize * i).trunc(ScalarSize);
 | 
						|
    Constant *Const;
 | 
						|
    if (VT.isFloatingPoint()) {
 | 
						|
      assert((ScalarSize == 32 || ScalarSize == 64) &&
 | 
						|
             "Unsupported floating point scalar size");
 | 
						|
      if (ScalarSize == 32)
 | 
						|
        Const = ConstantFP::get(Type::getFloatTy(C), Val.bitsToFloat());
 | 
						|
      else
 | 
						|
        Const = ConstantFP::get(Type::getDoubleTy(C), Val.bitsToDouble());
 | 
						|
    } else
 | 
						|
      Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val);
 | 
						|
    ConstantVec.push_back(Const);
 | 
						|
  }
 | 
						|
  return ConstantVector::get(ArrayRef<Constant *>(ConstantVec));
 | 
						|
}
 | 
						|
 | 
						|
static bool isUseOfShuffle(SDNode *N) {
 | 
						|
  for (auto *U : N->uses()) {
 | 
						|
    if (isTargetShuffle(U->getOpcode()))
 | 
						|
      return true;
 | 
						|
    if (U->getOpcode() == ISD::BITCAST) // Ignore bitcasts
 | 
						|
      return isUseOfShuffle(U);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to use the vbroadcast instruction to generate a splat value for the
 | 
						|
/// following cases:
 | 
						|
/// 1. A splat BUILD_VECTOR which uses:
 | 
						|
///    a. A single scalar load, or a constant.
 | 
						|
///    b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>).
 | 
						|
/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
 | 
						|
/// a scalar load, or a constant.
 | 
						|
///
 | 
						|
/// The VBROADCAST node is returned when a pattern is found,
 | 
						|
/// or SDValue() otherwise.
 | 
						|
static SDValue LowerVectorBroadcast(BuildVectorSDNode *BVOp, const X86Subtarget &Subtarget,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  // VBROADCAST requires AVX.
 | 
						|
  // TODO: Splats could be generated for non-AVX CPUs using SSE
 | 
						|
  // instructions, but there's less potential gain for only 128-bit vectors.
 | 
						|
  if (!Subtarget.hasAVX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT VT = BVOp->getSimpleValueType(0);
 | 
						|
  SDLoc dl(BVOp);
 | 
						|
 | 
						|
  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
 | 
						|
         "Unsupported vector type for broadcast.");
 | 
						|
 | 
						|
  BitVector UndefElements;
 | 
						|
  SDValue Ld = BVOp->getSplatValue(&UndefElements);
 | 
						|
 | 
						|
  // We need a splat of a single value to use broadcast, and it doesn't
 | 
						|
  // make any sense if the value is only in one element of the vector.
 | 
						|
  if (!Ld || (VT.getVectorNumElements() - UndefElements.count()) <= 1) {
 | 
						|
    APInt SplatValue, Undef;
 | 
						|
    unsigned SplatBitSize;
 | 
						|
    bool HasUndef;
 | 
						|
    // Check if this is a repeated constant pattern suitable for broadcasting.
 | 
						|
    if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) &&
 | 
						|
        SplatBitSize > VT.getScalarSizeInBits() &&
 | 
						|
        SplatBitSize < VT.getSizeInBits()) {
 | 
						|
      // Avoid replacing with broadcast when it's a use of a shuffle
 | 
						|
      // instruction to preserve the present custom lowering of shuffles.
 | 
						|
      if (isUseOfShuffle(BVOp) || BVOp->hasOneUse())
 | 
						|
        return SDValue();
 | 
						|
      // replace BUILD_VECTOR with broadcast of the repeated constants.
 | 
						|
      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
      LLVMContext *Ctx = DAG.getContext();
 | 
						|
      MVT PVT = TLI.getPointerTy(DAG.getDataLayout());
 | 
						|
      if (Subtarget.hasAVX()) {
 | 
						|
        if (SplatBitSize <= 64 && Subtarget.hasAVX2() &&
 | 
						|
            !(SplatBitSize == 64 && Subtarget.is32Bit())) {
 | 
						|
          // Splatted value can fit in one INTEGER constant in constant pool.
 | 
						|
          // Load the constant and broadcast it.
 | 
						|
          MVT CVT = MVT::getIntegerVT(SplatBitSize);
 | 
						|
          Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize);
 | 
						|
          Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue);
 | 
						|
          SDValue CP = DAG.getConstantPool(C, PVT);
 | 
						|
          unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
 | 
						|
 | 
						|
          unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
 | 
						|
          Ld = DAG.getLoad(
 | 
						|
              CVT, dl, DAG.getEntryNode(), CP,
 | 
						|
              MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
              Alignment);
 | 
						|
          SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
 | 
						|
                                       MVT::getVectorVT(CVT, Repeat), Ld);
 | 
						|
          return DAG.getBitcast(VT, Brdcst);
 | 
						|
        } else if (SplatBitSize == 32 || SplatBitSize == 64) {
 | 
						|
          // Splatted value can fit in one FLOAT constant in constant pool.
 | 
						|
          // Load the constant and broadcast it.
 | 
						|
          // AVX have support for 32 and 64 bit broadcast for floats only.
 | 
						|
          // No 64bit integer in 32bit subtarget.
 | 
						|
          MVT CVT = MVT::getFloatingPointVT(SplatBitSize);
 | 
						|
          Constant *C = SplatBitSize == 32
 | 
						|
                            ? ConstantFP::get(Type::getFloatTy(*Ctx),
 | 
						|
                                              SplatValue.bitsToFloat())
 | 
						|
                            : ConstantFP::get(Type::getDoubleTy(*Ctx),
 | 
						|
                                              SplatValue.bitsToDouble());
 | 
						|
          SDValue CP = DAG.getConstantPool(C, PVT);
 | 
						|
          unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
 | 
						|
 | 
						|
          unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
 | 
						|
          Ld = DAG.getLoad(
 | 
						|
              CVT, dl, DAG.getEntryNode(), CP,
 | 
						|
              MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
              Alignment);
 | 
						|
          SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
 | 
						|
                                       MVT::getVectorVT(CVT, Repeat), Ld);
 | 
						|
          return DAG.getBitcast(VT, Brdcst);
 | 
						|
        } else if (SplatBitSize > 64) {
 | 
						|
          // Load the vector of constants and broadcast it.
 | 
						|
          MVT CVT = VT.getScalarType();
 | 
						|
          Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize,
 | 
						|
                                             *Ctx);
 | 
						|
          SDValue VCP = DAG.getConstantPool(VecC, PVT);
 | 
						|
          unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits();
 | 
						|
          unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment();
 | 
						|
          Ld = DAG.getLoad(
 | 
						|
              MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP,
 | 
						|
              MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
              Alignment);
 | 
						|
          SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld);
 | 
						|
          return DAG.getBitcast(VT, Brdcst);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  bool ConstSplatVal =
 | 
						|
      (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP);
 | 
						|
 | 
						|
  // Make sure that all of the users of a non-constant load are from the
 | 
						|
  // BUILD_VECTOR node.
 | 
						|
  if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned ScalarSize = Ld.getValueSizeInBits();
 | 
						|
  bool IsGE256 = (VT.getSizeInBits() >= 256);
 | 
						|
 | 
						|
  // When optimizing for size, generate up to 5 extra bytes for a broadcast
 | 
						|
  // instruction to save 8 or more bytes of constant pool data.
 | 
						|
  // TODO: If multiple splats are generated to load the same constant,
 | 
						|
  // it may be detrimental to overall size. There needs to be a way to detect
 | 
						|
  // that condition to know if this is truly a size win.
 | 
						|
  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
 | 
						|
 | 
						|
  // Handle broadcasting a single constant scalar from the constant pool
 | 
						|
  // into a vector.
 | 
						|
  // On Sandybridge (no AVX2), it is still better to load a constant vector
 | 
						|
  // from the constant pool and not to broadcast it from a scalar.
 | 
						|
  // But override that restriction when optimizing for size.
 | 
						|
  // TODO: Check if splatting is recommended for other AVX-capable CPUs.
 | 
						|
  if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
 | 
						|
    EVT CVT = Ld.getValueType();
 | 
						|
    assert(!CVT.isVector() && "Must not broadcast a vector type");
 | 
						|
 | 
						|
    // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
 | 
						|
    // For size optimization, also splat v2f64 and v2i64, and for size opt
 | 
						|
    // with AVX2, also splat i8 and i16.
 | 
						|
    // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
 | 
						|
    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
 | 
						|
        (OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
 | 
						|
      const Constant *C = nullptr;
 | 
						|
      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
 | 
						|
        C = CI->getConstantIntValue();
 | 
						|
      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
 | 
						|
        C = CF->getConstantFPValue();
 | 
						|
 | 
						|
      assert(C && "Invalid constant type");
 | 
						|
 | 
						|
      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
      SDValue CP =
 | 
						|
          DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
 | 
						|
      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
 | 
						|
      Ld = DAG.getLoad(
 | 
						|
          CVT, dl, DAG.getEntryNode(), CP,
 | 
						|
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
          Alignment);
 | 
						|
 | 
						|
      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
 | 
						|
 | 
						|
  // Handle AVX2 in-register broadcasts.
 | 
						|
  if (!IsLoad && Subtarget.hasInt256() &&
 | 
						|
      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
 | 
						|
    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
 | 
						|
 | 
						|
  // The scalar source must be a normal load.
 | 
						|
  if (!IsLoad)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
 | 
						|
      (Subtarget.hasVLX() && ScalarSize == 64))
 | 
						|
    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
 | 
						|
 | 
						|
  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
 | 
						|
  // double since there is no vbroadcastsd xmm
 | 
						|
  if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
 | 
						|
    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
 | 
						|
      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsupported broadcast.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
 | 
						|
/// underlying vector and index.
 | 
						|
///
 | 
						|
/// Modifies \p ExtractedFromVec to the real vector and returns the real
 | 
						|
/// index.
 | 
						|
static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
 | 
						|
                                         SDValue ExtIdx) {
 | 
						|
  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
 | 
						|
  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
 | 
						|
    return Idx;
 | 
						|
 | 
						|
  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
 | 
						|
  // lowered this:
 | 
						|
  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
 | 
						|
  // to:
 | 
						|
  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
 | 
						|
  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
 | 
						|
  //                           undef)
 | 
						|
  //                       Constant<0>)
 | 
						|
  // In this case the vector is the extract_subvector expression and the index
 | 
						|
  // is 2, as specified by the shuffle.
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
 | 
						|
  SDValue ShuffleVec = SVOp->getOperand(0);
 | 
						|
  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
 | 
						|
  assert(ShuffleVecVT.getVectorElementType() ==
 | 
						|
         ExtractedFromVec.getSimpleValueType().getVectorElementType());
 | 
						|
 | 
						|
  int ShuffleIdx = SVOp->getMaskElt(Idx);
 | 
						|
  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
 | 
						|
    ExtractedFromVec = ShuffleVec;
 | 
						|
    return ShuffleIdx;
 | 
						|
  }
 | 
						|
  return Idx;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  // Skip if insert_vec_elt is not supported.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned NumElems = Op.getNumOperands();
 | 
						|
 | 
						|
  SDValue VecIn1;
 | 
						|
  SDValue VecIn2;
 | 
						|
  SmallVector<unsigned, 4> InsertIndices;
 | 
						|
  SmallVector<int, 8> Mask(NumElems, -1);
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumElems; ++i) {
 | 
						|
    unsigned Opc = Op.getOperand(i).getOpcode();
 | 
						|
 | 
						|
    if (Opc == ISD::UNDEF)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
      // Quit if more than 1 elements need inserting.
 | 
						|
      if (InsertIndices.size() > 1)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      InsertIndices.push_back(i);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
 | 
						|
    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
 | 
						|
    // Quit if non-constant index.
 | 
						|
    if (!isa<ConstantSDNode>(ExtIdx))
 | 
						|
      return SDValue();
 | 
						|
    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
 | 
						|
 | 
						|
    // Quit if extracted from vector of different type.
 | 
						|
    if (ExtractedFromVec.getValueType() != VT)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (!VecIn1.getNode())
 | 
						|
      VecIn1 = ExtractedFromVec;
 | 
						|
    else if (VecIn1 != ExtractedFromVec) {
 | 
						|
      if (!VecIn2.getNode())
 | 
						|
        VecIn2 = ExtractedFromVec;
 | 
						|
      else if (VecIn2 != ExtractedFromVec)
 | 
						|
        // Quit if more than 2 vectors to shuffle
 | 
						|
        return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (ExtractedFromVec == VecIn1)
 | 
						|
      Mask[i] = Idx;
 | 
						|
    else if (ExtractedFromVec == VecIn2)
 | 
						|
      Mask[i] = Idx + NumElems;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VecIn1.getNode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
 | 
						|
  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
 | 
						|
  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
 | 
						|
    unsigned Idx = InsertIndices[i];
 | 
						|
    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
 | 
						|
                     DAG.getIntPtrConstant(Idx, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  return NV;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
 | 
						|
         Op.getScalarValueSizeInBits() == 1 &&
 | 
						|
         "Can not convert non-constant vector");
 | 
						|
  uint64_t Immediate = 0;
 | 
						|
  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
 | 
						|
    SDValue In = Op.getOperand(idx);
 | 
						|
    if (!In.isUndef())
 | 
						|
      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
 | 
						|
  }
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8));
 | 
						|
  return DAG.getConstant(Immediate, dl, VT);
 | 
						|
}
 | 
						|
// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  assert((VT.getVectorElementType() == MVT::i1) &&
 | 
						|
         "Unexpected type in LowerBUILD_VECTORvXi1!");
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (ISD::isBuildVectorAllZeros(Op.getNode()))
 | 
						|
    return DAG.getTargetConstant(0, dl, VT);
 | 
						|
 | 
						|
  if (ISD::isBuildVectorAllOnes(Op.getNode()))
 | 
						|
    return DAG.getTargetConstant(1, dl, VT);
 | 
						|
 | 
						|
  if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
 | 
						|
    SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
 | 
						|
    if (Imm.getValueSizeInBits() == VT.getSizeInBits())
 | 
						|
      return DAG.getBitcast(VT, Imm);
 | 
						|
    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
 | 
						|
                        DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector has one or more non-const elements
 | 
						|
  uint64_t Immediate = 0;
 | 
						|
  SmallVector<unsigned, 16> NonConstIdx;
 | 
						|
  bool IsSplat = true;
 | 
						|
  bool HasConstElts = false;
 | 
						|
  int SplatIdx = -1;
 | 
						|
  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
 | 
						|
    SDValue In = Op.getOperand(idx);
 | 
						|
    if (In.isUndef())
 | 
						|
      continue;
 | 
						|
    if (!isa<ConstantSDNode>(In))
 | 
						|
      NonConstIdx.push_back(idx);
 | 
						|
    else {
 | 
						|
      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
 | 
						|
      HasConstElts = true;
 | 
						|
    }
 | 
						|
    if (SplatIdx < 0)
 | 
						|
      SplatIdx = idx;
 | 
						|
    else if (In != Op.getOperand(SplatIdx))
 | 
						|
      IsSplat = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
 | 
						|
  if (IsSplat)
 | 
						|
    return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx),
 | 
						|
                       DAG.getConstant(1, dl, VT),
 | 
						|
                       DAG.getConstant(0, dl, VT));
 | 
						|
 | 
						|
  // insert elements one by one
 | 
						|
  SDValue DstVec;
 | 
						|
  SDValue Imm;
 | 
						|
  if (Immediate) {
 | 
						|
    MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
 | 
						|
    Imm = DAG.getConstant(Immediate, dl, ImmVT);
 | 
						|
  }
 | 
						|
  else if (HasConstElts)
 | 
						|
    Imm = DAG.getConstant(0, dl, VT);
 | 
						|
  else
 | 
						|
    Imm = DAG.getUNDEF(VT);
 | 
						|
  if (Imm.getValueSizeInBits() == VT.getSizeInBits())
 | 
						|
    DstVec = DAG.getBitcast(VT, Imm);
 | 
						|
  else {
 | 
						|
    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
 | 
						|
    DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
 | 
						|
                         DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
 | 
						|
    unsigned InsertIdx = NonConstIdx[i];
 | 
						|
    DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
 | 
						|
                         Op.getOperand(InsertIdx),
 | 
						|
                         DAG.getIntPtrConstant(InsertIdx, dl));
 | 
						|
  }
 | 
						|
  return DstVec;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return true if \p N implements a horizontal binop and return the
 | 
						|
/// operands for the horizontal binop into V0 and V1.
 | 
						|
///
 | 
						|
/// This is a helper function of LowerToHorizontalOp().
 | 
						|
/// This function checks that the build_vector \p N in input implements a
 | 
						|
/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
 | 
						|
/// operation to match.
 | 
						|
/// For example, if \p Opcode is equal to ISD::ADD, then this function
 | 
						|
/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
 | 
						|
/// is equal to ISD::SUB, then this function checks if this is a horizontal
 | 
						|
/// arithmetic sub.
 | 
						|
///
 | 
						|
/// This function only analyzes elements of \p N whose indices are
 | 
						|
/// in range [BaseIdx, LastIdx).
 | 
						|
static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
 | 
						|
                              SelectionDAG &DAG,
 | 
						|
                              unsigned BaseIdx, unsigned LastIdx,
 | 
						|
                              SDValue &V0, SDValue &V1) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
 | 
						|
  assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
 | 
						|
         "Invalid Vector in input!");
 | 
						|
 | 
						|
  bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
 | 
						|
  bool CanFold = true;
 | 
						|
  unsigned ExpectedVExtractIdx = BaseIdx;
 | 
						|
  unsigned NumElts = LastIdx - BaseIdx;
 | 
						|
  V0 = DAG.getUNDEF(VT);
 | 
						|
  V1 = DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  // Check if N implements a horizontal binop.
 | 
						|
  for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
 | 
						|
    SDValue Op = N->getOperand(i + BaseIdx);
 | 
						|
 | 
						|
    // Skip UNDEFs.
 | 
						|
    if (Op->isUndef()) {
 | 
						|
      // Update the expected vector extract index.
 | 
						|
      if (i * 2 == NumElts)
 | 
						|
        ExpectedVExtractIdx = BaseIdx;
 | 
						|
      ExpectedVExtractIdx += 2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
 | 
						|
 | 
						|
    if (!CanFold)
 | 
						|
      break;
 | 
						|
 | 
						|
    SDValue Op0 = Op.getOperand(0);
 | 
						|
    SDValue Op1 = Op.getOperand(1);
 | 
						|
 | 
						|
    // Try to match the following pattern:
 | 
						|
    // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
 | 
						|
    CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | 
						|
        Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | 
						|
        Op0.getOperand(0) == Op1.getOperand(0) &&
 | 
						|
        isa<ConstantSDNode>(Op0.getOperand(1)) &&
 | 
						|
        isa<ConstantSDNode>(Op1.getOperand(1)));
 | 
						|
    if (!CanFold)
 | 
						|
      break;
 | 
						|
 | 
						|
    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
 | 
						|
    unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
    if (i * 2 < NumElts) {
 | 
						|
      if (V0.isUndef()) {
 | 
						|
        V0 = Op0.getOperand(0);
 | 
						|
        if (V0.getValueType() != VT)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (V1.isUndef()) {
 | 
						|
        V1 = Op0.getOperand(0);
 | 
						|
        if (V1.getValueType() != VT)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      if (i * 2 == NumElts)
 | 
						|
        ExpectedVExtractIdx = BaseIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
 | 
						|
    if (I0 == ExpectedVExtractIdx)
 | 
						|
      CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
 | 
						|
    else if (IsCommutable && I1 == ExpectedVExtractIdx) {
 | 
						|
      // Try to match the following dag sequence:
 | 
						|
      // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
 | 
						|
      CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
 | 
						|
    } else
 | 
						|
      CanFold = false;
 | 
						|
 | 
						|
    ExpectedVExtractIdx += 2;
 | 
						|
  }
 | 
						|
 | 
						|
  return CanFold;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
 | 
						|
/// a concat_vector.
 | 
						|
///
 | 
						|
/// This is a helper function of LowerToHorizontalOp().
 | 
						|
/// This function expects two 256-bit vectors called V0 and V1.
 | 
						|
/// At first, each vector is split into two separate 128-bit vectors.
 | 
						|
/// Then, the resulting 128-bit vectors are used to implement two
 | 
						|
/// horizontal binary operations.
 | 
						|
///
 | 
						|
/// The kind of horizontal binary operation is defined by \p X86Opcode.
 | 
						|
///
 | 
						|
/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
 | 
						|
/// the two new horizontal binop.
 | 
						|
/// When Mode is set, the first horizontal binop dag node would take as input
 | 
						|
/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
 | 
						|
/// horizontal binop dag node would take as input the lower 128-bit of V1
 | 
						|
/// and the upper 128-bit of V1.
 | 
						|
///   Example:
 | 
						|
///     HADD V0_LO, V0_HI
 | 
						|
///     HADD V1_LO, V1_HI
 | 
						|
///
 | 
						|
/// Otherwise, the first horizontal binop dag node takes as input the lower
 | 
						|
/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
 | 
						|
/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
 | 
						|
///   Example:
 | 
						|
///     HADD V0_LO, V1_LO
 | 
						|
///     HADD V0_HI, V1_HI
 | 
						|
///
 | 
						|
/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
 | 
						|
/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
 | 
						|
/// the upper 128-bits of the result.
 | 
						|
static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
 | 
						|
                                     const SDLoc &DL, SelectionDAG &DAG,
 | 
						|
                                     unsigned X86Opcode, bool Mode,
 | 
						|
                                     bool isUndefLO, bool isUndefHI) {
 | 
						|
  MVT VT = V0.getSimpleValueType();
 | 
						|
  assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
 | 
						|
         "Invalid nodes in input!");
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
 | 
						|
  SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
 | 
						|
  SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
 | 
						|
  SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
 | 
						|
  MVT NewVT = V0_LO.getSimpleValueType();
 | 
						|
 | 
						|
  SDValue LO = DAG.getUNDEF(NewVT);
 | 
						|
  SDValue HI = DAG.getUNDEF(NewVT);
 | 
						|
 | 
						|
  if (Mode) {
 | 
						|
    // Don't emit a horizontal binop if the result is expected to be UNDEF.
 | 
						|
    if (!isUndefLO && !V0->isUndef())
 | 
						|
      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
 | 
						|
    if (!isUndefHI && !V1->isUndef())
 | 
						|
      HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
 | 
						|
  } else {
 | 
						|
    // Don't emit a horizontal binop if the result is expected to be UNDEF.
 | 
						|
    if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
 | 
						|
      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
 | 
						|
 | 
						|
    if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
 | 
						|
      HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true iff \p BV builds a vector with the result equivalent to
 | 
						|
/// the result of ADDSUB operation.
 | 
						|
/// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1 operation
 | 
						|
/// are written to the parameters \p Opnd0 and \p Opnd1.
 | 
						|
static bool isAddSub(const BuildVectorSDNode *BV,
 | 
						|
                     const X86Subtarget &Subtarget, SelectionDAG &DAG,
 | 
						|
                     SDValue &Opnd0, SDValue &Opnd1) {
 | 
						|
 | 
						|
  MVT VT = BV->getSimpleValueType(0);
 | 
						|
  if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
 | 
						|
      (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) &&
 | 
						|
      (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  SDValue InVec0 = DAG.getUNDEF(VT);
 | 
						|
  SDValue InVec1 = DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  // Odd-numbered elements in the input build vector are obtained from
 | 
						|
  // adding two integer/float elements.
 | 
						|
  // Even-numbered elements in the input build vector are obtained from
 | 
						|
  // subtracting two integer/float elements.
 | 
						|
  unsigned ExpectedOpcode = ISD::FSUB;
 | 
						|
  unsigned NextExpectedOpcode = ISD::FADD;
 | 
						|
  bool AddFound = false;
 | 
						|
  bool SubFound = false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | 
						|
    SDValue Op = BV->getOperand(i);
 | 
						|
 | 
						|
    // Skip 'undef' values.
 | 
						|
    unsigned Opcode = Op.getOpcode();
 | 
						|
    if (Opcode == ISD::UNDEF) {
 | 
						|
      std::swap(ExpectedOpcode, NextExpectedOpcode);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Early exit if we found an unexpected opcode.
 | 
						|
    if (Opcode != ExpectedOpcode)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Op0 = Op.getOperand(0);
 | 
						|
    SDValue Op1 = Op.getOperand(1);
 | 
						|
 | 
						|
    // Try to match the following pattern:
 | 
						|
    // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
 | 
						|
    // Early exit if we cannot match that sequence.
 | 
						|
    if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
        Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
        !isa<ConstantSDNode>(Op0.getOperand(1)) ||
 | 
						|
        !isa<ConstantSDNode>(Op1.getOperand(1)) ||
 | 
						|
        Op0.getOperand(1) != Op1.getOperand(1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
 | 
						|
    if (I0 != i)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We found a valid add/sub node. Update the information accordingly.
 | 
						|
    if (i & 1)
 | 
						|
      AddFound = true;
 | 
						|
    else
 | 
						|
      SubFound = true;
 | 
						|
 | 
						|
    // Update InVec0 and InVec1.
 | 
						|
    if (InVec0.isUndef()) {
 | 
						|
      InVec0 = Op0.getOperand(0);
 | 
						|
      if (InVec0.getSimpleValueType() != VT)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    if (InVec1.isUndef()) {
 | 
						|
      InVec1 = Op1.getOperand(0);
 | 
						|
      if (InVec1.getSimpleValueType() != VT)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure that operands in input to each add/sub node always
 | 
						|
    // come from a same pair of vectors.
 | 
						|
    if (InVec0 != Op0.getOperand(0)) {
 | 
						|
      if (ExpectedOpcode == ISD::FSUB)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // FADD is commutable. Try to commute the operands
 | 
						|
      // and then test again.
 | 
						|
      std::swap(Op0, Op1);
 | 
						|
      if (InVec0 != Op0.getOperand(0))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InVec1 != Op1.getOperand(0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Update the pair of expected opcodes.
 | 
						|
    std::swap(ExpectedOpcode, NextExpectedOpcode);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
 | 
						|
  if (!AddFound || !SubFound || InVec0.isUndef() || InVec1.isUndef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Opnd0 = InVec0;
 | 
						|
  Opnd1 = InVec1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if is possible to fold MUL and an idiom that has already been
 | 
						|
/// recognized as ADDSUB(\p Opnd0, \p Opnd1) into FMADDSUB(x, y, \p Opnd1).
 | 
						|
/// If (and only if) true is returned, the operands of FMADDSUB are written to
 | 
						|
/// parameters \p Opnd0, \p Opnd1, \p Opnd2.
 | 
						|
///
 | 
						|
/// Prior to calling this function it should be known that there is some
 | 
						|
/// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation
 | 
						|
/// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called
 | 
						|
/// before replacement of such SDNode with ADDSUB operation. Thus the number
 | 
						|
/// of \p Opnd0 uses is expected to be equal to 2.
 | 
						|
/// For example, this function may be called for the following IR:
 | 
						|
///    %AB = fmul fast <2 x double> %A, %B
 | 
						|
///    %Sub = fsub fast <2 x double> %AB, %C
 | 
						|
///    %Add = fadd fast <2 x double> %AB, %C
 | 
						|
///    %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add,
 | 
						|
///                            <2 x i32> <i32 0, i32 3>
 | 
						|
/// There is a def for %Addsub here, which potentially can be replaced by
 | 
						|
/// X86ISD::ADDSUB operation:
 | 
						|
///    %Addsub = X86ISD::ADDSUB %AB, %C
 | 
						|
/// and such ADDSUB can further be replaced with FMADDSUB:
 | 
						|
///    %Addsub = FMADDSUB %A, %B, %C.
 | 
						|
///
 | 
						|
/// The main reason why this method is called before the replacement of the
 | 
						|
/// recognized ADDSUB idiom with ADDSUB operation is that such replacement
 | 
						|
/// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit
 | 
						|
/// FMADDSUB is.
 | 
						|
static bool isFMAddSub(const X86Subtarget &Subtarget, SelectionDAG &DAG,
 | 
						|
                       SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2) {
 | 
						|
  if (Opnd0.getOpcode() != ISD::FMUL || Opnd0->use_size() != 2 ||
 | 
						|
      !Subtarget.hasAnyFMA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: These checks must match the similar ones in
 | 
						|
  // DAGCombiner::visitFADDForFMACombine. It would be good to have one
 | 
						|
  // function that would answer if it is Ok to fuse MUL + ADD to FMADD
 | 
						|
  // or MUL + ADDSUB to FMADDSUB.
 | 
						|
  const TargetOptions &Options = DAG.getTarget().Options;
 | 
						|
  bool AllowFusion =
 | 
						|
      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
 | 
						|
  if (!AllowFusion)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Opnd2 = Opnd1;
 | 
						|
  Opnd1 = Opnd0.getOperand(1);
 | 
						|
  Opnd0 = Opnd0.getOperand(0);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' operation
 | 
						|
/// accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB node.
 | 
						|
static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  SDValue Opnd0, Opnd1;
 | 
						|
  if (!isAddSub(BV, Subtarget, DAG, Opnd0, Opnd1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT VT = BV->getSimpleValueType(0);
 | 
						|
  SDLoc DL(BV);
 | 
						|
 | 
						|
  // Try to generate X86ISD::FMADDSUB node here.
 | 
						|
  SDValue Opnd2;
 | 
						|
  if (isFMAddSub(Subtarget, DAG, Opnd0, Opnd1, Opnd2))
 | 
						|
    return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2);
 | 
						|
 | 
						|
  // Do not generate X86ISD::ADDSUB node for 512-bit types even though
 | 
						|
  // the ADDSUB idiom has been successfully recognized. There are no known
 | 
						|
  // X86 targets with 512-bit ADDSUB instructions!
 | 
						|
  // 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom
 | 
						|
  // recognition.
 | 
						|
  if (VT.is512BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
 | 
						|
static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
 | 
						|
                                   const X86Subtarget &Subtarget,
 | 
						|
                                   SelectionDAG &DAG) {
 | 
						|
  MVT VT = BV->getSimpleValueType(0);
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned NumUndefsLO = 0;
 | 
						|
  unsigned NumUndefsHI = 0;
 | 
						|
  unsigned Half = NumElts/2;
 | 
						|
 | 
						|
  // Count the number of UNDEF operands in the build_vector in input.
 | 
						|
  for (unsigned i = 0, e = Half; i != e; ++i)
 | 
						|
    if (BV->getOperand(i)->isUndef())
 | 
						|
      NumUndefsLO++;
 | 
						|
 | 
						|
  for (unsigned i = Half, e = NumElts; i != e; ++i)
 | 
						|
    if (BV->getOperand(i)->isUndef())
 | 
						|
      NumUndefsHI++;
 | 
						|
 | 
						|
  // Early exit if this is either a build_vector of all UNDEFs or all the
 | 
						|
  // operands but one are UNDEF.
 | 
						|
  if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(BV);
 | 
						|
  SDValue InVec0, InVec1;
 | 
						|
  if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) {
 | 
						|
    // Try to match an SSE3 float HADD/HSUB.
 | 
						|
    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
 | 
						|
 | 
						|
    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
 | 
						|
  } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) {
 | 
						|
    // Try to match an SSSE3 integer HADD/HSUB.
 | 
						|
    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
 | 
						|
 | 
						|
    if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Subtarget.hasAVX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
 | 
						|
    // Try to match an AVX horizontal add/sub of packed single/double
 | 
						|
    // precision floating point values from 256-bit vectors.
 | 
						|
    SDValue InVec2, InVec3;
 | 
						|
    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
 | 
						|
        isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
 | 
						|
        ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
 | 
						|
        ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
 | 
						|
      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
 | 
						|
 | 
						|
    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
 | 
						|
        isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
 | 
						|
        ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
 | 
						|
        ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
 | 
						|
      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
 | 
						|
  } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
 | 
						|
    // Try to match an AVX2 horizontal add/sub of signed integers.
 | 
						|
    SDValue InVec2, InVec3;
 | 
						|
    unsigned X86Opcode;
 | 
						|
    bool CanFold = true;
 | 
						|
 | 
						|
    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
 | 
						|
        isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
 | 
						|
        ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
 | 
						|
        ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
 | 
						|
      X86Opcode = X86ISD::HADD;
 | 
						|
    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
 | 
						|
        isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
 | 
						|
        ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
 | 
						|
        ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
 | 
						|
      X86Opcode = X86ISD::HSUB;
 | 
						|
    else
 | 
						|
      CanFold = false;
 | 
						|
 | 
						|
    if (CanFold) {
 | 
						|
      // Fold this build_vector into a single horizontal add/sub.
 | 
						|
      // Do this only if the target has AVX2.
 | 
						|
      if (Subtarget.hasAVX2())
 | 
						|
        return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
 | 
						|
 | 
						|
      // Do not try to expand this build_vector into a pair of horizontal
 | 
						|
      // add/sub if we can emit a pair of scalar add/sub.
 | 
						|
      if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Convert this build_vector into a pair of horizontal binop followed by
 | 
						|
      // a concat vector.
 | 
						|
      bool isUndefLO = NumUndefsLO == Half;
 | 
						|
      bool isUndefHI = NumUndefsHI == Half;
 | 
						|
      return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
 | 
						|
                                   isUndefLO, isUndefHI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
 | 
						|
       VT == MVT::v16i16) && Subtarget.hasAVX()) {
 | 
						|
    unsigned X86Opcode;
 | 
						|
    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      X86Opcode = X86ISD::HADD;
 | 
						|
    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      X86Opcode = X86ISD::HSUB;
 | 
						|
    else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      X86Opcode = X86ISD::FHADD;
 | 
						|
    else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
 | 
						|
      X86Opcode = X86ISD::FHSUB;
 | 
						|
    else
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Don't try to expand this build_vector into a pair of horizontal add/sub
 | 
						|
    // if we can simply emit a pair of scalar add/sub.
 | 
						|
    if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Convert this build_vector into two horizontal add/sub followed by
 | 
						|
    // a concat vector.
 | 
						|
    bool isUndefLO = NumUndefsLO == Half;
 | 
						|
    bool isUndefHI = NumUndefsHI == Half;
 | 
						|
    return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
 | 
						|
                                 isUndefLO, isUndefHI);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If a BUILD_VECTOR's source elements all apply the same bit operation and
 | 
						|
/// one of their operands is constant, lower to a pair of BUILD_VECTOR and
 | 
						|
/// just apply the bit to the vectors.
 | 
						|
/// NOTE: Its not in our interest to start make a general purpose vectorizer
 | 
						|
/// from this, but enough scalar bit operations are created from the later
 | 
						|
/// legalization + scalarization stages to need basic support.
 | 
						|
static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // Check that all elements have the same opcode.
 | 
						|
  // TODO: Should we allow UNDEFS and if so how many?
 | 
						|
  unsigned Opcode = Op->getOperand(0).getOpcode();
 | 
						|
  for (unsigned i = 1; i < NumElems; ++i)
 | 
						|
    if (Opcode != Op->getOperand(i).getOpcode())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
  // TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::XOR:
 | 
						|
  case ISD::OR:
 | 
						|
    if (!TLI.isOperationLegalOrPromote(Opcode, VT))
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> LHSElts, RHSElts;
 | 
						|
  for (SDValue Elt : Op->ops()) {
 | 
						|
    SDValue LHS = Elt.getOperand(0);
 | 
						|
    SDValue RHS = Elt.getOperand(1);
 | 
						|
 | 
						|
    // We expect the canonicalized RHS operand to be the constant.
 | 
						|
    if (!isa<ConstantSDNode>(RHS))
 | 
						|
      return SDValue();
 | 
						|
    LHSElts.push_back(LHS);
 | 
						|
    RHSElts.push_back(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
 | 
						|
  SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
 | 
						|
  return DAG.getNode(Opcode, DL, VT, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a vector constant without a load. SSE/AVX provide the bare minimum
 | 
						|
/// functionality to do this, so it's all zeros, all ones, or some derivation
 | 
						|
/// that is cheap to calculate.
 | 
						|
static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                         const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  // Vectors containing all zeros can be matched by pxor and xorps.
 | 
						|
  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
 | 
						|
    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
 | 
						|
    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
 | 
						|
    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
 | 
						|
      return Op;
 | 
						|
 | 
						|
    return getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
 | 
						|
  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
 | 
						|
  // vpcmpeqd on 256-bit vectors.
 | 
						|
  if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
 | 
						|
    if (VT == MVT::v4i32 || VT == MVT::v16i32 ||
 | 
						|
        (VT == MVT::v8i32 && Subtarget.hasInt256()))
 | 
						|
      return Op;
 | 
						|
 | 
						|
    return getOnesVector(VT, Subtarget, DAG, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT ExtVT = VT.getVectorElementType();
 | 
						|
  unsigned NumElems = Op.getNumOperands();
 | 
						|
 | 
						|
  // Generate vectors for predicate vectors.
 | 
						|
  if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
 | 
						|
    return LowerBUILD_VECTORvXi1(Op, DAG);
 | 
						|
 | 
						|
  if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
 | 
						|
    return VectorConstant;
 | 
						|
 | 
						|
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG))
 | 
						|
    return AddSub;
 | 
						|
  if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
 | 
						|
    return HorizontalOp;
 | 
						|
  if (SDValue Broadcast = LowerVectorBroadcast(BV, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
  if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG))
 | 
						|
    return BitOp;
 | 
						|
 | 
						|
  unsigned EVTBits = ExtVT.getSizeInBits();
 | 
						|
 | 
						|
  unsigned NumZero  = 0;
 | 
						|
  unsigned NumNonZero = 0;
 | 
						|
  uint64_t NonZeros = 0;
 | 
						|
  bool IsAllConstants = true;
 | 
						|
  SmallSet<SDValue, 8> Values;
 | 
						|
  for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
    SDValue Elt = Op.getOperand(i);
 | 
						|
    if (Elt.isUndef())
 | 
						|
      continue;
 | 
						|
    Values.insert(Elt);
 | 
						|
    if (Elt.getOpcode() != ISD::Constant &&
 | 
						|
        Elt.getOpcode() != ISD::ConstantFP)
 | 
						|
      IsAllConstants = false;
 | 
						|
    if (X86::isZeroNode(Elt))
 | 
						|
      NumZero++;
 | 
						|
    else {
 | 
						|
      assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
 | 
						|
      NonZeros |= ((uint64_t)1 << i);
 | 
						|
      NumNonZero++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
 | 
						|
  if (NumNonZero == 0)
 | 
						|
    return DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  // Special case for single non-zero, non-undef, element.
 | 
						|
  if (NumNonZero == 1) {
 | 
						|
    unsigned Idx = countTrailingZeros(NonZeros);
 | 
						|
    SDValue Item = Op.getOperand(Idx);
 | 
						|
 | 
						|
    // If this is an insertion of an i64 value on x86-32, and if the top bits of
 | 
						|
    // the value are obviously zero, truncate the value to i32 and do the
 | 
						|
    // insertion that way.  Only do this if the value is non-constant or if the
 | 
						|
    // value is a constant being inserted into element 0.  It is cheaper to do
 | 
						|
    // a constant pool load than it is to do a movd + shuffle.
 | 
						|
    if (ExtVT == MVT::i64 && !Subtarget.is64Bit() &&
 | 
						|
        (!IsAllConstants || Idx == 0)) {
 | 
						|
      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
 | 
						|
        // Handle SSE only.
 | 
						|
        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
 | 
						|
        MVT VecVT = MVT::v4i32;
 | 
						|
 | 
						|
        // Truncate the value (which may itself be a constant) to i32, and
 | 
						|
        // convert it to a vector with movd (S2V+shuffle to zero extend).
 | 
						|
        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
 | 
						|
        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
 | 
						|
        return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
 | 
						|
                                      Item, Idx * 2, true, Subtarget, DAG));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a constant or non-constant insertion into the low element of
 | 
						|
    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
 | 
						|
    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
 | 
						|
    // depending on what the source datatype is.
 | 
						|
    if (Idx == 0) {
 | 
						|
      if (NumZero == 0)
 | 
						|
        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | 
						|
 | 
						|
      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
 | 
						|
          (ExtVT == MVT::i64 && Subtarget.is64Bit())) {
 | 
						|
        assert((VT.is128BitVector() || VT.is256BitVector() ||
 | 
						|
                VT.is512BitVector()) &&
 | 
						|
               "Expected an SSE value type!");
 | 
						|
        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | 
						|
        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
 | 
						|
        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
 | 
						|
      }
 | 
						|
 | 
						|
      // We can't directly insert an i8 or i16 into a vector, so zero extend
 | 
						|
      // it to i32 first.
 | 
						|
      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
 | 
						|
        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
 | 
						|
        if (VT.getSizeInBits() >= 256) {
 | 
						|
          MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
 | 
						|
          if (Subtarget.hasAVX()) {
 | 
						|
            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
 | 
						|
            Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
 | 
						|
          } else {
 | 
						|
            // Without AVX, we need to extend to a 128-bit vector and then
 | 
						|
            // insert into the 256-bit vector.
 | 
						|
            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
 | 
						|
            SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl);
 | 
						|
            Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl);
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          assert(VT.is128BitVector() && "Expected an SSE value type!");
 | 
						|
          Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
 | 
						|
          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
 | 
						|
        }
 | 
						|
        return DAG.getBitcast(VT, Item);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Is it a vector logical left shift?
 | 
						|
    if (NumElems == 2 && Idx == 1 &&
 | 
						|
        X86::isZeroNode(Op.getOperand(0)) &&
 | 
						|
        !X86::isZeroNode(Op.getOperand(1))) {
 | 
						|
      unsigned NumBits = VT.getSizeInBits();
 | 
						|
      return getVShift(true, VT,
 | 
						|
                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | 
						|
                                   VT, Op.getOperand(1)),
 | 
						|
                       NumBits/2, DAG, *this, dl);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Otherwise, if this is a vector with i32 or f32 elements, and the element
 | 
						|
    // is a non-constant being inserted into an element other than the low one,
 | 
						|
    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
 | 
						|
    // movd/movss) to move this into the low element, then shuffle it into
 | 
						|
    // place.
 | 
						|
    if (EVTBits == 32) {
 | 
						|
      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | 
						|
      return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Splat is obviously ok. Let legalizer expand it to a shuffle.
 | 
						|
  if (Values.size() == 1) {
 | 
						|
    if (EVTBits == 32) {
 | 
						|
      // Instead of a shuffle like this:
 | 
						|
      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
 | 
						|
      // Check if it's possible to issue this instead.
 | 
						|
      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
 | 
						|
      unsigned Idx = countTrailingZeros(NonZeros);
 | 
						|
      SDValue Item = Op.getOperand(Idx);
 | 
						|
      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
 | 
						|
        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // A vector full of immediates; various special cases are already
 | 
						|
  // handled, so this is best done with a single constant-pool load.
 | 
						|
  if (IsAllConstants)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // See if we can use a vector load to get all of the elements.
 | 
						|
  if (VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) {
 | 
						|
    SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
 | 
						|
    if (SDValue LD = EltsFromConsecutiveLoads(VT, Ops, dl, DAG, false))
 | 
						|
      return LD;
 | 
						|
  }
 | 
						|
 | 
						|
  // For AVX-length vectors, build the individual 128-bit pieces and use
 | 
						|
  // shuffles to put them in place.
 | 
						|
  if (VT.is256BitVector() || VT.is512BitVector()) {
 | 
						|
    SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
 | 
						|
 | 
						|
    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
 | 
						|
 | 
						|
    // Build both the lower and upper subvector.
 | 
						|
    SDValue Lower =
 | 
						|
        DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElems / 2));
 | 
						|
    SDValue Upper = DAG.getBuildVector(
 | 
						|
        HVT, dl, makeArrayRef(&Ops[NumElems / 2], NumElems / 2));
 | 
						|
 | 
						|
    // Recreate the wider vector with the lower and upper part.
 | 
						|
    if (VT.is256BitVector())
 | 
						|
      return concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
 | 
						|
    return concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Let legalizer expand 2-wide build_vectors.
 | 
						|
  if (EVTBits == 64) {
 | 
						|
    if (NumNonZero == 1) {
 | 
						|
      // One half is zero or undef.
 | 
						|
      unsigned Idx = countTrailingZeros(NonZeros);
 | 
						|
      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
 | 
						|
                               Op.getOperand(Idx));
 | 
						|
      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If element VT is < 32 bits, convert it to inserts into a zero vector.
 | 
						|
  if (EVTBits == 8 && NumElems == 16)
 | 
						|
    if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
 | 
						|
                                          DAG, Subtarget, *this))
 | 
						|
      return V;
 | 
						|
 | 
						|
  if (EVTBits == 16 && NumElems == 8)
 | 
						|
    if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
 | 
						|
                                          DAG, Subtarget, *this))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
 | 
						|
  if (EVTBits == 32 && NumElems == 4)
 | 
						|
    if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If element VT is == 32 bits, turn it into a number of shuffles.
 | 
						|
  if (NumElems == 4 && NumZero > 0) {
 | 
						|
    SmallVector<SDValue, 8> Ops(NumElems);
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      bool isZero = !(NonZeros & (1ULL << i));
 | 
						|
      if (isZero)
 | 
						|
        Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      else
 | 
						|
        Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0; i < 2; ++i) {
 | 
						|
      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
 | 
						|
        default: break;
 | 
						|
        case 0:
 | 
						|
          Ops[i] = Ops[i*2];  // Must be a zero vector.
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
 | 
						|
          break;
 | 
						|
        case 2:
 | 
						|
          Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
 | 
						|
          break;
 | 
						|
        case 3:
 | 
						|
          Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool Reverse1 = (NonZeros & 0x3) == 2;
 | 
						|
    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
 | 
						|
    int MaskVec[] = {
 | 
						|
      Reverse1 ? 1 : 0,
 | 
						|
      Reverse1 ? 0 : 1,
 | 
						|
      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
 | 
						|
      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
 | 
						|
    };
 | 
						|
    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Values.size() > 1 && VT.is128BitVector()) {
 | 
						|
    // Check for a build vector from mostly shuffle plus few inserting.
 | 
						|
    if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
 | 
						|
      return Sh;
 | 
						|
 | 
						|
    // For SSE 4.1, use insertps to put the high elements into the low element.
 | 
						|
    if (Subtarget.hasSSE41()) {
 | 
						|
      SDValue Result;
 | 
						|
      if (!Op.getOperand(0).isUndef())
 | 
						|
        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
 | 
						|
      else
 | 
						|
        Result = DAG.getUNDEF(VT);
 | 
						|
 | 
						|
      for (unsigned i = 1; i < NumElems; ++i) {
 | 
						|
        if (Op.getOperand(i).isUndef()) continue;
 | 
						|
        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
 | 
						|
                             Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
 | 
						|
      }
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, expand into a number of unpckl*, start by extending each of
 | 
						|
    // our (non-undef) elements to the full vector width with the element in the
 | 
						|
    // bottom slot of the vector (which generates no code for SSE).
 | 
						|
    SmallVector<SDValue, 8> Ops(NumElems);
 | 
						|
    for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
      if (!Op.getOperand(i).isUndef())
 | 
						|
        Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | 
						|
      else
 | 
						|
        Ops[i] = DAG.getUNDEF(VT);
 | 
						|
    }
 | 
						|
 | 
						|
    // Next, we iteratively mix elements, e.g. for v4f32:
 | 
						|
    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
 | 
						|
    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
 | 
						|
    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
 | 
						|
    unsigned EltStride = NumElems >> 1;
 | 
						|
    while (EltStride != 0) {
 | 
						|
      for (unsigned i = 0; i < EltStride; ++i) {
 | 
						|
        // If Ops[i+EltStride] is undef and this is the first round of mixing,
 | 
						|
        // then it is safe to just drop this shuffle: V[i] is already in the
 | 
						|
        // right place, the one element (since it's the first round) being
 | 
						|
        // inserted as undef can be dropped.  This isn't safe for successive
 | 
						|
        // rounds because they will permute elements within both vectors.
 | 
						|
        if (Ops[i+EltStride].isUndef() &&
 | 
						|
            EltStride == NumElems/2)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Ops[i] = getUnpackl(DAG, dl, VT, Ops[i], Ops[i + EltStride]);
 | 
						|
      }
 | 
						|
      EltStride >>= 1;
 | 
						|
    }
 | 
						|
    return Ops[0];
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// 256-bit AVX can use the vinsertf128 instruction
 | 
						|
// to create 256-bit vectors from two other 128-bit ones.
 | 
						|
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT ResVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert((ResVT.is256BitVector() ||
 | 
						|
          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
 | 
						|
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  unsigned NumElems = ResVT.getVectorNumElements();
 | 
						|
  if (ResVT.is256BitVector())
 | 
						|
    return concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
 | 
						|
 | 
						|
  if (Op.getNumOperands() == 4) {
 | 
						|
    MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
 | 
						|
                                  ResVT.getVectorNumElements()/2);
 | 
						|
    SDValue V3 = Op.getOperand(2);
 | 
						|
    SDValue V4 = Op.getOperand(3);
 | 
						|
    return concat256BitVectors(
 | 
						|
        concat128BitVectors(V1, V2, HalfVT, NumElems / 2, DAG, dl),
 | 
						|
        concat128BitVectors(V3, V4, HalfVT, NumElems / 2, DAG, dl), ResVT,
 | 
						|
        NumElems, DAG, dl);
 | 
						|
  }
 | 
						|
  return concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG & DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT ResVT = Op.getSimpleValueType();
 | 
						|
  unsigned NumOfOperands = Op.getNumOperands();
 | 
						|
 | 
						|
  assert(isPowerOf2_32(NumOfOperands) &&
 | 
						|
         "Unexpected number of operands in CONCAT_VECTORS");
 | 
						|
 | 
						|
  SDValue Undef = DAG.getUNDEF(ResVT);
 | 
						|
  if (NumOfOperands > 2) {
 | 
						|
    // Specialize the cases when all, or all but one, of the operands are undef.
 | 
						|
    unsigned NumOfDefinedOps = 0;
 | 
						|
    unsigned OpIdx = 0;
 | 
						|
    for (unsigned i = 0; i < NumOfOperands; i++)
 | 
						|
      if (!Op.getOperand(i).isUndef()) {
 | 
						|
        NumOfDefinedOps++;
 | 
						|
        OpIdx = i;
 | 
						|
      }
 | 
						|
    if (NumOfDefinedOps == 0)
 | 
						|
      return Undef;
 | 
						|
    if (NumOfDefinedOps == 1) {
 | 
						|
      unsigned SubVecNumElts =
 | 
						|
        Op.getOperand(OpIdx).getValueType().getVectorNumElements();
 | 
						|
      SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl);
 | 
						|
      return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef,
 | 
						|
                         Op.getOperand(OpIdx), IdxVal);
 | 
						|
    }
 | 
						|
 | 
						|
    MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
 | 
						|
                                  ResVT.getVectorNumElements()/2);
 | 
						|
    SmallVector<SDValue, 2> Ops;
 | 
						|
    for (unsigned i = 0; i < NumOfOperands/2; i++)
 | 
						|
      Ops.push_back(Op.getOperand(i));
 | 
						|
    SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
 | 
						|
    Ops.clear();
 | 
						|
    for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
 | 
						|
      Ops.push_back(Op.getOperand(i));
 | 
						|
    SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  // 2 operands
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  unsigned NumElems = ResVT.getVectorNumElements();
 | 
						|
  assert(V1.getValueType() == V2.getValueType() &&
 | 
						|
         V1.getValueType().getVectorNumElements() == NumElems/2 &&
 | 
						|
         "Unexpected operands in CONCAT_VECTORS");
 | 
						|
 | 
						|
  if (ResVT.getSizeInBits() >= 16)
 | 
						|
    return Op; // The operation is legal with KUNPCK
 | 
						|
 | 
						|
  bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
 | 
						|
  bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
 | 
						|
  SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl);
 | 
						|
  if (IsZeroV1 && IsZeroV2)
 | 
						|
    return ZeroVec;
 | 
						|
 | 
						|
  SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
 | 
						|
  if (V2.isUndef())
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
 | 
						|
  if (IsZeroV2)
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx);
 | 
						|
 | 
						|
  SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl);
 | 
						|
  if (V1.isUndef())
 | 
						|
    V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal);
 | 
						|
 | 
						|
  if (IsZeroV1)
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal);
 | 
						|
 | 
						|
  V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
 | 
						|
  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCONCAT_VECTORS(SDValue Op,
 | 
						|
                                   const X86Subtarget &Subtarget,
 | 
						|
                                   SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  if (VT.getVectorElementType() == MVT::i1)
 | 
						|
    return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
 | 
						|
 | 
						|
  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
 | 
						|
         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
 | 
						|
          Op.getNumOperands() == 4)));
 | 
						|
 | 
						|
  // AVX can use the vinsertf128 instruction to create 256-bit vectors
 | 
						|
  // from two other 128-bit ones.
 | 
						|
 | 
						|
  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
 | 
						|
  return LowerAVXCONCAT_VECTORS(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector shuffle lowering
 | 
						|
//
 | 
						|
// This is an experimental code path for lowering vector shuffles on x86. It is
 | 
						|
// designed to handle arbitrary vector shuffles and blends, gracefully
 | 
						|
// degrading performance as necessary. It works hard to recognize idiomatic
 | 
						|
// shuffles and lower them to optimal instruction patterns without leaving
 | 
						|
// a framework that allows reasonably efficient handling of all vector shuffle
 | 
						|
// patterns.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// \brief Tiny helper function to identify a no-op mask.
 | 
						|
///
 | 
						|
/// This is a somewhat boring predicate function. It checks whether the mask
 | 
						|
/// array input, which is assumed to be a single-input shuffle mask of the kind
 | 
						|
/// used by the X86 shuffle instructions (not a fully general
 | 
						|
/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
 | 
						|
/// in-place shuffle are 'no-op's.
 | 
						|
static bool isNoopShuffleMask(ArrayRef<int> Mask) {
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    assert(Mask[i] >= -1 && "Out of bound mask element!");
 | 
						|
    if (Mask[i] >= 0 && Mask[i] != i)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Test whether there are elements crossing 128-bit lanes in this
 | 
						|
/// shuffle mask.
 | 
						|
///
 | 
						|
/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
 | 
						|
/// and we routinely test for these.
 | 
						|
static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
 | 
						|
  int LaneSize = 128 / VT.getScalarSizeInBits();
 | 
						|
  int Size = Mask.size();
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Test whether a shuffle mask is equivalent within each sub-lane.
 | 
						|
///
 | 
						|
/// This checks a shuffle mask to see if it is performing the same
 | 
						|
/// lane-relative shuffle in each sub-lane. This trivially implies
 | 
						|
/// that it is also not lane-crossing. It may however involve a blend from the
 | 
						|
/// same lane of a second vector.
 | 
						|
///
 | 
						|
/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
 | 
						|
/// non-trivial to compute in the face of undef lanes. The representation is
 | 
						|
/// suitable for use with existing 128-bit shuffles as entries from the second
 | 
						|
/// vector have been remapped to [LaneSize, 2*LaneSize).
 | 
						|
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT,
 | 
						|
                                  ArrayRef<int> Mask,
 | 
						|
                                  SmallVectorImpl<int> &RepeatedMask) {
 | 
						|
  int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
 | 
						|
  RepeatedMask.assign(LaneSize, -1);
 | 
						|
  int Size = Mask.size();
 | 
						|
  for (int i = 0; i < Size; ++i) {
 | 
						|
    assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0);
 | 
						|
    if (Mask[i] < 0)
 | 
						|
      continue;
 | 
						|
    if ((Mask[i] % Size) / LaneSize != i / LaneSize)
 | 
						|
      // This entry crosses lanes, so there is no way to model this shuffle.
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ok, handle the in-lane shuffles by detecting if and when they repeat.
 | 
						|
    // Adjust second vector indices to start at LaneSize instead of Size.
 | 
						|
    int LocalM = Mask[i] < Size ? Mask[i] % LaneSize
 | 
						|
                                : Mask[i] % LaneSize + LaneSize;
 | 
						|
    if (RepeatedMask[i % LaneSize] < 0)
 | 
						|
      // This is the first non-undef entry in this slot of a 128-bit lane.
 | 
						|
      RepeatedMask[i % LaneSize] = LocalM;
 | 
						|
    else if (RepeatedMask[i % LaneSize] != LocalM)
 | 
						|
      // Found a mismatch with the repeated mask.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Test whether a shuffle mask is equivalent within each 128-bit lane.
 | 
						|
static bool
 | 
						|
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
 | 
						|
                                SmallVectorImpl<int> &RepeatedMask) {
 | 
						|
  return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Test whether a shuffle mask is equivalent within each 256-bit lane.
 | 
						|
static bool
 | 
						|
is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
 | 
						|
                                SmallVectorImpl<int> &RepeatedMask) {
 | 
						|
  return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Test whether a target shuffle mask is equivalent within each sub-lane.
 | 
						|
/// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero.
 | 
						|
static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT,
 | 
						|
                                        ArrayRef<int> Mask,
 | 
						|
                                        SmallVectorImpl<int> &RepeatedMask) {
 | 
						|
  int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
 | 
						|
  RepeatedMask.assign(LaneSize, SM_SentinelUndef);
 | 
						|
  int Size = Mask.size();
 | 
						|
  for (int i = 0; i < Size; ++i) {
 | 
						|
    assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0));
 | 
						|
    if (Mask[i] == SM_SentinelUndef)
 | 
						|
      continue;
 | 
						|
    if (Mask[i] == SM_SentinelZero) {
 | 
						|
      if (!isUndefOrZero(RepeatedMask[i % LaneSize]))
 | 
						|
        return false;
 | 
						|
      RepeatedMask[i % LaneSize] = SM_SentinelZero;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if ((Mask[i] % Size) / LaneSize != i / LaneSize)
 | 
						|
      // This entry crosses lanes, so there is no way to model this shuffle.
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ok, handle the in-lane shuffles by detecting if and when they repeat.
 | 
						|
    // Adjust second vector indices to start at LaneSize instead of Size.
 | 
						|
    int LocalM =
 | 
						|
        Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
 | 
						|
    if (RepeatedMask[i % LaneSize] == SM_SentinelUndef)
 | 
						|
      // This is the first non-undef entry in this slot of a 128-bit lane.
 | 
						|
      RepeatedMask[i % LaneSize] = LocalM;
 | 
						|
    else if (RepeatedMask[i % LaneSize] != LocalM)
 | 
						|
      // Found a mismatch with the repeated mask.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
 | 
						|
/// arguments.
 | 
						|
///
 | 
						|
/// This is a fast way to test a shuffle mask against a fixed pattern:
 | 
						|
///
 | 
						|
///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
 | 
						|
///
 | 
						|
/// It returns true if the mask is exactly as wide as the argument list, and
 | 
						|
/// each element of the mask is either -1 (signifying undef) or the value given
 | 
						|
/// in the argument.
 | 
						|
static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                ArrayRef<int> ExpectedMask) {
 | 
						|
  if (Mask.size() != ExpectedMask.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  int Size = Mask.size();
 | 
						|
 | 
						|
  // If the values are build vectors, we can look through them to find
 | 
						|
  // equivalent inputs that make the shuffles equivalent.
 | 
						|
  auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
 | 
						|
  auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
 | 
						|
 | 
						|
  for (int i = 0; i < Size; ++i) {
 | 
						|
    assert(Mask[i] >= -1 && "Out of bound mask element!");
 | 
						|
    if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) {
 | 
						|
      auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
 | 
						|
      auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
 | 
						|
      if (!MaskBV || !ExpectedBV ||
 | 
						|
          MaskBV->getOperand(Mask[i] % Size) !=
 | 
						|
              ExpectedBV->getOperand(ExpectedMask[i] % Size))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks whether a target shuffle mask is equivalent to an explicit pattern.
 | 
						|
///
 | 
						|
/// The masks must be exactly the same width.
 | 
						|
///
 | 
						|
/// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding
 | 
						|
/// value in ExpectedMask is always accepted. Otherwise the indices must match.
 | 
						|
///
 | 
						|
/// SM_SentinelZero is accepted as a valid negative index but must match in both.
 | 
						|
static bool isTargetShuffleEquivalent(ArrayRef<int> Mask,
 | 
						|
                                      ArrayRef<int> ExpectedMask) {
 | 
						|
  int Size = Mask.size();
 | 
						|
  if (Size != (int)ExpectedMask.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] == SM_SentinelUndef)
 | 
						|
      continue;
 | 
						|
    else if (Mask[i] < 0 && Mask[i] != SM_SentinelZero)
 | 
						|
      return false;
 | 
						|
    else if (Mask[i] != ExpectedMask[i])
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
 | 
						|
///
 | 
						|
/// This helper function produces an 8-bit shuffle immediate corresponding to
 | 
						|
/// the ubiquitous shuffle encoding scheme used in x86 instructions for
 | 
						|
/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
 | 
						|
/// example.
 | 
						|
///
 | 
						|
/// NB: We rely heavily on "undef" masks preserving the input lane.
 | 
						|
static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) {
 | 
						|
  assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
 | 
						|
  assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
 | 
						|
  assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
 | 
						|
  assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
 | 
						|
  assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
 | 
						|
 | 
						|
  unsigned Imm = 0;
 | 
						|
  Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0;
 | 
						|
  Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2;
 | 
						|
  Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4;
 | 
						|
  Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6;
 | 
						|
  return Imm;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  return DAG.getConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute whether each element of a shuffle is zeroable.
 | 
						|
///
 | 
						|
/// A "zeroable" vector shuffle element is one which can be lowered to zero.
 | 
						|
/// Either it is an undef element in the shuffle mask, the element of the input
 | 
						|
/// referenced is undef, or the element of the input referenced is known to be
 | 
						|
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
 | 
						|
/// as many lanes with this technique as possible to simplify the remaining
 | 
						|
/// shuffle.
 | 
						|
static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
 | 
						|
                                                     SDValue V1, SDValue V2) {
 | 
						|
  SmallBitVector Zeroable(Mask.size(), false);
 | 
						|
  V1 = peekThroughBitcasts(V1);
 | 
						|
  V2 = peekThroughBitcasts(V2);
 | 
						|
 | 
						|
  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
 | 
						|
  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
 | 
						|
 | 
						|
  int VectorSizeInBits = V1.getValueSizeInBits();
 | 
						|
  int ScalarSizeInBits = VectorSizeInBits / Mask.size();
 | 
						|
  assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
 | 
						|
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    // Handle the easy cases.
 | 
						|
    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
 | 
						|
      Zeroable[i] = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine shuffle input and normalize the mask.
 | 
						|
    SDValue V = M < Size ? V1 : V2;
 | 
						|
    M %= Size;
 | 
						|
 | 
						|
    // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
 | 
						|
    if (V.getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the BUILD_VECTOR has fewer elements then the bitcasted portion of
 | 
						|
    // the (larger) source element must be UNDEF/ZERO.
 | 
						|
    if ((Size % V.getNumOperands()) == 0) {
 | 
						|
      int Scale = Size / V->getNumOperands();
 | 
						|
      SDValue Op = V.getOperand(M / Scale);
 | 
						|
      if (Op.isUndef() || X86::isZeroNode(Op))
 | 
						|
        Zeroable[i] = true;
 | 
						|
      else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
        APInt Val = Cst->getAPIntValue();
 | 
						|
        Val = Val.lshr((M % Scale) * ScalarSizeInBits);
 | 
						|
        Val = Val.getLoBits(ScalarSizeInBits);
 | 
						|
        Zeroable[i] = (Val == 0);
 | 
						|
      } else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
 | 
						|
        APInt Val = Cst->getValueAPF().bitcastToAPInt();
 | 
						|
        Val = Val.lshr((M % Scale) * ScalarSizeInBits);
 | 
						|
        Val = Val.getLoBits(ScalarSizeInBits);
 | 
						|
        Zeroable[i] = (Val == 0);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the BUILD_VECTOR has more elements then all the (smaller) source
 | 
						|
    // elements must be UNDEF or ZERO.
 | 
						|
    if ((V.getNumOperands() % Size) == 0) {
 | 
						|
      int Scale = V->getNumOperands() / Size;
 | 
						|
      bool AllZeroable = true;
 | 
						|
      for (int j = 0; j < Scale; ++j) {
 | 
						|
        SDValue Op = V.getOperand((M * Scale) + j);
 | 
						|
        AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op));
 | 
						|
      }
 | 
						|
      Zeroable[i] = AllZeroable;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Zeroable;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to lower a shuffle with a single PSHUFB of V1 or V2.
 | 
						|
static SDValue lowerVectorShuffleWithPSHUFB(const SDLoc &DL, MVT VT,
 | 
						|
                                            ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                            SDValue V2,
 | 
						|
                                            const SmallBitVector &Zeroable,
 | 
						|
                                            const X86Subtarget &Subtarget,
 | 
						|
                                            SelectionDAG &DAG) {
 | 
						|
  int Size = Mask.size();
 | 
						|
  int LaneSize = 128 / VT.getScalarSizeInBits();
 | 
						|
  const int NumBytes = VT.getSizeInBits() / 8;
 | 
						|
  const int NumEltBytes = VT.getScalarSizeInBits() / 8;
 | 
						|
 | 
						|
  assert((Subtarget.hasSSSE3() && VT.is128BitVector()) ||
 | 
						|
         (Subtarget.hasAVX2() && VT.is256BitVector()) ||
 | 
						|
         (Subtarget.hasBWI() && VT.is512BitVector()));
 | 
						|
 | 
						|
  SmallVector<SDValue, 64> PSHUFBMask(NumBytes);
 | 
						|
  // Sign bit set in i8 mask means zero element.
 | 
						|
  SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8);
 | 
						|
 | 
						|
  SDValue V;
 | 
						|
  for (int i = 0; i < NumBytes; ++i) {
 | 
						|
    int M = Mask[i / NumEltBytes];
 | 
						|
    if (M < 0) {
 | 
						|
      PSHUFBMask[i] = DAG.getUNDEF(MVT::i8);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (Zeroable[i / NumEltBytes]) {
 | 
						|
      PSHUFBMask[i] = ZeroMask;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can only use a single input of V1 or V2.
 | 
						|
    SDValue SrcV = (M >= Size ? V2 : V1);
 | 
						|
    if (V && V != SrcV)
 | 
						|
      return SDValue();
 | 
						|
    V = SrcV;
 | 
						|
    M %= Size;
 | 
						|
 | 
						|
    // PSHUFB can't cross lanes, ensure this doesn't happen.
 | 
						|
    if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    M = M % LaneSize;
 | 
						|
    M = M * NumEltBytes + (i % NumEltBytes);
 | 
						|
    PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8);
 | 
						|
  }
 | 
						|
  assert(V && "Failed to find a source input");
 | 
						|
 | 
						|
  MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes);
 | 
						|
  return DAG.getBitcast(
 | 
						|
      VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V),
 | 
						|
                      DAG.getBuildVector(I8VT, DL, PSHUFBMask)));
 | 
						|
}
 | 
						|
 | 
						|
// X86 has dedicated unpack instructions that can handle specific blend
 | 
						|
// operations: UNPCKH and UNPCKL.
 | 
						|
static SDValue lowerVectorShuffleWithUNPCK(const SDLoc &DL, MVT VT,
 | 
						|
                                           ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                           SDValue V2, SelectionDAG &DAG) {
 | 
						|
  SmallVector<int, 8> Unpckl;
 | 
						|
  createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false);
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
 | 
						|
    return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
 | 
						|
 | 
						|
  SmallVector<int, 8> Unpckh;
 | 
						|
  createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false);
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
 | 
						|
    return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
 | 
						|
 | 
						|
  // Commute and try again.
 | 
						|
  ShuffleVectorSDNode::commuteMask(Unpckl);
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
 | 
						|
    return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
 | 
						|
 | 
						|
  ShuffleVectorSDNode::commuteMask(Unpckh);
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
 | 
						|
    return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to emit a bitmask instruction for a shuffle.
 | 
						|
///
 | 
						|
/// This handles cases where we can model a blend exactly as a bitmask due to
 | 
						|
/// one of the inputs being zeroable.
 | 
						|
static SDValue lowerVectorShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                           SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                           const SmallBitVector &Zeroable,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  assert(!VT.isFloatingPoint() && "Floating point types are not supported");
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, EltVT);
 | 
						|
  SDValue AllOnes =
 | 
						|
      DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, EltVT);
 | 
						|
  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
 | 
						|
  SDValue V;
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    if (Zeroable[i])
 | 
						|
      continue;
 | 
						|
    if (Mask[i] % Size != i)
 | 
						|
      return SDValue(); // Not a blend.
 | 
						|
    if (!V)
 | 
						|
      V = Mask[i] < Size ? V1 : V2;
 | 
						|
    else if (V != (Mask[i] < Size ? V1 : V2))
 | 
						|
      return SDValue(); // Can only let one input through the mask.
 | 
						|
 | 
						|
    VMaskOps[i] = AllOnes;
 | 
						|
  }
 | 
						|
  if (!V)
 | 
						|
    return SDValue(); // No non-zeroable elements!
 | 
						|
 | 
						|
  SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps);
 | 
						|
  return DAG.getNode(ISD::AND, DL, VT, V, VMask);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to emit a blend instruction for a shuffle using bit math.
 | 
						|
///
 | 
						|
/// This is used as a fallback approach when first class blend instructions are
 | 
						|
/// unavailable. Currently it is only suitable for integer vectors, but could
 | 
						|
/// be generalized for floating point vectors if desirable.
 | 
						|
static SDValue lowerVectorShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                            SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                            SelectionDAG &DAG) {
 | 
						|
  assert(VT.isInteger() && "Only supports integer vector types!");
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  int NumEltBits = EltVT.getSizeInBits();
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, EltVT);
 | 
						|
  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
 | 
						|
                                    EltVT);
 | 
						|
  SmallVector<SDValue, 16> MaskOps;
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size)
 | 
						|
      return SDValue(); // Shuffled input!
 | 
						|
    MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
 | 
						|
  V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
 | 
						|
  // We have to cast V2 around.
 | 
						|
  MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
 | 
						|
  V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
 | 
						|
                                      DAG.getBitcast(MaskVT, V1Mask),
 | 
						|
                                      DAG.getBitcast(MaskVT, V2)));
 | 
						|
  return DAG.getNode(ISD::OR, DL, VT, V1, V2);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to emit a blend instruction for a shuffle.
 | 
						|
///
 | 
						|
/// This doesn't do any checks for the availability of instructions for blending
 | 
						|
/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
 | 
						|
/// be matched in the backend with the type given. What it does check for is
 | 
						|
/// that the shuffle mask is a blend, or convertible into a blend with zero.
 | 
						|
static SDValue lowerVectorShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                         SDValue V2, ArrayRef<int> Original,
 | 
						|
                                         const SmallBitVector &Zeroable,
 | 
						|
                                         const X86Subtarget &Subtarget,
 | 
						|
                                         SelectionDAG &DAG) {
 | 
						|
  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
 | 
						|
  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
 | 
						|
  SmallVector<int, 8> Mask(Original.begin(), Original.end());
 | 
						|
  bool ForceV1Zero = false, ForceV2Zero = false;
 | 
						|
 | 
						|
  // Attempt to generate the binary blend mask. If an input is zero then
 | 
						|
  // we can use any lane.
 | 
						|
  // TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
 | 
						|
  unsigned BlendMask = 0;
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    if (M < 0)
 | 
						|
      continue;
 | 
						|
    if (M == i)
 | 
						|
      continue;
 | 
						|
    if (M == i + Size) {
 | 
						|
      BlendMask |= 1u << i;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (Zeroable[i]) {
 | 
						|
      if (V1IsZero) {
 | 
						|
        ForceV1Zero = true;
 | 
						|
        Mask[i] = i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (V2IsZero) {
 | 
						|
        ForceV2Zero = true;
 | 
						|
        BlendMask |= 1u << i;
 | 
						|
        Mask[i] = i + Size;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return SDValue(); // Shuffled input!
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
 | 
						|
  if (ForceV1Zero)
 | 
						|
    V1 = getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
  if (ForceV2Zero)
 | 
						|
    V2 = getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
 | 
						|
  auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) {
 | 
						|
    unsigned ScaledMask = 0;
 | 
						|
    for (int i = 0; i != Size; ++i)
 | 
						|
      if (BlendMask & (1u << i))
 | 
						|
        for (int j = 0; j != Scale; ++j)
 | 
						|
          ScaledMask |= 1u << (i * Scale + j);
 | 
						|
    return ScaledMask;
 | 
						|
  };
 | 
						|
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  case MVT::v2f64:
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4f64:
 | 
						|
  case MVT::v8f32:
 | 
						|
    return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
 | 
						|
                       DAG.getConstant(BlendMask, DL, MVT::i8));
 | 
						|
 | 
						|
  case MVT::v4i64:
 | 
						|
  case MVT::v8i32:
 | 
						|
    assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case MVT::v2i64:
 | 
						|
  case MVT::v4i32:
 | 
						|
    // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
 | 
						|
    // that instruction.
 | 
						|
    if (Subtarget.hasAVX2()) {
 | 
						|
      // Scale the blend by the number of 32-bit dwords per element.
 | 
						|
      int Scale =  VT.getScalarSizeInBits() / 32;
 | 
						|
      BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
 | 
						|
      MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
 | 
						|
      V1 = DAG.getBitcast(BlendVT, V1);
 | 
						|
      V2 = DAG.getBitcast(BlendVT, V2);
 | 
						|
      return DAG.getBitcast(
 | 
						|
          VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
 | 
						|
                          DAG.getConstant(BlendMask, DL, MVT::i8)));
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case MVT::v8i16: {
 | 
						|
    // For integer shuffles we need to expand the mask and cast the inputs to
 | 
						|
    // v8i16s prior to blending.
 | 
						|
    int Scale = 8 / VT.getVectorNumElements();
 | 
						|
    BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
 | 
						|
    V1 = DAG.getBitcast(MVT::v8i16, V1);
 | 
						|
    V2 = DAG.getBitcast(MVT::v8i16, V2);
 | 
						|
    return DAG.getBitcast(VT,
 | 
						|
                          DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
 | 
						|
                                      DAG.getConstant(BlendMask, DL, MVT::i8)));
 | 
						|
  }
 | 
						|
 | 
						|
  case MVT::v16i16: {
 | 
						|
    assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
 | 
						|
    SmallVector<int, 8> RepeatedMask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
 | 
						|
      // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
 | 
						|
      assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
 | 
						|
      BlendMask = 0;
 | 
						|
      for (int i = 0; i < 8; ++i)
 | 
						|
        if (RepeatedMask[i] >= 8)
 | 
						|
          BlendMask |= 1u << i;
 | 
						|
      return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
 | 
						|
                         DAG.getConstant(BlendMask, DL, MVT::i8));
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
  case MVT::v16i8:
 | 
						|
  case MVT::v32i8: {
 | 
						|
    assert((VT.is128BitVector() || Subtarget.hasAVX2()) &&
 | 
						|
           "256-bit byte-blends require AVX2 support!");
 | 
						|
 | 
						|
    // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
 | 
						|
    if (SDValue Masked =
 | 
						|
            lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
 | 
						|
      return Masked;
 | 
						|
 | 
						|
    // Scale the blend by the number of bytes per element.
 | 
						|
    int Scale = VT.getScalarSizeInBits() / 8;
 | 
						|
 | 
						|
    // This form of blend is always done on bytes. Compute the byte vector
 | 
						|
    // type.
 | 
						|
    MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
 | 
						|
 | 
						|
    // Compute the VSELECT mask. Note that VSELECT is really confusing in the
 | 
						|
    // mix of LLVM's code generator and the x86 backend. We tell the code
 | 
						|
    // generator that boolean values in the elements of an x86 vector register
 | 
						|
    // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
 | 
						|
    // mapping a select to operand #1, and 'false' mapping to operand #2. The
 | 
						|
    // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
 | 
						|
    // of the element (the remaining are ignored) and 0 in that high bit would
 | 
						|
    // mean operand #1 while 1 in the high bit would mean operand #2. So while
 | 
						|
    // the LLVM model for boolean values in vector elements gets the relevant
 | 
						|
    // bit set, it is set backwards and over constrained relative to x86's
 | 
						|
    // actual model.
 | 
						|
    SmallVector<SDValue, 32> VSELECTMask;
 | 
						|
    for (int i = 0, Size = Mask.size(); i < Size; ++i)
 | 
						|
      for (int j = 0; j < Scale; ++j)
 | 
						|
        VSELECTMask.push_back(
 | 
						|
            Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
 | 
						|
                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
 | 
						|
                                          MVT::i8));
 | 
						|
 | 
						|
    V1 = DAG.getBitcast(BlendVT, V1);
 | 
						|
    V2 = DAG.getBitcast(BlendVT, V2);
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
 | 
						|
                        DAG.getBuildVector(BlendVT, DL, VSELECTMask), V1, V2));
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not a supported integer vector type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower as a blend of elements from two inputs followed by
 | 
						|
/// a single-input permutation.
 | 
						|
///
 | 
						|
/// This matches the pattern where we can blend elements from two inputs and
 | 
						|
/// then reduce the shuffle to a single-input permutation.
 | 
						|
static SDValue lowerVectorShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT,
 | 
						|
                                                   SDValue V1, SDValue V2,
 | 
						|
                                                   ArrayRef<int> Mask,
 | 
						|
                                                   SelectionDAG &DAG) {
 | 
						|
  // We build up the blend mask while checking whether a blend is a viable way
 | 
						|
  // to reduce the shuffle.
 | 
						|
  SmallVector<int, 32> BlendMask(Mask.size(), -1);
 | 
						|
  SmallVector<int, 32> PermuteMask(Mask.size(), -1);
 | 
						|
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
 | 
						|
    if (Mask[i] < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
 | 
						|
 | 
						|
    if (BlendMask[Mask[i] % Size] < 0)
 | 
						|
      BlendMask[Mask[i] % Size] = Mask[i];
 | 
						|
    else if (BlendMask[Mask[i] % Size] != Mask[i])
 | 
						|
      return SDValue(); // Can't blend in the needed input!
 | 
						|
 | 
						|
    PermuteMask[i] = Mask[i] % Size;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
 | 
						|
  return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generic routine to decompose a shuffle and blend into indepndent
 | 
						|
/// blends and permutes.
 | 
						|
///
 | 
						|
/// This matches the extremely common pattern for handling combined
 | 
						|
/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
 | 
						|
/// operations. It will try to pick the best arrangement of shuffles and
 | 
						|
/// blends.
 | 
						|
static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(const SDLoc &DL,
 | 
						|
                                                          MVT VT, SDValue V1,
 | 
						|
                                                          SDValue V2,
 | 
						|
                                                          ArrayRef<int> Mask,
 | 
						|
                                                          SelectionDAG &DAG) {
 | 
						|
  // Shuffle the input elements into the desired positions in V1 and V2 and
 | 
						|
  // blend them together.
 | 
						|
  SmallVector<int, 32> V1Mask(Mask.size(), -1);
 | 
						|
  SmallVector<int, 32> V2Mask(Mask.size(), -1);
 | 
						|
  SmallVector<int, 32> BlendMask(Mask.size(), -1);
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0 && Mask[i] < Size) {
 | 
						|
      V1Mask[i] = Mask[i];
 | 
						|
      BlendMask[i] = i;
 | 
						|
    } else if (Mask[i] >= Size) {
 | 
						|
      V2Mask[i] = Mask[i] - Size;
 | 
						|
      BlendMask[i] = i + Size;
 | 
						|
    }
 | 
						|
 | 
						|
  // Try to lower with the simpler initial blend strategy unless one of the
 | 
						|
  // input shuffles would be a no-op. We prefer to shuffle inputs as the
 | 
						|
  // shuffle may be able to fold with a load or other benefit. However, when
 | 
						|
  // we'll have to do 2x as many shuffles in order to achieve this, blending
 | 
						|
  // first is a better strategy.
 | 
						|
  if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
 | 
						|
    if (SDValue BlendPerm =
 | 
						|
            lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
 | 
						|
      return BlendPerm;
 | 
						|
 | 
						|
  V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
 | 
						|
  V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
 | 
						|
  return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a rotation.
 | 
						|
///
 | 
						|
/// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512.
 | 
						|
static int matchVectorShuffleAsRotate(SDValue &V1, SDValue &V2,
 | 
						|
                                      ArrayRef<int> Mask) {
 | 
						|
  int NumElts = Mask.size();
 | 
						|
 | 
						|
  // We need to detect various ways of spelling a rotation:
 | 
						|
  //   [11, 12, 13, 14, 15,  0,  1,  2]
 | 
						|
  //   [-1, 12, 13, 14, -1, -1,  1, -1]
 | 
						|
  //   [-1, -1, -1, -1, -1, -1,  1,  2]
 | 
						|
  //   [ 3,  4,  5,  6,  7,  8,  9, 10]
 | 
						|
  //   [-1,  4,  5,  6, -1, -1,  9, -1]
 | 
						|
  //   [-1,  4,  5,  6, -1, -1, -1, -1]
 | 
						|
  int Rotation = 0;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  for (int i = 0; i < NumElts; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) &&
 | 
						|
           "Unexpected mask index.");
 | 
						|
    if (M < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine where a rotated vector would have started.
 | 
						|
    int StartIdx = i - (M % NumElts);
 | 
						|
    if (StartIdx == 0)
 | 
						|
      // The identity rotation isn't interesting, stop.
 | 
						|
      return -1;
 | 
						|
 | 
						|
    // If we found the tail of a vector the rotation must be the missing
 | 
						|
    // front. If we found the head of a vector, it must be how much of the
 | 
						|
    // head.
 | 
						|
    int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
 | 
						|
 | 
						|
    if (Rotation == 0)
 | 
						|
      Rotation = CandidateRotation;
 | 
						|
    else if (Rotation != CandidateRotation)
 | 
						|
      // The rotations don't match, so we can't match this mask.
 | 
						|
      return -1;
 | 
						|
 | 
						|
    // Compute which value this mask is pointing at.
 | 
						|
    SDValue MaskV = M < NumElts ? V1 : V2;
 | 
						|
 | 
						|
    // Compute which of the two target values this index should be assigned
 | 
						|
    // to. This reflects whether the high elements are remaining or the low
 | 
						|
    // elements are remaining.
 | 
						|
    SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
 | 
						|
 | 
						|
    // Either set up this value if we've not encountered it before, or check
 | 
						|
    // that it remains consistent.
 | 
						|
    if (!TargetV)
 | 
						|
      TargetV = MaskV;
 | 
						|
    else if (TargetV != MaskV)
 | 
						|
      // This may be a rotation, but it pulls from the inputs in some
 | 
						|
      // unsupported interleaving.
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that we successfully analyzed the mask, and normalize the results.
 | 
						|
  assert(Rotation != 0 && "Failed to locate a viable rotation!");
 | 
						|
  assert((Lo || Hi) && "Failed to find a rotated input vector!");
 | 
						|
  if (!Lo)
 | 
						|
    Lo = Hi;
 | 
						|
  else if (!Hi)
 | 
						|
    Hi = Lo;
 | 
						|
 | 
						|
  V1 = Lo;
 | 
						|
  V2 = Hi;
 | 
						|
 | 
						|
  return Rotation;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a byte rotation.
 | 
						|
///
 | 
						|
/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
 | 
						|
/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
 | 
						|
/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
 | 
						|
/// try to generically lower a vector shuffle through such an pattern. It
 | 
						|
/// does not check for the profitability of lowering either as PALIGNR or
 | 
						|
/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
 | 
						|
/// This matches shuffle vectors that look like:
 | 
						|
///
 | 
						|
///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
 | 
						|
///
 | 
						|
/// Essentially it concatenates V1 and V2, shifts right by some number of
 | 
						|
/// elements, and takes the low elements as the result. Note that while this is
 | 
						|
/// specified as a *right shift* because x86 is little-endian, it is a *left
 | 
						|
/// rotate* of the vector lanes.
 | 
						|
static int matchVectorShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2,
 | 
						|
                                          ArrayRef<int> Mask) {
 | 
						|
  // Don't accept any shuffles with zero elements.
 | 
						|
  if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // PALIGNR works on 128-bit lanes.
 | 
						|
  SmallVector<int, 16> RepeatedMask;
 | 
						|
  if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
 | 
						|
    return -1;
 | 
						|
 | 
						|
  int Rotation = matchVectorShuffleAsRotate(V1, V2, RepeatedMask);
 | 
						|
  if (Rotation <= 0)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // PALIGNR rotates bytes, so we need to scale the
 | 
						|
  // rotation based on how many bytes are in the vector lane.
 | 
						|
  int NumElts = RepeatedMask.size();
 | 
						|
  int Scale = 16 / NumElts;
 | 
						|
  return Rotation * Scale;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerVectorShuffleAsByteRotate(const SDLoc &DL, MVT VT,
 | 
						|
                                              SDValue V1, SDValue V2,
 | 
						|
                                              ArrayRef<int> Mask,
 | 
						|
                                              const X86Subtarget &Subtarget,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
  assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
 | 
						|
 | 
						|
  SDValue Lo = V1, Hi = V2;
 | 
						|
  int ByteRotation = matchVectorShuffleAsByteRotate(VT, Lo, Hi, Mask);
 | 
						|
  if (ByteRotation <= 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Cast the inputs to i8 vector of correct length to match PALIGNR or
 | 
						|
  // PSLLDQ/PSRLDQ.
 | 
						|
  MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
 | 
						|
  Lo = DAG.getBitcast(ByteVT, Lo);
 | 
						|
  Hi = DAG.getBitcast(ByteVT, Hi);
 | 
						|
 | 
						|
  // SSSE3 targets can use the palignr instruction.
 | 
						|
  if (Subtarget.hasSSSE3()) {
 | 
						|
    assert((!VT.is512BitVector() || Subtarget.hasBWI()) &&
 | 
						|
           "512-bit PALIGNR requires BWI instructions");
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi,
 | 
						|
                        DAG.getConstant(ByteRotation, DL, MVT::i8)));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT.is128BitVector() &&
 | 
						|
         "Rotate-based lowering only supports 128-bit lowering!");
 | 
						|
  assert(Mask.size() <= 16 &&
 | 
						|
         "Can shuffle at most 16 bytes in a 128-bit vector!");
 | 
						|
  assert(ByteVT == MVT::v16i8 &&
 | 
						|
         "SSE2 rotate lowering only needed for v16i8!");
 | 
						|
 | 
						|
  // Default SSE2 implementation
 | 
						|
  int LoByteShift = 16 - ByteRotation;
 | 
						|
  int HiByteShift = ByteRotation;
 | 
						|
 | 
						|
  SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo,
 | 
						|
                                DAG.getConstant(LoByteShift, DL, MVT::i8));
 | 
						|
  SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi,
 | 
						|
                                DAG.getConstant(HiByteShift, DL, MVT::i8));
 | 
						|
  return DAG.getBitcast(VT,
 | 
						|
                        DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a dword/qword rotation.
 | 
						|
///
 | 
						|
/// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary
 | 
						|
/// rotation of the concatenation of two vectors; This routine will
 | 
						|
/// try to generically lower a vector shuffle through such an pattern.
 | 
						|
///
 | 
						|
/// Essentially it concatenates V1 and V2, shifts right by some number of
 | 
						|
/// elements, and takes the low elements as the result. Note that while this is
 | 
						|
/// specified as a *right shift* because x86 is little-endian, it is a *left
 | 
						|
/// rotate* of the vector lanes.
 | 
						|
static SDValue lowerVectorShuffleAsRotate(const SDLoc &DL, MVT VT,
 | 
						|
                                          SDValue V1, SDValue V2,
 | 
						|
                                          ArrayRef<int> Mask,
 | 
						|
                                          const X86Subtarget &Subtarget,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) &&
 | 
						|
         "Only 32-bit and 64-bit elements are supported!");
 | 
						|
 | 
						|
  // 128/256-bit vectors are only supported with VLX.
 | 
						|
  assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector()))
 | 
						|
         && "VLX required for 128/256-bit vectors");
 | 
						|
 | 
						|
  SDValue Lo = V1, Hi = V2;
 | 
						|
  int Rotation = matchVectorShuffleAsRotate(Lo, Hi, Mask);
 | 
						|
  if (Rotation <= 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi,
 | 
						|
                     DAG.getConstant(Rotation, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
 | 
						|
///
 | 
						|
/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
 | 
						|
/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
 | 
						|
/// matches elements from one of the input vectors shuffled to the left or
 | 
						|
/// right with zeroable elements 'shifted in'. It handles both the strictly
 | 
						|
/// bit-wise element shifts and the byte shift across an entire 128-bit double
 | 
						|
/// quad word lane.
 | 
						|
///
 | 
						|
/// PSHL : (little-endian) left bit shift.
 | 
						|
/// [ zz, 0, zz,  2 ]
 | 
						|
/// [ -1, 4, zz, -1 ]
 | 
						|
/// PSRL : (little-endian) right bit shift.
 | 
						|
/// [  1, zz,  3, zz]
 | 
						|
/// [ -1, -1,  7, zz]
 | 
						|
/// PSLLDQ : (little-endian) left byte shift
 | 
						|
/// [ zz,  0,  1,  2,  3,  4,  5,  6]
 | 
						|
/// [ zz, zz, -1, -1,  2,  3,  4, -1]
 | 
						|
/// [ zz, zz, zz, zz, zz, zz, -1,  1]
 | 
						|
/// PSRLDQ : (little-endian) right byte shift
 | 
						|
/// [  5, 6,  7, zz, zz, zz, zz, zz]
 | 
						|
/// [ -1, 5,  6,  7, zz, zz, zz, zz]
 | 
						|
/// [  1, 2, -1, -1, -1, -1, zz, zz]
 | 
						|
static int matchVectorShuffleAsShift(MVT &ShiftVT, unsigned &Opcode,
 | 
						|
                                     unsigned ScalarSizeInBits,
 | 
						|
                                     ArrayRef<int> Mask, int MaskOffset,
 | 
						|
                                     const SmallBitVector &Zeroable,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  int Size = Mask.size();
 | 
						|
  unsigned SizeInBits = Size * ScalarSizeInBits;
 | 
						|
 | 
						|
  auto CheckZeros = [&](int Shift, int Scale, bool Left) {
 | 
						|
    for (int i = 0; i < Size; i += Scale)
 | 
						|
      for (int j = 0; j < Shift; ++j)
 | 
						|
        if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
 | 
						|
          return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  auto MatchShift = [&](int Shift, int Scale, bool Left) {
 | 
						|
    for (int i = 0; i != Size; i += Scale) {
 | 
						|
      unsigned Pos = Left ? i + Shift : i;
 | 
						|
      unsigned Low = Left ? i : i + Shift;
 | 
						|
      unsigned Len = Scale - Shift;
 | 
						|
      if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset))
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    int ShiftEltBits = ScalarSizeInBits * Scale;
 | 
						|
    bool ByteShift = ShiftEltBits > 64;
 | 
						|
    Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
 | 
						|
                  : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
 | 
						|
    int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
 | 
						|
 | 
						|
    // Normalize the scale for byte shifts to still produce an i64 element
 | 
						|
    // type.
 | 
						|
    Scale = ByteShift ? Scale / 2 : Scale;
 | 
						|
 | 
						|
    // We need to round trip through the appropriate type for the shift.
 | 
						|
    MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale);
 | 
						|
    ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8)
 | 
						|
                        : MVT::getVectorVT(ShiftSVT, Size / Scale);
 | 
						|
    return (int)ShiftAmt;
 | 
						|
  };
 | 
						|
 | 
						|
  // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
 | 
						|
  // keep doubling the size of the integer elements up to that. We can
 | 
						|
  // then shift the elements of the integer vector by whole multiples of
 | 
						|
  // their width within the elements of the larger integer vector. Test each
 | 
						|
  // multiple to see if we can find a match with the moved element indices
 | 
						|
  // and that the shifted in elements are all zeroable.
 | 
						|
  unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128);
 | 
						|
  for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
 | 
						|
    for (int Shift = 1; Shift != Scale; ++Shift)
 | 
						|
      for (bool Left : {true, false})
 | 
						|
        if (CheckZeros(Shift, Scale, Left)) {
 | 
						|
          int ShiftAmt = MatchShift(Shift, Scale, Left);
 | 
						|
          if (0 < ShiftAmt)
 | 
						|
            return ShiftAmt;
 | 
						|
        }
 | 
						|
 | 
						|
  // no match
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerVectorShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                         SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                         const SmallBitVector &Zeroable,
 | 
						|
                                         const X86Subtarget &Subtarget,
 | 
						|
                                         SelectionDAG &DAG) {
 | 
						|
  int Size = Mask.size();
 | 
						|
  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
 | 
						|
 | 
						|
  MVT ShiftVT;
 | 
						|
  SDValue V = V1;
 | 
						|
  unsigned Opcode;
 | 
						|
 | 
						|
  // Try to match shuffle against V1 shift.
 | 
						|
  int ShiftAmt = matchVectorShuffleAsShift(
 | 
						|
      ShiftVT, Opcode, VT.getScalarSizeInBits(), Mask, 0, Zeroable, Subtarget);
 | 
						|
 | 
						|
  // If V1 failed, try to match shuffle against V2 shift.
 | 
						|
  if (ShiftAmt < 0) {
 | 
						|
    ShiftAmt =
 | 
						|
        matchVectorShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
 | 
						|
                                  Mask, Size, Zeroable, Subtarget);
 | 
						|
    V = V2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShiftAmt < 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
 | 
						|
         "Illegal integer vector type");
 | 
						|
  V = DAG.getBitcast(ShiftVT, V);
 | 
						|
  V = DAG.getNode(Opcode, DL, ShiftVT, V,
 | 
						|
                  DAG.getConstant(ShiftAmt, DL, MVT::i8));
 | 
						|
  return DAG.getBitcast(VT, V);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
 | 
						|
static SDValue lowerVectorShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                           SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                           const SmallBitVector &Zeroable,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  int Size = Mask.size();
 | 
						|
  int HalfSize = Size / 2;
 | 
						|
  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
 | 
						|
  assert(!Zeroable.all() && "Fully zeroable shuffle mask");
 | 
						|
 | 
						|
  // Upper half must be undefined.
 | 
						|
  if (!isUndefInRange(Mask, HalfSize, HalfSize))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // EXTRQ: Extract Len elements from lower half of source, starting at Idx.
 | 
						|
  // Remainder of lower half result is zero and upper half is all undef.
 | 
						|
  auto LowerAsEXTRQ = [&]() {
 | 
						|
    // Determine the extraction length from the part of the
 | 
						|
    // lower half that isn't zeroable.
 | 
						|
    int Len = HalfSize;
 | 
						|
    for (; Len > 0; --Len)
 | 
						|
      if (!Zeroable[Len - 1])
 | 
						|
        break;
 | 
						|
    assert(Len > 0 && "Zeroable shuffle mask");
 | 
						|
 | 
						|
    // Attempt to match first Len sequential elements from the lower half.
 | 
						|
    SDValue Src;
 | 
						|
    int Idx = -1;
 | 
						|
    for (int i = 0; i != Len; ++i) {
 | 
						|
      int M = Mask[i];
 | 
						|
      if (M < 0)
 | 
						|
        continue;
 | 
						|
      SDValue &V = (M < Size ? V1 : V2);
 | 
						|
      M = M % Size;
 | 
						|
 | 
						|
      // The extracted elements must start at a valid index and all mask
 | 
						|
      // elements must be in the lower half.
 | 
						|
      if (i > M || M >= HalfSize)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      if (Idx < 0 || (Src == V && Idx == (M - i))) {
 | 
						|
        Src = V;
 | 
						|
        Idx = M - i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Idx < 0)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
 | 
						|
    int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
 | 
						|
    int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
 | 
						|
    return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src,
 | 
						|
                       DAG.getConstant(BitLen, DL, MVT::i8),
 | 
						|
                       DAG.getConstant(BitIdx, DL, MVT::i8));
 | 
						|
  };
 | 
						|
 | 
						|
  if (SDValue ExtrQ = LowerAsEXTRQ())
 | 
						|
    return ExtrQ;
 | 
						|
 | 
						|
  // INSERTQ: Extract lowest Len elements from lower half of second source and
 | 
						|
  // insert over first source, starting at Idx.
 | 
						|
  // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
 | 
						|
  auto LowerAsInsertQ = [&]() {
 | 
						|
    for (int Idx = 0; Idx != HalfSize; ++Idx) {
 | 
						|
      SDValue Base;
 | 
						|
 | 
						|
      // Attempt to match first source from mask before insertion point.
 | 
						|
      if (isUndefInRange(Mask, 0, Idx)) {
 | 
						|
        /* EMPTY */
 | 
						|
      } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
 | 
						|
        Base = V1;
 | 
						|
      } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
 | 
						|
        Base = V2;
 | 
						|
      } else {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Extend the extraction length looking to match both the insertion of
 | 
						|
      // the second source and the remaining elements of the first.
 | 
						|
      for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
 | 
						|
        SDValue Insert;
 | 
						|
        int Len = Hi - Idx;
 | 
						|
 | 
						|
        // Match insertion.
 | 
						|
        if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
 | 
						|
          Insert = V1;
 | 
						|
        } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
 | 
						|
          Insert = V2;
 | 
						|
        } else {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Match the remaining elements of the lower half.
 | 
						|
        if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
 | 
						|
          /* EMPTY */
 | 
						|
        } else if ((!Base || (Base == V1)) &&
 | 
						|
                   isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
 | 
						|
          Base = V1;
 | 
						|
        } else if ((!Base || (Base == V2)) &&
 | 
						|
                   isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
 | 
						|
                                              Size + Hi)) {
 | 
						|
          Base = V2;
 | 
						|
        } else {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // We may not have a base (first source) - this can safely be undefined.
 | 
						|
        if (!Base)
 | 
						|
          Base = DAG.getUNDEF(VT);
 | 
						|
 | 
						|
        int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
 | 
						|
        int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
 | 
						|
        return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert,
 | 
						|
                           DAG.getConstant(BitLen, DL, MVT::i8),
 | 
						|
                           DAG.getConstant(BitIdx, DL, MVT::i8));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  };
 | 
						|
 | 
						|
  if (SDValue InsertQ = LowerAsInsertQ())
 | 
						|
    return InsertQ;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower a vector shuffle as a zero or any extension.
 | 
						|
///
 | 
						|
/// Given a specific number of elements, element bit width, and extension
 | 
						|
/// stride, produce either a zero or any extension based on the available
 | 
						|
/// features of the subtarget. The extended elements are consecutive and
 | 
						|
/// begin and can start from an offseted element index in the input; to
 | 
						|
/// avoid excess shuffling the offset must either being in the bottom lane
 | 
						|
/// or at the start of a higher lane. All extended elements must be from
 | 
						|
/// the same lane.
 | 
						|
static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
 | 
						|
    const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
 | 
						|
    ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
 | 
						|
  assert(Scale > 1 && "Need a scale to extend.");
 | 
						|
  int EltBits = VT.getScalarSizeInBits();
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  int NumEltsPerLane = 128 / EltBits;
 | 
						|
  int OffsetLane = Offset / NumEltsPerLane;
 | 
						|
  assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
 | 
						|
         "Only 8, 16, and 32 bit elements can be extended.");
 | 
						|
  assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
 | 
						|
  assert(0 <= Offset && "Extension offset must be positive.");
 | 
						|
  assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
 | 
						|
         "Extension offset must be in the first lane or start an upper lane.");
 | 
						|
 | 
						|
  // Check that an index is in same lane as the base offset.
 | 
						|
  auto SafeOffset = [&](int Idx) {
 | 
						|
    return OffsetLane == (Idx / NumEltsPerLane);
 | 
						|
  };
 | 
						|
 | 
						|
  // Shift along an input so that the offset base moves to the first element.
 | 
						|
  auto ShuffleOffset = [&](SDValue V) {
 | 
						|
    if (!Offset)
 | 
						|
      return V;
 | 
						|
 | 
						|
    SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
 | 
						|
    for (int i = 0; i * Scale < NumElements; ++i) {
 | 
						|
      int SrcIdx = i + Offset;
 | 
						|
      ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
 | 
						|
    }
 | 
						|
    return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
 | 
						|
  };
 | 
						|
 | 
						|
  // Found a valid zext mask! Try various lowering strategies based on the
 | 
						|
  // input type and available ISA extensions.
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    // Not worth offseting 128-bit vectors if scale == 2, a pattern using
 | 
						|
    // PUNPCK will catch this in a later shuffle match.
 | 
						|
    if (Offset && Scale == 2 && VT.is128BitVector())
 | 
						|
      return SDValue();
 | 
						|
    MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
 | 
						|
                                 NumElements / Scale);
 | 
						|
    InputV = ShuffleOffset(InputV);
 | 
						|
 | 
						|
    // For 256-bit vectors, we only need the lower (128-bit) input half.
 | 
						|
    // For 512-bit vectors, we only need the lower input half or quarter.
 | 
						|
    if (VT.getSizeInBits() > 128)
 | 
						|
      InputV = extractSubVector(InputV, 0, DAG, DL,
 | 
						|
                                std::max(128, (int)VT.getSizeInBits() / Scale));
 | 
						|
 | 
						|
    InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV);
 | 
						|
    return DAG.getBitcast(VT, InputV);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
 | 
						|
 | 
						|
  // For any extends we can cheat for larger element sizes and use shuffle
 | 
						|
  // instructions that can fold with a load and/or copy.
 | 
						|
  if (AnyExt && EltBits == 32) {
 | 
						|
    int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
 | 
						|
                         -1};
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
 | 
						|
                        DAG.getBitcast(MVT::v4i32, InputV),
 | 
						|
                        getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 | 
						|
  }
 | 
						|
  if (AnyExt && EltBits == 16 && Scale > 2) {
 | 
						|
    int PSHUFDMask[4] = {Offset / 2, -1,
 | 
						|
                         SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
 | 
						|
    InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
 | 
						|
                         DAG.getBitcast(MVT::v4i32, InputV),
 | 
						|
                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
 | 
						|
    int PSHUFWMask[4] = {1, -1, -1, -1};
 | 
						|
    unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
 | 
						|
                        DAG.getBitcast(MVT::v8i16, InputV),
 | 
						|
                        getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
 | 
						|
  }
 | 
						|
 | 
						|
  // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
 | 
						|
  // to 64-bits.
 | 
						|
  if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
 | 
						|
    assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
 | 
						|
    assert(VT.is128BitVector() && "Unexpected vector width!");
 | 
						|
 | 
						|
    int LoIdx = Offset * EltBits;
 | 
						|
    SDValue Lo = DAG.getBitcast(
 | 
						|
        MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
 | 
						|
                                DAG.getConstant(EltBits, DL, MVT::i8),
 | 
						|
                                DAG.getConstant(LoIdx, DL, MVT::i8)));
 | 
						|
 | 
						|
    if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
 | 
						|
        !SafeOffset(Offset + 1))
 | 
						|
      return DAG.getBitcast(VT, Lo);
 | 
						|
 | 
						|
    int HiIdx = (Offset + 1) * EltBits;
 | 
						|
    SDValue Hi = DAG.getBitcast(
 | 
						|
        MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
 | 
						|
                                DAG.getConstant(EltBits, DL, MVT::i8),
 | 
						|
                                DAG.getConstant(HiIdx, DL, MVT::i8)));
 | 
						|
    return DAG.getBitcast(VT,
 | 
						|
                          DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this would require more than 2 unpack instructions to expand, use
 | 
						|
  // pshufb when available. We can only use more than 2 unpack instructions
 | 
						|
  // when zero extending i8 elements which also makes it easier to use pshufb.
 | 
						|
  if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
 | 
						|
    assert(NumElements == 16 && "Unexpected byte vector width!");
 | 
						|
    SDValue PSHUFBMask[16];
 | 
						|
    for (int i = 0; i < 16; ++i) {
 | 
						|
      int Idx = Offset + (i / Scale);
 | 
						|
      PSHUFBMask[i] = DAG.getConstant(
 | 
						|
          (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
 | 
						|
    }
 | 
						|
    InputV = DAG.getBitcast(MVT::v16i8, InputV);
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
 | 
						|
                        DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are extending from an offset, ensure we start on a boundary that
 | 
						|
  // we can unpack from.
 | 
						|
  int AlignToUnpack = Offset % (NumElements / Scale);
 | 
						|
  if (AlignToUnpack) {
 | 
						|
    SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
 | 
						|
    for (int i = AlignToUnpack; i < NumElements; ++i)
 | 
						|
      ShMask[i - AlignToUnpack] = i;
 | 
						|
    InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
 | 
						|
    Offset -= AlignToUnpack;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise emit a sequence of unpacks.
 | 
						|
  do {
 | 
						|
    unsigned UnpackLoHi = X86ISD::UNPCKL;
 | 
						|
    if (Offset >= (NumElements / 2)) {
 | 
						|
      UnpackLoHi = X86ISD::UNPCKH;
 | 
						|
      Offset -= (NumElements / 2);
 | 
						|
    }
 | 
						|
 | 
						|
    MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
 | 
						|
    SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
 | 
						|
                         : getZeroVector(InputVT, Subtarget, DAG, DL);
 | 
						|
    InputV = DAG.getBitcast(InputVT, InputV);
 | 
						|
    InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
 | 
						|
    Scale /= 2;
 | 
						|
    EltBits *= 2;
 | 
						|
    NumElements /= 2;
 | 
						|
  } while (Scale > 1);
 | 
						|
  return DAG.getBitcast(VT, InputV);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
 | 
						|
///
 | 
						|
/// This routine will try to do everything in its power to cleverly lower
 | 
						|
/// a shuffle which happens to match the pattern of a zero extend. It doesn't
 | 
						|
/// check for the profitability of this lowering,  it tries to aggressively
 | 
						|
/// match this pattern. It will use all of the micro-architectural details it
 | 
						|
/// can to emit an efficient lowering. It handles both blends with all-zero
 | 
						|
/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
 | 
						|
/// masking out later).
 | 
						|
///
 | 
						|
/// The reason we have dedicated lowering for zext-style shuffles is that they
 | 
						|
/// are both incredibly common and often quite performance sensitive.
 | 
						|
static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
    const SmallBitVector &Zeroable, const X86Subtarget &Subtarget,
 | 
						|
    SelectionDAG &DAG) {
 | 
						|
  int Bits = VT.getSizeInBits();
 | 
						|
  int NumLanes = Bits / 128;
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  int NumEltsPerLane = NumElements / NumLanes;
 | 
						|
  assert(VT.getScalarSizeInBits() <= 32 &&
 | 
						|
         "Exceeds 32-bit integer zero extension limit");
 | 
						|
  assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
 | 
						|
 | 
						|
  // Define a helper function to check a particular ext-scale and lower to it if
 | 
						|
  // valid.
 | 
						|
  auto Lower = [&](int Scale) -> SDValue {
 | 
						|
    SDValue InputV;
 | 
						|
    bool AnyExt = true;
 | 
						|
    int Offset = 0;
 | 
						|
    int Matches = 0;
 | 
						|
    for (int i = 0; i < NumElements; ++i) {
 | 
						|
      int M = Mask[i];
 | 
						|
      if (M < 0)
 | 
						|
        continue; // Valid anywhere but doesn't tell us anything.
 | 
						|
      if (i % Scale != 0) {
 | 
						|
        // Each of the extended elements need to be zeroable.
 | 
						|
        if (!Zeroable[i])
 | 
						|
          return SDValue();
 | 
						|
 | 
						|
        // We no longer are in the anyext case.
 | 
						|
        AnyExt = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Each of the base elements needs to be consecutive indices into the
 | 
						|
      // same input vector.
 | 
						|
      SDValue V = M < NumElements ? V1 : V2;
 | 
						|
      M = M % NumElements;
 | 
						|
      if (!InputV) {
 | 
						|
        InputV = V;
 | 
						|
        Offset = M - (i / Scale);
 | 
						|
      } else if (InputV != V)
 | 
						|
        return SDValue(); // Flip-flopping inputs.
 | 
						|
 | 
						|
      // Offset must start in the lowest 128-bit lane or at the start of an
 | 
						|
      // upper lane.
 | 
						|
      // FIXME: Is it ever worth allowing a negative base offset?
 | 
						|
      if (!((0 <= Offset && Offset < NumEltsPerLane) ||
 | 
						|
            (Offset % NumEltsPerLane) == 0))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // If we are offsetting, all referenced entries must come from the same
 | 
						|
      // lane.
 | 
						|
      if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      if ((M % NumElements) != (Offset + (i / Scale)))
 | 
						|
        return SDValue(); // Non-consecutive strided elements.
 | 
						|
      Matches++;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we fail to find an input, we have a zero-shuffle which should always
 | 
						|
    // have already been handled.
 | 
						|
    // FIXME: Maybe handle this here in case during blending we end up with one?
 | 
						|
    if (!InputV)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // If we are offsetting, don't extend if we only match a single input, we
 | 
						|
    // can always do better by using a basic PSHUF or PUNPCK.
 | 
						|
    if (Offset != 0 && Matches < 2)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
 | 
						|
        DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
 | 
						|
  };
 | 
						|
 | 
						|
  // The widest scale possible for extending is to a 64-bit integer.
 | 
						|
  assert(Bits % 64 == 0 &&
 | 
						|
         "The number of bits in a vector must be divisible by 64 on x86!");
 | 
						|
  int NumExtElements = Bits / 64;
 | 
						|
 | 
						|
  // Each iteration, try extending the elements half as much, but into twice as
 | 
						|
  // many elements.
 | 
						|
  for (; NumExtElements < NumElements; NumExtElements *= 2) {
 | 
						|
    assert(NumElements % NumExtElements == 0 &&
 | 
						|
           "The input vector size must be divisible by the extended size.");
 | 
						|
    if (SDValue V = Lower(NumElements / NumExtElements))
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // General extends failed, but 128-bit vectors may be able to use MOVQ.
 | 
						|
  if (Bits != 128)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Returns one of the source operands if the shuffle can be reduced to a
 | 
						|
  // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
 | 
						|
  auto CanZExtLowHalf = [&]() {
 | 
						|
    for (int i = NumElements / 2; i != NumElements; ++i)
 | 
						|
      if (!Zeroable[i])
 | 
						|
        return SDValue();
 | 
						|
    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
 | 
						|
      return V1;
 | 
						|
    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
 | 
						|
      return V2;
 | 
						|
    return SDValue();
 | 
						|
  };
 | 
						|
 | 
						|
  if (SDValue V = CanZExtLowHalf()) {
 | 
						|
    V = DAG.getBitcast(MVT::v2i64, V);
 | 
						|
    V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
 | 
						|
    return DAG.getBitcast(VT, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // No viable ext lowering found.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to get a scalar value for a specific element of a vector.
 | 
						|
///
 | 
						|
/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
 | 
						|
static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
  MVT VT = V.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  V = peekThroughBitcasts(V);
 | 
						|
 | 
						|
  // If the bitcasts shift the element size, we can't extract an equivalent
 | 
						|
  // element from it.
 | 
						|
  MVT NewVT = V.getSimpleValueType();
 | 
						|
  if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (V.getOpcode() == ISD::BUILD_VECTOR ||
 | 
						|
      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
 | 
						|
    // Ensure the scalar operand is the same size as the destination.
 | 
						|
    // FIXME: Add support for scalar truncation where possible.
 | 
						|
    SDValue S = V.getOperand(Idx);
 | 
						|
    if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
 | 
						|
      return DAG.getBitcast(EltVT, S);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper to test for a load that can be folded with x86 shuffles.
 | 
						|
///
 | 
						|
/// This is particularly important because the set of instructions varies
 | 
						|
/// significantly based on whether the operand is a load or not.
 | 
						|
static bool isShuffleFoldableLoad(SDValue V) {
 | 
						|
  V = peekThroughBitcasts(V);
 | 
						|
  return ISD::isNON_EXTLoad(V.getNode());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower insertion of a single element into a zero vector.
 | 
						|
///
 | 
						|
/// This is a common pattern that we have especially efficient patterns to lower
 | 
						|
/// across all subtarget feature sets.
 | 
						|
static SDValue lowerVectorShuffleAsElementInsertion(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
    const SmallBitVector &Zeroable, const X86Subtarget &Subtarget,
 | 
						|
    SelectionDAG &DAG) {
 | 
						|
  MVT ExtVT = VT;
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
 | 
						|
  int V2Index =
 | 
						|
      find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) -
 | 
						|
      Mask.begin();
 | 
						|
  bool IsV1Zeroable = true;
 | 
						|
  for (int i = 0, Size = Mask.size(); i < Size; ++i)
 | 
						|
    if (i != V2Index && !Zeroable[i]) {
 | 
						|
      IsV1Zeroable = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Check for a single input from a SCALAR_TO_VECTOR node.
 | 
						|
  // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
 | 
						|
  // all the smarts here sunk into that routine. However, the current
 | 
						|
  // lowering of BUILD_VECTOR makes that nearly impossible until the old
 | 
						|
  // vector shuffle lowering is dead.
 | 
						|
  SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
 | 
						|
                                               DAG);
 | 
						|
  if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
 | 
						|
    // We need to zext the scalar if it is smaller than an i32.
 | 
						|
    V2S = DAG.getBitcast(EltVT, V2S);
 | 
						|
    if (EltVT == MVT::i8 || EltVT == MVT::i16) {
 | 
						|
      // Using zext to expand a narrow element won't work for non-zero
 | 
						|
      // insertions.
 | 
						|
      if (!IsV1Zeroable)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Zero-extend directly to i32.
 | 
						|
      ExtVT = MVT::v4i32;
 | 
						|
      V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
 | 
						|
    }
 | 
						|
    V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
 | 
						|
  } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
 | 
						|
             EltVT == MVT::i16) {
 | 
						|
    // Either not inserting from the low element of the input or the input
 | 
						|
    // element size is too small to use VZEXT_MOVL to clear the high bits.
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsV1Zeroable) {
 | 
						|
    // If V1 can't be treated as a zero vector we have fewer options to lower
 | 
						|
    // this. We can't support integer vectors or non-zero targets cheaply, and
 | 
						|
    // the V1 elements can't be permuted in any way.
 | 
						|
    assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
 | 
						|
    if (!VT.isFloatingPoint() || V2Index != 0)
 | 
						|
      return SDValue();
 | 
						|
    SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
 | 
						|
    V1Mask[V2Index] = -1;
 | 
						|
    if (!isNoopShuffleMask(V1Mask))
 | 
						|
      return SDValue();
 | 
						|
    // This is essentially a special case blend operation, but if we have
 | 
						|
    // general purpose blend operations, they are always faster. Bail and let
 | 
						|
    // the rest of the lowering handle these as blends.
 | 
						|
    if (Subtarget.hasSSE41())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Otherwise, use MOVSD or MOVSS.
 | 
						|
    assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
 | 
						|
           "Only two types of floating point element types to handle!");
 | 
						|
    return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
 | 
						|
                       ExtVT, V1, V2);
 | 
						|
  }
 | 
						|
 | 
						|
  // This lowering only works for the low element with floating point vectors.
 | 
						|
  if (VT.isFloatingPoint() && V2Index != 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
 | 
						|
  if (ExtVT != VT)
 | 
						|
    V2 = DAG.getBitcast(VT, V2);
 | 
						|
 | 
						|
  if (V2Index != 0) {
 | 
						|
    // If we have 4 or fewer lanes we can cheaply shuffle the element into
 | 
						|
    // the desired position. Otherwise it is more efficient to do a vector
 | 
						|
    // shift left. We know that we can do a vector shift left because all
 | 
						|
    // the inputs are zero.
 | 
						|
    if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
 | 
						|
      SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
 | 
						|
      V2Shuffle[V2Index] = 0;
 | 
						|
      V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
 | 
						|
    } else {
 | 
						|
      V2 = DAG.getBitcast(MVT::v16i8, V2);
 | 
						|
      V2 = DAG.getNode(
 | 
						|
          X86ISD::VSHLDQ, DL, MVT::v16i8, V2,
 | 
						|
          DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL,
 | 
						|
                          DAG.getTargetLoweringInfo().getScalarShiftAmountTy(
 | 
						|
                              DAG.getDataLayout(), VT)));
 | 
						|
      V2 = DAG.getBitcast(VT, V2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return V2;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to lower broadcast of a single - truncated - integer element,
 | 
						|
/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
 | 
						|
///
 | 
						|
/// This assumes we have AVX2.
 | 
						|
static SDValue lowerVectorShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT,
 | 
						|
                                                  SDValue V0, int BroadcastIdx,
 | 
						|
                                                  const X86Subtarget &Subtarget,
 | 
						|
                                                  SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX2() &&
 | 
						|
         "We can only lower integer broadcasts with AVX2!");
 | 
						|
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  EVT V0VT = V0.getValueType();
 | 
						|
 | 
						|
  assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
 | 
						|
  assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
 | 
						|
 | 
						|
  EVT V0EltVT = V0VT.getVectorElementType();
 | 
						|
  if (!V0EltVT.isInteger())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const unsigned EltSize = EltVT.getSizeInBits();
 | 
						|
  const unsigned V0EltSize = V0EltVT.getSizeInBits();
 | 
						|
 | 
						|
  // This is only a truncation if the original element type is larger.
 | 
						|
  if (V0EltSize <= EltSize)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(((V0EltSize % EltSize) == 0) &&
 | 
						|
         "Scalar type sizes must all be powers of 2 on x86!");
 | 
						|
 | 
						|
  const unsigned V0Opc = V0.getOpcode();
 | 
						|
  const unsigned Scale = V0EltSize / EltSize;
 | 
						|
  const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
 | 
						|
 | 
						|
  if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
 | 
						|
      V0Opc != ISD::BUILD_VECTOR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Scalar = V0.getOperand(V0BroadcastIdx);
 | 
						|
 | 
						|
  // If we're extracting non-least-significant bits, shift so we can truncate.
 | 
						|
  // Hopefully, we can fold away the trunc/srl/load into the broadcast.
 | 
						|
  // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
 | 
						|
  // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
 | 
						|
  if (const int OffsetIdx = BroadcastIdx % Scale)
 | 
						|
    Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
 | 
						|
            DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType()));
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
 | 
						|
                     DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower broadcast of a single element.
 | 
						|
///
 | 
						|
/// For convenience, this code also bundles all of the subtarget feature set
 | 
						|
/// filtering. While a little annoying to re-dispatch on type here, there isn't
 | 
						|
/// a convenient way to factor it out.
 | 
						|
/// FIXME: This is very similar to LowerVectorBroadcast - can we merge them?
 | 
						|
static SDValue lowerVectorShuffleAsBroadcast(const SDLoc &DL, MVT VT,
 | 
						|
                                             SDValue V1, SDValue V2,
 | 
						|
                                             ArrayRef<int> Mask,
 | 
						|
                                             const X86Subtarget &Subtarget,
 | 
						|
                                             SelectionDAG &DAG) {
 | 
						|
  if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
 | 
						|
        (Subtarget.hasAVX() && VT.isFloatingPoint()) ||
 | 
						|
        (Subtarget.hasAVX2() && VT.isInteger())))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
 | 
						|
  // we can only broadcast from a register with AVX2.
 | 
						|
  unsigned NumElts = Mask.size();
 | 
						|
  unsigned Opcode = VT == MVT::v2f64 ? X86ISD::MOVDDUP : X86ISD::VBROADCAST;
 | 
						|
  bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
 | 
						|
 | 
						|
  // Check that the mask is a broadcast.
 | 
						|
  int BroadcastIdx = -1;
 | 
						|
  for (int i = 0; i != (int)NumElts; ++i) {
 | 
						|
    SmallVector<int, 8> BroadcastMask(NumElts, i);
 | 
						|
    if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
 | 
						|
      BroadcastIdx = i;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BroadcastIdx < 0)
 | 
						|
    return SDValue();
 | 
						|
  assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
 | 
						|
                                            "a sorted mask where the broadcast "
 | 
						|
                                            "comes from V1.");
 | 
						|
 | 
						|
  // Go up the chain of (vector) values to find a scalar load that we can
 | 
						|
  // combine with the broadcast.
 | 
						|
  SDValue V = V1;
 | 
						|
  for (;;) {
 | 
						|
    switch (V.getOpcode()) {
 | 
						|
    case ISD::BITCAST: {
 | 
						|
      SDValue VSrc = V.getOperand(0);
 | 
						|
      MVT SrcVT = VSrc.getSimpleValueType();
 | 
						|
      if (VT.getScalarSizeInBits() != SrcVT.getScalarSizeInBits())
 | 
						|
        break;
 | 
						|
      V = VSrc;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case ISD::CONCAT_VECTORS: {
 | 
						|
      int OperandSize = Mask.size() / V.getNumOperands();
 | 
						|
      V = V.getOperand(BroadcastIdx / OperandSize);
 | 
						|
      BroadcastIdx %= OperandSize;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case ISD::INSERT_SUBVECTOR: {
 | 
						|
      SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
 | 
						|
      auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
 | 
						|
      if (!ConstantIdx)
 | 
						|
        break;
 | 
						|
 | 
						|
      int BeginIdx = (int)ConstantIdx->getZExtValue();
 | 
						|
      int EndIdx =
 | 
						|
          BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
 | 
						|
      if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
 | 
						|
        BroadcastIdx -= BeginIdx;
 | 
						|
        V = VInner;
 | 
						|
      } else {
 | 
						|
        V = VOuter;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if this is a broadcast of a scalar. We special case lowering
 | 
						|
  // for scalars so that we can more effectively fold with loads.
 | 
						|
  // First, look through bitcast: if the original value has a larger element
 | 
						|
  // type than the shuffle, the broadcast element is in essence truncated.
 | 
						|
  // Make that explicit to ease folding.
 | 
						|
  if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
 | 
						|
    if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
 | 
						|
            DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
 | 
						|
      return TruncBroadcast;
 | 
						|
 | 
						|
  MVT BroadcastVT = VT;
 | 
						|
 | 
						|
  // Peek through any bitcast (only useful for loads).
 | 
						|
  SDValue BC = peekThroughBitcasts(V);
 | 
						|
 | 
						|
  // Also check the simpler case, where we can directly reuse the scalar.
 | 
						|
  if (V.getOpcode() == ISD::BUILD_VECTOR ||
 | 
						|
      (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
 | 
						|
    V = V.getOperand(BroadcastIdx);
 | 
						|
 | 
						|
    // If we can't broadcast from a register, check that the input is a load.
 | 
						|
    if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
 | 
						|
      return SDValue();
 | 
						|
  } else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) {
 | 
						|
    // 32-bit targets need to load i64 as a f64 and then bitcast the result.
 | 
						|
    if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) {
 | 
						|
      BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
 | 
						|
      Opcode = (BroadcastVT.is128BitVector() ? X86ISD::MOVDDUP : Opcode);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are broadcasting a load that is only used by the shuffle
 | 
						|
    // then we can reduce the vector load to the broadcasted scalar load.
 | 
						|
    LoadSDNode *Ld = cast<LoadSDNode>(BC);
 | 
						|
    SDValue BaseAddr = Ld->getOperand(1);
 | 
						|
    EVT SVT = BroadcastVT.getScalarType();
 | 
						|
    unsigned Offset = BroadcastIdx * SVT.getStoreSize();
 | 
						|
    SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
 | 
						|
    V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
 | 
						|
                    DAG.getMachineFunction().getMachineMemOperand(
 | 
						|
                        Ld->getMemOperand(), Offset, SVT.getStoreSize()));
 | 
						|
 | 
						|
    // Make sure the newly-created LOAD is in the same position as Ld in
 | 
						|
    // terms of dependency. We create a TokenFactor for Ld and V,
 | 
						|
    // and update uses of Ld's output chain to use the TokenFactor.
 | 
						|
    if (Ld->hasAnyUseOfValue(1)) {
 | 
						|
      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | 
						|
                                     SDValue(Ld, 1), SDValue(V.getNode(), 1));
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
 | 
						|
      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
 | 
						|
                             SDValue(V.getNode(), 1));
 | 
						|
    }
 | 
						|
  } else if (!BroadcastFromReg) {
 | 
						|
    // We can't broadcast from a vector register.
 | 
						|
    return SDValue();
 | 
						|
  } else if (BroadcastIdx != 0) {
 | 
						|
    // We can only broadcast from the zero-element of a vector register,
 | 
						|
    // but it can be advantageous to broadcast from the zero-element of a
 | 
						|
    // subvector.
 | 
						|
    if (!VT.is256BitVector() && !VT.is512BitVector())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
 | 
						|
    if (VT == MVT::v4f64 || VT == MVT::v4i64)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Only broadcast the zero-element of a 128-bit subvector.
 | 
						|
    unsigned EltSize = VT.getScalarSizeInBits();
 | 
						|
    if (((BroadcastIdx * EltSize) % 128) != 0)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 128 / EltSize);
 | 
						|
    V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtVT, V,
 | 
						|
                    DAG.getIntPtrConstant(BroadcastIdx, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
 | 
						|
    V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
 | 
						|
                    DAG.getBitcast(MVT::f64, V));
 | 
						|
 | 
						|
  // Bitcast back to the same scalar type as BroadcastVT.
 | 
						|
  MVT SrcVT = V.getSimpleValueType();
 | 
						|
  if (SrcVT.getScalarType() != BroadcastVT.getScalarType()) {
 | 
						|
    assert(SrcVT.getScalarSizeInBits() == BroadcastVT.getScalarSizeInBits() &&
 | 
						|
           "Unexpected vector element size");
 | 
						|
    if (SrcVT.isVector()) {
 | 
						|
      unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | 
						|
      SrcVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts);
 | 
						|
    } else {
 | 
						|
      SrcVT = BroadcastVT.getScalarType();
 | 
						|
    }
 | 
						|
    V = DAG.getBitcast(SrcVT, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // 32-bit targets need to load i64 as a f64 and then bitcast the result.
 | 
						|
  if (!Subtarget.is64Bit() && SrcVT == MVT::i64) {
 | 
						|
    V = DAG.getBitcast(MVT::f64, V);
 | 
						|
    unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements();
 | 
						|
    BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
 | 
						|
}
 | 
						|
 | 
						|
// Check for whether we can use INSERTPS to perform the shuffle. We only use
 | 
						|
// INSERTPS when the V1 elements are already in the correct locations
 | 
						|
// because otherwise we can just always use two SHUFPS instructions which
 | 
						|
// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
 | 
						|
// perform INSERTPS if a single V1 element is out of place and all V2
 | 
						|
// elements are zeroable.
 | 
						|
static bool matchVectorShuffleAsInsertPS(SDValue &V1, SDValue &V2,
 | 
						|
                                         unsigned &InsertPSMask,
 | 
						|
                                         const SmallBitVector &Zeroable,
 | 
						|
                                         ArrayRef<int> Mask,
 | 
						|
                                         SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
 | 
						|
 | 
						|
  // Attempt to match INSERTPS with one element from VA or VB being
 | 
						|
  // inserted into VA (or undef). If successful, V1, V2 and InsertPSMask
 | 
						|
  // are updated.
 | 
						|
  auto matchAsInsertPS = [&](SDValue VA, SDValue VB,
 | 
						|
                             ArrayRef<int> CandidateMask) {
 | 
						|
    unsigned ZMask = 0;
 | 
						|
    int VADstIndex = -1;
 | 
						|
    int VBDstIndex = -1;
 | 
						|
    bool VAUsedInPlace = false;
 | 
						|
 | 
						|
    for (int i = 0; i < 4; ++i) {
 | 
						|
      // Synthesize a zero mask from the zeroable elements (includes undefs).
 | 
						|
      if (Zeroable[i]) {
 | 
						|
        ZMask |= 1 << i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Flag if we use any VA inputs in place.
 | 
						|
      if (i == CandidateMask[i]) {
 | 
						|
        VAUsedInPlace = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We can only insert a single non-zeroable element.
 | 
						|
      if (VADstIndex >= 0 || VBDstIndex >= 0)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (CandidateMask[i] < 4) {
 | 
						|
        // VA input out of place for insertion.
 | 
						|
        VADstIndex = i;
 | 
						|
      } else {
 | 
						|
        // VB input for insertion.
 | 
						|
        VBDstIndex = i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't bother if we have no (non-zeroable) element for insertion.
 | 
						|
    if (VADstIndex < 0 && VBDstIndex < 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Determine element insertion src/dst indices. The src index is from the
 | 
						|
    // start of the inserted vector, not the start of the concatenated vector.
 | 
						|
    unsigned VBSrcIndex = 0;
 | 
						|
    if (VADstIndex >= 0) {
 | 
						|
      // If we have a VA input out of place, we use VA as the V2 element
 | 
						|
      // insertion and don't use the original V2 at all.
 | 
						|
      VBSrcIndex = CandidateMask[VADstIndex];
 | 
						|
      VBDstIndex = VADstIndex;
 | 
						|
      VB = VA;
 | 
						|
    } else {
 | 
						|
      VBSrcIndex = CandidateMask[VBDstIndex] - 4;
 | 
						|
    }
 | 
						|
 | 
						|
    // If no V1 inputs are used in place, then the result is created only from
 | 
						|
    // the zero mask and the V2 insertion - so remove V1 dependency.
 | 
						|
    if (!VAUsedInPlace)
 | 
						|
      VA = DAG.getUNDEF(MVT::v4f32);
 | 
						|
 | 
						|
    // Update V1, V2 and InsertPSMask accordingly.
 | 
						|
    V1 = VA;
 | 
						|
    V2 = VB;
 | 
						|
 | 
						|
    // Insert the V2 element into the desired position.
 | 
						|
    InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask;
 | 
						|
    assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  if (matchAsInsertPS(V1, V2, Mask))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Commute and try again.
 | 
						|
  SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
 | 
						|
  ShuffleVectorSDNode::commuteMask(CommutedMask);
 | 
						|
  if (matchAsInsertPS(V2, V1, CommutedMask))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerVectorShuffleAsInsertPS(const SDLoc &DL, SDValue V1,
 | 
						|
                                            SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                            const SmallBitVector &Zeroable,
 | 
						|
                                            SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
 | 
						|
 | 
						|
  // Attempt to match the insertps pattern.
 | 
						|
  unsigned InsertPSMask;
 | 
						|
  if (!matchVectorShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Insert the V2 element into the desired position.
 | 
						|
  return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
 | 
						|
                     DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a shuffle as a permute of the inputs followed by an
 | 
						|
/// UNPCK instruction.
 | 
						|
///
 | 
						|
/// This specifically targets cases where we end up with alternating between
 | 
						|
/// the two inputs, and so can permute them into something that feeds a single
 | 
						|
/// UNPCK instruction. Note that this routine only targets integer vectors
 | 
						|
/// because for floating point vectors we have a generalized SHUFPS lowering
 | 
						|
/// strategy that handles everything that doesn't *exactly* match an unpack,
 | 
						|
/// making this clever lowering unnecessary.
 | 
						|
static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT,
 | 
						|
                                                    SDValue V1, SDValue V2,
 | 
						|
                                                    ArrayRef<int> Mask,
 | 
						|
                                                    SelectionDAG &DAG) {
 | 
						|
  assert(!VT.isFloatingPoint() &&
 | 
						|
         "This routine only supports integer vectors.");
 | 
						|
  assert(VT.is128BitVector() &&
 | 
						|
         "This routine only works on 128-bit vectors.");
 | 
						|
  assert(!V2.isUndef() &&
 | 
						|
         "This routine should only be used when blending two inputs.");
 | 
						|
  assert(Mask.size() >= 2 && "Single element masks are invalid.");
 | 
						|
 | 
						|
  int Size = Mask.size();
 | 
						|
 | 
						|
  int NumLoInputs =
 | 
						|
      count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; });
 | 
						|
  int NumHiInputs =
 | 
						|
      count_if(Mask, [Size](int M) { return M % Size >= Size / 2; });
 | 
						|
 | 
						|
  bool UnpackLo = NumLoInputs >= NumHiInputs;
 | 
						|
 | 
						|
  auto TryUnpack = [&](int ScalarSize, int Scale) {
 | 
						|
    SmallVector<int, 16> V1Mask((unsigned)Size, -1);
 | 
						|
    SmallVector<int, 16> V2Mask((unsigned)Size, -1);
 | 
						|
 | 
						|
    for (int i = 0; i < Size; ++i) {
 | 
						|
      if (Mask[i] < 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Each element of the unpack contains Scale elements from this mask.
 | 
						|
      int UnpackIdx = i / Scale;
 | 
						|
 | 
						|
      // We only handle the case where V1 feeds the first slots of the unpack.
 | 
						|
      // We rely on canonicalization to ensure this is the case.
 | 
						|
      if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Setup the mask for this input. The indexing is tricky as we have to
 | 
						|
      // handle the unpack stride.
 | 
						|
      SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
 | 
						|
      VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
 | 
						|
          Mask[i] % Size;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we will have to shuffle both inputs to use the unpack, check whether
 | 
						|
    // we can just unpack first and shuffle the result. If so, skip this unpack.
 | 
						|
    if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
 | 
						|
        !isNoopShuffleMask(V2Mask))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Shuffle the inputs into place.
 | 
						|
    V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
 | 
						|
    V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
 | 
						|
 | 
						|
    // Cast the inputs to the type we will use to unpack them.
 | 
						|
    MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale);
 | 
						|
    V1 = DAG.getBitcast(UnpackVT, V1);
 | 
						|
    V2 = DAG.getBitcast(UnpackVT, V2);
 | 
						|
 | 
						|
    // Unpack the inputs and cast the result back to the desired type.
 | 
						|
    return DAG.getBitcast(
 | 
						|
        VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
 | 
						|
                        UnpackVT, V1, V2));
 | 
						|
  };
 | 
						|
 | 
						|
  // We try each unpack from the largest to the smallest to try and find one
 | 
						|
  // that fits this mask.
 | 
						|
  int OrigScalarSize = VT.getScalarSizeInBits();
 | 
						|
  for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2)
 | 
						|
    if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
 | 
						|
      return Unpack;
 | 
						|
 | 
						|
  // If none of the unpack-rooted lowerings worked (or were profitable) try an
 | 
						|
  // initial unpack.
 | 
						|
  if (NumLoInputs == 0 || NumHiInputs == 0) {
 | 
						|
    assert((NumLoInputs > 0 || NumHiInputs > 0) &&
 | 
						|
           "We have to have *some* inputs!");
 | 
						|
    int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
 | 
						|
 | 
						|
    // FIXME: We could consider the total complexity of the permute of each
 | 
						|
    // possible unpacking. Or at the least we should consider how many
 | 
						|
    // half-crossings are created.
 | 
						|
    // FIXME: We could consider commuting the unpacks.
 | 
						|
 | 
						|
    SmallVector<int, 32> PermMask((unsigned)Size, -1);
 | 
						|
    for (int i = 0; i < Size; ++i) {
 | 
						|
      if (Mask[i] < 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
 | 
						|
 | 
						|
      PermMask[i] =
 | 
						|
          2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
 | 
						|
    }
 | 
						|
    return DAG.getVectorShuffle(
 | 
						|
        VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
 | 
						|
                            DL, VT, V1, V2),
 | 
						|
        DAG.getUNDEF(VT), PermMask);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
 | 
						|
///
 | 
						|
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
 | 
						|
/// support for floating point shuffles but not integer shuffles. These
 | 
						|
/// instructions will incur a domain crossing penalty on some chips though so
 | 
						|
/// it is better to avoid lowering through this for integer vectors where
 | 
						|
/// possible.
 | 
						|
static SDValue lowerV2F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Straight shuffle of a single input vector. Simulate this by using the
 | 
						|
    // single input as both of the "inputs" to this instruction..
 | 
						|
    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
 | 
						|
 | 
						|
    if (Subtarget.hasAVX()) {
 | 
						|
      // If we have AVX, we can use VPERMILPS which will allow folding a load
 | 
						|
      // into the shuffle.
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
 | 
						|
                         DAG.getConstant(SHUFPDMask, DL, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getNode(
 | 
						|
        X86ISD::SHUFP, DL, MVT::v2f64,
 | 
						|
        Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
 | 
						|
        Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
 | 
						|
        DAG.getConstant(SHUFPDMask, DL, MVT::i8));
 | 
						|
  }
 | 
						|
  assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
 | 
						|
  assert(Mask[1] >= 2 && "Non-canonicalized blend!");
 | 
						|
 | 
						|
  // If we have a single input, insert that into V1 if we can do so cheaply.
 | 
						|
  if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
 | 
						|
    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return Insertion;
 | 
						|
    // Try inverting the insertion since for v2 masks it is easy to do and we
 | 
						|
    // can't reliably sort the mask one way or the other.
 | 
						|
    int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
 | 
						|
                          Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
 | 
						|
    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
 | 
						|
      return Insertion;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use one of the special instruction patterns to handle two common
 | 
						|
  // blend patterns if a zero-blend above didn't work.
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
 | 
						|
      isShuffleEquivalent(V1, V2, Mask, {1, 3}))
 | 
						|
    if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
 | 
						|
      // We can either use a special instruction to load over the low double or
 | 
						|
      // to move just the low double.
 | 
						|
      return DAG.getNode(
 | 
						|
          isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
 | 
						|
          DL, MVT::v2f64, V2,
 | 
						|
          DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
 | 
						|
 | 
						|
  if (Subtarget.hasSSE41())
 | 
						|
    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Blend;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
 | 
						|
  return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
 | 
						|
                     DAG.getConstant(SHUFPDMask, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
 | 
						|
///
 | 
						|
/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
 | 
						|
/// the integer unit to minimize domain crossing penalties. However, for blends
 | 
						|
/// it falls back to the floating point shuffle operation with appropriate bit
 | 
						|
/// casting.
 | 
						|
static SDValue lowerV2I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Straight shuffle of a single input vector. For everything from SSE2
 | 
						|
    // onward this has a single fast instruction with no scary immediates.
 | 
						|
    // We have to map the mask as it is actually a v4i32 shuffle instruction.
 | 
						|
    V1 = DAG.getBitcast(MVT::v4i32, V1);
 | 
						|
    int WidenedMask[4] = {
 | 
						|
        std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
 | 
						|
        std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
 | 
						|
    return DAG.getBitcast(
 | 
						|
        MVT::v2i64,
 | 
						|
        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
 | 
						|
                    getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
 | 
						|
  }
 | 
						|
  assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
 | 
						|
  assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
 | 
						|
  assert(Mask[0] < 2 && "We sort V1 to be the first input.");
 | 
						|
  assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
 | 
						|
 | 
						|
  // If we have a blend of two same-type PACKUS operations and the blend aligns
 | 
						|
  // with the low and high halves, we can just merge the PACKUS operations.
 | 
						|
  // This is particularly important as it lets us merge shuffles that this
 | 
						|
  // routine itself creates.
 | 
						|
  auto GetPackNode = [](SDValue V) {
 | 
						|
    V = peekThroughBitcasts(V);
 | 
						|
    return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
 | 
						|
  };
 | 
						|
  if (SDValue V1Pack = GetPackNode(V1))
 | 
						|
    if (SDValue V2Pack = GetPackNode(V2)) {
 | 
						|
      EVT PackVT = V1Pack.getValueType();
 | 
						|
      if (PackVT == V2Pack.getValueType())
 | 
						|
        return DAG.getBitcast(MVT::v2i64,
 | 
						|
                              DAG.getNode(X86ISD::PACKUS, DL, PackVT,
 | 
						|
                                          Mask[0] == 0 ? V1Pack.getOperand(0)
 | 
						|
                                                       : V1Pack.getOperand(1),
 | 
						|
                                          Mask[1] == 2 ? V2Pack.getOperand(0)
 | 
						|
                                                       : V2Pack.getOperand(1)));
 | 
						|
    }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // When loading a scalar and then shuffling it into a vector we can often do
 | 
						|
  // the insertion cheaply.
 | 
						|
  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
          DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return Insertion;
 | 
						|
  // Try inverting the insertion since for v2 masks it is easy to do and we
 | 
						|
  // can't reliably sort the mask one way or the other.
 | 
						|
  int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
 | 
						|
  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
          DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
 | 
						|
    return Insertion;
 | 
						|
 | 
						|
  // We have different paths for blend lowering, but they all must use the
 | 
						|
  // *exact* same predicate.
 | 
						|
  bool IsBlendSupported = Subtarget.hasSSE41();
 | 
						|
  if (IsBlendSupported)
 | 
						|
    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Blend;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
 | 
						|
  if (Subtarget.hasSSSE3())
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
            DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
  // If we have direct support for blends, we should lower by decomposing into
 | 
						|
  // a permute. That will be faster than the domain cross.
 | 
						|
  if (IsBlendSupported)
 | 
						|
    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
 | 
						|
                                                      Mask, DAG);
 | 
						|
 | 
						|
  // We implement this with SHUFPD which is pretty lame because it will likely
 | 
						|
  // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
 | 
						|
  // However, all the alternatives are still more cycles and newer chips don't
 | 
						|
  // have this problem. It would be really nice if x86 had better shuffles here.
 | 
						|
  V1 = DAG.getBitcast(MVT::v2f64, V1);
 | 
						|
  V2 = DAG.getBitcast(MVT::v2f64, V2);
 | 
						|
  return DAG.getBitcast(MVT::v2i64,
 | 
						|
                        DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Test whether this can be lowered with a single SHUFPS instruction.
 | 
						|
///
 | 
						|
/// This is used to disable more specialized lowerings when the shufps lowering
 | 
						|
/// will happen to be efficient.
 | 
						|
static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
 | 
						|
  // This routine only handles 128-bit shufps.
 | 
						|
  assert(Mask.size() == 4 && "Unsupported mask size!");
 | 
						|
  assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!");
 | 
						|
  assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!");
 | 
						|
  assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!");
 | 
						|
  assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!");
 | 
						|
 | 
						|
  // To lower with a single SHUFPS we need to have the low half and high half
 | 
						|
  // each requiring a single input.
 | 
						|
  if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4))
 | 
						|
    return false;
 | 
						|
  if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower a vector shuffle using the SHUFPS instruction.
 | 
						|
///
 | 
						|
/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
 | 
						|
/// It makes no assumptions about whether this is the *best* lowering, it simply
 | 
						|
/// uses it.
 | 
						|
static SDValue lowerVectorShuffleWithSHUFPS(const SDLoc &DL, MVT VT,
 | 
						|
                                            ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                            SDValue V2, SelectionDAG &DAG) {
 | 
						|
  SDValue LowV = V1, HighV = V2;
 | 
						|
  int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
 | 
						|
 | 
						|
  int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
 | 
						|
 | 
						|
  if (NumV2Elements == 1) {
 | 
						|
    int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin();
 | 
						|
 | 
						|
    // Compute the index adjacent to V2Index and in the same half by toggling
 | 
						|
    // the low bit.
 | 
						|
    int V2AdjIndex = V2Index ^ 1;
 | 
						|
 | 
						|
    if (Mask[V2AdjIndex] < 0) {
 | 
						|
      // Handles all the cases where we have a single V2 element and an undef.
 | 
						|
      // This will only ever happen in the high lanes because we commute the
 | 
						|
      // vector otherwise.
 | 
						|
      if (V2Index < 2)
 | 
						|
        std::swap(LowV, HighV);
 | 
						|
      NewMask[V2Index] -= 4;
 | 
						|
    } else {
 | 
						|
      // Handle the case where the V2 element ends up adjacent to a V1 element.
 | 
						|
      // To make this work, blend them together as the first step.
 | 
						|
      int V1Index = V2AdjIndex;
 | 
						|
      int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
 | 
						|
      V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
 | 
						|
                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
 | 
						|
 | 
						|
      // Now proceed to reconstruct the final blend as we have the necessary
 | 
						|
      // high or low half formed.
 | 
						|
      if (V2Index < 2) {
 | 
						|
        LowV = V2;
 | 
						|
        HighV = V1;
 | 
						|
      } else {
 | 
						|
        HighV = V2;
 | 
						|
      }
 | 
						|
      NewMask[V1Index] = 2; // We put the V1 element in V2[2].
 | 
						|
      NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
 | 
						|
    }
 | 
						|
  } else if (NumV2Elements == 2) {
 | 
						|
    if (Mask[0] < 4 && Mask[1] < 4) {
 | 
						|
      // Handle the easy case where we have V1 in the low lanes and V2 in the
 | 
						|
      // high lanes.
 | 
						|
      NewMask[2] -= 4;
 | 
						|
      NewMask[3] -= 4;
 | 
						|
    } else if (Mask[2] < 4 && Mask[3] < 4) {
 | 
						|
      // We also handle the reversed case because this utility may get called
 | 
						|
      // when we detect a SHUFPS pattern but can't easily commute the shuffle to
 | 
						|
      // arrange things in the right direction.
 | 
						|
      NewMask[0] -= 4;
 | 
						|
      NewMask[1] -= 4;
 | 
						|
      HighV = V1;
 | 
						|
      LowV = V2;
 | 
						|
    } else {
 | 
						|
      // We have a mixture of V1 and V2 in both low and high lanes. Rather than
 | 
						|
      // trying to place elements directly, just blend them and set up the final
 | 
						|
      // shuffle to place them.
 | 
						|
 | 
						|
      // The first two blend mask elements are for V1, the second two are for
 | 
						|
      // V2.
 | 
						|
      int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
 | 
						|
                          Mask[2] < 4 ? Mask[2] : Mask[3],
 | 
						|
                          (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
 | 
						|
                          (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
 | 
						|
      V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
 | 
						|
                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
 | 
						|
 | 
						|
      // Now we do a normal shuffle of V1 by giving V1 as both operands to
 | 
						|
      // a blend.
 | 
						|
      LowV = HighV = V1;
 | 
						|
      NewMask[0] = Mask[0] < 4 ? 0 : 2;
 | 
						|
      NewMask[1] = Mask[0] < 4 ? 2 : 0;
 | 
						|
      NewMask[2] = Mask[2] < 4 ? 1 : 3;
 | 
						|
      NewMask[3] = Mask[2] < 4 ? 3 : 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
 | 
						|
                     getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower 4-lane 32-bit floating point shuffles.
 | 
						|
///
 | 
						|
/// Uses instructions exclusively from the floating point unit to minimize
 | 
						|
/// domain crossing penalties, as these are sufficient to implement all v4f32
 | 
						|
/// shuffles.
 | 
						|
static SDValue lowerV4F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
 | 
						|
 | 
						|
  int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
 | 
						|
 | 
						|
  if (NumV2Elements == 0) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Use even/odd duplicate instructions for masks that match their pattern.
 | 
						|
    if (Subtarget.hasSSE3()) {
 | 
						|
      if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
 | 
						|
        return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
 | 
						|
      if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
 | 
						|
        return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasAVX()) {
 | 
						|
      // If we have AVX, we can use VPERMILPS which will allow folding a load
 | 
						|
      // into the shuffle.
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, use a straight shuffle of a single input vector. We pass the
 | 
						|
    // input vector to both operands to simulate this with a SHUFPS.
 | 
						|
    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
 | 
						|
                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  // There are special ways we can lower some single-element blends. However, we
 | 
						|
  // have custom ways we can lower more complex single-element blends below that
 | 
						|
  // we defer to if both this and BLENDPS fail to match, so restrict this to
 | 
						|
  // when the V2 input is targeting element 0 of the mask -- that is the fast
 | 
						|
  // case here.
 | 
						|
  if (NumV2Elements == 1 && Mask[0] >= 4)
 | 
						|
    if (SDValue V = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Blend;
 | 
						|
 | 
						|
    // Use INSERTPS if we can complete the shuffle efficiently.
 | 
						|
    if (SDValue V =
 | 
						|
            lowerVectorShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
    if (!isSingleSHUFPSMask(Mask))
 | 
						|
      if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
 | 
						|
              DL, MVT::v4f32, V1, V2, Mask, DAG))
 | 
						|
        return BlendPerm;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use low/high mov instructions.
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
 | 
						|
    return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
 | 
						|
  if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
 | 
						|
    return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Otherwise fall back to a SHUFPS lowering strategy.
 | 
						|
  return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower 4-lane i32 vector shuffles.
 | 
						|
///
 | 
						|
/// We try to handle these with integer-domain shuffles where we can, but for
 | 
						|
/// blends we use the floating point domain blend instructions.
 | 
						|
static SDValue lowerV4I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
 | 
						|
 | 
						|
  if (NumV2Elements == 0) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Straight shuffle of a single input vector. For everything from SSE2
 | 
						|
    // onward this has a single fast instruction with no scary immediates.
 | 
						|
    // We coerce the shuffle pattern to be compatible with UNPCK instructions
 | 
						|
    // but we aren't actually going to use the UNPCK instruction because doing
 | 
						|
    // so prevents folding a load into this instruction or making a copy.
 | 
						|
    const int UnpackLoMask[] = {0, 0, 1, 1};
 | 
						|
    const int UnpackHiMask[] = {2, 2, 3, 3};
 | 
						|
    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
 | 
						|
      Mask = UnpackLoMask;
 | 
						|
    else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
 | 
						|
      Mask = UnpackHiMask;
 | 
						|
 | 
						|
    return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
 | 
						|
                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // There are special ways we can lower some single-element blends.
 | 
						|
  if (NumV2Elements == 1)
 | 
						|
    if (SDValue V = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // We have different paths for blend lowering, but they all must use the
 | 
						|
  // *exact* same predicate.
 | 
						|
  bool IsBlendSupported = Subtarget.hasSSE41();
 | 
						|
  if (IsBlendSupported)
 | 
						|
    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Blend;
 | 
						|
 | 
						|
  if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask,
 | 
						|
                                                   Zeroable, DAG))
 | 
						|
    return Masked;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
 | 
						|
  if (Subtarget.hasSSSE3())
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
            DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
  // Assume that a single SHUFPS is faster than an alternative sequence of
 | 
						|
  // multiple instructions (even if the CPU has a domain penalty).
 | 
						|
  // If some CPU is harmed by the domain switch, we can fix it in a later pass.
 | 
						|
  if (!isSingleSHUFPSMask(Mask)) {
 | 
						|
    // If we have direct support for blends, we should lower by decomposing into
 | 
						|
    // a permute. That will be faster than the domain cross.
 | 
						|
    if (IsBlendSupported)
 | 
						|
      return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
 | 
						|
                                                        Mask, DAG);
 | 
						|
 | 
						|
    // Try to lower by permuting the inputs into an unpack instruction.
 | 
						|
    if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
 | 
						|
            DL, MVT::v4i32, V1, V2, Mask, DAG))
 | 
						|
      return Unpack;
 | 
						|
  }
 | 
						|
 | 
						|
  // We implement this with SHUFPS because it can blend from two vectors.
 | 
						|
  // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
 | 
						|
  // up the inputs, bypassing domain shift penalties that we would encur if we
 | 
						|
  // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
 | 
						|
  // relevant.
 | 
						|
  SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1);
 | 
						|
  SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2);
 | 
						|
  SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask);
 | 
						|
  return DAG.getBitcast(MVT::v4i32, ShufPS);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
 | 
						|
/// shuffle lowering, and the most complex part.
 | 
						|
///
 | 
						|
/// The lowering strategy is to try to form pairs of input lanes which are
 | 
						|
/// targeted at the same half of the final vector, and then use a dword shuffle
 | 
						|
/// to place them onto the right half, and finally unpack the paired lanes into
 | 
						|
/// their final position.
 | 
						|
///
 | 
						|
/// The exact breakdown of how to form these dword pairs and align them on the
 | 
						|
/// correct sides is really tricky. See the comments within the function for
 | 
						|
/// more of the details.
 | 
						|
///
 | 
						|
/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
 | 
						|
/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
 | 
						|
/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
 | 
						|
/// vector, form the analogous 128-bit 8-element Mask.
 | 
						|
static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
 | 
						|
    const X86Subtarget &Subtarget, SelectionDAG &DAG) {
 | 
						|
  assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
 | 
						|
  MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
 | 
						|
 | 
						|
  assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
 | 
						|
  MutableArrayRef<int> LoMask = Mask.slice(0, 4);
 | 
						|
  MutableArrayRef<int> HiMask = Mask.slice(4, 4);
 | 
						|
 | 
						|
  SmallVector<int, 4> LoInputs;
 | 
						|
  std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
 | 
						|
               [](int M) { return M >= 0; });
 | 
						|
  std::sort(LoInputs.begin(), LoInputs.end());
 | 
						|
  LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
 | 
						|
  SmallVector<int, 4> HiInputs;
 | 
						|
  std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
 | 
						|
               [](int M) { return M >= 0; });
 | 
						|
  std::sort(HiInputs.begin(), HiInputs.end());
 | 
						|
  HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
 | 
						|
  int NumLToL =
 | 
						|
      std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
 | 
						|
  int NumHToL = LoInputs.size() - NumLToL;
 | 
						|
  int NumLToH =
 | 
						|
      std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
 | 
						|
  int NumHToH = HiInputs.size() - NumLToH;
 | 
						|
  MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
 | 
						|
  MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
 | 
						|
  MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
 | 
						|
  MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
 | 
						|
 | 
						|
  // If we are splatting two values from one half - one to each half, then
 | 
						|
  // we can shuffle that half so each is splatted to a dword, then splat those
 | 
						|
  // to their respective halves.
 | 
						|
  auto SplatHalfs = [&](int LoInput, int HiInput, unsigned ShufWOp,
 | 
						|
                        int DOffset) {
 | 
						|
    int PSHUFHalfMask[] = {LoInput % 4, LoInput % 4, HiInput % 4, HiInput % 4};
 | 
						|
    int PSHUFDMask[] = {DOffset + 0, DOffset + 0, DOffset + 1, DOffset + 1};
 | 
						|
    V = DAG.getNode(ShufWOp, DL, VT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
 | 
						|
    V = DAG.getBitcast(PSHUFDVT, V);
 | 
						|
    V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
 | 
						|
    return DAG.getBitcast(VT, V);
 | 
						|
  };
 | 
						|
 | 
						|
  if (NumLToL == 1 && NumLToH == 1 && (NumHToL + NumHToH) == 0)
 | 
						|
    return SplatHalfs(LToLInputs[0], LToHInputs[0], X86ISD::PSHUFLW, 0);
 | 
						|
  if (NumHToL == 1 && NumHToH == 1 && (NumLToL + NumLToH) == 0)
 | 
						|
    return SplatHalfs(HToLInputs[0], HToHInputs[0], X86ISD::PSHUFHW, 2);
 | 
						|
 | 
						|
  // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
 | 
						|
  // such inputs we can swap two of the dwords across the half mark and end up
 | 
						|
  // with <=2 inputs to each half in each half. Once there, we can fall through
 | 
						|
  // to the generic code below. For example:
 | 
						|
  //
 | 
						|
  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
 | 
						|
  // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
 | 
						|
  //
 | 
						|
  // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
 | 
						|
  // and an existing 2-into-2 on the other half. In this case we may have to
 | 
						|
  // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
 | 
						|
  // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
 | 
						|
  // Fortunately, we don't have to handle anything but a 2-into-2 pattern
 | 
						|
  // because any other situation (including a 3-into-1 or 1-into-3 in the other
 | 
						|
  // half than the one we target for fixing) will be fixed when we re-enter this
 | 
						|
  // path. We will also combine away any sequence of PSHUFD instructions that
 | 
						|
  // result into a single instruction. Here is an example of the tricky case:
 | 
						|
  //
 | 
						|
  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
 | 
						|
  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
 | 
						|
  //
 | 
						|
  // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
 | 
						|
  //
 | 
						|
  // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
 | 
						|
  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
 | 
						|
  //
 | 
						|
  // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
 | 
						|
  // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
 | 
						|
  //
 | 
						|
  // The result is fine to be handled by the generic logic.
 | 
						|
  auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
 | 
						|
                          ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
 | 
						|
                          int AOffset, int BOffset) {
 | 
						|
    assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
 | 
						|
           "Must call this with A having 3 or 1 inputs from the A half.");
 | 
						|
    assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
 | 
						|
           "Must call this with B having 1 or 3 inputs from the B half.");
 | 
						|
    assert(AToAInputs.size() + BToAInputs.size() == 4 &&
 | 
						|
           "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
 | 
						|
 | 
						|
    bool ThreeAInputs = AToAInputs.size() == 3;
 | 
						|
 | 
						|
    // Compute the index of dword with only one word among the three inputs in
 | 
						|
    // a half by taking the sum of the half with three inputs and subtracting
 | 
						|
    // the sum of the actual three inputs. The difference is the remaining
 | 
						|
    // slot.
 | 
						|
    int ADWord, BDWord;
 | 
						|
    int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
 | 
						|
    int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
 | 
						|
    int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
 | 
						|
    ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
 | 
						|
    int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
 | 
						|
    int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
 | 
						|
    int TripleNonInputIdx =
 | 
						|
        TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
 | 
						|
    TripleDWord = TripleNonInputIdx / 2;
 | 
						|
 | 
						|
    // We use xor with one to compute the adjacent DWord to whichever one the
 | 
						|
    // OneInput is in.
 | 
						|
    OneInputDWord = (OneInput / 2) ^ 1;
 | 
						|
 | 
						|
    // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
 | 
						|
    // and BToA inputs. If there is also such a problem with the BToB and AToB
 | 
						|
    // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
 | 
						|
    // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
 | 
						|
    // is essential that we don't *create* a 3<-1 as then we might oscillate.
 | 
						|
    if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
 | 
						|
      // Compute how many inputs will be flipped by swapping these DWords. We
 | 
						|
      // need
 | 
						|
      // to balance this to ensure we don't form a 3-1 shuffle in the other
 | 
						|
      // half.
 | 
						|
      int NumFlippedAToBInputs =
 | 
						|
          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
 | 
						|
          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
 | 
						|
      int NumFlippedBToBInputs =
 | 
						|
          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
 | 
						|
          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
 | 
						|
      if ((NumFlippedAToBInputs == 1 &&
 | 
						|
           (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
 | 
						|
          (NumFlippedBToBInputs == 1 &&
 | 
						|
           (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
 | 
						|
        // We choose whether to fix the A half or B half based on whether that
 | 
						|
        // half has zero flipped inputs. At zero, we may not be able to fix it
 | 
						|
        // with that half. We also bias towards fixing the B half because that
 | 
						|
        // will more commonly be the high half, and we have to bias one way.
 | 
						|
        auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
 | 
						|
                                                       ArrayRef<int> Inputs) {
 | 
						|
          int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
 | 
						|
          bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1);
 | 
						|
          // Determine whether the free index is in the flipped dword or the
 | 
						|
          // unflipped dword based on where the pinned index is. We use this bit
 | 
						|
          // in an xor to conditionally select the adjacent dword.
 | 
						|
          int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
 | 
						|
          bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
 | 
						|
          if (IsFixIdxInput == IsFixFreeIdxInput)
 | 
						|
            FixFreeIdx += 1;
 | 
						|
          IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
 | 
						|
          assert(IsFixIdxInput != IsFixFreeIdxInput &&
 | 
						|
                 "We need to be changing the number of flipped inputs!");
 | 
						|
          int PSHUFHalfMask[] = {0, 1, 2, 3};
 | 
						|
          std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
 | 
						|
          V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
 | 
						|
                          MVT::v8i16, V,
 | 
						|
                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
 | 
						|
 | 
						|
          for (int &M : Mask)
 | 
						|
            if (M >= 0 && M == FixIdx)
 | 
						|
              M = FixFreeIdx;
 | 
						|
            else if (M >= 0 && M == FixFreeIdx)
 | 
						|
              M = FixIdx;
 | 
						|
        };
 | 
						|
        if (NumFlippedBToBInputs != 0) {
 | 
						|
          int BPinnedIdx =
 | 
						|
              BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
 | 
						|
          FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
 | 
						|
        } else {
 | 
						|
          assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
 | 
						|
          int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
 | 
						|
          FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    int PSHUFDMask[] = {0, 1, 2, 3};
 | 
						|
    PSHUFDMask[ADWord] = BDWord;
 | 
						|
    PSHUFDMask[BDWord] = ADWord;
 | 
						|
    V = DAG.getBitcast(
 | 
						|
        VT,
 | 
						|
        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 | 
						|
 | 
						|
    // Adjust the mask to match the new locations of A and B.
 | 
						|
    for (int &M : Mask)
 | 
						|
      if (M >= 0 && M/2 == ADWord)
 | 
						|
        M = 2 * BDWord + M % 2;
 | 
						|
      else if (M >= 0 && M/2 == BDWord)
 | 
						|
        M = 2 * ADWord + M % 2;
 | 
						|
 | 
						|
    // Recurse back into this routine to re-compute state now that this isn't
 | 
						|
    // a 3 and 1 problem.
 | 
						|
    return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
 | 
						|
                                                     DAG);
 | 
						|
  };
 | 
						|
  if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
 | 
						|
    return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
 | 
						|
  else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
 | 
						|
    return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
 | 
						|
 | 
						|
  // At this point there are at most two inputs to the low and high halves from
 | 
						|
  // each half. That means the inputs can always be grouped into dwords and
 | 
						|
  // those dwords can then be moved to the correct half with a dword shuffle.
 | 
						|
  // We use at most one low and one high word shuffle to collect these paired
 | 
						|
  // inputs into dwords, and finally a dword shuffle to place them.
 | 
						|
  int PSHUFLMask[4] = {-1, -1, -1, -1};
 | 
						|
  int PSHUFHMask[4] = {-1, -1, -1, -1};
 | 
						|
  int PSHUFDMask[4] = {-1, -1, -1, -1};
 | 
						|
 | 
						|
  // First fix the masks for all the inputs that are staying in their
 | 
						|
  // original halves. This will then dictate the targets of the cross-half
 | 
						|
  // shuffles.
 | 
						|
  auto fixInPlaceInputs =
 | 
						|
      [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
 | 
						|
                    MutableArrayRef<int> SourceHalfMask,
 | 
						|
                    MutableArrayRef<int> HalfMask, int HalfOffset) {
 | 
						|
    if (InPlaceInputs.empty())
 | 
						|
      return;
 | 
						|
    if (InPlaceInputs.size() == 1) {
 | 
						|
      SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
 | 
						|
          InPlaceInputs[0] - HalfOffset;
 | 
						|
      PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (IncomingInputs.empty()) {
 | 
						|
      // Just fix all of the in place inputs.
 | 
						|
      for (int Input : InPlaceInputs) {
 | 
						|
        SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
 | 
						|
        PSHUFDMask[Input / 2] = Input / 2;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
 | 
						|
    SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
 | 
						|
        InPlaceInputs[0] - HalfOffset;
 | 
						|
    // Put the second input next to the first so that they are packed into
 | 
						|
    // a dword. We find the adjacent index by toggling the low bit.
 | 
						|
    int AdjIndex = InPlaceInputs[0] ^ 1;
 | 
						|
    SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
 | 
						|
    std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
 | 
						|
    PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
 | 
						|
  };
 | 
						|
  fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
 | 
						|
  fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
 | 
						|
 | 
						|
  // Now gather the cross-half inputs and place them into a free dword of
 | 
						|
  // their target half.
 | 
						|
  // FIXME: This operation could almost certainly be simplified dramatically to
 | 
						|
  // look more like the 3-1 fixing operation.
 | 
						|
  auto moveInputsToRightHalf = [&PSHUFDMask](
 | 
						|
      MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
 | 
						|
      MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
 | 
						|
      MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
 | 
						|
      int DestOffset) {
 | 
						|
    auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
 | 
						|
      return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word;
 | 
						|
    };
 | 
						|
    auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
 | 
						|
                                               int Word) {
 | 
						|
      int LowWord = Word & ~1;
 | 
						|
      int HighWord = Word | 1;
 | 
						|
      return isWordClobbered(SourceHalfMask, LowWord) ||
 | 
						|
             isWordClobbered(SourceHalfMask, HighWord);
 | 
						|
    };
 | 
						|
 | 
						|
    if (IncomingInputs.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (ExistingInputs.empty()) {
 | 
						|
      // Map any dwords with inputs from them into the right half.
 | 
						|
      for (int Input : IncomingInputs) {
 | 
						|
        // If the source half mask maps over the inputs, turn those into
 | 
						|
        // swaps and use the swapped lane.
 | 
						|
        if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
 | 
						|
          if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) {
 | 
						|
            SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
 | 
						|
                Input - SourceOffset;
 | 
						|
            // We have to swap the uses in our half mask in one sweep.
 | 
						|
            for (int &M : HalfMask)
 | 
						|
              if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
 | 
						|
                M = Input;
 | 
						|
              else if (M == Input)
 | 
						|
                M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
 | 
						|
          } else {
 | 
						|
            assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
 | 
						|
                       Input - SourceOffset &&
 | 
						|
                   "Previous placement doesn't match!");
 | 
						|
          }
 | 
						|
          // Note that this correctly re-maps both when we do a swap and when
 | 
						|
          // we observe the other side of the swap above. We rely on that to
 | 
						|
          // avoid swapping the members of the input list directly.
 | 
						|
          Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
 | 
						|
        }
 | 
						|
 | 
						|
        // Map the input's dword into the correct half.
 | 
						|
        if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0)
 | 
						|
          PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
 | 
						|
        else
 | 
						|
          assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
 | 
						|
                     Input / 2 &&
 | 
						|
                 "Previous placement doesn't match!");
 | 
						|
      }
 | 
						|
 | 
						|
      // And just directly shift any other-half mask elements to be same-half
 | 
						|
      // as we will have mirrored the dword containing the element into the
 | 
						|
      // same position within that half.
 | 
						|
      for (int &M : HalfMask)
 | 
						|
        if (M >= SourceOffset && M < SourceOffset + 4) {
 | 
						|
          M = M - SourceOffset + DestOffset;
 | 
						|
          assert(M >= 0 && "This should never wrap below zero!");
 | 
						|
        }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Ensure we have the input in a viable dword of its current half. This
 | 
						|
    // is particularly tricky because the original position may be clobbered
 | 
						|
    // by inputs being moved and *staying* in that half.
 | 
						|
    if (IncomingInputs.size() == 1) {
 | 
						|
      if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
 | 
						|
        int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) +
 | 
						|
                         SourceOffset;
 | 
						|
        SourceHalfMask[InputFixed - SourceOffset] =
 | 
						|
            IncomingInputs[0] - SourceOffset;
 | 
						|
        std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
 | 
						|
                     InputFixed);
 | 
						|
        IncomingInputs[0] = InputFixed;
 | 
						|
      }
 | 
						|
    } else if (IncomingInputs.size() == 2) {
 | 
						|
      if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
 | 
						|
          isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
 | 
						|
        // We have two non-adjacent or clobbered inputs we need to extract from
 | 
						|
        // the source half. To do this, we need to map them into some adjacent
 | 
						|
        // dword slot in the source mask.
 | 
						|
        int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
 | 
						|
                              IncomingInputs[1] - SourceOffset};
 | 
						|
 | 
						|
        // If there is a free slot in the source half mask adjacent to one of
 | 
						|
        // the inputs, place the other input in it. We use (Index XOR 1) to
 | 
						|
        // compute an adjacent index.
 | 
						|
        if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
 | 
						|
            SourceHalfMask[InputsFixed[0] ^ 1] < 0) {
 | 
						|
          SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
 | 
						|
          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
 | 
						|
          InputsFixed[1] = InputsFixed[0] ^ 1;
 | 
						|
        } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
 | 
						|
                   SourceHalfMask[InputsFixed[1] ^ 1] < 0) {
 | 
						|
          SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
 | 
						|
          SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
 | 
						|
          InputsFixed[0] = InputsFixed[1] ^ 1;
 | 
						|
        } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 &&
 | 
						|
                   SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) {
 | 
						|
          // The two inputs are in the same DWord but it is clobbered and the
 | 
						|
          // adjacent DWord isn't used at all. Move both inputs to the free
 | 
						|
          // slot.
 | 
						|
          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
 | 
						|
          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
 | 
						|
          InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
 | 
						|
          InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
 | 
						|
        } else {
 | 
						|
          // The only way we hit this point is if there is no clobbering
 | 
						|
          // (because there are no off-half inputs to this half) and there is no
 | 
						|
          // free slot adjacent to one of the inputs. In this case, we have to
 | 
						|
          // swap an input with a non-input.
 | 
						|
          for (int i = 0; i < 4; ++i)
 | 
						|
            assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) &&
 | 
						|
                   "We can't handle any clobbers here!");
 | 
						|
          assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
 | 
						|
                 "Cannot have adjacent inputs here!");
 | 
						|
 | 
						|
          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
 | 
						|
          SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
 | 
						|
 | 
						|
          // We also have to update the final source mask in this case because
 | 
						|
          // it may need to undo the above swap.
 | 
						|
          for (int &M : FinalSourceHalfMask)
 | 
						|
            if (M == (InputsFixed[0] ^ 1) + SourceOffset)
 | 
						|
              M = InputsFixed[1] + SourceOffset;
 | 
						|
            else if (M == InputsFixed[1] + SourceOffset)
 | 
						|
              M = (InputsFixed[0] ^ 1) + SourceOffset;
 | 
						|
 | 
						|
          InputsFixed[1] = InputsFixed[0] ^ 1;
 | 
						|
        }
 | 
						|
 | 
						|
        // Point everything at the fixed inputs.
 | 
						|
        for (int &M : HalfMask)
 | 
						|
          if (M == IncomingInputs[0])
 | 
						|
            M = InputsFixed[0] + SourceOffset;
 | 
						|
          else if (M == IncomingInputs[1])
 | 
						|
            M = InputsFixed[1] + SourceOffset;
 | 
						|
 | 
						|
        IncomingInputs[0] = InputsFixed[0] + SourceOffset;
 | 
						|
        IncomingInputs[1] = InputsFixed[1] + SourceOffset;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unhandled input size!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Now hoist the DWord down to the right half.
 | 
						|
    int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2;
 | 
						|
    assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free");
 | 
						|
    PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
 | 
						|
    for (int &M : HalfMask)
 | 
						|
      for (int Input : IncomingInputs)
 | 
						|
        if (M == Input)
 | 
						|
          M = FreeDWord * 2 + Input % 2;
 | 
						|
  };
 | 
						|
  moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
 | 
						|
                        /*SourceOffset*/ 4, /*DestOffset*/ 0);
 | 
						|
  moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
 | 
						|
                        /*SourceOffset*/ 0, /*DestOffset*/ 4);
 | 
						|
 | 
						|
  // Now enact all the shuffles we've computed to move the inputs into their
 | 
						|
  // target half.
 | 
						|
  if (!isNoopShuffleMask(PSHUFLMask))
 | 
						|
    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
 | 
						|
  if (!isNoopShuffleMask(PSHUFHMask))
 | 
						|
    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
 | 
						|
  if (!isNoopShuffleMask(PSHUFDMask))
 | 
						|
    V = DAG.getBitcast(
 | 
						|
        VT,
 | 
						|
        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
 | 
						|
                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 | 
						|
 | 
						|
  // At this point, each half should contain all its inputs, and we can then
 | 
						|
  // just shuffle them into their final position.
 | 
						|
  assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 &&
 | 
						|
         "Failed to lift all the high half inputs to the low mask!");
 | 
						|
  assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 &&
 | 
						|
         "Failed to lift all the low half inputs to the high mask!");
 | 
						|
 | 
						|
  // Do a half shuffle for the low mask.
 | 
						|
  if (!isNoopShuffleMask(LoMask))
 | 
						|
    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
 | 
						|
 | 
						|
  // Do a half shuffle with the high mask after shifting its values down.
 | 
						|
  for (int &M : HiMask)
 | 
						|
    if (M >= 0)
 | 
						|
      M -= 4;
 | 
						|
  if (!isNoopShuffleMask(HiMask))
 | 
						|
    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
 | 
						|
                    getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the
 | 
						|
/// blend if only one input is used.
 | 
						|
static SDValue lowerVectorShuffleAsBlendOfPSHUFBs(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
    const SmallBitVector &Zeroable, SelectionDAG &DAG, bool &V1InUse,
 | 
						|
    bool &V2InUse) {
 | 
						|
  SDValue V1Mask[16];
 | 
						|
  SDValue V2Mask[16];
 | 
						|
  V1InUse = false;
 | 
						|
  V2InUse = false;
 | 
						|
 | 
						|
  int Size = Mask.size();
 | 
						|
  int Scale = 16 / Size;
 | 
						|
  for (int i = 0; i < 16; ++i) {
 | 
						|
    if (Mask[i / Scale] < 0) {
 | 
						|
      V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
 | 
						|
    } else {
 | 
						|
      const int ZeroMask = 0x80;
 | 
						|
      int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
 | 
						|
                                          : ZeroMask;
 | 
						|
      int V2Idx = Mask[i / Scale] < Size
 | 
						|
                      ? ZeroMask
 | 
						|
                      : (Mask[i / Scale] - Size) * Scale + i % Scale;
 | 
						|
      if (Zeroable[i / Scale])
 | 
						|
        V1Idx = V2Idx = ZeroMask;
 | 
						|
      V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
 | 
						|
      V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
 | 
						|
      V1InUse |= (ZeroMask != V1Idx);
 | 
						|
      V2InUse |= (ZeroMask != V2Idx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (V1InUse)
 | 
						|
    V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
 | 
						|
                     DAG.getBitcast(MVT::v16i8, V1),
 | 
						|
                     DAG.getBuildVector(MVT::v16i8, DL, V1Mask));
 | 
						|
  if (V2InUse)
 | 
						|
    V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
 | 
						|
                     DAG.getBitcast(MVT::v16i8, V2),
 | 
						|
                     DAG.getBuildVector(MVT::v16i8, DL, V2Mask));
 | 
						|
 | 
						|
  // If we need shuffled inputs from both, blend the two.
 | 
						|
  SDValue V;
 | 
						|
  if (V1InUse && V2InUse)
 | 
						|
    V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
 | 
						|
  else
 | 
						|
    V = V1InUse ? V1 : V2;
 | 
						|
 | 
						|
  // Cast the result back to the correct type.
 | 
						|
  return DAG.getBitcast(VT, V);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generic lowering of 8-lane i16 shuffles.
 | 
						|
///
 | 
						|
/// This handles both single-input shuffles and combined shuffle/blends with
 | 
						|
/// two inputs. The single input shuffles are immediately delegated to
 | 
						|
/// a dedicated lowering routine.
 | 
						|
///
 | 
						|
/// The blends are lowered in one of three fundamental ways. If there are few
 | 
						|
/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
 | 
						|
/// of the input is significantly cheaper when lowered as an interleaving of
 | 
						|
/// the two inputs, try to interleave them. Otherwise, blend the low and high
 | 
						|
/// halves of the inputs separately (making them have relatively few inputs)
 | 
						|
/// and then concatenate them.
 | 
						|
static SDValue lowerV8I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; });
 | 
						|
 | 
						|
  if (NumV2Inputs == 0) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Try to use shift instructions.
 | 
						|
    if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Shift;
 | 
						|
 | 
						|
    // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
    if (SDValue V =
 | 
						|
            lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
    // Try to use byte rotation instructions.
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
    // Make a copy of the mask so it can be modified.
 | 
						|
    SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end());
 | 
						|
    return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1,
 | 
						|
                                                     MutableMask, Subtarget,
 | 
						|
                                                     DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) &&
 | 
						|
         "All single-input shuffles should be canonicalized to be V1-input "
 | 
						|
         "shuffles.");
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // See if we can use SSE4A Extraction / Insertion.
 | 
						|
  if (Subtarget.hasSSE4A())
 | 
						|
    if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask,
 | 
						|
                                                Zeroable, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // There are special ways we can lower some single-element blends.
 | 
						|
  if (NumV2Inputs == 1)
 | 
						|
    if (SDValue V = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // We have different paths for blend lowering, but they all must use the
 | 
						|
  // *exact* same predicate.
 | 
						|
  bool IsBlendSupported = Subtarget.hasSSE41();
 | 
						|
  if (IsBlendSupported)
 | 
						|
    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
 | 
						|
                                                  Zeroable, Subtarget, DAG))
 | 
						|
      return Blend;
 | 
						|
 | 
						|
  if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask,
 | 
						|
                                                   Zeroable, DAG))
 | 
						|
    return Masked;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  if (SDValue BitBlend =
 | 
						|
          lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
 | 
						|
    return BitBlend;
 | 
						|
 | 
						|
  // Try to lower by permuting the inputs into an unpack instruction.
 | 
						|
  if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
 | 
						|
                                                            V2, Mask, DAG))
 | 
						|
    return Unpack;
 | 
						|
 | 
						|
  // If we can't directly blend but can use PSHUFB, that will be better as it
 | 
						|
  // can both shuffle and set up the inefficient blend.
 | 
						|
  if (!IsBlendSupported && Subtarget.hasSSSE3()) {
 | 
						|
    bool V1InUse, V2InUse;
 | 
						|
    return lowerVectorShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask,
 | 
						|
                                              Zeroable, DAG, V1InUse, V2InUse);
 | 
						|
  }
 | 
						|
 | 
						|
  // We can always bit-blend if we have to so the fallback strategy is to
 | 
						|
  // decompose into single-input permutes and blends.
 | 
						|
  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
 | 
						|
                                                    Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a compaction lowering can be done by dropping even
 | 
						|
/// elements and compute how many times even elements must be dropped.
 | 
						|
///
 | 
						|
/// This handles shuffles which take every Nth element where N is a power of
 | 
						|
/// two. Example shuffle masks:
 | 
						|
///
 | 
						|
///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14
 | 
						|
///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
 | 
						|
///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12
 | 
						|
///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28
 | 
						|
///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8
 | 
						|
///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24
 | 
						|
///
 | 
						|
/// Any of these lanes can of course be undef.
 | 
						|
///
 | 
						|
/// This routine only supports N <= 3.
 | 
						|
/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
 | 
						|
/// for larger N.
 | 
						|
///
 | 
						|
/// \returns N above, or the number of times even elements must be dropped if
 | 
						|
/// there is such a number. Otherwise returns zero.
 | 
						|
static int canLowerByDroppingEvenElements(ArrayRef<int> Mask,
 | 
						|
                                          bool IsSingleInput) {
 | 
						|
  // The modulus for the shuffle vector entries is based on whether this is
 | 
						|
  // a single input or not.
 | 
						|
  int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
 | 
						|
  assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
 | 
						|
         "We should only be called with masks with a power-of-2 size!");
 | 
						|
 | 
						|
  uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
 | 
						|
 | 
						|
  // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
 | 
						|
  // and 2^3 simultaneously. This is because we may have ambiguity with
 | 
						|
  // partially undef inputs.
 | 
						|
  bool ViableForN[3] = {true, true, true};
 | 
						|
 | 
						|
  for (int i = 0, e = Mask.size(); i < e; ++i) {
 | 
						|
    // Ignore undef lanes, we'll optimistically collapse them to the pattern we
 | 
						|
    // want.
 | 
						|
    if (Mask[i] < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool IsAnyViable = false;
 | 
						|
    for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
 | 
						|
      if (ViableForN[j]) {
 | 
						|
        uint64_t N = j + 1;
 | 
						|
 | 
						|
        // The shuffle mask must be equal to (i * 2^N) % M.
 | 
						|
        if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
 | 
						|
          IsAnyViable = true;
 | 
						|
        else
 | 
						|
          ViableForN[j] = false;
 | 
						|
      }
 | 
						|
    // Early exit if we exhaust the possible powers of two.
 | 
						|
    if (!IsAnyViable)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
 | 
						|
    if (ViableForN[j])
 | 
						|
      return j + 1;
 | 
						|
 | 
						|
  // Return 0 as there is no viable power of two.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generic lowering of v16i8 shuffles.
 | 
						|
///
 | 
						|
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
 | 
						|
/// detect any complexity reducing interleaving. If that doesn't help, it uses
 | 
						|
/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
 | 
						|
/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
 | 
						|
/// back together.
 | 
						|
static SDValue lowerV16I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to use a zext lowering.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // See if we can use SSE4A Extraction / Insertion.
 | 
						|
  if (Subtarget.hasSSE4A())
 | 
						|
    if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask,
 | 
						|
                                                Zeroable, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; });
 | 
						|
 | 
						|
  // For single-input shuffles, there are some nicer lowering tricks we can use.
 | 
						|
  if (NumV2Elements == 0) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Check whether we can widen this to an i16 shuffle by duplicating bytes.
 | 
						|
    // Notably, this handles splat and partial-splat shuffles more efficiently.
 | 
						|
    // However, it only makes sense if the pre-duplication shuffle simplifies
 | 
						|
    // things significantly. Currently, this means we need to be able to
 | 
						|
    // express the pre-duplication shuffle as an i16 shuffle.
 | 
						|
    //
 | 
						|
    // FIXME: We should check for other patterns which can be widened into an
 | 
						|
    // i16 shuffle as well.
 | 
						|
    auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
 | 
						|
      for (int i = 0; i < 16; i += 2)
 | 
						|
        if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1])
 | 
						|
          return false;
 | 
						|
 | 
						|
      return true;
 | 
						|
    };
 | 
						|
    auto tryToWidenViaDuplication = [&]() -> SDValue {
 | 
						|
      if (!canWidenViaDuplication(Mask))
 | 
						|
        return SDValue();
 | 
						|
      SmallVector<int, 4> LoInputs;
 | 
						|
      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
 | 
						|
                   [](int M) { return M >= 0 && M < 8; });
 | 
						|
      std::sort(LoInputs.begin(), LoInputs.end());
 | 
						|
      LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
 | 
						|
                     LoInputs.end());
 | 
						|
      SmallVector<int, 4> HiInputs;
 | 
						|
      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
 | 
						|
                   [](int M) { return M >= 8; });
 | 
						|
      std::sort(HiInputs.begin(), HiInputs.end());
 | 
						|
      HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
 | 
						|
                     HiInputs.end());
 | 
						|
 | 
						|
      bool TargetLo = LoInputs.size() >= HiInputs.size();
 | 
						|
      ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
 | 
						|
      ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
 | 
						|
 | 
						|
      int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
 | 
						|
      SmallDenseMap<int, int, 8> LaneMap;
 | 
						|
      for (int I : InPlaceInputs) {
 | 
						|
        PreDupI16Shuffle[I/2] = I/2;
 | 
						|
        LaneMap[I] = I;
 | 
						|
      }
 | 
						|
      int j = TargetLo ? 0 : 4, je = j + 4;
 | 
						|
      for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
 | 
						|
        // Check if j is already a shuffle of this input. This happens when
 | 
						|
        // there are two adjacent bytes after we move the low one.
 | 
						|
        if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
 | 
						|
          // If we haven't yet mapped the input, search for a slot into which
 | 
						|
          // we can map it.
 | 
						|
          while (j < je && PreDupI16Shuffle[j] >= 0)
 | 
						|
            ++j;
 | 
						|
 | 
						|
          if (j == je)
 | 
						|
            // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
 | 
						|
            return SDValue();
 | 
						|
 | 
						|
          // Map this input with the i16 shuffle.
 | 
						|
          PreDupI16Shuffle[j] = MovingInputs[i] / 2;
 | 
						|
        }
 | 
						|
 | 
						|
        // Update the lane map based on the mapping we ended up with.
 | 
						|
        LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
 | 
						|
      }
 | 
						|
      V1 = DAG.getBitcast(
 | 
						|
          MVT::v16i8,
 | 
						|
          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
 | 
						|
                               DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
 | 
						|
 | 
						|
      // Unpack the bytes to form the i16s that will be shuffled into place.
 | 
						|
      V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
 | 
						|
                       MVT::v16i8, V1, V1);
 | 
						|
 | 
						|
      int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
 | 
						|
      for (int i = 0; i < 16; ++i)
 | 
						|
        if (Mask[i] >= 0) {
 | 
						|
          int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
 | 
						|
          assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
 | 
						|
          if (PostDupI16Shuffle[i / 2] < 0)
 | 
						|
            PostDupI16Shuffle[i / 2] = MappedMask;
 | 
						|
          else
 | 
						|
            assert(PostDupI16Shuffle[i / 2] == MappedMask &&
 | 
						|
                   "Conflicting entrties in the original shuffle!");
 | 
						|
        }
 | 
						|
      return DAG.getBitcast(
 | 
						|
          MVT::v16i8,
 | 
						|
          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
 | 
						|
                               DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
 | 
						|
    };
 | 
						|
    if (SDValue V = tryToWidenViaDuplication())
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask,
 | 
						|
                                                   Zeroable, DAG))
 | 
						|
    return Masked;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
 | 
						|
  // with PSHUFB. It is important to do this before we attempt to generate any
 | 
						|
  // blends but after all of the single-input lowerings. If the single input
 | 
						|
  // lowerings can find an instruction sequence that is faster than a PSHUFB, we
 | 
						|
  // want to preserve that and we can DAG combine any longer sequences into
 | 
						|
  // a PSHUFB in the end. But once we start blending from multiple inputs,
 | 
						|
  // the complexity of DAG combining bad patterns back into PSHUFB is too high,
 | 
						|
  // and there are *very* few patterns that would actually be faster than the
 | 
						|
  // PSHUFB approach because of its ability to zero lanes.
 | 
						|
  //
 | 
						|
  // FIXME: The only exceptions to the above are blends which are exact
 | 
						|
  // interleavings with direct instructions supporting them. We currently don't
 | 
						|
  // handle those well here.
 | 
						|
  if (Subtarget.hasSSSE3()) {
 | 
						|
    bool V1InUse = false;
 | 
						|
    bool V2InUse = false;
 | 
						|
 | 
						|
    SDValue PSHUFB = lowerVectorShuffleAsBlendOfPSHUFBs(
 | 
						|
        DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse);
 | 
						|
 | 
						|
    // If both V1 and V2 are in use and we can use a direct blend or an unpack,
 | 
						|
    // do so. This avoids using them to handle blends-with-zero which is
 | 
						|
    // important as a single pshufb is significantly faster for that.
 | 
						|
    if (V1InUse && V2InUse) {
 | 
						|
      if (Subtarget.hasSSE41())
 | 
						|
        if (SDValue Blend = lowerVectorShuffleAsBlend(
 | 
						|
                DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
          return Blend;
 | 
						|
 | 
						|
      // We can use an unpack to do the blending rather than an or in some
 | 
						|
      // cases. Even though the or may be (very minorly) more efficient, we
 | 
						|
      // preference this lowering because there are common cases where part of
 | 
						|
      // the complexity of the shuffles goes away when we do the final blend as
 | 
						|
      // an unpack.
 | 
						|
      // FIXME: It might be worth trying to detect if the unpack-feeding
 | 
						|
      // shuffles will both be pshufb, in which case we shouldn't bother with
 | 
						|
      // this.
 | 
						|
      if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
 | 
						|
              DL, MVT::v16i8, V1, V2, Mask, DAG))
 | 
						|
        return Unpack;
 | 
						|
    }
 | 
						|
 | 
						|
    return PSHUFB;
 | 
						|
  }
 | 
						|
 | 
						|
  // There are special ways we can lower some single-element blends.
 | 
						|
  if (NumV2Elements == 1)
 | 
						|
    if (SDValue V = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  if (SDValue BitBlend =
 | 
						|
          lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
 | 
						|
    return BitBlend;
 | 
						|
 | 
						|
  // Check whether a compaction lowering can be done. This handles shuffles
 | 
						|
  // which take every Nth element for some even N. See the helper function for
 | 
						|
  // details.
 | 
						|
  //
 | 
						|
  // We special case these as they can be particularly efficiently handled with
 | 
						|
  // the PACKUSB instruction on x86 and they show up in common patterns of
 | 
						|
  // rearranging bytes to truncate wide elements.
 | 
						|
  bool IsSingleInput = V2.isUndef();
 | 
						|
  if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) {
 | 
						|
    // NumEvenDrops is the power of two stride of the elements. Another way of
 | 
						|
    // thinking about it is that we need to drop the even elements this many
 | 
						|
    // times to get the original input.
 | 
						|
 | 
						|
    // First we need to zero all the dropped bytes.
 | 
						|
    assert(NumEvenDrops <= 3 &&
 | 
						|
           "No support for dropping even elements more than 3 times.");
 | 
						|
    // We use the mask type to pick which bytes are preserved based on how many
 | 
						|
    // elements are dropped.
 | 
						|
    MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
 | 
						|
    SDValue ByteClearMask = DAG.getBitcast(
 | 
						|
        MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
 | 
						|
    V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
 | 
						|
    if (!IsSingleInput)
 | 
						|
      V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
 | 
						|
 | 
						|
    // Now pack things back together.
 | 
						|
    V1 = DAG.getBitcast(MVT::v8i16, V1);
 | 
						|
    V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
 | 
						|
    SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
 | 
						|
    for (int i = 1; i < NumEvenDrops; ++i) {
 | 
						|
      Result = DAG.getBitcast(MVT::v8i16, Result);
 | 
						|
      Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
 | 
						|
    }
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle multi-input cases by blending single-input shuffles.
 | 
						|
  if (NumV2Elements > 0)
 | 
						|
    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
 | 
						|
                                                      Mask, DAG);
 | 
						|
 | 
						|
  // The fallback path for single-input shuffles widens this into two v8i16
 | 
						|
  // vectors with unpacks, shuffles those, and then pulls them back together
 | 
						|
  // with a pack.
 | 
						|
  SDValue V = V1;
 | 
						|
 | 
						|
  std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
 | 
						|
  std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
 | 
						|
  for (int i = 0; i < 16; ++i)
 | 
						|
    if (Mask[i] >= 0)
 | 
						|
      (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
 | 
						|
 | 
						|
  SDValue VLoHalf, VHiHalf;
 | 
						|
  // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
 | 
						|
  // them out and avoid using UNPCK{L,H} to extract the elements of V as
 | 
						|
  // i16s.
 | 
						|
  if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) &&
 | 
						|
      none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) {
 | 
						|
    // Use a mask to drop the high bytes.
 | 
						|
    VLoHalf = DAG.getBitcast(MVT::v8i16, V);
 | 
						|
    VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
 | 
						|
                          DAG.getConstant(0x00FF, DL, MVT::v8i16));
 | 
						|
 | 
						|
    // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
 | 
						|
    VHiHalf = DAG.getUNDEF(MVT::v8i16);
 | 
						|
 | 
						|
    // Squash the masks to point directly into VLoHalf.
 | 
						|
    for (int &M : LoBlendMask)
 | 
						|
      if (M >= 0)
 | 
						|
        M /= 2;
 | 
						|
    for (int &M : HiBlendMask)
 | 
						|
      if (M >= 0)
 | 
						|
        M /= 2;
 | 
						|
  } else {
 | 
						|
    // Otherwise just unpack the low half of V into VLoHalf and the high half into
 | 
						|
    // VHiHalf so that we can blend them as i16s.
 | 
						|
    SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
 | 
						|
 | 
						|
    VLoHalf = DAG.getBitcast(
 | 
						|
        MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
 | 
						|
    VHiHalf = DAG.getBitcast(
 | 
						|
        MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
 | 
						|
  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
 | 
						|
///
 | 
						|
/// This routine breaks down the specific type of 128-bit shuffle and
 | 
						|
/// dispatches to the lowering routines accordingly.
 | 
						|
static SDValue lower128BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        MVT VT, SDValue V1, SDValue V2,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  case MVT::v2i64:
 | 
						|
    return lowerV2I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v2f64:
 | 
						|
    return lowerV2F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v4i32:
 | 
						|
    return lowerV4I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v4f32:
 | 
						|
    return lowerV4F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v8i16:
 | 
						|
    return lowerV8I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v16i8:
 | 
						|
    return lowerV16I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unimplemented!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generic routine to split vector shuffle into half-sized shuffles.
 | 
						|
///
 | 
						|
/// This routine just extracts two subvectors, shuffles them independently, and
 | 
						|
/// then concatenates them back together. This should work effectively with all
 | 
						|
/// AVX vector shuffle types.
 | 
						|
static SDValue splitAndLowerVectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                          SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  assert(VT.getSizeInBits() >= 256 &&
 | 
						|
         "Only for 256-bit or wider vector shuffles!");
 | 
						|
  assert(V1.getSimpleValueType() == VT && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == VT && "Bad operand type!");
 | 
						|
 | 
						|
  ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
 | 
						|
  ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
 | 
						|
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  int SplitNumElements = NumElements / 2;
 | 
						|
  MVT ScalarVT = VT.getVectorElementType();
 | 
						|
  MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
 | 
						|
 | 
						|
  // Rather than splitting build-vectors, just build two narrower build
 | 
						|
  // vectors. This helps shuffling with splats and zeros.
 | 
						|
  auto SplitVector = [&](SDValue V) {
 | 
						|
    V = peekThroughBitcasts(V);
 | 
						|
 | 
						|
    MVT OrigVT = V.getSimpleValueType();
 | 
						|
    int OrigNumElements = OrigVT.getVectorNumElements();
 | 
						|
    int OrigSplitNumElements = OrigNumElements / 2;
 | 
						|
    MVT OrigScalarVT = OrigVT.getVectorElementType();
 | 
						|
    MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
 | 
						|
 | 
						|
    SDValue LoV, HiV;
 | 
						|
 | 
						|
    auto *BV = dyn_cast<BuildVectorSDNode>(V);
 | 
						|
    if (!BV) {
 | 
						|
      LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
 | 
						|
                        DAG.getIntPtrConstant(0, DL));
 | 
						|
      HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
 | 
						|
                        DAG.getIntPtrConstant(OrigSplitNumElements, DL));
 | 
						|
    } else {
 | 
						|
 | 
						|
      SmallVector<SDValue, 16> LoOps, HiOps;
 | 
						|
      for (int i = 0; i < OrigSplitNumElements; ++i) {
 | 
						|
        LoOps.push_back(BV->getOperand(i));
 | 
						|
        HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
 | 
						|
      }
 | 
						|
      LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
 | 
						|
      HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
 | 
						|
    }
 | 
						|
    return std::make_pair(DAG.getBitcast(SplitVT, LoV),
 | 
						|
                          DAG.getBitcast(SplitVT, HiV));
 | 
						|
  };
 | 
						|
 | 
						|
  SDValue LoV1, HiV1, LoV2, HiV2;
 | 
						|
  std::tie(LoV1, HiV1) = SplitVector(V1);
 | 
						|
  std::tie(LoV2, HiV2) = SplitVector(V2);
 | 
						|
 | 
						|
  // Now create two 4-way blends of these half-width vectors.
 | 
						|
  auto HalfBlend = [&](ArrayRef<int> HalfMask) {
 | 
						|
    bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
 | 
						|
    SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1);
 | 
						|
    SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1);
 | 
						|
    SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1);
 | 
						|
    for (int i = 0; i < SplitNumElements; ++i) {
 | 
						|
      int M = HalfMask[i];
 | 
						|
      if (M >= NumElements) {
 | 
						|
        if (M >= NumElements + SplitNumElements)
 | 
						|
          UseHiV2 = true;
 | 
						|
        else
 | 
						|
          UseLoV2 = true;
 | 
						|
        V2BlendMask[i] = M - NumElements;
 | 
						|
        BlendMask[i] = SplitNumElements + i;
 | 
						|
      } else if (M >= 0) {
 | 
						|
        if (M >= SplitNumElements)
 | 
						|
          UseHiV1 = true;
 | 
						|
        else
 | 
						|
          UseLoV1 = true;
 | 
						|
        V1BlendMask[i] = M;
 | 
						|
        BlendMask[i] = i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Because the lowering happens after all combining takes place, we need to
 | 
						|
    // manually combine these blend masks as much as possible so that we create
 | 
						|
    // a minimal number of high-level vector shuffle nodes.
 | 
						|
 | 
						|
    // First try just blending the halves of V1 or V2.
 | 
						|
    if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
 | 
						|
      return DAG.getUNDEF(SplitVT);
 | 
						|
    if (!UseLoV2 && !UseHiV2)
 | 
						|
      return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
 | 
						|
    if (!UseLoV1 && !UseHiV1)
 | 
						|
      return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
 | 
						|
 | 
						|
    SDValue V1Blend, V2Blend;
 | 
						|
    if (UseLoV1 && UseHiV1) {
 | 
						|
      V1Blend =
 | 
						|
        DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
 | 
						|
    } else {
 | 
						|
      // We only use half of V1 so map the usage down into the final blend mask.
 | 
						|
      V1Blend = UseLoV1 ? LoV1 : HiV1;
 | 
						|
      for (int i = 0; i < SplitNumElements; ++i)
 | 
						|
        if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
 | 
						|
          BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
 | 
						|
    }
 | 
						|
    if (UseLoV2 && UseHiV2) {
 | 
						|
      V2Blend =
 | 
						|
        DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
 | 
						|
    } else {
 | 
						|
      // We only use half of V2 so map the usage down into the final blend mask.
 | 
						|
      V2Blend = UseLoV2 ? LoV2 : HiV2;
 | 
						|
      for (int i = 0; i < SplitNumElements; ++i)
 | 
						|
        if (BlendMask[i] >= SplitNumElements)
 | 
						|
          BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
 | 
						|
    }
 | 
						|
    return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
 | 
						|
  };
 | 
						|
  SDValue Lo = HalfBlend(LoMask);
 | 
						|
  SDValue Hi = HalfBlend(HiMask);
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Either split a vector in halves or decompose the shuffles and the
 | 
						|
/// blend.
 | 
						|
///
 | 
						|
/// This is provided as a good fallback for many lowerings of non-single-input
 | 
						|
/// shuffles with more than one 128-bit lane. In those cases, we want to select
 | 
						|
/// between splitting the shuffle into 128-bit components and stitching those
 | 
						|
/// back together vs. extracting the single-input shuffles and blending those
 | 
						|
/// results.
 | 
						|
static SDValue lowerVectorShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT,
 | 
						|
                                                SDValue V1, SDValue V2,
 | 
						|
                                                ArrayRef<int> Mask,
 | 
						|
                                                SelectionDAG &DAG) {
 | 
						|
  assert(!V2.isUndef() && "This routine must not be used to lower single-input "
 | 
						|
         "shuffles as it could then recurse on itself.");
 | 
						|
  int Size = Mask.size();
 | 
						|
 | 
						|
  // If this can be modeled as a broadcast of two elements followed by a blend,
 | 
						|
  // prefer that lowering. This is especially important because broadcasts can
 | 
						|
  // often fold with memory operands.
 | 
						|
  auto DoBothBroadcast = [&] {
 | 
						|
    int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
 | 
						|
    for (int M : Mask)
 | 
						|
      if (M >= Size) {
 | 
						|
        if (V2BroadcastIdx < 0)
 | 
						|
          V2BroadcastIdx = M - Size;
 | 
						|
        else if (M - Size != V2BroadcastIdx)
 | 
						|
          return false;
 | 
						|
      } else if (M >= 0) {
 | 
						|
        if (V1BroadcastIdx < 0)
 | 
						|
          V1BroadcastIdx = M;
 | 
						|
        else if (M != V1BroadcastIdx)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
  if (DoBothBroadcast())
 | 
						|
    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
 | 
						|
                                                      DAG);
 | 
						|
 | 
						|
  // If the inputs all stem from a single 128-bit lane of each input, then we
 | 
						|
  // split them rather than blending because the split will decompose to
 | 
						|
  // unusually few instructions.
 | 
						|
  int LaneCount = VT.getSizeInBits() / 128;
 | 
						|
  int LaneSize = Size / LaneCount;
 | 
						|
  SmallBitVector LaneInputs[2];
 | 
						|
  LaneInputs[0].resize(LaneCount, false);
 | 
						|
  LaneInputs[1].resize(LaneCount, false);
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0)
 | 
						|
      LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
 | 
						|
  if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
 | 
						|
    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
 | 
						|
 | 
						|
  // Otherwise, just fall back to decomposed shuffles and a blend. This requires
 | 
						|
  // that the decomposed single-input shuffles don't end up here.
 | 
						|
  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
 | 
						|
/// a permutation and blend of those lanes.
 | 
						|
///
 | 
						|
/// This essentially blends the out-of-lane inputs to each lane into the lane
 | 
						|
/// from a permuted copy of the vector. This lowering strategy results in four
 | 
						|
/// instructions in the worst case for a single-input cross lane shuffle which
 | 
						|
/// is lower than any other fully general cross-lane shuffle strategy I'm aware
 | 
						|
/// of. Special cases for each particular shuffle pattern should be handled
 | 
						|
/// prior to trying this lowering.
 | 
						|
static SDValue lowerVectorShuffleAsLanePermuteAndBlend(const SDLoc &DL, MVT VT,
 | 
						|
                                                       SDValue V1, SDValue V2,
 | 
						|
                                                       ArrayRef<int> Mask,
 | 
						|
                                                       SelectionDAG &DAG) {
 | 
						|
  // FIXME: This should probably be generalized for 512-bit vectors as well.
 | 
						|
  assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
 | 
						|
  int Size = Mask.size();
 | 
						|
  int LaneSize = Size / 2;
 | 
						|
 | 
						|
  // If there are only inputs from one 128-bit lane, splitting will in fact be
 | 
						|
  // less expensive. The flags track whether the given lane contains an element
 | 
						|
  // that crosses to another lane.
 | 
						|
  bool LaneCrossing[2] = {false, false};
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
 | 
						|
      LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
 | 
						|
  if (!LaneCrossing[0] || !LaneCrossing[1])
 | 
						|
    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
 | 
						|
 | 
						|
  assert(V2.isUndef() &&
 | 
						|
         "This last part of this routine only works on single input shuffles");
 | 
						|
 | 
						|
  SmallVector<int, 32> FlippedBlendMask(Size);
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    FlippedBlendMask[i] =
 | 
						|
        Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
 | 
						|
                                ? Mask[i]
 | 
						|
                                : Mask[i] % LaneSize +
 | 
						|
                                      (i / LaneSize) * LaneSize + Size);
 | 
						|
 | 
						|
  // Flip the vector, and blend the results which should now be in-lane. The
 | 
						|
  // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
 | 
						|
  // 5 for the high source. The value 3 selects the high half of source 2 and
 | 
						|
  // the value 2 selects the low half of source 2. We only use source 2 to
 | 
						|
  // allow folding it into a memory operand.
 | 
						|
  unsigned PERMMask = 3 | 2 << 4;
 | 
						|
  SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
 | 
						|
                                V1, DAG.getConstant(PERMMask, DL, MVT::i8));
 | 
						|
  return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering 2-lane 128-bit shuffles.
 | 
						|
static SDValue lowerV2X128VectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
 | 
						|
                                        SDValue V2, ArrayRef<int> Mask,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  SmallVector<int, 4> WidenedMask;
 | 
						|
  if (!canWidenShuffleElements(Mask, WidenedMask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // TODO: If minimizing size and one of the inputs is a zero vector and the
 | 
						|
  // the zero vector has only one use, we could use a VPERM2X128 to save the
 | 
						|
  // instruction bytes needed to explicitly generate the zero vector.
 | 
						|
 | 
						|
  // Blends are faster and handle all the non-lane-crossing cases.
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
 | 
						|
  bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
 | 
						|
 | 
						|
  // If either input operand is a zero vector, use VPERM2X128 because its mask
 | 
						|
  // allows us to replace the zero input with an implicit zero.
 | 
						|
  if (!IsV1Zero && !IsV2Zero) {
 | 
						|
    // Check for patterns which can be matched with a single insert of a 128-bit
 | 
						|
    // subvector.
 | 
						|
    bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
 | 
						|
    if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
 | 
						|
      // With AVX2 we should use VPERMQ/VPERMPD to allow memory folding.
 | 
						|
      if (Subtarget.hasAVX2() && V2.isUndef())
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
 | 
						|
                                   VT.getVectorNumElements() / 2);
 | 
						|
      SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
 | 
						|
                                DAG.getIntPtrConstant(0, DL));
 | 
						|
      SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
 | 
						|
                                OnlyUsesV1 ? V1 : V2,
 | 
						|
                                DAG.getIntPtrConstant(0, DL));
 | 
						|
      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise form a 128-bit permutation. After accounting for undefs,
 | 
						|
  // convert the 64-bit shuffle mask selection values into 128-bit
 | 
						|
  // selection bits by dividing the indexes by 2 and shifting into positions
 | 
						|
  // defined by a vperm2*128 instruction's immediate control byte.
 | 
						|
 | 
						|
  // The immediate permute control byte looks like this:
 | 
						|
  //    [1:0] - select 128 bits from sources for low half of destination
 | 
						|
  //    [2]   - ignore
 | 
						|
  //    [3]   - zero low half of destination
 | 
						|
  //    [5:4] - select 128 bits from sources for high half of destination
 | 
						|
  //    [6]   - ignore
 | 
						|
  //    [7]   - zero high half of destination
 | 
						|
 | 
						|
  int MaskLO = WidenedMask[0] < 0 ? 0 : WidenedMask[0];
 | 
						|
  int MaskHI = WidenedMask[1] < 0 ? 0 : WidenedMask[1];
 | 
						|
 | 
						|
  unsigned PermMask = MaskLO | (MaskHI << 4);
 | 
						|
 | 
						|
  // If either input is a zero vector, replace it with an undef input.
 | 
						|
  // Shuffle mask values <  4 are selecting elements of V1.
 | 
						|
  // Shuffle mask values >= 4 are selecting elements of V2.
 | 
						|
  // Adjust each half of the permute mask by clearing the half that was
 | 
						|
  // selecting the zero vector and setting the zero mask bit.
 | 
						|
  if (IsV1Zero) {
 | 
						|
    V1 = DAG.getUNDEF(VT);
 | 
						|
    if (MaskLO < 2)
 | 
						|
      PermMask = (PermMask & 0xf0) | 0x08;
 | 
						|
    if (MaskHI < 2)
 | 
						|
      PermMask = (PermMask & 0x0f) | 0x80;
 | 
						|
  }
 | 
						|
  if (IsV2Zero) {
 | 
						|
    V2 = DAG.getUNDEF(VT);
 | 
						|
    if (MaskLO >= 2)
 | 
						|
      PermMask = (PermMask & 0xf0) | 0x08;
 | 
						|
    if (MaskHI >= 2)
 | 
						|
      PermMask = (PermMask & 0x0f) | 0x80;
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
 | 
						|
                     DAG.getConstant(PermMask, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
 | 
						|
/// shuffling each lane.
 | 
						|
///
 | 
						|
/// This will only succeed when the result of fixing the 128-bit lanes results
 | 
						|
/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
 | 
						|
/// each 128-bit lanes. This handles many cases where we can quickly blend away
 | 
						|
/// the lane crosses early and then use simpler shuffles within each lane.
 | 
						|
///
 | 
						|
/// FIXME: It might be worthwhile at some point to support this without
 | 
						|
/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
 | 
						|
/// in x86 only floating point has interesting non-repeating shuffles, and even
 | 
						|
/// those are still *marginally* more expensive.
 | 
						|
static SDValue lowerVectorShuffleByMerging128BitLanes(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
    const X86Subtarget &Subtarget, SelectionDAG &DAG) {
 | 
						|
  assert(!V2.isUndef() && "This is only useful with multiple inputs.");
 | 
						|
 | 
						|
  int Size = Mask.size();
 | 
						|
  int LaneSize = 128 / VT.getScalarSizeInBits();
 | 
						|
  int NumLanes = Size / LaneSize;
 | 
						|
  assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
 | 
						|
 | 
						|
  // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
 | 
						|
  // check whether the in-128-bit lane shuffles share a repeating pattern.
 | 
						|
  SmallVector<int, 4> Lanes((unsigned)NumLanes, -1);
 | 
						|
  SmallVector<int, 4> InLaneMask((unsigned)LaneSize, -1);
 | 
						|
  for (int i = 0; i < Size; ++i) {
 | 
						|
    if (Mask[i] < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    int j = i / LaneSize;
 | 
						|
 | 
						|
    if (Lanes[j] < 0) {
 | 
						|
      // First entry we've seen for this lane.
 | 
						|
      Lanes[j] = Mask[i] / LaneSize;
 | 
						|
    } else if (Lanes[j] != Mask[i] / LaneSize) {
 | 
						|
      // This doesn't match the lane selected previously!
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check that within each lane we have a consistent shuffle mask.
 | 
						|
    int k = i % LaneSize;
 | 
						|
    if (InLaneMask[k] < 0) {
 | 
						|
      InLaneMask[k] = Mask[i] % LaneSize;
 | 
						|
    } else if (InLaneMask[k] != Mask[i] % LaneSize) {
 | 
						|
      // This doesn't fit a repeating in-lane mask.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // First shuffle the lanes into place.
 | 
						|
  MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
 | 
						|
                                VT.getSizeInBits() / 64);
 | 
						|
  SmallVector<int, 8> LaneMask((unsigned)NumLanes * 2, -1);
 | 
						|
  for (int i = 0; i < NumLanes; ++i)
 | 
						|
    if (Lanes[i] >= 0) {
 | 
						|
      LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
 | 
						|
      LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
 | 
						|
    }
 | 
						|
 | 
						|
  V1 = DAG.getBitcast(LaneVT, V1);
 | 
						|
  V2 = DAG.getBitcast(LaneVT, V2);
 | 
						|
  SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
 | 
						|
 | 
						|
  // Cast it back to the type we actually want.
 | 
						|
  LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
 | 
						|
 | 
						|
  // Now do a simple shuffle that isn't lane crossing.
 | 
						|
  SmallVector<int, 8> NewMask((unsigned)Size, -1);
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0)
 | 
						|
      NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
 | 
						|
  assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
 | 
						|
         "Must not introduce lane crosses at this point!");
 | 
						|
 | 
						|
  return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower shuffles where an entire half of a 256-bit vector is UNDEF.
 | 
						|
/// This allows for fast cases such as subvector extraction/insertion
 | 
						|
/// or shuffling smaller vector types which can lower more efficiently.
 | 
						|
static SDValue lowerVectorShuffleWithUndefHalf(const SDLoc &DL, MVT VT,
 | 
						|
                                               SDValue V1, SDValue V2,
 | 
						|
                                               ArrayRef<int> Mask,
 | 
						|
                                               const X86Subtarget &Subtarget,
 | 
						|
                                               SelectionDAG &DAG) {
 | 
						|
  assert(VT.is256BitVector() && "Expected 256-bit vector");
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned HalfNumElts = NumElts / 2;
 | 
						|
  MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts);
 | 
						|
 | 
						|
  bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts);
 | 
						|
  bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts);
 | 
						|
  if (!UndefLower && !UndefUpper)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Upper half is undef and lower half is whole upper subvector.
 | 
						|
  // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
 | 
						|
  if (UndefUpper &&
 | 
						|
      isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
 | 
						|
    SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
 | 
						|
                             DAG.getIntPtrConstant(HalfNumElts, DL));
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
 | 
						|
                       DAG.getIntPtrConstant(0, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower half is undef and upper half is whole lower subvector.
 | 
						|
  // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
 | 
						|
  if (UndefLower &&
 | 
						|
      isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
 | 
						|
    SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
 | 
						|
                             DAG.getIntPtrConstant(0, DL));
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
 | 
						|
                       DAG.getIntPtrConstant(HalfNumElts, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the shuffle only uses two of the four halves of the input operands,
 | 
						|
  // then extract them and perform the 'half' shuffle at half width.
 | 
						|
  // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u>
 | 
						|
  int HalfIdx1 = -1, HalfIdx2 = -1;
 | 
						|
  SmallVector<int, 8> HalfMask(HalfNumElts);
 | 
						|
  unsigned Offset = UndefLower ? HalfNumElts : 0;
 | 
						|
  for (unsigned i = 0; i != HalfNumElts; ++i) {
 | 
						|
    int M = Mask[i + Offset];
 | 
						|
    if (M < 0) {
 | 
						|
      HalfMask[i] = M;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine which of the 4 half vectors this element is from.
 | 
						|
    // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
 | 
						|
    int HalfIdx = M / HalfNumElts;
 | 
						|
 | 
						|
    // Determine the element index into its half vector source.
 | 
						|
    int HalfElt = M % HalfNumElts;
 | 
						|
 | 
						|
    // We can shuffle with up to 2 half vectors, set the new 'half'
 | 
						|
    // shuffle mask accordingly.
 | 
						|
    if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) {
 | 
						|
      HalfMask[i] = HalfElt;
 | 
						|
      HalfIdx1 = HalfIdx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) {
 | 
						|
      HalfMask[i] = HalfElt + HalfNumElts;
 | 
						|
      HalfIdx2 = HalfIdx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Too many half vectors referenced.
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
 | 
						|
 | 
						|
  // Only shuffle the halves of the inputs when useful.
 | 
						|
  int NumLowerHalves =
 | 
						|
      (HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
 | 
						|
  int NumUpperHalves =
 | 
						|
      (HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
 | 
						|
 | 
						|
  // uuuuXXXX - don't extract uppers just to insert again.
 | 
						|
  if (UndefLower && NumUpperHalves != 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // XXXXuuuu - don't extract both uppers, instead shuffle and then extract.
 | 
						|
  if (UndefUpper && NumUpperHalves == 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // AVX2 - XXXXuuuu - always extract lowers.
 | 
						|
  if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) {
 | 
						|
    // AVX2 supports efficient immediate 64-bit element cross-lane shuffles.
 | 
						|
    if (VT == MVT::v4f64 || VT == MVT::v4i64)
 | 
						|
      return SDValue();
 | 
						|
    // AVX2 supports variable 32-bit element cross-lane shuffles.
 | 
						|
    if (VT == MVT::v8f32 || VT == MVT::v8i32) {
 | 
						|
      // XXXXuuuu - don't extract lowers and uppers.
 | 
						|
      if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0)
 | 
						|
        return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto GetHalfVector = [&](int HalfIdx) {
 | 
						|
    if (HalfIdx < 0)
 | 
						|
      return DAG.getUNDEF(HalfVT);
 | 
						|
    SDValue V = (HalfIdx < 2 ? V1 : V2);
 | 
						|
    HalfIdx = (HalfIdx % 2) * HalfNumElts;
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
 | 
						|
                       DAG.getIntPtrConstant(HalfIdx, DL));
 | 
						|
  };
 | 
						|
 | 
						|
  SDValue Half1 = GetHalfVector(HalfIdx1);
 | 
						|
  SDValue Half2 = GetHalfVector(HalfIdx2);
 | 
						|
  SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
 | 
						|
  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
 | 
						|
                     DAG.getIntPtrConstant(Offset, DL));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Test whether the specified input (0 or 1) is in-place blended by the
 | 
						|
/// given mask.
 | 
						|
///
 | 
						|
/// This returns true if the elements from a particular input are already in the
 | 
						|
/// slot required by the given mask and require no permutation.
 | 
						|
static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
 | 
						|
  assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
 | 
						|
  int Size = Mask.size();
 | 
						|
  for (int i = 0; i < Size; ++i)
 | 
						|
    if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Handle case where shuffle sources are coming from the same 128-bit lane and
 | 
						|
/// every lane can be represented as the same repeating mask - allowing us to
 | 
						|
/// shuffle the sources with the repeating shuffle and then permute the result
 | 
						|
/// to the destination lanes.
 | 
						|
static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
    const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
 | 
						|
    const X86Subtarget &Subtarget, SelectionDAG &DAG) {
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  int NumLanes = VT.getSizeInBits() / 128;
 | 
						|
  int NumLaneElts = NumElts / NumLanes;
 | 
						|
 | 
						|
  // On AVX2 we may be able to just shuffle the lowest elements and then
 | 
						|
  // broadcast the result.
 | 
						|
  if (Subtarget.hasAVX2()) {
 | 
						|
    for (unsigned BroadcastSize : {16, 32, 64}) {
 | 
						|
      if (BroadcastSize <= VT.getScalarSizeInBits())
 | 
						|
        continue;
 | 
						|
      int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
 | 
						|
 | 
						|
      // Attempt to match a repeating pattern every NumBroadcastElts,
 | 
						|
      // accounting for UNDEFs but only references the lowest 128-bit
 | 
						|
      // lane of the inputs.
 | 
						|
      auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
 | 
						|
        for (int i = 0; i != NumElts; i += NumBroadcastElts)
 | 
						|
          for (int j = 0; j != NumBroadcastElts; ++j) {
 | 
						|
            int M = Mask[i + j];
 | 
						|
            if (M < 0)
 | 
						|
              continue;
 | 
						|
            int &R = RepeatMask[j];
 | 
						|
            if (0 != ((M % NumElts) / NumLaneElts))
 | 
						|
              return false;
 | 
						|
            if (0 <= R && R != M)
 | 
						|
              return false;
 | 
						|
            R = M;
 | 
						|
          }
 | 
						|
        return true;
 | 
						|
      };
 | 
						|
 | 
						|
      SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
 | 
						|
      if (!FindRepeatingBroadcastMask(RepeatMask))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Shuffle the (lowest) repeated elements in place for broadcast.
 | 
						|
      SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
 | 
						|
 | 
						|
      // Shuffle the actual broadcast.
 | 
						|
      SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
 | 
						|
      for (int i = 0; i != NumElts; i += NumBroadcastElts)
 | 
						|
        for (int j = 0; j != NumBroadcastElts; ++j)
 | 
						|
          BroadcastMask[i + j] = j;
 | 
						|
      return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
 | 
						|
                                  BroadcastMask);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Bail if the shuffle mask doesn't cross 128-bit lanes.
 | 
						|
  if (!is128BitLaneCrossingShuffleMask(VT, Mask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Bail if we already have a repeated lane shuffle mask.
 | 
						|
  SmallVector<int, 8> RepeatedShuffleMask;
 | 
						|
  if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
 | 
						|
  // (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
 | 
						|
  int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
 | 
						|
  int NumSubLanes = NumLanes * SubLaneScale;
 | 
						|
  int NumSubLaneElts = NumLaneElts / SubLaneScale;
 | 
						|
 | 
						|
  // Check that all the sources are coming from the same lane and see if we can
 | 
						|
  // form a repeating shuffle mask (local to each sub-lane). At the same time,
 | 
						|
  // determine the source sub-lane for each destination sub-lane.
 | 
						|
  int TopSrcSubLane = -1;
 | 
						|
  SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
 | 
						|
  SmallVector<int, 8> RepeatedSubLaneMasks[2] = {
 | 
						|
      SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef),
 | 
						|
      SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)};
 | 
						|
 | 
						|
  for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) {
 | 
						|
    // Extract the sub-lane mask, check that it all comes from the same lane
 | 
						|
    // and normalize the mask entries to come from the first lane.
 | 
						|
    int SrcLane = -1;
 | 
						|
    SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1);
 | 
						|
    for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
 | 
						|
      int M = Mask[(DstSubLane * NumSubLaneElts) + Elt];
 | 
						|
      if (M < 0)
 | 
						|
        continue;
 | 
						|
      int Lane = (M % NumElts) / NumLaneElts;
 | 
						|
      if ((0 <= SrcLane) && (SrcLane != Lane))
 | 
						|
        return SDValue();
 | 
						|
      SrcLane = Lane;
 | 
						|
      int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts);
 | 
						|
      SubLaneMask[Elt] = LocalM;
 | 
						|
    }
 | 
						|
 | 
						|
    // Whole sub-lane is UNDEF.
 | 
						|
    if (SrcLane < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Attempt to match against the candidate repeated sub-lane masks.
 | 
						|
    for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) {
 | 
						|
      auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) {
 | 
						|
        for (int i = 0; i != NumSubLaneElts; ++i) {
 | 
						|
          if (M1[i] < 0 || M2[i] < 0)
 | 
						|
            continue;
 | 
						|
          if (M1[i] != M2[i])
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
      };
 | 
						|
 | 
						|
      auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane];
 | 
						|
      if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Merge the sub-lane mask into the matching repeated sub-lane mask.
 | 
						|
      for (int i = 0; i != NumSubLaneElts; ++i) {
 | 
						|
        int M = SubLaneMask[i];
 | 
						|
        if (M < 0)
 | 
						|
          continue;
 | 
						|
        assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) &&
 | 
						|
               "Unexpected mask element");
 | 
						|
        RepeatedSubLaneMask[i] = M;
 | 
						|
      }
 | 
						|
 | 
						|
      // Track the top most source sub-lane - by setting the remaining to UNDEF
 | 
						|
      // we can greatly simplify shuffle matching.
 | 
						|
      int SrcSubLane = (SrcLane * SubLaneScale) + SubLane;
 | 
						|
      TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
 | 
						|
      Dst2SrcSubLanes[DstSubLane] = SrcSubLane;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Bail if we failed to find a matching repeated sub-lane mask.
 | 
						|
    if (Dst2SrcSubLanes[DstSubLane] < 0)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
 | 
						|
         "Unexpected source lane");
 | 
						|
 | 
						|
  // Create a repeating shuffle mask for the entire vector.
 | 
						|
  SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
 | 
						|
  for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) {
 | 
						|
    int Lane = SubLane / SubLaneScale;
 | 
						|
    auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale];
 | 
						|
    for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
 | 
						|
      int M = RepeatedSubLaneMask[Elt];
 | 
						|
      if (M < 0)
 | 
						|
        continue;
 | 
						|
      int Idx = (SubLane * NumSubLaneElts) + Elt;
 | 
						|
      RepeatedMask[Idx] = M + (Lane * NumLaneElts);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
 | 
						|
 | 
						|
  // Shuffle each source sub-lane to its destination.
 | 
						|
  SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
 | 
						|
  for (int i = 0; i != NumElts; i += NumSubLaneElts) {
 | 
						|
    int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
 | 
						|
    if (SrcSubLane < 0)
 | 
						|
      continue;
 | 
						|
    for (int j = 0; j != NumSubLaneElts; ++j)
 | 
						|
      SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
 | 
						|
                              SubLaneMask);
 | 
						|
}
 | 
						|
 | 
						|
static bool matchVectorShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2,
 | 
						|
                                         unsigned &ShuffleImm,
 | 
						|
                                         ArrayRef<int> Mask) {
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  assert(VT.getScalarType() == MVT::f64 &&
 | 
						|
         (NumElts == 2 || NumElts == 4 || NumElts == 8) &&
 | 
						|
         "Unexpected data type for VSHUFPD");
 | 
						|
 | 
						|
  // Mask for V8F64: 0/1,  8/9,  2/3,  10/11, 4/5, ..
 | 
						|
  // Mask for V4F64; 0/1,  4/5,  2/3,  6/7..
 | 
						|
  ShuffleImm = 0;
 | 
						|
  bool ShufpdMask = true;
 | 
						|
  bool CommutableMask = true;
 | 
						|
  for (int i = 0; i < NumElts; ++i) {
 | 
						|
    if (Mask[i] == SM_SentinelUndef)
 | 
						|
      continue;
 | 
						|
    if (Mask[i] < 0)
 | 
						|
      return false;
 | 
						|
    int Val = (i & 6) + NumElts * (i & 1);
 | 
						|
    int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1);
 | 
						|
    if (Mask[i] < Val || Mask[i] > Val + 1)
 | 
						|
      ShufpdMask = false;
 | 
						|
    if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
 | 
						|
      CommutableMask = false;
 | 
						|
    ShuffleImm |= (Mask[i] % 2) << i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShufpdMask)
 | 
						|
    return true;
 | 
						|
  if (CommutableMask) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerVectorShuffleWithSHUFPD(const SDLoc &DL, MVT VT,
 | 
						|
                                            ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                            SDValue V2, SelectionDAG &DAG) {
 | 
						|
  unsigned Immediate = 0;
 | 
						|
  if (!matchVectorShuffleWithSHUFPD(VT, V1, V2, Immediate, Mask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
 | 
						|
                     DAG.getConstant(Immediate, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerVectorShuffleWithPERMV(const SDLoc &DL, MVT VT,
 | 
						|
                                           ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                           SDValue V2, SelectionDAG &DAG) {
 | 
						|
  MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
 | 
						|
  MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
 | 
						|
 | 
						|
  SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
 | 
						|
  if (V2.isUndef())
 | 
						|
    return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
 | 
						|
///
 | 
						|
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
 | 
						|
/// isn't available.
 | 
						|
static SDValue lowerV4F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
 | 
						|
 | 
						|
  if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask,
 | 
						|
                                           Zeroable, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // Check for being able to broadcast a single element.
 | 
						|
    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
 | 
						|
            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Broadcast;
 | 
						|
 | 
						|
    // Use low duplicate instructions for masks that match their pattern.
 | 
						|
    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
 | 
						|
      return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
 | 
						|
 | 
						|
    if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
 | 
						|
      // Non-half-crossing single input shuffles can be lowered with an
 | 
						|
      // interleaved permutation.
 | 
						|
      unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
 | 
						|
                              ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
 | 
						|
                         DAG.getConstant(VPERMILPMask, DL, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    // With AVX2 we have direct support for this permutation.
 | 
						|
    if (Subtarget.hasAVX2())
 | 
						|
      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
 | 
						|
    // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
    // the results into the target lanes.
 | 
						|
    if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
    // Otherwise, fall back.
 | 
						|
    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
 | 
						|
                                                   DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Check if the blend happens to exactly fit that of SHUFPD.
 | 
						|
  if (SDValue Op =
 | 
						|
      lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // the results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle. However, if we have AVX2 and either inputs are already in place,
 | 
						|
  // we will be able to shuffle even across lanes the other input in a single
 | 
						|
  // instruction so skip this pattern.
 | 
						|
  if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
 | 
						|
                                isShuffleMaskInputInPlace(1, Mask))))
 | 
						|
    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // If we have AVX2 then we always want to lower with a blend because an v4 we
 | 
						|
  // can fully permute the elements.
 | 
						|
  if (Subtarget.hasAVX2())
 | 
						|
    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
 | 
						|
                                                      Mask, DAG);
 | 
						|
 | 
						|
  // Otherwise fall back on generic lowering.
 | 
						|
  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
 | 
						|
///
 | 
						|
/// This routine is only called when we have AVX2 and thus a reasonable
 | 
						|
/// instruction set for v4i64 shuffling..
 | 
						|
static SDValue lowerV4I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
 | 
						|
  assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
 | 
						|
 | 
						|
  if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask,
 | 
						|
                                           Zeroable, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // When the shuffle is mirrored between the 128-bit lanes of the unit, we
 | 
						|
    // can use lower latency instructions that will operate on both lanes.
 | 
						|
    SmallVector<int, 2> RepeatedMask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
 | 
						|
      SmallVector<int, 4> PSHUFDMask;
 | 
						|
      scaleShuffleMask(2, RepeatedMask, PSHUFDMask);
 | 
						|
      return DAG.getBitcast(
 | 
						|
          MVT::v4i64,
 | 
						|
          DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
 | 
						|
                      DAG.getBitcast(MVT::v8i32, V1),
 | 
						|
                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 | 
						|
    }
 | 
						|
 | 
						|
    // AVX2 provides a direct instruction for permuting a single input across
 | 
						|
    // lanes.
 | 
						|
    return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
 | 
						|
                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // If we have VLX support, we can use VALIGN.
 | 
						|
  if (Subtarget.hasVLX())
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i64, V1, V2,
 | 
						|
                                                    Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
  // Try to use PALIGNR.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v4i64, V1, V2,
 | 
						|
                                                      Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle. However, if we have AVX2 and either inputs are already in place,
 | 
						|
  // we will be able to shuffle even across lanes the other input in a single
 | 
						|
  // instruction so skip this pattern.
 | 
						|
  if (!isShuffleMaskInputInPlace(0, Mask) &&
 | 
						|
      !isShuffleMaskInputInPlace(1, Mask))
 | 
						|
    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
            DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // Otherwise fall back on generic blend lowering.
 | 
						|
  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
 | 
						|
                                                    Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
 | 
						|
///
 | 
						|
/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
 | 
						|
/// isn't available.
 | 
						|
static SDValue lowerV8F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  // If the shuffle mask is repeated in each 128-bit lane, we have many more
 | 
						|
  // options to efficiently lower the shuffle.
 | 
						|
  SmallVector<int, 4> RepeatedMask;
 | 
						|
  if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
 | 
						|
    assert(RepeatedMask.size() == 4 &&
 | 
						|
           "Repeated masks must be half the mask width!");
 | 
						|
 | 
						|
    // Use even/odd duplicate instructions for masks that match their pattern.
 | 
						|
    if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
 | 
						|
      return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
 | 
						|
    if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
 | 
						|
      return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
 | 
						|
 | 
						|
    if (V2.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 | 
						|
 | 
						|
    // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
    if (SDValue V =
 | 
						|
            lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
    // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
 | 
						|
    // have already handled any direct blends.
 | 
						|
    return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // the results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If we have a single input shuffle with different shuffle patterns in the
 | 
						|
  // two 128-bit lanes use the variable mask to VPERMILPS.
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
 | 
						|
    if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask);
 | 
						|
 | 
						|
    if (Subtarget.hasAVX2())
 | 
						|
      return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1);
 | 
						|
 | 
						|
    // Otherwise, fall back.
 | 
						|
    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
 | 
						|
                                                   DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle.
 | 
						|
  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
          DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // If we have AVX2 then we always want to lower with a blend because at v8 we
 | 
						|
  // can fully permute the elements.
 | 
						|
  if (Subtarget.hasAVX2())
 | 
						|
    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
 | 
						|
                                                      Mask, DAG);
 | 
						|
 | 
						|
  // Otherwise fall back on generic lowering.
 | 
						|
  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
 | 
						|
///
 | 
						|
/// This routine is only called when we have AVX2 and thus a reasonable
 | 
						|
/// instruction set for v8i32 shuffling..
 | 
						|
static SDValue lowerV8I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
 | 
						|
  assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v8i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  // If the shuffle mask is repeated in each 128-bit lane we can use more
 | 
						|
  // efficient instructions that mirror the shuffles across the two 128-bit
 | 
						|
  // lanes.
 | 
						|
  SmallVector<int, 4> RepeatedMask;
 | 
						|
  bool Is128BitLaneRepeatedShuffle =
 | 
						|
      is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask);
 | 
						|
  if (Is128BitLaneRepeatedShuffle) {
 | 
						|
    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
 | 
						|
    if (V2.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 | 
						|
 | 
						|
    // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
    if (SDValue V =
 | 
						|
            lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // If we have VLX support, we can use VALIGN.
 | 
						|
  if (Subtarget.hasVLX())
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i32, V1, V2,
 | 
						|
                                                    Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If the shuffle patterns aren't repeated but it is a single input, directly
 | 
						|
  // generate a cross-lane VPERMD instruction.
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
 | 
						|
    return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Assume that a single SHUFPS is faster than an alternative sequence of
 | 
						|
  // multiple instructions (even if the CPU has a domain penalty).
 | 
						|
  // If some CPU is harmed by the domain switch, we can fix it in a later pass.
 | 
						|
  if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
 | 
						|
    SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1);
 | 
						|
    SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2);
 | 
						|
    SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask,
 | 
						|
                                                  CastV1, CastV2, DAG);
 | 
						|
    return DAG.getBitcast(MVT::v8i32, ShufPS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle.
 | 
						|
  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Otherwise fall back on generic blend lowering.
 | 
						|
  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
 | 
						|
                                                    Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
 | 
						|
///
 | 
						|
/// This routine is only called when we have AVX2 and thus a reasonable
 | 
						|
/// instruction set for v16i16 shuffling..
 | 
						|
static SDValue lowerV16I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        SDValue V1, SDValue V2,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
 | 
						|
  assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // the results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // There are no generalized cross-lane shuffle operations available on i16
 | 
						|
    // element types.
 | 
						|
    if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
 | 
						|
      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
 | 
						|
                                                     Mask, DAG);
 | 
						|
 | 
						|
    SmallVector<int, 8> RepeatedMask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
 | 
						|
      // As this is a single-input shuffle, the repeated mask should be
 | 
						|
      // a strictly valid v8i16 mask that we can pass through to the v8i16
 | 
						|
      // lowering to handle even the v16 case.
 | 
						|
      return lowerV8I16GeneralSingleInputVectorShuffle(
 | 
						|
          DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
 | 
						|
          DL, MVT::v16i16, Mask, V1, V2, Zeroable, Subtarget, DAG))
 | 
						|
    return PSHUFB;
 | 
						|
 | 
						|
  // AVX512BWVL can lower to VPERMW.
 | 
						|
  if (Subtarget.hasBWI() && Subtarget.hasVLX())
 | 
						|
    return lowerVectorShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG);
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle.
 | 
						|
  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Otherwise fall back on generic lowering.
 | 
						|
  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
 | 
						|
///
 | 
						|
/// This routine is only called when we have AVX2 and thus a reasonable
 | 
						|
/// instruction set for v32i8 shuffling..
 | 
						|
static SDValue lowerV32I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
 | 
						|
  assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v32i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2,
 | 
						|
                                                        Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Blend;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // the results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // There are no generalized cross-lane shuffle operations available on i8
 | 
						|
  // element types.
 | 
						|
  if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
 | 
						|
    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask,
 | 
						|
                                                   DAG);
 | 
						|
 | 
						|
  if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
 | 
						|
          DL, MVT::v32i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
 | 
						|
    return PSHUFB;
 | 
						|
 | 
						|
  // Try to simplify this by merging 128-bit lanes to enable a lane-based
 | 
						|
  // shuffle.
 | 
						|
  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
 | 
						|
          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Otherwise fall back on generic lowering.
 | 
						|
  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
 | 
						|
///
 | 
						|
/// This routine either breaks down the specific type of a 256-bit x86 vector
 | 
						|
/// shuffle or splits it into two 128-bit shuffles and fuses the results back
 | 
						|
/// together based on the available instructions.
 | 
						|
static SDValue lower256BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        MVT VT, SDValue V1, SDValue V2,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  // If we have a single input to the zero element, insert that into V1 if we
 | 
						|
  // can do so cheaply.
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
 | 
						|
 | 
						|
  if (NumV2Elements == 1 && Mask[0] >= NumElts)
 | 
						|
    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return Insertion;
 | 
						|
 | 
						|
  // Handle special cases where the lower or upper half is UNDEF.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // There is a really nice hard cut-over between AVX1 and AVX2 that means we
 | 
						|
  // can check for those subtargets here and avoid much of the subtarget
 | 
						|
  // querying in the per-vector-type lowering routines. With AVX1 we have
 | 
						|
  // essentially *zero* ability to manipulate a 256-bit vector with integer
 | 
						|
  // types. Since we'll use floating point types there eventually, just
 | 
						|
  // immediately cast everything to a float and operate entirely in that domain.
 | 
						|
  if (VT.isInteger() && !Subtarget.hasAVX2()) {
 | 
						|
    int ElementBits = VT.getScalarSizeInBits();
 | 
						|
    if (ElementBits < 32) {
 | 
						|
      // No floating point type available, if we can't use the bit operations
 | 
						|
      // for masking/blending then decompose into 128-bit vectors.
 | 
						|
      if (SDValue V =
 | 
						|
              lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
 | 
						|
        return V;
 | 
						|
      if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
 | 
						|
        return V;
 | 
						|
      return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
 | 
						|
    }
 | 
						|
 | 
						|
    MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
 | 
						|
                                VT.getVectorNumElements());
 | 
						|
    V1 = DAG.getBitcast(FpVT, V1);
 | 
						|
    V2 = DAG.getBitcast(FpVT, V2);
 | 
						|
    return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
 | 
						|
  }
 | 
						|
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  case MVT::v4f64:
 | 
						|
    return lowerV4F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v4i64:
 | 
						|
    return lowerV4I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v8f32:
 | 
						|
    return lowerV8F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v8i32:
 | 
						|
    return lowerV8I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v16i16:
 | 
						|
    return lowerV16I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v32i8:
 | 
						|
    return lowerV32I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not a valid 256-bit x86 vector type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a vector shuffle as a 128-bit shuffles.
 | 
						|
static SDValue lowerV4X128VectorShuffle(const SDLoc &DL, MVT VT,
 | 
						|
                                        ArrayRef<int> Mask, SDValue V1,
 | 
						|
                                        SDValue V2, SelectionDAG &DAG) {
 | 
						|
  assert(VT.getScalarSizeInBits() == 64 &&
 | 
						|
         "Unexpected element type size for 128bit shuffle.");
 | 
						|
 | 
						|
  // To handle 256 bit vector requires VLX and most probably
 | 
						|
  // function lowerV2X128VectorShuffle() is better solution.
 | 
						|
  assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle.");
 | 
						|
 | 
						|
  SmallVector<int, 4> WidenedMask;
 | 
						|
  if (!canWidenShuffleElements(Mask, WidenedMask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check for patterns which can be matched with a single insert of a 256-bit
 | 
						|
  // subvector.
 | 
						|
  bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask,
 | 
						|
                                        {0, 1, 2, 3, 0, 1, 2, 3});
 | 
						|
  if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask,
 | 
						|
                                        {0, 1, 2, 3, 8, 9, 10, 11})) {
 | 
						|
    MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4);
 | 
						|
    SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
 | 
						|
                              DAG.getIntPtrConstant(0, DL));
 | 
						|
    SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
 | 
						|
                              OnlyUsesV1 ? V1 : V2,
 | 
						|
                              DAG.getIntPtrConstant(0, DL));
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(WidenedMask.size() == 4);
 | 
						|
 | 
						|
  // See if this is an insertion of the lower 128-bits of V2 into V1.
 | 
						|
  bool IsInsert = true;
 | 
						|
  int V2Index = -1;
 | 
						|
  for (int i = 0; i < 4; ++i) {
 | 
						|
    assert(WidenedMask[i] >= -1);
 | 
						|
    if (WidenedMask[i] < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure all V1 subvectors are in place.
 | 
						|
    if (WidenedMask[i] < 4) {
 | 
						|
      if (WidenedMask[i] != i) {
 | 
						|
        IsInsert = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Make sure we only have a single V2 index and its the lowest 128-bits.
 | 
						|
      if (V2Index >= 0 || WidenedMask[i] != 4) {
 | 
						|
        IsInsert = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      V2Index = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (IsInsert && V2Index >= 0) {
 | 
						|
    MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
 | 
						|
    SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
 | 
						|
                                 DAG.getIntPtrConstant(0, DL));
 | 
						|
    return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to lower to to vshuf64x2/vshuf32x4.
 | 
						|
  SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
 | 
						|
  unsigned PermMask = 0;
 | 
						|
  // Insure elements came from the same Op.
 | 
						|
  for (int i = 0; i < 4; ++i) {
 | 
						|
    assert(WidenedMask[i] >= -1);
 | 
						|
    if (WidenedMask[i] < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Op = WidenedMask[i] >= 4 ? V2 : V1;
 | 
						|
    unsigned OpIndex = i / 2;
 | 
						|
    if (Ops[OpIndex].isUndef())
 | 
						|
      Ops[OpIndex] = Op;
 | 
						|
    else if (Ops[OpIndex] != Op)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Convert the 128-bit shuffle mask selection values into 128-bit selection
 | 
						|
    // bits defined by a vshuf64x2 instruction's immediate control byte.
 | 
						|
    PermMask |= (WidenedMask[i] % 4) << (i * 2);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
 | 
						|
                     DAG.getConstant(PermMask, DL, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
 | 
						|
static SDValue lowerV8F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // Use low duplicate instructions for masks that match their pattern.
 | 
						|
    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
 | 
						|
      return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1);
 | 
						|
 | 
						|
    if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) {
 | 
						|
      // Non-half-crossing single input shuffles can be lowered with an
 | 
						|
      // interleaved permutation.
 | 
						|
      unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
 | 
						|
                              ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) |
 | 
						|
                              ((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) |
 | 
						|
                              ((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7);
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1,
 | 
						|
                         DAG.getConstant(VPERMILPMask, DL, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<int, 4> RepeatedMask;
 | 
						|
    if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask))
 | 
						|
      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue Shuf128 =
 | 
						|
          lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG))
 | 
						|
    return Shuf128;
 | 
						|
 | 
						|
  if (SDValue Unpck =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
 | 
						|
    return Unpck;
 | 
						|
 | 
						|
  // Check if the blend happens to exactly fit that of SHUFPD.
 | 
						|
  if (SDValue Op =
 | 
						|
      lowerVectorShuffleWithSHUFPD(DL, MVT::v8f64, Mask, V1, V2, DAG))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
 | 
						|
static SDValue lowerV16F32VectorShuffle(SDLoc DL, ArrayRef<int> Mask,
 | 
						|
                                        SDValue V1, SDValue V2,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
 | 
						|
 | 
						|
  // If the shuffle mask is repeated in each 128-bit lane, we have many more
 | 
						|
  // options to efficiently lower the shuffle.
 | 
						|
  SmallVector<int, 4> RepeatedMask;
 | 
						|
  if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) {
 | 
						|
    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
 | 
						|
 | 
						|
    // Use even/odd duplicate instructions for masks that match their pattern.
 | 
						|
    if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
 | 
						|
      return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1);
 | 
						|
    if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
 | 
						|
      return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1);
 | 
						|
 | 
						|
    if (V2.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 | 
						|
 | 
						|
    // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
    if (SDValue Unpck =
 | 
						|
            lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
 | 
						|
      return Unpck;
 | 
						|
 | 
						|
    // Otherwise, fall back to a SHUFPS sequence.
 | 
						|
    return lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
 | 
						|
static SDValue lowerV8I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
 | 
						|
 | 
						|
  if (SDValue Shuf128 =
 | 
						|
          lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG))
 | 
						|
    return Shuf128;
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    // When the shuffle is mirrored between the 128-bit lanes of the unit, we
 | 
						|
    // can use lower latency instructions that will operate on all four
 | 
						|
    // 128-bit lanes.
 | 
						|
    SmallVector<int, 2> Repeated128Mask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) {
 | 
						|
      SmallVector<int, 4> PSHUFDMask;
 | 
						|
      scaleShuffleMask(2, Repeated128Mask, PSHUFDMask);
 | 
						|
      return DAG.getBitcast(
 | 
						|
          MVT::v8i64,
 | 
						|
          DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32,
 | 
						|
                      DAG.getBitcast(MVT::v16i32, V1),
 | 
						|
                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<int, 4> Repeated256Mask;
 | 
						|
    if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask))
 | 
						|
      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use VALIGN.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i64, V1, V2,
 | 
						|
                                                  Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to use PALIGNR.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i64, V1, V2,
 | 
						|
                                                      Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  if (SDValue Unpck =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
 | 
						|
    return Unpck;
 | 
						|
 | 
						|
  return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
 | 
						|
static SDValue lowerV16I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        SDValue V1, SDValue V2,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // If the shuffle mask is repeated in each 128-bit lane we can use more
 | 
						|
  // efficient instructions that mirror the shuffles across the four 128-bit
 | 
						|
  // lanes.
 | 
						|
  SmallVector<int, 4> RepeatedMask;
 | 
						|
  bool Is128BitLaneRepeatedShuffle =
 | 
						|
      is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask);
 | 
						|
  if (Is128BitLaneRepeatedShuffle) {
 | 
						|
    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
 | 
						|
    if (V2.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1,
 | 
						|
                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
 | 
						|
 | 
						|
    // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
    if (SDValue V =
 | 
						|
            lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use VALIGN.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v16i32, V1, V2,
 | 
						|
                                                  Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (Subtarget.hasBWI())
 | 
						|
    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
            DL, MVT::v16i32, V1, V2, Mask, Subtarget, DAG))
 | 
						|
      return Rotate;
 | 
						|
 | 
						|
  // Assume that a single SHUFPS is faster than using a permv shuffle.
 | 
						|
  // If some CPU is harmed by the domain switch, we can fix it in a later pass.
 | 
						|
  if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
 | 
						|
    SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1);
 | 
						|
    SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2);
 | 
						|
    SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask,
 | 
						|
                                                  CastV1, CastV2, DAG);
 | 
						|
    return DAG.getBitcast(MVT::v16i32, ShufPS);
 | 
						|
  }
 | 
						|
 | 
						|
  return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
 | 
						|
static SDValue lowerV32I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        SDValue V1, SDValue V2,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
 | 
						|
  assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v32i16, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    SmallVector<int, 8> RepeatedMask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) {
 | 
						|
      // As this is a single-input shuffle, the repeated mask should be
 | 
						|
      // a strictly valid v8i16 mask that we can pass through to the v8i16
 | 
						|
      // lowering to handle even the v32 case.
 | 
						|
      return lowerV8I16GeneralSingleInputVectorShuffle(
 | 
						|
          DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
 | 
						|
static SDValue lowerV64I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                       const SmallBitVector &Zeroable,
 | 
						|
                                       SDValue V1, SDValue V2,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
 | 
						|
  assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
 | 
						|
  assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
 | 
						|
  assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
 | 
						|
 | 
						|
  // Whenever we can lower this as a zext, that instruction is strictly faster
 | 
						|
  // than any alternative. It also allows us to fold memory operands into the
 | 
						|
  // shuffle in many cases.
 | 
						|
  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
 | 
						|
          DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
    return ZExt;
 | 
						|
 | 
						|
  // Use dedicated unpack instructions for masks that match their pattern.
 | 
						|
  if (SDValue V =
 | 
						|
          lowerVectorShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to use shift instructions.
 | 
						|
  if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask,
 | 
						|
                                                Zeroable, Subtarget, DAG))
 | 
						|
    return Shift;
 | 
						|
 | 
						|
  // Try to use byte rotation instructions.
 | 
						|
  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
 | 
						|
          DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Rotate;
 | 
						|
 | 
						|
  if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
 | 
						|
          DL, MVT::v64i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
 | 
						|
    return PSHUFB;
 | 
						|
 | 
						|
  // VBMI can use VPERMV/VPERMV3 byte shuffles.
 | 
						|
  if (Subtarget.hasVBMI())
 | 
						|
    return lowerVectorShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG);
 | 
						|
 | 
						|
  // Try to create an in-lane repeating shuffle mask and then shuffle the
 | 
						|
  // the results into the target lanes.
 | 
						|
  if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
 | 
						|
          DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // FIXME: Implement direct support for this type!
 | 
						|
  return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
 | 
						|
///
 | 
						|
/// This routine either breaks down the specific type of a 512-bit x86 vector
 | 
						|
/// shuffle or splits it into two 256-bit shuffles and fuses the results back
 | 
						|
/// together based on the available instructions.
 | 
						|
static SDValue lower512BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                        MVT VT, SDValue V1, SDValue V2,
 | 
						|
                                        const SmallBitVector &Zeroable,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX512() &&
 | 
						|
         "Cannot lower 512-bit vectors w/ basic ISA!");
 | 
						|
 | 
						|
  // If we have a single input to the zero element, insert that into V1 if we
 | 
						|
  // can do so cheaply.
 | 
						|
  int NumElts = Mask.size();
 | 
						|
  int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
 | 
						|
 | 
						|
  if (NumV2Elements == 1 && Mask[0] >= NumElts)
 | 
						|
    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
 | 
						|
            DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
 | 
						|
      return Insertion;
 | 
						|
 | 
						|
  // Check for being able to broadcast a single element.
 | 
						|
  if (SDValue Broadcast =
 | 
						|
          lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  // Dispatch to each element type for lowering. If we don't have support for
 | 
						|
  // specific element type shuffles at 512 bits, immediately split them and
 | 
						|
  // lower them. Each lowering routine of a given type is allowed to assume that
 | 
						|
  // the requisite ISA extensions for that element type are available.
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  case MVT::v8f64:
 | 
						|
    return lowerV8F64VectorShuffle(DL, Mask, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v16f32:
 | 
						|
    return lowerV16F32VectorShuffle(DL, Mask, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v8i64:
 | 
						|
    return lowerV8I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v16i32:
 | 
						|
    return lowerV16I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v32i16:
 | 
						|
    return lowerV32I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
  case MVT::v64i8:
 | 
						|
    return lowerV64I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not a valid 512-bit x86 vector type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Lower vXi1 vector shuffles.
 | 
						|
// There is no a dedicated instruction on AVX-512 that shuffles the masks.
 | 
						|
// The only way to shuffle bits is to sign-extend the mask vector to SIMD
 | 
						|
// vector, shuffle and then truncate it back.
 | 
						|
static SDValue lower1BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
 | 
						|
                                      MVT VT, SDValue V1, SDValue V2,
 | 
						|
                                      const X86Subtarget &Subtarget,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX512() &&
 | 
						|
         "Cannot lower 512-bit vectors w/o basic ISA!");
 | 
						|
  MVT ExtVT;
 | 
						|
  switch (VT.SimpleTy) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Expected a vector of i1 elements");
 | 
						|
  case MVT::v2i1:
 | 
						|
    ExtVT = MVT::v2i64;
 | 
						|
    break;
 | 
						|
  case MVT::v4i1:
 | 
						|
    ExtVT = MVT::v4i32;
 | 
						|
    break;
 | 
						|
  case MVT::v8i1:
 | 
						|
    ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL
 | 
						|
    break;
 | 
						|
  case MVT::v16i1:
 | 
						|
    ExtVT = MVT::v16i32;
 | 
						|
    break;
 | 
						|
  case MVT::v32i1:
 | 
						|
    ExtVT = MVT::v32i16;
 | 
						|
    break;
 | 
						|
  case MVT::v64i1:
 | 
						|
    ExtVT = MVT::v64i8;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ISD::isBuildVectorAllZeros(V1.getNode()))
 | 
						|
    V1 = getZeroVector(ExtVT, Subtarget, DAG, DL);
 | 
						|
  else if (ISD::isBuildVectorAllOnes(V1.getNode()))
 | 
						|
    V1 = getOnesVector(ExtVT, Subtarget, DAG, DL);
 | 
						|
  else
 | 
						|
    V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
 | 
						|
 | 
						|
  if (V2.isUndef())
 | 
						|
    V2 = DAG.getUNDEF(ExtVT);
 | 
						|
  else if (ISD::isBuildVectorAllZeros(V2.getNode()))
 | 
						|
    V2 = getZeroVector(ExtVT, Subtarget, DAG, DL);
 | 
						|
  else if (ISD::isBuildVectorAllOnes(V2.getNode()))
 | 
						|
    V2 = getOnesVector(ExtVT, Subtarget, DAG, DL);
 | 
						|
  else
 | 
						|
    V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
 | 
						|
 | 
						|
  SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask);
 | 
						|
  // i1 was sign extended we can use X86ISD::CVT2MASK.
 | 
						|
  int NumElems = VT.getVectorNumElements();
 | 
						|
  if ((Subtarget.hasBWI() && (NumElems >= 32)) ||
 | 
						|
      (Subtarget.hasDQI() && (NumElems < 32)))
 | 
						|
    return DAG.getNode(X86ISD::CVT2MASK, DL, VT, Shuffle);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle);
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function that returns true if the shuffle mask should be
 | 
						|
/// commuted to improve canonicalization.
 | 
						|
static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) {
 | 
						|
  int NumElements = Mask.size();
 | 
						|
 | 
						|
  int NumV1Elements = 0, NumV2Elements = 0;
 | 
						|
  for (int M : Mask)
 | 
						|
    if (M < 0)
 | 
						|
      continue;
 | 
						|
    else if (M < NumElements)
 | 
						|
      ++NumV1Elements;
 | 
						|
    else
 | 
						|
      ++NumV2Elements;
 | 
						|
 | 
						|
  // Commute the shuffle as needed such that more elements come from V1 than
 | 
						|
  // V2. This allows us to match the shuffle pattern strictly on how many
 | 
						|
  // elements come from V1 without handling the symmetric cases.
 | 
						|
  if (NumV2Elements > NumV1Elements)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(NumV1Elements > 0 && "No V1 indices");
 | 
						|
 | 
						|
  if (NumV2Elements == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // When the number of V1 and V2 elements are the same, try to minimize the
 | 
						|
  // number of uses of V2 in the low half of the vector. When that is tied,
 | 
						|
  // ensure that the sum of indices for V1 is equal to or lower than the sum
 | 
						|
  // indices for V2. When those are equal, try to ensure that the number of odd
 | 
						|
  // indices for V1 is lower than the number of odd indices for V2.
 | 
						|
  if (NumV1Elements == NumV2Elements) {
 | 
						|
    int LowV1Elements = 0, LowV2Elements = 0;
 | 
						|
    for (int M : Mask.slice(0, NumElements / 2))
 | 
						|
      if (M >= NumElements)
 | 
						|
        ++LowV2Elements;
 | 
						|
      else if (M >= 0)
 | 
						|
        ++LowV1Elements;
 | 
						|
    if (LowV2Elements > LowV1Elements)
 | 
						|
      return true;
 | 
						|
    if (LowV2Elements == LowV1Elements) {
 | 
						|
      int SumV1Indices = 0, SumV2Indices = 0;
 | 
						|
      for (int i = 0, Size = Mask.size(); i < Size; ++i)
 | 
						|
        if (Mask[i] >= NumElements)
 | 
						|
          SumV2Indices += i;
 | 
						|
        else if (Mask[i] >= 0)
 | 
						|
          SumV1Indices += i;
 | 
						|
      if (SumV2Indices < SumV1Indices)
 | 
						|
        return true;
 | 
						|
      if (SumV2Indices == SumV1Indices) {
 | 
						|
        int NumV1OddIndices = 0, NumV2OddIndices = 0;
 | 
						|
        for (int i = 0, Size = Mask.size(); i < Size; ++i)
 | 
						|
          if (Mask[i] >= NumElements)
 | 
						|
            NumV2OddIndices += i % 2;
 | 
						|
          else if (Mask[i] >= 0)
 | 
						|
            NumV1OddIndices += i % 2;
 | 
						|
        if (NumV2OddIndices < NumV1OddIndices)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Top-level lowering for x86 vector shuffles.
 | 
						|
///
 | 
						|
/// This handles decomposition, canonicalization, and lowering of all x86
 | 
						|
/// vector shuffles. Most of the specific lowering strategies are encapsulated
 | 
						|
/// above in helper routines. The canonicalization attempts to widen shuffles
 | 
						|
/// to involve fewer lanes of wider elements, consolidate symmetric patterns
 | 
						|
/// s.t. only one of the two inputs needs to be tested, etc.
 | 
						|
static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | 
						|
  ArrayRef<int> Mask = SVOp->getMask();
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
 | 
						|
 | 
						|
  assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
 | 
						|
         "Can't lower MMX shuffles");
 | 
						|
 | 
						|
  bool V1IsUndef = V1.isUndef();
 | 
						|
  bool V2IsUndef = V2.isUndef();
 | 
						|
  if (V1IsUndef && V2IsUndef)
 | 
						|
    return DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  // When we create a shuffle node we put the UNDEF node to second operand,
 | 
						|
  // but in some cases the first operand may be transformed to UNDEF.
 | 
						|
  // In this case we should just commute the node.
 | 
						|
  if (V1IsUndef)
 | 
						|
    return DAG.getCommutedVectorShuffle(*SVOp);
 | 
						|
 | 
						|
  // Check for non-undef masks pointing at an undef vector and make the masks
 | 
						|
  // undef as well. This makes it easier to match the shuffle based solely on
 | 
						|
  // the mask.
 | 
						|
  if (V2IsUndef)
 | 
						|
    for (int M : Mask)
 | 
						|
      if (M >= NumElements) {
 | 
						|
        SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
 | 
						|
        for (int &M : NewMask)
 | 
						|
          if (M >= NumElements)
 | 
						|
            M = -1;
 | 
						|
        return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
 | 
						|
      }
 | 
						|
 | 
						|
  // Check for illegal shuffle mask element index values.
 | 
						|
  int MaskUpperLimit = Mask.size() * (V2IsUndef ? 1 : 2); (void)MaskUpperLimit;
 | 
						|
  assert(llvm::all_of(Mask,
 | 
						|
                      [&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
 | 
						|
         "Out of bounds shuffle index");
 | 
						|
 | 
						|
  // We actually see shuffles that are entirely re-arrangements of a set of
 | 
						|
  // zero inputs. This mostly happens while decomposing complex shuffles into
 | 
						|
  // simple ones. Directly lower these as a buildvector of zeros.
 | 
						|
  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
 | 
						|
  if (Zeroable.all())
 | 
						|
    return getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
 | 
						|
  // Try to collapse shuffles into using a vector type with fewer elements but
 | 
						|
  // wider element types. We cap this to not form integers or floating point
 | 
						|
  // elements wider than 64 bits, but it might be interesting to form i128
 | 
						|
  // integers to handle flipping the low and high halves of AVX 256-bit vectors.
 | 
						|
  SmallVector<int, 16> WidenedMask;
 | 
						|
  if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
 | 
						|
      canWidenShuffleElements(Mask, WidenedMask)) {
 | 
						|
    MVT NewEltVT = VT.isFloatingPoint()
 | 
						|
                       ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
 | 
						|
                       : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
 | 
						|
    MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
 | 
						|
    // Make sure that the new vector type is legal. For example, v2f64 isn't
 | 
						|
    // legal on SSE1.
 | 
						|
    if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
 | 
						|
      V1 = DAG.getBitcast(NewVT, V1);
 | 
						|
      V2 = DAG.getBitcast(NewVT, V2);
 | 
						|
      return DAG.getBitcast(
 | 
						|
          VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Commute the shuffle if it will improve canonicalization.
 | 
						|
  if (canonicalizeShuffleMaskWithCommute(Mask))
 | 
						|
    return DAG.getCommutedVectorShuffle(*SVOp);
 | 
						|
 | 
						|
  // For each vector width, delegate to a specialized lowering routine.
 | 
						|
  if (VT.is128BitVector())
 | 
						|
    return lower128BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
 | 
						|
                                    DAG);
 | 
						|
 | 
						|
  if (VT.is256BitVector())
 | 
						|
    return lower256BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
 | 
						|
                                    DAG);
 | 
						|
 | 
						|
  if (VT.is512BitVector())
 | 
						|
    return lower512BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
 | 
						|
                                    DAG);
 | 
						|
 | 
						|
  if (Is1BitVector)
 | 
						|
    return lower1BitVectorShuffle(DL, Mask, VT, V1, V2, Subtarget, DAG);
 | 
						|
 | 
						|
  llvm_unreachable("Unimplemented!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to lower a VSELECT instruction to a vector shuffle.
 | 
						|
static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
 | 
						|
                                           const X86Subtarget &Subtarget,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  SDValue Cond = Op.getOperand(0);
 | 
						|
  SDValue LHS = Op.getOperand(1);
 | 
						|
  SDValue RHS = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
 | 
						|
    return SDValue();
 | 
						|
  auto *CondBV = cast<BuildVectorSDNode>(Cond);
 | 
						|
 | 
						|
  // Only non-legal VSELECTs reach this lowering, convert those into generic
 | 
						|
  // shuffles and re-use the shuffle lowering path for blends.
 | 
						|
  SmallVector<int, 32> Mask;
 | 
						|
  for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
 | 
						|
    SDValue CondElt = CondBV->getOperand(i);
 | 
						|
    Mask.push_back(
 | 
						|
        isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0)
 | 
						|
                                     : -1);
 | 
						|
  }
 | 
						|
  return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // A vselect where all conditions and data are constants can be optimized into
 | 
						|
  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
 | 
						|
  if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
 | 
						|
      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
 | 
						|
      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Try to lower this to a blend-style vector shuffle. This can handle all
 | 
						|
  // constant condition cases.
 | 
						|
  if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
 | 
						|
    return BlendOp;
 | 
						|
 | 
						|
  // Variable blends are only legal from SSE4.1 onward.
 | 
						|
  if (!Subtarget.hasSSE41())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only some types will be legal on some subtargets. If we can emit a legal
 | 
						|
  // VSELECT-matching blend, return Op, and but if we need to expand, return
 | 
						|
  // a null value.
 | 
						|
  switch (Op.getSimpleValueType().SimpleTy) {
 | 
						|
  default:
 | 
						|
    // Most of the vector types have blends past SSE4.1.
 | 
						|
    return Op;
 | 
						|
 | 
						|
  case MVT::v32i8:
 | 
						|
    // The byte blends for AVX vectors were introduced only in AVX2.
 | 
						|
    if (Subtarget.hasAVX2())
 | 
						|
      return Op;
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  case MVT::v8i16:
 | 
						|
  case MVT::v16i16:
 | 
						|
    // AVX-512 BWI and VLX features support VSELECT with i16 elements.
 | 
						|
    if (Subtarget.hasBWI() && Subtarget.hasVLX())
 | 
						|
      return Op;
 | 
						|
 | 
						|
    // FIXME: We should custom lower this by fixing the condition and using i8
 | 
						|
    // blends.
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT.getSizeInBits() == 8) {
 | 
						|
    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
 | 
						|
                                  Op.getOperand(0), Op.getOperand(1));
 | 
						|
    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | 
						|
                                  DAG.getValueType(VT));
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::f32) {
 | 
						|
    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
 | 
						|
    // the result back to FR32 register. It's only worth matching if the
 | 
						|
    // result has a single use which is a store or a bitcast to i32.  And in
 | 
						|
    // the case of a store, it's not worth it if the index is a constant 0,
 | 
						|
    // because a MOVSSmr can be used instead, which is smaller and faster.
 | 
						|
    if (!Op.hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
    SDNode *User = *Op.getNode()->use_begin();
 | 
						|
    if ((User->getOpcode() != ISD::STORE ||
 | 
						|
         isNullConstant(Op.getOperand(1))) &&
 | 
						|
        (User->getOpcode() != ISD::BITCAST ||
 | 
						|
         User->getValueType(0) != MVT::i32))
 | 
						|
      return SDValue();
 | 
						|
    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | 
						|
                                  DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
 | 
						|
                                  Op.getOperand(1));
 | 
						|
    return DAG.getBitcast(MVT::f32, Extract);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::i32 || VT == MVT::i64) {
 | 
						|
    // ExtractPS/pextrq works with constant index.
 | 
						|
    if (isa<ConstantSDNode>(Op.getOperand(1)))
 | 
						|
      return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Extract one bit from mask vector, like v16i1 or v8i1.
 | 
						|
/// AVX-512 feature.
 | 
						|
SDValue
 | 
						|
X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  SDLoc dl(Vec);
 | 
						|
  MVT VecVT = Vec.getSimpleValueType();
 | 
						|
  SDValue Idx = Op.getOperand(1);
 | 
						|
  MVT EltVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
 | 
						|
  assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
 | 
						|
         "Unexpected vector type in ExtractBitFromMaskVector");
 | 
						|
 | 
						|
  // variable index can't be handled in mask registers,
 | 
						|
  // extend vector to VR512
 | 
						|
  if (!isa<ConstantSDNode>(Idx)) {
 | 
						|
    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
 | 
						|
    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
 | 
						|
    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | 
						|
                              ExtVT.getVectorElementType(), Ext, Idx);
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  if ((!Subtarget.hasDQI() && (VecVT.getVectorNumElements() == 8)) ||
 | 
						|
      (VecVT.getVectorNumElements() < 8)) {
 | 
						|
    // Use kshiftlw/rw instruction.
 | 
						|
    VecVT = MVT::v16i1;
 | 
						|
    Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT,
 | 
						|
                      DAG.getUNDEF(VecVT),
 | 
						|
                      Vec,
 | 
						|
                      DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
  unsigned MaxSift = VecVT.getVectorNumElements() - 1;
 | 
						|
  if (MaxSift - IdxVal)
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
 | 
						|
                      DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8));
 | 
						|
  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
 | 
						|
                    DAG.getConstant(MaxSift, dl, MVT::i8));
 | 
						|
  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  MVT VecVT = Vec.getSimpleValueType();
 | 
						|
  SDValue Idx = Op.getOperand(1);
 | 
						|
 | 
						|
  if (Op.getSimpleValueType() == MVT::i1)
 | 
						|
    return ExtractBitFromMaskVector(Op, DAG);
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(Idx)) {
 | 
						|
    if (VecVT.is512BitVector() ||
 | 
						|
        (VecVT.is256BitVector() && Subtarget.hasInt256() &&
 | 
						|
         VecVT.getScalarSizeInBits() == 32)) {
 | 
						|
 | 
						|
      MVT MaskEltVT =
 | 
						|
        MVT::getIntegerVT(VecVT.getScalarSizeInBits());
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
 | 
						|
                                    MaskEltVT.getSizeInBits());
 | 
						|
 | 
						|
      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
 | 
						|
      auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
 | 
						|
                                 getZeroVector(MaskVT, Subtarget, DAG, dl), Idx,
 | 
						|
                                 DAG.getConstant(0, dl, PtrVT));
 | 
						|
      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
 | 
						|
      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm,
 | 
						|
                         DAG.getConstant(0, dl, PtrVT));
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
 | 
						|
  // If this is a 256-bit vector result, first extract the 128-bit vector and
 | 
						|
  // then extract the element from the 128-bit vector.
 | 
						|
  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
 | 
						|
    // Get the 128-bit vector.
 | 
						|
    Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
 | 
						|
    MVT EltVT = VecVT.getVectorElementType();
 | 
						|
 | 
						|
    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
 | 
						|
    assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
 | 
						|
 | 
						|
    // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
 | 
						|
    // this can be done with a mask.
 | 
						|
    IdxVal &= ElemsPerChunk - 1;
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
 | 
						|
                       DAG.getConstant(IdxVal, dl, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VecVT.is128BitVector() && "Unexpected vector length");
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT.getSizeInBits() == 16) {
 | 
						|
    // If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless
 | 
						|
    // we're going to zero extend the register or fold the store (SSE41 only).
 | 
						|
    if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) &&
 | 
						|
        !(Subtarget.hasSSE41() && MayFoldIntoStore(Op)))
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
 | 
						|
                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | 
						|
                                     DAG.getBitcast(MVT::v4i32, Vec), Idx));
 | 
						|
 | 
						|
    // Transform it so it match pextrw which produces a 32-bit result.
 | 
						|
    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
 | 
						|
                                  Op.getOperand(0), Op.getOperand(1));
 | 
						|
    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | 
						|
                                  DAG.getValueType(VT));
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasSSE41())
 | 
						|
    if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  // TODO: handle v16i8.
 | 
						|
 | 
						|
  if (VT.getSizeInBits() == 32) {
 | 
						|
    if (IdxVal == 0)
 | 
						|
      return Op;
 | 
						|
 | 
						|
    // SHUFPS the element to the lowest double word, then movss.
 | 
						|
    int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
 | 
						|
    Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.getSizeInBits() == 64) {
 | 
						|
    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
 | 
						|
    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
 | 
						|
    //        to match extract_elt for f64.
 | 
						|
    if (IdxVal == 0)
 | 
						|
      return Op;
 | 
						|
 | 
						|
    // UNPCKHPD the element to the lowest double word, then movsd.
 | 
						|
    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
 | 
						|
    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
 | 
						|
    int Mask[2] = { 1, -1 };
 | 
						|
    Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Insert one bit to mask vector, like v16i1 or v8i1.
 | 
						|
/// AVX-512 feature.
 | 
						|
SDValue
 | 
						|
X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  SDValue Elt = Op.getOperand(1);
 | 
						|
  SDValue Idx = Op.getOperand(2);
 | 
						|
  MVT VecVT = Vec.getSimpleValueType();
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(Idx)) {
 | 
						|
    // Non constant index. Extend source and destination,
 | 
						|
    // insert element and then truncate the result.
 | 
						|
    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
 | 
						|
    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
 | 
						|
    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
 | 
						|
      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
 | 
						|
      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
 | 
						|
  unsigned NumElems = VecVT.getVectorNumElements();
 | 
						|
 | 
						|
  if(Vec.isUndef()) {
 | 
						|
    if (IdxVal)
 | 
						|
      EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
 | 
						|
                             DAG.getConstant(IdxVal, dl, MVT::i8));
 | 
						|
    return EltInVec;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insertion of one bit into first or last position
 | 
						|
  // can be done with two SHIFTs + OR.
 | 
						|
  if (IdxVal == 0 ) {
 | 
						|
    // EltInVec already at correct index and other bits are 0.
 | 
						|
    // Clean the first bit in source vector.
 | 
						|
    Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
 | 
						|
                      DAG.getConstant(1 , dl, MVT::i8));
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
 | 
						|
                      DAG.getConstant(1, dl, MVT::i8));
 | 
						|
 | 
						|
    return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
 | 
						|
  }
 | 
						|
  if (IdxVal == NumElems -1) {
 | 
						|
    // Move the bit to the last position inside the vector.
 | 
						|
    EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
 | 
						|
                           DAG.getConstant(IdxVal, dl, MVT::i8));
 | 
						|
    // Clean the last bit in the source vector.
 | 
						|
    Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
 | 
						|
                           DAG.getConstant(1, dl, MVT::i8));
 | 
						|
    Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
 | 
						|
                           DAG.getConstant(1 , dl, MVT::i8));
 | 
						|
 | 
						|
    return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
 | 
						|
  }
 | 
						|
 | 
						|
  // Use shuffle to insert element.
 | 
						|
  SmallVector<int, 64> MaskVec(NumElems);
 | 
						|
  for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
    MaskVec[i] = (i == IdxVal) ? NumElems : i;
 | 
						|
 | 
						|
  return DAG.getVectorShuffle(VecVT, dl, Vec, EltInVec, MaskVec);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  if (EltVT == MVT::i1)
 | 
						|
    return InsertBitToMaskVector(Op, DAG);
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  SDValue N1 = Op.getOperand(1);
 | 
						|
  SDValue N2 = Op.getOperand(2);
 | 
						|
  if (!isa<ConstantSDNode>(N2))
 | 
						|
    return SDValue();
 | 
						|
  auto *N2C = cast<ConstantSDNode>(N2);
 | 
						|
  unsigned IdxVal = N2C->getZExtValue();
 | 
						|
 | 
						|
  // If we are clearing out a element, we do this more efficiently with a
 | 
						|
  // blend shuffle than a costly integer insertion.
 | 
						|
  // TODO: would other rematerializable values (e.g. allbits) benefit as well?
 | 
						|
  // TODO: pre-SSE41 targets will tend to use bit masking - this could still
 | 
						|
  // be beneficial if we are inserting several zeros and can combine the masks.
 | 
						|
  if (X86::isZeroNode(N1) && Subtarget.hasSSE41() && NumElts <= 8) {
 | 
						|
    SmallVector<int, 8> ClearMask;
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      ClearMask.push_back(i == IdxVal ? i + NumElts : i);
 | 
						|
    SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
    return DAG.getVectorShuffle(VT, dl, N0, ZeroVector, ClearMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
 | 
						|
  // into that, and then insert the subvector back into the result.
 | 
						|
  if (VT.is256BitVector() || VT.is512BitVector()) {
 | 
						|
    // With a 256-bit vector, we can insert into the zero element efficiently
 | 
						|
    // using a blend if we have AVX or AVX2 and the right data type.
 | 
						|
    if (VT.is256BitVector() && IdxVal == 0) {
 | 
						|
      // TODO: It is worthwhile to cast integer to floating point and back
 | 
						|
      // and incur a domain crossing penalty if that's what we'll end up
 | 
						|
      // doing anyway after extracting to a 128-bit vector.
 | 
						|
      if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
 | 
						|
          (Subtarget.hasAVX2() && EltVT == MVT::i32)) {
 | 
						|
        SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
 | 
						|
        N2 = DAG.getIntPtrConstant(1, dl);
 | 
						|
        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the desired 128-bit vector chunk.
 | 
						|
    SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
 | 
						|
 | 
						|
    // Insert the element into the desired chunk.
 | 
						|
    unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
 | 
						|
    assert(isPowerOf2_32(NumEltsIn128));
 | 
						|
    // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
 | 
						|
    unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
 | 
						|
 | 
						|
    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
 | 
						|
                    DAG.getConstant(IdxIn128, dl, MVT::i32));
 | 
						|
 | 
						|
    // Insert the changed part back into the bigger vector
 | 
						|
    return insert128BitVector(N0, V, IdxVal, DAG, dl);
 | 
						|
  }
 | 
						|
  assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
 | 
						|
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
 | 
						|
      unsigned Opc;
 | 
						|
      if (VT == MVT::v8i16) {
 | 
						|
        Opc = X86ISD::PINSRW;
 | 
						|
      } else {
 | 
						|
        assert(VT == MVT::v16i8);
 | 
						|
        Opc = X86ISD::PINSRB;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform it so it match pinsr{b,w} which expects a GR32 as its second
 | 
						|
      // argument.
 | 
						|
      if (N1.getValueType() != MVT::i32)
 | 
						|
        N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | 
						|
      if (N2.getValueType() != MVT::i32)
 | 
						|
        N2 = DAG.getIntPtrConstant(IdxVal, dl);
 | 
						|
      return DAG.getNode(Opc, dl, VT, N0, N1, N2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (EltVT == MVT::f32) {
 | 
						|
      // Bits [7:6] of the constant are the source select. This will always be
 | 
						|
      //   zero here. The DAG Combiner may combine an extract_elt index into
 | 
						|
      //   these bits. For example (insert (extract, 3), 2) could be matched by
 | 
						|
      //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
 | 
						|
      // Bits [5:4] of the constant are the destination select. This is the
 | 
						|
      //   value of the incoming immediate.
 | 
						|
      // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
 | 
						|
      //   combine either bitwise AND or insert of float 0.0 to set these bits.
 | 
						|
 | 
						|
      bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
 | 
						|
      if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
 | 
						|
        // If this is an insertion of 32-bits into the low 32-bits of
 | 
						|
        // a vector, we prefer to generate a blend with immediate rather
 | 
						|
        // than an insertps. Blends are simpler operations in hardware and so
 | 
						|
        // will always have equal or better performance than insertps.
 | 
						|
        // But if optimizing for size and there's a load folding opportunity,
 | 
						|
        // generate insertps because blendps does not have a 32-bit memory
 | 
						|
        // operand form.
 | 
						|
        N2 = DAG.getIntPtrConstant(1, dl);
 | 
						|
        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
 | 
						|
        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
 | 
						|
      }
 | 
						|
      N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
 | 
						|
      // Create this as a scalar to vector..
 | 
						|
      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
 | 
						|
      return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (EltVT == MVT::i32 || EltVT == MVT::i64) {
 | 
						|
      // PINSR* works with constant index.
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (EltVT == MVT::i8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (EltVT.getSizeInBits() == 16) {
 | 
						|
    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
 | 
						|
    // as its second argument.
 | 
						|
    if (N1.getValueType() != MVT::i32)
 | 
						|
      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | 
						|
    if (N2.getValueType() != MVT::i32)
 | 
						|
      N2 = DAG.getIntPtrConstant(IdxVal, dl);
 | 
						|
    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT OpVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  // If this is a 256-bit vector result, first insert into a 128-bit
 | 
						|
  // vector and then insert into the 256-bit vector.
 | 
						|
  if (!OpVT.is128BitVector()) {
 | 
						|
    // Insert into a 128-bit vector.
 | 
						|
    unsigned SizeFactor = OpVT.getSizeInBits()/128;
 | 
						|
    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
 | 
						|
                                 OpVT.getVectorNumElements() / SizeFactor);
 | 
						|
 | 
						|
    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
 | 
						|
 | 
						|
    // Insert the 128-bit vector.
 | 
						|
    return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
 | 
						|
  assert(OpVT.is128BitVector() && "Expected an SSE type!");
 | 
						|
  return DAG.getBitcast(
 | 
						|
      OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
 | 
						|
}
 | 
						|
 | 
						|
// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
 | 
						|
// a simple subregister reference or explicit instructions to grab
 | 
						|
// upper bits of a vector.
 | 
						|
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX() && "EXTRACT_SUBVECTOR requires AVX");
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue In =  Op.getOperand(0);
 | 
						|
  SDValue Idx = Op.getOperand(1);
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  MVT ResVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert((In.getSimpleValueType().is256BitVector() ||
 | 
						|
          In.getSimpleValueType().is512BitVector()) &&
 | 
						|
         "Can only extract from 256-bit or 512-bit vectors");
 | 
						|
 | 
						|
  if (ResVT.is128BitVector())
 | 
						|
    return extract128BitVector(In, IdxVal, DAG, dl);
 | 
						|
  if (ResVT.is256BitVector())
 | 
						|
    return extract256BitVector(In, IdxVal, DAG, dl);
 | 
						|
 | 
						|
  llvm_unreachable("Unimplemented!");
 | 
						|
}
 | 
						|
 | 
						|
static bool areOnlyUsersOf(SDNode *N, ArrayRef<SDValue> ValidUsers) {
 | 
						|
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I)
 | 
						|
    if (llvm::all_of(ValidUsers,
 | 
						|
                     [&I](SDValue V) { return V.getNode() != *I; }))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
 | 
						|
// simple superregister reference or explicit instructions to insert
 | 
						|
// the upper bits of a vector.
 | 
						|
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX() && "INSERT_SUBVECTOR requires AVX");
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  SDValue SubVec = Op.getOperand(1);
 | 
						|
  SDValue Idx = Op.getOperand(2);
 | 
						|
 | 
						|
  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  MVT OpVT = Op.getSimpleValueType();
 | 
						|
  MVT SubVecVT = SubVec.getSimpleValueType();
 | 
						|
 | 
						|
  if (OpVT.getVectorElementType() == MVT::i1)
 | 
						|
    return insert1BitVector(Op, DAG, Subtarget);
 | 
						|
 | 
						|
  assert((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
 | 
						|
         "Can only insert into 256-bit or 512-bit vectors");
 | 
						|
 | 
						|
  // Fold two 16-byte or 32-byte subvector loads into one 32-byte or 64-byte
 | 
						|
  // load:
 | 
						|
  // (insert_subvector (insert_subvector undef, (load16 addr), 0),
 | 
						|
  //                   (load16 addr + 16), Elts/2)
 | 
						|
  // --> load32 addr
 | 
						|
  // or:
 | 
						|
  // (insert_subvector (insert_subvector undef, (load32 addr), 0),
 | 
						|
  //                   (load32 addr + 32), Elts/2)
 | 
						|
  // --> load64 addr
 | 
						|
  // or a 16-byte or 32-byte broadcast:
 | 
						|
  // (insert_subvector (insert_subvector undef, (load16 addr), 0),
 | 
						|
  //                   (load16 addr), Elts/2)
 | 
						|
  // --> X86SubVBroadcast(load16 addr)
 | 
						|
  // or:
 | 
						|
  // (insert_subvector (insert_subvector undef, (load32 addr), 0),
 | 
						|
  //                   (load32 addr), Elts/2)
 | 
						|
  // --> X86SubVBroadcast(load32 addr)
 | 
						|
  if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
 | 
						|
      Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
 | 
						|
      OpVT.getSizeInBits() == SubVecVT.getSizeInBits() * 2) {
 | 
						|
    auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
 | 
						|
    if (Idx2 && Idx2->getZExtValue() == 0) {
 | 
						|
      SDValue SubVec2 = Vec.getOperand(1);
 | 
						|
      // If needed, look through bitcasts to get to the load.
 | 
						|
      if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(SubVec2))) {
 | 
						|
        bool Fast;
 | 
						|
        unsigned Alignment = FirstLd->getAlignment();
 | 
						|
        unsigned AS = FirstLd->getAddressSpace();
 | 
						|
        const X86TargetLowering *TLI = Subtarget.getTargetLowering();
 | 
						|
        if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
 | 
						|
                                    OpVT, AS, Alignment, &Fast) && Fast) {
 | 
						|
          SDValue Ops[] = {SubVec2, SubVec};
 | 
						|
          if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
 | 
						|
            return Ld;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If lower/upper loads are the same and the only users of the load, then
 | 
						|
      // lower to a VBROADCASTF128/VBROADCASTI128/etc.
 | 
						|
      if (auto *Ld = dyn_cast<LoadSDNode>(peekThroughOneUseBitcasts(SubVec2))) {
 | 
						|
        if (SubVec2 == SubVec && ISD::isNormalLoad(Ld) &&
 | 
						|
            areOnlyUsersOf(SubVec2.getNode(), {Op, Vec})) {
 | 
						|
          return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, SubVec);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If this is subv_broadcast insert into both halves, use a larger
 | 
						|
      // subv_broadcast.
 | 
						|
      if (SubVec.getOpcode() == X86ISD::SUBV_BROADCAST && SubVec == SubVec2) {
 | 
						|
        return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT,
 | 
						|
                           SubVec.getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SubVecVT.is128BitVector())
 | 
						|
    return insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
 | 
						|
 | 
						|
  if (SubVecVT.is256BitVector())
 | 
						|
    return insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
 | 
						|
 | 
						|
  llvm_unreachable("Unimplemented!");
 | 
						|
}
 | 
						|
 | 
						|
// Returns the appropriate wrapper opcode for a global reference.
 | 
						|
unsigned X86TargetLowering::getGlobalWrapperKind(const GlobalValue *GV) const {
 | 
						|
  // References to absolute symbols are never PC-relative.
 | 
						|
  if (GV && GV->isAbsoluteSymbolRef())
 | 
						|
    return X86ISD::Wrapper;
 | 
						|
 | 
						|
  CodeModel::Model M = getTargetMachine().getCodeModel();
 | 
						|
  if (Subtarget.isPICStyleRIPRel() &&
 | 
						|
      (M == CodeModel::Small || M == CodeModel::Kernel))
 | 
						|
    return X86ISD::WrapperRIP;
 | 
						|
 | 
						|
  return X86ISD::Wrapper;
 | 
						|
}
 | 
						|
 | 
						|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | 
						|
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
 | 
						|
// one of the above mentioned nodes. It has to be wrapped because otherwise
 | 
						|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | 
						|
// be used to form addressing mode. These wrapped nodes will be selected
 | 
						|
// into MOV32ri.
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
 | 
						|
  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | 
						|
  // global base reg.
 | 
						|
  unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
 | 
						|
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Result = DAG.getTargetConstantPool(
 | 
						|
      CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
 | 
						|
  SDLoc DL(CP);
 | 
						|
  Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
 | 
						|
  // With PIC, the address is actually $g + Offset.
 | 
						|
  if (OpFlag) {
 | 
						|
    Result =
 | 
						|
        DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
 | 
						|
  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | 
						|
  // global base reg.
 | 
						|
  unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
 | 
						|
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
 | 
						|
  SDLoc DL(JT);
 | 
						|
  Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
 | 
						|
 | 
						|
  // With PIC, the address is actually $g + Offset.
 | 
						|
  if (OpFlag)
 | 
						|
    Result =
 | 
						|
        DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
 | 
						|
 | 
						|
  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | 
						|
  // global base reg.
 | 
						|
  const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
 | 
						|
  unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod);
 | 
						|
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
 | 
						|
 | 
						|
  // With PIC, the address is actually $g + Offset.
 | 
						|
  if (isPositionIndependent() && !Subtarget.is64Bit()) {
 | 
						|
    Result =
 | 
						|
        DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // For symbols that require a load from a stub to get the address, emit the
 | 
						|
  // load.
 | 
						|
  if (isGlobalStubReference(OpFlag))
 | 
						|
    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
 | 
						|
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // Create the TargetBlockAddressAddress node.
 | 
						|
  unsigned char OpFlags =
 | 
						|
    Subtarget.classifyBlockAddressReference();
 | 
						|
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | 
						|
  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
 | 
						|
  Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result);
 | 
						|
 | 
						|
  // With PIC, the address is actually $g + Offset.
 | 
						|
  if (isGlobalRelativeToPICBase(OpFlags)) {
 | 
						|
    Result = DAG.getNode(ISD::ADD, dl, PtrVT,
 | 
						|
                         DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
 | 
						|
                                              const SDLoc &dl, int64_t Offset,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // Create the TargetGlobalAddress node, folding in the constant
 | 
						|
  // offset if it is legal.
 | 
						|
  unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
 | 
						|
  CodeModel::Model M = DAG.getTarget().getCodeModel();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Result;
 | 
						|
  if (OpFlags == X86II::MO_NO_FLAG &&
 | 
						|
      X86::isOffsetSuitableForCodeModel(Offset, M)) {
 | 
						|
    // A direct static reference to a global.
 | 
						|
    Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
 | 
						|
    Offset = 0;
 | 
						|
  } else {
 | 
						|
    Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
 | 
						|
  }
 | 
						|
 | 
						|
  Result = DAG.getNode(getGlobalWrapperKind(GV), dl, PtrVT, Result);
 | 
						|
 | 
						|
  // With PIC, the address is actually $g + Offset.
 | 
						|
  if (isGlobalRelativeToPICBase(OpFlags)) {
 | 
						|
    Result = DAG.getNode(ISD::ADD, dl, PtrVT,
 | 
						|
                         DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // For globals that require a load from a stub to get the address, emit the
 | 
						|
  // load.
 | 
						|
  if (isGlobalStubReference(OpFlags))
 | 
						|
    Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
 | 
						|
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | 
						|
 | 
						|
  // If there was a non-zero offset that we didn't fold, create an explicit
 | 
						|
  // addition for it.
 | 
						|
  if (Offset != 0)
 | 
						|
    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
 | 
						|
                         DAG.getConstant(Offset, dl, PtrVT));
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | 
						|
  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | 
						|
  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue
 | 
						|
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
 | 
						|
           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
 | 
						|
           unsigned char OperandFlags, bool LocalDynamic = false) {
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDLoc dl(GA);
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | 
						|
                                           GA->getValueType(0),
 | 
						|
                                           GA->getOffset(),
 | 
						|
                                           OperandFlags);
 | 
						|
 | 
						|
  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
 | 
						|
                                           : X86ISD::TLSADDR;
 | 
						|
 | 
						|
  if (InFlag) {
 | 
						|
    SDValue Ops[] = { Chain,  TGA, *InFlag };
 | 
						|
    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
 | 
						|
  } else {
 | 
						|
    SDValue Ops[]  = { Chain, TGA };
 | 
						|
    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
 | 
						|
  MFI.setAdjustsStack(true);
 | 
						|
  MFI.setHasCalls(true);
 | 
						|
 | 
						|
  SDValue Flag = Chain.getValue(1);
 | 
						|
  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
 | 
						|
}
 | 
						|
 | 
						|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
 | 
						|
static SDValue
 | 
						|
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | 
						|
                                const EVT PtrVT) {
 | 
						|
  SDValue InFlag;
 | 
						|
  SDLoc dl(GA);  // ? function entry point might be better
 | 
						|
  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
 | 
						|
                                   DAG.getNode(X86ISD::GlobalBaseReg,
 | 
						|
                                               SDLoc(), PtrVT), InFlag);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
 | 
						|
}
 | 
						|
 | 
						|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
 | 
						|
static SDValue
 | 
						|
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | 
						|
                                const EVT PtrVT) {
 | 
						|
  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
 | 
						|
                    X86::RAX, X86II::MO_TLSGD);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
 | 
						|
                                           SelectionDAG &DAG,
 | 
						|
                                           const EVT PtrVT,
 | 
						|
                                           bool is64Bit) {
 | 
						|
  SDLoc dl(GA);
 | 
						|
 | 
						|
  // Get the start address of the TLS block for this module.
 | 
						|
  X86MachineFunctionInfo *MFI = DAG.getMachineFunction()
 | 
						|
      .getInfo<X86MachineFunctionInfo>();
 | 
						|
  MFI->incNumLocalDynamicTLSAccesses();
 | 
						|
 | 
						|
  SDValue Base;
 | 
						|
  if (is64Bit) {
 | 
						|
    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
 | 
						|
                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
 | 
						|
  } else {
 | 
						|
    SDValue InFlag;
 | 
						|
    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
 | 
						|
        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
 | 
						|
                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
 | 
						|
  // of Base.
 | 
						|
 | 
						|
  // Build x@dtpoff.
 | 
						|
  unsigned char OperandFlags = X86II::MO_DTPOFF;
 | 
						|
  unsigned WrapperKind = X86ISD::Wrapper;
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | 
						|
                                           GA->getValueType(0),
 | 
						|
                                           GA->getOffset(), OperandFlags);
 | 
						|
  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
 | 
						|
 | 
						|
  // Add x@dtpoff with the base.
 | 
						|
  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
 | 
						|
}
 | 
						|
 | 
						|
// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
 | 
						|
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | 
						|
                                   const EVT PtrVT, TLSModel::Model model,
 | 
						|
                                   bool is64Bit, bool isPIC) {
 | 
						|
  SDLoc dl(GA);
 | 
						|
 | 
						|
  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
 | 
						|
  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
 | 
						|
                                                         is64Bit ? 257 : 256));
 | 
						|
 | 
						|
  SDValue ThreadPointer =
 | 
						|
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
 | 
						|
                  MachinePointerInfo(Ptr));
 | 
						|
 | 
						|
  unsigned char OperandFlags = 0;
 | 
						|
  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
 | 
						|
  // initialexec.
 | 
						|
  unsigned WrapperKind = X86ISD::Wrapper;
 | 
						|
  if (model == TLSModel::LocalExec) {
 | 
						|
    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
 | 
						|
  } else if (model == TLSModel::InitialExec) {
 | 
						|
    if (is64Bit) {
 | 
						|
      OperandFlags = X86II::MO_GOTTPOFF;
 | 
						|
      WrapperKind = X86ISD::WrapperRIP;
 | 
						|
    } else {
 | 
						|
      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unexpected model");
 | 
						|
  }
 | 
						|
 | 
						|
  // emit "addl x@ntpoff,%eax" (local exec)
 | 
						|
  // or "addl x@indntpoff,%eax" (initial exec)
 | 
						|
  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
 | 
						|
  SDValue TGA =
 | 
						|
      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
 | 
						|
                                 GA->getOffset(), OperandFlags);
 | 
						|
  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
 | 
						|
 | 
						|
  if (model == TLSModel::InitialExec) {
 | 
						|
    if (isPIC && !is64Bit) {
 | 
						|
      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
 | 
						|
                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
 | 
						|
                           Offset);
 | 
						|
    }
 | 
						|
 | 
						|
    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
 | 
						|
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | 
						|
  }
 | 
						|
 | 
						|
  // The address of the thread local variable is the add of the thread
 | 
						|
  // pointer with the offset of the variable.
 | 
						|
  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
 | 
						|
  if (DAG.getTarget().Options.EmulatedTLS)
 | 
						|
    return LowerToTLSEmulatedModel(GA, DAG);
 | 
						|
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool PositionIndependent = isPositionIndependent();
 | 
						|
 | 
						|
  if (Subtarget.isTargetELF()) {
 | 
						|
    TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
 | 
						|
    switch (model) {
 | 
						|
      case TLSModel::GeneralDynamic:
 | 
						|
        if (Subtarget.is64Bit())
 | 
						|
          return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
 | 
						|
        return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
 | 
						|
      case TLSModel::LocalDynamic:
 | 
						|
        return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
 | 
						|
                                           Subtarget.is64Bit());
 | 
						|
      case TLSModel::InitialExec:
 | 
						|
      case TLSModel::LocalExec:
 | 
						|
        return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
 | 
						|
                                   PositionIndependent);
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unknown TLS model.");
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isTargetDarwin()) {
 | 
						|
    // Darwin only has one model of TLS.  Lower to that.
 | 
						|
    unsigned char OpFlag = 0;
 | 
						|
    unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
 | 
						|
                           X86ISD::WrapperRIP : X86ISD::Wrapper;
 | 
						|
 | 
						|
    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | 
						|
    // global base reg.
 | 
						|
    bool PIC32 = PositionIndependent && !Subtarget.is64Bit();
 | 
						|
    if (PIC32)
 | 
						|
      OpFlag = X86II::MO_TLVP_PIC_BASE;
 | 
						|
    else
 | 
						|
      OpFlag = X86II::MO_TLVP;
 | 
						|
    SDLoc DL(Op);
 | 
						|
    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
 | 
						|
                                                GA->getValueType(0),
 | 
						|
                                                GA->getOffset(), OpFlag);
 | 
						|
    SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
 | 
						|
 | 
						|
    // With PIC32, the address is actually $g + Offset.
 | 
						|
    if (PIC32)
 | 
						|
      Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
 | 
						|
                           Offset);
 | 
						|
 | 
						|
    // Lowering the machine isd will make sure everything is in the right
 | 
						|
    // location.
 | 
						|
    SDValue Chain = DAG.getEntryNode();
 | 
						|
    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, DL, true), DL);
 | 
						|
    SDValue Args[] = { Chain, Offset };
 | 
						|
    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
 | 
						|
    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
 | 
						|
                               DAG.getIntPtrConstant(0, DL, true),
 | 
						|
                               Chain.getValue(1), DL);
 | 
						|
 | 
						|
    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
 | 
						|
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
    MFI.setAdjustsStack(true);
 | 
						|
 | 
						|
    // And our return value (tls address) is in the standard call return value
 | 
						|
    // location.
 | 
						|
    unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
 | 
						|
    return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isTargetKnownWindowsMSVC() ||
 | 
						|
      Subtarget.isTargetWindowsItanium() ||
 | 
						|
      Subtarget.isTargetWindowsGNU()) {
 | 
						|
    // Just use the implicit TLS architecture
 | 
						|
    // Need to generate someting similar to:
 | 
						|
    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
 | 
						|
    //                                  ; from TEB
 | 
						|
    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
 | 
						|
    //   mov     rcx, qword [rdx+rcx*8]
 | 
						|
    //   mov     eax, .tls$:tlsvar
 | 
						|
    //   [rax+rcx] contains the address
 | 
						|
    // Windows 64bit: gs:0x58
 | 
						|
    // Windows 32bit: fs:__tls_array
 | 
						|
 | 
						|
    SDLoc dl(GA);
 | 
						|
    SDValue Chain = DAG.getEntryNode();
 | 
						|
 | 
						|
    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
 | 
						|
    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
 | 
						|
    // use its literal value of 0x2C.
 | 
						|
    Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
 | 
						|
                                        ? Type::getInt8PtrTy(*DAG.getContext(),
 | 
						|
                                                             256)
 | 
						|
                                        : Type::getInt32PtrTy(*DAG.getContext(),
 | 
						|
                                                              257));
 | 
						|
 | 
						|
    SDValue TlsArray = Subtarget.is64Bit()
 | 
						|
                           ? DAG.getIntPtrConstant(0x58, dl)
 | 
						|
                           : (Subtarget.isTargetWindowsGNU()
 | 
						|
                                  ? DAG.getIntPtrConstant(0x2C, dl)
 | 
						|
                                  : DAG.getExternalSymbol("_tls_array", PtrVT));
 | 
						|
 | 
						|
    SDValue ThreadPointer =
 | 
						|
        DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr));
 | 
						|
 | 
						|
    SDValue res;
 | 
						|
    if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
 | 
						|
      res = ThreadPointer;
 | 
						|
    } else {
 | 
						|
      // Load the _tls_index variable
 | 
						|
      SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
 | 
						|
      if (Subtarget.is64Bit())
 | 
						|
        IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
 | 
						|
                             MachinePointerInfo(), MVT::i32);
 | 
						|
      else
 | 
						|
        IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo());
 | 
						|
 | 
						|
      auto &DL = DAG.getDataLayout();
 | 
						|
      SDValue Scale =
 | 
						|
          DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT);
 | 
						|
      IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
 | 
						|
 | 
						|
      res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
 | 
						|
    }
 | 
						|
 | 
						|
    res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo());
 | 
						|
 | 
						|
    // Get the offset of start of .tls section
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | 
						|
                                             GA->getValueType(0),
 | 
						|
                                             GA->getOffset(), X86II::MO_SECREL);
 | 
						|
    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
 | 
						|
 | 
						|
    // The address of the thread local variable is the add of the thread
 | 
						|
    // pointer with the offset of the variable.
 | 
						|
    return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("TLS not implemented for this target.");
 | 
						|
}
 | 
						|
 | 
						|
/// Lower SRA_PARTS and friends, which return two i32 values
 | 
						|
/// and take a 2 x i32 value to shift plus a shift amount.
 | 
						|
static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  unsigned VTBits = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
 | 
						|
  SDValue ShOpLo = Op.getOperand(0);
 | 
						|
  SDValue ShOpHi = Op.getOperand(1);
 | 
						|
  SDValue ShAmt  = Op.getOperand(2);
 | 
						|
  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
 | 
						|
  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
 | 
						|
  // during isel.
 | 
						|
  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
 | 
						|
                                  DAG.getConstant(VTBits - 1, dl, MVT::i8));
 | 
						|
  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
 | 
						|
                                     DAG.getConstant(VTBits - 1, dl, MVT::i8))
 | 
						|
                       : DAG.getConstant(0, dl, VT);
 | 
						|
 | 
						|
  SDValue Tmp2, Tmp3;
 | 
						|
  if (Op.getOpcode() == ISD::SHL_PARTS) {
 | 
						|
    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | 
						|
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
 | 
						|
  } else {
 | 
						|
    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
 | 
						|
    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the shift amount is larger or equal than the width of a part we can't
 | 
						|
  // rely on the results of shld/shrd. Insert a test and select the appropriate
 | 
						|
  // values for large shift amounts.
 | 
						|
  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
 | 
						|
                                DAG.getConstant(VTBits, dl, MVT::i8));
 | 
						|
  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
 | 
						|
                             AndNode, DAG.getConstant(0, dl, MVT::i8));
 | 
						|
 | 
						|
  SDValue Hi, Lo;
 | 
						|
  SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
 | 
						|
  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
 | 
						|
  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
 | 
						|
 | 
						|
  if (Op.getOpcode() == ISD::SHL_PARTS) {
 | 
						|
    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
 | 
						|
    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
 | 
						|
  } else {
 | 
						|
    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
 | 
						|
    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Ops[2] = { Lo, Hi };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  MVT SrcVT = Src.getSimpleValueType();
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  if (SrcVT.isVector()) {
 | 
						|
    if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
 | 
						|
      return DAG.getNode(X86ISD::CVTSI2P, dl, VT,
 | 
						|
                         DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
 | 
						|
                                     DAG.getUNDEF(SrcVT)));
 | 
						|
    }
 | 
						|
    if (SrcVT.getVectorElementType() == MVT::i1) {
 | 
						|
      if (SrcVT == MVT::v2i1 && TLI.isTypeLegal(SrcVT))
 | 
						|
        return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                           DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v2i64, Src));
 | 
						|
      MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
 | 
						|
      return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
 | 
						|
         "Unknown SINT_TO_FP to lower!");
 | 
						|
 | 
						|
  // These are really Legal; return the operand so the caller accepts it as
 | 
						|
  // Legal.
 | 
						|
  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
 | 
						|
    return Op;
 | 
						|
  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
 | 
						|
      Subtarget.is64Bit()) {
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue ValueToStore = Op.getOperand(0);
 | 
						|
  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
 | 
						|
      !Subtarget.is64Bit())
 | 
						|
    // Bitcasting to f64 here allows us to do a single 64-bit store from
 | 
						|
    // an SSE register, avoiding the store forwarding penalty that would come
 | 
						|
    // with two 32-bit stores.
 | 
						|
    ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
 | 
						|
 | 
						|
  unsigned Size = SrcVT.getSizeInBits()/8;
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false);
 | 
						|
  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
  SDValue Chain = DAG.getStore(
 | 
						|
      DAG.getEntryNode(), dl, ValueToStore, StackSlot,
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
 | 
						|
  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
 | 
						|
                                     SDValue StackSlot,
 | 
						|
                                     SelectionDAG &DAG) const {
 | 
						|
  // Build the FILD
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDVTList Tys;
 | 
						|
  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
 | 
						|
  if (useSSE)
 | 
						|
    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
 | 
						|
  else
 | 
						|
    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
 | 
						|
 | 
						|
  unsigned ByteSize = SrcVT.getSizeInBits()/8;
 | 
						|
 | 
						|
  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
  if (FI) {
 | 
						|
    int SSFI = FI->getIndex();
 | 
						|
    MMO = DAG.getMachineFunction().getMachineMemOperand(
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
 | 
						|
        MachineMemOperand::MOLoad, ByteSize, ByteSize);
 | 
						|
  } else {
 | 
						|
    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
 | 
						|
    StackSlot = StackSlot.getOperand(1);
 | 
						|
  }
 | 
						|
  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
 | 
						|
  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
 | 
						|
                                           X86ISD::FILD, DL,
 | 
						|
                                           Tys, Ops, SrcVT, MMO);
 | 
						|
 | 
						|
  if (useSSE) {
 | 
						|
    Chain = Result.getValue(1);
 | 
						|
    SDValue InFlag = Result.getValue(2);
 | 
						|
 | 
						|
    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
 | 
						|
    // shouldn't be necessary except that RFP cannot be live across
 | 
						|
    // multiple blocks. When stackifier is fixed, they can be uncoupled.
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    unsigned SSFISize = Op.getValueSizeInBits()/8;
 | 
						|
    int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false);
 | 
						|
    auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
    SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
    Tys = DAG.getVTList(MVT::Other);
 | 
						|
    SDValue Ops[] = {
 | 
						|
      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
 | 
						|
    };
 | 
						|
    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
 | 
						|
        MachineMemOperand::MOStore, SSFISize, SSFISize);
 | 
						|
 | 
						|
    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
 | 
						|
                                    Ops, Op.getValueType(), MMO);
 | 
						|
    Result = DAG.getLoad(
 | 
						|
        Op.getValueType(), DL, Chain, StackSlot,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// 64-bit unsigned integer to double expansion.
 | 
						|
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  // This algorithm is not obvious. Here it is what we're trying to output:
 | 
						|
  /*
 | 
						|
     movq       %rax,  %xmm0
 | 
						|
     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
 | 
						|
     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
 | 
						|
     #ifdef __SSE3__
 | 
						|
       haddpd   %xmm0, %xmm0
 | 
						|
     #else
 | 
						|
       pshufd   $0x4e, %xmm0, %xmm1
 | 
						|
       addpd    %xmm1, %xmm0
 | 
						|
     #endif
 | 
						|
  */
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  LLVMContext *Context = DAG.getContext();
 | 
						|
 | 
						|
  // Build some magic constants.
 | 
						|
  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
 | 
						|
  Constant *C0 = ConstantDataVector::get(*Context, CV0);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
 | 
						|
 | 
						|
  SmallVector<Constant*,2> CV1;
 | 
						|
  CV1.push_back(
 | 
						|
    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
 | 
						|
                                      APInt(64, 0x4330000000000000ULL))));
 | 
						|
  CV1.push_back(
 | 
						|
    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
 | 
						|
                                      APInt(64, 0x4530000000000000ULL))));
 | 
						|
  Constant *C1 = ConstantVector::get(CV1);
 | 
						|
  SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
 | 
						|
 | 
						|
  // Load the 64-bit value into an XMM register.
 | 
						|
  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
 | 
						|
                            Op.getOperand(0));
 | 
						|
  SDValue CLod0 =
 | 
						|
      DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
 | 
						|
                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
                  /* Alignment = */ 16);
 | 
						|
  SDValue Unpck1 =
 | 
						|
      getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
 | 
						|
 | 
						|
  SDValue CLod1 =
 | 
						|
      DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
 | 
						|
                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
 | 
						|
                  /* Alignment = */ 16);
 | 
						|
  SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
 | 
						|
  // TODO: Are there any fast-math-flags to propagate here?
 | 
						|
  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
 | 
						|
  SDValue Result;
 | 
						|
 | 
						|
  if (Subtarget.hasSSE3()) {
 | 
						|
    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
 | 
						|
    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
 | 
						|
  } else {
 | 
						|
    SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
 | 
						|
    SDValue Shuffle = DAG.getVectorShuffle(MVT::v4i32, dl, S2F, S2F, {2,3,0,1});
 | 
						|
    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
 | 
						|
                         DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
 | 
						|
                     DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
/// 32-bit unsigned integer to float expansion.
 | 
						|
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // FP constant to bias correct the final result.
 | 
						|
  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
 | 
						|
                                   MVT::f64);
 | 
						|
 | 
						|
  // Load the 32-bit value into an XMM register.
 | 
						|
  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | 
						|
                             Op.getOperand(0));
 | 
						|
 | 
						|
  // Zero out the upper parts of the register.
 | 
						|
  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
 | 
						|
 | 
						|
  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | 
						|
                     DAG.getBitcast(MVT::v2f64, Load),
 | 
						|
                     DAG.getIntPtrConstant(0, dl));
 | 
						|
 | 
						|
  // Or the load with the bias.
 | 
						|
  SDValue Or = DAG.getNode(
 | 
						|
      ISD::OR, dl, MVT::v2i64,
 | 
						|
      DAG.getBitcast(MVT::v2i64,
 | 
						|
                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
 | 
						|
      DAG.getBitcast(MVT::v2i64,
 | 
						|
                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
 | 
						|
  Or =
 | 
						|
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | 
						|
                  DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
 | 
						|
 | 
						|
  // Subtract the bias.
 | 
						|
  // TODO: Are there any fast-math-flags to propagate here?
 | 
						|
  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
 | 
						|
 | 
						|
  // Handle final rounding.
 | 
						|
  MVT DestVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (DestVT.bitsLT(MVT::f64))
 | 
						|
    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  if (DestVT.bitsGT(MVT::f64))
 | 
						|
    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
 | 
						|
 | 
						|
  // Handle final rounding.
 | 
						|
  return Sub;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget, SDLoc &DL) {
 | 
						|
  if (Op.getSimpleValueType() != MVT::v2f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type");
 | 
						|
 | 
						|
  // Legalize to v4i32 type.
 | 
						|
  N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
 | 
						|
                   DAG.getUNDEF(MVT::v2i32));
 | 
						|
 | 
						|
  if (Subtarget.hasAVX512())
 | 
						|
    return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0);
 | 
						|
 | 
						|
  // Same implementation as VectorLegalizer::ExpandUINT_TO_FLOAT,
 | 
						|
  // but using v2i32 to v2f64 with X86ISD::CVTSI2P.
 | 
						|
  SDValue HalfWord = DAG.getConstant(16, DL, MVT::v4i32);
 | 
						|
  SDValue HalfWordMask = DAG.getConstant(0x0000FFFF, DL, MVT::v4i32);
 | 
						|
 | 
						|
  // Two to the power of half-word-size.
 | 
						|
  SDValue TWOHW = DAG.getConstantFP(1 << 16, DL, MVT::v2f64);
 | 
						|
 | 
						|
  // Clear upper part of LO, lower HI.
 | 
						|
  SDValue HI = DAG.getNode(ISD::SRL, DL, MVT::v4i32, N0, HalfWord);
 | 
						|
  SDValue LO = DAG.getNode(ISD::AND, DL, MVT::v4i32, N0, HalfWordMask);
 | 
						|
 | 
						|
  SDValue fHI = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, HI);
 | 
						|
          fHI = DAG.getNode(ISD::FMUL, DL, MVT::v2f64, fHI, TWOHW);
 | 
						|
  SDValue fLO = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, LO);
 | 
						|
 | 
						|
  // Add the two halves.
 | 
						|
  return DAG.getNode(ISD::FADD, DL, MVT::v2f64, fHI, fLO);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  // The algorithm is the following:
 | 
						|
  // #ifdef __SSE4_1__
 | 
						|
  //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
 | 
						|
  //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
 | 
						|
  //                                 (uint4) 0x53000000, 0xaa);
 | 
						|
  // #else
 | 
						|
  //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
 | 
						|
  //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
 | 
						|
  // #endif
 | 
						|
  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
 | 
						|
  //     return (float4) lo + fhi;
 | 
						|
 | 
						|
  // We shouldn't use it when unsafe-fp-math is enabled though: we might later
 | 
						|
  // reassociate the two FADDs, and if we do that, the algorithm fails
 | 
						|
  // spectacularly (PR24512).
 | 
						|
  // FIXME: If we ever have some kind of Machine FMF, this should be marked
 | 
						|
  // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
 | 
						|
  // there's also the MachineCombiner reassociations happening on Machine IR.
 | 
						|
  if (DAG.getTarget().Options.UnsafeFPMath)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue V = Op->getOperand(0);
 | 
						|
  MVT VecIntVT = V.getSimpleValueType();
 | 
						|
  bool Is128 = VecIntVT == MVT::v4i32;
 | 
						|
  MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
 | 
						|
  // If we convert to something else than the supported type, e.g., to v4f64,
 | 
						|
  // abort early.
 | 
						|
  if (VecFloatVT != Op->getSimpleValueType(0))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
 | 
						|
         "Unsupported custom type");
 | 
						|
 | 
						|
  // In the #idef/#else code, we have in common:
 | 
						|
  // - The vector of constants:
 | 
						|
  // -- 0x4b000000
 | 
						|
  // -- 0x53000000
 | 
						|
  // - A shift:
 | 
						|
  // -- v >> 16
 | 
						|
 | 
						|
  // Create the splat vector for 0x4b000000.
 | 
						|
  SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
 | 
						|
  // Create the splat vector for 0x53000000.
 | 
						|
  SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
 | 
						|
 | 
						|
  // Create the right shift.
 | 
						|
  SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
 | 
						|
  SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
 | 
						|
 | 
						|
  SDValue Low, High;
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
 | 
						|
    //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
 | 
						|
    SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
 | 
						|
    SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
 | 
						|
    // Low will be bitcasted right away, so do not bother bitcasting back to its
 | 
						|
    // original type.
 | 
						|
    Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
 | 
						|
                      VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
 | 
						|
    //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
 | 
						|
    //                                 (uint4) 0x53000000, 0xaa);
 | 
						|
    SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
 | 
						|
    SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
 | 
						|
    // High will be bitcasted right away, so do not bother bitcasting back to
 | 
						|
    // its original type.
 | 
						|
    High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
 | 
						|
                       VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
 | 
						|
  } else {
 | 
						|
    SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
 | 
						|
    //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
 | 
						|
    SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
 | 
						|
    Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
 | 
						|
 | 
						|
    //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
 | 
						|
    High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
 | 
						|
  SDValue VecCstFAdd = DAG.getConstantFP(
 | 
						|
      APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT);
 | 
						|
 | 
						|
  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
 | 
						|
  SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
 | 
						|
  // TODO: Are there any fast-math-flags to propagate here?
 | 
						|
  SDValue FHigh =
 | 
						|
      DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
 | 
						|
  //     return (float4) lo + fhi;
 | 
						|
  SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
 | 
						|
  return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  MVT SrcVT = N0.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (SrcVT.getVectorElementType() == MVT::i1) {
 | 
						|
    if (SrcVT == MVT::v2i1)
 | 
						|
      return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, N0));
 | 
						|
    MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
 | 
						|
    return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                       DAG.getNode(ISD::ZERO_EXTEND, dl, IntegerVT, N0));
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SrcVT.SimpleTy) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Custom UINT_TO_FP is not supported!");
 | 
						|
  case MVT::v4i8:
 | 
						|
  case MVT::v4i16:
 | 
						|
  case MVT::v8i8:
 | 
						|
  case MVT::v8i16: {
 | 
						|
    MVT NVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                       DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
 | 
						|
  }
 | 
						|
  case MVT::v2i32:
 | 
						|
    return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl);
 | 
						|
  case MVT::v4i32:
 | 
						|
  case MVT::v8i32:
 | 
						|
    return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
 | 
						|
  case MVT::v16i8:
 | 
						|
  case MVT::v16i16:
 | 
						|
    assert(Subtarget.hasAVX512());
 | 
						|
    return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
 | 
						|
                       DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
 | 
						|
  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
 | 
						|
  // the optimization here.
 | 
						|
  if (DAG.SignBitIsZero(N0))
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
 | 
						|
 | 
						|
  if (Op.getSimpleValueType().isVector())
 | 
						|
    return lowerUINT_TO_FP_vec(Op, DAG);
 | 
						|
 | 
						|
  MVT SrcVT = N0.getSimpleValueType();
 | 
						|
  MVT DstVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
 | 
						|
      (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
 | 
						|
    // Conversions from unsigned i32 to f32/f64 are legal,
 | 
						|
    // using VCVTUSI2SS/SD.  Same for i64 in 64-bit mode.
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
 | 
						|
    return LowerUINT_TO_FP_i64(Op, DAG);
 | 
						|
  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
 | 
						|
    return LowerUINT_TO_FP_i32(Op, DAG);
 | 
						|
  if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make a 64-bit buffer, and use it to build an FILD.
 | 
						|
  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
 | 
						|
  if (SrcVT == MVT::i32) {
 | 
						|
    SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
 | 
						|
    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | 
						|
                                  StackSlot, MachinePointerInfo());
 | 
						|
    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
 | 
						|
                                  OffsetSlot, MachinePointerInfo());
 | 
						|
    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
 | 
						|
    return Fild;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
 | 
						|
  SDValue ValueToStore = Op.getOperand(0);
 | 
						|
  if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit())
 | 
						|
    // Bitcasting to f64 here allows us to do a single 64-bit store from
 | 
						|
    // an SSE register, avoiding the store forwarding penalty that would come
 | 
						|
    // with two 32-bit stores.
 | 
						|
    ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore, StackSlot,
 | 
						|
                               MachinePointerInfo());
 | 
						|
  // For i64 source, we need to add the appropriate power of 2 if the input
 | 
						|
  // was negative.  This is the same as the optimization in
 | 
						|
  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
 | 
						|
  // we must be careful to do the computation in x87 extended precision, not
 | 
						|
  // in SSE. (The generic code can't know it's OK to do this, or how to.)
 | 
						|
  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
 | 
						|
  MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
 | 
						|
      MachineMemOperand::MOLoad, 8, 8);
 | 
						|
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
 | 
						|
  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
 | 
						|
  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
 | 
						|
                                         MVT::i64, MMO);
 | 
						|
 | 
						|
  APInt FF(32, 0x5F800000ULL);
 | 
						|
 | 
						|
  // Check whether the sign bit is set.
 | 
						|
  SDValue SignSet = DAG.getSetCC(
 | 
						|
      dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
 | 
						|
      Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
 | 
						|
 | 
						|
  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
 | 
						|
  SDValue FudgePtr = DAG.getConstantPool(
 | 
						|
      ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
 | 
						|
 | 
						|
  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
 | 
						|
  SDValue Zero = DAG.getIntPtrConstant(0, dl);
 | 
						|
  SDValue Four = DAG.getIntPtrConstant(4, dl);
 | 
						|
  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
 | 
						|
                               Zero, Four);
 | 
						|
  FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
 | 
						|
 | 
						|
  // Load the value out, extending it from f32 to f80.
 | 
						|
  // FIXME: Avoid the extend by constructing the right constant pool?
 | 
						|
  SDValue Fudge = DAG.getExtLoad(
 | 
						|
      ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
 | 
						|
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
 | 
						|
      /* Alignment = */ 4);
 | 
						|
  // Extend everything to 80 bits to force it to be done on x87.
 | 
						|
  // TODO: Are there any fast-math-flags to propagate here?
 | 
						|
  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
 | 
						|
  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
 | 
						|
                     DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
 | 
						|
// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
 | 
						|
// just return an <SDValue(), SDValue()> pair.
 | 
						|
// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
 | 
						|
// to i16, i32 or i64, and we lower it to a legal sequence.
 | 
						|
// If lowered to the final integer result we return a <result, SDValue()> pair.
 | 
						|
// Otherwise we lower it to a sequence ending with a FIST, return a
 | 
						|
// <FIST, StackSlot> pair, and the caller is responsible for loading
 | 
						|
// the final integer result from StackSlot.
 | 
						|
std::pair<SDValue,SDValue>
 | 
						|
X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                   bool IsSigned, bool IsReplace) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  EVT DstTy = Op.getValueType();
 | 
						|
  EVT TheVT = Op.getOperand(0).getValueType();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
 | 
						|
    // f16 must be promoted before using the lowering in this routine.
 | 
						|
    // fp128 does not use this lowering.
 | 
						|
    return std::make_pair(SDValue(), SDValue());
 | 
						|
  }
 | 
						|
 | 
						|
  // If using FIST to compute an unsigned i64, we'll need some fixup
 | 
						|
  // to handle values above the maximum signed i64.  A FIST is always
 | 
						|
  // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
 | 
						|
  bool UnsignedFixup = !IsSigned &&
 | 
						|
                       DstTy == MVT::i64 &&
 | 
						|
                       (!Subtarget.is64Bit() ||
 | 
						|
                        !isScalarFPTypeInSSEReg(TheVT));
 | 
						|
 | 
						|
  if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) {
 | 
						|
    // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
 | 
						|
    // The low 32 bits of the fist result will have the correct uint32 result.
 | 
						|
    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
 | 
						|
    DstTy = MVT::i64;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(DstTy.getSimpleVT() <= MVT::i64 &&
 | 
						|
         DstTy.getSimpleVT() >= MVT::i16 &&
 | 
						|
         "Unknown FP_TO_INT to lower!");
 | 
						|
 | 
						|
  // These are really Legal.
 | 
						|
  if (DstTy == MVT::i32 &&
 | 
						|
      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | 
						|
    return std::make_pair(SDValue(), SDValue());
 | 
						|
  if (Subtarget.is64Bit() &&
 | 
						|
      DstTy == MVT::i64 &&
 | 
						|
      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | 
						|
    return std::make_pair(SDValue(), SDValue());
 | 
						|
 | 
						|
  // We lower FP->int64 into FISTP64 followed by a load from a temporary
 | 
						|
  // stack slot.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  unsigned MemSize = DstTy.getSizeInBits()/8;
 | 
						|
  int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
 | 
						|
  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
 | 
						|
  unsigned Opc;
 | 
						|
  switch (DstTy.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
 | 
						|
  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
 | 
						|
  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
 | 
						|
  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Chain = DAG.getEntryNode();
 | 
						|
  SDValue Value = Op.getOperand(0);
 | 
						|
  SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
 | 
						|
 | 
						|
  if (UnsignedFixup) {
 | 
						|
    //
 | 
						|
    // Conversion to unsigned i64 is implemented with a select,
 | 
						|
    // depending on whether the source value fits in the range
 | 
						|
    // of a signed i64.  Let Thresh be the FP equivalent of
 | 
						|
    // 0x8000000000000000ULL.
 | 
						|
    //
 | 
						|
    //  Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
 | 
						|
    //  FistSrc    = (Value < Thresh) ? Value : (Value - Thresh);
 | 
						|
    //  Fist-to-mem64 FistSrc
 | 
						|
    //  Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
 | 
						|
    //  to XOR'ing the high 32 bits with Adjust.
 | 
						|
    //
 | 
						|
    // Being a power of 2, Thresh is exactly representable in all FP formats.
 | 
						|
    // For X87 we'd like to use the smallest FP type for this constant, but
 | 
						|
    // for DAG type consistency we have to match the FP operand type.
 | 
						|
 | 
						|
    APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
 | 
						|
    LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
 | 
						|
    bool LosesInfo = false;
 | 
						|
    if (TheVT == MVT::f64)
 | 
						|
      // The rounding mode is irrelevant as the conversion should be exact.
 | 
						|
      Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
 | 
						|
                              &LosesInfo);
 | 
						|
    else if (TheVT == MVT::f80)
 | 
						|
      Status = Thresh.convert(APFloat::x87DoubleExtended(),
 | 
						|
                              APFloat::rmNearestTiesToEven, &LosesInfo);
 | 
						|
 | 
						|
    assert(Status == APFloat::opOK && !LosesInfo &&
 | 
						|
           "FP conversion should have been exact");
 | 
						|
 | 
						|
    SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
 | 
						|
 | 
						|
    SDValue Cmp = DAG.getSetCC(DL,
 | 
						|
                               getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                                  *DAG.getContext(), TheVT),
 | 
						|
                               Value, ThreshVal, ISD::SETLT);
 | 
						|
    Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
 | 
						|
                           DAG.getConstant(0, DL, MVT::i32),
 | 
						|
                           DAG.getConstant(0x80000000, DL, MVT::i32));
 | 
						|
    SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
 | 
						|
    Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                              *DAG.getContext(), TheVT),
 | 
						|
                       Value, ThreshVal, ISD::SETLT);
 | 
						|
    Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME This causes a redundant load/store if the SSE-class value is already
 | 
						|
  // in memory, such as if it is on the callstack.
 | 
						|
  if (isScalarFPTypeInSSEReg(TheVT)) {
 | 
						|
    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
 | 
						|
    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
 | 
						|
                         MachinePointerInfo::getFixedStack(MF, SSFI));
 | 
						|
    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
 | 
						|
    SDValue Ops[] = {
 | 
						|
      Chain, StackSlot, DAG.getValueType(TheVT)
 | 
						|
    };
 | 
						|
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
 | 
						|
                                MachineMemOperand::MOLoad, MemSize, MemSize);
 | 
						|
    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
 | 
						|
    Chain = Value.getValue(1);
 | 
						|
    SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
 | 
						|
    StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
 | 
						|
                              MachineMemOperand::MOStore, MemSize, MemSize);
 | 
						|
 | 
						|
  if (UnsignedFixup) {
 | 
						|
 | 
						|
    // Insert the FIST, load its result as two i32's,
 | 
						|
    // and XOR the high i32 with Adjust.
 | 
						|
 | 
						|
    SDValue FistOps[] = { Chain, Value, StackSlot };
 | 
						|
    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
 | 
						|
                                           FistOps, DstTy, MMO);
 | 
						|
 | 
						|
    SDValue Low32 =
 | 
						|
        DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo());
 | 
						|
    SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL);
 | 
						|
 | 
						|
    SDValue High32 =
 | 
						|
        DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo());
 | 
						|
    High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
 | 
						|
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      // Join High32 and Low32 into a 64-bit result.
 | 
						|
      // (High32 << 32) | Low32
 | 
						|
      Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
 | 
						|
      High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
 | 
						|
      High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
 | 
						|
                           DAG.getConstant(32, DL, MVT::i8));
 | 
						|
      SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
 | 
						|
      return std::make_pair(Result, SDValue());
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue ResultOps[] = { Low32, High32 };
 | 
						|
 | 
						|
    SDValue pair = IsReplace
 | 
						|
      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
 | 
						|
      : DAG.getMergeValues(ResultOps, DL);
 | 
						|
    return std::make_pair(pair, SDValue());
 | 
						|
  } else {
 | 
						|
    // Build the FP_TO_INT*_IN_MEM
 | 
						|
    SDValue Ops[] = { Chain, Value, StackSlot };
 | 
						|
    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
 | 
						|
                                           Ops, DstTy, MMO);
 | 
						|
    return std::make_pair(FIST, StackSlot);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
 | 
						|
                              const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  SDValue In = Op->getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In);
 | 
						|
 | 
						|
  // Optimize vectors in AVX mode:
 | 
						|
  //
 | 
						|
  //   v8i16 -> v8i32
 | 
						|
  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
 | 
						|
  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
 | 
						|
  //   Concat upper and lower parts.
 | 
						|
  //
 | 
						|
  //   v4i32 -> v4i64
 | 
						|
  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
 | 
						|
  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
 | 
						|
  //   Concat upper and lower parts.
 | 
						|
  //
 | 
						|
 | 
						|
  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
 | 
						|
      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
 | 
						|
      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Subtarget.hasInt256())
 | 
						|
    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
 | 
						|
 | 
						|
  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
 | 
						|
  SDValue Undef = DAG.getUNDEF(InVT);
 | 
						|
  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
 | 
						|
  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
 | 
						|
  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
 | 
						|
 | 
						|
  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
 | 
						|
                             VT.getVectorNumElements()/2);
 | 
						|
 | 
						|
  OpLo = DAG.getBitcast(HVT, OpLo);
 | 
						|
  OpHi = DAG.getBitcast(HVT, OpHi);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
 | 
						|
}
 | 
						|
 | 
						|
static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
 | 
						|
                  const X86Subtarget &Subtarget, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  SDValue In = Op->getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  if (NumElts != 8 && NumElts != 16 && !Subtarget.hasBWI())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
 | 
						|
    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
 | 
						|
 | 
						|
  assert(InVT.getVectorElementType() == MVT::i1);
 | 
						|
 | 
						|
  // Extend VT if the target is 256 or 128bit vector and VLX is not supported.
 | 
						|
  MVT ExtVT = VT;
 | 
						|
  if (!VT.is512BitVector() && !Subtarget.hasVLX())
 | 
						|
    ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
 | 
						|
 | 
						|
  SDValue One =
 | 
						|
   DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT);
 | 
						|
  SDValue Zero =
 | 
						|
   DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT);
 | 
						|
 | 
						|
  SDValue SelectedVal = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero);
 | 
						|
  if (VT == ExtVT)
 | 
						|
    return SelectedVal;
 | 
						|
  return DAG.getNode(X86ISD::VTRUNC, DL, VT, SelectedVal);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  if (Subtarget.hasFp256())
 | 
						|
    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  MVT SVT = In.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
 | 
						|
    return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG);
 | 
						|
 | 
						|
  if (Subtarget.hasFp256())
 | 
						|
    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
 | 
						|
         VT.getVectorNumElements() != SVT.getVectorNumElements());
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Helper to recursively truncate vector elements in half with PACKSS.
 | 
						|
/// It makes use of the fact that vector comparison results will be all-zeros
 | 
						|
/// or all-ones to use (vXi8 PACKSS(vYi16, vYi16)) instead of matching types.
 | 
						|
/// AVX2 (Int256) sub-targets require extra shuffling as the PACKSS operates
 | 
						|
/// within each 128-bit lane.
 | 
						|
static SDValue truncateVectorCompareWithPACKSS(EVT DstVT, SDValue In,
 | 
						|
                                               const SDLoc &DL,
 | 
						|
                                               SelectionDAG &DAG,
 | 
						|
                                               const X86Subtarget &Subtarget) {
 | 
						|
  // Requires SSE2 but AVX512 has fast truncate.
 | 
						|
  if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT SrcVT = In.getValueType();
 | 
						|
 | 
						|
  // No truncation required, we might get here due to recursive calls.
 | 
						|
  if (SrcVT == DstVT)
 | 
						|
    return In;
 | 
						|
 | 
						|
  // We only support vector truncation to 128bits or greater from a
 | 
						|
  // 256bits or greater source.
 | 
						|
  if ((DstVT.getSizeInBits() % 128) != 0)
 | 
						|
    return SDValue();
 | 
						|
  if ((SrcVT.getSizeInBits() % 256) != 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned NumElems = SrcVT.getVectorNumElements();
 | 
						|
  assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
 | 
						|
  assert(SrcVT.getSizeInBits() > DstVT.getSizeInBits() && "Illegal truncation");
 | 
						|
 | 
						|
  EVT PackedSVT =
 | 
						|
      EVT::getIntegerVT(*DAG.getContext(), SrcVT.getScalarSizeInBits() / 2);
 | 
						|
 | 
						|
  // Extract lower/upper subvectors.
 | 
						|
  unsigned NumSubElts = NumElems / 2;
 | 
						|
  unsigned SrcSizeInBits = SrcVT.getSizeInBits();
 | 
						|
  SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
 | 
						|
  SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
 | 
						|
 | 
						|
  // 256bit -> 128bit truncate - PACKSS lower/upper 128-bit subvectors.
 | 
						|
  if (SrcVT.is256BitVector()) {
 | 
						|
    Lo = DAG.getBitcast(MVT::v8i16, Lo);
 | 
						|
    Hi = DAG.getBitcast(MVT::v8i16, Hi);
 | 
						|
    SDValue Res = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, Lo, Hi);
 | 
						|
    return DAG.getBitcast(DstVT, Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // AVX2: 512bit -> 256bit truncate - PACKSS lower/upper 256-bit subvectors.
 | 
						|
  // AVX2: 512bit -> 128bit truncate - PACKSS(PACKSS, PACKSS).
 | 
						|
  if (SrcVT.is512BitVector() && Subtarget.hasInt256()) {
 | 
						|
    Lo = DAG.getBitcast(MVT::v16i16, Lo);
 | 
						|
    Hi = DAG.getBitcast(MVT::v16i16, Hi);
 | 
						|
    SDValue Res = DAG.getNode(X86ISD::PACKSS, DL, MVT::v32i8, Lo, Hi);
 | 
						|
 | 
						|
    // 256-bit PACKSS(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)),
 | 
						|
    // so we need to shuffle to get ((LO0,HI0),(LO1,HI1)).
 | 
						|
    Res = DAG.getBitcast(MVT::v4i64, Res);
 | 
						|
    Res = DAG.getVectorShuffle(MVT::v4i64, DL, Res, Res, {0, 2, 1, 3});
 | 
						|
 | 
						|
    if (DstVT.is256BitVector())
 | 
						|
      return DAG.getBitcast(DstVT, Res);
 | 
						|
 | 
						|
    // If 512bit -> 128bit truncate another stage.
 | 
						|
    EVT PackedVT = EVT::getVectorVT(*DAG.getContext(), PackedSVT, NumElems);
 | 
						|
    Res = DAG.getBitcast(PackedVT, Res);
 | 
						|
    return truncateVectorCompareWithPACKSS(DstVT, Res, DL, DAG, Subtarget);
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively pack lower/upper subvectors, concat result and pack again.
 | 
						|
  assert(SrcVT.getSizeInBits() >= 512 && "Expected 512-bit vector or greater");
 | 
						|
  EVT PackedVT = EVT::getVectorVT(*DAG.getContext(), PackedSVT, NumElems / 2);
 | 
						|
  Lo = truncateVectorCompareWithPACKSS(PackedVT, Lo, DL, DAG, Subtarget);
 | 
						|
  Hi = truncateVectorCompareWithPACKSS(PackedVT, Hi, DL, DAG, Subtarget);
 | 
						|
 | 
						|
  PackedVT = EVT::getVectorVT(*DAG.getContext(), PackedSVT, NumElems);
 | 
						|
  SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
 | 
						|
  return truncateVectorCompareWithPACKSS(DstVT, Res, DL, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                  const X86Subtarget &Subtarget) {
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
 | 
						|
  assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
 | 
						|
 | 
						|
  // Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
 | 
						|
  unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
 | 
						|
  if (InVT.getScalarSizeInBits() <= 16) {
 | 
						|
    if (Subtarget.hasBWI()) {
 | 
						|
      // legal, will go to VPMOVB2M, VPMOVW2M
 | 
						|
      // Shift packed bytes not supported natively, bitcast to word
 | 
						|
      MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
 | 
						|
      SDValue  ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT,
 | 
						|
                                       DAG.getBitcast(ExtVT, In),
 | 
						|
                                       DAG.getConstant(ShiftInx, DL, ExtVT));
 | 
						|
      ShiftNode = DAG.getBitcast(InVT, ShiftNode);
 | 
						|
      return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode);
 | 
						|
    }
 | 
						|
    // Use TESTD/Q, extended vector to packed dword/qword.
 | 
						|
    assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
 | 
						|
           "Unexpected vector type.");
 | 
						|
    unsigned NumElts = InVT.getVectorNumElements();
 | 
						|
    MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
 | 
						|
    In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
 | 
						|
    InVT = ExtVT;
 | 
						|
    ShiftInx = InVT.getScalarSizeInBits() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue  ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In,
 | 
						|
                                   DAG.getConstant(ShiftInx, DL, InVT));
 | 
						|
  return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT == MVT::i1) {
 | 
						|
    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
 | 
						|
           "Invalid scalar TRUNCATE operation");
 | 
						|
    if (InVT.getSizeInBits() >= 32)
 | 
						|
      return SDValue();
 | 
						|
    In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
 | 
						|
  }
 | 
						|
  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
 | 
						|
         "Invalid TRUNCATE operation");
 | 
						|
 | 
						|
  if (VT.getVectorElementType() == MVT::i1)
 | 
						|
    return LowerTruncateVecI1(Op, DAG, Subtarget);
 | 
						|
 | 
						|
  // vpmovqb/w/d, vpmovdb/w, vpmovwb
 | 
						|
  if (Subtarget.hasAVX512()) {
 | 
						|
    // word to byte only under BWI
 | 
						|
    if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) // v16i16 -> v16i8
 | 
						|
      return DAG.getNode(X86ISD::VTRUNC, DL, VT,
 | 
						|
                         DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In));
 | 
						|
    return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
 | 
						|
  }
 | 
						|
 | 
						|
  // Truncate with PACKSS if we are truncating a vector comparison result.
 | 
						|
  // TODO: We should be able to support other operations as long as we
 | 
						|
  // we are saturating+packing zero/all bits only.
 | 
						|
  auto IsPackableComparison = [](SDValue V) {
 | 
						|
    unsigned Opcode = V.getOpcode();
 | 
						|
    return (Opcode == X86ISD::PCMPGT || Opcode == X86ISD::PCMPEQ ||
 | 
						|
            Opcode == X86ISD::CMPP);
 | 
						|
  };
 | 
						|
 | 
						|
  if (IsPackableComparison(In) || (In.getOpcode() == ISD::CONCAT_VECTORS &&
 | 
						|
                                   all_of(In->ops(), IsPackableComparison))) {
 | 
						|
    if (SDValue V = truncateVectorCompareWithPACKSS(VT, In, DL, DAG, Subtarget))
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
 | 
						|
    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
 | 
						|
    if (Subtarget.hasInt256()) {
 | 
						|
      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
 | 
						|
      In = DAG.getBitcast(MVT::v8i32, In);
 | 
						|
      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
 | 
						|
                                ShufMask);
 | 
						|
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
 | 
						|
                         DAG.getIntPtrConstant(0, DL));
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
 | 
						|
                               DAG.getIntPtrConstant(0, DL));
 | 
						|
    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
 | 
						|
                               DAG.getIntPtrConstant(2, DL));
 | 
						|
    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
 | 
						|
    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
 | 
						|
    static const int ShufMask[] = {0, 2, 4, 6};
 | 
						|
    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
 | 
						|
    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
 | 
						|
    if (Subtarget.hasInt256()) {
 | 
						|
      In = DAG.getBitcast(MVT::v32i8, In);
 | 
						|
 | 
						|
      SmallVector<SDValue,32> pshufbMask;
 | 
						|
      for (unsigned i = 0; i < 2; ++i) {
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8));
 | 
						|
        pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8));
 | 
						|
        for (unsigned j = 0; j < 8; ++j)
 | 
						|
          pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8));
 | 
						|
      }
 | 
						|
      SDValue BV = DAG.getBuildVector(MVT::v32i8, DL, pshufbMask);
 | 
						|
      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
 | 
						|
      In = DAG.getBitcast(MVT::v4i64, In);
 | 
						|
 | 
						|
      static const int ShufMask[] = {0,  2,  -1,  -1};
 | 
						|
      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
 | 
						|
                                ShufMask);
 | 
						|
      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
 | 
						|
                       DAG.getIntPtrConstant(0, DL));
 | 
						|
      return DAG.getBitcast(VT, In);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
 | 
						|
                               DAG.getIntPtrConstant(0, DL));
 | 
						|
 | 
						|
    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
 | 
						|
                               DAG.getIntPtrConstant(4, DL));
 | 
						|
 | 
						|
    OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
 | 
						|
    OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
 | 
						|
 | 
						|
    // The PSHUFB mask:
 | 
						|
    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
 | 
						|
                                   -1, -1, -1, -1, -1, -1, -1, -1};
 | 
						|
 | 
						|
    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
 | 
						|
    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
 | 
						|
    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
 | 
						|
 | 
						|
    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
 | 
						|
    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
 | 
						|
 | 
						|
    // The MOVLHPS Mask:
 | 
						|
    static const int ShufMask2[] = {0, 1, 4, 5};
 | 
						|
    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
 | 
						|
    return DAG.getBitcast(MVT::v8i16, res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle truncation of V256 to V128 using shuffles.
 | 
						|
  if (!VT.is128BitVector() || !InVT.is256BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(Subtarget.hasFp256() && "256-bit vector without AVX!");
 | 
						|
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
 | 
						|
 | 
						|
  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
 | 
						|
  // Prepare truncation shuffle mask
 | 
						|
  for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
    MaskVec[i] = i * 2;
 | 
						|
  SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
 | 
						|
                                   DAG.getUNDEF(NVT), MaskVec);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
 | 
						|
                     DAG.getIntPtrConstant(0, DL));
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op,
 | 
						|
                                          const X86Subtarget &Subtarget,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT.isVector()) {
 | 
						|
    assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
 | 
						|
    SDValue Src = Op.getOperand(0);
 | 
						|
    SDLoc dl(Op);
 | 
						|
    if (VT == MVT::v2i64 && Src.getSimpleValueType() == MVT::v2f32) {
 | 
						|
      return DAG.getNode(IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI,
 | 
						|
                         dl, VT,
 | 
						|
                         DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
 | 
						|
                                     DAG.getUNDEF(MVT::v2f32)));
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!VT.isVector());
 | 
						|
 | 
						|
  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
 | 
						|
    IsSigned, /*IsReplace=*/ false);
 | 
						|
  SDValue FIST = Vals.first, StackSlot = Vals.second;
 | 
						|
  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
 | 
						|
  if (!FIST.getNode())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (StackSlot.getNode())
 | 
						|
    // Load the result.
 | 
						|
    return DAG.getLoad(VT, SDLoc(Op), FIST, StackSlot, MachinePointerInfo());
 | 
						|
 | 
						|
  // The node is the result.
 | 
						|
  return FIST;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  MVT SVT = In.getSimpleValueType();
 | 
						|
 | 
						|
  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
 | 
						|
                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
 | 
						|
                                 In, DAG.getUNDEF(SVT)));
 | 
						|
}
 | 
						|
 | 
						|
/// The only differences between FABS and FNEG are the mask and the logic op.
 | 
						|
/// FNEG also has a folding opportunity for FNEG(FABS(x)).
 | 
						|
static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
 | 
						|
         "Wrong opcode for lowering FABS or FNEG.");
 | 
						|
 | 
						|
  bool IsFABS = (Op.getOpcode() == ISD::FABS);
 | 
						|
 | 
						|
  // If this is a FABS and it has an FNEG user, bail out to fold the combination
 | 
						|
  // into an FNABS. We'll lower the FABS after that if it is still in use.
 | 
						|
  if (IsFABS)
 | 
						|
    for (SDNode *User : Op->uses())
 | 
						|
      if (User->getOpcode() == ISD::FNEG)
 | 
						|
        return Op;
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  bool IsF128 = (VT == MVT::f128);
 | 
						|
 | 
						|
  // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
 | 
						|
  // decide if we should generate a 16-byte constant mask when we only need 4 or
 | 
						|
  // 8 bytes for the scalar case.
 | 
						|
 | 
						|
  MVT LogicVT;
 | 
						|
  MVT EltVT;
 | 
						|
 | 
						|
  if (VT.isVector()) {
 | 
						|
    LogicVT = VT;
 | 
						|
    EltVT = VT.getVectorElementType();
 | 
						|
  } else if (IsF128) {
 | 
						|
    // SSE instructions are used for optimized f128 logical operations.
 | 
						|
    LogicVT = MVT::f128;
 | 
						|
    EltVT = VT;
 | 
						|
  } else {
 | 
						|
    // There are no scalar bitwise logical SSE/AVX instructions, so we
 | 
						|
    // generate a 16-byte vector constant and logic op even for the scalar case.
 | 
						|
    // Using a 16-byte mask allows folding the load of the mask with
 | 
						|
    // the logic op, so it can save (~4 bytes) on code size.
 | 
						|
    LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
 | 
						|
    EltVT = VT;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned EltBits = EltVT.getSizeInBits();
 | 
						|
  // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
 | 
						|
  APInt MaskElt =
 | 
						|
    IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
 | 
						|
  const fltSemantics &Sem =
 | 
						|
      EltVT == MVT::f64 ? APFloat::IEEEdouble() :
 | 
						|
          (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
 | 
						|
  SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
 | 
						|
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
 | 
						|
  unsigned LogicOp =
 | 
						|
    IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
 | 
						|
  SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
 | 
						|
 | 
						|
  if (VT.isVector() || IsF128)
 | 
						|
    return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
 | 
						|
 | 
						|
  // For the scalar case extend to a 128-bit vector, perform the logic op,
 | 
						|
  // and extract the scalar result back out.
 | 
						|
  Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
 | 
						|
  SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
 | 
						|
                     DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue Mag = Op.getOperand(0);
 | 
						|
  SDValue Sign = Op.getOperand(1);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // If the sign operand is smaller, extend it first.
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  if (Sign.getSimpleValueType().bitsLT(VT))
 | 
						|
    Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign);
 | 
						|
 | 
						|
  // And if it is bigger, shrink it first.
 | 
						|
  if (Sign.getSimpleValueType().bitsGT(VT))
 | 
						|
    Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl));
 | 
						|
 | 
						|
  // At this point the operands and the result should have the same
 | 
						|
  // type, and that won't be f80 since that is not custom lowered.
 | 
						|
  bool IsF128 = (VT == MVT::f128);
 | 
						|
  assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
 | 
						|
          VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
 | 
						|
          VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
 | 
						|
         "Unexpected type in LowerFCOPYSIGN");
 | 
						|
 | 
						|
  MVT EltVT = VT.getScalarType();
 | 
						|
  const fltSemantics &Sem =
 | 
						|
      EltVT == MVT::f64 ? APFloat::IEEEdouble()
 | 
						|
                        : (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
 | 
						|
 | 
						|
  // Perform all scalar logic operations as 16-byte vectors because there are no
 | 
						|
  // scalar FP logic instructions in SSE.
 | 
						|
  // TODO: This isn't necessary. If we used scalar types, we might avoid some
 | 
						|
  // unnecessary splats, but we might miss load folding opportunities. Should
 | 
						|
  // this decision be based on OptimizeForSize?
 | 
						|
  bool IsFakeVector = !VT.isVector() && !IsF128;
 | 
						|
  MVT LogicVT = VT;
 | 
						|
  if (IsFakeVector)
 | 
						|
    LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
 | 
						|
 | 
						|
  // The mask constants are automatically splatted for vector types.
 | 
						|
  unsigned EltSizeInBits = VT.getScalarSizeInBits();
 | 
						|
  SDValue SignMask = DAG.getConstantFP(
 | 
						|
      APFloat(Sem, APInt::getSignBit(EltSizeInBits)), dl, LogicVT);
 | 
						|
  SDValue MagMask = DAG.getConstantFP(
 | 
						|
      APFloat(Sem, ~APInt::getSignBit(EltSizeInBits)), dl, LogicVT);
 | 
						|
 | 
						|
  // First, clear all bits but the sign bit from the second operand (sign).
 | 
						|
  if (IsFakeVector)
 | 
						|
    Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign);
 | 
						|
  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask);
 | 
						|
 | 
						|
  // Next, clear the sign bit from the first operand (magnitude).
 | 
						|
  // TODO: If we had general constant folding for FP logic ops, this check
 | 
						|
  // wouldn't be necessary.
 | 
						|
  SDValue MagBits;
 | 
						|
  if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Mag)) {
 | 
						|
    APFloat APF = Op0CN->getValueAPF();
 | 
						|
    APF.clearSign();
 | 
						|
    MagBits = DAG.getConstantFP(APF, dl, LogicVT);
 | 
						|
  } else {
 | 
						|
    // If the magnitude operand wasn't a constant, we need to AND out the sign.
 | 
						|
    if (IsFakeVector)
 | 
						|
      Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag);
 | 
						|
    MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // OR the magnitude value with the sign bit.
 | 
						|
  SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit);
 | 
						|
  return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or,
 | 
						|
                                          DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  MVT OpVT = N0.getSimpleValueType();
 | 
						|
  assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
 | 
						|
         "Unexpected type for FGETSIGN");
 | 
						|
 | 
						|
  // Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
 | 
						|
  MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
 | 
						|
  SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
 | 
						|
  Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
 | 
						|
  Res = DAG.getZExtOrTrunc(Res, dl, VT);
 | 
						|
  Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether an OR'd tree is PTEST-able.
 | 
						|
static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
 | 
						|
 | 
						|
  if (!Subtarget.hasSSE41())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!Op->hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDNode *N = Op.getNode();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Opnds;
 | 
						|
  DenseMap<SDValue, unsigned> VecInMap;
 | 
						|
  SmallVector<SDValue, 8> VecIns;
 | 
						|
  EVT VT = MVT::Other;
 | 
						|
 | 
						|
  // Recognize a special case where a vector is casted into wide integer to
 | 
						|
  // test all 0s.
 | 
						|
  Opnds.push_back(N->getOperand(0));
 | 
						|
  Opnds.push_back(N->getOperand(1));
 | 
						|
 | 
						|
  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
 | 
						|
    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
 | 
						|
    // BFS traverse all OR'd operands.
 | 
						|
    if (I->getOpcode() == ISD::OR) {
 | 
						|
      Opnds.push_back(I->getOperand(0));
 | 
						|
      Opnds.push_back(I->getOperand(1));
 | 
						|
      // Re-evaluate the number of nodes to be traversed.
 | 
						|
      e += 2; // 2 more nodes (LHS and RHS) are pushed.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Quit if a non-EXTRACT_VECTOR_ELT
 | 
						|
    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Quit if without a constant index.
 | 
						|
    SDValue Idx = I->getOperand(1);
 | 
						|
    if (!isa<ConstantSDNode>(Idx))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue ExtractedFromVec = I->getOperand(0);
 | 
						|
    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
 | 
						|
    if (M == VecInMap.end()) {
 | 
						|
      VT = ExtractedFromVec.getValueType();
 | 
						|
      // Quit if not 128/256-bit vector.
 | 
						|
      if (!VT.is128BitVector() && !VT.is256BitVector())
 | 
						|
        return SDValue();
 | 
						|
      // Quit if not the same type.
 | 
						|
      if (VecInMap.begin() != VecInMap.end() &&
 | 
						|
          VT != VecInMap.begin()->first.getValueType())
 | 
						|
        return SDValue();
 | 
						|
      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
 | 
						|
      VecIns.push_back(ExtractedFromVec);
 | 
						|
    }
 | 
						|
    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert((VT.is128BitVector() || VT.is256BitVector()) &&
 | 
						|
         "Not extracted from 128-/256-bit vector.");
 | 
						|
 | 
						|
  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
 | 
						|
 | 
						|
  for (DenseMap<SDValue, unsigned>::const_iterator
 | 
						|
        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
 | 
						|
    // Quit if not all elements are used.
 | 
						|
    if (I->second != FullMask)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
 | 
						|
 | 
						|
  // Cast all vectors into TestVT for PTEST.
 | 
						|
  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
 | 
						|
    VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
 | 
						|
 | 
						|
  // If more than one full vectors are evaluated, OR them first before PTEST.
 | 
						|
  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
 | 
						|
    // Each iteration will OR 2 nodes and append the result until there is only
 | 
						|
    // 1 node left, i.e. the final OR'd value of all vectors.
 | 
						|
    SDValue LHS = VecIns[Slot];
 | 
						|
    SDValue RHS = VecIns[Slot + 1];
 | 
						|
    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
 | 
						|
                     VecIns.back(), VecIns.back());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief return true if \c Op has a use that doesn't just read flags.
 | 
						|
static bool hasNonFlagsUse(SDValue Op) {
 | 
						|
  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
 | 
						|
       ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    unsigned UOpNo = UI.getOperandNo();
 | 
						|
    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
 | 
						|
      // Look pass truncate.
 | 
						|
      UOpNo = User->use_begin().getOperandNo();
 | 
						|
      User = *User->use_begin();
 | 
						|
    }
 | 
						|
 | 
						|
    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
 | 
						|
        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Emit KTEST instruction for bit vectors on AVX-512
 | 
						|
static SDValue EmitKTEST(SDValue Op, SelectionDAG &DAG,
 | 
						|
                         const X86Subtarget &Subtarget) {
 | 
						|
  if (Op.getOpcode() == ISD::BITCAST) {
 | 
						|
    auto hasKTEST = [&](MVT VT) {
 | 
						|
      unsigned SizeInBits = VT.getSizeInBits();
 | 
						|
      return (Subtarget.hasDQI() && (SizeInBits == 8 || SizeInBits == 16)) ||
 | 
						|
        (Subtarget.hasBWI() && (SizeInBits == 32 || SizeInBits == 64));
 | 
						|
    };
 | 
						|
    SDValue Op0 = Op.getOperand(0);
 | 
						|
    MVT Op0VT = Op0.getValueType().getSimpleVT();
 | 
						|
    if (Op0VT.isVector() && Op0VT.getVectorElementType() == MVT::i1 &&
 | 
						|
        hasKTEST(Op0VT))
 | 
						|
      return DAG.getNode(X86ISD::KTEST, SDLoc(Op), Op0VT, Op0, Op0);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Emit nodes that will be selected as "test Op0,Op0", or something
 | 
						|
/// equivalent.
 | 
						|
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl,
 | 
						|
                                    SelectionDAG &DAG) const {
 | 
						|
  if (Op.getValueType() == MVT::i1) {
 | 
						|
    SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
 | 
						|
    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
 | 
						|
                       DAG.getConstant(0, dl, MVT::i8));
 | 
						|
  }
 | 
						|
  // CF and OF aren't always set the way we want. Determine which
 | 
						|
  // of these we need.
 | 
						|
  bool NeedCF = false;
 | 
						|
  bool NeedOF = false;
 | 
						|
  switch (X86CC) {
 | 
						|
  default: break;
 | 
						|
  case X86::COND_A: case X86::COND_AE:
 | 
						|
  case X86::COND_B: case X86::COND_BE:
 | 
						|
    NeedCF = true;
 | 
						|
    break;
 | 
						|
  case X86::COND_G: case X86::COND_GE:
 | 
						|
  case X86::COND_L: case X86::COND_LE:
 | 
						|
  case X86::COND_O: case X86::COND_NO: {
 | 
						|
    // Check if we really need to set the
 | 
						|
    // Overflow flag. If NoSignedWrap is present
 | 
						|
    // that is not actually needed.
 | 
						|
    switch (Op->getOpcode()) {
 | 
						|
    case ISD::ADD:
 | 
						|
    case ISD::SUB:
 | 
						|
    case ISD::MUL:
 | 
						|
    case ISD::SHL: {
 | 
						|
      const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode());
 | 
						|
      if (BinNode->Flags.hasNoSignedWrap())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      NeedOF = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  // See if we can use the EFLAGS value from the operand instead of
 | 
						|
  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
 | 
						|
  // we prove that the arithmetic won't overflow, we can't use OF or CF.
 | 
						|
  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
 | 
						|
    // Emit KTEST for bit vectors
 | 
						|
    if (auto Node = EmitKTEST(Op, DAG, Subtarget))
 | 
						|
      return Node;
 | 
						|
    // Emit a CMP with 0, which is the TEST pattern.
 | 
						|
    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
 | 
						|
                       DAG.getConstant(0, dl, Op.getValueType()));
 | 
						|
  }
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  unsigned NumOperands = 0;
 | 
						|
 | 
						|
  // Truncate operations may prevent the merge of the SETCC instruction
 | 
						|
  // and the arithmetic instruction before it. Attempt to truncate the operands
 | 
						|
  // of the arithmetic instruction and use a reduced bit-width instruction.
 | 
						|
  bool NeedTruncation = false;
 | 
						|
  SDValue ArithOp = Op;
 | 
						|
  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
 | 
						|
    SDValue Arith = Op->getOperand(0);
 | 
						|
    // Both the trunc and the arithmetic op need to have one user each.
 | 
						|
    if (Arith->hasOneUse())
 | 
						|
      switch (Arith.getOpcode()) {
 | 
						|
        default: break;
 | 
						|
        case ISD::ADD:
 | 
						|
        case ISD::SUB:
 | 
						|
        case ISD::AND:
 | 
						|
        case ISD::OR:
 | 
						|
        case ISD::XOR: {
 | 
						|
          NeedTruncation = true;
 | 
						|
          ArithOp = Arith;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
 | 
						|
  // which may be the result of a CAST.  We use the variable 'Op', which is the
 | 
						|
  // non-casted variable when we check for possible users.
 | 
						|
  switch (ArithOp.getOpcode()) {
 | 
						|
  case ISD::ADD:
 | 
						|
    // Due to an isel shortcoming, be conservative if this add is likely to be
 | 
						|
    // selected as part of a load-modify-store instruction. When the root node
 | 
						|
    // in a match is a store, isel doesn't know how to remap non-chain non-flag
 | 
						|
    // uses of other nodes in the match, such as the ADD in this case. This
 | 
						|
    // leads to the ADD being left around and reselected, with the result being
 | 
						|
    // two adds in the output.  Alas, even if none our users are stores, that
 | 
						|
    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
 | 
						|
    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
 | 
						|
    // climbing the DAG back to the root, and it doesn't seem to be worth the
 | 
						|
    // effort.
 | 
						|
    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | 
						|
         UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | 
						|
      if (UI->getOpcode() != ISD::CopyToReg &&
 | 
						|
          UI->getOpcode() != ISD::SETCC &&
 | 
						|
          UI->getOpcode() != ISD::STORE)
 | 
						|
        goto default_case;
 | 
						|
 | 
						|
    if (ConstantSDNode *C =
 | 
						|
        dyn_cast<ConstantSDNode>(ArithOp.getOperand(1))) {
 | 
						|
      // An add of one will be selected as an INC.
 | 
						|
      if (C->isOne() && !Subtarget.slowIncDec()) {
 | 
						|
        Opcode = X86ISD::INC;
 | 
						|
        NumOperands = 1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // An add of negative one (subtract of one) will be selected as a DEC.
 | 
						|
      if (C->isAllOnesValue() && !Subtarget.slowIncDec()) {
 | 
						|
        Opcode = X86ISD::DEC;
 | 
						|
        NumOperands = 1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise use a regular EFLAGS-setting add.
 | 
						|
    Opcode = X86ISD::ADD;
 | 
						|
    NumOperands = 2;
 | 
						|
    break;
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRL:
 | 
						|
    // If we have a constant logical shift that's only used in a comparison
 | 
						|
    // against zero turn it into an equivalent AND. This allows turning it into
 | 
						|
    // a TEST instruction later.
 | 
						|
    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
 | 
						|
        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
 | 
						|
      EVT VT = Op.getValueType();
 | 
						|
      unsigned BitWidth = VT.getSizeInBits();
 | 
						|
      unsigned ShAmt = Op->getConstantOperandVal(1);
 | 
						|
      if (ShAmt >= BitWidth) // Avoid undefined shifts.
 | 
						|
        break;
 | 
						|
      APInt Mask = ArithOp.getOpcode() == ISD::SRL
 | 
						|
                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
 | 
						|
                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
 | 
						|
      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
 | 
						|
        break;
 | 
						|
      Op = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
 | 
						|
                       DAG.getConstant(Mask, dl, VT));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::AND:
 | 
						|
    // If the primary 'and' result isn't used, don't bother using X86ISD::AND,
 | 
						|
    // because a TEST instruction will be better.
 | 
						|
    if (!hasNonFlagsUse(Op)) {
 | 
						|
      SDValue Op0 = ArithOp->getOperand(0);
 | 
						|
      SDValue Op1 = ArithOp->getOperand(1);
 | 
						|
      EVT VT = ArithOp.getValueType();
 | 
						|
      bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
 | 
						|
      bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
 | 
						|
 | 
						|
      // But if we can combine this into an ANDN operation, then create an AND
 | 
						|
      // now and allow it to be pattern matched into an ANDN.
 | 
						|
      if (!Subtarget.hasBMI() || !isAndn || !isLegalAndnType)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SUB:
 | 
						|
  case ISD::OR:
 | 
						|
  case ISD::XOR:
 | 
						|
    // Due to the ISEL shortcoming noted above, be conservative if this op is
 | 
						|
    // likely to be selected as part of a load-modify-store instruction.
 | 
						|
    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | 
						|
           UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | 
						|
      if (UI->getOpcode() == ISD::STORE)
 | 
						|
        goto default_case;
 | 
						|
 | 
						|
    // Otherwise use a regular EFLAGS-setting instruction.
 | 
						|
    switch (ArithOp.getOpcode()) {
 | 
						|
    default: llvm_unreachable("unexpected operator!");
 | 
						|
    case ISD::SUB: Opcode = X86ISD::SUB; break;
 | 
						|
    case ISD::XOR: Opcode = X86ISD::XOR; break;
 | 
						|
    case ISD::AND: Opcode = X86ISD::AND; break;
 | 
						|
    case ISD::OR: {
 | 
						|
      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
 | 
						|
        if (SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG))
 | 
						|
          return EFLAGS;
 | 
						|
      }
 | 
						|
      Opcode = X86ISD::OR;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    NumOperands = 2;
 | 
						|
    break;
 | 
						|
  case X86ISD::ADD:
 | 
						|
  case X86ISD::SUB:
 | 
						|
  case X86ISD::INC:
 | 
						|
  case X86ISD::DEC:
 | 
						|
  case X86ISD::OR:
 | 
						|
  case X86ISD::XOR:
 | 
						|
  case X86ISD::AND:
 | 
						|
    return SDValue(Op.getNode(), 1);
 | 
						|
  default:
 | 
						|
  default_case:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found that truncation is beneficial, perform the truncation and
 | 
						|
  // update 'Op'.
 | 
						|
  if (NeedTruncation) {
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    SDValue WideVal = Op->getOperand(0);
 | 
						|
    EVT WideVT = WideVal.getValueType();
 | 
						|
    unsigned ConvertedOp = 0;
 | 
						|
    // Use a target machine opcode to prevent further DAGCombine
 | 
						|
    // optimizations that may separate the arithmetic operations
 | 
						|
    // from the setcc node.
 | 
						|
    switch (WideVal.getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
 | 
						|
      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
 | 
						|
      case ISD::AND: ConvertedOp = X86ISD::AND; break;
 | 
						|
      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
 | 
						|
      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConvertedOp) {
 | 
						|
      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
 | 
						|
        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
 | 
						|
        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
 | 
						|
        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opcode == 0) {
 | 
						|
    // Emit KTEST for bit vectors
 | 
						|
    if (auto Node = EmitKTEST(Op, DAG, Subtarget))
 | 
						|
      return Node;
 | 
						|
 | 
						|
    // Emit a CMP with 0, which is the TEST pattern.
 | 
						|
    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
 | 
						|
                       DAG.getConstant(0, dl, Op.getValueType()));
 | 
						|
  }
 | 
						|
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | 
						|
  SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
 | 
						|
 | 
						|
  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
 | 
						|
  DAG.ReplaceAllUsesWith(Op, New);
 | 
						|
  return SDValue(New.getNode(), 1);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
 | 
						|
/// equivalent.
 | 
						|
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
 | 
						|
                                   const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  if (isNullConstant(Op1))
 | 
						|
    return EmitTest(Op0, X86CC, dl, DAG);
 | 
						|
 | 
						|
  assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
 | 
						|
         "Unexpected comparison operation for MVT::i1 operands");
 | 
						|
 | 
						|
  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
 | 
						|
       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
 | 
						|
    // Only promote the compare up to I32 if it is a 16 bit operation
 | 
						|
    // with an immediate.  16 bit immediates are to be avoided.
 | 
						|
    if ((Op0.getValueType() == MVT::i16 &&
 | 
						|
         (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
 | 
						|
        !DAG.getMachineFunction().getFunction()->optForMinSize() &&
 | 
						|
        !Subtarget.isAtom()) {
 | 
						|
      unsigned ExtendOp =
 | 
						|
          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
 | 
						|
      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
 | 
						|
      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
 | 
						|
    }
 | 
						|
    // Use SUB instead of CMP to enable CSE between SUB and CMP.
 | 
						|
    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
 | 
						|
    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
 | 
						|
                              Op0, Op1);
 | 
						|
    return SDValue(Sub.getNode(), 1);
 | 
						|
  }
 | 
						|
  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a comparison if required by the subtarget.
 | 
						|
SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  // If the subtarget does not support the FUCOMI instruction, floating-point
 | 
						|
  // comparisons have to be converted.
 | 
						|
  if (Subtarget.hasCMov() ||
 | 
						|
      Cmp.getOpcode() != X86ISD::CMP ||
 | 
						|
      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
 | 
						|
      !Cmp.getOperand(1).getValueType().isFloatingPoint())
 | 
						|
    return Cmp;
 | 
						|
 | 
						|
  // The instruction selector will select an FUCOM instruction instead of
 | 
						|
  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
 | 
						|
  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
 | 
						|
  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
 | 
						|
  SDLoc dl(Cmp);
 | 
						|
  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
 | 
						|
  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
 | 
						|
  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
 | 
						|
                            DAG.getConstant(8, dl, MVT::i8));
 | 
						|
  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
 | 
						|
 | 
						|
  // Some 64-bit targets lack SAHF support, but they do support FCOMI.
 | 
						|
  assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
 | 
						|
  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if replacement of SQRT with RSQRT should be disabled.
 | 
						|
bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // We never want to use both SQRT and RSQRT instructions for the same input.
 | 
						|
  if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.isVector())
 | 
						|
    return Subtarget.hasFastVectorFSQRT();
 | 
						|
  return Subtarget.hasFastScalarFSQRT();
 | 
						|
}
 | 
						|
 | 
						|
/// The minimum architected relative accuracy is 2^-12. We need one
 | 
						|
/// Newton-Raphson step to have a good float result (24 bits of precision).
 | 
						|
SDValue X86TargetLowering::getSqrtEstimate(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG, int Enabled,
 | 
						|
                                           int &RefinementSteps,
 | 
						|
                                           bool &UseOneConstNR,
 | 
						|
                                           bool Reciprocal) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
 | 
						|
  // TODO: Add support for AVX512 (v16f32).
 | 
						|
  // It is likely not profitable to do this for f64 because a double-precision
 | 
						|
  // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
 | 
						|
  // instructions: convert to single, rsqrtss, convert back to double, refine
 | 
						|
  // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
 | 
						|
  // along with FMA, this could be a throughput win.
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (VT == MVT::v8f32 && Subtarget.hasAVX())) {
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = 1;
 | 
						|
 | 
						|
    UseOneConstNR = false;
 | 
						|
    return DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// The minimum architected relative accuracy is 2^-12. We need one
 | 
						|
/// Newton-Raphson step to have a good float result (24 bits of precision).
 | 
						|
SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                            int Enabled,
 | 
						|
                                            int &RefinementSteps) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
 | 
						|
  // TODO: Add support for AVX512 (v16f32).
 | 
						|
  // It is likely not profitable to do this for f64 because a double-precision
 | 
						|
  // reciprocal estimate with refinement on x86 prior to FMA requires
 | 
						|
  // 15 instructions: convert to single, rcpss, convert back to double, refine
 | 
						|
  // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
 | 
						|
  // along with FMA, this could be a throughput win.
 | 
						|
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (VT == MVT::v8f32 && Subtarget.hasAVX())) {
 | 
						|
    // Enable estimate codegen with 1 refinement step for vector division.
 | 
						|
    // Scalar division estimates are disabled because they break too much
 | 
						|
    // real-world code. These defaults are intended to match GCC behavior.
 | 
						|
    if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = 1;
 | 
						|
 | 
						|
    return DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If we have at least two divisions that use the same divisor, convert to
 | 
						|
/// multplication by a reciprocal. This may need to be adjusted for a given
 | 
						|
/// CPU if a division's cost is not at least twice the cost of a multiplication.
 | 
						|
/// This is because we still need one division to calculate the reciprocal and
 | 
						|
/// then we need two multiplies by that reciprocal as replacements for the
 | 
						|
/// original divisions.
 | 
						|
unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper for creating a X86ISD::SETCC node.
 | 
						|
static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl,
 | 
						|
                        SelectionDAG &DAG) {
 | 
						|
  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | 
						|
                     DAG.getConstant(Cond, dl, MVT::i8), EFLAGS);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition
 | 
						|
/// according to equal/not-equal condition code \p CC.
 | 
						|
static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC,
 | 
						|
                                   const SDLoc &dl, SelectionDAG &DAG) {
 | 
						|
  // If Src is i8, promote it to i32 with any_extend.  There is no i8 BT
 | 
						|
  // instruction.  Since the shift amount is in-range-or-undefined, we know
 | 
						|
  // that doing a bittest on the i32 value is ok.  We extend to i32 because
 | 
						|
  // the encoding for the i16 version is larger than the i32 version.
 | 
						|
  // Also promote i16 to i32 for performance / code size reason.
 | 
						|
  if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
 | 
						|
    Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src);
 | 
						|
 | 
						|
  // See if we can use the 32-bit instruction instead of the 64-bit one for a
 | 
						|
  // shorter encoding. Since the former takes the modulo 32 of BitNo and the
 | 
						|
  // latter takes the modulo 64, this is only valid if the 5th bit of BitNo is
 | 
						|
  // known to be zero.
 | 
						|
  if (Src.getValueType() == MVT::i64 &&
 | 
						|
      DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32)))
 | 
						|
    Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
 | 
						|
 | 
						|
  // If the operand types disagree, extend the shift amount to match.  Since
 | 
						|
  // BT ignores high bits (like shifts) we can use anyextend.
 | 
						|
  if (Src.getValueType() != BitNo.getValueType())
 | 
						|
    BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo);
 | 
						|
 | 
						|
  SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo);
 | 
						|
  X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
 | 
						|
  return getSETCC(Cond, BT, dl , DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// Result of 'and' is compared against zero. Change to a BT node if possible.
 | 
						|
static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC,
 | 
						|
                            const SDLoc &dl, SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = And.getOperand(0);
 | 
						|
  SDValue Op1 = And.getOperand(1);
 | 
						|
  if (Op0.getOpcode() == ISD::TRUNCATE)
 | 
						|
    Op0 = Op0.getOperand(0);
 | 
						|
  if (Op1.getOpcode() == ISD::TRUNCATE)
 | 
						|
    Op1 = Op1.getOperand(0);
 | 
						|
 | 
						|
  SDValue LHS, RHS;
 | 
						|
  if (Op1.getOpcode() == ISD::SHL)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  if (Op0.getOpcode() == ISD::SHL) {
 | 
						|
    if (isOneConstant(Op0.getOperand(0))) {
 | 
						|
      // If we looked past a truncate, check that it's only truncating away
 | 
						|
      // known zeros.
 | 
						|
      unsigned BitWidth = Op0.getValueSizeInBits();
 | 
						|
      unsigned AndBitWidth = And.getValueSizeInBits();
 | 
						|
      if (BitWidth > AndBitWidth) {
 | 
						|
        APInt Zeros, Ones;
 | 
						|
        DAG.computeKnownBits(Op0, Zeros, Ones);
 | 
						|
        if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
      LHS = Op1;
 | 
						|
      RHS = Op0.getOperand(1);
 | 
						|
    }
 | 
						|
  } else if (Op1.getOpcode() == ISD::Constant) {
 | 
						|
    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
 | 
						|
    uint64_t AndRHSVal = AndRHS->getZExtValue();
 | 
						|
    SDValue AndLHS = Op0;
 | 
						|
 | 
						|
    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
 | 
						|
      LHS = AndLHS.getOperand(0);
 | 
						|
      RHS = AndLHS.getOperand(1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Use BT if the immediate can't be encoded in a TEST instruction.
 | 
						|
    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
 | 
						|
      LHS = AndLHS;
 | 
						|
      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHS.getNode())
 | 
						|
    return getBitTestCondition(LHS, RHS, CC, dl, DAG);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Convert (truncate (srl X, N) to i1) to (bt X, N)
 | 
						|
static SDValue LowerTruncateToBT(SDValue Op, ISD::CondCode CC,
 | 
						|
                                 const SDLoc &dl, SelectionDAG &DAG) {
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1 &&
 | 
						|
         "Expected TRUNCATE to i1 node");
 | 
						|
 | 
						|
  if (Op.getOperand(0).getOpcode() != ISD::SRL)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ShiftRight = Op.getOperand(0);
 | 
						|
  return getBitTestCondition(ShiftRight.getOperand(0), ShiftRight.getOperand(1),
 | 
						|
                             CC, dl, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// Result of 'and' or 'trunc to i1' is compared against zero.
 | 
						|
/// Change to a BT node if possible.
 | 
						|
SDValue X86TargetLowering::LowerToBT(SDValue Op, ISD::CondCode CC,
 | 
						|
                                     const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getOpcode() == ISD::AND)
 | 
						|
    return LowerAndToBT(Op, CC, dl, DAG);
 | 
						|
  if (Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1)
 | 
						|
    return LowerTruncateToBT(Op, CC, dl, DAG);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
 | 
						|
/// CMPs.
 | 
						|
static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
 | 
						|
                              SDValue &Op1) {
 | 
						|
  unsigned SSECC;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // SSE Condition code mapping:
 | 
						|
  //  0 - EQ
 | 
						|
  //  1 - LT
 | 
						|
  //  2 - LE
 | 
						|
  //  3 - UNORD
 | 
						|
  //  4 - NEQ
 | 
						|
  //  5 - NLT
 | 
						|
  //  6 - NLE
 | 
						|
  //  7 - ORD
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Unexpected SETCC condition");
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETEQ:  SSECC = 0; break;
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:  Swap = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETLT:
 | 
						|
  case ISD::SETOLT: SSECC = 1; break;
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:  Swap = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETLE:
 | 
						|
  case ISD::SETOLE: SSECC = 2; break;
 | 
						|
  case ISD::SETUO:  SSECC = 3; break;
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  SSECC = 4; break;
 | 
						|
  case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETUGE: SSECC = 5; break;
 | 
						|
  case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETUGT: SSECC = 6; break;
 | 
						|
  case ISD::SETO:   SSECC = 7; break;
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETONE: SSECC = 8; break;
 | 
						|
  }
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  return SSECC;
 | 
						|
}
 | 
						|
 | 
						|
/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
 | 
						|
/// concatenate the result back.
 | 
						|
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
 | 
						|
         "Unsupported value type for operation");
 | 
						|
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue CC = Op.getOperand(2);
 | 
						|
 | 
						|
  // Extract the LHS vectors
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
 | 
						|
  SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  // Extract the RHS vectors
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
 | 
						|
  SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  // Issue the operation on the smaller types and concatenate the result back
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDValue CC = Op.getOperand(2);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 &&
 | 
						|
         "Unexpected type for boolean compare operation");
 | 
						|
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | 
						|
  SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
 | 
						|
                               DAG.getConstant(-1, dl, VT));
 | 
						|
  SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
 | 
						|
                               DAG.getConstant(-1, dl, VT));
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Unexpected SETCC condition");
 | 
						|
  case ISD::SETEQ:
 | 
						|
    // (x == y) -> ~(x ^ y)
 | 
						|
    return DAG.getNode(ISD::XOR, dl, VT,
 | 
						|
                       DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
 | 
						|
                       DAG.getConstant(-1, dl, VT));
 | 
						|
  case ISD::SETNE:
 | 
						|
    // (x != y) -> (x ^ y)
 | 
						|
    return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:
 | 
						|
    // (x > y) -> (x & ~y)
 | 
						|
    return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:
 | 
						|
    // (x < y) -> (~x & y)
 | 
						|
    return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:
 | 
						|
    // (x <= y) -> (~x | y)
 | 
						|
    return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:
 | 
						|
    // (x >=y) -> (x | ~y)
 | 
						|
    return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
 | 
						|
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDValue CC = Op.getOperand(2);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  assert(VT.getVectorElementType() == MVT::i1 &&
 | 
						|
         "Cannot set masked compare for this operation");
 | 
						|
 | 
						|
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | 
						|
  unsigned  Opc = 0;
 | 
						|
  bool Unsigned = false;
 | 
						|
  bool Swap = false;
 | 
						|
  unsigned SSECC;
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Unexpected SETCC condition");
 | 
						|
  case ISD::SETNE:  SSECC = 4; break;
 | 
						|
  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
 | 
						|
  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
 | 
						|
  case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
 | 
						|
  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
 | 
						|
  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
 | 
						|
  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
 | 
						|
  case ISD::SETULE: Unsigned = true; LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETLE:  SSECC = 2; break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  if (Opc)
 | 
						|
    return DAG.getNode(Opc, dl, VT, Op0, Op1);
 | 
						|
  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
 | 
						|
  return DAG.getNode(Opc, dl, VT, Op0, Op1,
 | 
						|
                     DAG.getConstant(SSECC, dl, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
 | 
						|
/// operand \p Op1.  If non-trivial (for example because it's not constant)
 | 
						|
/// return an empty value.
 | 
						|
static SDValue ChangeVSETULTtoVSETULE(const SDLoc &dl, SDValue Op1,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
 | 
						|
  if (!BV)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT VT = Op1.getSimpleValueType();
 | 
						|
  MVT EVT = VT.getVectorElementType();
 | 
						|
  unsigned n = VT.getVectorNumElements();
 | 
						|
  SmallVector<SDValue, 8> ULTOp1;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < n; ++i) {
 | 
						|
    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
 | 
						|
    if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Avoid underflow.
 | 
						|
    APInt Val = Elt->getAPIntValue();
 | 
						|
    if (Val == 0)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getBuildVector(VT, dl, ULTOp1);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                           SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDValue CC = Op.getOperand(2);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | 
						|
  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (isFP) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
 | 
						|
    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
 | 
						|
#endif
 | 
						|
 | 
						|
    unsigned Opc;
 | 
						|
    if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
 | 
						|
      assert(VT.getVectorNumElements() <= 16);
 | 
						|
      Opc = X86ISD::CMPM;
 | 
						|
    } else {
 | 
						|
      Opc = X86ISD::CMPP;
 | 
						|
      // The SSE/AVX packed FP comparison nodes are defined with a
 | 
						|
      // floating-point vector result that matches the operand type. This allows
 | 
						|
      // them to work with an SSE1 target (integer vector types are not legal).
 | 
						|
      VT = Op0.getSimpleValueType();
 | 
						|
    }
 | 
						|
 | 
						|
    // In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
 | 
						|
    // emit two comparisons and a logic op to tie them together.
 | 
						|
    // TODO: This can be avoided if Intel (and only Intel as of 2016) AVX is
 | 
						|
    // available.
 | 
						|
    SDValue Cmp;
 | 
						|
    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
 | 
						|
    if (SSECC == 8) {
 | 
						|
      // LLVM predicate is SETUEQ or SETONE.
 | 
						|
      unsigned CC0, CC1;
 | 
						|
      unsigned CombineOpc;
 | 
						|
      if (SetCCOpcode == ISD::SETUEQ) {
 | 
						|
        CC0 = 3; // UNORD
 | 
						|
        CC1 = 0; // EQ
 | 
						|
        CombineOpc = Opc == X86ISD::CMPP ? static_cast<unsigned>(X86ISD::FOR) :
 | 
						|
                                           static_cast<unsigned>(ISD::OR);
 | 
						|
      } else {
 | 
						|
        assert(SetCCOpcode == ISD::SETONE);
 | 
						|
        CC0 = 7; // ORD
 | 
						|
        CC1 = 4; // NEQ
 | 
						|
        CombineOpc = Opc == X86ISD::CMPP ? static_cast<unsigned>(X86ISD::FAND) :
 | 
						|
                                           static_cast<unsigned>(ISD::AND);
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
 | 
						|
                                 DAG.getConstant(CC0, dl, MVT::i8));
 | 
						|
      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
 | 
						|
                                 DAG.getConstant(CC1, dl, MVT::i8));
 | 
						|
      Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
 | 
						|
    } else {
 | 
						|
      // Handle all other FP comparisons here.
 | 
						|
      Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1,
 | 
						|
                        DAG.getConstant(SSECC, dl, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is SSE/AVX CMPP, bitcast the result back to integer to match the
 | 
						|
    // result type of SETCC. The bitcast is expected to be optimized away
 | 
						|
    // during combining/isel.
 | 
						|
    if (Opc == X86ISD::CMPP)
 | 
						|
      Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
 | 
						|
 | 
						|
    return Cmp;
 | 
						|
  }
 | 
						|
 | 
						|
  MVT VTOp0 = Op0.getSimpleValueType();
 | 
						|
  assert(VTOp0 == Op1.getSimpleValueType() &&
 | 
						|
         "Expected operands with same type!");
 | 
						|
  assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
 | 
						|
         "Invalid number of packed elements for source and destination!");
 | 
						|
 | 
						|
  if (VT.is128BitVector() && VTOp0.is256BitVector()) {
 | 
						|
    // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type
 | 
						|
    // legalizer to a wider vector type.  In the case of 'vsetcc' nodes, the
 | 
						|
    // legalizer firstly checks if the first operand in input to the setcc has
 | 
						|
    // a legal type. If so, then it promotes the return type to that same type.
 | 
						|
    // Otherwise, the return type is promoted to the 'next legal type' which,
 | 
						|
    // for a vector of MVT::i1 is always a 128-bit integer vector type.
 | 
						|
    //
 | 
						|
    // We reach this code only if the following two conditions are met:
 | 
						|
    // 1. Both return type and operand type have been promoted to wider types
 | 
						|
    //    by the type legalizer.
 | 
						|
    // 2. The original operand type has been promoted to a 256-bit vector.
 | 
						|
    //
 | 
						|
    // Note that condition 2. only applies for AVX targets.
 | 
						|
    SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode);
 | 
						|
    return DAG.getZExtOrTrunc(NewOp, dl, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  // The non-AVX512 code below works under the assumption that source and
 | 
						|
  // destination types are the same.
 | 
						|
  assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
 | 
						|
         "Value types for source and destination must be the same!");
 | 
						|
 | 
						|
  // Break 256-bit integer vector compare into smaller ones.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256())
 | 
						|
    return Lower256IntVSETCC(Op, DAG);
 | 
						|
 | 
						|
  // Operands are boolean (vectors of i1)
 | 
						|
  MVT OpVT = Op1.getSimpleValueType();
 | 
						|
  if (OpVT.getVectorElementType() == MVT::i1)
 | 
						|
    return LowerBoolVSETCC_AVX512(Op, DAG);
 | 
						|
 | 
						|
  // The result is boolean, but operands are int/float
 | 
						|
  if (VT.getVectorElementType() == MVT::i1) {
 | 
						|
    // In AVX-512 architecture setcc returns mask with i1 elements,
 | 
						|
    // But there is no compare instruction for i8 and i16 elements in KNL.
 | 
						|
    // In this case use SSE compare
 | 
						|
    bool UseAVX512Inst =
 | 
						|
      (OpVT.is512BitVector() ||
 | 
						|
       OpVT.getScalarSizeInBits() >= 32 ||
 | 
						|
       (Subtarget.hasBWI() && Subtarget.hasVLX()));
 | 
						|
 | 
						|
    if (UseAVX512Inst)
 | 
						|
      return LowerIntVSETCC_AVX512(Op, DAG);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						|
                        DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower using XOP integer comparisons.
 | 
						|
  if ((VT == MVT::v16i8 || VT == MVT::v8i16 ||
 | 
						|
       VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget.hasXOP()) {
 | 
						|
    // Translate compare code to XOP PCOM compare mode.
 | 
						|
    unsigned CmpMode = 0;
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: llvm_unreachable("Unexpected SETCC condition");
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT: CmpMode = 0x00; break;
 | 
						|
    case ISD::SETULE:
 | 
						|
    case ISD::SETLE: CmpMode = 0x01; break;
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETGT: CmpMode = 0x02; break;
 | 
						|
    case ISD::SETUGE:
 | 
						|
    case ISD::SETGE: CmpMode = 0x03; break;
 | 
						|
    case ISD::SETEQ: CmpMode = 0x04; break;
 | 
						|
    case ISD::SETNE: CmpMode = 0x05; break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Are we comparing unsigned or signed integers?
 | 
						|
    unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode)
 | 
						|
      ? X86ISD::VPCOMU : X86ISD::VPCOM;
 | 
						|
 | 
						|
    return DAG.getNode(Opc, dl, VT, Op0, Op1,
 | 
						|
                       DAG.getConstant(CmpMode, dl, MVT::i8));
 | 
						|
  }
 | 
						|
 | 
						|
  // We are handling one of the integer comparisons here.  Since SSE only has
 | 
						|
  // GT and EQ comparisons for integer, swapping operands and multiple
 | 
						|
  // operations may be required for some comparisons.
 | 
						|
  unsigned Opc;
 | 
						|
  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
 | 
						|
  bool Subus = false;
 | 
						|
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: llvm_unreachable("Unexpected SETCC condition");
 | 
						|
  case ISD::SETNE:  Invert = true;
 | 
						|
  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
 | 
						|
  case ISD::SETLT:  Swap = true;
 | 
						|
  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
 | 
						|
  case ISD::SETGE:  Swap = true;
 | 
						|
  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
 | 
						|
                    Invert = true; break;
 | 
						|
  case ISD::SETULT: Swap = true;
 | 
						|
  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
 | 
						|
                    FlipSigns = true; break;
 | 
						|
  case ISD::SETUGE: Swap = true;
 | 
						|
  case ISD::SETULE: Opc = X86ISD::PCMPGT;
 | 
						|
                    FlipSigns = true; Invert = true; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case: Use min/max operations for SETULE/SETUGE
 | 
						|
  MVT VET = VT.getVectorElementType();
 | 
						|
  bool hasMinMax =
 | 
						|
       (Subtarget.hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
 | 
						|
    || (Subtarget.hasSSE2()  && (VET == MVT::i8));
 | 
						|
 | 
						|
  if (hasMinMax) {
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: break;
 | 
						|
    case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break;
 | 
						|
    case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasSubus = Subtarget.hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
 | 
						|
  if (!MinMax && hasSubus) {
 | 
						|
    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
 | 
						|
    // Op0 u<= Op1:
 | 
						|
    //   t = psubus Op0, Op1
 | 
						|
    //   pcmpeq t, <0..0>
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: break;
 | 
						|
    case ISD::SETULT: {
 | 
						|
      // If the comparison is against a constant we can turn this into a
 | 
						|
      // setule.  With psubus, setule does not require a swap.  This is
 | 
						|
      // beneficial because the constant in the register is no longer
 | 
						|
      // destructed as the destination so it can be hoisted out of a loop.
 | 
						|
      // Only do this pre-AVX since vpcmp* is no longer destructive.
 | 
						|
      if (Subtarget.hasAVX())
 | 
						|
        break;
 | 
						|
      if (SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG)) {
 | 
						|
        Op1 = ULEOp1;
 | 
						|
        Subus = true; Invert = false; Swap = false;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // Psubus is better than flip-sign because it requires no inversion.
 | 
						|
    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
 | 
						|
    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subus) {
 | 
						|
      Opc = X86ISD::SUBUS;
 | 
						|
      FlipSigns = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // Check that the operation in question is available (most are plain SSE2,
 | 
						|
  // but PCMPGTQ and PCMPEQQ have different requirements).
 | 
						|
  if (VT == MVT::v2i64) {
 | 
						|
    if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
 | 
						|
      assert(Subtarget.hasSSE2() && "Don't know how to lower!");
 | 
						|
 | 
						|
      // First cast everything to the right type.
 | 
						|
      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
 | 
						|
      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
 | 
						|
 | 
						|
      // Since SSE has no unsigned integer comparisons, we need to flip the sign
 | 
						|
      // bits of the inputs before performing those operations. The lower
 | 
						|
      // compare is always unsigned.
 | 
						|
      SDValue SB;
 | 
						|
      if (FlipSigns) {
 | 
						|
        SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
 | 
						|
      } else {
 | 
						|
        SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
 | 
						|
        SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
 | 
						|
        SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero});
 | 
						|
      }
 | 
						|
      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
 | 
						|
      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
 | 
						|
 | 
						|
      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
 | 
						|
      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
 | 
						|
      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
 | 
						|
 | 
						|
      // Create masks for only the low parts/high parts of the 64 bit integers.
 | 
						|
      static const int MaskHi[] = { 1, 1, 3, 3 };
 | 
						|
      static const int MaskLo[] = { 0, 0, 2, 2 };
 | 
						|
      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
 | 
						|
      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
 | 
						|
      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
 | 
						|
 | 
						|
      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
 | 
						|
      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
 | 
						|
 | 
						|
      if (Invert)
 | 
						|
        Result = DAG.getNOT(dl, Result, MVT::v4i32);
 | 
						|
 | 
						|
      return DAG.getBitcast(VT, Result);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
 | 
						|
      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
 | 
						|
      // pcmpeqd + pshufd + pand.
 | 
						|
      assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
 | 
						|
 | 
						|
      // First cast everything to the right type.
 | 
						|
      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
 | 
						|
      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
 | 
						|
 | 
						|
      // Do the compare.
 | 
						|
      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
 | 
						|
 | 
						|
      // Make sure the lower and upper halves are both all-ones.
 | 
						|
      static const int Mask[] = { 1, 0, 3, 2 };
 | 
						|
      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
 | 
						|
      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
 | 
						|
 | 
						|
      if (Invert)
 | 
						|
        Result = DAG.getNOT(dl, Result, MVT::v4i32);
 | 
						|
 | 
						|
      return DAG.getBitcast(VT, Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Since SSE has no unsigned integer comparisons, we need to flip the sign
 | 
						|
  // bits of the inputs before performing those operations.
 | 
						|
  if (FlipSigns) {
 | 
						|
    MVT EltVT = VT.getVectorElementType();
 | 
						|
    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl,
 | 
						|
                                 VT);
 | 
						|
    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
 | 
						|
    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | 
						|
 | 
						|
  // If the logical-not of the result is required, perform that now.
 | 
						|
  if (Invert)
 | 
						|
    Result = DAG.getNOT(dl, Result, VT);
 | 
						|
 | 
						|
  if (MinMax)
 | 
						|
    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
 | 
						|
 | 
						|
  if (Subus)
 | 
						|
    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
 | 
						|
                         getZeroVector(VT, Subtarget, DAG, dl));
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
 | 
						|
 | 
						|
  assert(((!Subtarget.hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
 | 
						|
         && "SetCC type must be 8-bit or 1-bit integer");
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
 | 
						|
  // Optimize to BT if possible.
 | 
						|
  // Lower (X & (1 << N)) == 0 to BT(X, N).
 | 
						|
  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
 | 
						|
  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
 | 
						|
  // Lower (trunc (X >> N) to i1) to BT(X, N).
 | 
						|
  if (Op0.hasOneUse() && isNullConstant(Op1) &&
 | 
						|
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) {
 | 
						|
      if (VT == MVT::i1)
 | 
						|
        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
 | 
						|
      return NewSetCC;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
 | 
						|
  // these.
 | 
						|
  if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
 | 
						|
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
 | 
						|
    // If the input is a setcc, then reuse the input setcc or use a new one with
 | 
						|
    // the inverted condition.
 | 
						|
    if (Op0.getOpcode() == X86ISD::SETCC) {
 | 
						|
      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
 | 
						|
      bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
 | 
						|
      if (!Invert)
 | 
						|
        return Op0;
 | 
						|
 | 
						|
      CCode = X86::GetOppositeBranchCondition(CCode);
 | 
						|
      SDValue SetCC = getSETCC(CCode, Op0.getOperand(1), dl, DAG);
 | 
						|
      if (VT == MVT::i1)
 | 
						|
        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
 | 
						|
      return SetCC;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    if (isOneConstant(Op1)) {
 | 
						|
      ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
 | 
						|
      return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC);
 | 
						|
    }
 | 
						|
    if (!isNullConstant(Op1)) {
 | 
						|
      SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i1, Op0, Op1);
 | 
						|
      return DAG.getSetCC(dl, VT, Xor, DAG.getConstant(0, dl, MVT::i1), CC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
 | 
						|
  X86::CondCode X86CC = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG);
 | 
						|
  if (X86CC == X86::COND_INVALID)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
 | 
						|
  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
 | 
						|
  SDValue SetCC = getSETCC(X86CC, EFLAGS, dl, DAG);
 | 
						|
  if (VT == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
 | 
						|
  return SetCC;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue Carry = Op.getOperand(2);
 | 
						|
  SDValue Cond = Op.getOperand(3);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
 | 
						|
  X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
 | 
						|
 | 
						|
  assert(Carry.getOpcode() != ISD::CARRY_FALSE);
 | 
						|
  SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
 | 
						|
  SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry);
 | 
						|
  SDValue SetCC = getSETCC(CC, Cmp.getValue(1), DL, DAG);
 | 
						|
  if (Op.getSimpleValueType() == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
 | 
						|
  return SetCC;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if opcode is a X86 logical comparison.
 | 
						|
static bool isX86LogicalCmp(SDValue Op) {
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
 | 
						|
      Opc == X86ISD::SAHF)
 | 
						|
    return true;
 | 
						|
  if (Op.getResNo() == 1 &&
 | 
						|
      (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC ||
 | 
						|
       Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL ||
 | 
						|
       Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR ||
 | 
						|
       Opc == X86ISD::XOR || Opc == X86ISD::AND))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
 | 
						|
  if (V.getOpcode() != ISD::TRUNCATE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue VOp0 = V.getOperand(0);
 | 
						|
  unsigned InBits = VOp0.getValueSizeInBits();
 | 
						|
  unsigned Bits = V.getValueSizeInBits();
 | 
						|
  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  bool AddTest = true;
 | 
						|
  SDValue Cond  = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDValue Op2 = Op.getOperand(2);
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT VT = Op1.getSimpleValueType();
 | 
						|
  SDValue CC;
 | 
						|
 | 
						|
  // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
 | 
						|
  // are available or VBLENDV if AVX is available.
 | 
						|
  // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
 | 
						|
  if (Cond.getOpcode() == ISD::SETCC &&
 | 
						|
      ((Subtarget.hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
 | 
						|
       (Subtarget.hasSSE1() && VT == MVT::f32)) &&
 | 
						|
      VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
 | 
						|
    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
 | 
						|
    int SSECC = translateX86FSETCC(
 | 
						|
        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
 | 
						|
 | 
						|
    if (SSECC != 8) {
 | 
						|
      if (Subtarget.hasAVX512()) {
 | 
						|
        SDValue Cmp = DAG.getNode(X86ISD::FSETCCM, DL, MVT::i1, CondOp0,
 | 
						|
                                  CondOp1, DAG.getConstant(SSECC, DL, MVT::i8));
 | 
						|
        return DAG.getNode(VT.isVector() ? X86ISD::SELECT : X86ISD::SELECTS,
 | 
						|
                           DL, VT, Cmp, Op1, Op2);
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
 | 
						|
                                DAG.getConstant(SSECC, DL, MVT::i8));
 | 
						|
 | 
						|
      // If we have AVX, we can use a variable vector select (VBLENDV) instead
 | 
						|
      // of 3 logic instructions for size savings and potentially speed.
 | 
						|
      // Unfortunately, there is no scalar form of VBLENDV.
 | 
						|
 | 
						|
      // If either operand is a constant, don't try this. We can expect to
 | 
						|
      // optimize away at least one of the logic instructions later in that
 | 
						|
      // case, so that sequence would be faster than a variable blend.
 | 
						|
 | 
						|
      // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
 | 
						|
      // uses XMM0 as the selection register. That may need just as many
 | 
						|
      // instructions as the AND/ANDN/OR sequence due to register moves, so
 | 
						|
      // don't bother.
 | 
						|
 | 
						|
      if (Subtarget.hasAVX() &&
 | 
						|
          !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
 | 
						|
 | 
						|
        // Convert to vectors, do a VSELECT, and convert back to scalar.
 | 
						|
        // All of the conversions should be optimized away.
 | 
						|
 | 
						|
        MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
 | 
						|
        SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
 | 
						|
        SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
 | 
						|
        SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
 | 
						|
 | 
						|
        MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
 | 
						|
        VCmp = DAG.getBitcast(VCmpVT, VCmp);
 | 
						|
 | 
						|
        SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
 | 
						|
 | 
						|
        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
 | 
						|
                           VSel, DAG.getIntPtrConstant(0, DL));
 | 
						|
      }
 | 
						|
      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
 | 
						|
      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
 | 
						|
      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // AVX512 fallback is to lower selects of scalar floats to masked moves.
 | 
						|
  if (Cond.getValueType() == MVT::i1 && (VT == MVT::f64 || VT == MVT::f32) &&
 | 
						|
      Subtarget.hasAVX512())
 | 
						|
    return DAG.getNode(X86ISD::SELECTS, DL, VT, Cond, Op1, Op2);
 | 
						|
 | 
						|
  if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
 | 
						|
    SDValue Op1Scalar;
 | 
						|
    if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
 | 
						|
      Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
 | 
						|
    else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
 | 
						|
      Op1Scalar = Op1.getOperand(0);
 | 
						|
    SDValue Op2Scalar;
 | 
						|
    if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
 | 
						|
      Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
 | 
						|
    else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
 | 
						|
      Op2Scalar = Op2.getOperand(0);
 | 
						|
    if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
 | 
						|
      SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
 | 
						|
                                      Op1Scalar.getValueType(),
 | 
						|
                                      Cond, Op1Scalar, Op2Scalar);
 | 
						|
      if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
 | 
						|
        return DAG.getBitcast(VT, newSelect);
 | 
						|
      SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
 | 
						|
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
 | 
						|
                         DAG.getIntPtrConstant(0, DL));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::v4i1 || VT == MVT::v2i1) {
 | 
						|
    SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
 | 
						|
    Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
 | 
						|
                      DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
 | 
						|
    Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
 | 
						|
                      DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
 | 
						|
    SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1,
 | 
						|
                                    Cond, Op1, Op2);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cond.getOpcode() == ISD::SETCC) {
 | 
						|
    if (SDValue NewCond = LowerSETCC(Cond, DAG)) {
 | 
						|
      Cond = NewCond;
 | 
						|
      // If the condition was updated, it's possible that the operands of the
 | 
						|
      // select were also updated (for example, EmitTest has a RAUW). Refresh
 | 
						|
      // the local references to the select operands in case they got stale.
 | 
						|
      Op1 = Op.getOperand(1);
 | 
						|
      Op2 = Op.getOperand(2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
 | 
						|
  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
 | 
						|
  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
 | 
						|
  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
 | 
						|
  if (Cond.getOpcode() == X86ISD::SETCC &&
 | 
						|
      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
 | 
						|
      isNullConstant(Cond.getOperand(1).getOperand(1))) {
 | 
						|
    SDValue Cmp = Cond.getOperand(1);
 | 
						|
 | 
						|
    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
    if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
 | 
						|
        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
 | 
						|
      SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
 | 
						|
 | 
						|
      SDValue CmpOp0 = Cmp.getOperand(0);
 | 
						|
      // Apply further optimizations for special cases
 | 
						|
      // (select (x != 0), -1, 0) -> neg & sbb
 | 
						|
      // (select (x == 0), 0, -1) -> neg & sbb
 | 
						|
      if (isNullConstant(Y) &&
 | 
						|
            (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
 | 
						|
          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
 | 
						|
          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
 | 
						|
                                    DAG.getConstant(0, DL,
 | 
						|
                                                    CmpOp0.getValueType()),
 | 
						|
                                    CmpOp0);
 | 
						|
          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
 | 
						|
                                    DAG.getConstant(X86::COND_B, DL, MVT::i8),
 | 
						|
                                    SDValue(Neg.getNode(), 1));
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
 | 
						|
      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
 | 
						|
                        CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
 | 
						|
      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
 | 
						|
 | 
						|
      SDValue Res =   // Res = 0 or -1.
 | 
						|
        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
 | 
						|
                    DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
 | 
						|
 | 
						|
      if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
 | 
						|
        Res = DAG.getNOT(DL, Res, Res.getValueType());
 | 
						|
 | 
						|
      if (!isNullConstant(Op2))
 | 
						|
        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look past (and (setcc_carry (cmp ...)), 1).
 | 
						|
  if (Cond.getOpcode() == ISD::AND &&
 | 
						|
      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
 | 
						|
      isOneConstant(Cond.getOperand(1)))
 | 
						|
    Cond = Cond.getOperand(0);
 | 
						|
 | 
						|
  // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | 
						|
  // setting operand in place of the X86ISD::SETCC.
 | 
						|
  unsigned CondOpcode = Cond.getOpcode();
 | 
						|
  if (CondOpcode == X86ISD::SETCC ||
 | 
						|
      CondOpcode == X86ISD::SETCC_CARRY) {
 | 
						|
    CC = Cond.getOperand(0);
 | 
						|
 | 
						|
    SDValue Cmp = Cond.getOperand(1);
 | 
						|
    unsigned Opc = Cmp.getOpcode();
 | 
						|
    MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
    bool IllegalFPCMov = false;
 | 
						|
    if (VT.isFloatingPoint() && !VT.isVector() &&
 | 
						|
        !isScalarFPTypeInSSEReg(VT))  // FPStack?
 | 
						|
      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
 | 
						|
 | 
						|
    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
 | 
						|
        Opc == X86ISD::BT) { // FIXME
 | 
						|
      Cond = Cmp;
 | 
						|
      AddTest = false;
 | 
						|
    }
 | 
						|
  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
 | 
						|
             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
 | 
						|
             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
 | 
						|
              Cond.getOperand(0).getValueType() != MVT::i8)) {
 | 
						|
    SDValue LHS = Cond.getOperand(0);
 | 
						|
    SDValue RHS = Cond.getOperand(1);
 | 
						|
    unsigned X86Opcode;
 | 
						|
    unsigned X86Cond;
 | 
						|
    SDVTList VTs;
 | 
						|
    switch (CondOpcode) {
 | 
						|
    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
 | 
						|
    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
 | 
						|
    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
 | 
						|
    default: llvm_unreachable("unexpected overflowing operator");
 | 
						|
    }
 | 
						|
    if (CondOpcode == ISD::UMULO)
 | 
						|
      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
 | 
						|
                          MVT::i32);
 | 
						|
    else
 | 
						|
      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
 | 
						|
 | 
						|
    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
 | 
						|
 | 
						|
    if (CondOpcode == ISD::UMULO)
 | 
						|
      Cond = X86Op.getValue(2);
 | 
						|
    else
 | 
						|
      Cond = X86Op.getValue(1);
 | 
						|
 | 
						|
    CC = DAG.getConstant(X86Cond, DL, MVT::i8);
 | 
						|
    AddTest = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (AddTest) {
 | 
						|
    // Look past the truncate if the high bits are known zero.
 | 
						|
    if (isTruncWithZeroHighBitsInput(Cond, DAG))
 | 
						|
      Cond = Cond.getOperand(0);
 | 
						|
 | 
						|
    // We know the result of AND is compared against zero. Try to match
 | 
						|
    // it to BT.
 | 
						|
    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
 | 
						|
      if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
 | 
						|
        CC = NewSetCC.getOperand(0);
 | 
						|
        Cond = NewSetCC.getOperand(1);
 | 
						|
        AddTest = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (AddTest) {
 | 
						|
    CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
 | 
						|
    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  // a <  b ? -1 :  0 -> RES = ~setcc_carry
 | 
						|
  // a <  b ?  0 : -1 -> RES = setcc_carry
 | 
						|
  // a >= b ? -1 :  0 -> RES = setcc_carry
 | 
						|
  // a >= b ?  0 : -1 -> RES = ~setcc_carry
 | 
						|
  if (Cond.getOpcode() == X86ISD::SUB) {
 | 
						|
    Cond = ConvertCmpIfNecessary(Cond, DAG);
 | 
						|
    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
 | 
						|
 | 
						|
    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
 | 
						|
        (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
 | 
						|
        (isNullConstant(Op1) || isNullConstant(Op2))) {
 | 
						|
      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
 | 
						|
                                DAG.getConstant(X86::COND_B, DL, MVT::i8),
 | 
						|
                                Cond);
 | 
						|
      if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
 | 
						|
        return DAG.getNOT(DL, Res, Res.getValueType());
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
 | 
						|
  // widen the cmov and push the truncate through. This avoids introducing a new
 | 
						|
  // branch during isel and doesn't add any extensions.
 | 
						|
  if (Op.getValueType() == MVT::i8 &&
 | 
						|
      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
 | 
						|
    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
 | 
						|
    if (T1.getValueType() == T2.getValueType() &&
 | 
						|
        // Blacklist CopyFromReg to avoid partial register stalls.
 | 
						|
        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
 | 
						|
      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
 | 
						|
      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
 | 
						|
  // condition is true.
 | 
						|
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | 
						|
  SDValue Ops[] = { Op2, Op1, CC, Cond };
 | 
						|
  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  SDValue In = Op->getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
  MVT VTElt = VT.getVectorElementType();
 | 
						|
  MVT InVTElt = InVT.getVectorElementType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // SKX processor
 | 
						|
  if ((InVTElt == MVT::i1) &&
 | 
						|
      (((Subtarget.hasBWI() && Subtarget.hasVLX() &&
 | 
						|
        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
 | 
						|
 | 
						|
       ((Subtarget.hasBWI() && VT.is512BitVector() &&
 | 
						|
        VTElt.getSizeInBits() <= 16)) ||
 | 
						|
 | 
						|
       ((Subtarget.hasDQI() && Subtarget.hasVLX() &&
 | 
						|
        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
 | 
						|
 | 
						|
       ((Subtarget.hasDQI() && VT.is512BitVector() &&
 | 
						|
        VTElt.getSizeInBits() >= 32))))
 | 
						|
    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  if (NumElts != 8 && NumElts != 16 && !Subtarget.hasBWI())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT.is512BitVector() && InVTElt != MVT::i1) {
 | 
						|
    if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
 | 
						|
      return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
 | 
						|
    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
 | 
						|
  }
 | 
						|
 | 
						|
  assert (InVTElt == MVT::i1 && "Unexpected vector type");
 | 
						|
  MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
 | 
						|
  SDValue V;
 | 
						|
  if (Subtarget.hasDQI()) {
 | 
						|
    V = DAG.getNode(X86ISD::VSEXT, dl, ExtVT, In);
 | 
						|
    assert(!VT.is512BitVector() && "Unexpected vector type");
 | 
						|
  } else {
 | 
						|
    SDValue NegOne = getOnesVector(ExtVT, Subtarget, DAG, dl);
 | 
						|
    SDValue Zero = getZeroVector(ExtVT, Subtarget, DAG, dl);
 | 
						|
    V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero);
 | 
						|
    if (VT.is512BitVector())
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::VTRUNC, dl, VT, V);
 | 
						|
}
 | 
						|
 | 
						|
// Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG.
 | 
						|
// For sign extend this needs to handle all vector sizes and SSE4.1 and
 | 
						|
// non-SSE4.1 targets. For zero extend this should only handle inputs of
 | 
						|
// MVT::v64i8 when BWI is not supported, but AVX512 is.
 | 
						|
static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  SDValue In = Op->getOperand(0);
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
  assert(VT.getSizeInBits() == InVT.getSizeInBits());
 | 
						|
 | 
						|
  MVT SVT = VT.getVectorElementType();
 | 
						|
  MVT InSVT = InVT.getVectorElementType();
 | 
						|
  assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
 | 
						|
 | 
						|
  if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
 | 
						|
    return SDValue();
 | 
						|
  if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
 | 
						|
    return SDValue();
 | 
						|
  if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
 | 
						|
      !(VT.is256BitVector() && Subtarget.hasInt256()) &&
 | 
						|
      !(VT.is512BitVector() && Subtarget.hasAVX512()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // For 256-bit vectors, we only need the lower (128-bit) half of the input.
 | 
						|
  // For 512-bit vectors, we need 128-bits or 256-bits.
 | 
						|
  if (VT.getSizeInBits() > 128) {
 | 
						|
    // Input needs to be at least the same number of elements as output, and
 | 
						|
    // at least 128-bits.
 | 
						|
    int InSize = InSVT.getSizeInBits() * VT.getVectorNumElements();
 | 
						|
    In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128));
 | 
						|
  }
 | 
						|
 | 
						|
  assert((Op.getOpcode() != ISD::ZERO_EXTEND_VECTOR_INREG ||
 | 
						|
          InVT == MVT::v64i8) && "Zero extend only for v64i8 input!");
 | 
						|
 | 
						|
  // SSE41 targets can use the pmovsx* instructions directly.
 | 
						|
  unsigned ExtOpc = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ?
 | 
						|
                      X86ISD::VSEXT : X86ISD::VZEXT;
 | 
						|
  if (Subtarget.hasSSE41())
 | 
						|
    return DAG.getNode(ExtOpc, dl, VT, In);
 | 
						|
 | 
						|
  // We should only get here for sign extend.
 | 
						|
  assert(Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG &&
 | 
						|
         "Unexpected opcode!");
 | 
						|
 | 
						|
  // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
 | 
						|
  SDValue Curr = In;
 | 
						|
  MVT CurrVT = InVT;
 | 
						|
 | 
						|
  // As SRAI is only available on i16/i32 types, we expand only up to i32
 | 
						|
  // and handle i64 separately.
 | 
						|
  while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
 | 
						|
    Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
 | 
						|
    MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
 | 
						|
    CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
 | 
						|
    Curr = DAG.getBitcast(CurrVT, Curr);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue SignExt = Curr;
 | 
						|
  if (CurrVT != InVT) {
 | 
						|
    unsigned SignExtShift =
 | 
						|
        CurrVT.getScalarSizeInBits() - InSVT.getSizeInBits();
 | 
						|
    SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
 | 
						|
                          DAG.getConstant(SignExtShift, dl, MVT::i8));
 | 
						|
  }
 | 
						|
 | 
						|
  if (CurrVT == VT)
 | 
						|
    return SignExt;
 | 
						|
 | 
						|
  if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
 | 
						|
    SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
 | 
						|
                               DAG.getConstant(31, dl, MVT::i8));
 | 
						|
    SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
 | 
						|
    return DAG.getBitcast(VT, Ext);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op->getSimpleValueType(0);
 | 
						|
  SDValue In = Op->getOperand(0);
 | 
						|
  MVT InVT = In.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
 | 
						|
    return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
 | 
						|
 | 
						|
  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
 | 
						|
      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
 | 
						|
      (VT != MVT::v16i16 || InVT != MVT::v16i8))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Subtarget.hasInt256())
 | 
						|
    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
 | 
						|
 | 
						|
  // Optimize vectors in AVX mode
 | 
						|
  // Sign extend  v8i16 to v8i32 and
 | 
						|
  //              v4i32 to v4i64
 | 
						|
  //
 | 
						|
  // Divide input vector into two parts
 | 
						|
  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
 | 
						|
  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
 | 
						|
  // concat the vectors to original VT
 | 
						|
 | 
						|
  unsigned NumElems = InVT.getVectorNumElements();
 | 
						|
  SDValue Undef = DAG.getUNDEF(InVT);
 | 
						|
 | 
						|
  SmallVector<int,8> ShufMask1(NumElems, -1);
 | 
						|
  for (unsigned i = 0; i != NumElems/2; ++i)
 | 
						|
    ShufMask1[i] = i;
 | 
						|
 | 
						|
  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1);
 | 
						|
 | 
						|
  SmallVector<int,8> ShufMask2(NumElems, -1);
 | 
						|
  for (unsigned i = 0; i != NumElems/2; ++i)
 | 
						|
    ShufMask2[i] = i + NumElems/2;
 | 
						|
 | 
						|
  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2);
 | 
						|
 | 
						|
  MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
 | 
						|
                                VT.getVectorNumElements() / 2);
 | 
						|
 | 
						|
  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
 | 
						|
  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
 | 
						|
}
 | 
						|
 | 
						|
// Lower truncating store. We need a special lowering to vXi1 vectors
 | 
						|
static SDValue LowerTruncatingStore(SDValue StOp, const X86Subtarget &Subtarget,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  StoreSDNode *St = cast<StoreSDNode>(StOp.getNode());
 | 
						|
  SDLoc dl(St);
 | 
						|
  EVT MemVT = St->getMemoryVT();
 | 
						|
  assert(St->isTruncatingStore() && "We only custom truncating store.");
 | 
						|
  assert(MemVT.isVector() && MemVT.getVectorElementType() == MVT::i1 &&
 | 
						|
         "Expected truncstore of i1 vector");
 | 
						|
 | 
						|
  SDValue Op = St->getValue();
 | 
						|
  MVT OpVT = Op.getValueType().getSimpleVT();
 | 
						|
  unsigned NumElts = OpVT.getVectorNumElements();
 | 
						|
  if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) ||
 | 
						|
      NumElts == 16) {
 | 
						|
    // Truncate and store - everything is legal
 | 
						|
    Op = DAG.getNode(ISD::TRUNCATE, dl, MemVT, Op);
 | 
						|
    if (MemVT.getSizeInBits() < 8)
 | 
						|
      Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
 | 
						|
                       DAG.getUNDEF(MVT::v8i1), Op,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
    return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
 | 
						|
                        St->getMemOperand());
 | 
						|
  }
 | 
						|
 | 
						|
  // A subset, assume that we have only AVX-512F
 | 
						|
  if (NumElts <= 8) {
 | 
						|
    if (NumElts < 8) {
 | 
						|
      // Extend to 8-elts vector
 | 
						|
      MVT ExtVT = MVT::getVectorVT(OpVT.getScalarType(), 8);
 | 
						|
      Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ExtVT,
 | 
						|
                        DAG.getUNDEF(ExtVT), Op, DAG.getIntPtrConstant(0, dl));
 | 
						|
    }
 | 
						|
    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i1, Op);
 | 
						|
    return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
 | 
						|
                        St->getMemOperand());
 | 
						|
  }
 | 
						|
  // v32i8
 | 
						|
  assert(OpVT == MVT::v32i8 && "Unexpected operand type");
 | 
						|
  // Divide the vector into 2 parts and store each part separately
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
 | 
						|
                            DAG.getIntPtrConstant(0, dl));
 | 
						|
  Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Lo);
 | 
						|
  SDValue BasePtr = St->getBasePtr();
 | 
						|
  SDValue StLo = DAG.getStore(St->getChain(), dl, Lo, BasePtr,
 | 
						|
                              St->getMemOperand());
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
 | 
						|
                            DAG.getIntPtrConstant(16, dl));
 | 
						|
  Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Hi);
 | 
						|
 | 
						|
  SDValue BasePtrHi =
 | 
						|
    DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                DAG.getConstant(2, dl, BasePtr.getValueType()));
 | 
						|
 | 
						|
  SDValue StHi = DAG.getStore(St->getChain(), dl, Hi,
 | 
						|
                              BasePtrHi, St->getMemOperand());
 | 
						|
  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StLo, StHi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerExtended1BitVectorLoad(SDValue Op,
 | 
						|
                                           const X86Subtarget &Subtarget,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
 | 
						|
  LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
 | 
						|
  SDLoc dl(Ld);
 | 
						|
  EVT MemVT = Ld->getMemoryVT();
 | 
						|
  assert(MemVT.isVector() && MemVT.getScalarType() == MVT::i1 &&
 | 
						|
         "Expected i1 vector load");
 | 
						|
  unsigned ExtOpcode = Ld->getExtensionType() == ISD::ZEXTLOAD ?
 | 
						|
    ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
 | 
						|
  MVT VT = Op.getValueType().getSimpleVT();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) ||
 | 
						|
      NumElts == 16) {
 | 
						|
    // Load and extend - everything is legal
 | 
						|
    if (NumElts < 8) {
 | 
						|
      SDValue Load = DAG.getLoad(MVT::v8i1, dl, Ld->getChain(),
 | 
						|
                                 Ld->getBasePtr(),
 | 
						|
                                 Ld->getMemOperand());
 | 
						|
      // Replace chain users with the new chain.
 | 
						|
      assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
 | 
						|
      MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
 | 
						|
      SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, Load);
 | 
						|
 | 
						|
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
 | 
						|
                                   DAG.getIntPtrConstant(0, dl));
 | 
						|
    }
 | 
						|
    SDValue Load = DAG.getLoad(MemVT, dl, Ld->getChain(),
 | 
						|
                               Ld->getBasePtr(),
 | 
						|
                               Ld->getMemOperand());
 | 
						|
    // Replace chain users with the new chain.
 | 
						|
    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
 | 
						|
 | 
						|
    // Finally, do a normal sign-extend to the desired register.
 | 
						|
    return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Load);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumElts <= 8) {
 | 
						|
    // A subset, assume that we have only AVX-512F
 | 
						|
    unsigned NumBitsToLoad = NumElts < 8 ? 8 : NumElts;
 | 
						|
    MVT TypeToLoad = MVT::getIntegerVT(NumBitsToLoad);
 | 
						|
    SDValue Load = DAG.getLoad(TypeToLoad, dl, Ld->getChain(),
 | 
						|
                              Ld->getBasePtr(),
 | 
						|
                              Ld->getMemOperand());
 | 
						|
    // Replace chain users with the new chain.
 | 
						|
    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
 | 
						|
 | 
						|
    MVT MaskVT = MVT::getVectorVT(MVT::i1, NumBitsToLoad);
 | 
						|
    SDValue BitVec = DAG.getBitcast(MaskVT, Load);
 | 
						|
 | 
						|
    if (NumElts == 8)
 | 
						|
      return DAG.getNode(ExtOpcode, dl, VT, BitVec);
 | 
						|
 | 
						|
      // we should take care to v4i1 and v2i1
 | 
						|
 | 
						|
    MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
 | 
						|
    SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, BitVec);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
 | 
						|
                        DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT == MVT::v32i8 && "Unexpected extload type");
 | 
						|
 | 
						|
  SmallVector<SDValue, 2> Chains;
 | 
						|
 | 
						|
  SDValue BasePtr = Ld->getBasePtr();
 | 
						|
  SDValue LoadLo = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(),
 | 
						|
                               Ld->getBasePtr(),
 | 
						|
                               Ld->getMemOperand());
 | 
						|
  Chains.push_back(LoadLo.getValue(1));
 | 
						|
 | 
						|
  SDValue BasePtrHi =
 | 
						|
    DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                DAG.getConstant(2, dl, BasePtr.getValueType()));
 | 
						|
 | 
						|
  SDValue LoadHi = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(),
 | 
						|
                               BasePtrHi,
 | 
						|
                               Ld->getMemOperand());
 | 
						|
  Chains.push_back(LoadHi.getValue(1));
 | 
						|
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadLo);
 | 
						|
  SDValue Hi = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadHi);
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v32i8, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
// Lower vector extended loads using a shuffle. If SSSE3 is not available we
 | 
						|
// may emit an illegal shuffle but the expansion is still better than scalar
 | 
						|
// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
 | 
						|
// we'll emit a shuffle and a arithmetic shift.
 | 
						|
// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
 | 
						|
// TODO: It is possible to support ZExt by zeroing the undef values during
 | 
						|
// the shuffle phase or after the shuffle.
 | 
						|
static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                 SelectionDAG &DAG) {
 | 
						|
  MVT RegVT = Op.getSimpleValueType();
 | 
						|
  assert(RegVT.isVector() && "We only custom lower vector sext loads.");
 | 
						|
  assert(RegVT.isInteger() &&
 | 
						|
         "We only custom lower integer vector sext loads.");
 | 
						|
 | 
						|
  // Nothing useful we can do without SSE2 shuffles.
 | 
						|
  assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2.");
 | 
						|
 | 
						|
  LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
 | 
						|
  SDLoc dl(Ld);
 | 
						|
  EVT MemVT = Ld->getMemoryVT();
 | 
						|
  if (MemVT.getScalarType() == MVT::i1)
 | 
						|
    return LowerExtended1BitVectorLoad(Op, Subtarget, DAG);
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  unsigned RegSz = RegVT.getSizeInBits();
 | 
						|
 | 
						|
  ISD::LoadExtType Ext = Ld->getExtensionType();
 | 
						|
 | 
						|
  assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
 | 
						|
         && "Only anyext and sext are currently implemented.");
 | 
						|
  assert(MemVT != RegVT && "Cannot extend to the same type");
 | 
						|
  assert(MemVT.isVector() && "Must load a vector from memory");
 | 
						|
 | 
						|
  unsigned NumElems = RegVT.getVectorNumElements();
 | 
						|
  unsigned MemSz = MemVT.getSizeInBits();
 | 
						|
  assert(RegSz > MemSz && "Register size must be greater than the mem size");
 | 
						|
 | 
						|
  if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) {
 | 
						|
    // The only way in which we have a legal 256-bit vector result but not the
 | 
						|
    // integer 256-bit operations needed to directly lower a sextload is if we
 | 
						|
    // have AVX1 but not AVX2. In that case, we can always emit a sextload to
 | 
						|
    // a 128-bit vector and a normal sign_extend to 256-bits that should get
 | 
						|
    // correctly legalized. We do this late to allow the canonical form of
 | 
						|
    // sextload to persist throughout the rest of the DAG combiner -- it wants
 | 
						|
    // to fold together any extensions it can, and so will fuse a sign_extend
 | 
						|
    // of an sextload into a sextload targeting a wider value.
 | 
						|
    SDValue Load;
 | 
						|
    if (MemSz == 128) {
 | 
						|
      // Just switch this to a normal load.
 | 
						|
      assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
 | 
						|
                                       "it must be a legal 128-bit vector "
 | 
						|
                                       "type!");
 | 
						|
      Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
 | 
						|
                         Ld->getPointerInfo(), Ld->getAlignment(),
 | 
						|
                         Ld->getMemOperand()->getFlags());
 | 
						|
    } else {
 | 
						|
      assert(MemSz < 128 &&
 | 
						|
             "Can't extend a type wider than 128 bits to a 256 bit vector!");
 | 
						|
      // Do an sext load to a 128-bit vector type. We want to use the same
 | 
						|
      // number of elements, but elements half as wide. This will end up being
 | 
						|
      // recursively lowered by this routine, but will succeed as we definitely
 | 
						|
      // have all the necessary features if we're using AVX1.
 | 
						|
      EVT HalfEltVT =
 | 
						|
          EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
 | 
						|
      EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
 | 
						|
      Load =
 | 
						|
          DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
 | 
						|
                         Ld->getPointerInfo(), MemVT, Ld->getAlignment(),
 | 
						|
                         Ld->getMemOperand()->getFlags());
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace chain users with the new chain.
 | 
						|
    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
 | 
						|
 | 
						|
    // Finally, do a normal sign-extend to the desired register.
 | 
						|
    return DAG.getSExtOrTrunc(Load, dl, RegVT);
 | 
						|
  }
 | 
						|
 | 
						|
  // All sizes must be a power of two.
 | 
						|
  assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
 | 
						|
         "Non-power-of-two elements are not custom lowered!");
 | 
						|
 | 
						|
  // Attempt to load the original value using scalar loads.
 | 
						|
  // Find the largest scalar type that divides the total loaded size.
 | 
						|
  MVT SclrLoadTy = MVT::i8;
 | 
						|
  for (MVT Tp : MVT::integer_valuetypes()) {
 | 
						|
    if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
 | 
						|
      SclrLoadTy = Tp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
 | 
						|
  if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
 | 
						|
      (64 <= MemSz))
 | 
						|
    SclrLoadTy = MVT::f64;
 | 
						|
 | 
						|
  // Calculate the number of scalar loads that we need to perform
 | 
						|
  // in order to load our vector from memory.
 | 
						|
  unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
 | 
						|
 | 
						|
  assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
 | 
						|
         "Can only lower sext loads with a single scalar load!");
 | 
						|
 | 
						|
  unsigned loadRegZize = RegSz;
 | 
						|
  if (Ext == ISD::SEXTLOAD && RegSz >= 256)
 | 
						|
    loadRegZize = 128;
 | 
						|
 | 
						|
  // Represent our vector as a sequence of elements which are the
 | 
						|
  // largest scalar that we can load.
 | 
						|
  EVT LoadUnitVecVT = EVT::getVectorVT(
 | 
						|
      *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
 | 
						|
 | 
						|
  // Represent the data using the same element type that is stored in
 | 
						|
  // memory. In practice, we ''widen'' MemVT.
 | 
						|
  EVT WideVecVT =
 | 
						|
      EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
 | 
						|
                       loadRegZize / MemVT.getScalarSizeInBits());
 | 
						|
 | 
						|
  assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
 | 
						|
         "Invalid vector type");
 | 
						|
 | 
						|
  // We can't shuffle using an illegal type.
 | 
						|
  assert(TLI.isTypeLegal(WideVecVT) &&
 | 
						|
         "We only lower types that form legal widened vector types");
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Chains;
 | 
						|
  SDValue Ptr = Ld->getBasePtr();
 | 
						|
  SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
 | 
						|
                                      TLI.getPointerTy(DAG.getDataLayout()));
 | 
						|
  SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumLoads; ++i) {
 | 
						|
    // Perform a single load.
 | 
						|
    SDValue ScalarLoad =
 | 
						|
        DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
 | 
						|
                    Ld->getAlignment(), Ld->getMemOperand()->getFlags());
 | 
						|
    Chains.push_back(ScalarLoad.getValue(1));
 | 
						|
    // Create the first element type using SCALAR_TO_VECTOR in order to avoid
 | 
						|
    // another round of DAGCombining.
 | 
						|
    if (i == 0)
 | 
						|
      Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
 | 
						|
    else
 | 
						|
      Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
 | 
						|
                        ScalarLoad, DAG.getIntPtrConstant(i, dl));
 | 
						|
 | 
						|
    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | 
						|
 | 
						|
  // Bitcast the loaded value to a vector of the original element type, in
 | 
						|
  // the size of the target vector type.
 | 
						|
  SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
 | 
						|
  unsigned SizeRatio = RegSz / MemSz;
 | 
						|
 | 
						|
  if (Ext == ISD::SEXTLOAD) {
 | 
						|
    // If we have SSE4.1, we can directly emit a VSEXT node.
 | 
						|
    if (Subtarget.hasSSE41()) {
 | 
						|
      SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
 | 
						|
      return Sext;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
 | 
						|
    // lanes.
 | 
						|
    assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
 | 
						|
           "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
 | 
						|
 | 
						|
    SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
 | 
						|
    return Shuff;
 | 
						|
  }
 | 
						|
 | 
						|
  // Redistribute the loaded elements into the different locations.
 | 
						|
  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
 | 
						|
  for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
    ShuffleVec[i * SizeRatio] = i;
 | 
						|
 | 
						|
  SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
 | 
						|
                                       DAG.getUNDEF(WideVecVT), ShuffleVec);
 | 
						|
 | 
						|
  // Bitcast to the requested type.
 | 
						|
  Shuff = DAG.getBitcast(RegVT, Shuff);
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
 | 
						|
  return Shuff;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
 | 
						|
/// each of which has no other use apart from the AND / OR.
 | 
						|
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
 | 
						|
  Opc = Op.getOpcode();
 | 
						|
  if (Opc != ISD::OR && Opc != ISD::AND)
 | 
						|
    return false;
 | 
						|
  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | 
						|
          Op.getOperand(0).hasOneUse() &&
 | 
						|
          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
 | 
						|
          Op.getOperand(1).hasOneUse());
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
 | 
						|
/// SETCC node has a single use.
 | 
						|
static bool isXor1OfSetCC(SDValue Op) {
 | 
						|
  if (Op.getOpcode() != ISD::XOR)
 | 
						|
    return false;
 | 
						|
  if (isOneConstant(Op.getOperand(1)))
 | 
						|
    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | 
						|
           Op.getOperand(0).hasOneUse();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  bool addTest = true;
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Cond  = Op.getOperand(1);
 | 
						|
  SDValue Dest  = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue CC;
 | 
						|
  bool Inverted = false;
 | 
						|
 | 
						|
  if (Cond.getOpcode() == ISD::SETCC) {
 | 
						|
    // Check for setcc([su]{add,sub,mul}o == 0).
 | 
						|
    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
 | 
						|
        isNullConstant(Cond.getOperand(1)) &&
 | 
						|
        Cond.getOperand(0).getResNo() == 1 &&
 | 
						|
        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
 | 
						|
         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
 | 
						|
         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
 | 
						|
         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
 | 
						|
         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
 | 
						|
         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
 | 
						|
      Inverted = true;
 | 
						|
      Cond = Cond.getOperand(0);
 | 
						|
    } else {
 | 
						|
      if (SDValue NewCond = LowerSETCC(Cond, DAG))
 | 
						|
        Cond = NewCond;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#if 0
 | 
						|
  // FIXME: LowerXALUO doesn't handle these!!
 | 
						|
  else if (Cond.getOpcode() == X86ISD::ADD  ||
 | 
						|
           Cond.getOpcode() == X86ISD::SUB  ||
 | 
						|
           Cond.getOpcode() == X86ISD::SMUL ||
 | 
						|
           Cond.getOpcode() == X86ISD::UMUL)
 | 
						|
    Cond = LowerXALUO(Cond, DAG);
 | 
						|
#endif
 | 
						|
 | 
						|
  // Look pass (and (setcc_carry (cmp ...)), 1).
 | 
						|
  if (Cond.getOpcode() == ISD::AND &&
 | 
						|
      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
 | 
						|
      isOneConstant(Cond.getOperand(1)))
 | 
						|
    Cond = Cond.getOperand(0);
 | 
						|
 | 
						|
  // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | 
						|
  // setting operand in place of the X86ISD::SETCC.
 | 
						|
  unsigned CondOpcode = Cond.getOpcode();
 | 
						|
  if (CondOpcode == X86ISD::SETCC ||
 | 
						|
      CondOpcode == X86ISD::SETCC_CARRY) {
 | 
						|
    CC = Cond.getOperand(0);
 | 
						|
 | 
						|
    SDValue Cmp = Cond.getOperand(1);
 | 
						|
    unsigned Opc = Cmp.getOpcode();
 | 
						|
    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
 | 
						|
    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
 | 
						|
      Cond = Cmp;
 | 
						|
      addTest = false;
 | 
						|
    } else {
 | 
						|
      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
 | 
						|
      default: break;
 | 
						|
      case X86::COND_O:
 | 
						|
      case X86::COND_B:
 | 
						|
        // These can only come from an arithmetic instruction with overflow,
 | 
						|
        // e.g. SADDO, UADDO.
 | 
						|
        Cond = Cond.getOperand(1);
 | 
						|
        addTest = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CondOpcode = Cond.getOpcode();
 | 
						|
  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
 | 
						|
      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
 | 
						|
      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
 | 
						|
       Cond.getOperand(0).getValueType() != MVT::i8)) {
 | 
						|
    SDValue LHS = Cond.getOperand(0);
 | 
						|
    SDValue RHS = Cond.getOperand(1);
 | 
						|
    unsigned X86Opcode;
 | 
						|
    unsigned X86Cond;
 | 
						|
    SDVTList VTs;
 | 
						|
    // Keep this in sync with LowerXALUO, otherwise we might create redundant
 | 
						|
    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
 | 
						|
    // X86ISD::INC).
 | 
						|
    switch (CondOpcode) {
 | 
						|
    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
 | 
						|
    case ISD::SADDO:
 | 
						|
      if (isOneConstant(RHS)) {
 | 
						|
          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
 | 
						|
    case ISD::SSUBO:
 | 
						|
      if (isOneConstant(RHS)) {
 | 
						|
          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
 | 
						|
    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
 | 
						|
    default: llvm_unreachable("unexpected overflowing operator");
 | 
						|
    }
 | 
						|
    if (Inverted)
 | 
						|
      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
 | 
						|
    if (CondOpcode == ISD::UMULO)
 | 
						|
      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
 | 
						|
                          MVT::i32);
 | 
						|
    else
 | 
						|
      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
 | 
						|
 | 
						|
    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
 | 
						|
 | 
						|
    if (CondOpcode == ISD::UMULO)
 | 
						|
      Cond = X86Op.getValue(2);
 | 
						|
    else
 | 
						|
      Cond = X86Op.getValue(1);
 | 
						|
 | 
						|
    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
 | 
						|
    addTest = false;
 | 
						|
  } else {
 | 
						|
    unsigned CondOpc;
 | 
						|
    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
 | 
						|
      SDValue Cmp = Cond.getOperand(0).getOperand(1);
 | 
						|
      if (CondOpc == ISD::OR) {
 | 
						|
        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
 | 
						|
        // two branches instead of an explicit OR instruction with a
 | 
						|
        // separate test.
 | 
						|
        if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | 
						|
            isX86LogicalCmp(Cmp)) {
 | 
						|
          CC = Cond.getOperand(0).getOperand(0);
 | 
						|
          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | 
						|
                              Chain, Dest, CC, Cmp);
 | 
						|
          CC = Cond.getOperand(1).getOperand(0);
 | 
						|
          Cond = Cmp;
 | 
						|
          addTest = false;
 | 
						|
        }
 | 
						|
      } else { // ISD::AND
 | 
						|
        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
 | 
						|
        // two branches instead of an explicit AND instruction with a
 | 
						|
        // separate test. However, we only do this if this block doesn't
 | 
						|
        // have a fall-through edge, because this requires an explicit
 | 
						|
        // jmp when the condition is false.
 | 
						|
        if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | 
						|
            isX86LogicalCmp(Cmp) &&
 | 
						|
            Op.getNode()->hasOneUse()) {
 | 
						|
          X86::CondCode CCode =
 | 
						|
            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | 
						|
          CCode = X86::GetOppositeBranchCondition(CCode);
 | 
						|
          CC = DAG.getConstant(CCode, dl, MVT::i8);
 | 
						|
          SDNode *User = *Op.getNode()->use_begin();
 | 
						|
          // Look for an unconditional branch following this conditional branch.
 | 
						|
          // We need this because we need to reverse the successors in order
 | 
						|
          // to implement FCMP_OEQ.
 | 
						|
          if (User->getOpcode() == ISD::BR) {
 | 
						|
            SDValue FalseBB = User->getOperand(1);
 | 
						|
            SDNode *NewBR =
 | 
						|
              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
 | 
						|
            assert(NewBR == User);
 | 
						|
            (void)NewBR;
 | 
						|
            Dest = FalseBB;
 | 
						|
 | 
						|
            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | 
						|
                                Chain, Dest, CC, Cmp);
 | 
						|
            X86::CondCode CCode =
 | 
						|
              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
 | 
						|
            CCode = X86::GetOppositeBranchCondition(CCode);
 | 
						|
            CC = DAG.getConstant(CCode, dl, MVT::i8);
 | 
						|
            Cond = Cmp;
 | 
						|
            addTest = false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
 | 
						|
      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
 | 
						|
      // It should be transformed during dag combiner except when the condition
 | 
						|
      // is set by a arithmetics with overflow node.
 | 
						|
      X86::CondCode CCode =
 | 
						|
        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | 
						|
      CCode = X86::GetOppositeBranchCondition(CCode);
 | 
						|
      CC = DAG.getConstant(CCode, dl, MVT::i8);
 | 
						|
      Cond = Cond.getOperand(0).getOperand(1);
 | 
						|
      addTest = false;
 | 
						|
    } else if (Cond.getOpcode() == ISD::SETCC &&
 | 
						|
               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
 | 
						|
      // For FCMP_OEQ, we can emit
 | 
						|
      // two branches instead of an explicit AND instruction with a
 | 
						|
      // separate test. However, we only do this if this block doesn't
 | 
						|
      // have a fall-through edge, because this requires an explicit
 | 
						|
      // jmp when the condition is false.
 | 
						|
      if (Op.getNode()->hasOneUse()) {
 | 
						|
        SDNode *User = *Op.getNode()->use_begin();
 | 
						|
        // Look for an unconditional branch following this conditional branch.
 | 
						|
        // We need this because we need to reverse the successors in order
 | 
						|
        // to implement FCMP_OEQ.
 | 
						|
        if (User->getOpcode() == ISD::BR) {
 | 
						|
          SDValue FalseBB = User->getOperand(1);
 | 
						|
          SDNode *NewBR =
 | 
						|
            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
 | 
						|
          assert(NewBR == User);
 | 
						|
          (void)NewBR;
 | 
						|
          Dest = FalseBB;
 | 
						|
 | 
						|
          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
 | 
						|
                                    Cond.getOperand(0), Cond.getOperand(1));
 | 
						|
          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
 | 
						|
          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
 | 
						|
          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | 
						|
                              Chain, Dest, CC, Cmp);
 | 
						|
          CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
 | 
						|
          Cond = Cmp;
 | 
						|
          addTest = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Cond.getOpcode() == ISD::SETCC &&
 | 
						|
               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
 | 
						|
      // For FCMP_UNE, we can emit
 | 
						|
      // two branches instead of an explicit AND instruction with a
 | 
						|
      // separate test. However, we only do this if this block doesn't
 | 
						|
      // have a fall-through edge, because this requires an explicit
 | 
						|
      // jmp when the condition is false.
 | 
						|
      if (Op.getNode()->hasOneUse()) {
 | 
						|
        SDNode *User = *Op.getNode()->use_begin();
 | 
						|
        // Look for an unconditional branch following this conditional branch.
 | 
						|
        // We need this because we need to reverse the successors in order
 | 
						|
        // to implement FCMP_UNE.
 | 
						|
        if (User->getOpcode() == ISD::BR) {
 | 
						|
          SDValue FalseBB = User->getOperand(1);
 | 
						|
          SDNode *NewBR =
 | 
						|
            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
 | 
						|
          assert(NewBR == User);
 | 
						|
          (void)NewBR;
 | 
						|
 | 
						|
          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
 | 
						|
                                    Cond.getOperand(0), Cond.getOperand(1));
 | 
						|
          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
 | 
						|
          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
 | 
						|
          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | 
						|
                              Chain, Dest, CC, Cmp);
 | 
						|
          CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
 | 
						|
          Cond = Cmp;
 | 
						|
          addTest = false;
 | 
						|
          Dest = FalseBB;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (addTest) {
 | 
						|
    // Look pass the truncate if the high bits are known zero.
 | 
						|
    if (isTruncWithZeroHighBitsInput(Cond, DAG))
 | 
						|
        Cond = Cond.getOperand(0);
 | 
						|
 | 
						|
    // We know the result is compared against zero. Try to match it to BT.
 | 
						|
    if (Cond.hasOneUse()) {
 | 
						|
      if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) {
 | 
						|
        CC = NewSetCC.getOperand(0);
 | 
						|
        Cond = NewSetCC.getOperand(1);
 | 
						|
        addTest = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (addTest) {
 | 
						|
    X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
 | 
						|
    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
 | 
						|
    Cond = EmitTest(Cond, X86Cond, dl, DAG);
 | 
						|
  }
 | 
						|
  Cond = ConvertCmpIfNecessary(Cond, DAG);
 | 
						|
  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | 
						|
                     Chain, Dest, CC, Cond);
 | 
						|
}
 | 
						|
 | 
						|
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
 | 
						|
// Calls to _alloca are needed to probe the stack when allocating more than 4k
 | 
						|
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
 | 
						|
// that the guard pages used by the OS virtual memory manager are allocated in
 | 
						|
// correct sequence.
 | 
						|
SDValue
 | 
						|
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool SplitStack = MF.shouldSplitStack();
 | 
						|
  bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
 | 
						|
               SplitStack;
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the inputs.
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size  = Op.getOperand(1);
 | 
						|
  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
 | 
						|
  // Chain the dynamic stack allocation so that it doesn't modify the stack
 | 
						|
  // pointer when other instructions are using the stack.
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
 | 
						|
 | 
						|
  bool Is64Bit = Subtarget.is64Bit();
 | 
						|
  MVT SPTy = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  SDValue Result;
 | 
						|
  if (!Lower) {
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
 | 
						|
    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
 | 
						|
                    " not tell us which reg is the stack pointer!");
 | 
						|
 | 
						|
    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
 | 
						|
    Chain = SP.getValue(1);
 | 
						|
    const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
 | 
						|
    unsigned StackAlign = TFI.getStackAlignment();
 | 
						|
    Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
 | 
						|
    if (Align > StackAlign)
 | 
						|
      Result = DAG.getNode(ISD::AND, dl, VT, Result,
 | 
						|
                         DAG.getConstant(-(uint64_t)Align, dl, VT));
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
 | 
						|
  } else if (SplitStack) {
 | 
						|
    MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
 | 
						|
    if (Is64Bit) {
 | 
						|
      // The 64 bit implementation of segmented stacks needs to clobber both r10
 | 
						|
      // r11. This makes it impossible to use it along with nested parameters.
 | 
						|
      const Function *F = MF.getFunction();
 | 
						|
      for (const auto &A : F->args()) {
 | 
						|
        if (A.hasNestAttr())
 | 
						|
          report_fatal_error("Cannot use segmented stacks with functions that "
 | 
						|
                             "have nested arguments.");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
 | 
						|
    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
 | 
						|
    Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
 | 
						|
                                DAG.getRegister(Vreg, SPTy));
 | 
						|
  } else {
 | 
						|
    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
 | 
						|
    MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
 | 
						|
 | 
						|
    const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
    unsigned SPReg = RegInfo->getStackRegister();
 | 
						|
    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
 | 
						|
    Chain = SP.getValue(1);
 | 
						|
 | 
						|
    if (Align) {
 | 
						|
      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
 | 
						|
                       DAG.getConstant(-(uint64_t)Align, dl, VT));
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
 | 
						|
    }
 | 
						|
 | 
						|
    Result = SP;
 | 
						|
  }
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
 | 
						|
 | 
						|
  SDValue Ops[2] = {Result, Chain};
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  if (!Subtarget.is64Bit() ||
 | 
						|
      Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv())) {
 | 
						|
    // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
    // memory location argument.
 | 
						|
    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV));
 | 
						|
  }
 | 
						|
 | 
						|
  // __va_list_tag:
 | 
						|
  //   gp_offset         (0 - 6 * 8)
 | 
						|
  //   fp_offset         (48 - 48 + 8 * 16)
 | 
						|
  //   overflow_arg_area (point to parameters coming in memory).
 | 
						|
  //   reg_save_area
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
  SDValue FIN = Op.getOperand(1);
 | 
						|
  // Store gp_offset
 | 
						|
  SDValue Store = DAG.getStore(
 | 
						|
      Op.getOperand(0), DL,
 | 
						|
      DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN,
 | 
						|
      MachinePointerInfo(SV));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  // Store fp_offset
 | 
						|
  FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
 | 
						|
  Store = DAG.getStore(
 | 
						|
      Op.getOperand(0), DL,
 | 
						|
      DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN,
 | 
						|
      MachinePointerInfo(SV, 4));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  // Store ptr to overflow_arg_area
 | 
						|
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
 | 
						|
  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
  Store =
 | 
						|
      DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  // Store ptr to reg_save_area.
 | 
						|
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
 | 
						|
      Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
 | 
						|
  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
 | 
						|
  Store = DAG.getStore(
 | 
						|
      Op.getOperand(0), DL, RSFIN, FIN,
 | 
						|
      MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget.is64Bit() &&
 | 
						|
         "LowerVAARG only handles 64-bit va_arg!");
 | 
						|
  assert(Op.getNumOperands() == 4);
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  if (Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv()))
 | 
						|
    // The Win64 ABI uses char* instead of a structure.
 | 
						|
    return DAG.expandVAArg(Op.getNode());
 | 
						|
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue SrcPtr = Op.getOperand(1);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  unsigned Align = Op.getConstantOperandVal(3);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  EVT ArgVT = Op.getNode()->getValueType(0);
 | 
						|
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | 
						|
  uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
 | 
						|
  uint8_t ArgMode;
 | 
						|
 | 
						|
  // Decide which area this value should be read from.
 | 
						|
  // TODO: Implement the AMD64 ABI in its entirety. This simple
 | 
						|
  // selection mechanism works only for the basic types.
 | 
						|
  if (ArgVT == MVT::f80) {
 | 
						|
    llvm_unreachable("va_arg for f80 not yet implemented");
 | 
						|
  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
 | 
						|
    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
 | 
						|
  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
 | 
						|
    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unhandled argument type in LowerVAARG");
 | 
						|
  }
 | 
						|
 | 
						|
  if (ArgMode == 2) {
 | 
						|
    // Sanity Check: Make sure using fp_offset makes sense.
 | 
						|
    assert(!Subtarget.useSoftFloat() &&
 | 
						|
           !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) &&
 | 
						|
           Subtarget.hasSSE1());
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert VAARG_64 node into the DAG
 | 
						|
  // VAARG_64 returns two values: Variable Argument Address, Chain
 | 
						|
  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
 | 
						|
                       DAG.getConstant(ArgMode, dl, MVT::i8),
 | 
						|
                       DAG.getConstant(Align, dl, MVT::i32)};
 | 
						|
  SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
 | 
						|
  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
 | 
						|
                                          VTs, InstOps, MVT::i64,
 | 
						|
                                          MachinePointerInfo(SV),
 | 
						|
                                          /*Align=*/0,
 | 
						|
                                          /*Volatile=*/false,
 | 
						|
                                          /*ReadMem=*/true,
 | 
						|
                                          /*WriteMem=*/true);
 | 
						|
  Chain = VAARG.getValue(1);
 | 
						|
 | 
						|
  // Load the next argument and return it
 | 
						|
  return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                           SelectionDAG &DAG) {
 | 
						|
  // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
 | 
						|
  // where a va_list is still an i8*.
 | 
						|
  assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
 | 
						|
  if (Subtarget.isCallingConvWin64(
 | 
						|
        DAG.getMachineFunction().getFunction()->getCallingConv()))
 | 
						|
    // Probably a Win64 va_copy.
 | 
						|
    return DAG.expandVACopy(Op.getNode());
 | 
						|
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue DstPtr = Op.getOperand(1);
 | 
						|
  SDValue SrcPtr = Op.getOperand(2);
 | 
						|
  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | 
						|
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
 | 
						|
                       DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
 | 
						|
                       false, false,
 | 
						|
                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
 | 
						|
}
 | 
						|
 | 
						|
/// Handle vector element shifts where the shift amount is a constant.
 | 
						|
/// Takes immediate version of shift as input.
 | 
						|
static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT,
 | 
						|
                                          SDValue SrcOp, uint64_t ShiftAmt,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  MVT ElementType = VT.getVectorElementType();
 | 
						|
 | 
						|
  // Fold this packed shift into its first operand if ShiftAmt is 0.
 | 
						|
  if (ShiftAmt == 0)
 | 
						|
    return SrcOp;
 | 
						|
 | 
						|
  // Check for ShiftAmt >= element width
 | 
						|
  if (ShiftAmt >= ElementType.getSizeInBits()) {
 | 
						|
    if (Opc == X86ISD::VSRAI)
 | 
						|
      ShiftAmt = ElementType.getSizeInBits() - 1;
 | 
						|
    else
 | 
						|
      return DAG.getConstant(0, dl, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
 | 
						|
         && "Unknown target vector shift-by-constant node");
 | 
						|
 | 
						|
  // Fold this packed vector shift into a build vector if SrcOp is a
 | 
						|
  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
 | 
						|
  if (VT == SrcOp.getSimpleValueType() &&
 | 
						|
      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
 | 
						|
    SmallVector<SDValue, 8> Elts;
 | 
						|
    unsigned NumElts = SrcOp->getNumOperands();
 | 
						|
    ConstantSDNode *ND;
 | 
						|
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode!");
 | 
						|
    case X86ISD::VSHLI:
 | 
						|
      for (unsigned i=0; i!=NumElts; ++i) {
 | 
						|
        SDValue CurrentOp = SrcOp->getOperand(i);
 | 
						|
        if (CurrentOp->isUndef()) {
 | 
						|
          Elts.push_back(CurrentOp);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ND = cast<ConstantSDNode>(CurrentOp);
 | 
						|
        const APInt &C = ND->getAPIntValue();
 | 
						|
        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case X86ISD::VSRLI:
 | 
						|
      for (unsigned i=0; i!=NumElts; ++i) {
 | 
						|
        SDValue CurrentOp = SrcOp->getOperand(i);
 | 
						|
        if (CurrentOp->isUndef()) {
 | 
						|
          Elts.push_back(CurrentOp);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ND = cast<ConstantSDNode>(CurrentOp);
 | 
						|
        const APInt &C = ND->getAPIntValue();
 | 
						|
        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case X86ISD::VSRAI:
 | 
						|
      for (unsigned i=0; i!=NumElts; ++i) {
 | 
						|
        SDValue CurrentOp = SrcOp->getOperand(i);
 | 
						|
        if (CurrentOp->isUndef()) {
 | 
						|
          Elts.push_back(CurrentOp);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ND = cast<ConstantSDNode>(CurrentOp);
 | 
						|
        const APInt &C = ND->getAPIntValue();
 | 
						|
        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getBuildVector(VT, dl, Elts);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(Opc, dl, VT, SrcOp,
 | 
						|
                     DAG.getConstant(ShiftAmt, dl, MVT::i8));
 | 
						|
}
 | 
						|
 | 
						|
/// Handle vector element shifts where the shift amount may or may not be a
 | 
						|
/// constant. Takes immediate version of shift as input.
 | 
						|
static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT,
 | 
						|
                                   SDValue SrcOp, SDValue ShAmt,
 | 
						|
                                   const X86Subtarget &Subtarget,
 | 
						|
                                   SelectionDAG &DAG) {
 | 
						|
  MVT SVT = ShAmt.getSimpleValueType();
 | 
						|
  assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
 | 
						|
 | 
						|
  // Catch shift-by-constant.
 | 
						|
  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
 | 
						|
    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
 | 
						|
                                      CShAmt->getZExtValue(), DAG);
 | 
						|
 | 
						|
  // Change opcode to non-immediate version
 | 
						|
  switch (Opc) {
 | 
						|
    default: llvm_unreachable("Unknown target vector shift node");
 | 
						|
    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
 | 
						|
    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
 | 
						|
    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Need to build a vector containing shift amount.
 | 
						|
  // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
 | 
						|
  // +=================+============+=======================================+
 | 
						|
  // | ShAmt is        | HasSSE4.1? | Construct ShAmt vector as             |
 | 
						|
  // +=================+============+=======================================+
 | 
						|
  // | i64             | Yes, No    | Use ShAmt as lowest elt               |
 | 
						|
  // | i32             | Yes        | zero-extend in-reg                    |
 | 
						|
  // | (i32 zext(i16)) | Yes        | zero-extend in-reg                    |
 | 
						|
  // | i16/i32         | No         | v4i32 build_vector(ShAmt, 0, ud, ud)) |
 | 
						|
  // +=================+============+=======================================+
 | 
						|
 | 
						|
  if (SVT == MVT::i64)
 | 
						|
    ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt);
 | 
						|
  else if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
 | 
						|
           ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
 | 
						|
    SDValue Op0 = ShAmt.getOperand(0);
 | 
						|
    Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
 | 
						|
    ShAmt = DAG.getZeroExtendVectorInReg(Op0, SDLoc(Op0), MVT::v2i64);
 | 
						|
  } else if (Subtarget.hasSSE41() &&
 | 
						|
             ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
    ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt);
 | 
						|
    ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64);
 | 
						|
  } else {
 | 
						|
    SmallVector<SDValue, 4> ShOps = {ShAmt, DAG.getConstant(0, dl, SVT),
 | 
						|
                                     DAG.getUNDEF(SVT), DAG.getUNDEF(SVT)};
 | 
						|
    ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps);
 | 
						|
  }
 | 
						|
 | 
						|
  // The return type has to be a 128-bit type with the same element
 | 
						|
  // type as the input type.
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
 | 
						|
 | 
						|
  ShAmt = DAG.getBitcast(ShVT, ShAmt);
 | 
						|
  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return Mask with the necessary casting or extending
 | 
						|
/// for \p Mask according to \p MaskVT when lowering masking intrinsics
 | 
						|
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
 | 
						|
                           const X86Subtarget &Subtarget, SelectionDAG &DAG,
 | 
						|
                           const SDLoc &dl) {
 | 
						|
 | 
						|
  if (isAllOnesConstant(Mask))
 | 
						|
    return DAG.getTargetConstant(1, dl, MaskVT);
 | 
						|
  if (X86::isZeroNode(Mask))
 | 
						|
    return DAG.getTargetConstant(0, dl, MaskVT);
 | 
						|
 | 
						|
  if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
 | 
						|
    // Mask should be extended
 | 
						|
    Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
 | 
						|
                       MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
 | 
						|
    if (MaskVT == MVT::v64i1) {
 | 
						|
      assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
 | 
						|
      // In case 32bit mode, bitcast i64 is illegal, extend/split it.
 | 
						|
      SDValue Lo, Hi;
 | 
						|
      Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
 | 
						|
                          DAG.getConstant(0, dl, MVT::i32));
 | 
						|
      Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
 | 
						|
                          DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
      Lo = DAG.getBitcast(MVT::v32i1, Lo);
 | 
						|
      Hi = DAG.getBitcast(MVT::v32i1, Hi);
 | 
						|
 | 
						|
      return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
 | 
						|
    } else {
 | 
						|
      // MaskVT require < 64bit. Truncate mask (should succeed in any case),
 | 
						|
      // and bitcast.
 | 
						|
      MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits());
 | 
						|
      return DAG.getBitcast(MaskVT,
 | 
						|
                            DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask));
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    MVT BitcastVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                                     Mask.getSimpleValueType().getSizeInBits());
 | 
						|
    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
 | 
						|
    // are extracted by EXTRACT_SUBVECTOR.
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
 | 
						|
                       DAG.getBitcast(BitcastVT, Mask),
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return (and \p Op, \p Mask) for compare instructions or
 | 
						|
/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
 | 
						|
/// necessary casting or extending for \p Mask when lowering masking intrinsics
 | 
						|
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
 | 
						|
                  SDValue PreservedSrc,
 | 
						|
                  const X86Subtarget &Subtarget,
 | 
						|
                  SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
  unsigned OpcodeSelect = ISD::VSELECT;
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (isAllOnesConstant(Mask))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case X86ISD::PCMPEQM:
 | 
						|
  case X86ISD::PCMPGTM:
 | 
						|
  case X86ISD::CMPM:
 | 
						|
  case X86ISD::CMPMU:
 | 
						|
    return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
 | 
						|
  case X86ISD::VFPCLASS:
 | 
						|
    case X86ISD::VFPCLASSS:
 | 
						|
    return DAG.getNode(ISD::OR, dl, VT, Op, VMask);
 | 
						|
  case X86ISD::VTRUNC:
 | 
						|
  case X86ISD::VTRUNCS:
 | 
						|
  case X86ISD::VTRUNCUS:
 | 
						|
  case X86ISD::CVTPS2PH:
 | 
						|
    // We can't use ISD::VSELECT here because it is not always "Legal"
 | 
						|
    // for the destination type. For example vpmovqb require only AVX512
 | 
						|
    // and vselect that can operate on byte element type require BWI
 | 
						|
    OpcodeSelect = X86ISD::SELECT;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (PreservedSrc.isUndef())
 | 
						|
    PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
  return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Creates an SDNode for a predicated scalar operation.
 | 
						|
/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
 | 
						|
/// The mask is coming as MVT::i8 and it should be truncated
 | 
						|
/// to MVT::i1 while lowering masking intrinsics.
 | 
						|
/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
 | 
						|
/// "X86select" instead of "vselect". We just can't create the "vselect" node
 | 
						|
/// for a scalar instruction.
 | 
						|
static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
 | 
						|
                                    SDValue PreservedSrc,
 | 
						|
                                    const X86Subtarget &Subtarget,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  if (isAllOnesConstant(Mask))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // The mask should be of type MVT::i1
 | 
						|
  SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
 | 
						|
 | 
						|
  if (Op.getOpcode() == X86ISD::FSETCCM ||
 | 
						|
      Op.getOpcode() == X86ISD::FSETCCM_RND)
 | 
						|
    return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
 | 
						|
  if (Op.getOpcode() == X86ISD::VFPCLASS ||
 | 
						|
      Op.getOpcode() == X86ISD::VFPCLASSS)
 | 
						|
    return DAG.getNode(ISD::OR, dl, VT, Op, IMask);
 | 
						|
 | 
						|
  if (PreservedSrc.isUndef())
 | 
						|
    PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
  return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc);
 | 
						|
}
 | 
						|
 | 
						|
static int getSEHRegistrationNodeSize(const Function *Fn) {
 | 
						|
  if (!Fn->hasPersonalityFn())
 | 
						|
    report_fatal_error(
 | 
						|
        "querying registration node size for function without personality");
 | 
						|
  // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
 | 
						|
  // WinEHStatePass for the full struct definition.
 | 
						|
  switch (classifyEHPersonality(Fn->getPersonalityFn())) {
 | 
						|
  case EHPersonality::MSVC_X86SEH: return 24;
 | 
						|
  case EHPersonality::MSVC_CXX: return 16;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  report_fatal_error(
 | 
						|
      "can only recover FP for 32-bit MSVC EH personality functions");
 | 
						|
}
 | 
						|
 | 
						|
/// When the MSVC runtime transfers control to us, either to an outlined
 | 
						|
/// function or when returning to a parent frame after catching an exception, we
 | 
						|
/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
 | 
						|
/// Here's the math:
 | 
						|
///   RegNodeBase = EntryEBP - RegNodeSize
 | 
						|
///   ParentFP = RegNodeBase - ParentFrameOffset
 | 
						|
/// Subtracting RegNodeSize takes us to the offset of the registration node, and
 | 
						|
/// subtracting the offset (negative on x86) takes us back to the parent FP.
 | 
						|
static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
 | 
						|
                                   SDValue EntryEBP) {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SDLoc dl;
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // It's possible that the parent function no longer has a personality function
 | 
						|
  // if the exceptional code was optimized away, in which case we just return
 | 
						|
  // the incoming EBP.
 | 
						|
  if (!Fn->hasPersonalityFn())
 | 
						|
    return EntryEBP;
 | 
						|
 | 
						|
  // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
 | 
						|
  // registration, or the .set_setframe offset.
 | 
						|
  MCSymbol *OffsetSym =
 | 
						|
      MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
 | 
						|
          GlobalValue::getRealLinkageName(Fn->getName()));
 | 
						|
  SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
 | 
						|
  SDValue ParentFrameOffset =
 | 
						|
      DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
 | 
						|
 | 
						|
  // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
 | 
						|
  // prologue to RBP in the parent function.
 | 
						|
  const X86Subtarget &Subtarget =
 | 
						|
      static_cast<const X86Subtarget &>(DAG.getSubtarget());
 | 
						|
  if (Subtarget.is64Bit())
 | 
						|
    return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
 | 
						|
 | 
						|
  int RegNodeSize = getSEHRegistrationNodeSize(Fn);
 | 
						|
  // RegNodeBase = EntryEBP - RegNodeSize
 | 
						|
  // ParentFP = RegNodeBase - ParentFrameOffset
 | 
						|
  SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
 | 
						|
                                    DAG.getConstant(RegNodeSize, dl, PtrVT));
 | 
						|
  return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  // Helper to detect if the operand is CUR_DIRECTION rounding mode.
 | 
						|
  auto isRoundModeCurDirection = [](SDValue Rnd) {
 | 
						|
    if (!isa<ConstantSDNode>(Rnd))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
 | 
						|
    return Round == X86::STATIC_ROUNDING::CUR_DIRECTION;
 | 
						|
  };
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
 | 
						|
  if (IntrData) {
 | 
						|
    switch(IntrData->Type) {
 | 
						|
    case INTR_TYPE_1OP:
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
 | 
						|
    case INTR_TYPE_2OP:
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
 | 
						|
        Op.getOperand(2));
 | 
						|
    case INTR_TYPE_3OP:
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
 | 
						|
        Op.getOperand(2), Op.getOperand(3));
 | 
						|
    case INTR_TYPE_4OP:
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
 | 
						|
        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
 | 
						|
    case INTR_TYPE_1OP_MASK_RM: {
 | 
						|
      SDValue Src = Op.getOperand(1);
 | 
						|
      SDValue PassThru = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      SDValue RoundingMode;
 | 
						|
      // We always add rounding mode to the Node.
 | 
						|
      // If the rounding mode is not specified, we add the
 | 
						|
      // "current direction" mode.
 | 
						|
      if (Op.getNumOperands() == 4)
 | 
						|
        RoundingMode =
 | 
						|
          DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
 | 
						|
      else
 | 
						|
        RoundingMode = Op.getOperand(4);
 | 
						|
      assert(IntrData->Opc1 == 0 && "Unexpected second opcode!");
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
 | 
						|
                                              RoundingMode),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_1OP_MASK: {
 | 
						|
      SDValue Src = Op.getOperand(1);
 | 
						|
      SDValue PassThru = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      // We add rounding mode to the Node when
 | 
						|
      //   - RM Opcode is specified and
 | 
						|
      //   - RM is not "current direction".
 | 
						|
      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
 | 
						|
      if (IntrWithRoundingModeOpcode != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(4);
 | 
						|
        if (!isRoundModeCurDirection(Rnd)) {
 | 
						|
          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
 | 
						|
                                      dl, Op.getValueType(),
 | 
						|
                                      Src, Rnd),
 | 
						|
                                      Mask, PassThru, Subtarget, DAG);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_SCALAR_MASK: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue passThru = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2),
 | 
						|
                                  Mask, passThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_SCALAR_MASK_RM: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src0 = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      // There are 2 kinds of intrinsics in this group:
 | 
						|
      // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
 | 
						|
      // (2) With rounding mode and sae - 7 operands.
 | 
						|
      if (Op.getNumOperands() == 6) {
 | 
						|
        SDValue Sae  = Op.getOperand(5);
 | 
						|
        return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
 | 
						|
                                                Sae),
 | 
						|
                                    Mask, Src0, Subtarget, DAG);
 | 
						|
      }
 | 
						|
      assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
 | 
						|
      SDValue RoundingMode  = Op.getOperand(5);
 | 
						|
      SDValue Sae  = Op.getOperand(6);
 | 
						|
      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
 | 
						|
                                              RoundingMode, Sae),
 | 
						|
                                  Mask, Src0, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_2OP_MASK:
 | 
						|
    case INTR_TYPE_2OP_IMM8_MASK: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue PassThru = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
 | 
						|
      if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK)
 | 
						|
        Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
 | 
						|
 | 
						|
      // We specify 2 possible opcodes for intrinsics with rounding modes.
 | 
						|
      // First, we check if the intrinsic may have non-default rounding mode,
 | 
						|
      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
 | 
						|
      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
 | 
						|
      if (IntrWithRoundingModeOpcode != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(5);
 | 
						|
        if (!isRoundModeCurDirection(Rnd)) {
 | 
						|
          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
 | 
						|
                                      dl, Op.getValueType(),
 | 
						|
                                      Src1, Src2, Rnd),
 | 
						|
                                      Mask, PassThru, Subtarget, DAG);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // TODO: Intrinsics should have fast-math-flags to propagate.
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_2OP_MASK_RM: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue PassThru = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      // We specify 2 possible modes for intrinsics, with/without rounding
 | 
						|
      // modes.
 | 
						|
      // First, we check if the intrinsic have rounding mode (6 operands),
 | 
						|
      // if not, we set rounding mode to "current".
 | 
						|
      SDValue Rnd;
 | 
						|
      if (Op.getNumOperands() == 6)
 | 
						|
        Rnd = Op.getOperand(5);
 | 
						|
      else
 | 
						|
        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              Src1, Src2, Rnd),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_3OP_SCALAR_MASK_RM: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue PassThru = Op.getOperand(4);
 | 
						|
      SDValue Mask = Op.getOperand(5);
 | 
						|
      SDValue Sae  = Op.getOperand(6);
 | 
						|
 | 
						|
      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
 | 
						|
                                              Src2, Src3, Sae),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_3OP_MASK_RM: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Imm = Op.getOperand(3);
 | 
						|
      SDValue PassThru = Op.getOperand(4);
 | 
						|
      SDValue Mask = Op.getOperand(5);
 | 
						|
      // We specify 2 possible modes for intrinsics, with/without rounding
 | 
						|
      // modes.
 | 
						|
      // First, we check if the intrinsic have rounding mode (7 operands),
 | 
						|
      // if not, we set rounding mode to "current".
 | 
						|
      SDValue Rnd;
 | 
						|
      if (Op.getNumOperands() == 7)
 | 
						|
        Rnd = Op.getOperand(6);
 | 
						|
      else
 | 
						|
        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              Src1, Src2, Imm, Rnd),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case INTR_TYPE_3OP_IMM8_MASK:
 | 
						|
    case INTR_TYPE_3OP_MASK: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue PassThru = Op.getOperand(4);
 | 
						|
      SDValue Mask = Op.getOperand(5);
 | 
						|
 | 
						|
      if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
 | 
						|
        Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
 | 
						|
 | 
						|
      // We specify 2 possible opcodes for intrinsics with rounding modes.
 | 
						|
      // First, we check if the intrinsic may have non-default rounding mode,
 | 
						|
      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
 | 
						|
      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
 | 
						|
      if (IntrWithRoundingModeOpcode != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(6);
 | 
						|
        if (!isRoundModeCurDirection(Rnd)) {
 | 
						|
          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
 | 
						|
                                      dl, Op.getValueType(),
 | 
						|
                                      Src1, Src2, Src3, Rnd),
 | 
						|
                                      Mask, PassThru, Subtarget, DAG);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              Src1, Src2, Src3),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case VPERM_2OP_MASK : {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue PassThru = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
 | 
						|
      // Swap Src1 and Src2 in the node creation
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case VPERM_3OP_MASKZ:
 | 
						|
    case VPERM_3OP_MASK:{
 | 
						|
      MVT VT = Op.getSimpleValueType();
 | 
						|
      // Src2 is the PassThru
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      // PassThru needs to be the same type as the destination in order
 | 
						|
      // to pattern match correctly.
 | 
						|
      SDValue Src2 = DAG.getBitcast(VT, Op.getOperand(2));
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      SDValue PassThru = SDValue();
 | 
						|
 | 
						|
      // set PassThru element
 | 
						|
      if (IntrData->Type == VPERM_3OP_MASKZ)
 | 
						|
        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      else
 | 
						|
        PassThru = Src2;
 | 
						|
 | 
						|
      // Swap Src1 and Src2 in the node creation
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
 | 
						|
                                              dl, Op.getValueType(),
 | 
						|
                                              Src2, Src1, Src3),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case FMA_OP_MASK3:
 | 
						|
    case FMA_OP_MASKZ:
 | 
						|
    case FMA_OP_MASK: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      MVT VT = Op.getSimpleValueType();
 | 
						|
      SDValue PassThru = SDValue();
 | 
						|
 | 
						|
      // set PassThru element
 | 
						|
      if (IntrData->Type == FMA_OP_MASKZ)
 | 
						|
        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      else if (IntrData->Type == FMA_OP_MASK3)
 | 
						|
        PassThru = Src3;
 | 
						|
      else
 | 
						|
        PassThru = Src1;
 | 
						|
 | 
						|
      // We specify 2 possible opcodes for intrinsics with rounding modes.
 | 
						|
      // First, we check if the intrinsic may have non-default rounding mode,
 | 
						|
      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
 | 
						|
      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
 | 
						|
      if (IntrWithRoundingModeOpcode != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(5);
 | 
						|
        if (!isRoundModeCurDirection(Rnd))
 | 
						|
          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
 | 
						|
                                                  dl, Op.getValueType(),
 | 
						|
                                                  Src1, Src2, Src3, Rnd),
 | 
						|
                                      Mask, PassThru, Subtarget, DAG);
 | 
						|
      }
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
 | 
						|
                                              dl, Op.getValueType(),
 | 
						|
                                              Src1, Src2, Src3),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case FMA_OP_SCALAR_MASK:
 | 
						|
    case FMA_OP_SCALAR_MASK3:
 | 
						|
    case FMA_OP_SCALAR_MASKZ: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
      MVT VT = Op.getSimpleValueType();
 | 
						|
      SDValue PassThru = SDValue();
 | 
						|
 | 
						|
      // set PassThru element
 | 
						|
      if (IntrData->Type == FMA_OP_SCALAR_MASKZ)
 | 
						|
        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      else if (IntrData->Type == FMA_OP_SCALAR_MASK3)
 | 
						|
        PassThru = Src3;
 | 
						|
      else
 | 
						|
        PassThru = Src1;
 | 
						|
 | 
						|
      SDValue Rnd = Op.getOperand(5);
 | 
						|
      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl,
 | 
						|
                                              Op.getValueType(), Src1, Src2,
 | 
						|
                                              Src3, Rnd),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case TERLOG_OP_MASK:
 | 
						|
    case TERLOG_OP_MASKZ: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4));
 | 
						|
      SDValue Mask = Op.getOperand(5);
 | 
						|
      MVT VT = Op.getSimpleValueType();
 | 
						|
      SDValue PassThru = Src1;
 | 
						|
      // Set PassThru element.
 | 
						|
      if (IntrData->Type == TERLOG_OP_MASKZ)
 | 
						|
        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              Src1, Src2, Src3, Src4),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case CVTPD2PS:
 | 
						|
      // ISD::FP_ROUND has a second argument that indicates if the truncation
 | 
						|
      // does not change the value. Set it to 0 since it can change.
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1),
 | 
						|
                         DAG.getIntPtrConstant(0, dl));
 | 
						|
    case CVTPD2PS_MASK: {
 | 
						|
      SDValue Src = Op.getOperand(1);
 | 
						|
      SDValue PassThru = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      // We add rounding mode to the Node when
 | 
						|
      //   - RM Opcode is specified and
 | 
						|
      //   - RM is not "current direction".
 | 
						|
      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
 | 
						|
      if (IntrWithRoundingModeOpcode != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(4);
 | 
						|
        if (!isRoundModeCurDirection(Rnd)) {
 | 
						|
          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
 | 
						|
                                      dl, Op.getValueType(),
 | 
						|
                                      Src, Rnd),
 | 
						|
                                      Mask, PassThru, Subtarget, DAG);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert(IntrData->Opc0 == ISD::FP_ROUND && "Unexpected opcode!");
 | 
						|
      // ISD::FP_ROUND has a second argument that indicates if the truncation
 | 
						|
      // does not change the value. Set it to 0 since it can change.
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
 | 
						|
                                              DAG.getIntPtrConstant(0, dl)),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case FPCLASS: {
 | 
						|
      // FPclass intrinsics with mask
 | 
						|
       SDValue Src1 = Op.getOperand(1);
 | 
						|
       MVT VT = Src1.getSimpleValueType();
 | 
						|
       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
       SDValue Imm = Op.getOperand(2);
 | 
						|
       SDValue Mask = Op.getOperand(3);
 | 
						|
       MVT BitcastVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                                     Mask.getSimpleValueType().getSizeInBits());
 | 
						|
       SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
 | 
						|
       SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask,
 | 
						|
                                                 DAG.getTargetConstant(0, dl, MaskVT),
 | 
						|
                                                 Subtarget, DAG);
 | 
						|
       SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
 | 
						|
                                 DAG.getUNDEF(BitcastVT), FPclassMask,
 | 
						|
                                 DAG.getIntPtrConstant(0, dl));
 | 
						|
       return DAG.getBitcast(Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
    case FPCLASSS: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Imm = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm);
 | 
						|
      SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask,
 | 
						|
        DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG);
 | 
						|
      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, FPclassMask);
 | 
						|
    }
 | 
						|
    case CMP_MASK:
 | 
						|
    case CMP_MASK_CC: {
 | 
						|
      // Comparison intrinsics with masks.
 | 
						|
      // Example of transformation:
 | 
						|
      // (i8 (int_x86_avx512_mask_pcmpeq_q_128
 | 
						|
      //             (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
 | 
						|
      // (i8 (bitcast
 | 
						|
      //   (v8i1 (insert_subvector undef,
 | 
						|
      //           (v2i1 (and (PCMPEQM %a, %b),
 | 
						|
      //                      (extract_subvector
 | 
						|
      //                         (v8i1 (bitcast %mask)), 0))), 0))))
 | 
						|
      MVT VT = Op.getOperand(1).getSimpleValueType();
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
      SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
 | 
						|
      MVT BitcastVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                                       Mask.getSimpleValueType().getSizeInBits());
 | 
						|
      SDValue Cmp;
 | 
						|
      if (IntrData->Type == CMP_MASK_CC) {
 | 
						|
        SDValue CC = Op.getOperand(3);
 | 
						|
        CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
 | 
						|
        // We specify 2 possible opcodes for intrinsics with rounding modes.
 | 
						|
        // First, we check if the intrinsic may have non-default rounding mode,
 | 
						|
        // (IntrData->Opc1 != 0), then we check the rounding mode operand.
 | 
						|
        if (IntrData->Opc1 != 0) {
 | 
						|
          SDValue Rnd = Op.getOperand(5);
 | 
						|
          if (!isRoundModeCurDirection(Rnd))
 | 
						|
            Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
 | 
						|
                              Op.getOperand(2), CC, Rnd);
 | 
						|
        }
 | 
						|
        //default rounding mode
 | 
						|
        if(!Cmp.getNode())
 | 
						|
            Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
 | 
						|
                              Op.getOperand(2), CC);
 | 
						|
 | 
						|
      } else {
 | 
						|
        assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
 | 
						|
        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
 | 
						|
                          Op.getOperand(2));
 | 
						|
      }
 | 
						|
      SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
 | 
						|
                                             DAG.getTargetConstant(0, dl,
 | 
						|
                                                                   MaskVT),
 | 
						|
                                             Subtarget, DAG);
 | 
						|
      SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
 | 
						|
                                DAG.getUNDEF(BitcastVT), CmpMask,
 | 
						|
                                DAG.getIntPtrConstant(0, dl));
 | 
						|
      return DAG.getBitcast(Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
    case CMP_MASK_SCALAR_CC: {
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
 | 
						|
      SDValue Mask = Op.getOperand(4);
 | 
						|
 | 
						|
      SDValue Cmp;
 | 
						|
      if (IntrData->Opc1 != 0) {
 | 
						|
        SDValue Rnd = Op.getOperand(5);
 | 
						|
        if (!isRoundModeCurDirection(Rnd))
 | 
						|
          Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd);
 | 
						|
      }
 | 
						|
      //default rounding mode
 | 
						|
      if(!Cmp.getNode())
 | 
						|
        Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC);
 | 
						|
 | 
						|
      SDValue CmpMask = getScalarMaskingNode(Cmp, Mask,
 | 
						|
                                             DAG.getTargetConstant(0, dl,
 | 
						|
                                                                   MVT::i1),
 | 
						|
                                             Subtarget, DAG);
 | 
						|
 | 
						|
      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, CmpMask);
 | 
						|
    }
 | 
						|
    case COMI: { // Comparison intrinsics
 | 
						|
      ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
 | 
						|
      SDValue LHS = Op.getOperand(1);
 | 
						|
      SDValue RHS = Op.getOperand(2);
 | 
						|
      SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
 | 
						|
      SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
 | 
						|
      SDValue SetCC;
 | 
						|
      switch (CC) {
 | 
						|
      case ISD::SETEQ: { // (ZF = 0 and PF = 0)
 | 
						|
        SetCC = getSETCC(X86::COND_E, Comi, dl, DAG);
 | 
						|
        SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG);
 | 
						|
        SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ISD::SETNE: { // (ZF = 1 or PF = 1)
 | 
						|
        SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG);
 | 
						|
        SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG);
 | 
						|
        SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ISD::SETGT: // (CF = 0 and ZF = 0)
 | 
						|
        SetCC = getSETCC(X86::COND_A, Comi, dl, DAG);
 | 
						|
        break;
 | 
						|
      case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
 | 
						|
        SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ISD::SETGE: // CF = 0
 | 
						|
        SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG);
 | 
						|
        break;
 | 
						|
      case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
 | 
						|
        SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected illegal condition!");
 | 
						|
      }
 | 
						|
      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | 
						|
    }
 | 
						|
    case COMI_RM: { // Comparison intrinsics with Sae
 | 
						|
      SDValue LHS = Op.getOperand(1);
 | 
						|
      SDValue RHS = Op.getOperand(2);
 | 
						|
      unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
 | 
						|
      SDValue Sae = Op.getOperand(4);
 | 
						|
 | 
						|
      SDValue FCmp;
 | 
						|
      if (isRoundModeCurDirection(Sae))
 | 
						|
        FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::i1, LHS, RHS,
 | 
						|
                                  DAG.getConstant(CondVal, dl, MVT::i8));
 | 
						|
      else
 | 
						|
        FCmp = DAG.getNode(X86ISD::FSETCCM_RND, dl, MVT::i1, LHS, RHS,
 | 
						|
                                  DAG.getConstant(CondVal, dl, MVT::i8), Sae);
 | 
						|
      // AnyExt just uses KMOVW %kreg, %r32; ZeroExt emits "and $1, %reg"
 | 
						|
      return DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, FCmp);
 | 
						|
    }
 | 
						|
    case VSHIFT:
 | 
						|
      return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
 | 
						|
                                 Op.getOperand(1), Op.getOperand(2), Subtarget,
 | 
						|
                                 DAG);
 | 
						|
    case COMPRESS_EXPAND_IN_REG: {
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      SDValue DataToCompress = Op.getOperand(1);
 | 
						|
      SDValue PassThru = Op.getOperand(2);
 | 
						|
      if (isAllOnesConstant(Mask)) // return data as is
 | 
						|
        return Op.getOperand(1);
 | 
						|
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              DataToCompress),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case BROADCASTM: {
 | 
						|
      SDValue Mask = Op.getOperand(1);
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                                    Mask.getSimpleValueType().getSizeInBits());
 | 
						|
      Mask = DAG.getBitcast(MaskVT, Mask);
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask);
 | 
						|
    }
 | 
						|
    case KUNPCK: {
 | 
						|
      MVT VT = Op.getSimpleValueType();
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2);
 | 
						|
 | 
						|
      SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl);
 | 
						|
      SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl);
 | 
						|
      // Arguments should be swapped.
 | 
						|
      SDValue Res = DAG.getNode(IntrData->Opc0, dl,
 | 
						|
                                MVT::getVectorVT(MVT::i1, VT.getSizeInBits()),
 | 
						|
                                Src2, Src1);
 | 
						|
      return DAG.getBitcast(VT, Res);
 | 
						|
    }
 | 
						|
    case FIXUPIMMS:
 | 
						|
    case FIXUPIMMS_MASKZ:
 | 
						|
    case FIXUPIMM:
 | 
						|
    case FIXUPIMM_MASKZ:{
 | 
						|
      SDValue Src1 = Op.getOperand(1);
 | 
						|
      SDValue Src2 = Op.getOperand(2);
 | 
						|
      SDValue Src3 = Op.getOperand(3);
 | 
						|
      SDValue Imm = Op.getOperand(4);
 | 
						|
      SDValue Mask = Op.getOperand(5);
 | 
						|
      SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ?
 | 
						|
                                         Src1 : getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      // We specify 2 possible modes for intrinsics, with/without rounding
 | 
						|
      // modes.
 | 
						|
      // First, we check if the intrinsic have rounding mode (7 operands),
 | 
						|
      // if not, we set rounding mode to "current".
 | 
						|
      SDValue Rnd;
 | 
						|
      if (Op.getNumOperands() == 7)
 | 
						|
        Rnd = Op.getOperand(6);
 | 
						|
      else
 | 
						|
        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
 | 
						|
      if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ)
 | 
						|
        return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                                Src1, Src2, Src3, Imm, Rnd),
 | 
						|
                                    Mask, Passthru, Subtarget, DAG);
 | 
						|
      else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ
 | 
						|
        return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                       Src1, Src2, Src3, Imm, Rnd),
 | 
						|
                                    Mask, Passthru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case CONVERT_TO_MASK: {
 | 
						|
      MVT SrcVT = Op.getOperand(1).getSimpleValueType();
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
 | 
						|
      MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits());
 | 
						|
 | 
						|
      SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT,
 | 
						|
                                    Op.getOperand(1));
 | 
						|
      SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
 | 
						|
                                DAG.getUNDEF(BitcastVT), CvtMask,
 | 
						|
                                DAG.getIntPtrConstant(0, dl));
 | 
						|
      return DAG.getBitcast(Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
    case CONVERT_MASK_TO_VEC: {
 | 
						|
      SDValue Mask = Op.getOperand(1);
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
      SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
      return DAG.getNode(IntrData->Opc0, dl, VT, VMask);
 | 
						|
    }
 | 
						|
    case BRCST_SUBVEC_TO_VEC: {
 | 
						|
      SDValue Src = Op.getOperand(1);
 | 
						|
      SDValue Passthru = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
      EVT resVT = Passthru.getValueType();
 | 
						|
      SDValue subVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, resVT,
 | 
						|
                                       DAG.getUNDEF(resVT), Src,
 | 
						|
                                       DAG.getIntPtrConstant(0, dl));
 | 
						|
      SDValue immVal;
 | 
						|
      if (Src.getSimpleValueType().is256BitVector() && resVT.is512BitVector())
 | 
						|
        immVal = DAG.getConstant(0x44, dl, MVT::i8);
 | 
						|
      else
 | 
						|
        immVal = DAG.getConstant(0, dl, MVT::i8);
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
 | 
						|
                                              subVec, subVec, immVal),
 | 
						|
                                  Mask, Passthru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    case BRCST32x2_TO_VEC: {
 | 
						|
      SDValue Src = Op.getOperand(1);
 | 
						|
      SDValue PassThru = Op.getOperand(2);
 | 
						|
      SDValue Mask = Op.getOperand(3);
 | 
						|
 | 
						|
      assert((VT.getScalarType() == MVT::i32 ||
 | 
						|
              VT.getScalarType() == MVT::f32) && "Unexpected type!");
 | 
						|
      //bitcast Src to packed 64
 | 
						|
      MVT ScalarVT = VT.getScalarType() == MVT::i32 ? MVT::i64 : MVT::f64;
 | 
						|
      MVT BitcastVT = MVT::getVectorVT(ScalarVT, Src.getValueSizeInBits()/64);
 | 
						|
      Src = DAG.getBitcast(BitcastVT, Src);
 | 
						|
 | 
						|
      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
 | 
						|
                                  Mask, PassThru, Subtarget, DAG);
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (IntNo) {
 | 
						|
  default: return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
 | 
						|
  case Intrinsic::x86_avx2_permd:
 | 
						|
  case Intrinsic::x86_avx2_permps:
 | 
						|
    // Operands intentionally swapped. Mask is last operand to intrinsic,
 | 
						|
    // but second operand for node/instruction.
 | 
						|
    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(2), Op.getOperand(1));
 | 
						|
 | 
						|
  // ptest and testp intrinsics. The intrinsic these come from are designed to
 | 
						|
  // return an integer value, not just an instruction so lower it to the ptest
 | 
						|
  // or testp pattern and a setcc for the result.
 | 
						|
  case Intrinsic::x86_sse41_ptestz:
 | 
						|
  case Intrinsic::x86_sse41_ptestc:
 | 
						|
  case Intrinsic::x86_sse41_ptestnzc:
 | 
						|
  case Intrinsic::x86_avx_ptestz_256:
 | 
						|
  case Intrinsic::x86_avx_ptestc_256:
 | 
						|
  case Intrinsic::x86_avx_ptestnzc_256:
 | 
						|
  case Intrinsic::x86_avx_vtestz_ps:
 | 
						|
  case Intrinsic::x86_avx_vtestc_ps:
 | 
						|
  case Intrinsic::x86_avx_vtestnzc_ps:
 | 
						|
  case Intrinsic::x86_avx_vtestz_pd:
 | 
						|
  case Intrinsic::x86_avx_vtestc_pd:
 | 
						|
  case Intrinsic::x86_avx_vtestnzc_pd:
 | 
						|
  case Intrinsic::x86_avx_vtestz_ps_256:
 | 
						|
  case Intrinsic::x86_avx_vtestc_ps_256:
 | 
						|
  case Intrinsic::x86_avx_vtestnzc_ps_256:
 | 
						|
  case Intrinsic::x86_avx_vtestz_pd_256:
 | 
						|
  case Intrinsic::x86_avx_vtestc_pd_256:
 | 
						|
  case Intrinsic::x86_avx_vtestnzc_pd_256: {
 | 
						|
    bool IsTestPacked = false;
 | 
						|
    X86::CondCode X86CC;
 | 
						|
    switch (IntNo) {
 | 
						|
    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
 | 
						|
    case Intrinsic::x86_avx_vtestz_ps:
 | 
						|
    case Intrinsic::x86_avx_vtestz_pd:
 | 
						|
    case Intrinsic::x86_avx_vtestz_ps_256:
 | 
						|
    case Intrinsic::x86_avx_vtestz_pd_256:
 | 
						|
      IsTestPacked = true;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Intrinsic::x86_sse41_ptestz:
 | 
						|
    case Intrinsic::x86_avx_ptestz_256:
 | 
						|
      // ZF = 1
 | 
						|
      X86CC = X86::COND_E;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_avx_vtestc_ps:
 | 
						|
    case Intrinsic::x86_avx_vtestc_pd:
 | 
						|
    case Intrinsic::x86_avx_vtestc_ps_256:
 | 
						|
    case Intrinsic::x86_avx_vtestc_pd_256:
 | 
						|
      IsTestPacked = true;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Intrinsic::x86_sse41_ptestc:
 | 
						|
    case Intrinsic::x86_avx_ptestc_256:
 | 
						|
      // CF = 1
 | 
						|
      X86CC = X86::COND_B;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_avx_vtestnzc_ps:
 | 
						|
    case Intrinsic::x86_avx_vtestnzc_pd:
 | 
						|
    case Intrinsic::x86_avx_vtestnzc_ps_256:
 | 
						|
    case Intrinsic::x86_avx_vtestnzc_pd_256:
 | 
						|
      IsTestPacked = true;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Intrinsic::x86_sse41_ptestnzc:
 | 
						|
    case Intrinsic::x86_avx_ptestnzc_256:
 | 
						|
      // ZF and CF = 0
 | 
						|
      X86CC = X86::COND_A;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue LHS = Op.getOperand(1);
 | 
						|
    SDValue RHS = Op.getOperand(2);
 | 
						|
    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
 | 
						|
    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
 | 
						|
    SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
 | 
						|
    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | 
						|
  }
 | 
						|
  case Intrinsic::x86_avx512_kortestz_w:
 | 
						|
  case Intrinsic::x86_avx512_kortestc_w: {
 | 
						|
    X86::CondCode X86CC =
 | 
						|
        (IntNo == Intrinsic::x86_avx512_kortestz_w) ? X86::COND_E : X86::COND_B;
 | 
						|
    SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
 | 
						|
    SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
 | 
						|
    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
 | 
						|
    SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
 | 
						|
    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::x86_sse42_pcmpistria128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestria128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpistric128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestric128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpistrio128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestrio128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpistris128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestris128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpistriz128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestriz128: {
 | 
						|
    unsigned Opcode;
 | 
						|
    X86::CondCode X86CC;
 | 
						|
    switch (IntNo) {
 | 
						|
    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | 
						|
    case Intrinsic::x86_sse42_pcmpistria128:
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
      X86CC = X86::COND_A;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpestria128:
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
      X86CC = X86::COND_A;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpistric128:
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
      X86CC = X86::COND_B;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpestric128:
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
      X86CC = X86::COND_B;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpistrio128:
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
      X86CC = X86::COND_O;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpestrio128:
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
      X86CC = X86::COND_O;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpistris128:
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
      X86CC = X86::COND_S;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpestris128:
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
      X86CC = X86::COND_S;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpistriz128:
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
      X86CC = X86::COND_E;
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse42_pcmpestriz128:
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
      X86CC = X86::COND_E;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
 | 
						|
    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | 
						|
    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
 | 
						|
    SDValue SetCC = getSETCC(X86CC, SDValue(PCMP.getNode(), 1), dl, DAG);
 | 
						|
    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::x86_sse42_pcmpistri128:
 | 
						|
  case Intrinsic::x86_sse42_pcmpestri128: {
 | 
						|
    unsigned Opcode;
 | 
						|
    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
 | 
						|
      Opcode = X86ISD::PCMPISTRI;
 | 
						|
    else
 | 
						|
      Opcode = X86ISD::PCMPESTRI;
 | 
						|
 | 
						|
    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
 | 
						|
    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | 
						|
    return DAG.getNode(Opcode, dl, VTs, NewOps);
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::eh_sjlj_lsda: {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
    MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | 
						|
    auto &Context = MF.getMMI().getContext();
 | 
						|
    MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
 | 
						|
                                            Twine(MF.getFunctionNumber()));
 | 
						|
    return DAG.getNode(X86ISD::Wrapper, dl, VT, DAG.getMCSymbol(S, PtrVT));
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::x86_seh_lsda: {
 | 
						|
    // Compute the symbol for the LSDA. We know it'll get emitted later.
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    SDValue Op1 = Op.getOperand(1);
 | 
						|
    auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
 | 
						|
    MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
 | 
						|
        GlobalValue::getRealLinkageName(Fn->getName()));
 | 
						|
 | 
						|
    // Generate a simple absolute symbol reference. This intrinsic is only
 | 
						|
    // supported on 32-bit Windows, which isn't PIC.
 | 
						|
    SDValue Result = DAG.getMCSymbol(LSDASym, VT);
 | 
						|
    return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::x86_seh_recoverfp: {
 | 
						|
    SDValue FnOp = Op.getOperand(1);
 | 
						|
    SDValue IncomingFPOp = Op.getOperand(2);
 | 
						|
    GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
 | 
						|
    auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
 | 
						|
    if (!Fn)
 | 
						|
      report_fatal_error(
 | 
						|
          "llvm.x86.seh.recoverfp must take a function as the first argument");
 | 
						|
    return recoverFramePointer(DAG, Fn, IncomingFPOp);
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::localaddress: {
 | 
						|
    // Returns one of the stack, base, or frame pointer registers, depending on
 | 
						|
    // which is used to reference local variables.
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
    unsigned Reg;
 | 
						|
    if (RegInfo->hasBasePointer(MF))
 | 
						|
      Reg = RegInfo->getBaseRegister();
 | 
						|
    else // This function handles the SP or FP case.
 | 
						|
      Reg = RegInfo->getPtrSizedFrameRegister(MF);
 | 
						|
    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
 | 
						|
                              SDValue Src, SDValue Mask, SDValue Base,
 | 
						|
                              SDValue Index, SDValue ScaleOp, SDValue Chain,
 | 
						|
                              const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *C = cast<ConstantSDNode>(ScaleOp);
 | 
						|
  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
 | 
						|
  MVT MaskVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                             Index.getSimpleValueType().getVectorNumElements());
 | 
						|
 | 
						|
  SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
 | 
						|
  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
 | 
						|
  SDValue Segment = DAG.getRegister(0, MVT::i32);
 | 
						|
  if (Src.isUndef())
 | 
						|
    Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
 | 
						|
  SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain};
 | 
						|
  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
 | 
						|
  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
 | 
						|
  return DAG.getMergeValues(RetOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
 | 
						|
                               SDValue Src, SDValue Mask, SDValue Base,
 | 
						|
                               SDValue Index, SDValue ScaleOp, SDValue Chain,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *C = cast<ConstantSDNode>(ScaleOp);
 | 
						|
  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
 | 
						|
  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
 | 
						|
  SDValue Segment = DAG.getRegister(0, MVT::i32);
 | 
						|
  MVT MaskVT = MVT::getVectorVT(MVT::i1,
 | 
						|
                             Index.getSimpleValueType().getVectorNumElements());
 | 
						|
 | 
						|
  SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
 | 
						|
  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain};
 | 
						|
  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
 | 
						|
  return SDValue(Res, 1);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
 | 
						|
                               SDValue Mask, SDValue Base, SDValue Index,
 | 
						|
                               SDValue ScaleOp, SDValue Chain,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *C = cast<ConstantSDNode>(ScaleOp);
 | 
						|
  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
 | 
						|
  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
 | 
						|
  SDValue Segment = DAG.getRegister(0, MVT::i32);
 | 
						|
  MVT MaskVT =
 | 
						|
    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
 | 
						|
  SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
  //SDVTList VTs = DAG.getVTList(MVT::Other);
 | 
						|
  SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
 | 
						|
  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
 | 
						|
  return SDValue(Res, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// Handles the lowering of builtin intrinsic that return the value
 | 
						|
/// of the extended control register.
 | 
						|
static void getExtendedControlRegister(SDNode *N, const SDLoc &DL,
 | 
						|
                                       SelectionDAG &DAG,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue LO, HI;
 | 
						|
 | 
						|
  // The ECX register is used to select the index of the XCR register to
 | 
						|
  // return.
 | 
						|
  SDValue Chain =
 | 
						|
      DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2));
 | 
						|
  SDNode *N1 = DAG.getMachineNode(X86::XGETBV, DL, Tys, Chain);
 | 
						|
  Chain = SDValue(N1, 0);
 | 
						|
 | 
						|
  // Reads the content of XCR and returns it in registers EDX:EAX.
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
 | 
						|
                            LO.getValue(2));
 | 
						|
  } else {
 | 
						|
    LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
 | 
						|
                            LO.getValue(2));
 | 
						|
  }
 | 
						|
  Chain = HI.getValue(1);
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    // Merge the two 32-bit values into a 64-bit one..
 | 
						|
    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
 | 
						|
                              DAG.getConstant(32, DL, MVT::i8));
 | 
						|
    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
 | 
						|
    Results.push_back(Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
 | 
						|
  SDValue Ops[] = { LO, HI };
 | 
						|
  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
 | 
						|
  Results.push_back(Pair);
 | 
						|
  Results.push_back(Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Handles the lowering of builtin intrinsics that read performance monitor
 | 
						|
/// counters (x86_rdpmc).
 | 
						|
static void getReadPerformanceCounter(SDNode *N, const SDLoc &DL,
 | 
						|
                                      SelectionDAG &DAG,
 | 
						|
                                      const X86Subtarget &Subtarget,
 | 
						|
                                      SmallVectorImpl<SDValue> &Results) {
 | 
						|
  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue LO, HI;
 | 
						|
 | 
						|
  // The ECX register is used to select the index of the performance counter
 | 
						|
  // to read.
 | 
						|
  SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
 | 
						|
                                   N->getOperand(2));
 | 
						|
  SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
 | 
						|
 | 
						|
  // Reads the content of a 64-bit performance counter and returns it in the
 | 
						|
  // registers EDX:EAX.
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
 | 
						|
                            LO.getValue(2));
 | 
						|
  } else {
 | 
						|
    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
 | 
						|
                            LO.getValue(2));
 | 
						|
  }
 | 
						|
  Chain = HI.getValue(1);
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    // The EAX register is loaded with the low-order 32 bits. The EDX register
 | 
						|
    // is loaded with the supported high-order bits of the counter.
 | 
						|
    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
 | 
						|
                              DAG.getConstant(32, DL, MVT::i8));
 | 
						|
    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
 | 
						|
    Results.push_back(Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
 | 
						|
  SDValue Ops[] = { LO, HI };
 | 
						|
  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
 | 
						|
  Results.push_back(Pair);
 | 
						|
  Results.push_back(Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Handles the lowering of builtin intrinsics that read the time stamp counter
 | 
						|
/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
 | 
						|
/// READCYCLECOUNTER nodes.
 | 
						|
static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode,
 | 
						|
                                    SelectionDAG &DAG,
 | 
						|
                                    const X86Subtarget &Subtarget,
 | 
						|
                                    SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
 | 
						|
  SDValue LO, HI;
 | 
						|
 | 
						|
  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
 | 
						|
  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
 | 
						|
  // and the EAX register is loaded with the low-order 32 bits.
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
 | 
						|
                            LO.getValue(2));
 | 
						|
  } else {
 | 
						|
    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
 | 
						|
    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
 | 
						|
                            LO.getValue(2));
 | 
						|
  }
 | 
						|
  SDValue Chain = HI.getValue(1);
 | 
						|
 | 
						|
  if (Opcode == X86ISD::RDTSCP_DAG) {
 | 
						|
    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
 | 
						|
 | 
						|
    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
 | 
						|
    // the ECX register. Add 'ecx' explicitly to the chain.
 | 
						|
    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
 | 
						|
                                     HI.getValue(2));
 | 
						|
    // Explicitly store the content of ECX at the location passed in input
 | 
						|
    // to the 'rdtscp' intrinsic.
 | 
						|
    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
 | 
						|
                         MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    // The EDX register is loaded with the high-order 32 bits of the MSR, and
 | 
						|
    // the EAX register is loaded with the low-order 32 bits.
 | 
						|
    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
 | 
						|
                              DAG.getConstant(32, DL, MVT::i8));
 | 
						|
    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
 | 
						|
    Results.push_back(Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
 | 
						|
  SDValue Ops[] = { LO, HI };
 | 
						|
  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
 | 
						|
  Results.push_back(Pair);
 | 
						|
  Results.push_back(Chain);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  SmallVector<SDValue, 2> Results;
 | 
						|
  SDLoc DL(Op);
 | 
						|
  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
 | 
						|
                          Results);
 | 
						|
  return DAG.getMergeValues(Results, DL);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue RegNode = Op.getOperand(2);
 | 
						|
  WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
 | 
						|
  if (!EHInfo)
 | 
						|
    report_fatal_error("EH registrations only live in functions using WinEH");
 | 
						|
 | 
						|
  // Cast the operand to an alloca, and remember the frame index.
 | 
						|
  auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
 | 
						|
  if (!FINode)
 | 
						|
    report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
 | 
						|
  EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
 | 
						|
 | 
						|
  // Return the chain operand without making any DAG nodes.
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue EHGuard = Op.getOperand(2);
 | 
						|
  WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
 | 
						|
  if (!EHInfo)
 | 
						|
    report_fatal_error("EHGuard only live in functions using WinEH");
 | 
						|
 | 
						|
  // Cast the operand to an alloca, and remember the frame index.
 | 
						|
  auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard);
 | 
						|
  if (!FINode)
 | 
						|
    report_fatal_error("llvm.x86.seh.ehguard expects a static alloca");
 | 
						|
  EHInfo->EHGuardFrameIndex = FINode->getIndex();
 | 
						|
 | 
						|
  // Return the chain operand without making any DAG nodes.
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit Truncating Store with signed or unsigned saturation.
 | 
						|
static SDValue
 | 
						|
EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val,
 | 
						|
                SDValue Ptr, EVT MemVT, MachineMemOperand *MMO,
 | 
						|
                SelectionDAG &DAG) {
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::Other);
 | 
						|
  SDValue Undef = DAG.getUNDEF(Ptr.getValueType());
 | 
						|
  SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | 
						|
  return SignedSat ?
 | 
						|
    DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
 | 
						|
    DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit Masked Truncating Store with signed or unsigned saturation.
 | 
						|
static SDValue
 | 
						|
EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl,
 | 
						|
                      SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT,
 | 
						|
                      MachineMemOperand *MMO, SelectionDAG &DAG) {
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::Other);
 | 
						|
  SDValue Ops[] = { Chain, Ptr, Mask, Val };
 | 
						|
  return SignedSat ?
 | 
						|
    DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
 | 
						|
    DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
  const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
 | 
						|
  if (!IntrData) {
 | 
						|
    if (IntNo == llvm::Intrinsic::x86_seh_ehregnode)
 | 
						|
      return MarkEHRegistrationNode(Op, DAG);
 | 
						|
    if (IntNo == llvm::Intrinsic::x86_seh_ehguard)
 | 
						|
      return MarkEHGuard(Op, DAG);
 | 
						|
    if (IntNo == llvm::Intrinsic::x86_flags_read_u32 ||
 | 
						|
        IntNo == llvm::Intrinsic::x86_flags_read_u64 ||
 | 
						|
        IntNo == llvm::Intrinsic::x86_flags_write_u32 ||
 | 
						|
        IntNo == llvm::Intrinsic::x86_flags_write_u64) {
 | 
						|
      // We need a frame pointer because this will get lowered to a PUSH/POP
 | 
						|
      // sequence.
 | 
						|
      MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
      MFI.setHasCopyImplyingStackAdjustment(true);
 | 
						|
      // Don't do anything here, we will expand these intrinsics out later
 | 
						|
      // during ExpandISelPseudos in EmitInstrWithCustomInserter.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  switch(IntrData->Type) {
 | 
						|
  default: llvm_unreachable("Unknown Intrinsic Type");
 | 
						|
  case RDSEED:
 | 
						|
  case RDRAND: {
 | 
						|
    // Emit the node with the right value type.
 | 
						|
    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
 | 
						|
    SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
 | 
						|
 | 
						|
    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
 | 
						|
    // Otherwise return the value from Rand, which is always 0, casted to i32.
 | 
						|
    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
 | 
						|
                      DAG.getConstant(1, dl, Op->getValueType(1)),
 | 
						|
                      DAG.getConstant(X86::COND_B, dl, MVT::i32),
 | 
						|
                      SDValue(Result.getNode(), 1) };
 | 
						|
    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
 | 
						|
                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
 | 
						|
                                  Ops);
 | 
						|
 | 
						|
    // Return { result, isValid, chain }.
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
 | 
						|
                       SDValue(Result.getNode(), 2));
 | 
						|
  }
 | 
						|
  case GATHER: {
 | 
						|
  //gather(v1, mask, index, base, scale);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    SDValue Src   = Op.getOperand(2);
 | 
						|
    SDValue Base  = Op.getOperand(3);
 | 
						|
    SDValue Index = Op.getOperand(4);
 | 
						|
    SDValue Mask  = Op.getOperand(5);
 | 
						|
    SDValue Scale = Op.getOperand(6);
 | 
						|
    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
 | 
						|
                         Chain, Subtarget);
 | 
						|
  }
 | 
						|
  case SCATTER: {
 | 
						|
  //scatter(base, mask, index, v1, scale);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    SDValue Base  = Op.getOperand(2);
 | 
						|
    SDValue Mask  = Op.getOperand(3);
 | 
						|
    SDValue Index = Op.getOperand(4);
 | 
						|
    SDValue Src   = Op.getOperand(5);
 | 
						|
    SDValue Scale = Op.getOperand(6);
 | 
						|
    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
 | 
						|
                          Scale, Chain, Subtarget);
 | 
						|
  }
 | 
						|
  case PREFETCH: {
 | 
						|
    SDValue Hint = Op.getOperand(6);
 | 
						|
    unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
 | 
						|
    assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
 | 
						|
    unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    SDValue Mask  = Op.getOperand(2);
 | 
						|
    SDValue Index = Op.getOperand(3);
 | 
						|
    SDValue Base  = Op.getOperand(4);
 | 
						|
    SDValue Scale = Op.getOperand(5);
 | 
						|
    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
 | 
						|
                           Subtarget);
 | 
						|
  }
 | 
						|
  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
 | 
						|
  case RDTSC: {
 | 
						|
    SmallVector<SDValue, 2> Results;
 | 
						|
    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
 | 
						|
                            Results);
 | 
						|
    return DAG.getMergeValues(Results, dl);
 | 
						|
  }
 | 
						|
  // Read Performance Monitoring Counters.
 | 
						|
  case RDPMC: {
 | 
						|
    SmallVector<SDValue, 2> Results;
 | 
						|
    getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
 | 
						|
    return DAG.getMergeValues(Results, dl);
 | 
						|
  }
 | 
						|
  // Get Extended Control Register.
 | 
						|
  case XGETBV: {
 | 
						|
    SmallVector<SDValue, 2> Results;
 | 
						|
    getExtendedControlRegister(Op.getNode(), dl, DAG, Subtarget, Results);
 | 
						|
    return DAG.getMergeValues(Results, dl);
 | 
						|
  }
 | 
						|
  // XTEST intrinsics.
 | 
						|
  case XTEST: {
 | 
						|
    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
 | 
						|
    SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
 | 
						|
 | 
						|
    SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG);
 | 
						|
    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
 | 
						|
                       Ret, SDValue(InTrans.getNode(), 1));
 | 
						|
  }
 | 
						|
  // ADC/ADCX/SBB
 | 
						|
  case ADX: {
 | 
						|
    SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
 | 
						|
    SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
 | 
						|
    SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
 | 
						|
                                DAG.getConstant(-1, dl, MVT::i8));
 | 
						|
    SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
 | 
						|
                              Op.getOperand(4), GenCF.getValue(1));
 | 
						|
    SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
 | 
						|
                                 Op.getOperand(5), MachinePointerInfo());
 | 
						|
    SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG);
 | 
						|
    SDValue Results[] = { SetCC, Store };
 | 
						|
    return DAG.getMergeValues(Results, dl);
 | 
						|
  }
 | 
						|
  case COMPRESS_TO_MEM: {
 | 
						|
    SDValue Mask = Op.getOperand(4);
 | 
						|
    SDValue DataToCompress = Op.getOperand(3);
 | 
						|
    SDValue Addr = Op.getOperand(2);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    MVT VT = DataToCompress.getSimpleValueType();
 | 
						|
 | 
						|
    MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
 | 
						|
    assert(MemIntr && "Expected MemIntrinsicSDNode!");
 | 
						|
 | 
						|
    if (isAllOnesConstant(Mask)) // return just a store
 | 
						|
      return DAG.getStore(Chain, dl, DataToCompress, Addr,
 | 
						|
                          MemIntr->getMemOperand());
 | 
						|
 | 
						|
    MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
    SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
    return DAG.getMaskedStore(Chain, dl, DataToCompress, Addr, VMask, VT,
 | 
						|
                              MemIntr->getMemOperand(),
 | 
						|
                              false /* truncating */, true /* compressing */);
 | 
						|
  }
 | 
						|
  case TRUNCATE_TO_MEM_VI8:
 | 
						|
  case TRUNCATE_TO_MEM_VI16:
 | 
						|
  case TRUNCATE_TO_MEM_VI32: {
 | 
						|
    SDValue Mask = Op.getOperand(4);
 | 
						|
    SDValue DataToTruncate = Op.getOperand(3);
 | 
						|
    SDValue Addr = Op.getOperand(2);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
 | 
						|
    MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
 | 
						|
    assert(MemIntr && "Expected MemIntrinsicSDNode!");
 | 
						|
 | 
						|
    EVT MemVT  = MemIntr->getMemoryVT();
 | 
						|
 | 
						|
    uint16_t TruncationOp = IntrData->Opc0;
 | 
						|
    switch (TruncationOp) {
 | 
						|
    case X86ISD::VTRUNC: {
 | 
						|
      if (isAllOnesConstant(Mask)) // return just a truncate store
 | 
						|
        return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT,
 | 
						|
                                 MemIntr->getMemOperand());
 | 
						|
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
 | 
						|
      SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
      return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, MemVT,
 | 
						|
                                MemIntr->getMemOperand(), true /* truncating */);
 | 
						|
    }
 | 
						|
    case X86ISD::VTRUNCUS:
 | 
						|
    case X86ISD::VTRUNCS: {
 | 
						|
      bool IsSigned = (TruncationOp == X86ISD::VTRUNCS);
 | 
						|
      if (isAllOnesConstant(Mask))
 | 
						|
        return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT,
 | 
						|
                               MemIntr->getMemOperand(), DAG);
 | 
						|
 | 
						|
      MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
 | 
						|
      SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
      return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr,
 | 
						|
                                   VMask, MemVT, MemIntr->getMemOperand(), DAG);
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unsupported truncstore intrinsic");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case EXPAND_FROM_MEM: {
 | 
						|
    SDValue Mask = Op.getOperand(4);
 | 
						|
    SDValue PassThru = Op.getOperand(3);
 | 
						|
    SDValue Addr = Op.getOperand(2);
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
    MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
 | 
						|
    assert(MemIntr && "Expected MemIntrinsicSDNode!");
 | 
						|
 | 
						|
    if (isAllOnesConstant(Mask)) // Return a regular (unmasked) vector load.
 | 
						|
      return DAG.getLoad(VT, dl, Chain, Addr, MemIntr->getMemOperand());
 | 
						|
    if (X86::isZeroNode(Mask))
 | 
						|
      return DAG.getUNDEF(VT);
 | 
						|
 | 
						|
    MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
 | 
						|
    SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
 | 
						|
    return DAG.getMaskedLoad(VT, dl, Chain, Addr, VMask, PassThru, VT,
 | 
						|
                             MemIntr->getMemOperand(), ISD::NON_EXTLOAD,
 | 
						|
                             true /* expanding */);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI.setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  if (Depth > 0) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
 | 
						|
    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Just load the return address.
 | 
						|
  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
 | 
						|
  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
 | 
						|
                     MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true);
 | 
						|
  return getReturnAddressFrameIndex(DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  MFI.setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
 | 
						|
    // Depth > 0 makes no sense on targets which use Windows unwind codes.  It
 | 
						|
    // is not possible to crawl up the stack without looking at the unwind codes
 | 
						|
    // simultaneously.
 | 
						|
    int FrameAddrIndex = FuncInfo->getFAIndex();
 | 
						|
    if (!FrameAddrIndex) {
 | 
						|
      // Set up a frame object for the return address.
 | 
						|
      unsigned SlotSize = RegInfo->getSlotSize();
 | 
						|
      FrameAddrIndex = MF.getFrameInfo().CreateFixedObject(
 | 
						|
          SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
 | 
						|
      FuncInfo->setFAIndex(FrameAddrIndex);
 | 
						|
    }
 | 
						|
    return DAG.getFrameIndex(FrameAddrIndex, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned FrameReg =
 | 
						|
      RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
 | 
						|
  SDLoc dl(Op);  // FIXME probably not meaningful
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
 | 
						|
          (FrameReg == X86::EBP && VT == MVT::i32)) &&
 | 
						|
         "Invalid Frame Register!");
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | 
						|
                            MachinePointerInfo());
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME? Maybe this could be a TableGen attribute on some registers and
 | 
						|
// this table could be generated automatically from RegInfo.
 | 
						|
unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
 | 
						|
  const MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  unsigned Reg = StringSwitch<unsigned>(RegName)
 | 
						|
                       .Case("esp", X86::ESP)
 | 
						|
                       .Case("rsp", X86::RSP)
 | 
						|
                       .Case("ebp", X86::EBP)
 | 
						|
                       .Case("rbp", X86::RBP)
 | 
						|
                       .Default(0);
 | 
						|
 | 
						|
  if (Reg == X86::EBP || Reg == X86::RBP) {
 | 
						|
    if (!TFI.hasFP(MF))
 | 
						|
      report_fatal_error("register " + StringRef(RegName) +
 | 
						|
                         " is allocatable: function has no frame pointer");
 | 
						|
#ifndef NDEBUG
 | 
						|
    else {
 | 
						|
      const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
      unsigned FrameReg =
 | 
						|
          RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
 | 
						|
      assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
 | 
						|
             "Invalid Frame Register!");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  report_fatal_error("Invalid register name global variable");
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TargetLowering::getExceptionPointerRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
 | 
						|
    return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
 | 
						|
 | 
						|
  return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TargetLowering::getExceptionSelectorRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  // Funclet personalities don't use selectors (the runtime does the selection).
 | 
						|
  assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
 | 
						|
  return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::needsFixedCatchObjects() const {
 | 
						|
  return Subtarget.isTargetWin64();
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain     = Op.getOperand(0);
 | 
						|
  SDValue Offset    = Op.getOperand(1);
 | 
						|
  SDValue Handler   = Op.getOperand(2);
 | 
						|
  SDLoc dl      (Op);
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
 | 
						|
  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
 | 
						|
          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
 | 
						|
         "Invalid Frame Register!");
 | 
						|
  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
 | 
						|
  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
 | 
						|
 | 
						|
  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
 | 
						|
                                 DAG.getIntPtrConstant(RegInfo->getSlotSize(),
 | 
						|
                                                       dl));
 | 
						|
  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
 | 
						|
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
 | 
						|
  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
 | 
						|
                     DAG.getRegister(StoreAddrReg, PtrVT));
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  // If the subtarget is not 64bit, we may need the global base reg
 | 
						|
  // after isel expand pseudo, i.e., after CGBR pass ran.
 | 
						|
  // Therefore, ask for the GlobalBaseReg now, so that the pass
 | 
						|
  // inserts the code for us in case we need it.
 | 
						|
  // Otherwise, we will end up in a situation where we will
 | 
						|
  // reference a virtual register that is not defined!
 | 
						|
  if (!Subtarget.is64Bit()) {
 | 
						|
    const X86InstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
    (void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
 | 
						|
  }
 | 
						|
  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
 | 
						|
                     DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
 | 
						|
                                                       SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
 | 
						|
                     Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  return Op.getOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDValue Root = Op.getOperand(0);
 | 
						|
  SDValue Trmp = Op.getOperand(1); // trampoline
 | 
						|
  SDValue FPtr = Op.getOperand(2); // nested function
 | 
						|
  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | 
						|
  SDLoc dl (Op);
 | 
						|
 | 
						|
  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | 
						|
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    SDValue OutChains[6];
 | 
						|
 | 
						|
    // Large code-model.
 | 
						|
    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
 | 
						|
    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
 | 
						|
 | 
						|
    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
 | 
						|
    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
 | 
						|
 | 
						|
    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
 | 
						|
 | 
						|
    // Load the pointer to the nested function into R11.
 | 
						|
    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
 | 
						|
    SDValue Addr = Trmp;
 | 
						|
    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
 | 
						|
                                Addr, MachinePointerInfo(TrmpAddr));
 | 
						|
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | 
						|
                       DAG.getConstant(2, dl, MVT::i64));
 | 
						|
    OutChains[1] =
 | 
						|
        DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2),
 | 
						|
                     /* Alignment = */ 2);
 | 
						|
 | 
						|
    // Load the 'nest' parameter value into R10.
 | 
						|
    // R10 is specified in X86CallingConv.td
 | 
						|
    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | 
						|
                       DAG.getConstant(10, dl, MVT::i64));
 | 
						|
    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
 | 
						|
                                Addr, MachinePointerInfo(TrmpAddr, 10));
 | 
						|
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | 
						|
                       DAG.getConstant(12, dl, MVT::i64));
 | 
						|
    OutChains[3] =
 | 
						|
        DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12),
 | 
						|
                     /* Alignment = */ 2);
 | 
						|
 | 
						|
    // Jump to the nested function.
 | 
						|
    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | 
						|
                       DAG.getConstant(20, dl, MVT::i64));
 | 
						|
    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
 | 
						|
                                Addr, MachinePointerInfo(TrmpAddr, 20));
 | 
						|
 | 
						|
    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | 
						|
                       DAG.getConstant(22, dl, MVT::i64));
 | 
						|
    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
 | 
						|
                                Addr, MachinePointerInfo(TrmpAddr, 22));
 | 
						|
 | 
						|
    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
 | 
						|
  } else {
 | 
						|
    const Function *Func =
 | 
						|
      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
 | 
						|
    CallingConv::ID CC = Func->getCallingConv();
 | 
						|
    unsigned NestReg;
 | 
						|
 | 
						|
    switch (CC) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unsupported calling convention");
 | 
						|
    case CallingConv::C:
 | 
						|
    case CallingConv::X86_StdCall: {
 | 
						|
      // Pass 'nest' parameter in ECX.
 | 
						|
      // Must be kept in sync with X86CallingConv.td
 | 
						|
      NestReg = X86::ECX;
 | 
						|
 | 
						|
      // Check that ECX wasn't needed by an 'inreg' parameter.
 | 
						|
      FunctionType *FTy = Func->getFunctionType();
 | 
						|
      const AttributeSet &Attrs = Func->getAttributes();
 | 
						|
 | 
						|
      if (!Attrs.isEmpty() && !Func->isVarArg()) {
 | 
						|
        unsigned InRegCount = 0;
 | 
						|
        unsigned Idx = 1;
 | 
						|
 | 
						|
        for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
             E = FTy->param_end(); I != E; ++I, ++Idx)
 | 
						|
          if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
 | 
						|
            auto &DL = DAG.getDataLayout();
 | 
						|
            // FIXME: should only count parameters that are lowered to integers.
 | 
						|
            InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
 | 
						|
          }
 | 
						|
 | 
						|
        if (InRegCount > 2) {
 | 
						|
          report_fatal_error("Nest register in use - reduce number of inreg"
 | 
						|
                             " parameters!");
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CallingConv::X86_FastCall:
 | 
						|
    case CallingConv::X86_ThisCall:
 | 
						|
    case CallingConv::Fast:
 | 
						|
      // Pass 'nest' parameter in EAX.
 | 
						|
      // Must be kept in sync with X86CallingConv.td
 | 
						|
      NestReg = X86::EAX;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue OutChains[4];
 | 
						|
    SDValue Addr, Disp;
 | 
						|
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | 
						|
                       DAG.getConstant(10, dl, MVT::i32));
 | 
						|
    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
 | 
						|
 | 
						|
    // This is storing the opcode for MOV32ri.
 | 
						|
    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
 | 
						|
    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
 | 
						|
    OutChains[0] =
 | 
						|
        DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8),
 | 
						|
                     Trmp, MachinePointerInfo(TrmpAddr));
 | 
						|
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | 
						|
                       DAG.getConstant(1, dl, MVT::i32));
 | 
						|
    OutChains[1] =
 | 
						|
        DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1),
 | 
						|
                     /* Alignment = */ 1);
 | 
						|
 | 
						|
    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | 
						|
                       DAG.getConstant(5, dl, MVT::i32));
 | 
						|
    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
 | 
						|
                                Addr, MachinePointerInfo(TrmpAddr, 5),
 | 
						|
                                /* Alignment = */ 1);
 | 
						|
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | 
						|
                       DAG.getConstant(6, dl, MVT::i32));
 | 
						|
    OutChains[3] =
 | 
						|
        DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6),
 | 
						|
                     /* Alignment = */ 1);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  /*
 | 
						|
   The rounding mode is in bits 11:10 of FPSR, and has the following
 | 
						|
   settings:
 | 
						|
     00 Round to nearest
 | 
						|
     01 Round to -inf
 | 
						|
     10 Round to +inf
 | 
						|
     11 Round to 0
 | 
						|
 | 
						|
  FLT_ROUNDS, on the other hand, expects the following:
 | 
						|
    -1 Undefined
 | 
						|
     0 Round to 0
 | 
						|
     1 Round to nearest
 | 
						|
     2 Round to +inf
 | 
						|
     3 Round to -inf
 | 
						|
 | 
						|
  To perform the conversion, we do:
 | 
						|
    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
 | 
						|
  */
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
 | 
						|
  unsigned StackAlignment = TFI.getStackAlignment();
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  // Save FP Control Word to stack slot
 | 
						|
  int SSFI = MF.getFrameInfo().CreateStackObject(2, StackAlignment, false);
 | 
						|
  SDValue StackSlot =
 | 
						|
      DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
  MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
 | 
						|
                              MachineMemOperand::MOStore, 2, 2);
 | 
						|
 | 
						|
  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
 | 
						|
  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
 | 
						|
                                          DAG.getVTList(MVT::Other),
 | 
						|
                                          Ops, MVT::i16, MMO);
 | 
						|
 | 
						|
  // Load FP Control Word from stack slot
 | 
						|
  SDValue CWD =
 | 
						|
      DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo());
 | 
						|
 | 
						|
  // Transform as necessary
 | 
						|
  SDValue CWD1 =
 | 
						|
    DAG.getNode(ISD::SRL, DL, MVT::i16,
 | 
						|
                DAG.getNode(ISD::AND, DL, MVT::i16,
 | 
						|
                            CWD, DAG.getConstant(0x800, DL, MVT::i16)),
 | 
						|
                DAG.getConstant(11, DL, MVT::i8));
 | 
						|
  SDValue CWD2 =
 | 
						|
    DAG.getNode(ISD::SRL, DL, MVT::i16,
 | 
						|
                DAG.getNode(ISD::AND, DL, MVT::i16,
 | 
						|
                            CWD, DAG.getConstant(0x400, DL, MVT::i16)),
 | 
						|
                DAG.getConstant(9, DL, MVT::i8));
 | 
						|
 | 
						|
  SDValue RetVal =
 | 
						|
    DAG.getNode(ISD::AND, DL, MVT::i16,
 | 
						|
                DAG.getNode(ISD::ADD, DL, MVT::i16,
 | 
						|
                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
 | 
						|
                            DAG.getConstant(1, DL, MVT::i16)),
 | 
						|
                DAG.getConstant(3, DL, MVT::i16));
 | 
						|
 | 
						|
  return DAG.getNode((VT.getSizeInBits() < 16 ?
 | 
						|
                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction.
 | 
						|
//
 | 
						|
// 1. i32/i64 128/256-bit vector (native support require VLX) are expended
 | 
						|
//    to 512-bit vector.
 | 
						|
// 2. i8/i16 vector implemented using dword LZCNT vector instruction
 | 
						|
//    ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
 | 
						|
//    split the vector, perform operation on it's Lo a Hi part and
 | 
						|
//    concatenate the results.
 | 
						|
static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getOpcode() == ISD::CTLZ);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
  if (EltVT == MVT::i64 || EltVT == MVT::i32) {
 | 
						|
    // Extend to 512 bit vector.
 | 
						|
    assert((VT.is256BitVector() || VT.is128BitVector()) &&
 | 
						|
              "Unsupported value type for operation");
 | 
						|
 | 
						|
    MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits());
 | 
						|
    SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
 | 
						|
                                 DAG.getUNDEF(NewVT),
 | 
						|
                                 Op.getOperand(0),
 | 
						|
                                 DAG.getIntPtrConstant(0, dl));
 | 
						|
    SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
 | 
						|
          "Unsupported element type");
 | 
						|
 | 
						|
  if (16 < NumElems) {
 | 
						|
    // Split vector, it's Lo and Hi parts will be handled in next iteration.
 | 
						|
    SDValue Lo, Hi;
 | 
						|
    std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
 | 
						|
    MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2);
 | 
						|
 | 
						|
    Lo = DAG.getNode(ISD::CTLZ, dl, OutVT, Lo);
 | 
						|
    Hi = DAG.getNode(ISD::CTLZ, dl, OutVT, Hi);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
 | 
						|
 | 
						|
  assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
 | 
						|
          "Unsupported value type for operation");
 | 
						|
 | 
						|
  // Use native supported vector instruction vplzcntd.
 | 
						|
  Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
 | 
						|
  SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
 | 
						|
  SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
 | 
						|
  SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
 | 
						|
}
 | 
						|
 | 
						|
// Lower CTLZ using a PSHUFB lookup table implementation.
 | 
						|
static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
 | 
						|
  MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
 | 
						|
 | 
						|
  // Per-nibble leading zero PSHUFB lookup table.
 | 
						|
  const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
 | 
						|
                       /* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
 | 
						|
                       /* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
 | 
						|
                       /* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
 | 
						|
 | 
						|
  SmallVector<SDValue, 64> LUTVec;
 | 
						|
  for (int i = 0; i < NumBytes; ++i)
 | 
						|
    LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
 | 
						|
  SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec);
 | 
						|
 | 
						|
  // Begin by bitcasting the input to byte vector, then split those bytes
 | 
						|
  // into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
 | 
						|
  // If the hi input nibble is zero then we add both results together, otherwise
 | 
						|
  // we just take the hi result (by masking the lo result to zero before the
 | 
						|
  // add).
 | 
						|
  SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
 | 
						|
  SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL);
 | 
						|
 | 
						|
  SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT);
 | 
						|
  SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
 | 
						|
  SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
 | 
						|
  SDValue HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
 | 
						|
 | 
						|
  Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
 | 
						|
  Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
 | 
						|
  Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
 | 
						|
  SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
 | 
						|
 | 
						|
  // Merge result back from vXi8 back to VT, working on the lo/hi halves
 | 
						|
  // of the current vector width in the same way we did for the nibbles.
 | 
						|
  // If the upper half of the input element is zero then add the halves'
 | 
						|
  // leading zero counts together, otherwise just use the upper half's.
 | 
						|
  // Double the width of the result until we are at target width.
 | 
						|
  while (CurrVT != VT) {
 | 
						|
    int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
 | 
						|
    int CurrNumElts = CurrVT.getVectorNumElements();
 | 
						|
    MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
 | 
						|
    MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
 | 
						|
    SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
 | 
						|
 | 
						|
    // Check if the upper half of the input element is zero.
 | 
						|
    SDValue HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
 | 
						|
                               DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
 | 
						|
    HiZ = DAG.getBitcast(NextVT, HiZ);
 | 
						|
 | 
						|
    // Move the upper/lower halves to the lower bits as we'll be extending to
 | 
						|
    // NextVT. Mask the lower result to zero if HiZ is true and add the results
 | 
						|
    // together.
 | 
						|
    SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
 | 
						|
    SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
 | 
						|
    SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
 | 
						|
    R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
 | 
						|
    Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
 | 
						|
    CurrVT = NextVT;
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL,
 | 
						|
                               const X86Subtarget &Subtarget,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
 | 
						|
  if (Subtarget.hasAVX512())
 | 
						|
    return LowerVectorCTLZ_AVX512(Op, DAG);
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256()) {
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    // Extract each 128-bit vector, perform ctlz and concat the result.
 | 
						|
    SDValue LHS = extract128BitVector(Op0, 0, DAG, DL);
 | 
						|
    SDValue RHS = extract128BitVector(Op0, NumElems / 2, DAG, DL);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
 | 
						|
                       DAG.getNode(ISD::CTLZ, DL, LHS.getValueType(), LHS),
 | 
						|
                       DAG.getNode(ISD::CTLZ, DL, RHS.getValueType(), RHS));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
 | 
						|
  return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                         SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT OpVT = VT;
 | 
						|
  unsigned NumBits = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
 | 
						|
  if (VT.isVector())
 | 
						|
    return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
 | 
						|
 | 
						|
  Op = Op.getOperand(0);
 | 
						|
  if (VT == MVT::i8) {
 | 
						|
    // Zero extend to i32 since there is not an i8 bsr.
 | 
						|
    OpVT = MVT::i32;
 | 
						|
    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
 | 
						|
  }
 | 
						|
 | 
						|
  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
 | 
						|
  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
 | 
						|
  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
 | 
						|
 | 
						|
  if (Opc == ISD::CTLZ) {
 | 
						|
    // If src is zero (i.e. bsr sets ZF), returns NumBits.
 | 
						|
    SDValue Ops[] = {
 | 
						|
      Op,
 | 
						|
      DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
 | 
						|
      DAG.getConstant(X86::COND_E, dl, MVT::i8),
 | 
						|
      Op.getValue(1)
 | 
						|
    };
 | 
						|
    Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally xor with NumBits-1.
 | 
						|
  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
 | 
						|
                   DAG.getConstant(NumBits - 1, dl, OpVT));
 | 
						|
 | 
						|
  if (VT == MVT::i8)
 | 
						|
    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  unsigned NumBits = VT.getScalarSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (VT.isVector()) {
 | 
						|
    SDValue N0 = Op.getOperand(0);
 | 
						|
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						|
 | 
						|
    // lsb(x) = (x & -x)
 | 
						|
    SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
 | 
						|
                              DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
 | 
						|
 | 
						|
    // cttz_undef(x) = (width - 1) - ctlz(lsb)
 | 
						|
    if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
 | 
						|
      SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
 | 
						|
      return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
 | 
						|
                         DAG.getNode(ISD::CTLZ, dl, VT, LSB));
 | 
						|
    }
 | 
						|
 | 
						|
    // cttz(x) = ctpop(lsb - 1)
 | 
						|
    SDValue One = DAG.getConstant(1, dl, VT);
 | 
						|
    return DAG.getNode(ISD::CTPOP, dl, VT,
 | 
						|
                       DAG.getNode(ISD::SUB, dl, VT, LSB, One));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::CTTZ &&
 | 
						|
         "Only scalar CTTZ requires custom lowering");
 | 
						|
 | 
						|
  // Issue a bsf (scan bits forward) which also sets EFLAGS.
 | 
						|
  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | 
						|
  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
 | 
						|
 | 
						|
  // If src is zero (i.e. bsf sets ZF), returns NumBits.
 | 
						|
  SDValue Ops[] = {
 | 
						|
    Op,
 | 
						|
    DAG.getConstant(NumBits, dl, VT),
 | 
						|
    DAG.getConstant(X86::COND_E, dl, MVT::i8),
 | 
						|
    Op.getValue(1)
 | 
						|
  };
 | 
						|
  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Break a 256-bit integer operation into two new 128-bit ones and then
 | 
						|
/// concatenate the result back.
 | 
						|
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert(VT.is256BitVector() && VT.isInteger() &&
 | 
						|
         "Unsupported value type for operation");
 | 
						|
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Extract the LHS vectors
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
 | 
						|
  SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  // Extract the RHS vectors
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
 | 
						|
  SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
 | 
						|
}
 | 
						|
 | 
						|
/// Break a 512-bit integer operation into two new 256-bit ones and then
 | 
						|
/// concatenate the result back.
 | 
						|
static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  assert(VT.is512BitVector() && VT.isInteger() &&
 | 
						|
         "Unsupported value type for operation");
 | 
						|
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Extract the LHS vectors
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
 | 
						|
  SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  // Extract the RHS vectors
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
 | 
						|
  SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
 | 
						|
                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getValueType() == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
 | 
						|
                       Op.getOperand(0), Op.getOperand(1));
 | 
						|
  assert(Op.getSimpleValueType().is256BitVector() &&
 | 
						|
         Op.getSimpleValueType().isInteger() &&
 | 
						|
         "Only handle AVX 256-bit vector integer operation");
 | 
						|
  return Lower256IntArith(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getValueType() == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
 | 
						|
                       Op.getOperand(0), Op.getOperand(1));
 | 
						|
  assert(Op.getSimpleValueType().is256BitVector() &&
 | 
						|
         Op.getSimpleValueType().isInteger() &&
 | 
						|
         "Only handle AVX 256-bit vector integer operation");
 | 
						|
  return Lower256IntArith(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getSimpleValueType().is256BitVector() &&
 | 
						|
         Op.getSimpleValueType().isInteger() &&
 | 
						|
         "Only handle AVX 256-bit vector integer operation");
 | 
						|
  return Lower256IntArith(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                        SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (VT == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256())
 | 
						|
    return Lower256IntArith(Op, DAG);
 | 
						|
 | 
						|
  SDValue A = Op.getOperand(0);
 | 
						|
  SDValue B = Op.getOperand(1);
 | 
						|
 | 
						|
  // Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
 | 
						|
  // vector pairs, multiply and truncate.
 | 
						|
  if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
 | 
						|
    if (Subtarget.hasInt256()) {
 | 
						|
      // For 512-bit vectors, split into 256-bit vectors to allow the
 | 
						|
      // sign-extension to occur.
 | 
						|
      if (VT == MVT::v64i8)
 | 
						|
        return Lower512IntArith(Op, DAG);
 | 
						|
 | 
						|
      // For 256-bit vectors, split into 128-bit vectors to allow the
 | 
						|
      // sign-extension to occur. We don't need this on AVX512BW as we can
 | 
						|
      // safely sign-extend to v32i16.
 | 
						|
      if (VT == MVT::v32i8 && !Subtarget.hasBWI())
 | 
						|
        return Lower256IntArith(Op, DAG);
 | 
						|
 | 
						|
      MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
 | 
						|
      return DAG.getNode(
 | 
						|
          ISD::TRUNCATE, dl, VT,
 | 
						|
          DAG.getNode(ISD::MUL, dl, ExVT,
 | 
						|
                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
 | 
						|
                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
 | 
						|
    }
 | 
						|
 | 
						|
    assert(VT == MVT::v16i8 &&
 | 
						|
           "Pre-AVX2 support only supports v16i8 multiplication");
 | 
						|
    MVT ExVT = MVT::v8i16;
 | 
						|
 | 
						|
    // Extract the lo parts and sign extend to i16
 | 
						|
    SDValue ALo, BLo;
 | 
						|
    if (Subtarget.hasSSE41()) {
 | 
						|
      ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A);
 | 
						|
      BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B);
 | 
						|
    } else {
 | 
						|
      const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
 | 
						|
                              -1, 4, -1, 5, -1, 6, -1, 7};
 | 
						|
      ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
      BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
      ALo = DAG.getBitcast(ExVT, ALo);
 | 
						|
      BLo = DAG.getBitcast(ExVT, BLo);
 | 
						|
      ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
 | 
						|
      BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
 | 
						|
    }
 | 
						|
 | 
						|
    // Extract the hi parts and sign extend to i16
 | 
						|
    SDValue AHi, BHi;
 | 
						|
    if (Subtarget.hasSSE41()) {
 | 
						|
      const int ShufMask[] = {8,  9,  10, 11, 12, 13, 14, 15,
 | 
						|
                              -1, -1, -1, -1, -1, -1, -1, -1};
 | 
						|
      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
      AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi);
 | 
						|
      BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi);
 | 
						|
    } else {
 | 
						|
      const int ShufMask[] = {-1, 8,  -1, 9,  -1, 10, -1, 11,
 | 
						|
                              -1, 12, -1, 13, -1, 14, -1, 15};
 | 
						|
      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
      AHi = DAG.getBitcast(ExVT, AHi);
 | 
						|
      BHi = DAG.getBitcast(ExVT, BHi);
 | 
						|
      AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
 | 
						|
      BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
 | 
						|
    }
 | 
						|
 | 
						|
    // Multiply, mask the lower 8bits of the lo/hi results and pack
 | 
						|
    SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
 | 
						|
    SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
 | 
						|
    RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
 | 
						|
    RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
 | 
						|
    return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
 | 
						|
  if (VT == MVT::v4i32) {
 | 
						|
    assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
 | 
						|
           "Should not custom lower when pmuldq is available!");
 | 
						|
 | 
						|
    // Extract the odd parts.
 | 
						|
    static const int UnpackMask[] = { 1, -1, 3, -1 };
 | 
						|
    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
 | 
						|
    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
 | 
						|
 | 
						|
    // Multiply the even parts.
 | 
						|
    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
 | 
						|
    // Now multiply odd parts.
 | 
						|
    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
 | 
						|
 | 
						|
    Evens = DAG.getBitcast(VT, Evens);
 | 
						|
    Odds = DAG.getBitcast(VT, Odds);
 | 
						|
 | 
						|
    // Merge the two vectors back together with a shuffle. This expands into 2
 | 
						|
    // shuffles.
 | 
						|
    static const int ShufMask[] = { 0, 4, 2, 6 };
 | 
						|
    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
 | 
						|
         "Only know how to lower V2I64/V4I64/V8I64 multiply");
 | 
						|
 | 
						|
  // 32-bit vector types used for MULDQ/MULUDQ.
 | 
						|
  MVT MulVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits() / 32);
 | 
						|
 | 
						|
  // MULDQ returns the 64-bit result of the signed multiplication of the lower
 | 
						|
  // 32-bits. We can lower with this if the sign bits stretch that far.
 | 
						|
  if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(A) > 32 &&
 | 
						|
      DAG.ComputeNumSignBits(B) > 32) {
 | 
						|
    return DAG.getNode(X86ISD::PMULDQ, dl, VT, DAG.getBitcast(MulVT, A),
 | 
						|
                       DAG.getBitcast(MulVT, B));
 | 
						|
  }
 | 
						|
 | 
						|
  //  Ahi = psrlqi(a, 32);
 | 
						|
  //  Bhi = psrlqi(b, 32);
 | 
						|
  //
 | 
						|
  //  AloBlo = pmuludq(a, b);
 | 
						|
  //  AloBhi = pmuludq(a, Bhi);
 | 
						|
  //  AhiBlo = pmuludq(Ahi, b);
 | 
						|
  //
 | 
						|
  //  Hi = psllqi(AloBhi + AhiBlo, 32);
 | 
						|
  //  return AloBlo + Hi;
 | 
						|
  APInt LowerBitsMask = APInt::getLowBitsSet(64, 32);
 | 
						|
  bool ALoIsZero = DAG.MaskedValueIsZero(A, LowerBitsMask);
 | 
						|
  bool BLoIsZero = DAG.MaskedValueIsZero(B, LowerBitsMask);
 | 
						|
 | 
						|
  APInt UpperBitsMask = APInt::getHighBitsSet(64, 32);
 | 
						|
  bool AHiIsZero = DAG.MaskedValueIsZero(A, UpperBitsMask);
 | 
						|
  bool BHiIsZero = DAG.MaskedValueIsZero(B, UpperBitsMask);
 | 
						|
 | 
						|
  // Bit cast to 32-bit vectors for MULUDQ.
 | 
						|
  SDValue Alo = DAG.getBitcast(MulVT, A);
 | 
						|
  SDValue Blo = DAG.getBitcast(MulVT, B);
 | 
						|
 | 
						|
  SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
 | 
						|
  // Only multiply lo/hi halves that aren't known to be zero.
 | 
						|
  SDValue AloBlo = Zero;
 | 
						|
  if (!ALoIsZero && !BLoIsZero)
 | 
						|
    AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Blo);
 | 
						|
 | 
						|
  SDValue AloBhi = Zero;
 | 
						|
  if (!ALoIsZero && !BHiIsZero) {
 | 
						|
    SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
 | 
						|
    Bhi = DAG.getBitcast(MulVT, Bhi);
 | 
						|
    AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Bhi);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue AhiBlo = Zero;
 | 
						|
  if (!AHiIsZero && !BLoIsZero) {
 | 
						|
    SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
 | 
						|
    Ahi = DAG.getBitcast(MulVT, Ahi);
 | 
						|
    AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, Blo);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo);
 | 
						|
  Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                         SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256())
 | 
						|
    return Lower256IntArith(Op, DAG);
 | 
						|
 | 
						|
  // Only i8 vectors should need custom lowering after this.
 | 
						|
  assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256())) &&
 | 
						|
         "Unsupported vector type");
 | 
						|
 | 
						|
  // Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
 | 
						|
  // logical shift down the upper half and pack back to i8.
 | 
						|
  SDValue A = Op.getOperand(0);
 | 
						|
  SDValue B = Op.getOperand(1);
 | 
						|
 | 
						|
  // With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
 | 
						|
  // and then ashr/lshr the upper bits down to the lower bits before multiply.
 | 
						|
  unsigned Opcode = Op.getOpcode();
 | 
						|
  unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA);
 | 
						|
  unsigned ExSSE41 = (ISD::MULHU == Opcode ? X86ISD::VZEXT : X86ISD::VSEXT);
 | 
						|
 | 
						|
  // AVX2 implementations - extend xmm subvectors to ymm.
 | 
						|
  if (Subtarget.hasInt256()) {
 | 
						|
    SDValue Lo = DAG.getIntPtrConstant(0, dl);
 | 
						|
    SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl);
 | 
						|
 | 
						|
    if (VT == MVT::v32i8) {
 | 
						|
      SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, A, Lo);
 | 
						|
      SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, B, Lo);
 | 
						|
      SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, A, Hi);
 | 
						|
      SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, B, Hi);
 | 
						|
      ALo = DAG.getNode(ExSSE41, dl, MVT::v16i16, ALo);
 | 
						|
      BLo = DAG.getNode(ExSSE41, dl, MVT::v16i16, BLo);
 | 
						|
      AHi = DAG.getNode(ExSSE41, dl, MVT::v16i16, AHi);
 | 
						|
      BHi = DAG.getNode(ExSSE41, dl, MVT::v16i16, BHi);
 | 
						|
      Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
 | 
						|
                       DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo),
 | 
						|
                       DAG.getConstant(8, dl, MVT::v16i16));
 | 
						|
      Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
 | 
						|
                       DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi),
 | 
						|
                       DAG.getConstant(8, dl, MVT::v16i16));
 | 
						|
      // The ymm variant of PACKUS treats the 128-bit lanes separately, so before
 | 
						|
      // using PACKUS we need to permute the inputs to the correct lo/hi xmm lane.
 | 
						|
      const int LoMask[] = {0,  1,  2,  3,  4,  5,  6,  7,
 | 
						|
                            16, 17, 18, 19, 20, 21, 22, 23};
 | 
						|
      const int HiMask[] = {8,  9,  10, 11, 12, 13, 14, 15,
 | 
						|
                            24, 25, 26, 27, 28, 29, 30, 31};
 | 
						|
      return DAG.getNode(X86ISD::PACKUS, dl, VT,
 | 
						|
                         DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask),
 | 
						|
                         DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask));
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue ExA = DAG.getNode(ExSSE41, dl, MVT::v16i16, A);
 | 
						|
    SDValue ExB = DAG.getNode(ExSSE41, dl, MVT::v16i16, B);
 | 
						|
    SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB);
 | 
						|
    SDValue MulH = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul,
 | 
						|
                               DAG.getConstant(8, dl, MVT::v16i16));
 | 
						|
    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, MulH, Lo);
 | 
						|
    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, MulH, Hi);
 | 
						|
    return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT == MVT::v16i8 &&
 | 
						|
         "Pre-AVX2 support only supports v16i8 multiplication");
 | 
						|
  MVT ExVT = MVT::v8i16;
 | 
						|
 | 
						|
  // Extract the lo parts and zero/sign extend to i16.
 | 
						|
  SDValue ALo, BLo;
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    ALo = DAG.getNode(ExSSE41, dl, ExVT, A);
 | 
						|
    BLo = DAG.getNode(ExSSE41, dl, ExVT, B);
 | 
						|
  } else {
 | 
						|
    const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
 | 
						|
                            -1, 4, -1, 5, -1, 6, -1, 7};
 | 
						|
    ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
    BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
    ALo = DAG.getBitcast(ExVT, ALo);
 | 
						|
    BLo = DAG.getBitcast(ExVT, BLo);
 | 
						|
    ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
 | 
						|
    BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract the hi parts and zero/sign extend to i16.
 | 
						|
  SDValue AHi, BHi;
 | 
						|
  if (Subtarget.hasSSE41()) {
 | 
						|
    const int ShufMask[] = {8,  9,  10, 11, 12, 13, 14, 15,
 | 
						|
                            -1, -1, -1, -1, -1, -1, -1, -1};
 | 
						|
    AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
    BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
    AHi = DAG.getNode(ExSSE41, dl, ExVT, AHi);
 | 
						|
    BHi = DAG.getNode(ExSSE41, dl, ExVT, BHi);
 | 
						|
  } else {
 | 
						|
    const int ShufMask[] = {-1, 8,  -1, 9,  -1, 10, -1, 11,
 | 
						|
                            -1, 12, -1, 13, -1, 14, -1, 15};
 | 
						|
    AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
 | 
						|
    BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
 | 
						|
    AHi = DAG.getBitcast(ExVT, AHi);
 | 
						|
    BHi = DAG.getBitcast(ExVT, BHi);
 | 
						|
    AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
 | 
						|
    BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
 | 
						|
  }
 | 
						|
 | 
						|
  // Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
 | 
						|
  // pack back to v16i8.
 | 
						|
  SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
 | 
						|
  SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
 | 
						|
  RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT));
 | 
						|
  RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT));
 | 
						|
  return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget.isTargetWin64() && "Unexpected target");
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
 | 
						|
         "Unexpected return type for lowering");
 | 
						|
 | 
						|
  RTLIB::Libcall LC;
 | 
						|
  bool isSigned;
 | 
						|
  switch (Op->getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unexpected request for libcall!");
 | 
						|
  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
 | 
						|
  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
 | 
						|
  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
 | 
						|
  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
 | 
						|
  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
 | 
						|
  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue InChain = DAG.getEntryNode();
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
 | 
						|
    EVT ArgVT = Op->getOperand(i).getValueType();
 | 
						|
    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
 | 
						|
           "Unexpected argument type for lowering");
 | 
						|
    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
 | 
						|
    Entry.Node = StackPtr;
 | 
						|
    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr,
 | 
						|
                           MachinePointerInfo(), /* Alignment = */ 16);
 | 
						|
    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | 
						|
    Entry.Ty = PointerType::get(ArgTy,0);
 | 
						|
    Entry.isSExt = false;
 | 
						|
    Entry.isZExt = false;
 | 
						|
    Args.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | 
						|
                                         getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						|
  CLI.setDebugLoc(dl).setChain(InChain)
 | 
						|
    .setCallee(getLibcallCallingConv(LC),
 | 
						|
               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
 | 
						|
               Callee, std::move(Args))
 | 
						|
    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
 | 
						|
  return DAG.getBitcast(VT, CallInfo.first);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
 | 
						|
  MVT VT = Op0.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256()) {
 | 
						|
    unsigned Opcode = Op.getOpcode();
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
    MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2);
 | 
						|
    SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl);
 | 
						|
    SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl);
 | 
						|
    SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl);
 | 
						|
    SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl);
 | 
						|
    SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1);
 | 
						|
    SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1);
 | 
						|
    SDValue Ops[] = {
 | 
						|
      DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)),
 | 
						|
      DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1))
 | 
						|
    };
 | 
						|
    return DAG.getMergeValues(Ops, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
 | 
						|
         (VT == MVT::v8i32 && Subtarget.hasInt256()));
 | 
						|
 | 
						|
  // PMULxD operations multiply each even value (starting at 0) of LHS with
 | 
						|
  // the related value of RHS and produce a widen result.
 | 
						|
  // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
 | 
						|
  // => <2 x i64> <ae|cg>
 | 
						|
  //
 | 
						|
  // In other word, to have all the results, we need to perform two PMULxD:
 | 
						|
  // 1. one with the even values.
 | 
						|
  // 2. one with the odd values.
 | 
						|
  // To achieve #2, with need to place the odd values at an even position.
 | 
						|
  //
 | 
						|
  // Place the odd value at an even position (basically, shift all values 1
 | 
						|
  // step to the left):
 | 
						|
  const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
 | 
						|
  // <a|b|c|d> => <b|undef|d|undef>
 | 
						|
  SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0,
 | 
						|
                             makeArrayRef(&Mask[0], VT.getVectorNumElements()));
 | 
						|
  // <e|f|g|h> => <f|undef|h|undef>
 | 
						|
  SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1,
 | 
						|
                             makeArrayRef(&Mask[0], VT.getVectorNumElements()));
 | 
						|
 | 
						|
  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
 | 
						|
  // ints.
 | 
						|
  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
 | 
						|
  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
 | 
						|
  unsigned Opcode =
 | 
						|
      (!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
 | 
						|
  // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
 | 
						|
  // => <2 x i64> <ae|cg>
 | 
						|
  SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
 | 
						|
  // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
 | 
						|
  // => <2 x i64> <bf|dh>
 | 
						|
  SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
 | 
						|
 | 
						|
  // Shuffle it back into the right order.
 | 
						|
  SDValue Highs, Lows;
 | 
						|
  if (VT == MVT::v8i32) {
 | 
						|
    const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
 | 
						|
    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
 | 
						|
    const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
 | 
						|
    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
 | 
						|
  } else {
 | 
						|
    const int HighMask[] = {1, 5, 3, 7};
 | 
						|
    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
 | 
						|
    const int LowMask[] = {0, 4, 2, 6};
 | 
						|
    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a signed multiply but no PMULDQ fix up the high parts of a
 | 
						|
  // unsigned multiply.
 | 
						|
  if (IsSigned && !Subtarget.hasSSE41()) {
 | 
						|
    SDValue ShAmt = DAG.getConstant(
 | 
						|
        31, dl,
 | 
						|
        DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
 | 
						|
    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
 | 
						|
                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
 | 
						|
    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
 | 
						|
                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
 | 
						|
 | 
						|
    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
 | 
						|
    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
 | 
						|
  }
 | 
						|
 | 
						|
  // The first result of MUL_LOHI is actually the low value, followed by the
 | 
						|
  // high value.
 | 
						|
  SDValue Ops[] = {Lows, Highs};
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the required (according to Opcode) shift-imm form is natively
 | 
						|
// supported by the Subtarget
 | 
						|
static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
 | 
						|
                                        unsigned Opcode) {
 | 
						|
  if (VT.getScalarSizeInBits() < 16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.is512BitVector() &&
 | 
						|
      (VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  bool LShift = VT.is128BitVector() ||
 | 
						|
    (VT.is256BitVector() && Subtarget.hasInt256());
 | 
						|
 | 
						|
  bool AShift = LShift && (Subtarget.hasVLX() ||
 | 
						|
    (VT != MVT::v2i64 && VT != MVT::v4i64));
 | 
						|
  return (Opcode == ISD::SRA) ? AShift : LShift;
 | 
						|
}
 | 
						|
 | 
						|
// The shift amount is a variable, but it is the same for all vector lanes.
 | 
						|
// These instructions are defined together with shift-immediate.
 | 
						|
static
 | 
						|
bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
 | 
						|
                                      unsigned Opcode) {
 | 
						|
  return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the required (according to Opcode) variable-shift form is
 | 
						|
// natively supported by the Subtarget
 | 
						|
static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
 | 
						|
                                    unsigned Opcode) {
 | 
						|
 | 
						|
  if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // vXi16 supported only on AVX-512, BWI
 | 
						|
  if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.is512BitVector() || Subtarget.hasVLX())
 | 
						|
    return true;
 | 
						|
 | 
						|
  bool LShift = VT.is128BitVector() || VT.is256BitVector();
 | 
						|
  bool AShift = LShift &&  VT != MVT::v2i64 && VT != MVT::v4i64;
 | 
						|
  return (Opcode == ISD::SRA) ? AShift : LShift;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                         const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue R = Op.getOperand(0);
 | 
						|
  SDValue Amt = Op.getOperand(1);
 | 
						|
 | 
						|
  unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
 | 
						|
    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
 | 
						|
 | 
						|
  auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
 | 
						|
    assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
 | 
						|
    MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
 | 
						|
    SDValue Ex = DAG.getBitcast(ExVT, R);
 | 
						|
 | 
						|
    if (ShiftAmt >= 32) {
 | 
						|
      // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
 | 
						|
      SDValue Upper =
 | 
						|
          getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
 | 
						|
      SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
 | 
						|
                                                 ShiftAmt - 32, DAG);
 | 
						|
      if (VT == MVT::v2i64)
 | 
						|
        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
 | 
						|
      if (VT == MVT::v4i64)
 | 
						|
        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
 | 
						|
                                  {9, 1, 11, 3, 13, 5, 15, 7});
 | 
						|
    } else {
 | 
						|
      // SRA upper i32, SHL whole i64 and select lower i32.
 | 
						|
      SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
 | 
						|
                                                 ShiftAmt, DAG);
 | 
						|
      SDValue Lower =
 | 
						|
          getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
 | 
						|
      Lower = DAG.getBitcast(ExVT, Lower);
 | 
						|
      if (VT == MVT::v2i64)
 | 
						|
        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
 | 
						|
      if (VT == MVT::v4i64)
 | 
						|
        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
 | 
						|
                                  {8, 1, 10, 3, 12, 5, 14, 7});
 | 
						|
    }
 | 
						|
    return DAG.getBitcast(VT, Ex);
 | 
						|
  };
 | 
						|
 | 
						|
  // Optimize shl/srl/sra with constant shift amount.
 | 
						|
  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
 | 
						|
    if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
 | 
						|
      uint64_t ShiftAmt = ShiftConst->getZExtValue();
 | 
						|
 | 
						|
      if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
 | 
						|
        return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
 | 
						|
 | 
						|
      // i64 SRA needs to be performed as partial shifts.
 | 
						|
      if ((VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64)) &&
 | 
						|
          Op.getOpcode() == ISD::SRA && !Subtarget.hasXOP())
 | 
						|
        return ArithmeticShiftRight64(ShiftAmt);
 | 
						|
 | 
						|
      if (VT == MVT::v16i8 ||
 | 
						|
          (Subtarget.hasInt256() && VT == MVT::v32i8) ||
 | 
						|
          VT == MVT::v64i8) {
 | 
						|
        unsigned NumElts = VT.getVectorNumElements();
 | 
						|
        MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
 | 
						|
 | 
						|
        // Simple i8 add case
 | 
						|
        if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
 | 
						|
          return DAG.getNode(ISD::ADD, dl, VT, R, R);
 | 
						|
 | 
						|
        // ashr(R, 7)  === cmp_slt(R, 0)
 | 
						|
        if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
 | 
						|
          SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
          if (VT.is512BitVector()) {
 | 
						|
            assert(VT == MVT::v64i8 && "Unexpected element type!");
 | 
						|
            SDValue CMP = DAG.getNode(X86ISD::PCMPGTM, dl, MVT::v64i1, Zeros, R);
 | 
						|
            return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
 | 
						|
          }
 | 
						|
          return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
 | 
						|
        }
 | 
						|
 | 
						|
        // XOP can shift v16i8 directly instead of as shift v8i16 + mask.
 | 
						|
        if (VT == MVT::v16i8 && Subtarget.hasXOP())
 | 
						|
          return SDValue();
 | 
						|
 | 
						|
        if (Op.getOpcode() == ISD::SHL) {
 | 
						|
          // Make a large shift.
 | 
						|
          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
 | 
						|
                                                   R, ShiftAmt, DAG);
 | 
						|
          SHL = DAG.getBitcast(VT, SHL);
 | 
						|
          // Zero out the rightmost bits.
 | 
						|
          return DAG.getNode(ISD::AND, dl, VT, SHL,
 | 
						|
                             DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT));
 | 
						|
        }
 | 
						|
        if (Op.getOpcode() == ISD::SRL) {
 | 
						|
          // Make a large shift.
 | 
						|
          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
 | 
						|
                                                   R, ShiftAmt, DAG);
 | 
						|
          SRL = DAG.getBitcast(VT, SRL);
 | 
						|
          // Zero out the leftmost bits.
 | 
						|
          return DAG.getNode(ISD::AND, dl, VT, SRL,
 | 
						|
                             DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
 | 
						|
        }
 | 
						|
        if (Op.getOpcode() == ISD::SRA) {
 | 
						|
          // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
 | 
						|
          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
 | 
						|
 | 
						|
          SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
 | 
						|
          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
 | 
						|
          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
        llvm_unreachable("Unknown shift opcode.");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
 | 
						|
  if (!Subtarget.is64Bit() && !Subtarget.hasXOP() &&
 | 
						|
      (VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64) ||
 | 
						|
       (Subtarget.hasAVX512() && VT == MVT::v8i64))) {
 | 
						|
 | 
						|
    // Peek through any splat that was introduced for i64 shift vectorization.
 | 
						|
    int SplatIndex = -1;
 | 
						|
    if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
 | 
						|
      if (SVN->isSplat()) {
 | 
						|
        SplatIndex = SVN->getSplatIndex();
 | 
						|
        Amt = Amt.getOperand(0);
 | 
						|
        assert(SplatIndex < (int)VT.getVectorNumElements() &&
 | 
						|
               "Splat shuffle referencing second operand");
 | 
						|
      }
 | 
						|
 | 
						|
    if (Amt.getOpcode() != ISD::BITCAST ||
 | 
						|
        Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    Amt = Amt.getOperand(0);
 | 
						|
    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
 | 
						|
                     VT.getVectorNumElements();
 | 
						|
    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
 | 
						|
    uint64_t ShiftAmt = 0;
 | 
						|
    unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
 | 
						|
    for (unsigned i = 0; i != Ratio; ++i) {
 | 
						|
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
 | 
						|
      if (!C)
 | 
						|
        return SDValue();
 | 
						|
      // 6 == Log2(64)
 | 
						|
      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
 | 
						|
    }
 | 
						|
 | 
						|
    // Check remaining shift amounts (if not a splat).
 | 
						|
    if (SplatIndex < 0) {
 | 
						|
      for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
 | 
						|
        uint64_t ShAmt = 0;
 | 
						|
        for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
 | 
						|
          if (!C)
 | 
						|
            return SDValue();
 | 
						|
          // 6 == Log2(64)
 | 
						|
          ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
 | 
						|
        }
 | 
						|
        if (ShAmt != ShiftAmt)
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
 | 
						|
      return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
 | 
						|
 | 
						|
    if (Op.getOpcode() == ISD::SRA)
 | 
						|
      return ArithmeticShiftRight64(ShiftAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                        const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue R = Op.getOperand(0);
 | 
						|
  SDValue Amt = Op.getOperand(1);
 | 
						|
 | 
						|
  unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
 | 
						|
    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
 | 
						|
 | 
						|
  unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
 | 
						|
    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
 | 
						|
 | 
						|
  if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
 | 
						|
    SDValue BaseShAmt;
 | 
						|
    MVT EltVT = VT.getVectorElementType();
 | 
						|
 | 
						|
    if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
 | 
						|
      // Check if this build_vector node is doing a splat.
 | 
						|
      // If so, then set BaseShAmt equal to the splat value.
 | 
						|
      BaseShAmt = BV->getSplatValue();
 | 
						|
      if (BaseShAmt && BaseShAmt.isUndef())
 | 
						|
        BaseShAmt = SDValue();
 | 
						|
    } else {
 | 
						|
      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
 | 
						|
        Amt = Amt.getOperand(0);
 | 
						|
 | 
						|
      ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
 | 
						|
      if (SVN && SVN->isSplat()) {
 | 
						|
        unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
 | 
						|
        SDValue InVec = Amt.getOperand(0);
 | 
						|
        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						|
          assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) &&
 | 
						|
                 "Unexpected shuffle index found!");
 | 
						|
          BaseShAmt = InVec.getOperand(SplatIdx);
 | 
						|
        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
 | 
						|
           if (ConstantSDNode *C =
 | 
						|
               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
 | 
						|
             if (C->getZExtValue() == SplatIdx)
 | 
						|
               BaseShAmt = InVec.getOperand(1);
 | 
						|
           }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!BaseShAmt)
 | 
						|
          // Avoid introducing an extract element from a shuffle.
 | 
						|
          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
 | 
						|
                                  DAG.getIntPtrConstant(SplatIdx, dl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (BaseShAmt.getNode()) {
 | 
						|
      assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
 | 
						|
      if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
 | 
						|
        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
 | 
						|
      else if (EltVT.bitsLT(MVT::i32))
 | 
						|
        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
 | 
						|
 | 
						|
      return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
 | 
						|
  if (!Subtarget.is64Bit() && VT == MVT::v2i64  &&
 | 
						|
      Amt.getOpcode() == ISD::BITCAST &&
 | 
						|
      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
 | 
						|
    Amt = Amt.getOperand(0);
 | 
						|
    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
 | 
						|
                     VT.getVectorNumElements();
 | 
						|
    std::vector<SDValue> Vals(Ratio);
 | 
						|
    for (unsigned i = 0; i != Ratio; ++i)
 | 
						|
      Vals[i] = Amt.getOperand(i);
 | 
						|
    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
 | 
						|
      for (unsigned j = 0; j != Ratio; ++j)
 | 
						|
        if (Vals[j] != Amt.getOperand(i + j))
 | 
						|
          return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
 | 
						|
      return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                          SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue R = Op.getOperand(0);
 | 
						|
  SDValue Amt = Op.getOperand(1);
 | 
						|
  bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
 | 
						|
 | 
						|
  assert(VT.isVector() && "Custom lowering only for vector shifts!");
 | 
						|
  assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
 | 
						|
 | 
						|
  if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // XOP has 128-bit variable logical/arithmetic shifts.
 | 
						|
  // +ve/-ve Amt = shift left/right.
 | 
						|
  if (Subtarget.hasXOP() &&
 | 
						|
      (VT == MVT::v2i64 || VT == MVT::v4i32 ||
 | 
						|
       VT == MVT::v8i16 || VT == MVT::v16i8)) {
 | 
						|
    if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
 | 
						|
      SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
 | 
						|
    }
 | 
						|
    if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
 | 
						|
      return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
 | 
						|
    if (Op.getOpcode() == ISD::SRA)
 | 
						|
      return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
 | 
						|
  }
 | 
						|
 | 
						|
  // 2i64 vector logical shifts can efficiently avoid scalarization - do the
 | 
						|
  // shifts per-lane and then shuffle the partial results back together.
 | 
						|
  if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
 | 
						|
    // Splat the shift amounts so the scalar shifts above will catch it.
 | 
						|
    SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
 | 
						|
    SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
 | 
						|
    SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
 | 
						|
    SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
 | 
						|
    return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
 | 
						|
  }
 | 
						|
 | 
						|
  // i64 vector arithmetic shift can be emulated with the transform:
 | 
						|
  // M = lshr(SIGN_BIT, Amt)
 | 
						|
  // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
 | 
						|
  if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
 | 
						|
      Op.getOpcode() == ISD::SRA) {
 | 
						|
    SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT);
 | 
						|
    SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
 | 
						|
    R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
 | 
						|
    R = DAG.getNode(ISD::XOR, dl, VT, R, M);
 | 
						|
    R = DAG.getNode(ISD::SUB, dl, VT, R, M);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // If possible, lower this packed shift into a vector multiply instead of
 | 
						|
  // expanding it into a sequence of scalar shifts.
 | 
						|
  // Do this only if the vector shift count is a constant build_vector.
 | 
						|
  if (ConstantAmt && Op.getOpcode() == ISD::SHL &&
 | 
						|
      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | 
						|
       (Subtarget.hasInt256() && VT == MVT::v16i16))) {
 | 
						|
    SmallVector<SDValue, 8> Elts;
 | 
						|
    MVT SVT = VT.getVectorElementType();
 | 
						|
    unsigned SVTBits = SVT.getSizeInBits();
 | 
						|
    APInt One(SVTBits, 1);
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    for (unsigned i=0; i !=NumElems; ++i) {
 | 
						|
      SDValue Op = Amt->getOperand(i);
 | 
						|
      if (Op->isUndef()) {
 | 
						|
        Elts.push_back(Op);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
 | 
						|
      APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
 | 
						|
      uint64_t ShAmt = C.getZExtValue();
 | 
						|
      if (ShAmt >= SVTBits) {
 | 
						|
        Elts.push_back(DAG.getUNDEF(SVT));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
 | 
						|
    }
 | 
						|
    SDValue BV = DAG.getBuildVector(VT, dl, Elts);
 | 
						|
    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower SHL with variable shift amount.
 | 
						|
  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
 | 
						|
    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
 | 
						|
 | 
						|
    Op = DAG.getNode(ISD::ADD, dl, VT, Op,
 | 
						|
                     DAG.getConstant(0x3f800000U, dl, VT));
 | 
						|
    Op = DAG.getBitcast(MVT::v4f32, Op);
 | 
						|
    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
 | 
						|
    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // If possible, lower this shift as a sequence of two shifts by
 | 
						|
  // constant plus a MOVSS/MOVSD/PBLEND instead of scalarizing it.
 | 
						|
  // Example:
 | 
						|
  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
 | 
						|
  //
 | 
						|
  // Could be rewritten as:
 | 
						|
  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
 | 
						|
  //
 | 
						|
  // The advantage is that the two shifts from the example would be
 | 
						|
  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
 | 
						|
  // the vector shift into four scalar shifts plus four pairs of vector
 | 
						|
  // insert/extract.
 | 
						|
  if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32)) {
 | 
						|
    unsigned TargetOpcode = X86ISD::MOVSS;
 | 
						|
    bool CanBeSimplified;
 | 
						|
    // The splat value for the first packed shift (the 'X' from the example).
 | 
						|
    SDValue Amt1 = Amt->getOperand(0);
 | 
						|
    // The splat value for the second packed shift (the 'Y' from the example).
 | 
						|
    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2);
 | 
						|
 | 
						|
    // See if it is possible to replace this node with a sequence of
 | 
						|
    // two shifts followed by a MOVSS/MOVSD/PBLEND.
 | 
						|
    if (VT == MVT::v4i32) {
 | 
						|
      // Check if it is legal to use a MOVSS.
 | 
						|
      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
 | 
						|
                        Amt2 == Amt->getOperand(3);
 | 
						|
      if (!CanBeSimplified) {
 | 
						|
        // Otherwise, check if we can still simplify this node using a MOVSD.
 | 
						|
        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
 | 
						|
                          Amt->getOperand(2) == Amt->getOperand(3);
 | 
						|
        TargetOpcode = X86ISD::MOVSD;
 | 
						|
        Amt2 = Amt->getOperand(2);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Do similar checks for the case where the machine value type
 | 
						|
      // is MVT::v8i16.
 | 
						|
      CanBeSimplified = Amt1 == Amt->getOperand(1);
 | 
						|
      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
 | 
						|
        CanBeSimplified = Amt2 == Amt->getOperand(i);
 | 
						|
 | 
						|
      if (!CanBeSimplified) {
 | 
						|
        TargetOpcode = X86ISD::MOVSD;
 | 
						|
        CanBeSimplified = true;
 | 
						|
        Amt2 = Amt->getOperand(4);
 | 
						|
        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
 | 
						|
          CanBeSimplified = Amt1 == Amt->getOperand(i);
 | 
						|
        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
 | 
						|
          CanBeSimplified = Amt2 == Amt->getOperand(j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
 | 
						|
        isa<ConstantSDNode>(Amt2)) {
 | 
						|
      // Replace this node with two shifts followed by a MOVSS/MOVSD/PBLEND.
 | 
						|
      MVT CastVT = MVT::v4i32;
 | 
						|
      SDValue Splat1 =
 | 
						|
          DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
 | 
						|
      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
 | 
						|
      SDValue Splat2 =
 | 
						|
          DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
 | 
						|
      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
 | 
						|
      SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
 | 
						|
      SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
 | 
						|
      if (TargetOpcode == X86ISD::MOVSD)
 | 
						|
        return DAG.getBitcast(VT, DAG.getVectorShuffle(CastVT, dl, BitCast1,
 | 
						|
                                                       BitCast2, {0, 1, 6, 7}));
 | 
						|
      return DAG.getBitcast(VT, DAG.getVectorShuffle(CastVT, dl, BitCast1,
 | 
						|
                                                     BitCast2, {0, 5, 6, 7}));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // v4i32 Non Uniform Shifts.
 | 
						|
  // If the shift amount is constant we can shift each lane using the SSE2
 | 
						|
  // immediate shifts, else we need to zero-extend each lane to the lower i64
 | 
						|
  // and shift using the SSE2 variable shifts.
 | 
						|
  // The separate results can then be blended together.
 | 
						|
  if (VT == MVT::v4i32) {
 | 
						|
    unsigned Opc = Op.getOpcode();
 | 
						|
    SDValue Amt0, Amt1, Amt2, Amt3;
 | 
						|
    if (ConstantAmt) {
 | 
						|
      Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
 | 
						|
      Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
 | 
						|
      Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
 | 
						|
      Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
 | 
						|
    } else {
 | 
						|
      // ISD::SHL is handled above but we include it here for completeness.
 | 
						|
      switch (Opc) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown target vector shift node");
 | 
						|
      case ISD::SHL:
 | 
						|
        Opc = X86ISD::VSHL;
 | 
						|
        break;
 | 
						|
      case ISD::SRL:
 | 
						|
        Opc = X86ISD::VSRL;
 | 
						|
        break;
 | 
						|
      case ISD::SRA:
 | 
						|
        Opc = X86ISD::VSRA;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // The SSE2 shifts use the lower i64 as the same shift amount for
 | 
						|
      // all lanes and the upper i64 is ignored. These shuffle masks
 | 
						|
      // optimally zero-extend each lanes on SSE2/SSE41/AVX targets.
 | 
						|
      SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
      Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
 | 
						|
      Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
 | 
						|
      Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
 | 
						|
      Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
 | 
						|
    SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
 | 
						|
    SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2);
 | 
						|
    SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3);
 | 
						|
    SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
 | 
						|
    SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
 | 
						|
    return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
 | 
						|
  }
 | 
						|
 | 
						|
  // It's worth extending once and using the vXi16/vXi32 shifts for smaller
 | 
						|
  // types, but without AVX512 the extra overheads to get from vXi8 to vXi32
 | 
						|
  // make the existing SSE solution better.
 | 
						|
  if ((Subtarget.hasInt256() && VT == MVT::v8i16) ||
 | 
						|
      (Subtarget.hasAVX512() && VT == MVT::v16i16) ||
 | 
						|
      (Subtarget.hasAVX512() && VT == MVT::v16i8) ||
 | 
						|
      (Subtarget.hasBWI() && VT == MVT::v32i8)) {
 | 
						|
    MVT EvtSVT = (VT == MVT::v32i8 ? MVT::i16 : MVT::i32);
 | 
						|
    MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements());
 | 
						|
    unsigned ExtOpc =
 | 
						|
        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
    R = DAG.getNode(ExtOpc, dl, ExtVT, R);
 | 
						|
    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt);
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						|
                       DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::v16i8 ||
 | 
						|
      (VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP())) {
 | 
						|
    MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
 | 
						|
    unsigned ShiftOpcode = Op->getOpcode();
 | 
						|
 | 
						|
    auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
 | 
						|
      // On SSE41 targets we make use of the fact that VSELECT lowers
 | 
						|
      // to PBLENDVB which selects bytes based just on the sign bit.
 | 
						|
      if (Subtarget.hasSSE41()) {
 | 
						|
        V0 = DAG.getBitcast(VT, V0);
 | 
						|
        V1 = DAG.getBitcast(VT, V1);
 | 
						|
        Sel = DAG.getBitcast(VT, Sel);
 | 
						|
        return DAG.getBitcast(SelVT,
 | 
						|
                              DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1));
 | 
						|
      }
 | 
						|
      // On pre-SSE41 targets we test for the sign bit by comparing to
 | 
						|
      // zero - a negative value will set all bits of the lanes to true
 | 
						|
      // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
 | 
						|
      SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
 | 
						|
      SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
 | 
						|
      return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1);
 | 
						|
    };
 | 
						|
 | 
						|
    // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
 | 
						|
    // We can safely do this using i16 shifts as we're only interested in
 | 
						|
    // the 3 lower bits of each byte.
 | 
						|
    Amt = DAG.getBitcast(ExtVT, Amt);
 | 
						|
    Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
 | 
						|
    Amt = DAG.getBitcast(VT, Amt);
 | 
						|
 | 
						|
    if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
 | 
						|
      // r = VSELECT(r, shift(r, 4), a);
 | 
						|
      SDValue M =
 | 
						|
          DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
 | 
						|
      R = SignBitSelect(VT, Amt, M, R);
 | 
						|
 | 
						|
      // a += a
 | 
						|
      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 | 
						|
 | 
						|
      // r = VSELECT(r, shift(r, 2), a);
 | 
						|
      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
 | 
						|
      R = SignBitSelect(VT, Amt, M, R);
 | 
						|
 | 
						|
      // a += a
 | 
						|
      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 | 
						|
 | 
						|
      // return VSELECT(r, shift(r, 1), a);
 | 
						|
      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
 | 
						|
      R = SignBitSelect(VT, Amt, M, R);
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op->getOpcode() == ISD::SRA) {
 | 
						|
      // For SRA we need to unpack each byte to the higher byte of a i16 vector
 | 
						|
      // so we can correctly sign extend. We don't care what happens to the
 | 
						|
      // lower byte.
 | 
						|
      SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
 | 
						|
      SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
 | 
						|
      SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
 | 
						|
      SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
 | 
						|
      ALo = DAG.getBitcast(ExtVT, ALo);
 | 
						|
      AHi = DAG.getBitcast(ExtVT, AHi);
 | 
						|
      RLo = DAG.getBitcast(ExtVT, RLo);
 | 
						|
      RHi = DAG.getBitcast(ExtVT, RHi);
 | 
						|
 | 
						|
      // r = VSELECT(r, shift(r, 4), a);
 | 
						|
      SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
 | 
						|
                                DAG.getConstant(4, dl, ExtVT));
 | 
						|
      SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
 | 
						|
                                DAG.getConstant(4, dl, ExtVT));
 | 
						|
      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
 | 
						|
      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
 | 
						|
 | 
						|
      // a += a
 | 
						|
      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
 | 
						|
      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
 | 
						|
 | 
						|
      // r = VSELECT(r, shift(r, 2), a);
 | 
						|
      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
 | 
						|
                        DAG.getConstant(2, dl, ExtVT));
 | 
						|
      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
 | 
						|
                        DAG.getConstant(2, dl, ExtVT));
 | 
						|
      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
 | 
						|
      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
 | 
						|
 | 
						|
      // a += a
 | 
						|
      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
 | 
						|
      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
 | 
						|
 | 
						|
      // r = VSELECT(r, shift(r, 1), a);
 | 
						|
      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
 | 
						|
                        DAG.getConstant(1, dl, ExtVT));
 | 
						|
      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
 | 
						|
                        DAG.getConstant(1, dl, ExtVT));
 | 
						|
      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
 | 
						|
      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
 | 
						|
 | 
						|
      // Logical shift the result back to the lower byte, leaving a zero upper
 | 
						|
      // byte
 | 
						|
      // meaning that we can safely pack with PACKUSWB.
 | 
						|
      RLo =
 | 
						|
          DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
 | 
						|
      RHi =
 | 
						|
          DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
 | 
						|
      return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
 | 
						|
    MVT ExtVT = MVT::v8i32;
 | 
						|
    SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
 | 
						|
    SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
 | 
						|
    SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
 | 
						|
    SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Z, R);
 | 
						|
    SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Z, R);
 | 
						|
    ALo = DAG.getBitcast(ExtVT, ALo);
 | 
						|
    AHi = DAG.getBitcast(ExtVT, AHi);
 | 
						|
    RLo = DAG.getBitcast(ExtVT, RLo);
 | 
						|
    RHi = DAG.getBitcast(ExtVT, RHi);
 | 
						|
    SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
 | 
						|
    SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
 | 
						|
    Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
 | 
						|
    Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
 | 
						|
    return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::v8i16) {
 | 
						|
    unsigned ShiftOpcode = Op->getOpcode();
 | 
						|
 | 
						|
    // If we have a constant shift amount, the non-SSE41 path is best as
 | 
						|
    // avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
 | 
						|
    bool UseSSE41 = Subtarget.hasSSE41() &&
 | 
						|
                    !ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
 | 
						|
 | 
						|
    auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
 | 
						|
      // On SSE41 targets we make use of the fact that VSELECT lowers
 | 
						|
      // to PBLENDVB which selects bytes based just on the sign bit.
 | 
						|
      if (UseSSE41) {
 | 
						|
        MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
 | 
						|
        V0 = DAG.getBitcast(ExtVT, V0);
 | 
						|
        V1 = DAG.getBitcast(ExtVT, V1);
 | 
						|
        Sel = DAG.getBitcast(ExtVT, Sel);
 | 
						|
        return DAG.getBitcast(
 | 
						|
            VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1));
 | 
						|
      }
 | 
						|
      // On pre-SSE41 targets we splat the sign bit - a negative value will
 | 
						|
      // set all bits of the lanes to true and VSELECT uses that in
 | 
						|
      // its OR(AND(V0,C),AND(V1,~C)) lowering.
 | 
						|
      SDValue C =
 | 
						|
          DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
 | 
						|
      return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1);
 | 
						|
    };
 | 
						|
 | 
						|
    // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
 | 
						|
    if (UseSSE41) {
 | 
						|
      // On SSE41 targets we need to replicate the shift mask in both
 | 
						|
      // bytes for PBLENDVB.
 | 
						|
      Amt = DAG.getNode(
 | 
						|
          ISD::OR, dl, VT,
 | 
						|
          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
 | 
						|
          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
 | 
						|
    } else {
 | 
						|
      Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
 | 
						|
    }
 | 
						|
 | 
						|
    // r = VSELECT(r, shift(r, 8), a);
 | 
						|
    SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
 | 
						|
    R = SignBitSelect(Amt, M, R);
 | 
						|
 | 
						|
    // a += a
 | 
						|
    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 | 
						|
 | 
						|
    // r = VSELECT(r, shift(r, 4), a);
 | 
						|
    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
 | 
						|
    R = SignBitSelect(Amt, M, R);
 | 
						|
 | 
						|
    // a += a
 | 
						|
    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 | 
						|
 | 
						|
    // r = VSELECT(r, shift(r, 2), a);
 | 
						|
    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
 | 
						|
    R = SignBitSelect(Amt, M, R);
 | 
						|
 | 
						|
    // a += a
 | 
						|
    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
 | 
						|
 | 
						|
    // return VSELECT(r, shift(r, 1), a);
 | 
						|
    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
 | 
						|
    R = SignBitSelect(Amt, M, R);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // Decompose 256-bit shifts into smaller 128-bit shifts.
 | 
						|
  if (VT.is256BitVector())
 | 
						|
    return Lower256IntArith(Op, DAG);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                           SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue R = Op.getOperand(0);
 | 
						|
  SDValue Amt = Op.getOperand(1);
 | 
						|
 | 
						|
  assert(VT.isVector() && "Custom lowering only for vector rotates!");
 | 
						|
  assert(Subtarget.hasXOP() && "XOP support required for vector rotates!");
 | 
						|
  assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported");
 | 
						|
 | 
						|
  // XOP has 128-bit vector variable + immediate rotates.
 | 
						|
  // +ve/-ve Amt = rotate left/right.
 | 
						|
 | 
						|
  // Split 256-bit integers.
 | 
						|
  if (VT.is256BitVector())
 | 
						|
    return Lower256IntArith(Op, DAG);
 | 
						|
 | 
						|
  assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
 | 
						|
 | 
						|
  // Attempt to rotate by immediate.
 | 
						|
  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
 | 
						|
    if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
 | 
						|
      uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
 | 
						|
      assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range");
 | 
						|
      return DAG.getNode(X86ISD::VPROTI, DL, VT, R,
 | 
						|
                         DAG.getConstant(RotateAmt, DL, MVT::i8));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use general rotate by variable (per-element).
 | 
						|
  return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
 | 
						|
  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
 | 
						|
  // looks for this combo and may remove the "setcc" instruction if the "setcc"
 | 
						|
  // has only one use.
 | 
						|
  SDNode *N = Op.getNode();
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
  unsigned BaseOp = 0;
 | 
						|
  X86::CondCode Cond;
 | 
						|
  SDLoc DL(Op);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unknown ovf instruction!");
 | 
						|
  case ISD::SADDO:
 | 
						|
    // A subtract of one will be selected as a INC. Note that INC doesn't
 | 
						|
    // set CF, so we can't do this for UADDO.
 | 
						|
    if (isOneConstant(RHS)) {
 | 
						|
        BaseOp = X86ISD::INC;
 | 
						|
        Cond = X86::COND_O;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    BaseOp = X86ISD::ADD;
 | 
						|
    Cond = X86::COND_O;
 | 
						|
    break;
 | 
						|
  case ISD::UADDO:
 | 
						|
    BaseOp = X86ISD::ADD;
 | 
						|
    Cond = X86::COND_B;
 | 
						|
    break;
 | 
						|
  case ISD::SSUBO:
 | 
						|
    // A subtract of one will be selected as a DEC. Note that DEC doesn't
 | 
						|
    // set CF, so we can't do this for USUBO.
 | 
						|
    if (isOneConstant(RHS)) {
 | 
						|
        BaseOp = X86ISD::DEC;
 | 
						|
        Cond = X86::COND_O;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    BaseOp = X86ISD::SUB;
 | 
						|
    Cond = X86::COND_O;
 | 
						|
    break;
 | 
						|
  case ISD::USUBO:
 | 
						|
    BaseOp = X86ISD::SUB;
 | 
						|
    Cond = X86::COND_B;
 | 
						|
    break;
 | 
						|
  case ISD::SMULO:
 | 
						|
    BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
 | 
						|
    Cond = X86::COND_O;
 | 
						|
    break;
 | 
						|
  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
 | 
						|
    if (N->getValueType(0) == MVT::i8) {
 | 
						|
      BaseOp = X86ISD::UMUL8;
 | 
						|
      Cond = X86::COND_O;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
 | 
						|
                                 MVT::i32);
 | 
						|
    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
 | 
						|
 | 
						|
    SDValue SetCC = getSETCC(X86::COND_O, SDValue(Sum.getNode(), 2), DL, DAG);
 | 
						|
 | 
						|
    if (N->getValueType(1) == MVT::i1)
 | 
						|
      SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Also sets EFLAGS.
 | 
						|
  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
 | 
						|
  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
 | 
						|
 | 
						|
  SDValue SetCC = getSETCC(Cond, SDValue(Sum.getNode(), 1), DL, DAG);
 | 
						|
 | 
						|
  if (N->getValueType(1) == MVT::i1)
 | 
						|
    SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the operand type is exactly twice the native width, and
 | 
						|
/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
 | 
						|
/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
 | 
						|
/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
 | 
						|
bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
 | 
						|
  unsigned OpWidth = MemType->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  if (OpWidth == 64)
 | 
						|
    return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
 | 
						|
  else if (OpWidth == 128)
 | 
						|
    return Subtarget.hasCmpxchg16b();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
 | 
						|
  return needsCmpXchgNb(SI->getValueOperand()->getType());
 | 
						|
}
 | 
						|
 | 
						|
// Note: this turns large loads into lock cmpxchg8b/16b.
 | 
						|
// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
 | 
						|
  auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
 | 
						|
  return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
 | 
						|
                                               : AtomicExpansionKind::None;
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | 
						|
  unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
 | 
						|
  Type *MemType = AI->getType();
 | 
						|
 | 
						|
  // If the operand is too big, we must see if cmpxchg8/16b is available
 | 
						|
  // and default to library calls otherwise.
 | 
						|
  if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
 | 
						|
    return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
 | 
						|
                                   : AtomicExpansionKind::None;
 | 
						|
  }
 | 
						|
 | 
						|
  AtomicRMWInst::BinOp Op = AI->getOperation();
 | 
						|
  switch (Op) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown atomic operation");
 | 
						|
  case AtomicRMWInst::Xchg:
 | 
						|
  case AtomicRMWInst::Add:
 | 
						|
  case AtomicRMWInst::Sub:
 | 
						|
    // It's better to use xadd, xsub or xchg for these in all cases.
 | 
						|
    return AtomicExpansionKind::None;
 | 
						|
  case AtomicRMWInst::Or:
 | 
						|
  case AtomicRMWInst::And:
 | 
						|
  case AtomicRMWInst::Xor:
 | 
						|
    // If the atomicrmw's result isn't actually used, we can just add a "lock"
 | 
						|
    // prefix to a normal instruction for these operations.
 | 
						|
    return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
 | 
						|
                            : AtomicExpansionKind::None;
 | 
						|
  case AtomicRMWInst::Nand:
 | 
						|
  case AtomicRMWInst::Max:
 | 
						|
  case AtomicRMWInst::Min:
 | 
						|
  case AtomicRMWInst::UMax:
 | 
						|
  case AtomicRMWInst::UMin:
 | 
						|
    // These always require a non-trivial set of data operations on x86. We must
 | 
						|
    // use a cmpxchg loop.
 | 
						|
    return AtomicExpansionKind::CmpXChg;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LoadInst *
 | 
						|
X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
 | 
						|
  unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
 | 
						|
  Type *MemType = AI->getType();
 | 
						|
  // Accesses larger than the native width are turned into cmpxchg/libcalls, so
 | 
						|
  // there is no benefit in turning such RMWs into loads, and it is actually
 | 
						|
  // harmful as it introduces a mfence.
 | 
						|
  if (MemType->getPrimitiveSizeInBits() > NativeWidth)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto Builder = IRBuilder<>(AI);
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  auto SynchScope = AI->getSynchScope();
 | 
						|
  // We must restrict the ordering to avoid generating loads with Release or
 | 
						|
  // ReleaseAcquire orderings.
 | 
						|
  auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
 | 
						|
  auto Ptr = AI->getPointerOperand();
 | 
						|
 | 
						|
  // Before the load we need a fence. Here is an example lifted from
 | 
						|
  // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
 | 
						|
  // is required:
 | 
						|
  // Thread 0:
 | 
						|
  //   x.store(1, relaxed);
 | 
						|
  //   r1 = y.fetch_add(0, release);
 | 
						|
  // Thread 1:
 | 
						|
  //   y.fetch_add(42, acquire);
 | 
						|
  //   r2 = x.load(relaxed);
 | 
						|
  // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
 | 
						|
  // lowered to just a load without a fence. A mfence flushes the store buffer,
 | 
						|
  // making the optimization clearly correct.
 | 
						|
  // FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
 | 
						|
  // otherwise, we might be able to be more aggressive on relaxed idempotent
 | 
						|
  // rmw. In practice, they do not look useful, so we don't try to be
 | 
						|
  // especially clever.
 | 
						|
  if (SynchScope == SingleThread)
 | 
						|
    // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
 | 
						|
    // the IR level, so we must wrap it in an intrinsic.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!Subtarget.hasMFence())
 | 
						|
    // FIXME: it might make sense to use a locked operation here but on a
 | 
						|
    // different cache-line to prevent cache-line bouncing. In practice it
 | 
						|
    // is probably a small win, and x86 processors without mfence are rare
 | 
						|
    // enough that we do not bother.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Function *MFence =
 | 
						|
      llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
 | 
						|
  Builder.CreateCall(MFence, {});
 | 
						|
 | 
						|
  // Finally we can emit the atomic load.
 | 
						|
  LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
 | 
						|
          AI->getType()->getPrimitiveSizeInBits());
 | 
						|
  Loaded->setAtomic(Order, SynchScope);
 | 
						|
  AI->replaceAllUsesWith(Loaded);
 | 
						|
  AI->eraseFromParent();
 | 
						|
  return Loaded;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                 SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
 | 
						|
    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
 | 
						|
  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
 | 
						|
    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
 | 
						|
 | 
						|
  // The only fence that needs an instruction is a sequentially-consistent
 | 
						|
  // cross-thread fence.
 | 
						|
  if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
 | 
						|
      FenceScope == CrossThread) {
 | 
						|
    if (Subtarget.hasMFence())
 | 
						|
      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
 | 
						|
 | 
						|
    SDValue Chain = Op.getOperand(0);
 | 
						|
    SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
 | 
						|
    SDValue Ops[] = {
 | 
						|
      DAG.getRegister(X86::ESP, MVT::i32),     // Base
 | 
						|
      DAG.getTargetConstant(1, dl, MVT::i8),   // Scale
 | 
						|
      DAG.getRegister(0, MVT::i32),            // Index
 | 
						|
      DAG.getTargetConstant(0, dl, MVT::i32),  // Disp
 | 
						|
      DAG.getRegister(0, MVT::i32),            // Segment.
 | 
						|
      Zero,
 | 
						|
      Chain
 | 
						|
    };
 | 
						|
    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
 | 
						|
    return SDValue(Res, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
 | 
						|
  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  MVT T = Op.getSimpleValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned Reg = 0;
 | 
						|
  unsigned size = 0;
 | 
						|
  switch(T.SimpleTy) {
 | 
						|
  default: llvm_unreachable("Invalid value type!");
 | 
						|
  case MVT::i8:  Reg = X86::AL;  size = 1; break;
 | 
						|
  case MVT::i16: Reg = X86::AX;  size = 2; break;
 | 
						|
  case MVT::i32: Reg = X86::EAX; size = 4; break;
 | 
						|
  case MVT::i64:
 | 
						|
    assert(Subtarget.is64Bit() && "Node not type legal!");
 | 
						|
    Reg = X86::RAX; size = 8;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
 | 
						|
                                  Op.getOperand(2), SDValue());
 | 
						|
  SDValue Ops[] = { cpIn.getValue(0),
 | 
						|
                    Op.getOperand(1),
 | 
						|
                    Op.getOperand(3),
 | 
						|
                    DAG.getTargetConstant(size, DL, MVT::i8),
 | 
						|
                    cpIn.getValue(1) };
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
 | 
						|
  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
 | 
						|
                                           Ops, T, MMO);
 | 
						|
 | 
						|
  SDValue cpOut =
 | 
						|
    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
 | 
						|
  SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
 | 
						|
                                      MVT::i32, cpOut.getValue(2));
 | 
						|
  SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG);
 | 
						|
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
 | 
						|
  MVT DstVT = Op.getSimpleValueType();
 | 
						|
 | 
						|
  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
 | 
						|
      SrcVT == MVT::i64) {
 | 
						|
    assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
 | 
						|
    if (DstVT != MVT::f64)
 | 
						|
      // This conversion needs to be expanded.
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Op0 = Op->getOperand(0);
 | 
						|
    SmallVector<SDValue, 16> Elts;
 | 
						|
    SDLoc dl(Op);
 | 
						|
    unsigned NumElts;
 | 
						|
    MVT SVT;
 | 
						|
    if (SrcVT.isVector()) {
 | 
						|
      NumElts = SrcVT.getVectorNumElements();
 | 
						|
      SVT = SrcVT.getVectorElementType();
 | 
						|
 | 
						|
      // Widen the vector in input in the case of MVT::v2i32.
 | 
						|
      // Example: from MVT::v2i32 to MVT::v4i32.
 | 
						|
      for (unsigned i = 0, e = NumElts; i != e; ++i)
 | 
						|
        Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Op0,
 | 
						|
                                   DAG.getIntPtrConstant(i, dl)));
 | 
						|
    } else {
 | 
						|
      assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
 | 
						|
             "Unexpected source type in LowerBITCAST");
 | 
						|
      Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
 | 
						|
                                 DAG.getIntPtrConstant(0, dl)));
 | 
						|
      Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
 | 
						|
                                 DAG.getIntPtrConstant(1, dl)));
 | 
						|
      NumElts = 2;
 | 
						|
      SVT = MVT::i32;
 | 
						|
    }
 | 
						|
    // Explicitly mark the extra elements as Undef.
 | 
						|
    Elts.append(NumElts, DAG.getUNDEF(SVT));
 | 
						|
 | 
						|
    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
 | 
						|
    SDValue BV = DAG.getBuildVector(NewVT, dl, Elts);
 | 
						|
    SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
 | 
						|
                       DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() &&
 | 
						|
         Subtarget.hasMMX() && "Unexpected custom BITCAST");
 | 
						|
  assert((DstVT == MVT::i64 ||
 | 
						|
          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
 | 
						|
         "Unexpected custom BITCAST");
 | 
						|
  // i64 <=> MMX conversions are Legal.
 | 
						|
  if (SrcVT==MVT::i64 && DstVT.isVector())
 | 
						|
    return Op;
 | 
						|
  if (DstVT==MVT::i64 && SrcVT.isVector())
 | 
						|
    return Op;
 | 
						|
  // MMX <=> MMX conversions are Legal.
 | 
						|
  if (SrcVT.isVector() && DstVT.isVector())
 | 
						|
    return Op;
 | 
						|
  // All other conversions need to be expanded.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the horizontal sum of bytes in V for the elements of VT.
 | 
						|
///
 | 
						|
/// Requires V to be a byte vector and VT to be an integer vector type with
 | 
						|
/// wider elements than V's type. The width of the elements of VT determines
 | 
						|
/// how many bytes of V are summed horizontally to produce each element of the
 | 
						|
/// result.
 | 
						|
static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
 | 
						|
                                      const X86Subtarget &Subtarget,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(V);
 | 
						|
  MVT ByteVecVT = V.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
 | 
						|
         "Expected value to have byte element type.");
 | 
						|
  assert(EltVT != MVT::i8 &&
 | 
						|
         "Horizontal byte sum only makes sense for wider elements!");
 | 
						|
  unsigned VecSize = VT.getSizeInBits();
 | 
						|
  assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
 | 
						|
 | 
						|
  // PSADBW instruction horizontally add all bytes and leave the result in i64
 | 
						|
  // chunks, thus directly computes the pop count for v2i64 and v4i64.
 | 
						|
  if (EltVT == MVT::i64) {
 | 
						|
    SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
 | 
						|
    MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
 | 
						|
    V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
 | 
						|
    return DAG.getBitcast(VT, V);
 | 
						|
  }
 | 
						|
 | 
						|
  if (EltVT == MVT::i32) {
 | 
						|
    // We unpack the low half and high half into i32s interleaved with zeros so
 | 
						|
    // that we can use PSADBW to horizontally sum them. The most useful part of
 | 
						|
    // this is that it lines up the results of two PSADBW instructions to be
 | 
						|
    // two v2i64 vectors which concatenated are the 4 population counts. We can
 | 
						|
    // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
 | 
						|
    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
    SDValue V32 = DAG.getBitcast(VT, V);
 | 
						|
    SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V32, Zeros);
 | 
						|
    SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V32, Zeros);
 | 
						|
 | 
						|
    // Do the horizontal sums into two v2i64s.
 | 
						|
    Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
 | 
						|
    MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
 | 
						|
    Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
 | 
						|
                      DAG.getBitcast(ByteVecVT, Low), Zeros);
 | 
						|
    High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
 | 
						|
                       DAG.getBitcast(ByteVecVT, High), Zeros);
 | 
						|
 | 
						|
    // Merge them together.
 | 
						|
    MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
 | 
						|
    V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
 | 
						|
                    DAG.getBitcast(ShortVecVT, Low),
 | 
						|
                    DAG.getBitcast(ShortVecVT, High));
 | 
						|
 | 
						|
    return DAG.getBitcast(VT, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // The only element type left is i16.
 | 
						|
  assert(EltVT == MVT::i16 && "Unknown how to handle type");
 | 
						|
 | 
						|
  // To obtain pop count for each i16 element starting from the pop count for
 | 
						|
  // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
 | 
						|
  // right by 8. It is important to shift as i16s as i8 vector shift isn't
 | 
						|
  // directly supported.
 | 
						|
  SDValue ShifterV = DAG.getConstant(8, DL, VT);
 | 
						|
  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
 | 
						|
  V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
 | 
						|
                  DAG.getBitcast(ByteVecVT, V));
 | 
						|
  return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL,
 | 
						|
                                        const X86Subtarget &Subtarget,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  unsigned VecSize = VT.getSizeInBits();
 | 
						|
 | 
						|
  // Implement a lookup table in register by using an algorithm based on:
 | 
						|
  // http://wm.ite.pl/articles/sse-popcount.html
 | 
						|
  //
 | 
						|
  // The general idea is that every lower byte nibble in the input vector is an
 | 
						|
  // index into a in-register pre-computed pop count table. We then split up the
 | 
						|
  // input vector in two new ones: (1) a vector with only the shifted-right
 | 
						|
  // higher nibbles for each byte and (2) a vector with the lower nibbles (and
 | 
						|
  // masked out higher ones) for each byte. PSHUB is used separately with both
 | 
						|
  // to index the in-register table. Next, both are added and the result is a
 | 
						|
  // i8 vector where each element contains the pop count for input byte.
 | 
						|
  //
 | 
						|
  // To obtain the pop count for elements != i8, we follow up with the same
 | 
						|
  // approach and use additional tricks as described below.
 | 
						|
  //
 | 
						|
  const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
 | 
						|
                       /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
 | 
						|
                       /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
 | 
						|
                       /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
 | 
						|
 | 
						|
  int NumByteElts = VecSize / 8;
 | 
						|
  MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
 | 
						|
  SDValue In = DAG.getBitcast(ByteVecVT, Op);
 | 
						|
  SmallVector<SDValue, 64> LUTVec;
 | 
						|
  for (int i = 0; i < NumByteElts; ++i)
 | 
						|
    LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
 | 
						|
  SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec);
 | 
						|
  SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT);
 | 
						|
 | 
						|
  // High nibbles
 | 
						|
  SDValue FourV = DAG.getConstant(4, DL, ByteVecVT);
 | 
						|
  SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
 | 
						|
 | 
						|
  // Low nibbles
 | 
						|
  SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
 | 
						|
 | 
						|
  // The input vector is used as the shuffle mask that index elements into the
 | 
						|
  // LUT. After counting low and high nibbles, add the vector to obtain the
 | 
						|
  // final pop count per i8 element.
 | 
						|
  SDValue HighPopCnt =
 | 
						|
      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
 | 
						|
  SDValue LowPopCnt =
 | 
						|
      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
 | 
						|
  SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
 | 
						|
 | 
						|
  if (EltVT == MVT::i8)
 | 
						|
    return PopCnt;
 | 
						|
 | 
						|
  return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorCTPOPBitmath(SDValue Op, const SDLoc &DL,
 | 
						|
                                       const X86Subtarget &Subtarget,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  assert(VT.is128BitVector() &&
 | 
						|
         "Only 128-bit vector bitmath lowering supported.");
 | 
						|
 | 
						|
  int VecSize = VT.getSizeInBits();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  int Len = EltVT.getSizeInBits();
 | 
						|
 | 
						|
  // This is the vectorized version of the "best" algorithm from
 | 
						|
  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
 | 
						|
  // with a minor tweak to use a series of adds + shifts instead of vector
 | 
						|
  // multiplications. Implemented for all integer vector types. We only use
 | 
						|
  // this when we don't have SSSE3 which allows a LUT-based lowering that is
 | 
						|
  // much faster, even faster than using native popcnt instructions.
 | 
						|
 | 
						|
  auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
 | 
						|
    MVT VT = V.getSimpleValueType();
 | 
						|
    SDValue ShifterV = DAG.getConstant(Shifter, DL, VT);
 | 
						|
    return DAG.getNode(OpCode, DL, VT, V, ShifterV);
 | 
						|
  };
 | 
						|
  auto GetMask = [&](SDValue V, APInt Mask) {
 | 
						|
    MVT VT = V.getSimpleValueType();
 | 
						|
    SDValue MaskV = DAG.getConstant(Mask, DL, VT);
 | 
						|
    return DAG.getNode(ISD::AND, DL, VT, V, MaskV);
 | 
						|
  };
 | 
						|
 | 
						|
  // We don't want to incur the implicit masks required to SRL vNi8 vectors on
 | 
						|
  // x86, so set the SRL type to have elements at least i16 wide. This is
 | 
						|
  // correct because all of our SRLs are followed immediately by a mask anyways
 | 
						|
  // that handles any bits that sneak into the high bits of the byte elements.
 | 
						|
  MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
 | 
						|
 | 
						|
  SDValue V = Op;
 | 
						|
 | 
						|
  // v = v - ((v >> 1) & 0x55555555...)
 | 
						|
  SDValue Srl =
 | 
						|
      DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
 | 
						|
  SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
 | 
						|
  V = DAG.getNode(ISD::SUB, DL, VT, V, And);
 | 
						|
 | 
						|
  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
 | 
						|
  SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
 | 
						|
  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
 | 
						|
  SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
 | 
						|
  V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
 | 
						|
 | 
						|
  // v = (v + (v >> 4)) & 0x0F0F0F0F...
 | 
						|
  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
 | 
						|
  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
 | 
						|
  V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
 | 
						|
 | 
						|
  // At this point, V contains the byte-wise population count, and we are
 | 
						|
  // merely doing a horizontal sum if necessary to get the wider element
 | 
						|
  // counts.
 | 
						|
  if (EltVT == MVT::i8)
 | 
						|
    return V;
 | 
						|
 | 
						|
  return LowerHorizontalByteSum(
 | 
						|
      DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
 | 
						|
      DAG);
 | 
						|
}
 | 
						|
 | 
						|
// Please ensure that any codegen change from LowerVectorCTPOP is reflected in
 | 
						|
// updated cost models in X86TTIImpl::getIntrinsicInstrCost.
 | 
						|
static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                                SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
 | 
						|
         "Unknown CTPOP type to handle");
 | 
						|
  SDLoc DL(Op.getNode());
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
 | 
						|
  if (!Subtarget.hasSSSE3()) {
 | 
						|
    // We can't use the fast LUT approach, so fall back on vectorized bitmath.
 | 
						|
    assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
 | 
						|
    return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256()) {
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    // Extract each 128-bit vector, compute pop count and concat the result.
 | 
						|
    SDValue LHS = extract128BitVector(Op0, 0, DAG, DL);
 | 
						|
    SDValue RHS = extract128BitVector(Op0, NumElems / 2, DAG, DL);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
 | 
						|
                       LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
 | 
						|
                       LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.is512BitVector() && !Subtarget.hasBWI()) {
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
    // Extract each 256-bit vector, compute pop count and concat the result.
 | 
						|
    SDValue LHS = extract256BitVector(Op0, 0, DAG, DL);
 | 
						|
    SDValue RHS = extract256BitVector(Op0, NumElems / 2, DAG, DL);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
 | 
						|
                       LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
 | 
						|
                       LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
 | 
						|
  }
 | 
						|
 | 
						|
  return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                          SelectionDAG &DAG) {
 | 
						|
  assert(Op.getSimpleValueType().isVector() &&
 | 
						|
         "We only do custom lowering for vector population count.");
 | 
						|
  return LowerVectorCTPOP(Op, Subtarget, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  // For scalars, its still beneficial to transfer to/from the SIMD unit to
 | 
						|
  // perform the BITREVERSE.
 | 
						|
  if (!VT.isVector()) {
 | 
						|
    MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
 | 
						|
    SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
 | 
						|
    Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
 | 
						|
                       DAG.getIntPtrConstant(0, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  MVT SVT = VT.getVectorElementType();
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops.
 | 
						|
  if (VT.is256BitVector()) {
 | 
						|
    SDValue Lo = extract128BitVector(In, 0, DAG, DL);
 | 
						|
    SDValue Hi = extract128BitVector(In, NumElts / 2, DAG, DL);
 | 
						|
 | 
						|
    MVT HalfVT = MVT::getVectorVT(SVT, NumElts / 2);
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
 | 
						|
                       DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Lo),
 | 
						|
                       DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Hi));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VT.is128BitVector() &&
 | 
						|
         "Only 128-bit vector bitreverse lowering supported.");
 | 
						|
 | 
						|
  // VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
 | 
						|
  // perform the BSWAP in the shuffle.
 | 
						|
  // Its best to shuffle using the second operand as this will implicitly allow
 | 
						|
  // memory folding for multiple vectors.
 | 
						|
  SmallVector<SDValue, 16> MaskElts;
 | 
						|
  for (int i = 0; i != NumElts; ++i) {
 | 
						|
    for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
 | 
						|
      int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
 | 
						|
      int PermuteByte = SourceByte | (2 << 5);
 | 
						|
      MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
 | 
						|
  SDValue Res = DAG.getBitcast(MVT::v16i8, In);
 | 
						|
  Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
 | 
						|
                    Res, Mask);
 | 
						|
  return DAG.getBitcast(VT, Res);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  if (Subtarget.hasXOP())
 | 
						|
    return LowerBITREVERSE_XOP(Op, DAG);
 | 
						|
 | 
						|
  assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE");
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  assert(VT.getScalarType() == MVT::i8 &&
 | 
						|
         "Only byte vector BITREVERSE supported");
 | 
						|
 | 
						|
  // Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2.
 | 
						|
  if (VT.is256BitVector() && !Subtarget.hasInt256()) {
 | 
						|
    MVT HalfVT = MVT::getVectorVT(MVT::i8, NumElts / 2);
 | 
						|
    SDValue Lo = extract128BitVector(In, 0, DAG, DL);
 | 
						|
    SDValue Hi = extract128BitVector(In, NumElts / 2, DAG, DL);
 | 
						|
    Lo = DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Lo);
 | 
						|
    Hi = DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Hi);
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform BITREVERSE using PSHUFB lookups. Each byte is split into
 | 
						|
  // two nibbles and a PSHUFB lookup to find the bitreverse of each
 | 
						|
  // 0-15 value (moved to the other nibble).
 | 
						|
  SDValue NibbleMask = DAG.getConstant(0xF, DL, VT);
 | 
						|
  SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT));
 | 
						|
 | 
						|
  const int LoLUT[16] = {
 | 
						|
      /* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0,
 | 
						|
      /* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0,
 | 
						|
      /* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0,
 | 
						|
      /* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0};
 | 
						|
  const int HiLUT[16] = {
 | 
						|
      /* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C,
 | 
						|
      /* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E,
 | 
						|
      /* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D,
 | 
						|
      /* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F};
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> LoMaskElts, HiMaskElts;
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8));
 | 
						|
    HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts);
 | 
						|
  SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts);
 | 
						|
  Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo);
 | 
						|
  Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi);
 | 
						|
  return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG) {
 | 
						|
  unsigned NewOpc = 0;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  case ISD::ATOMIC_LOAD_ADD:
 | 
						|
    NewOpc = X86ISD::LADD;
 | 
						|
    break;
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
    NewOpc = X86ISD::LSUB;
 | 
						|
    break;
 | 
						|
  case ISD::ATOMIC_LOAD_OR:
 | 
						|
    NewOpc = X86ISD::LOR;
 | 
						|
    break;
 | 
						|
  case ISD::ATOMIC_LOAD_XOR:
 | 
						|
    NewOpc = X86ISD::LXOR;
 | 
						|
    break;
 | 
						|
  case ISD::ATOMIC_LOAD_AND:
 | 
						|
    NewOpc = X86ISD::LAND;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
 | 
						|
  }
 | 
						|
 | 
						|
  MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  return DAG.getMemIntrinsicNode(
 | 
						|
      NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
      {N->getOperand(0), N->getOperand(1), N->getOperand(2)},
 | 
						|
      /*MemVT=*/N->getSimpleValueType(0), MMO);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower atomic_load_ops into LOCK-prefixed operations.
 | 
						|
static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
 | 
						|
                                const X86Subtarget &Subtarget) {
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  unsigned Opc = N->getOpcode();
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // We can lower atomic_load_add into LXADD. However, any other atomicrmw op
 | 
						|
  // can only be lowered when the result is unused.  They should have already
 | 
						|
  // been transformed into a cmpxchg loop in AtomicExpand.
 | 
						|
  if (N->hasAnyUseOfValue(0)) {
 | 
						|
    // Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
 | 
						|
    // select LXADD if LOCK_SUB can't be selected.
 | 
						|
    if (Opc == ISD::ATOMIC_LOAD_SUB) {
 | 
						|
      AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
 | 
						|
      RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
 | 
						|
      return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
 | 
						|
                           RHS, AN->getMemOperand());
 | 
						|
    }
 | 
						|
    assert(Opc == ISD::ATOMIC_LOAD_ADD &&
 | 
						|
           "Used AtomicRMW ops other than Add should have been expanded!");
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG);
 | 
						|
  // RAUW the chain, but don't worry about the result, as it's unused.
 | 
						|
  assert(!N->hasAnyUseOfValue(0));
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1));
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  SDLoc dl(Node);
 | 
						|
  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
 | 
						|
 | 
						|
  // Convert seq_cst store -> xchg
 | 
						|
  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
 | 
						|
  // FIXME: On 32-bit, store -> fist or movq would be more efficient
 | 
						|
  //        (The only way to get a 16-byte store is cmpxchg16b)
 | 
						|
  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
 | 
						|
  if (cast<AtomicSDNode>(Node)->getOrdering() ==
 | 
						|
          AtomicOrdering::SequentiallyConsistent ||
 | 
						|
      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
 | 
						|
    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
 | 
						|
                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
 | 
						|
                                 Node->getOperand(0),
 | 
						|
                                 Node->getOperand(1), Node->getOperand(2),
 | 
						|
                                 cast<AtomicSDNode>(Node)->getMemOperand());
 | 
						|
    return Swap.getValue(1);
 | 
						|
  }
 | 
						|
  // Other atomic stores have a simple pattern.
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getNode()->getSimpleValueType(0);
 | 
						|
 | 
						|
  // Let legalize expand this if it isn't a legal type yet.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | 
						|
 | 
						|
  unsigned Opc;
 | 
						|
  bool ExtraOp = false;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Invalid code");
 | 
						|
  case ISD::ADDC: Opc = X86ISD::ADD; break;
 | 
						|
  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
 | 
						|
  case ISD::SUBC: Opc = X86ISD::SUB; break;
 | 
						|
  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ExtraOp)
 | 
						|
    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
 | 
						|
                       Op.getOperand(1));
 | 
						|
  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
 | 
						|
                     Op.getOperand(1), Op.getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
 | 
						|
 | 
						|
  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
 | 
						|
  // which returns the values as { float, float } (in XMM0) or
 | 
						|
  // { double, double } (which is returned in XMM0, XMM1).
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Arg = Op.getOperand(0);
 | 
						|
  EVT ArgVT = Arg.getValueType();
 | 
						|
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
 | 
						|
  Entry.Node = Arg;
 | 
						|
  Entry.Ty = ArgTy;
 | 
						|
  Entry.isSExt = false;
 | 
						|
  Entry.isZExt = false;
 | 
						|
  Args.push_back(Entry);
 | 
						|
 | 
						|
  bool isF64 = ArgVT == MVT::f64;
 | 
						|
  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
 | 
						|
  // the small struct {f32, f32} is returned in (eax, edx). For f64,
 | 
						|
  // the results are returned via SRet in memory.
 | 
						|
  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  SDValue Callee =
 | 
						|
      DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
  Type *RetTy = isF64
 | 
						|
    ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
 | 
						|
    : (Type*)VectorType::get(ArgTy, 4);
 | 
						|
 | 
						|
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						|
  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
 | 
						|
    .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
 | 
						|
 | 
						|
  if (isF64)
 | 
						|
    // Returned in xmm0 and xmm1.
 | 
						|
    return CallResult.first;
 | 
						|
 | 
						|
  // Returned in bits 0:31 and 32:64 xmm0.
 | 
						|
  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
 | 
						|
                               CallResult.first, DAG.getIntPtrConstant(0, dl));
 | 
						|
  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
 | 
						|
                               CallResult.first, DAG.getIntPtrConstant(1, dl));
 | 
						|
  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
 | 
						|
  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
 | 
						|
}
 | 
						|
 | 
						|
/// Widen a vector input to a vector of NVT.  The
 | 
						|
/// input vector must have the same element type as NVT.
 | 
						|
static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
 | 
						|
                            bool FillWithZeroes = false) {
 | 
						|
  // Check if InOp already has the right width.
 | 
						|
  MVT InVT = InOp.getSimpleValueType();
 | 
						|
  if (InVT == NVT)
 | 
						|
    return InOp;
 | 
						|
 | 
						|
  if (InOp.isUndef())
 | 
						|
    return DAG.getUNDEF(NVT);
 | 
						|
 | 
						|
  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
 | 
						|
         "input and widen element type must match");
 | 
						|
 | 
						|
  unsigned InNumElts = InVT.getVectorNumElements();
 | 
						|
  unsigned WidenNumElts = NVT.getVectorNumElements();
 | 
						|
  assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
 | 
						|
         "Unexpected request for vector widening");
 | 
						|
 | 
						|
  EVT EltVT = NVT.getVectorElementType();
 | 
						|
 | 
						|
  SDLoc dl(InOp);
 | 
						|
  if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
 | 
						|
      InOp.getNumOperands() == 2) {
 | 
						|
    SDValue N1 = InOp.getOperand(1);
 | 
						|
    if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
 | 
						|
        N1.isUndef()) {
 | 
						|
      InOp = InOp.getOperand(0);
 | 
						|
      InVT = InOp.getSimpleValueType();
 | 
						|
      InNumElts = InVT.getVectorNumElements();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
 | 
						|
      ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
 | 
						|
    SmallVector<SDValue, 16> Ops;
 | 
						|
    for (unsigned i = 0; i < InNumElts; ++i)
 | 
						|
      Ops.push_back(InOp.getOperand(i));
 | 
						|
 | 
						|
    SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
 | 
						|
      DAG.getUNDEF(EltVT);
 | 
						|
    for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
 | 
						|
      Ops.push_back(FillVal);
 | 
						|
    return DAG.getBuildVector(NVT, dl, Ops);
 | 
						|
  }
 | 
						|
  SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
 | 
						|
    DAG.getUNDEF(NVT);
 | 
						|
  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
 | 
						|
                     InOp, DAG.getIntPtrConstant(0, dl));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX512() &&
 | 
						|
         "MGATHER/MSCATTER are supported on AVX-512 arch only");
 | 
						|
 | 
						|
  // X86 scatter kills mask register, so its type should be added to
 | 
						|
  // the list of return values.
 | 
						|
  // If the "scatter" has 2 return values, it is already handled.
 | 
						|
  if (Op.getNode()->getNumValues() == 2)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
 | 
						|
  SDValue Src = N->getValue();
 | 
						|
  MVT VT = Src.getSimpleValueType();
 | 
						|
  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  SDValue NewScatter;
 | 
						|
  SDValue Index = N->getIndex();
 | 
						|
  SDValue Mask = N->getMask();
 | 
						|
  SDValue Chain = N->getChain();
 | 
						|
  SDValue BasePtr = N->getBasePtr();
 | 
						|
  MVT MemVT = N->getMemoryVT().getSimpleVT();
 | 
						|
  MVT IndexVT = Index.getSimpleValueType();
 | 
						|
  MVT MaskVT = Mask.getSimpleValueType();
 | 
						|
 | 
						|
  if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) {
 | 
						|
    // The v2i32 value was promoted to v2i64.
 | 
						|
    // Now we "redo" the type legalizer's work and widen the original
 | 
						|
    // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64
 | 
						|
    // with a shuffle.
 | 
						|
    assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) &&
 | 
						|
           "Unexpected memory type");
 | 
						|
    int ShuffleMask[] = {0, 2, -1, -1};
 | 
						|
    Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src),
 | 
						|
                               DAG.getUNDEF(MVT::v4i32), ShuffleMask);
 | 
						|
    // Now we have 4 elements instead of 2.
 | 
						|
    // Expand the index.
 | 
						|
    MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4);
 | 
						|
    Index = ExtendToType(Index, NewIndexVT, DAG);
 | 
						|
 | 
						|
    // Expand the mask with zeroes
 | 
						|
    // Mask may be <2 x i64> or <2 x i1> at this moment
 | 
						|
    assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) &&
 | 
						|
           "Unexpected mask type");
 | 
						|
    MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4);
 | 
						|
    Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
 | 
						|
    VT = MVT::v4i32;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
 | 
						|
      !Index.getSimpleValueType().is512BitVector()) {
 | 
						|
    // AVX512F supports only 512-bit vectors. Or data or index should
 | 
						|
    // be 512 bit wide. If now the both index and data are 256-bit, but
 | 
						|
    // the vector contains 8 elements, we just sign-extend the index
 | 
						|
    if (IndexVT == MVT::v8i32)
 | 
						|
      // Just extend index
 | 
						|
      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
 | 
						|
    else {
 | 
						|
      // The minimal number of elts in scatter is 8
 | 
						|
      NumElts = 8;
 | 
						|
      // Index
 | 
						|
      MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
 | 
						|
      // Use original index here, do not modify the index twice
 | 
						|
      Index = ExtendToType(N->getIndex(), NewIndexVT, DAG);
 | 
						|
      if (IndexVT.getScalarType() == MVT::i32)
 | 
						|
        Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
 | 
						|
 | 
						|
      // Mask
 | 
						|
      // At this point we have promoted mask operand
 | 
						|
      assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
 | 
						|
      MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
 | 
						|
      // Use the original mask here, do not modify the mask twice
 | 
						|
      Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true);
 | 
						|
 | 
						|
      // The value that should be stored
 | 
						|
      MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
 | 
						|
      Src = ExtendToType(Src, NewVT, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If the mask is "wide" at this point - truncate it to i1 vector
 | 
						|
  MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts);
 | 
						|
  Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask);
 | 
						|
 | 
						|
  // The mask is killed by scatter, add it to the values
 | 
						|
  SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other);
 | 
						|
  SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index};
 | 
						|
  NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops,
 | 
						|
                                    N->getMemOperand());
 | 
						|
  DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
 | 
						|
  return SDValue(NewScatter.getNode(), 1);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                          SelectionDAG &DAG) {
 | 
						|
 | 
						|
  MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT ScalarVT = VT.getScalarType();
 | 
						|
  SDValue Mask = N->getMask();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) &&
 | 
						|
         "Expanding masked load is supported on AVX-512 target only!");
 | 
						|
 | 
						|
  assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) &&
 | 
						|
         "Expanding masked load is supported for 32 and 64-bit types only!");
 | 
						|
 | 
						|
  // 4x32, 4x64 and 2x64 vectors of non-expanding loads are legal regardless of
 | 
						|
  // VLX. These types for exp-loads are handled here.
 | 
						|
  if (!N->isExpandingLoad() && VT.getVectorNumElements() <= 4)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
 | 
						|
         "Cannot lower masked load op.");
 | 
						|
 | 
						|
  assert((ScalarVT.getSizeInBits() >= 32 ||
 | 
						|
          (Subtarget.hasBWI() &&
 | 
						|
              (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
 | 
						|
         "Unsupported masked load op.");
 | 
						|
 | 
						|
  // This operation is legal for targets with VLX, but without
 | 
						|
  // VLX the vector should be widened to 512 bit
 | 
						|
  unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits();
 | 
						|
  MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
 | 
						|
  SDValue Src0 = N->getSrc0();
 | 
						|
  Src0 = ExtendToType(Src0, WideDataVT, DAG);
 | 
						|
 | 
						|
  // Mask element has to be i1.
 | 
						|
  MVT MaskEltTy = Mask.getSimpleValueType().getScalarType();
 | 
						|
  assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) &&
 | 
						|
         "We handle 4x32, 4x64 and 2x64 vectors only in this casse");
 | 
						|
 | 
						|
  MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec);
 | 
						|
 | 
						|
  Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
 | 
						|
  if (MaskEltTy != MVT::i1)
 | 
						|
    Mask = DAG.getNode(ISD::TRUNCATE, dl,
 | 
						|
                       MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask);
 | 
						|
  SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
 | 
						|
                                      N->getBasePtr(), Mask, Src0,
 | 
						|
                                      N->getMemoryVT(), N->getMemOperand(),
 | 
						|
                                      N->getExtensionType(),
 | 
						|
                                      N->isExpandingLoad());
 | 
						|
 | 
						|
  SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                               NewLoad.getValue(0),
 | 
						|
                               DAG.getIntPtrConstant(0, dl));
 | 
						|
  SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
 | 
						|
  return DAG.getMergeValues(RetOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                           SelectionDAG &DAG) {
 | 
						|
  MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
 | 
						|
  SDValue DataToStore = N->getValue();
 | 
						|
  MVT VT = DataToStore.getSimpleValueType();
 | 
						|
  MVT ScalarVT = VT.getScalarType();
 | 
						|
  SDValue Mask = N->getMask();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  assert((!N->isCompressingStore() || Subtarget.hasAVX512()) &&
 | 
						|
         "Expanding masked load is supported on AVX-512 target only!");
 | 
						|
 | 
						|
  assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) &&
 | 
						|
         "Expanding masked load is supported for 32 and 64-bit types only!");
 | 
						|
 | 
						|
  // 4x32 and 2x64 vectors of non-compressing stores are legal regardless to VLX.
 | 
						|
  if (!N->isCompressingStore() && VT.getVectorNumElements() <= 4)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
 | 
						|
         "Cannot lower masked store op.");
 | 
						|
 | 
						|
  assert((ScalarVT.getSizeInBits() >= 32 ||
 | 
						|
          (Subtarget.hasBWI() &&
 | 
						|
              (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
 | 
						|
          "Unsupported masked store op.");
 | 
						|
 | 
						|
  // This operation is legal for targets with VLX, but without
 | 
						|
  // VLX the vector should be widened to 512 bit
 | 
						|
  unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
 | 
						|
  MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
 | 
						|
 | 
						|
  // Mask element has to be i1.
 | 
						|
  MVT MaskEltTy = Mask.getSimpleValueType().getScalarType();
 | 
						|
  assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) &&
 | 
						|
         "We handle 4x32, 4x64 and 2x64 vectors only in this casse");
 | 
						|
 | 
						|
  MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec);
 | 
						|
 | 
						|
  DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
 | 
						|
  Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
 | 
						|
  if (MaskEltTy != MVT::i1)
 | 
						|
    Mask = DAG.getNode(ISD::TRUNCATE, dl,
 | 
						|
                       MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask);
 | 
						|
  return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
 | 
						|
                            Mask, N->getMemoryVT(), N->getMemOperand(),
 | 
						|
                            N->isTruncatingStore(), N->isCompressingStore());
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  assert(Subtarget.hasAVX512() &&
 | 
						|
         "MGATHER/MSCATTER are supported on AVX-512 arch only");
 | 
						|
 | 
						|
  MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue Index = N->getIndex();
 | 
						|
  SDValue Mask = N->getMask();
 | 
						|
  SDValue Src0 = N->getValue();
 | 
						|
  MVT IndexVT = Index.getSimpleValueType();
 | 
						|
  MVT MaskVT = Mask.getSimpleValueType();
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
 | 
						|
 | 
						|
  if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
 | 
						|
      !Index.getSimpleValueType().is512BitVector()) {
 | 
						|
    // AVX512F supports only 512-bit vectors. Or data or index should
 | 
						|
    // be 512 bit wide. If now the both index and data are 256-bit, but
 | 
						|
    // the vector contains 8 elements, we just sign-extend the index
 | 
						|
    if (NumElts == 8) {
 | 
						|
      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2),
 | 
						|
                        N->getOperand(3), Index };
 | 
						|
      DAG.UpdateNodeOperands(N, Ops);
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
 | 
						|
    // Minimal number of elements in Gather
 | 
						|
    NumElts = 8;
 | 
						|
    // Index
 | 
						|
    MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
 | 
						|
    Index = ExtendToType(Index, NewIndexVT, DAG);
 | 
						|
    if (IndexVT.getScalarType() == MVT::i32)
 | 
						|
      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
 | 
						|
 | 
						|
    // Mask
 | 
						|
    MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts);
 | 
						|
    // At this point we have promoted mask operand
 | 
						|
    assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
 | 
						|
    MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
 | 
						|
    Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
 | 
						|
    Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask);
 | 
						|
 | 
						|
    // The pass-thru value
 | 
						|
    MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
 | 
						|
    Src0 = ExtendToType(Src0, NewVT, DAG);
 | 
						|
 | 
						|
    SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
 | 
						|
    SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other),
 | 
						|
                                            N->getMemoryVT(), dl, Ops,
 | 
						|
                                            N->getMemOperand());
 | 
						|
    SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                                 NewGather.getValue(0),
 | 
						|
                                 DAG.getIntPtrConstant(0, dl));
 | 
						|
    SDValue RetOps[] = {Exract, NewGather.getValue(1)};
 | 
						|
    return DAG.getMergeValues(RetOps, dl);
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  // TODO: Eventually, the lowering of these nodes should be informed by or
 | 
						|
  // deferred to the GC strategy for the function in which they appear. For
 | 
						|
  // now, however, they must be lowered to something. Since they are logically
 | 
						|
  // no-ops in the case of a null GC strategy (or a GC strategy which does not
 | 
						|
  // require special handling for these nodes), lower them as literal NOOPs for
 | 
						|
  // the time being.
 | 
						|
  SmallVector<SDValue, 2> Ops;
 | 
						|
 | 
						|
  Ops.push_back(Op.getOperand(0));
 | 
						|
  if (Op->getGluedNode())
 | 
						|
    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
 | 
						|
 | 
						|
  SDLoc OpDL(Op);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
 | 
						|
 | 
						|
  return NOOP;
 | 
						|
}
 | 
						|
 | 
						|
SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  // TODO: Eventually, the lowering of these nodes should be informed by or
 | 
						|
  // deferred to the GC strategy for the function in which they appear. For
 | 
						|
  // now, however, they must be lowered to something. Since they are logically
 | 
						|
  // no-ops in the case of a null GC strategy (or a GC strategy which does not
 | 
						|
  // require special handling for these nodes), lower them as literal NOOPs for
 | 
						|
  // the time being.
 | 
						|
  SmallVector<SDValue, 2> Ops;
 | 
						|
 | 
						|
  Ops.push_back(Op.getOperand(0));
 | 
						|
  if (Op->getGluedNode())
 | 
						|
    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
 | 
						|
 | 
						|
  SDLoc OpDL(Op);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
 | 
						|
 | 
						|
  return NOOP;
 | 
						|
}
 | 
						|
 | 
						|
/// Provide custom lowering hooks for some operations.
 | 
						|
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Should not custom lower this!");
 | 
						|
  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
 | 
						|
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
 | 
						|
    return LowerCMP_SWAP(Op, Subtarget, DAG);
 | 
						|
  case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG);
 | 
						|
  case ISD::ATOMIC_LOAD_ADD:
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
  case ISD::ATOMIC_LOAD_OR:
 | 
						|
  case ISD::ATOMIC_LOAD_XOR:
 | 
						|
  case ISD::ATOMIC_LOAD_AND:    return lowerAtomicArith(Op, DAG, Subtarget);
 | 
						|
  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
 | 
						|
  case ISD::BITREVERSE:         return LowerBITREVERSE(Op, Subtarget, DAG);
 | 
						|
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG);
 | 
						|
  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
 | 
						|
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
 | 
						|
  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
 | 
						|
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | 
						|
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
 | 
						|
  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | 
						|
  case ISD::SHL_PARTS:
 | 
						|
  case ISD::SRA_PARTS:
 | 
						|
  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
 | 
						|
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
 | 
						|
  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
 | 
						|
  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
 | 
						|
  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
 | 
						|
  case ISD::ZERO_EXTEND_VECTOR_INREG:
 | 
						|
  case ISD::SIGN_EXTEND_VECTOR_INREG:
 | 
						|
    return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG);
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:         return LowerFP_TO_INT(Op, Subtarget, DAG);
 | 
						|
  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
 | 
						|
  case ISD::LOAD:               return LowerExtendedLoad(Op, Subtarget, DAG);
 | 
						|
  case ISD::FABS:
 | 
						|
  case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG);
 | 
						|
  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
 | 
						|
  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
 | 
						|
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::SETCCE:             return LowerSETCCE(Op, DAG);
 | 
						|
  case ISD::SELECT:             return LowerSELECT(Op, DAG);
 | 
						|
  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
 | 
						|
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | 
						|
  case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | 
						|
  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
 | 
						|
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::ADDROFRETURNADDR:   return LowerADDROFRETURNADDR(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | 
						|
  case ISD::FRAME_TO_ARGS_OFFSET:
 | 
						|
                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_SETUP_DISPATCH:
 | 
						|
    return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
 | 
						|
  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
 | 
						|
  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
 | 
						|
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | 
						|
  case ISD::CTLZ:
 | 
						|
  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ(Op, Subtarget, DAG);
 | 
						|
  case ISD::CTTZ:
 | 
						|
  case ISD::CTTZ_ZERO_UNDEF:    return LowerCTTZ(Op, DAG);
 | 
						|
  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
 | 
						|
  case ISD::MULHS:
 | 
						|
  case ISD::MULHU:              return LowerMULH(Op, Subtarget, DAG);
 | 
						|
  case ISD::UMUL_LOHI:
 | 
						|
  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
 | 
						|
  case ISD::ROTL:               return LowerRotate(Op, Subtarget, DAG);
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
 | 
						|
  case ISD::SADDO:
 | 
						|
  case ISD::UADDO:
 | 
						|
  case ISD::SSUBO:
 | 
						|
  case ISD::USUBO:
 | 
						|
  case ISD::SMULO:
 | 
						|
  case ISD::UMULO:              return LowerXALUO(Op, DAG);
 | 
						|
  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
 | 
						|
  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
 | 
						|
  case ISD::ADDC:
 | 
						|
  case ISD::ADDE:
 | 
						|
  case ISD::SUBC:
 | 
						|
  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
 | 
						|
  case ISD::ADD:                return LowerADD(Op, DAG);
 | 
						|
  case ISD::SUB:                return LowerSUB(Op, DAG);
 | 
						|
  case ISD::SMAX:
 | 
						|
  case ISD::SMIN:
 | 
						|
  case ISD::UMAX:
 | 
						|
  case ISD::UMIN:               return LowerMINMAX(Op, DAG);
 | 
						|
  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
 | 
						|
  case ISD::MLOAD:              return LowerMLOAD(Op, Subtarget, DAG);
 | 
						|
  case ISD::MSTORE:             return LowerMSTORE(Op, Subtarget, DAG);
 | 
						|
  case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG);
 | 
						|
  case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG);
 | 
						|
  case ISD::GC_TRANSITION_START:
 | 
						|
                                return LowerGC_TRANSITION_START(Op, DAG);
 | 
						|
  case ISD::GC_TRANSITION_END:  return LowerGC_TRANSITION_END(Op, DAG);
 | 
						|
  case ISD::STORE:              return LowerTruncatingStore(Op, Subtarget, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Places new result values for the node in Results (their number
 | 
						|
/// and types must exactly match those of the original return values of
 | 
						|
/// the node), or leaves Results empty, which indicates that the node is not
 | 
						|
/// to be custom lowered after all.
 | 
						|
void X86TargetLowering::LowerOperationWrapper(SDNode *N,
 | 
						|
                                              SmallVectorImpl<SDValue> &Results,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
 | 
						|
 | 
						|
  if (!Res.getNode())
 | 
						|
    return;
 | 
						|
 | 
						|
  assert((N->getNumValues() <= Res->getNumValues()) &&
 | 
						|
      "Lowering returned the wrong number of results!");
 | 
						|
 | 
						|
  // Places new result values base on N result number.
 | 
						|
  // In some cases (LowerSINT_TO_FP for example) Res has more result values
 | 
						|
  // than original node, chain should be dropped(last value).
 | 
						|
  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
 | 
						|
    Results.push_back(Res.getValue(I));
 | 
						|
}
 | 
						|
 | 
						|
/// Replace a node with an illegal result type with a new node built out of
 | 
						|
/// custom code.
 | 
						|
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                           SmallVectorImpl<SDValue>&Results,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(N);
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Do not know how to custom type legalize this operation!");
 | 
						|
  case X86ISD::AVG: {
 | 
						|
    // Legalize types for X86ISD::AVG by expanding vectors.
 | 
						|
    assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
 | 
						|
 | 
						|
    auto InVT = N->getValueType(0);
 | 
						|
    auto InVTSize = InVT.getSizeInBits();
 | 
						|
    const unsigned RegSize =
 | 
						|
        (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128;
 | 
						|
    assert((Subtarget.hasBWI() || RegSize < 512) &&
 | 
						|
           "512-bit vector requires AVX512BW");
 | 
						|
    assert((Subtarget.hasAVX2() || RegSize < 256) &&
 | 
						|
           "256-bit vector requires AVX2");
 | 
						|
 | 
						|
    auto ElemVT = InVT.getVectorElementType();
 | 
						|
    auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
 | 
						|
                                  RegSize / ElemVT.getSizeInBits());
 | 
						|
    assert(RegSize % InVT.getSizeInBits() == 0);
 | 
						|
    unsigned NumConcat = RegSize / InVT.getSizeInBits();
 | 
						|
 | 
						|
    SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
 | 
						|
    Ops[0] = N->getOperand(0);
 | 
						|
    SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
 | 
						|
    Ops[0] = N->getOperand(1);
 | 
						|
    SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
 | 
						|
    Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
 | 
						|
                                  DAG.getIntPtrConstant(0, dl)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
 | 
						|
  case X86ISD::FMINC:
 | 
						|
  case X86ISD::FMIN:
 | 
						|
  case X86ISD::FMAXC:
 | 
						|
  case X86ISD::FMAX: {
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
 | 
						|
    SDValue UNDEF = DAG.getUNDEF(VT);
 | 
						|
    SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
 | 
						|
                              N->getOperand(0), UNDEF);
 | 
						|
    SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
 | 
						|
                              N->getOperand(1), UNDEF);
 | 
						|
    Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::SDIV:
 | 
						|
  case ISD::UDIV:
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM:
 | 
						|
  case ISD::SDIVREM:
 | 
						|
  case ISD::UDIVREM: {
 | 
						|
    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
 | 
						|
    Results.push_back(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT: {
 | 
						|
    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
 | 
						|
 | 
						|
    if (N->getValueType(0) == MVT::v2i32) {
 | 
						|
      assert((IsSigned || Subtarget.hasAVX512()) &&
 | 
						|
             "Can only handle signed conversion without AVX512");
 | 
						|
      assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
 | 
						|
      SDValue Src = N->getOperand(0);
 | 
						|
      if (Src.getValueType() == MVT::v2f64) {
 | 
						|
        SDValue Idx = DAG.getIntPtrConstant(0, dl);
 | 
						|
        SDValue Res = DAG.getNode(IsSigned ? X86ISD::CVTTP2SI
 | 
						|
                                           : X86ISD::CVTTP2UI,
 | 
						|
                                  dl, MVT::v4i32, Src);
 | 
						|
        Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx);
 | 
						|
        Results.push_back(Res);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (Src.getValueType() == MVT::v2f32) {
 | 
						|
        SDValue Idx = DAG.getIntPtrConstant(0, dl);
 | 
						|
        SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
 | 
						|
                                  DAG.getUNDEF(MVT::v2f32));
 | 
						|
        Res = DAG.getNode(IsSigned ? ISD::FP_TO_SINT
 | 
						|
                                   : ISD::FP_TO_UINT, dl, MVT::v4i32, Res);
 | 
						|
        Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx);
 | 
						|
        Results.push_back(Res);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs,
 | 
						|
      // so early out here.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    std::pair<SDValue,SDValue> Vals =
 | 
						|
        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
 | 
						|
    SDValue FIST = Vals.first, StackSlot = Vals.second;
 | 
						|
    if (FIST.getNode()) {
 | 
						|
      EVT VT = N->getValueType(0);
 | 
						|
      // Return a load from the stack slot.
 | 
						|
      if (StackSlot.getNode())
 | 
						|
        Results.push_back(
 | 
						|
            DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo()));
 | 
						|
      else
 | 
						|
        Results.push_back(FIST);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::SINT_TO_FP: {
 | 
						|
    assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
 | 
						|
    SDValue Src = N->getOperand(0);
 | 
						|
    if (N->getValueType(0) != MVT::v2f32 || Src.getValueType() != MVT::v2i64)
 | 
						|
      return;
 | 
						|
    Results.push_back(DAG.getNode(X86ISD::CVTSI2P, dl, MVT::v4f32, Src));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::UINT_TO_FP: {
 | 
						|
    assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    if (VT != MVT::v2f32)
 | 
						|
      return;
 | 
						|
    SDValue Src = N->getOperand(0);
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
    if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) {
 | 
						|
      Results.push_back(DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v4f32, Src));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (SrcVT != MVT::v2i32)
 | 
						|
      return;
 | 
						|
    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src);
 | 
						|
    SDValue VBias =
 | 
						|
        DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
 | 
						|
    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
 | 
						|
                             DAG.getBitcast(MVT::v2i64, VBias));
 | 
						|
    Or = DAG.getBitcast(MVT::v2f64, Or);
 | 
						|
    // TODO: Are there any fast-math-flags to propagate here?
 | 
						|
    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
 | 
						|
    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::FP_ROUND: {
 | 
						|
    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
 | 
						|
        return;
 | 
						|
    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
 | 
						|
    Results.push_back(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::FP_EXTEND: {
 | 
						|
    // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
 | 
						|
    // No other ValueType for FP_EXTEND should reach this point.
 | 
						|
    assert(N->getValueType(0) == MVT::v2f32 &&
 | 
						|
           "Do not know how to legalize this Node");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default : llvm_unreachable("Do not know how to custom type "
 | 
						|
                               "legalize this intrinsic operation!");
 | 
						|
    case Intrinsic::x86_rdtsc:
 | 
						|
      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
 | 
						|
                                     Results);
 | 
						|
    case Intrinsic::x86_rdtscp:
 | 
						|
      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
 | 
						|
                                     Results);
 | 
						|
    case Intrinsic::x86_rdpmc:
 | 
						|
      return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
 | 
						|
 | 
						|
    case Intrinsic::x86_xgetbv:
 | 
						|
      return getExtendedControlRegister(N, dl, DAG, Subtarget, Results);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG))
 | 
						|
      Results.push_back(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::READCYCLECOUNTER: {
 | 
						|
    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
 | 
						|
                                   Results);
 | 
						|
  }
 | 
						|
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
 | 
						|
    EVT T = N->getValueType(0);
 | 
						|
    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
 | 
						|
    bool Regs64bit = T == MVT::i128;
 | 
						|
    MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
 | 
						|
    SDValue cpInL, cpInH;
 | 
						|
    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
 | 
						|
                        DAG.getConstant(0, dl, HalfT));
 | 
						|
    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
 | 
						|
                        DAG.getConstant(1, dl, HalfT));
 | 
						|
    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
 | 
						|
                             Regs64bit ? X86::RAX : X86::EAX,
 | 
						|
                             cpInL, SDValue());
 | 
						|
    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
 | 
						|
                             Regs64bit ? X86::RDX : X86::EDX,
 | 
						|
                             cpInH, cpInL.getValue(1));
 | 
						|
    SDValue swapInL, swapInH;
 | 
						|
    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
 | 
						|
                          DAG.getConstant(0, dl, HalfT));
 | 
						|
    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
 | 
						|
                          DAG.getConstant(1, dl, HalfT));
 | 
						|
    swapInH =
 | 
						|
        DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
 | 
						|
                         swapInH, cpInH.getValue(1));
 | 
						|
    // If the current function needs the base pointer, RBX,
 | 
						|
    // we shouldn't use cmpxchg directly.
 | 
						|
    // Indeed the lowering of that instruction will clobber
 | 
						|
    // that register and since RBX will be a reserved register
 | 
						|
    // the register allocator will not make sure its value will
 | 
						|
    // be properly saved and restored around this live-range.
 | 
						|
    const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
    SDValue Result;
 | 
						|
    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    unsigned BasePtr = TRI->getBaseRegister();
 | 
						|
    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
 | 
						|
    if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
 | 
						|
        (BasePtr == X86::RBX || BasePtr == X86::EBX)) {
 | 
						|
      // ISel prefers the LCMPXCHG64 variant.
 | 
						|
      // If that assert breaks, that means it is not the case anymore,
 | 
						|
      // and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
 | 
						|
      // not just EBX. This is a matter of accepting i64 input for that
 | 
						|
      // pseudo, and restoring into the register of the right wide
 | 
						|
      // in expand pseudo. Everything else should just work.
 | 
						|
      assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
 | 
						|
             "Saving only half of the RBX");
 | 
						|
      unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
 | 
						|
                                  : X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
 | 
						|
      SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
 | 
						|
                                           Regs64bit ? X86::RBX : X86::EBX,
 | 
						|
                                           HalfT, swapInH.getValue(1));
 | 
						|
      SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
 | 
						|
                       RBXSave,
 | 
						|
                       /*Glue*/ RBXSave.getValue(2)};
 | 
						|
      Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
 | 
						|
    } else {
 | 
						|
      unsigned Opcode =
 | 
						|
          Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
 | 
						|
      swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
 | 
						|
                                 Regs64bit ? X86::RBX : X86::EBX, swapInL,
 | 
						|
                                 swapInH.getValue(1));
 | 
						|
      SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
 | 
						|
                       swapInL.getValue(1)};
 | 
						|
      Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
 | 
						|
    }
 | 
						|
    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
 | 
						|
                                        Regs64bit ? X86::RAX : X86::EAX,
 | 
						|
                                        HalfT, Result.getValue(1));
 | 
						|
    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
 | 
						|
                                        Regs64bit ? X86::RDX : X86::EDX,
 | 
						|
                                        HalfT, cpOutL.getValue(2));
 | 
						|
    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
 | 
						|
 | 
						|
    SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
 | 
						|
                                        MVT::i32, cpOutH.getValue(2));
 | 
						|
    SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG);
 | 
						|
    Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
 | 
						|
 | 
						|
    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
 | 
						|
    Results.push_back(Success);
 | 
						|
    Results.push_back(EFLAGS.getValue(1));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::ATOMIC_SWAP:
 | 
						|
  case ISD::ATOMIC_LOAD_ADD:
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
  case ISD::ATOMIC_LOAD_AND:
 | 
						|
  case ISD::ATOMIC_LOAD_OR:
 | 
						|
  case ISD::ATOMIC_LOAD_XOR:
 | 
						|
  case ISD::ATOMIC_LOAD_NAND:
 | 
						|
  case ISD::ATOMIC_LOAD_MIN:
 | 
						|
  case ISD::ATOMIC_LOAD_MAX:
 | 
						|
  case ISD::ATOMIC_LOAD_UMIN:
 | 
						|
  case ISD::ATOMIC_LOAD_UMAX:
 | 
						|
  case ISD::ATOMIC_LOAD: {
 | 
						|
    // Delegate to generic TypeLegalization. Situations we can really handle
 | 
						|
    // should have already been dealt with by AtomicExpandPass.cpp.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::BITCAST: {
 | 
						|
    assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
 | 
						|
    EVT DstVT = N->getValueType(0);
 | 
						|
    EVT SrcVT = N->getOperand(0)->getValueType(0);
 | 
						|
 | 
						|
    if (SrcVT != MVT::f64 ||
 | 
						|
        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned NumElts = DstVT.getVectorNumElements();
 | 
						|
    EVT SVT = DstVT.getVectorElementType();
 | 
						|
    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
 | 
						|
    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | 
						|
                                   MVT::v2f64, N->getOperand(0));
 | 
						|
    SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
 | 
						|
 | 
						|
    if (ExperimentalVectorWideningLegalization) {
 | 
						|
      // If we are legalizing vectors by widening, we already have the desired
 | 
						|
      // legal vector type, just return it.
 | 
						|
      Results.push_back(ToVecInt);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 8> Elts;
 | 
						|
    for (unsigned i = 0, e = NumElts; i != e; ++i)
 | 
						|
      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
 | 
						|
                                   ToVecInt, DAG.getIntPtrConstant(i, dl)));
 | 
						|
 | 
						|
    Results.push_back(DAG.getBuildVector(DstVT, dl, Elts));
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((X86ISD::NodeType)Opcode) {
 | 
						|
  case X86ISD::FIRST_NUMBER:       break;
 | 
						|
  case X86ISD::BSF:                return "X86ISD::BSF";
 | 
						|
  case X86ISD::BSR:                return "X86ISD::BSR";
 | 
						|
  case X86ISD::SHLD:               return "X86ISD::SHLD";
 | 
						|
  case X86ISD::SHRD:               return "X86ISD::SHRD";
 | 
						|
  case X86ISD::FAND:               return "X86ISD::FAND";
 | 
						|
  case X86ISD::FANDN:              return "X86ISD::FANDN";
 | 
						|
  case X86ISD::FOR:                return "X86ISD::FOR";
 | 
						|
  case X86ISD::FXOR:               return "X86ISD::FXOR";
 | 
						|
  case X86ISD::FILD:               return "X86ISD::FILD";
 | 
						|
  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
 | 
						|
  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
 | 
						|
  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
 | 
						|
  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
 | 
						|
  case X86ISD::FLD:                return "X86ISD::FLD";
 | 
						|
  case X86ISD::FST:                return "X86ISD::FST";
 | 
						|
  case X86ISD::CALL:               return "X86ISD::CALL";
 | 
						|
  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
 | 
						|
  case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG";
 | 
						|
  case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG";
 | 
						|
  case X86ISD::BT:                 return "X86ISD::BT";
 | 
						|
  case X86ISD::CMP:                return "X86ISD::CMP";
 | 
						|
  case X86ISD::COMI:               return "X86ISD::COMI";
 | 
						|
  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
 | 
						|
  case X86ISD::CMPM:               return "X86ISD::CMPM";
 | 
						|
  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
 | 
						|
  case X86ISD::CMPM_RND:           return "X86ISD::CMPM_RND";
 | 
						|
  case X86ISD::SETCC:              return "X86ISD::SETCC";
 | 
						|
  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
 | 
						|
  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
 | 
						|
  case X86ISD::FSETCCM:            return "X86ISD::FSETCCM";
 | 
						|
  case X86ISD::FSETCCM_RND:        return "X86ISD::FSETCCM_RND";
 | 
						|
  case X86ISD::CMOV:               return "X86ISD::CMOV";
 | 
						|
  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
 | 
						|
  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
 | 
						|
  case X86ISD::IRET:               return "X86ISD::IRET";
 | 
						|
  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
 | 
						|
  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
 | 
						|
  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
 | 
						|
  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
 | 
						|
  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
 | 
						|
  case X86ISD::MOVDQ2Q:            return "X86ISD::MOVDQ2Q";
 | 
						|
  case X86ISD::MMX_MOVD2W:         return "X86ISD::MMX_MOVD2W";
 | 
						|
  case X86ISD::MMX_MOVW2D:         return "X86ISD::MMX_MOVW2D";
 | 
						|
  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
 | 
						|
  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
 | 
						|
  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
 | 
						|
  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
 | 
						|
  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
 | 
						|
  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
 | 
						|
  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
 | 
						|
  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
 | 
						|
  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
 | 
						|
  case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND";
 | 
						|
  case X86ISD::ADDUS:              return "X86ISD::ADDUS";
 | 
						|
  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
 | 
						|
  case X86ISD::HADD:               return "X86ISD::HADD";
 | 
						|
  case X86ISD::HSUB:               return "X86ISD::HSUB";
 | 
						|
  case X86ISD::FHADD:              return "X86ISD::FHADD";
 | 
						|
  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
 | 
						|
  case X86ISD::ABS:                return "X86ISD::ABS";
 | 
						|
  case X86ISD::CONFLICT:           return "X86ISD::CONFLICT";
 | 
						|
  case X86ISD::FMAX:               return "X86ISD::FMAX";
 | 
						|
  case X86ISD::FMAX_RND:           return "X86ISD::FMAX_RND";
 | 
						|
  case X86ISD::FMIN:               return "X86ISD::FMIN";
 | 
						|
  case X86ISD::FMIN_RND:           return "X86ISD::FMIN_RND";
 | 
						|
  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
 | 
						|
  case X86ISD::FMINC:              return "X86ISD::FMINC";
 | 
						|
  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
 | 
						|
  case X86ISD::FRSQRTS:             return "X86ISD::FRSQRTS";
 | 
						|
  case X86ISD::FRCP:               return "X86ISD::FRCP";
 | 
						|
  case X86ISD::FRCPS:              return "X86ISD::FRCPS";
 | 
						|
  case X86ISD::EXTRQI:             return "X86ISD::EXTRQI";
 | 
						|
  case X86ISD::INSERTQI:           return "X86ISD::INSERTQI";
 | 
						|
  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
 | 
						|
  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
 | 
						|
  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
 | 
						|
  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
 | 
						|
  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
 | 
						|
  case X86ISD::EH_SJLJ_SETUP_DISPATCH:
 | 
						|
    return "X86ISD::EH_SJLJ_SETUP_DISPATCH";
 | 
						|
  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
 | 
						|
  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
 | 
						|
  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
 | 
						|
  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
 | 
						|
  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
 | 
						|
  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
 | 
						|
  case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
 | 
						|
  case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
 | 
						|
    return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
 | 
						|
  case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
 | 
						|
    return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
 | 
						|
  case X86ISD::LADD:               return "X86ISD::LADD";
 | 
						|
  case X86ISD::LSUB:               return "X86ISD::LSUB";
 | 
						|
  case X86ISD::LOR:                return "X86ISD::LOR";
 | 
						|
  case X86ISD::LXOR:               return "X86ISD::LXOR";
 | 
						|
  case X86ISD::LAND:               return "X86ISD::LAND";
 | 
						|
  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
 | 
						|
  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
 | 
						|
  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
 | 
						|
  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
 | 
						|
  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
 | 
						|
  case X86ISD::VTRUNCS:            return "X86ISD::VTRUNCS";
 | 
						|
  case X86ISD::VTRUNCUS:           return "X86ISD::VTRUNCUS";
 | 
						|
  case X86ISD::VTRUNCSTORES:       return "X86ISD::VTRUNCSTORES";
 | 
						|
  case X86ISD::VTRUNCSTOREUS:      return "X86ISD::VTRUNCSTOREUS";
 | 
						|
  case X86ISD::VMTRUNCSTORES:      return "X86ISD::VMTRUNCSTORES";
 | 
						|
  case X86ISD::VMTRUNCSTOREUS:     return "X86ISD::VMTRUNCSTOREUS";
 | 
						|
  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
 | 
						|
  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
 | 
						|
  case X86ISD::VFPEXT_RND:         return "X86ISD::VFPEXT_RND";
 | 
						|
  case X86ISD::VFPEXTS_RND:        return "X86ISD::VFPEXTS_RND";
 | 
						|
  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
 | 
						|
  case X86ISD::VFPROUND_RND:       return "X86ISD::VFPROUND_RND";
 | 
						|
  case X86ISD::VFPROUNDS_RND:      return "X86ISD::VFPROUNDS_RND";
 | 
						|
  case X86ISD::CVT2MASK:           return "X86ISD::CVT2MASK";
 | 
						|
  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
 | 
						|
  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
 | 
						|
  case X86ISD::VSHL:               return "X86ISD::VSHL";
 | 
						|
  case X86ISD::VSRL:               return "X86ISD::VSRL";
 | 
						|
  case X86ISD::VSRA:               return "X86ISD::VSRA";
 | 
						|
  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
 | 
						|
  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
 | 
						|
  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
 | 
						|
  case X86ISD::VSRAV:              return "X86ISD::VSRAV";
 | 
						|
  case X86ISD::VROTLI:             return "X86ISD::VROTLI";
 | 
						|
  case X86ISD::VROTRI:             return "X86ISD::VROTRI";
 | 
						|
  case X86ISD::VPPERM:             return "X86ISD::VPPERM";
 | 
						|
  case X86ISD::CMPP:               return "X86ISD::CMPP";
 | 
						|
  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
 | 
						|
  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
 | 
						|
  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
 | 
						|
  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
 | 
						|
  case X86ISD::ADD:                return "X86ISD::ADD";
 | 
						|
  case X86ISD::SUB:                return "X86ISD::SUB";
 | 
						|
  case X86ISD::ADC:                return "X86ISD::ADC";
 | 
						|
  case X86ISD::SBB:                return "X86ISD::SBB";
 | 
						|
  case X86ISD::SMUL:               return "X86ISD::SMUL";
 | 
						|
  case X86ISD::UMUL:               return "X86ISD::UMUL";
 | 
						|
  case X86ISD::SMUL8:              return "X86ISD::SMUL8";
 | 
						|
  case X86ISD::UMUL8:              return "X86ISD::UMUL8";
 | 
						|
  case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
 | 
						|
  case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
 | 
						|
  case X86ISD::INC:                return "X86ISD::INC";
 | 
						|
  case X86ISD::DEC:                return "X86ISD::DEC";
 | 
						|
  case X86ISD::OR:                 return "X86ISD::OR";
 | 
						|
  case X86ISD::XOR:                return "X86ISD::XOR";
 | 
						|
  case X86ISD::AND:                return "X86ISD::AND";
 | 
						|
  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
 | 
						|
  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
 | 
						|
  case X86ISD::MOVMSK:             return "X86ISD::MOVMSK";
 | 
						|
  case X86ISD::PTEST:              return "X86ISD::PTEST";
 | 
						|
  case X86ISD::TESTP:              return "X86ISD::TESTP";
 | 
						|
  case X86ISD::TESTM:              return "X86ISD::TESTM";
 | 
						|
  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
 | 
						|
  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
 | 
						|
  case X86ISD::KTEST:              return "X86ISD::KTEST";
 | 
						|
  case X86ISD::PACKSS:             return "X86ISD::PACKSS";
 | 
						|
  case X86ISD::PACKUS:             return "X86ISD::PACKUS";
 | 
						|
  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
 | 
						|
  case X86ISD::VALIGN:             return "X86ISD::VALIGN";
 | 
						|
  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
 | 
						|
  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
 | 
						|
  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
 | 
						|
  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
 | 
						|
  case X86ISD::SHUF128:            return "X86ISD::SHUF128";
 | 
						|
  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
 | 
						|
  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
 | 
						|
  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
 | 
						|
  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
 | 
						|
  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
 | 
						|
  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
 | 
						|
  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
 | 
						|
  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
 | 
						|
  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
 | 
						|
  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
 | 
						|
  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
 | 
						|
  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
 | 
						|
  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
 | 
						|
  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
 | 
						|
  case X86ISD::SUBV_BROADCAST:     return "X86ISD::SUBV_BROADCAST";
 | 
						|
  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
 | 
						|
  case X86ISD::VPERMILPV:          return "X86ISD::VPERMILPV";
 | 
						|
  case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
 | 
						|
  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
 | 
						|
  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
 | 
						|
  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
 | 
						|
  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
 | 
						|
  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
 | 
						|
  case X86ISD::VPTERNLOG:          return "X86ISD::VPTERNLOG";
 | 
						|
  case X86ISD::VFIXUPIMM:          return "X86ISD::VFIXUPIMM";
 | 
						|
  case X86ISD::VFIXUPIMMS:          return "X86ISD::VFIXUPIMMS";
 | 
						|
  case X86ISD::VRANGE:             return "X86ISD::VRANGE";
 | 
						|
  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
 | 
						|
  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
 | 
						|
  case X86ISD::PSADBW:             return "X86ISD::PSADBW";
 | 
						|
  case X86ISD::DBPSADBW:           return "X86ISD::DBPSADBW";
 | 
						|
  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
 | 
						|
  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
 | 
						|
  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
 | 
						|
  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
 | 
						|
  case X86ISD::MFENCE:             return "X86ISD::MFENCE";
 | 
						|
  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
 | 
						|
  case X86ISD::SAHF:               return "X86ISD::SAHF";
 | 
						|
  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
 | 
						|
  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
 | 
						|
  case X86ISD::VPMADDUBSW:         return "X86ISD::VPMADDUBSW";
 | 
						|
  case X86ISD::VPMADDWD:           return "X86ISD::VPMADDWD";
 | 
						|
  case X86ISD::VPROT:              return "X86ISD::VPROT";
 | 
						|
  case X86ISD::VPROTI:             return "X86ISD::VPROTI";
 | 
						|
  case X86ISD::VPSHA:              return "X86ISD::VPSHA";
 | 
						|
  case X86ISD::VPSHL:              return "X86ISD::VPSHL";
 | 
						|
  case X86ISD::VPCOM:              return "X86ISD::VPCOM";
 | 
						|
  case X86ISD::VPCOMU:             return "X86ISD::VPCOMU";
 | 
						|
  case X86ISD::VPERMIL2:           return "X86ISD::VPERMIL2";
 | 
						|
  case X86ISD::FMADD:              return "X86ISD::FMADD";
 | 
						|
  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
 | 
						|
  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
 | 
						|
  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
 | 
						|
  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
 | 
						|
  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
 | 
						|
  case X86ISD::FMADD_RND:          return "X86ISD::FMADD_RND";
 | 
						|
  case X86ISD::FNMADD_RND:         return "X86ISD::FNMADD_RND";
 | 
						|
  case X86ISD::FMSUB_RND:          return "X86ISD::FMSUB_RND";
 | 
						|
  case X86ISD::FNMSUB_RND:         return "X86ISD::FNMSUB_RND";
 | 
						|
  case X86ISD::FMADDSUB_RND:       return "X86ISD::FMADDSUB_RND";
 | 
						|
  case X86ISD::FMSUBADD_RND:       return "X86ISD::FMSUBADD_RND";
 | 
						|
  case X86ISD::FMADDS1_RND:        return "X86ISD::FMADDS1_RND";
 | 
						|
  case X86ISD::FNMADDS1_RND:       return "X86ISD::FNMADDS1_RND";
 | 
						|
  case X86ISD::FMSUBS1_RND:        return "X86ISD::FMSUBS1_RND";
 | 
						|
  case X86ISD::FNMSUBS1_RND:       return "X86ISD::FNMSUBS1_RND";
 | 
						|
  case X86ISD::FMADDS3_RND:        return "X86ISD::FMADDS3_RND";
 | 
						|
  case X86ISD::FNMADDS3_RND:       return "X86ISD::FNMADDS3_RND";
 | 
						|
  case X86ISD::FMSUBS3_RND:        return "X86ISD::FMSUBS3_RND";
 | 
						|
  case X86ISD::FNMSUBS3_RND:       return "X86ISD::FNMSUBS3_RND";
 | 
						|
  case X86ISD::VPMADD52H:          return "X86ISD::VPMADD52H";
 | 
						|
  case X86ISD::VPMADD52L:          return "X86ISD::VPMADD52L";
 | 
						|
  case X86ISD::VRNDSCALE:          return "X86ISD::VRNDSCALE";
 | 
						|
  case X86ISD::VRNDSCALES:         return "X86ISD::VRNDSCALES";
 | 
						|
  case X86ISD::VREDUCE:            return "X86ISD::VREDUCE";
 | 
						|
  case X86ISD::VREDUCES:           return "X86ISD::VREDUCES";
 | 
						|
  case X86ISD::VGETMANT:           return "X86ISD::VGETMANT";
 | 
						|
  case X86ISD::VGETMANTS:          return "X86ISD::VGETMANTS";
 | 
						|
  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
 | 
						|
  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
 | 
						|
  case X86ISD::XTEST:              return "X86ISD::XTEST";
 | 
						|
  case X86ISD::COMPRESS:           return "X86ISD::COMPRESS";
 | 
						|
  case X86ISD::EXPAND:             return "X86ISD::EXPAND";
 | 
						|
  case X86ISD::SELECT:             return "X86ISD::SELECT";
 | 
						|
  case X86ISD::SELECTS:            return "X86ISD::SELECTS";
 | 
						|
  case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
 | 
						|
  case X86ISD::RCP28:              return "X86ISD::RCP28";
 | 
						|
  case X86ISD::RCP28S:             return "X86ISD::RCP28S";
 | 
						|
  case X86ISD::EXP2:               return "X86ISD::EXP2";
 | 
						|
  case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
 | 
						|
  case X86ISD::RSQRT28S:           return "X86ISD::RSQRT28S";
 | 
						|
  case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
 | 
						|
  case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
 | 
						|
  case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
 | 
						|
  case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
 | 
						|
  case X86ISD::FSQRT_RND:          return "X86ISD::FSQRT_RND";
 | 
						|
  case X86ISD::FSQRTS_RND:         return "X86ISD::FSQRTS_RND";
 | 
						|
  case X86ISD::FGETEXP_RND:        return "X86ISD::FGETEXP_RND";
 | 
						|
  case X86ISD::FGETEXPS_RND:       return "X86ISD::FGETEXPS_RND";
 | 
						|
  case X86ISD::SCALEF:             return "X86ISD::SCALEF";
 | 
						|
  case X86ISD::SCALEFS:            return "X86ISD::SCALEFS";
 | 
						|
  case X86ISD::ADDS:               return "X86ISD::ADDS";
 | 
						|
  case X86ISD::SUBS:               return "X86ISD::SUBS";
 | 
						|
  case X86ISD::AVG:                return "X86ISD::AVG";
 | 
						|
  case X86ISD::MULHRS:             return "X86ISD::MULHRS";
 | 
						|
  case X86ISD::SINT_TO_FP_RND:     return "X86ISD::SINT_TO_FP_RND";
 | 
						|
  case X86ISD::UINT_TO_FP_RND:     return "X86ISD::UINT_TO_FP_RND";
 | 
						|
  case X86ISD::CVTTP2SI:           return "X86ISD::CVTTP2SI";
 | 
						|
  case X86ISD::CVTTP2UI:           return "X86ISD::CVTTP2UI";
 | 
						|
  case X86ISD::CVTTP2SI_RND:       return "X86ISD::CVTTP2SI_RND";
 | 
						|
  case X86ISD::CVTTP2UI_RND:       return "X86ISD::CVTTP2UI_RND";
 | 
						|
  case X86ISD::CVTTS2SI_RND:       return "X86ISD::CVTTS2SI_RND";
 | 
						|
  case X86ISD::CVTTS2UI_RND:       return "X86ISD::CVTTS2UI_RND";
 | 
						|
  case X86ISD::CVTSI2P:            return "X86ISD::CVTSI2P";
 | 
						|
  case X86ISD::CVTUI2P:            return "X86ISD::CVTUI2P";
 | 
						|
  case X86ISD::VFPCLASS:           return "X86ISD::VFPCLASS";
 | 
						|
  case X86ISD::VFPCLASSS:          return "X86ISD::VFPCLASSS";
 | 
						|
  case X86ISD::MULTISHIFT:         return "X86ISD::MULTISHIFT";
 | 
						|
  case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND";
 | 
						|
  case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND";
 | 
						|
  case X86ISD::CVTPS2PH:           return "X86ISD::CVTPS2PH";
 | 
						|
  case X86ISD::CVTPH2PS:           return "X86ISD::CVTPH2PS";
 | 
						|
  case X86ISD::CVTP2SI:            return "X86ISD::CVTP2SI";
 | 
						|
  case X86ISD::CVTP2UI:            return "X86ISD::CVTP2UI";
 | 
						|
  case X86ISD::CVTP2SI_RND:        return "X86ISD::CVTP2SI_RND";
 | 
						|
  case X86ISD::CVTP2UI_RND:        return "X86ISD::CVTP2UI_RND";
 | 
						|
  case X86ISD::CVTS2SI_RND:        return "X86ISD::CVTS2SI_RND";
 | 
						|
  case X86ISD::CVTS2UI_RND:        return "X86ISD::CVTS2UI_RND";
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the addressing mode represented by AM is legal for this
 | 
						|
/// target, for a load/store of the specified type.
 | 
						|
bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | 
						|
                                              const AddrMode &AM, Type *Ty,
 | 
						|
                                              unsigned AS) const {
 | 
						|
  // X86 supports extremely general addressing modes.
 | 
						|
  CodeModel::Model M = getTargetMachine().getCodeModel();
 | 
						|
 | 
						|
  // X86 allows a sign-extended 32-bit immediate field as a displacement.
 | 
						|
  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (AM.BaseGV) {
 | 
						|
    unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
 | 
						|
 | 
						|
    // If a reference to this global requires an extra load, we can't fold it.
 | 
						|
    if (isGlobalStubReference(GVFlags))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If BaseGV requires a register for the PIC base, we cannot also have a
 | 
						|
    // BaseReg specified.
 | 
						|
    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If lower 4G is not available, then we must use rip-relative addressing.
 | 
						|
    if ((M != CodeModel::Small || isPositionIndependent()) &&
 | 
						|
        Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:
 | 
						|
  case 1:
 | 
						|
  case 2:
 | 
						|
  case 4:
 | 
						|
  case 8:
 | 
						|
    // These scales always work.
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
  case 5:
 | 
						|
  case 9:
 | 
						|
    // These scales are formed with basereg+scalereg.  Only accept if there is
 | 
						|
    // no basereg yet.
 | 
						|
    if (AM.HasBaseReg)
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  default:  // Other stuff never works.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
 | 
						|
  unsigned Bits = Ty->getScalarSizeInBits();
 | 
						|
 | 
						|
  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
 | 
						|
  // particularly cheaper than those without.
 | 
						|
  if (Bits == 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
 | 
						|
  // variable shifts just as cheap as scalar ones.
 | 
						|
  if (Subtarget.hasInt256() && (Bits == 32 || Bits == 64))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
 | 
						|
  // fully general vector.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | 
						|
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | 
						|
  return NumBits1 > NumBits2;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isTypeLegal(EVT::getEVT(Ty1)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
 | 
						|
 | 
						|
  // Assuming the caller doesn't have a zeroext or signext return parameter,
 | 
						|
  // truncation all the way down to i1 is valid.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return isInt<32>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | 
						|
  // Can also use sub to handle negated immediates.
 | 
						|
  return isInt<32>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (!VT1.isInteger() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = VT1.getSizeInBits();
 | 
						|
  unsigned NumBits2 = VT2.getSizeInBits();
 | 
						|
  return NumBits1 > NumBits2;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | 
						|
  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
 | 
						|
  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | 
						|
  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | 
						|
  EVT VT1 = Val.getValueType();
 | 
						|
  if (isZExtFree(VT1, VT2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Val.getOpcode() != ISD::LOAD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!VT1.isSimple() || !VT1.isInteger() ||
 | 
						|
      !VT2.isSimple() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT1.getSimpleVT().SimpleTy) {
 | 
						|
  default: break;
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    // X86 has 8, 16, and 32-bit zero-extending loads.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
 | 
						|
 | 
						|
bool
 | 
						|
X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | 
						|
  if (!Subtarget.hasAnyFMA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  VT = VT.getScalarType();
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
 | 
						|
  // i16 instructions are longer (0x66 prefix) and potentially slower.
 | 
						|
  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
 | 
						|
}
 | 
						|
 | 
						|
/// Targets can use this to indicate that they only support *some*
 | 
						|
/// VECTOR_SHUFFLE operations, those with specific masks.
 | 
						|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | 
						|
/// are assumed to be legal.
 | 
						|
bool
 | 
						|
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | 
						|
                                      EVT VT) const {
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Not for i1 vectors
 | 
						|
  if (VT.getSimpleVT().getScalarType() == MVT::i1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Very little shuffling can be done for 64-bit vectors right now.
 | 
						|
  if (VT.getSimpleVT().getSizeInBits() == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only care that the types being shuffled are legal. The lowering can
 | 
						|
  // handle any possible shuffle mask that results.
 | 
						|
  return isTypeLegal(VT.getSimpleVT());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
 | 
						|
                                          EVT VT) const {
 | 
						|
  // Just delegate to the generic legality, clear masks aren't special.
 | 
						|
  return isShuffleMaskLegal(Mask, VT);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           X86 Scheduler Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Utility function to emit xbegin specifying the start of an RTM region.
 | 
						|
static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB,
 | 
						|
                                     const TargetInstrInfo *TII) {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  MachineFunction::iterator I = ++MBB->getIterator();
 | 
						|
 | 
						|
  // For the v = xbegin(), we generate
 | 
						|
  //
 | 
						|
  // thisMBB:
 | 
						|
  //  xbegin sinkMBB
 | 
						|
  //
 | 
						|
  // mainMBB:
 | 
						|
  //  eax = -1
 | 
						|
  //
 | 
						|
  // sinkMBB:
 | 
						|
  //  v = eax
 | 
						|
 | 
						|
  MachineBasicBlock *thisMBB = MBB;
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MF->insert(I, mainMBB);
 | 
						|
  MF->insert(I, sinkMBB);
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
  sinkMBB->splice(sinkMBB->begin(), MBB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  // thisMBB:
 | 
						|
  //  xbegin sinkMBB
 | 
						|
  //  # fallthrough to mainMBB
 | 
						|
  //  # abortion to sinkMBB
 | 
						|
  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
 | 
						|
  thisMBB->addSuccessor(mainMBB);
 | 
						|
  thisMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // mainMBB:
 | 
						|
  //  EAX = -1
 | 
						|
  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
 | 
						|
  mainMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // sinkMBB:
 | 
						|
  // EAX is live into the sinkMBB
 | 
						|
  sinkMBB->addLiveIn(X86::EAX);
 | 
						|
  BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY),
 | 
						|
          MI.getOperand(0).getReg())
 | 
						|
      .addReg(X86::EAX);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return sinkMBB;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
 | 
						|
// or XMM0_V32I8 in AVX all of this code can be replaced with that
 | 
						|
// in the .td file.
 | 
						|
static MachineBasicBlock *emitPCMPSTRM(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                       const TargetInstrInfo *TII) {
 | 
						|
  unsigned Opc;
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default: llvm_unreachable("illegal opcode!");
 | 
						|
  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
 | 
						|
  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
 | 
						|
  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
 | 
						|
  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
 | 
						|
  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
 | 
						|
  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
 | 
						|
  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
 | 
						|
  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
 | 
						|
 | 
						|
  unsigned NumArgs = MI.getNumOperands();
 | 
						|
  for (unsigned i = 1; i < NumArgs; ++i) {
 | 
						|
    MachineOperand &Op = MI.getOperand(i);
 | 
						|
    if (!(Op.isReg() && Op.isImplicit()))
 | 
						|
      MIB.addOperand(Op);
 | 
						|
  }
 | 
						|
  if (MI.hasOneMemOperand())
 | 
						|
    MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
 | 
						|
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
 | 
						|
      .addReg(X86::XMM0);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Custom handling because TableGen doesn't support multiple implicit
 | 
						|
// defs in an instruction pattern
 | 
						|
static MachineBasicBlock *emitPCMPSTRI(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                       const TargetInstrInfo *TII) {
 | 
						|
  unsigned Opc;
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default: llvm_unreachable("illegal opcode!");
 | 
						|
  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
 | 
						|
  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
 | 
						|
  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
 | 
						|
  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
 | 
						|
  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
 | 
						|
  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
 | 
						|
  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
 | 
						|
  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
 | 
						|
 | 
						|
  unsigned NumArgs = MI.getNumOperands(); // remove the results
 | 
						|
  for (unsigned i = 1; i < NumArgs; ++i) {
 | 
						|
    MachineOperand &Op = MI.getOperand(i);
 | 
						|
    if (!(Op.isReg() && Op.isImplicit()))
 | 
						|
      MIB.addOperand(Op);
 | 
						|
  }
 | 
						|
  if (MI.hasOneMemOperand())
 | 
						|
    MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
 | 
						|
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
 | 
						|
      .addReg(X86::ECX);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineBasicBlock *emitWRPKRU(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  // insert input VAL into EAX
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
 | 
						|
      .addReg(MI.getOperand(0).getReg());
 | 
						|
  // insert zero to ECX
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
 | 
						|
 | 
						|
  // insert zero to EDX
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::EDX);
 | 
						|
 | 
						|
  // insert WRPKRU instruction
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr));
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineBasicBlock *emitRDPKRU(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  // insert zero to ECX
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
 | 
						|
 | 
						|
  // insert RDPKRU instruction
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr));
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
 | 
						|
      .addReg(X86::EAX);
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineBasicBlock *emitMonitor(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                      const X86Subtarget &Subtarget,
 | 
						|
                                      unsigned Opc) {
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  // Address into RAX/EAX, other two args into ECX, EDX.
 | 
						|
  unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
 | 
						|
  unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
 | 
						|
  for (int i = 0; i < X86::AddrNumOperands; ++i)
 | 
						|
    MIB.addOperand(MI.getOperand(i));
 | 
						|
 | 
						|
  unsigned ValOps = X86::AddrNumOperands;
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
 | 
						|
      .addReg(MI.getOperand(ValOps).getReg());
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
 | 
						|
      .addReg(MI.getOperand(ValOps + 1).getReg());
 | 
						|
 | 
						|
  // The instruction doesn't actually take any operands though.
 | 
						|
  BuildMI(*BB, MI, dl, TII->get(Opc));
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI,
 | 
						|
                                                 MachineBasicBlock *MBB) const {
 | 
						|
  // Emit va_arg instruction on X86-64.
 | 
						|
 | 
						|
  // Operands to this pseudo-instruction:
 | 
						|
  // 0  ) Output        : destination address (reg)
 | 
						|
  // 1-5) Input         : va_list address (addr, i64mem)
 | 
						|
  // 6  ) ArgSize       : Size (in bytes) of vararg type
 | 
						|
  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
 | 
						|
  // 8  ) Align         : Alignment of type
 | 
						|
  // 9  ) EFLAGS (implicit-def)
 | 
						|
 | 
						|
  assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
 | 
						|
  static_assert(X86::AddrNumOperands == 5,
 | 
						|
                "VAARG_64 assumes 5 address operands");
 | 
						|
 | 
						|
  unsigned DestReg = MI.getOperand(0).getReg();
 | 
						|
  MachineOperand &Base = MI.getOperand(1);
 | 
						|
  MachineOperand &Scale = MI.getOperand(2);
 | 
						|
  MachineOperand &Index = MI.getOperand(3);
 | 
						|
  MachineOperand &Disp = MI.getOperand(4);
 | 
						|
  MachineOperand &Segment = MI.getOperand(5);
 | 
						|
  unsigned ArgSize = MI.getOperand(6).getImm();
 | 
						|
  unsigned ArgMode = MI.getOperand(7).getImm();
 | 
						|
  unsigned Align = MI.getOperand(8).getImm();
 | 
						|
 | 
						|
  // Memory Reference
 | 
						|
  assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
 | 
						|
  MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
 | 
						|
  MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
 | 
						|
 | 
						|
  // Machine Information
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | 
						|
  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
 | 
						|
  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  // struct va_list {
 | 
						|
  //   i32   gp_offset
 | 
						|
  //   i32   fp_offset
 | 
						|
  //   i64   overflow_area (address)
 | 
						|
  //   i64   reg_save_area (address)
 | 
						|
  // }
 | 
						|
  // sizeof(va_list) = 24
 | 
						|
  // alignment(va_list) = 8
 | 
						|
 | 
						|
  unsigned TotalNumIntRegs = 6;
 | 
						|
  unsigned TotalNumXMMRegs = 8;
 | 
						|
  bool UseGPOffset = (ArgMode == 1);
 | 
						|
  bool UseFPOffset = (ArgMode == 2);
 | 
						|
  unsigned MaxOffset = TotalNumIntRegs * 8 +
 | 
						|
                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
 | 
						|
 | 
						|
  /* Align ArgSize to a multiple of 8 */
 | 
						|
  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
 | 
						|
  bool NeedsAlign = (Align > 8);
 | 
						|
 | 
						|
  MachineBasicBlock *thisMBB = MBB;
 | 
						|
  MachineBasicBlock *overflowMBB;
 | 
						|
  MachineBasicBlock *offsetMBB;
 | 
						|
  MachineBasicBlock *endMBB;
 | 
						|
 | 
						|
  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
 | 
						|
  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
 | 
						|
  unsigned OffsetReg = 0;
 | 
						|
 | 
						|
  if (!UseGPOffset && !UseFPOffset) {
 | 
						|
    // If we only pull from the overflow region, we don't create a branch.
 | 
						|
    // We don't need to alter control flow.
 | 
						|
    OffsetDestReg = 0; // unused
 | 
						|
    OverflowDestReg = DestReg;
 | 
						|
 | 
						|
    offsetMBB = nullptr;
 | 
						|
    overflowMBB = thisMBB;
 | 
						|
    endMBB = thisMBB;
 | 
						|
  } else {
 | 
						|
    // First emit code to check if gp_offset (or fp_offset) is below the bound.
 | 
						|
    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
 | 
						|
    // If not, pull from overflow_area. (branch to overflowMBB)
 | 
						|
    //
 | 
						|
    //       thisMBB
 | 
						|
    //         |     .
 | 
						|
    //         |        .
 | 
						|
    //     offsetMBB   overflowMBB
 | 
						|
    //         |        .
 | 
						|
    //         |     .
 | 
						|
    //        endMBB
 | 
						|
 | 
						|
    // Registers for the PHI in endMBB
 | 
						|
    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
 | 
						|
    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | 
						|
    MachineFunction *MF = MBB->getParent();
 | 
						|
    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
 | 
						|
    MachineFunction::iterator MBBIter = ++MBB->getIterator();
 | 
						|
 | 
						|
    // Insert the new basic blocks
 | 
						|
    MF->insert(MBBIter, offsetMBB);
 | 
						|
    MF->insert(MBBIter, overflowMBB);
 | 
						|
    MF->insert(MBBIter, endMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of MBB and its successor edges to endMBB.
 | 
						|
    endMBB->splice(endMBB->begin(), thisMBB,
 | 
						|
                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
 | 
						|
    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
 | 
						|
 | 
						|
    // Make offsetMBB and overflowMBB successors of thisMBB
 | 
						|
    thisMBB->addSuccessor(offsetMBB);
 | 
						|
    thisMBB->addSuccessor(overflowMBB);
 | 
						|
 | 
						|
    // endMBB is a successor of both offsetMBB and overflowMBB
 | 
						|
    offsetMBB->addSuccessor(endMBB);
 | 
						|
    overflowMBB->addSuccessor(endMBB);
 | 
						|
 | 
						|
    // Load the offset value into a register
 | 
						|
    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
 | 
						|
    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
 | 
						|
      .addOperand(Base)
 | 
						|
      .addOperand(Scale)
 | 
						|
      .addOperand(Index)
 | 
						|
      .addDisp(Disp, UseFPOffset ? 4 : 0)
 | 
						|
      .addOperand(Segment)
 | 
						|
      .setMemRefs(MMOBegin, MMOEnd);
 | 
						|
 | 
						|
    // Check if there is enough room left to pull this argument.
 | 
						|
    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
 | 
						|
      .addReg(OffsetReg)
 | 
						|
      .addImm(MaxOffset + 8 - ArgSizeA8);
 | 
						|
 | 
						|
    // Branch to "overflowMBB" if offset >= max
 | 
						|
    // Fall through to "offsetMBB" otherwise
 | 
						|
    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
 | 
						|
      .addMBB(overflowMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // In offsetMBB, emit code to use the reg_save_area.
 | 
						|
  if (offsetMBB) {
 | 
						|
    assert(OffsetReg != 0);
 | 
						|
 | 
						|
    // Read the reg_save_area address.
 | 
						|
    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
 | 
						|
      .addOperand(Base)
 | 
						|
      .addOperand(Scale)
 | 
						|
      .addOperand(Index)
 | 
						|
      .addDisp(Disp, 16)
 | 
						|
      .addOperand(Segment)
 | 
						|
      .setMemRefs(MMOBegin, MMOEnd);
 | 
						|
 | 
						|
    // Zero-extend the offset
 | 
						|
    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
 | 
						|
        .addImm(0)
 | 
						|
        .addReg(OffsetReg)
 | 
						|
        .addImm(X86::sub_32bit);
 | 
						|
 | 
						|
    // Add the offset to the reg_save_area to get the final address.
 | 
						|
    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
 | 
						|
      .addReg(OffsetReg64)
 | 
						|
      .addReg(RegSaveReg);
 | 
						|
 | 
						|
    // Compute the offset for the next argument
 | 
						|
    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
 | 
						|
    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
 | 
						|
      .addReg(OffsetReg)
 | 
						|
      .addImm(UseFPOffset ? 16 : 8);
 | 
						|
 | 
						|
    // Store it back into the va_list.
 | 
						|
    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
 | 
						|
      .addOperand(Base)
 | 
						|
      .addOperand(Scale)
 | 
						|
      .addOperand(Index)
 | 
						|
      .addDisp(Disp, UseFPOffset ? 4 : 0)
 | 
						|
      .addOperand(Segment)
 | 
						|
      .addReg(NextOffsetReg)
 | 
						|
      .setMemRefs(MMOBegin, MMOEnd);
 | 
						|
 | 
						|
    // Jump to endMBB
 | 
						|
    BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
 | 
						|
      .addMBB(endMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  //
 | 
						|
  // Emit code to use overflow area
 | 
						|
  //
 | 
						|
 | 
						|
  // Load the overflow_area address into a register.
 | 
						|
  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
 | 
						|
    .addOperand(Base)
 | 
						|
    .addOperand(Scale)
 | 
						|
    .addOperand(Index)
 | 
						|
    .addDisp(Disp, 8)
 | 
						|
    .addOperand(Segment)
 | 
						|
    .setMemRefs(MMOBegin, MMOEnd);
 | 
						|
 | 
						|
  // If we need to align it, do so. Otherwise, just copy the address
 | 
						|
  // to OverflowDestReg.
 | 
						|
  if (NeedsAlign) {
 | 
						|
    // Align the overflow address
 | 
						|
    assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
 | 
						|
    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
 | 
						|
    // aligned_addr = (addr + (align-1)) & ~(align-1)
 | 
						|
    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
 | 
						|
      .addReg(OverflowAddrReg)
 | 
						|
      .addImm(Align-1);
 | 
						|
 | 
						|
    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
 | 
						|
      .addReg(TmpReg)
 | 
						|
      .addImm(~(uint64_t)(Align-1));
 | 
						|
  } else {
 | 
						|
    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
 | 
						|
      .addReg(OverflowAddrReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the next overflow address after this argument.
 | 
						|
  // (the overflow address should be kept 8-byte aligned)
 | 
						|
  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
 | 
						|
    .addReg(OverflowDestReg)
 | 
						|
    .addImm(ArgSizeA8);
 | 
						|
 | 
						|
  // Store the new overflow address.
 | 
						|
  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
 | 
						|
    .addOperand(Base)
 | 
						|
    .addOperand(Scale)
 | 
						|
    .addOperand(Index)
 | 
						|
    .addDisp(Disp, 8)
 | 
						|
    .addOperand(Segment)
 | 
						|
    .addReg(NextAddrReg)
 | 
						|
    .setMemRefs(MMOBegin, MMOEnd);
 | 
						|
 | 
						|
  // If we branched, emit the PHI to the front of endMBB.
 | 
						|
  if (offsetMBB) {
 | 
						|
    BuildMI(*endMBB, endMBB->begin(), DL,
 | 
						|
            TII->get(X86::PHI), DestReg)
 | 
						|
      .addReg(OffsetDestReg).addMBB(offsetMBB)
 | 
						|
      .addReg(OverflowDestReg).addMBB(overflowMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase the pseudo instruction
 | 
						|
  MI.eraseFromParent();
 | 
						|
 | 
						|
  return endMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
 | 
						|
    MachineInstr &MI, MachineBasicBlock *MBB) const {
 | 
						|
  // Emit code to save XMM registers to the stack. The ABI says that the
 | 
						|
  // number of registers to save is given in %al, so it's theoretically
 | 
						|
  // possible to do an indirect jump trick to avoid saving all of them,
 | 
						|
  // however this code takes a simpler approach and just executes all
 | 
						|
  // of the stores if %al is non-zero. It's less code, and it's probably
 | 
						|
  // easier on the hardware branch predictor, and stores aren't all that
 | 
						|
  // expensive anyway.
 | 
						|
 | 
						|
  // Create the new basic blocks. One block contains all the XMM stores,
 | 
						|
  // and one block is the final destination regardless of whether any
 | 
						|
  // stores were performed.
 | 
						|
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | 
						|
  MachineFunction *F = MBB->getParent();
 | 
						|
  MachineFunction::iterator MBBIter = ++MBB->getIterator();
 | 
						|
  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(MBBIter, XMMSaveMBB);
 | 
						|
  F->insert(MBBIter, EndMBB);
 | 
						|
 | 
						|
  // Transfer the remainder of MBB and its successor edges to EndMBB.
 | 
						|
  EndMBB->splice(EndMBB->begin(), MBB,
 | 
						|
                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  // The original block will now fall through to the XMM save block.
 | 
						|
  MBB->addSuccessor(XMMSaveMBB);
 | 
						|
  // The XMMSaveMBB will fall through to the end block.
 | 
						|
  XMMSaveMBB->addSuccessor(EndMBB);
 | 
						|
 | 
						|
  // Now add the instructions.
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  unsigned CountReg = MI.getOperand(0).getReg();
 | 
						|
  int64_t RegSaveFrameIndex = MI.getOperand(1).getImm();
 | 
						|
  int64_t VarArgsFPOffset = MI.getOperand(2).getImm();
 | 
						|
 | 
						|
  if (!Subtarget.isCallingConvWin64(F->getFunction()->getCallingConv())) {
 | 
						|
    // If %al is 0, branch around the XMM save block.
 | 
						|
    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
 | 
						|
    BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
 | 
						|
    MBB->addSuccessor(EndMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
 | 
						|
  // that was just emitted, but clearly shouldn't be "saved".
 | 
						|
  assert((MI.getNumOperands() <= 3 ||
 | 
						|
          !MI.getOperand(MI.getNumOperands() - 1).isReg() ||
 | 
						|
          MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) &&
 | 
						|
         "Expected last argument to be EFLAGS");
 | 
						|
  unsigned MOVOpc = Subtarget.hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
 | 
						|
  // In the XMM save block, save all the XMM argument registers.
 | 
						|
  for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) {
 | 
						|
    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
 | 
						|
    MachineMemOperand *MMO = F->getMachineMemOperand(
 | 
						|
        MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
 | 
						|
        MachineMemOperand::MOStore,
 | 
						|
        /*Size=*/16, /*Align=*/16);
 | 
						|
    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
 | 
						|
        .addFrameIndex(RegSaveFrameIndex)
 | 
						|
        .addImm(/*Scale=*/1)
 | 
						|
        .addReg(/*IndexReg=*/0)
 | 
						|
        .addImm(/*Disp=*/Offset)
 | 
						|
        .addReg(/*Segment=*/0)
 | 
						|
        .addReg(MI.getOperand(i).getReg())
 | 
						|
        .addMemOperand(MMO);
 | 
						|
  }
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
 | 
						|
  return EndMBB;
 | 
						|
}
 | 
						|
 | 
						|
// The EFLAGS operand of SelectItr might be missing a kill marker
 | 
						|
// because there were multiple uses of EFLAGS, and ISel didn't know
 | 
						|
// which to mark. Figure out whether SelectItr should have had a
 | 
						|
// kill marker, and set it if it should. Returns the correct kill
 | 
						|
// marker value.
 | 
						|
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
 | 
						|
                                     MachineBasicBlock* BB,
 | 
						|
                                     const TargetRegisterInfo* TRI) {
 | 
						|
  // Scan forward through BB for a use/def of EFLAGS.
 | 
						|
  MachineBasicBlock::iterator miI(std::next(SelectItr));
 | 
						|
  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
 | 
						|
    const MachineInstr& mi = *miI;
 | 
						|
    if (mi.readsRegister(X86::EFLAGS))
 | 
						|
      return false;
 | 
						|
    if (mi.definesRegister(X86::EFLAGS))
 | 
						|
      break; // Should have kill-flag - update below.
 | 
						|
  }
 | 
						|
 | 
						|
  // If we hit the end of the block, check whether EFLAGS is live into a
 | 
						|
  // successor.
 | 
						|
  if (miI == BB->end()) {
 | 
						|
    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
 | 
						|
                                          sEnd = BB->succ_end();
 | 
						|
         sItr != sEnd; ++sItr) {
 | 
						|
      MachineBasicBlock* succ = *sItr;
 | 
						|
      if (succ->isLiveIn(X86::EFLAGS))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
 | 
						|
  // out. SelectMI should have a kill flag on EFLAGS.
 | 
						|
  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
 | 
						|
// together with other CMOV pseudo-opcodes into a single basic-block with
 | 
						|
// conditional jump around it.
 | 
						|
static bool isCMOVPseudo(MachineInstr &MI) {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  case X86::CMOV_FR32:
 | 
						|
  case X86::CMOV_FR64:
 | 
						|
  case X86::CMOV_GR8:
 | 
						|
  case X86::CMOV_GR16:
 | 
						|
  case X86::CMOV_GR32:
 | 
						|
  case X86::CMOV_RFP32:
 | 
						|
  case X86::CMOV_RFP64:
 | 
						|
  case X86::CMOV_RFP80:
 | 
						|
  case X86::CMOV_V2F64:
 | 
						|
  case X86::CMOV_V2I64:
 | 
						|
  case X86::CMOV_V4F32:
 | 
						|
  case X86::CMOV_V4F64:
 | 
						|
  case X86::CMOV_V4I64:
 | 
						|
  case X86::CMOV_V16F32:
 | 
						|
  case X86::CMOV_V8F32:
 | 
						|
  case X86::CMOV_V8F64:
 | 
						|
  case X86::CMOV_V8I64:
 | 
						|
  case X86::CMOV_V8I1:
 | 
						|
  case X86::CMOV_V16I1:
 | 
						|
  case X86::CMOV_V32I1:
 | 
						|
  case X86::CMOV_V64I1:
 | 
						|
    return true;
 | 
						|
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredSelect(MachineInstr &MI,
 | 
						|
                                     MachineBasicBlock *BB) const {
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  // To "insert" a SELECT_CC instruction, we actually have to insert the
 | 
						|
  // diamond control-flow pattern.  The incoming instruction knows the
 | 
						|
  // destination vreg to set, the condition code register to branch on, the
 | 
						|
  // true/false values to select between, and a branch opcode to use.
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //  ...
 | 
						|
  //   TrueVal = ...
 | 
						|
  //   cmpTY ccX, r1, r2
 | 
						|
  //   bCC copy1MBB
 | 
						|
  //   fallthrough --> copy0MBB
 | 
						|
  MachineBasicBlock *thisMBB = BB;
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
 | 
						|
  // This code lowers all pseudo-CMOV instructions. Generally it lowers these
 | 
						|
  // as described above, by inserting a BB, and then making a PHI at the join
 | 
						|
  // point to select the true and false operands of the CMOV in the PHI.
 | 
						|
  //
 | 
						|
  // The code also handles two different cases of multiple CMOV opcodes
 | 
						|
  // in a row.
 | 
						|
  //
 | 
						|
  // Case 1:
 | 
						|
  // In this case, there are multiple CMOVs in a row, all which are based on
 | 
						|
  // the same condition setting (or the exact opposite condition setting).
 | 
						|
  // In this case we can lower all the CMOVs using a single inserted BB, and
 | 
						|
  // then make a number of PHIs at the join point to model the CMOVs. The only
 | 
						|
  // trickiness here, is that in a case like:
 | 
						|
  //
 | 
						|
  // t2 = CMOV cond1 t1, f1
 | 
						|
  // t3 = CMOV cond1 t2, f2
 | 
						|
  //
 | 
						|
  // when rewriting this into PHIs, we have to perform some renaming on the
 | 
						|
  // temps since you cannot have a PHI operand refer to a PHI result earlier
 | 
						|
  // in the same block.  The "simple" but wrong lowering would be:
 | 
						|
  //
 | 
						|
  // t2 = PHI t1(BB1), f1(BB2)
 | 
						|
  // t3 = PHI t2(BB1), f2(BB2)
 | 
						|
  //
 | 
						|
  // but clearly t2 is not defined in BB1, so that is incorrect. The proper
 | 
						|
  // renaming is to note that on the path through BB1, t2 is really just a
 | 
						|
  // copy of t1, and do that renaming, properly generating:
 | 
						|
  //
 | 
						|
  // t2 = PHI t1(BB1), f1(BB2)
 | 
						|
  // t3 = PHI t1(BB1), f2(BB2)
 | 
						|
  //
 | 
						|
  // Case 2, we lower cascaded CMOVs such as
 | 
						|
  //
 | 
						|
  //   (CMOV (CMOV F, T, cc1), T, cc2)
 | 
						|
  //
 | 
						|
  // to two successives branches.  For that, we look for another CMOV as the
 | 
						|
  // following instruction.
 | 
						|
  //
 | 
						|
  // Without this, we would add a PHI between the two jumps, which ends up
 | 
						|
  // creating a few copies all around. For instance, for
 | 
						|
  //
 | 
						|
  //    (sitofp (zext (fcmp une)))
 | 
						|
  //
 | 
						|
  // we would generate:
 | 
						|
  //
 | 
						|
  //         ucomiss %xmm1, %xmm0
 | 
						|
  //         movss  <1.0f>, %xmm0
 | 
						|
  //         movaps  %xmm0, %xmm1
 | 
						|
  //         jne     .LBB5_2
 | 
						|
  //         xorps   %xmm1, %xmm1
 | 
						|
  // .LBB5_2:
 | 
						|
  //         jp      .LBB5_4
 | 
						|
  //         movaps  %xmm1, %xmm0
 | 
						|
  // .LBB5_4:
 | 
						|
  //         retq
 | 
						|
  //
 | 
						|
  // because this custom-inserter would have generated:
 | 
						|
  //
 | 
						|
  //   A
 | 
						|
  //   | \
 | 
						|
  //   |  B
 | 
						|
  //   | /
 | 
						|
  //   C
 | 
						|
  //   | \
 | 
						|
  //   |  D
 | 
						|
  //   | /
 | 
						|
  //   E
 | 
						|
  //
 | 
						|
  // A: X = ...; Y = ...
 | 
						|
  // B: empty
 | 
						|
  // C: Z = PHI [X, A], [Y, B]
 | 
						|
  // D: empty
 | 
						|
  // E: PHI [X, C], [Z, D]
 | 
						|
  //
 | 
						|
  // If we lower both CMOVs in a single step, we can instead generate:
 | 
						|
  //
 | 
						|
  //   A
 | 
						|
  //   | \
 | 
						|
  //   |  C
 | 
						|
  //   | /|
 | 
						|
  //   |/ |
 | 
						|
  //   |  |
 | 
						|
  //   |  D
 | 
						|
  //   | /
 | 
						|
  //   E
 | 
						|
  //
 | 
						|
  // A: X = ...; Y = ...
 | 
						|
  // D: empty
 | 
						|
  // E: PHI [X, A], [X, C], [Y, D]
 | 
						|
  //
 | 
						|
  // Which, in our sitofp/fcmp example, gives us something like:
 | 
						|
  //
 | 
						|
  //         ucomiss %xmm1, %xmm0
 | 
						|
  //         movss  <1.0f>, %xmm0
 | 
						|
  //         jne     .LBB5_4
 | 
						|
  //         jp      .LBB5_4
 | 
						|
  //         xorps   %xmm0, %xmm0
 | 
						|
  // .LBB5_4:
 | 
						|
  //         retq
 | 
						|
  //
 | 
						|
  MachineInstr *CascadedCMOV = nullptr;
 | 
						|
  MachineInstr *LastCMOV = &MI;
 | 
						|
  X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm());
 | 
						|
  X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
 | 
						|
  MachineBasicBlock::iterator NextMIIt =
 | 
						|
      std::next(MachineBasicBlock::iterator(MI));
 | 
						|
 | 
						|
  // Check for case 1, where there are multiple CMOVs with the same condition
 | 
						|
  // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the
 | 
						|
  // number of jumps the most.
 | 
						|
 | 
						|
  if (isCMOVPseudo(MI)) {
 | 
						|
    // See if we have a string of CMOVS with the same condition.
 | 
						|
    while (NextMIIt != BB->end() && isCMOVPseudo(*NextMIIt) &&
 | 
						|
           (NextMIIt->getOperand(3).getImm() == CC ||
 | 
						|
            NextMIIt->getOperand(3).getImm() == OppCC)) {
 | 
						|
      LastCMOV = &*NextMIIt;
 | 
						|
      ++NextMIIt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This checks for case 2, but only do this if we didn't already find
 | 
						|
  // case 1, as indicated by LastCMOV == MI.
 | 
						|
  if (LastCMOV == &MI && NextMIIt != BB->end() &&
 | 
						|
      NextMIIt->getOpcode() == MI.getOpcode() &&
 | 
						|
      NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
 | 
						|
      NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
 | 
						|
      NextMIIt->getOperand(1).isKill()) {
 | 
						|
    CascadedCMOV = &*NextMIIt;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *jcc1MBB = nullptr;
 | 
						|
 | 
						|
  // If we have a cascaded CMOV, we lower it to two successive branches to
 | 
						|
  // the same block.  EFLAGS is used by both, so mark it as live in the second.
 | 
						|
  if (CascadedCMOV) {
 | 
						|
    jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, jcc1MBB);
 | 
						|
    jcc1MBB->addLiveIn(X86::EFLAGS);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, copy0MBB);
 | 
						|
  F->insert(It, sinkMBB);
 | 
						|
 | 
						|
  // If the EFLAGS register isn't dead in the terminator, then claim that it's
 | 
						|
  // live into the sink and copy blocks.
 | 
						|
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
 | 
						|
  MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
 | 
						|
  if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
 | 
						|
      !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
 | 
						|
    copy0MBB->addLiveIn(X86::EFLAGS);
 | 
						|
    sinkMBB->addLiveIn(X86::EFLAGS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
  sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end());
 | 
						|
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  // Add the true and fallthrough blocks as its successors.
 | 
						|
  if (CascadedCMOV) {
 | 
						|
    // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV.
 | 
						|
    BB->addSuccessor(jcc1MBB);
 | 
						|
 | 
						|
    // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
 | 
						|
    // jump to the sinkMBB.
 | 
						|
    jcc1MBB->addSuccessor(copy0MBB);
 | 
						|
    jcc1MBB->addSuccessor(sinkMBB);
 | 
						|
  } else {
 | 
						|
    BB->addSuccessor(copy0MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // The true block target of the first (or only) branch is always sinkMBB.
 | 
						|
  BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // Create the conditional branch instruction.
 | 
						|
  unsigned Opc = X86::GetCondBranchFromCond(CC);
 | 
						|
  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
 | 
						|
 | 
						|
  if (CascadedCMOV) {
 | 
						|
    unsigned Opc2 = X86::GetCondBranchFromCond(
 | 
						|
        (X86::CondCode)CascadedCMOV->getOperand(3).getImm());
 | 
						|
    BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  //  copy0MBB:
 | 
						|
  //   %FalseValue = ...
 | 
						|
  //   # fallthrough to sinkMBB
 | 
						|
  copy0MBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  //  sinkMBB:
 | 
						|
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
  //  ...
 | 
						|
  MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
 | 
						|
  MachineBasicBlock::iterator MIItEnd =
 | 
						|
    std::next(MachineBasicBlock::iterator(LastCMOV));
 | 
						|
  MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin();
 | 
						|
  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  // As we are creating the PHIs, we have to be careful if there is more than
 | 
						|
  // one.  Later CMOVs may reference the results of earlier CMOVs, but later
 | 
						|
  // PHIs have to reference the individual true/false inputs from earlier PHIs.
 | 
						|
  // That also means that PHI construction must work forward from earlier to
 | 
						|
  // later, and that the code must maintain a mapping from earlier PHI's
 | 
						|
  // destination registers, and the registers that went into the PHI.
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
 | 
						|
    unsigned DestReg = MIIt->getOperand(0).getReg();
 | 
						|
    unsigned Op1Reg = MIIt->getOperand(1).getReg();
 | 
						|
    unsigned Op2Reg = MIIt->getOperand(2).getReg();
 | 
						|
 | 
						|
    // If this CMOV we are generating is the opposite condition from
 | 
						|
    // the jump we generated, then we have to swap the operands for the
 | 
						|
    // PHI that is going to be generated.
 | 
						|
    if (MIIt->getOperand(3).getImm() == OppCC)
 | 
						|
        std::swap(Op1Reg, Op2Reg);
 | 
						|
 | 
						|
    if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
 | 
						|
      Op1Reg = RegRewriteTable[Op1Reg].first;
 | 
						|
 | 
						|
    if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
 | 
						|
      Op2Reg = RegRewriteTable[Op2Reg].second;
 | 
						|
 | 
						|
    MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL,
 | 
						|
                  TII->get(X86::PHI), DestReg)
 | 
						|
          .addReg(Op1Reg).addMBB(copy0MBB)
 | 
						|
          .addReg(Op2Reg).addMBB(thisMBB);
 | 
						|
 | 
						|
    // Add this PHI to the rewrite table.
 | 
						|
    RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a cascaded CMOV, the second Jcc provides the same incoming
 | 
						|
  // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
 | 
						|
  if (CascadedCMOV) {
 | 
						|
    MIB.addReg(MI.getOperand(2).getReg()).addMBB(jcc1MBB);
 | 
						|
    // Copy the PHI result to the register defined by the second CMOV.
 | 
						|
    BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
 | 
						|
            DL, TII->get(TargetOpcode::COPY),
 | 
						|
            CascadedCMOV->getOperand(0).getReg())
 | 
						|
        .addReg(MI.getOperand(0).getReg());
 | 
						|
    CascadedCMOV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now remove the CMOV(s).
 | 
						|
  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; )
 | 
						|
    (MIIt++)->eraseFromParent();
 | 
						|
 | 
						|
  return sinkMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredAtomicFP(MachineInstr &MI,
 | 
						|
                                       MachineBasicBlock *BB) const {
 | 
						|
  // Combine the following atomic floating-point modification pattern:
 | 
						|
  //   a.store(reg OP a.load(acquire), release)
 | 
						|
  // Transform them into:
 | 
						|
  //   OPss (%gpr), %xmm
 | 
						|
  //   movss %xmm, (%gpr)
 | 
						|
  // Or sd equivalent for 64-bit operations.
 | 
						|
  unsigned MOp, FOp;
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
 | 
						|
  case X86::RELEASE_FADD32mr:
 | 
						|
    FOp = X86::ADDSSrm;
 | 
						|
    MOp = X86::MOVSSmr;
 | 
						|
    break;
 | 
						|
  case X86::RELEASE_FADD64mr:
 | 
						|
    FOp = X86::ADDSDrm;
 | 
						|
    MOp = X86::MOVSDmr;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  const X86InstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | 
						|
  unsigned ValOpIdx = X86::AddrNumOperands;
 | 
						|
  unsigned VSrc = MI.getOperand(ValOpIdx).getReg();
 | 
						|
  MachineInstrBuilder MIB =
 | 
						|
      BuildMI(*BB, MI, DL, TII->get(FOp),
 | 
						|
              MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
 | 
						|
          .addReg(VSrc);
 | 
						|
  for (int i = 0; i < X86::AddrNumOperands; ++i) {
 | 
						|
    MachineOperand &Operand = MI.getOperand(i);
 | 
						|
    // Clear any kill flags on register operands as we'll create a second
 | 
						|
    // instruction using the same address operands.
 | 
						|
    if (Operand.isReg())
 | 
						|
      Operand.setIsKill(false);
 | 
						|
    MIB.addOperand(Operand);
 | 
						|
  }
 | 
						|
  MachineInstr *FOpMI = MIB;
 | 
						|
  MIB = BuildMI(*BB, MI, DL, TII->get(MOp));
 | 
						|
  for (int i = 0; i < X86::AddrNumOperands; ++i)
 | 
						|
    MIB.addOperand(MI.getOperand(i));
 | 
						|
  MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill);
 | 
						|
  MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
 | 
						|
                                        MachineBasicBlock *BB) const {
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
 | 
						|
  assert(MF->shouldSplitStack());
 | 
						|
 | 
						|
  const bool Is64Bit = Subtarget.is64Bit();
 | 
						|
  const bool IsLP64 = Subtarget.isTarget64BitLP64();
 | 
						|
 | 
						|
  const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
 | 
						|
  const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
 | 
						|
 | 
						|
  // BB:
 | 
						|
  //  ... [Till the alloca]
 | 
						|
  // If stacklet is not large enough, jump to mallocMBB
 | 
						|
  //
 | 
						|
  // bumpMBB:
 | 
						|
  //  Allocate by subtracting from RSP
 | 
						|
  //  Jump to continueMBB
 | 
						|
  //
 | 
						|
  // mallocMBB:
 | 
						|
  //  Allocate by call to runtime
 | 
						|
  //
 | 
						|
  // continueMBB:
 | 
						|
  //  ...
 | 
						|
  //  [rest of original BB]
 | 
						|
  //
 | 
						|
 | 
						|
  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
  const TargetRegisterClass *AddrRegClass =
 | 
						|
      getRegClassFor(getPointerTy(MF->getDataLayout()));
 | 
						|
 | 
						|
  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
 | 
						|
           bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
 | 
						|
           tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
 | 
						|
           SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
 | 
						|
           sizeVReg = MI.getOperand(1).getReg(),
 | 
						|
           physSPReg =
 | 
						|
               IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
 | 
						|
 | 
						|
  MachineFunction::iterator MBBIter = ++BB->getIterator();
 | 
						|
 | 
						|
  MF->insert(MBBIter, bumpMBB);
 | 
						|
  MF->insert(MBBIter, mallocMBB);
 | 
						|
  MF->insert(MBBIter, continueMBB);
 | 
						|
 | 
						|
  continueMBB->splice(continueMBB->begin(), BB,
 | 
						|
                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  // Add code to the main basic block to check if the stack limit has been hit,
 | 
						|
  // and if so, jump to mallocMBB otherwise to bumpMBB.
 | 
						|
  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
 | 
						|
  BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
 | 
						|
    .addReg(tmpSPVReg).addReg(sizeVReg);
 | 
						|
  BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
 | 
						|
    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
 | 
						|
    .addReg(SPLimitVReg);
 | 
						|
  BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
 | 
						|
 | 
						|
  // bumpMBB simply decreases the stack pointer, since we know the current
 | 
						|
  // stacklet has enough space.
 | 
						|
  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
 | 
						|
    .addReg(SPLimitVReg);
 | 
						|
  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
 | 
						|
    .addReg(SPLimitVReg);
 | 
						|
  BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
 | 
						|
 | 
						|
  // Calls into a routine in libgcc to allocate more space from the heap.
 | 
						|
  const uint32_t *RegMask =
 | 
						|
      Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
 | 
						|
  if (IsLP64) {
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
 | 
						|
      .addReg(sizeVReg);
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
 | 
						|
      .addExternalSymbol("__morestack_allocate_stack_space")
 | 
						|
      .addRegMask(RegMask)
 | 
						|
      .addReg(X86::RDI, RegState::Implicit)
 | 
						|
      .addReg(X86::RAX, RegState::ImplicitDefine);
 | 
						|
  } else if (Is64Bit) {
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
 | 
						|
      .addReg(sizeVReg);
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
 | 
						|
      .addExternalSymbol("__morestack_allocate_stack_space")
 | 
						|
      .addRegMask(RegMask)
 | 
						|
      .addReg(X86::EDI, RegState::Implicit)
 | 
						|
      .addReg(X86::EAX, RegState::ImplicitDefine);
 | 
						|
  } else {
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
 | 
						|
      .addImm(12);
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
 | 
						|
      .addExternalSymbol("__morestack_allocate_stack_space")
 | 
						|
      .addRegMask(RegMask)
 | 
						|
      .addReg(X86::EAX, RegState::ImplicitDefine);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Is64Bit)
 | 
						|
    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
 | 
						|
      .addImm(16);
 | 
						|
 | 
						|
  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
 | 
						|
    .addReg(IsLP64 ? X86::RAX : X86::EAX);
 | 
						|
  BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
 | 
						|
 | 
						|
  // Set up the CFG correctly.
 | 
						|
  BB->addSuccessor(bumpMBB);
 | 
						|
  BB->addSuccessor(mallocMBB);
 | 
						|
  mallocMBB->addSuccessor(continueMBB);
 | 
						|
  bumpMBB->addSuccessor(continueMBB);
 | 
						|
 | 
						|
  // Take care of the PHI nodes.
 | 
						|
  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
 | 
						|
          MI.getOperand(0).getReg())
 | 
						|
      .addReg(mallocPtrVReg)
 | 
						|
      .addMBB(mallocMBB)
 | 
						|
      .addReg(bumpSPPtrVReg)
 | 
						|
      .addMBB(bumpMBB);
 | 
						|
 | 
						|
  // Delete the original pseudo instruction.
 | 
						|
  MI.eraseFromParent();
 | 
						|
 | 
						|
  // And we're done.
 | 
						|
  return continueMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI,
 | 
						|
                                       MachineBasicBlock *BB) const {
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
 | 
						|
  MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  assert(!isAsynchronousEHPersonality(
 | 
						|
             classifyEHPersonality(MF->getFunction()->getPersonalityFn())) &&
 | 
						|
         "SEH does not use catchret!");
 | 
						|
 | 
						|
  // Only 32-bit EH needs to worry about manually restoring stack pointers.
 | 
						|
  if (!Subtarget.is32Bit())
 | 
						|
    return BB;
 | 
						|
 | 
						|
  // C++ EH creates a new target block to hold the restore code, and wires up
 | 
						|
  // the new block to the return destination with a normal JMP_4.
 | 
						|
  MachineBasicBlock *RestoreMBB =
 | 
						|
      MF->CreateMachineBasicBlock(BB->getBasicBlock());
 | 
						|
  assert(BB->succ_size() == 1);
 | 
						|
  MF->insert(std::next(BB->getIterator()), RestoreMBB);
 | 
						|
  RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
  BB->addSuccessor(RestoreMBB);
 | 
						|
  MI.getOperand(0).setMBB(RestoreMBB);
 | 
						|
 | 
						|
  auto RestoreMBBI = RestoreMBB->begin();
 | 
						|
  BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
 | 
						|
  BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI,
 | 
						|
                                       MachineBasicBlock *BB) const {
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  const Constant *PerFn = MF->getFunction()->getPersonalityFn();
 | 
						|
  bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
 | 
						|
  // Only 32-bit SEH requires special handling for catchpad.
 | 
						|
  if (IsSEH && Subtarget.is32Bit()) {
 | 
						|
    const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
 | 
						|
    DebugLoc DL = MI.getDebugLoc();
 | 
						|
    BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
 | 
						|
  }
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI,
 | 
						|
                                      MachineBasicBlock *BB) const {
 | 
						|
  // So, here we replace TLSADDR with the sequence:
 | 
						|
  // adjust_stackdown -> TLSADDR -> adjust_stackup.
 | 
						|
  // We need this because TLSADDR is lowered into calls
 | 
						|
  // inside MC, therefore without the two markers shrink-wrapping
 | 
						|
  // may push the prologue/epilogue pass them.
 | 
						|
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction &MF = *BB->getParent();
 | 
						|
 | 
						|
  // Emit CALLSEQ_START right before the instruction.
 | 
						|
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
 | 
						|
  MachineInstrBuilder CallseqStart =
 | 
						|
    BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0);
 | 
						|
  BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
 | 
						|
 | 
						|
  // Emit CALLSEQ_END right after the instruction.
 | 
						|
  // We don't call erase from parent because we want to keep the
 | 
						|
  // original instruction around.
 | 
						|
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
 | 
						|
  MachineInstrBuilder CallseqEnd =
 | 
						|
    BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
 | 
						|
  BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
 | 
						|
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI,
 | 
						|
                                      MachineBasicBlock *BB) const {
 | 
						|
  // This is pretty easy.  We're taking the value that we received from
 | 
						|
  // our load from the relocation, sticking it in either RDI (x86-64)
 | 
						|
  // or EAX and doing an indirect call.  The return value will then
 | 
						|
  // be in the normal return register.
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  const X86InstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
 | 
						|
  assert(MI.getOperand(3).isGlobal() && "This should be a global");
 | 
						|
 | 
						|
  // Get a register mask for the lowered call.
 | 
						|
  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
 | 
						|
  // proper register mask.
 | 
						|
  const uint32_t *RegMask =
 | 
						|
      Subtarget.is64Bit() ?
 | 
						|
      Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
 | 
						|
      Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
 | 
						|
  if (Subtarget.is64Bit()) {
 | 
						|
    MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI)
 | 
						|
            .addReg(X86::RIP)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(0)
 | 
						|
            .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
 | 
						|
                              MI.getOperand(3).getTargetFlags())
 | 
						|
            .addReg(0);
 | 
						|
    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
 | 
						|
    addDirectMem(MIB, X86::RDI);
 | 
						|
    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
 | 
						|
  } else if (!isPositionIndependent()) {
 | 
						|
    MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
 | 
						|
            .addReg(0)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(0)
 | 
						|
            .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
 | 
						|
                              MI.getOperand(3).getTargetFlags())
 | 
						|
            .addReg(0);
 | 
						|
    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
 | 
						|
    addDirectMem(MIB, X86::EAX);
 | 
						|
    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
 | 
						|
  } else {
 | 
						|
    MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
 | 
						|
            .addReg(TII->getGlobalBaseReg(F))
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(0)
 | 
						|
            .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
 | 
						|
                              MI.getOperand(3).getTargetFlags())
 | 
						|
            .addReg(0);
 | 
						|
    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
 | 
						|
    addDirectMem(MIB, X86::EAX);
 | 
						|
    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
 | 
						|
  }
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
 | 
						|
                                    MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  MachineFunction::iterator I = ++MBB->getIterator();
 | 
						|
 | 
						|
  // Memory Reference
 | 
						|
  MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
 | 
						|
  MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
 | 
						|
 | 
						|
  unsigned DstReg;
 | 
						|
  unsigned MemOpndSlot = 0;
 | 
						|
 | 
						|
  unsigned CurOp = 0;
 | 
						|
 | 
						|
  DstReg = MI.getOperand(CurOp++).getReg();
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | 
						|
  assert(RC->hasType(MVT::i32) && "Invalid destination!");
 | 
						|
  unsigned mainDstReg = MRI.createVirtualRegister(RC);
 | 
						|
  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
 | 
						|
 | 
						|
  MemOpndSlot = CurOp;
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
 | 
						|
  // For v = setjmp(buf), we generate
 | 
						|
  //
 | 
						|
  // thisMBB:
 | 
						|
  //  buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
 | 
						|
  //  SjLjSetup restoreMBB
 | 
						|
  //
 | 
						|
  // mainMBB:
 | 
						|
  //  v_main = 0
 | 
						|
  //
 | 
						|
  // sinkMBB:
 | 
						|
  //  v = phi(main, restore)
 | 
						|
  //
 | 
						|
  // restoreMBB:
 | 
						|
  //  if base pointer being used, load it from frame
 | 
						|
  //  v_restore = 1
 | 
						|
 | 
						|
  MachineBasicBlock *thisMBB = MBB;
 | 
						|
  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MF->insert(I, mainMBB);
 | 
						|
  MF->insert(I, sinkMBB);
 | 
						|
  MF->push_back(restoreMBB);
 | 
						|
  restoreMBB->setHasAddressTaken();
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
  sinkMBB->splice(sinkMBB->begin(), MBB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  // thisMBB:
 | 
						|
  unsigned PtrStoreOpc = 0;
 | 
						|
  unsigned LabelReg = 0;
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
 | 
						|
                     !isPositionIndependent();
 | 
						|
 | 
						|
  // Prepare IP either in reg or imm.
 | 
						|
  if (!UseImmLabel) {
 | 
						|
    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
 | 
						|
    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
 | 
						|
    LabelReg = MRI.createVirtualRegister(PtrRC);
 | 
						|
    if (Subtarget.is64Bit()) {
 | 
						|
      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
 | 
						|
              .addReg(X86::RIP)
 | 
						|
              .addImm(0)
 | 
						|
              .addReg(0)
 | 
						|
              .addMBB(restoreMBB)
 | 
						|
              .addReg(0);
 | 
						|
    } else {
 | 
						|
      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
 | 
						|
      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
 | 
						|
              .addReg(XII->getGlobalBaseReg(MF))
 | 
						|
              .addImm(0)
 | 
						|
              .addReg(0)
 | 
						|
              .addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
 | 
						|
              .addReg(0);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
 | 
						|
  // Store IP
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
 | 
						|
  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
 | 
						|
    if (i == X86::AddrDisp)
 | 
						|
      MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset);
 | 
						|
    else
 | 
						|
      MIB.addOperand(MI.getOperand(MemOpndSlot + i));
 | 
						|
  }
 | 
						|
  if (!UseImmLabel)
 | 
						|
    MIB.addReg(LabelReg);
 | 
						|
  else
 | 
						|
    MIB.addMBB(restoreMBB);
 | 
						|
  MIB.setMemRefs(MMOBegin, MMOEnd);
 | 
						|
  // Setup
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
 | 
						|
          .addMBB(restoreMBB);
 | 
						|
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  MIB.addRegMask(RegInfo->getNoPreservedMask());
 | 
						|
  thisMBB->addSuccessor(mainMBB);
 | 
						|
  thisMBB->addSuccessor(restoreMBB);
 | 
						|
 | 
						|
  // mainMBB:
 | 
						|
  //  EAX = 0
 | 
						|
  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
 | 
						|
  mainMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // sinkMBB:
 | 
						|
  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | 
						|
          TII->get(X86::PHI), DstReg)
 | 
						|
    .addReg(mainDstReg).addMBB(mainMBB)
 | 
						|
    .addReg(restoreDstReg).addMBB(restoreMBB);
 | 
						|
 | 
						|
  // restoreMBB:
 | 
						|
  if (RegInfo->hasBasePointer(*MF)) {
 | 
						|
    const bool Uses64BitFramePtr =
 | 
						|
        Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
 | 
						|
    X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
 | 
						|
    X86FI->setRestoreBasePointer(MF);
 | 
						|
    unsigned FramePtr = RegInfo->getFrameRegister(*MF);
 | 
						|
    unsigned BasePtr = RegInfo->getBaseRegister();
 | 
						|
    unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
 | 
						|
    addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
 | 
						|
                 FramePtr, true, X86FI->getRestoreBasePointerOffset())
 | 
						|
      .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
  }
 | 
						|
  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
 | 
						|
  BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
 | 
						|
  restoreMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return sinkMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
 | 
						|
                                     MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  // Memory Reference
 | 
						|
  MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
 | 
						|
  MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
 | 
						|
  unsigned Tmp = MRI.createVirtualRegister(RC);
 | 
						|
  // Since FP is only updated here but NOT referenced, it's treated as GPR.
 | 
						|
  const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
 | 
						|
  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
 | 
						|
  unsigned SP = RegInfo->getStackRegister();
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  const int64_t SPOffset = 2 * PVT.getStoreSize();
 | 
						|
 | 
						|
  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
 | 
						|
  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
 | 
						|
 | 
						|
  // Reload FP
 | 
						|
  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
 | 
						|
  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
 | 
						|
    MIB.addOperand(MI.getOperand(i));
 | 
						|
  MIB.setMemRefs(MMOBegin, MMOEnd);
 | 
						|
  // Reload IP
 | 
						|
  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
 | 
						|
  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
 | 
						|
    if (i == X86::AddrDisp)
 | 
						|
      MIB.addDisp(MI.getOperand(i), LabelOffset);
 | 
						|
    else
 | 
						|
      MIB.addOperand(MI.getOperand(i));
 | 
						|
  }
 | 
						|
  MIB.setMemRefs(MMOBegin, MMOEnd);
 | 
						|
  // Reload SP
 | 
						|
  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
 | 
						|
  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
 | 
						|
    if (i == X86::AddrDisp)
 | 
						|
      MIB.addDisp(MI.getOperand(i), SPOffset);
 | 
						|
    else
 | 
						|
      MIB.addOperand(MI.getOperand(i));
 | 
						|
  }
 | 
						|
  MIB.setMemRefs(MMOBegin, MMOEnd);
 | 
						|
  // Jump
 | 
						|
  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return MBB;
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
 | 
						|
                                               MachineBasicBlock *MBB,
 | 
						|
                                               MachineBasicBlock *DispatchBB,
 | 
						|
                                               int FI) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
 | 
						|
 | 
						|
  unsigned Op = 0;
 | 
						|
  unsigned VR = 0;
 | 
						|
 | 
						|
  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
 | 
						|
                     !isPositionIndependent();
 | 
						|
 | 
						|
  if (UseImmLabel) {
 | 
						|
    Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
 | 
						|
  } else {
 | 
						|
    const TargetRegisterClass *TRC =
 | 
						|
        (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
 | 
						|
    VR = MRI->createVirtualRegister(TRC);
 | 
						|
    Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
 | 
						|
 | 
						|
    /* const X86InstrInfo *XII = static_cast<const X86InstrInfo *>(TII); */
 | 
						|
 | 
						|
    if (Subtarget.is64Bit())
 | 
						|
      BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR)
 | 
						|
          .addReg(X86::RIP)
 | 
						|
          .addImm(1)
 | 
						|
          .addReg(0)
 | 
						|
          .addMBB(DispatchBB)
 | 
						|
          .addReg(0);
 | 
						|
    else
 | 
						|
      BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR)
 | 
						|
          .addReg(0) /* XII->getGlobalBaseReg(MF) */
 | 
						|
          .addImm(1)
 | 
						|
          .addReg(0)
 | 
						|
          .addMBB(DispatchBB, Subtarget.classifyBlockAddressReference())
 | 
						|
          .addReg(0);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op));
 | 
						|
  addFrameReference(MIB, FI, 36);
 | 
						|
  if (UseImmLabel)
 | 
						|
    MIB.addMBB(DispatchBB);
 | 
						|
  else
 | 
						|
    MIB.addReg(VR);
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
 | 
						|
                                         MachineBasicBlock *BB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  int FI = MFI.getFunctionContextIndex();
 | 
						|
 | 
						|
  // Get a mapping of the call site numbers to all of the landing pads they're
 | 
						|
  // associated with.
 | 
						|
  DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
 | 
						|
  unsigned MaxCSNum = 0;
 | 
						|
  for (auto &MBB : *MF) {
 | 
						|
    if (!MBB.isEHPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    MCSymbol *Sym = nullptr;
 | 
						|
    for (const auto &MI : MBB) {
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(MI.isEHLabel() && "expected EH_LABEL");
 | 
						|
      Sym = MI.getOperand(0).getMCSymbol();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MF->hasCallSiteLandingPad(Sym))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
 | 
						|
      CallSiteNumToLPad[CSI].push_back(&MBB);
 | 
						|
      MaxCSNum = std::max(MaxCSNum, CSI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get an ordered list of the machine basic blocks for the jump table.
 | 
						|
  std::vector<MachineBasicBlock *> LPadList;
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
 | 
						|
  LPadList.reserve(CallSiteNumToLPad.size());
 | 
						|
 | 
						|
  for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
 | 
						|
    for (auto &LP : CallSiteNumToLPad[CSI]) {
 | 
						|
      LPadList.push_back(LP);
 | 
						|
      InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!LPadList.empty() &&
 | 
						|
         "No landing pad destinations for the dispatch jump table!");
 | 
						|
 | 
						|
  // Create the MBBs for the dispatch code.
 | 
						|
 | 
						|
  // Shove the dispatch's address into the return slot in the function context.
 | 
						|
  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
 | 
						|
  DispatchBB->setIsEHPad(true);
 | 
						|
 | 
						|
  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
 | 
						|
  BuildMI(TrapBB, DL, TII->get(X86::TRAP));
 | 
						|
  DispatchBB->addSuccessor(TrapBB);
 | 
						|
 | 
						|
  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
 | 
						|
  DispatchBB->addSuccessor(DispContBB);
 | 
						|
 | 
						|
  // Insert MBBs.
 | 
						|
  MF->push_back(DispatchBB);
 | 
						|
  MF->push_back(DispContBB);
 | 
						|
  MF->push_back(TrapBB);
 | 
						|
 | 
						|
  // Insert code into the entry block that creates and registers the function
 | 
						|
  // context.
 | 
						|
  SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI);
 | 
						|
 | 
						|
  // Create the jump table and associated information
 | 
						|
  MachineJumpTableInfo *JTI =
 | 
						|
      MF->getOrCreateJumpTableInfo(getJumpTableEncoding());
 | 
						|
  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
 | 
						|
 | 
						|
  const X86InstrInfo *XII = static_cast<const X86InstrInfo *>(TII);
 | 
						|
  const X86RegisterInfo &RI = XII->getRegisterInfo();
 | 
						|
 | 
						|
  // Add a register mask with no preserved registers.  This results in all
 | 
						|
  // registers being marked as clobbered.
 | 
						|
  if (RI.hasBasePointer(*MF)) {
 | 
						|
    const bool FPIs64Bit =
 | 
						|
        Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
 | 
						|
    X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>();
 | 
						|
    MFI->setRestoreBasePointer(MF);
 | 
						|
 | 
						|
    unsigned FP = RI.getFrameRegister(*MF);
 | 
						|
    unsigned BP = RI.getBaseRegister();
 | 
						|
    unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm;
 | 
						|
    addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true,
 | 
						|
                 MFI->getRestoreBasePointerOffset())
 | 
						|
        .addRegMask(RI.getNoPreservedMask());
 | 
						|
  } else {
 | 
						|
    BuildMI(DispatchBB, DL, TII->get(X86::NOOP))
 | 
						|
        .addRegMask(RI.getNoPreservedMask());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned IReg = MRI->createVirtualRegister(&X86::GR32RegClass);
 | 
						|
  addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI,
 | 
						|
                    4);
 | 
						|
  BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri))
 | 
						|
      .addReg(IReg)
 | 
						|
      .addImm(LPadList.size());
 | 
						|
  BuildMI(DispatchBB, DL, TII->get(X86::JA_1)).addMBB(TrapBB);
 | 
						|
 | 
						|
  unsigned JReg = MRI->createVirtualRegister(&X86::GR32RegClass);
 | 
						|
  BuildMI(DispContBB, DL, TII->get(X86::SUB32ri), JReg)
 | 
						|
      .addReg(IReg)
 | 
						|
      .addImm(1);
 | 
						|
  BuildMI(DispContBB, DL,
 | 
						|
          TII->get(Subtarget.is64Bit() ? X86::JMP64m : X86::JMP32m))
 | 
						|
      .addReg(0)
 | 
						|
      .addImm(Subtarget.is64Bit() ? 8 : 4)
 | 
						|
      .addReg(JReg)
 | 
						|
      .addJumpTableIndex(MJTI)
 | 
						|
      .addReg(0);
 | 
						|
 | 
						|
  // Add the jump table entries as successors to the MBB.
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
 | 
						|
  for (auto &LP : LPadList)
 | 
						|
    if (SeenMBBs.insert(LP).second)
 | 
						|
      DispContBB->addSuccessor(LP);
 | 
						|
 | 
						|
  // N.B. the order the invoke BBs are processed in doesn't matter here.
 | 
						|
  SmallVector<MachineBasicBlock *, 64> MBBLPads;
 | 
						|
  const MCPhysReg *SavedRegs =
 | 
						|
      Subtarget.getRegisterInfo()->getCalleeSavedRegs(MF);
 | 
						|
  for (MachineBasicBlock *MBB : InvokeBBs) {
 | 
						|
    // Remove the landing pad successor from the invoke block and replace it
 | 
						|
    // with the new dispatch block.
 | 
						|
    // Keep a copy of Successors since it's modified inside the loop.
 | 
						|
    SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
 | 
						|
                                                   MBB->succ_rend());
 | 
						|
    // FIXME: Avoid quadratic complexity.
 | 
						|
    for (auto MBBS : Successors) {
 | 
						|
      if (MBBS->isEHPad()) {
 | 
						|
        MBB->removeSuccessor(MBBS);
 | 
						|
        MBBLPads.push_back(MBBS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MBB->addSuccessor(DispatchBB);
 | 
						|
 | 
						|
    // Find the invoke call and mark all of the callee-saved registers as
 | 
						|
    // 'implicit defined' so that they're spilled.  This prevents code from
 | 
						|
    // moving instructions to before the EH block, where they will never be
 | 
						|
    // executed.
 | 
						|
    for (auto &II : reverse(*MBB)) {
 | 
						|
      if (!II.isCall())
 | 
						|
        continue;
 | 
						|
 | 
						|
      DenseMap<unsigned, bool> DefRegs;
 | 
						|
      for (auto &MOp : II.operands())
 | 
						|
        if (MOp.isReg())
 | 
						|
          DefRegs[MOp.getReg()] = true;
 | 
						|
 | 
						|
      MachineInstrBuilder MIB(*MF, &II);
 | 
						|
      for (unsigned RI = 0; SavedRegs[RI]; ++RI) {
 | 
						|
        unsigned Reg = SavedRegs[RI];
 | 
						|
        if (!DefRegs[Reg])
 | 
						|
          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark all former landing pads as non-landing pads.  The dispatch is the only
 | 
						|
  // landing pad now.
 | 
						|
  for (auto &LP : MBBLPads)
 | 
						|
    LP->setIsEHPad(false);
 | 
						|
 | 
						|
  // The instruction is gone now.
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | 
						|
                                               MachineBasicBlock *BB) const {
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unexpected instr type to insert");
 | 
						|
  case X86::TAILJMPd64:
 | 
						|
  case X86::TAILJMPr64:
 | 
						|
  case X86::TAILJMPm64:
 | 
						|
  case X86::TAILJMPr64_REX:
 | 
						|
  case X86::TAILJMPm64_REX:
 | 
						|
    llvm_unreachable("TAILJMP64 would not be touched here.");
 | 
						|
  case X86::TCRETURNdi64:
 | 
						|
  case X86::TCRETURNri64:
 | 
						|
  case X86::TCRETURNmi64:
 | 
						|
    return BB;
 | 
						|
  case X86::TLS_addr32:
 | 
						|
  case X86::TLS_addr64:
 | 
						|
  case X86::TLS_base_addr32:
 | 
						|
  case X86::TLS_base_addr64:
 | 
						|
    return EmitLoweredTLSAddr(MI, BB);
 | 
						|
  case X86::CATCHRET:
 | 
						|
    return EmitLoweredCatchRet(MI, BB);
 | 
						|
  case X86::CATCHPAD:
 | 
						|
    return EmitLoweredCatchPad(MI, BB);
 | 
						|
  case X86::SEG_ALLOCA_32:
 | 
						|
  case X86::SEG_ALLOCA_64:
 | 
						|
    return EmitLoweredSegAlloca(MI, BB);
 | 
						|
  case X86::TLSCall_32:
 | 
						|
  case X86::TLSCall_64:
 | 
						|
    return EmitLoweredTLSCall(MI, BB);
 | 
						|
  case X86::CMOV_FR32:
 | 
						|
  case X86::CMOV_FR64:
 | 
						|
  case X86::CMOV_FR128:
 | 
						|
  case X86::CMOV_GR8:
 | 
						|
  case X86::CMOV_GR16:
 | 
						|
  case X86::CMOV_GR32:
 | 
						|
  case X86::CMOV_RFP32:
 | 
						|
  case X86::CMOV_RFP64:
 | 
						|
  case X86::CMOV_RFP80:
 | 
						|
  case X86::CMOV_V2F64:
 | 
						|
  case X86::CMOV_V2I64:
 | 
						|
  case X86::CMOV_V4F32:
 | 
						|
  case X86::CMOV_V4F64:
 | 
						|
  case X86::CMOV_V4I64:
 | 
						|
  case X86::CMOV_V16F32:
 | 
						|
  case X86::CMOV_V8F32:
 | 
						|
  case X86::CMOV_V8F64:
 | 
						|
  case X86::CMOV_V8I64:
 | 
						|
  case X86::CMOV_V8I1:
 | 
						|
  case X86::CMOV_V16I1:
 | 
						|
  case X86::CMOV_V32I1:
 | 
						|
  case X86::CMOV_V64I1:
 | 
						|
    return EmitLoweredSelect(MI, BB);
 | 
						|
 | 
						|
  case X86::RDFLAGS32:
 | 
						|
  case X86::RDFLAGS64: {
 | 
						|
    unsigned PushF =
 | 
						|
        MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
 | 
						|
    unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
 | 
						|
    MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
 | 
						|
    // Permit reads of the FLAGS register without it being defined.
 | 
						|
    // This intrinsic exists to read external processor state in flags, such as
 | 
						|
    // the trap flag, interrupt flag, and direction flag, none of which are
 | 
						|
    // modeled by the backend.
 | 
						|
    Push->getOperand(2).setIsUndef();
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
 | 
						|
 | 
						|
    MI.eraseFromParent(); // The pseudo is gone now.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86::WRFLAGS32:
 | 
						|
  case X86::WRFLAGS64: {
 | 
						|
    unsigned Push =
 | 
						|
        MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
 | 
						|
    unsigned PopF =
 | 
						|
        MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg());
 | 
						|
    BuildMI(*BB, MI, DL, TII->get(PopF));
 | 
						|
 | 
						|
    MI.eraseFromParent(); // The pseudo is gone now.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86::RELEASE_FADD32mr:
 | 
						|
  case X86::RELEASE_FADD64mr:
 | 
						|
    return EmitLoweredAtomicFP(MI, BB);
 | 
						|
 | 
						|
  case X86::FP32_TO_INT16_IN_MEM:
 | 
						|
  case X86::FP32_TO_INT32_IN_MEM:
 | 
						|
  case X86::FP32_TO_INT64_IN_MEM:
 | 
						|
  case X86::FP64_TO_INT16_IN_MEM:
 | 
						|
  case X86::FP64_TO_INT32_IN_MEM:
 | 
						|
  case X86::FP64_TO_INT64_IN_MEM:
 | 
						|
  case X86::FP80_TO_INT16_IN_MEM:
 | 
						|
  case X86::FP80_TO_INT32_IN_MEM:
 | 
						|
  case X86::FP80_TO_INT64_IN_MEM: {
 | 
						|
    // Change the floating point control register to use "round towards zero"
 | 
						|
    // mode when truncating to an integer value.
 | 
						|
    int CWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL,
 | 
						|
                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
 | 
						|
 | 
						|
    // Load the old value of the high byte of the control word...
 | 
						|
    unsigned OldCW =
 | 
						|
      MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
 | 
						|
                      CWFrameIdx);
 | 
						|
 | 
						|
    // Set the high part to be round to zero...
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
 | 
						|
      .addImm(0xC7F);
 | 
						|
 | 
						|
    // Reload the modified control word now...
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL,
 | 
						|
                              TII->get(X86::FLDCW16m)), CWFrameIdx);
 | 
						|
 | 
						|
    // Restore the memory image of control word to original value
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
 | 
						|
      .addReg(OldCW);
 | 
						|
 | 
						|
    // Get the X86 opcode to use.
 | 
						|
    unsigned Opc;
 | 
						|
    switch (MI.getOpcode()) {
 | 
						|
    default: llvm_unreachable("illegal opcode!");
 | 
						|
    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
 | 
						|
    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
 | 
						|
    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
 | 
						|
    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
 | 
						|
    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
 | 
						|
    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
 | 
						|
    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
 | 
						|
    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
 | 
						|
    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
 | 
						|
    }
 | 
						|
 | 
						|
    X86AddressMode AM = getAddressFromInstr(&MI, 0);
 | 
						|
    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
 | 
						|
        .addReg(MI.getOperand(X86::AddrNumOperands).getReg());
 | 
						|
 | 
						|
    // Reload the original control word now.
 | 
						|
    addFrameReference(BuildMI(*BB, MI, DL,
 | 
						|
                              TII->get(X86::FLDCW16m)), CWFrameIdx);
 | 
						|
 | 
						|
    MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
    // String/text processing lowering.
 | 
						|
  case X86::PCMPISTRM128REG:
 | 
						|
  case X86::VPCMPISTRM128REG:
 | 
						|
  case X86::PCMPISTRM128MEM:
 | 
						|
  case X86::VPCMPISTRM128MEM:
 | 
						|
  case X86::PCMPESTRM128REG:
 | 
						|
  case X86::VPCMPESTRM128REG:
 | 
						|
  case X86::PCMPESTRM128MEM:
 | 
						|
  case X86::VPCMPESTRM128MEM:
 | 
						|
    assert(Subtarget.hasSSE42() &&
 | 
						|
           "Target must have SSE4.2 or AVX features enabled");
 | 
						|
    return emitPCMPSTRM(MI, BB, Subtarget.getInstrInfo());
 | 
						|
 | 
						|
  // String/text processing lowering.
 | 
						|
  case X86::PCMPISTRIREG:
 | 
						|
  case X86::VPCMPISTRIREG:
 | 
						|
  case X86::PCMPISTRIMEM:
 | 
						|
  case X86::VPCMPISTRIMEM:
 | 
						|
  case X86::PCMPESTRIREG:
 | 
						|
  case X86::VPCMPESTRIREG:
 | 
						|
  case X86::PCMPESTRIMEM:
 | 
						|
  case X86::VPCMPESTRIMEM:
 | 
						|
    assert(Subtarget.hasSSE42() &&
 | 
						|
           "Target must have SSE4.2 or AVX features enabled");
 | 
						|
    return emitPCMPSTRI(MI, BB, Subtarget.getInstrInfo());
 | 
						|
 | 
						|
  // Thread synchronization.
 | 
						|
  case X86::MONITOR:
 | 
						|
    return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr);
 | 
						|
  case X86::MONITORX:
 | 
						|
    return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr);
 | 
						|
  // PKU feature
 | 
						|
  case X86::WRPKRU:
 | 
						|
    return emitWRPKRU(MI, BB, Subtarget);
 | 
						|
  case X86::RDPKRU:
 | 
						|
    return emitRDPKRU(MI, BB, Subtarget);
 | 
						|
  // xbegin
 | 
						|
  case X86::XBEGIN:
 | 
						|
    return emitXBegin(MI, BB, Subtarget.getInstrInfo());
 | 
						|
 | 
						|
  case X86::VASTART_SAVE_XMM_REGS:
 | 
						|
    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
 | 
						|
 | 
						|
  case X86::VAARG_64:
 | 
						|
    return EmitVAARG64WithCustomInserter(MI, BB);
 | 
						|
 | 
						|
  case X86::EH_SjLj_SetJmp32:
 | 
						|
  case X86::EH_SjLj_SetJmp64:
 | 
						|
    return emitEHSjLjSetJmp(MI, BB);
 | 
						|
 | 
						|
  case X86::EH_SjLj_LongJmp32:
 | 
						|
  case X86::EH_SjLj_LongJmp64:
 | 
						|
    return emitEHSjLjLongJmp(MI, BB);
 | 
						|
 | 
						|
  case X86::Int_eh_sjlj_setup_dispatch:
 | 
						|
    return EmitSjLjDispatchBlock(MI, BB);
 | 
						|
 | 
						|
  case TargetOpcode::STATEPOINT:
 | 
						|
    // As an implementation detail, STATEPOINT shares the STACKMAP format at
 | 
						|
    // this point in the process.  We diverge later.
 | 
						|
    return emitPatchPoint(MI, BB);
 | 
						|
 | 
						|
  case TargetOpcode::STACKMAP:
 | 
						|
  case TargetOpcode::PATCHPOINT:
 | 
						|
    return emitPatchPoint(MI, BB);
 | 
						|
 | 
						|
  case X86::LCMPXCHG8B: {
 | 
						|
    const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
    // In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B
 | 
						|
    // requires a memory operand. If it happens that current architecture is
 | 
						|
    // i686 and for current function we need a base pointer
 | 
						|
    // - which is ESI for i686 - register allocator would not be able to
 | 
						|
    // allocate registers for an address in form of X(%reg, %reg, Y)
 | 
						|
    // - there never would be enough unreserved registers during regalloc
 | 
						|
    // (without the need for base ptr the only option would be X(%edi, %esi, Y).
 | 
						|
    // We are giving a hand to register allocator by precomputing the address in
 | 
						|
    // a new vreg using LEA.
 | 
						|
 | 
						|
    // If it is not i686 or there is no base pointer - nothing to do here.
 | 
						|
    if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF))
 | 
						|
      return BB;
 | 
						|
 | 
						|
    // Even though this code does not necessarily needs the base pointer to
 | 
						|
    // be ESI, we check for that. The reason: if this assert fails, there are
 | 
						|
    // some changes happened in the compiler base pointer handling, which most
 | 
						|
    // probably have to be addressed somehow here.
 | 
						|
    assert(TRI->getBaseRegister() == X86::ESI &&
 | 
						|
           "LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a "
 | 
						|
           "base pointer in mind");
 | 
						|
 | 
						|
    MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
    MVT SPTy = getPointerTy(MF->getDataLayout());
 | 
						|
    const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
 | 
						|
    unsigned computedAddrVReg = MRI.createVirtualRegister(AddrRegClass);
 | 
						|
 | 
						|
    X86AddressMode AM = getAddressFromInstr(&MI, 0);
 | 
						|
    // Regalloc does not need any help when the memory operand of CMPXCHG8B
 | 
						|
    // does not use index register.
 | 
						|
    if (AM.IndexReg == X86::NoRegister)
 | 
						|
      return BB;
 | 
						|
 | 
						|
    // After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its
 | 
						|
    // four operand definitions that are E[ABCD] registers. We skip them and
 | 
						|
    // then insert the LEA.
 | 
						|
    MachineBasicBlock::iterator MBBI(MI);
 | 
						|
    while (MBBI->definesRegister(X86::EAX) || MBBI->definesRegister(X86::EBX) ||
 | 
						|
           MBBI->definesRegister(X86::ECX) || MBBI->definesRegister(X86::EDX))
 | 
						|
      --MBBI;
 | 
						|
    addFullAddress(
 | 
						|
        BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM);
 | 
						|
 | 
						|
    setDirectAddressInInstr(&MI, 0, computedAddrVReg);
 | 
						|
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
  case X86::LCMPXCHG16B:
 | 
						|
    return BB;
 | 
						|
  case X86::LCMPXCHG8B_SAVE_EBX:
 | 
						|
  case X86::LCMPXCHG16B_SAVE_RBX: {
 | 
						|
    unsigned BasePtr =
 | 
						|
        MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
 | 
						|
    if (!BB->isLiveIn(BasePtr))
 | 
						|
      BB->addLiveIn(BasePtr);
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           X86 Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | 
						|
                                                      APInt &KnownZero,
 | 
						|
                                                      APInt &KnownOne,
 | 
						|
                                                      const SelectionDAG &DAG,
 | 
						|
                                                      unsigned Depth) const {
 | 
						|
  unsigned BitWidth = KnownZero.getBitWidth();
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  assert((Opc >= ISD::BUILTIN_OP_END ||
 | 
						|
          Opc == ISD::INTRINSIC_WO_CHAIN ||
 | 
						|
          Opc == ISD::INTRINSIC_W_CHAIN ||
 | 
						|
          Opc == ISD::INTRINSIC_VOID) &&
 | 
						|
         "Should use MaskedValueIsZero if you don't know whether Op"
 | 
						|
         " is a target node!");
 | 
						|
 | 
						|
  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
 | 
						|
  switch (Opc) {
 | 
						|
  default: break;
 | 
						|
  case X86ISD::ADD:
 | 
						|
  case X86ISD::SUB:
 | 
						|
  case X86ISD::ADC:
 | 
						|
  case X86ISD::SBB:
 | 
						|
  case X86ISD::SMUL:
 | 
						|
  case X86ISD::UMUL:
 | 
						|
  case X86ISD::INC:
 | 
						|
  case X86ISD::DEC:
 | 
						|
  case X86ISD::OR:
 | 
						|
  case X86ISD::XOR:
 | 
						|
  case X86ISD::AND:
 | 
						|
    // These nodes' second result is a boolean.
 | 
						|
    if (Op.getResNo() == 0)
 | 
						|
      break;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case X86ISD::SETCC:
 | 
						|
    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | 
						|
    break;
 | 
						|
  case X86ISD::MOVMSK: {
 | 
						|
    unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
 | 
						|
    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86ISD::VZEXT: {
 | 
						|
    SDValue N0 = Op.getOperand(0);
 | 
						|
    unsigned NumElts = Op.getValueType().getVectorNumElements();
 | 
						|
    unsigned InNumElts = N0.getValueType().getVectorNumElements();
 | 
						|
    unsigned InBitWidth = N0.getValueType().getScalarSizeInBits();
 | 
						|
 | 
						|
    KnownZero = KnownOne = APInt(InBitWidth, 0);
 | 
						|
    APInt DemandedElts = APInt::getLowBitsSet(InNumElts, NumElts);
 | 
						|
    DAG.computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
 | 
						|
    KnownOne = KnownOne.zext(BitWidth);
 | 
						|
    KnownZero = KnownZero.zext(BitWidth);
 | 
						|
    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - InBitWidth);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
 | 
						|
    SDValue Op, const SelectionDAG &DAG, unsigned Depth) const {
 | 
						|
  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
 | 
						|
  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
 | 
						|
    return Op.getScalarValueSizeInBits();
 | 
						|
 | 
						|
  if (Op.getOpcode() == X86ISD::VSEXT) {
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    EVT SrcVT = Op.getOperand(0).getValueType();
 | 
						|
    unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
 | 
						|
    Tmp += VT.getScalarSizeInBits() - SrcVT.getScalarSizeInBits();
 | 
						|
    return Tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fallback case.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true (and the GlobalValue and the offset) if the node is a
 | 
						|
/// GlobalAddress + offset.
 | 
						|
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
 | 
						|
                                       const GlobalValue* &GA,
 | 
						|
                                       int64_t &Offset) const {
 | 
						|
  if (N->getOpcode() == X86ISD::Wrapper) {
 | 
						|
    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
 | 
						|
      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
 | 
						|
      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::isGAPlusOffset(N, GA, Offset);
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to match a combined shuffle mask against supported unary shuffle
 | 
						|
// instructions.
 | 
						|
// TODO: Investigate sharing more of this with shuffle lowering.
 | 
						|
static bool matchUnaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
 | 
						|
                                    bool FloatDomain,
 | 
						|
                                    const X86Subtarget &Subtarget,
 | 
						|
                                    unsigned &Shuffle, MVT &SrcVT, MVT &DstVT) {
 | 
						|
  unsigned NumMaskElts = Mask.size();
 | 
						|
  unsigned MaskEltSize = MaskVT.getScalarSizeInBits();
 | 
						|
 | 
						|
  // Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS).
 | 
						|
  if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) &&
 | 
						|
      isUndefOrEqual(Mask[0], 0) &&
 | 
						|
      isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) {
 | 
						|
    Shuffle = X86ISD::VZEXT_MOVL;
 | 
						|
    SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Match against a VZEXT instruction.
 | 
						|
  // TODO: Add 256/512-bit vector support.
 | 
						|
  if (!FloatDomain && MaskVT.is128BitVector() && Subtarget.hasSSE41()) {
 | 
						|
    unsigned MaxScale = 64 / MaskEltSize;
 | 
						|
    for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) {
 | 
						|
      bool Match = true;
 | 
						|
      unsigned NumDstElts = NumMaskElts / Scale;
 | 
						|
      for (unsigned i = 0; i != NumDstElts && Match; ++i) {
 | 
						|
        Match &= isUndefOrEqual(Mask[i * Scale], (int)i);
 | 
						|
        Match &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1);
 | 
						|
      }
 | 
						|
      if (Match) {
 | 
						|
        SrcVT = MaskVT;
 | 
						|
        DstVT = MVT::getIntegerVT(Scale * MaskEltSize);
 | 
						|
        DstVT = MVT::getVectorVT(DstVT, NumDstElts);
 | 
						|
        Shuffle = X86ISD::VZEXT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we have SSE3 which will let us use MOVDDUP etc. The
 | 
						|
  // instructions are no slower than UNPCKLPD but has the option to
 | 
						|
  // fold the input operand into even an unaligned memory load.
 | 
						|
  if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && FloatDomain) {
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0})) {
 | 
						|
      Shuffle = X86ISD::MOVDDUP;
 | 
						|
      SrcVT = DstVT = MVT::v2f64;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
 | 
						|
      Shuffle = X86ISD::MOVSLDUP;
 | 
						|
      SrcVT = DstVT = MVT::v4f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) {
 | 
						|
      Shuffle = X86ISD::MOVSHDUP;
 | 
						|
      SrcVT = DstVT = MVT::v4f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaskVT.is256BitVector() && FloatDomain) {
 | 
						|
    assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
 | 
						|
      Shuffle = X86ISD::MOVDDUP;
 | 
						|
      SrcVT = DstVT = MVT::v4f64;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
 | 
						|
      Shuffle = X86ISD::MOVSLDUP;
 | 
						|
      SrcVT = DstVT = MVT::v8f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) {
 | 
						|
      Shuffle = X86ISD::MOVSHDUP;
 | 
						|
      SrcVT = DstVT = MVT::v8f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaskVT.is512BitVector() && FloatDomain) {
 | 
						|
    assert(Subtarget.hasAVX512() &&
 | 
						|
           "AVX512 required for 512-bit vector shuffles");
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
 | 
						|
      Shuffle = X86ISD::MOVDDUP;
 | 
						|
      SrcVT = DstVT = MVT::v8f64;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(
 | 
						|
            Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
 | 
						|
      Shuffle = X86ISD::MOVSLDUP;
 | 
						|
      SrcVT = DstVT = MVT::v16f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(
 | 
						|
            Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
 | 
						|
      Shuffle = X86ISD::MOVSHDUP;
 | 
						|
      SrcVT = DstVT = MVT::v16f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to match against broadcast-from-vector.
 | 
						|
  if (Subtarget.hasAVX2()) {
 | 
						|
    SmallVector<int, 64> BroadcastMask(NumMaskElts, 0);
 | 
						|
    if (isTargetShuffleEquivalent(Mask, BroadcastMask)) {
 | 
						|
      SrcVT = DstVT = MaskVT;
 | 
						|
      Shuffle = X86ISD::VBROADCAST;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to match a combined shuffle mask against supported unary immediate
 | 
						|
// permute instructions.
 | 
						|
// TODO: Investigate sharing more of this with shuffle lowering.
 | 
						|
static bool matchUnaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
 | 
						|
                                           bool FloatDomain,
 | 
						|
                                           const X86Subtarget &Subtarget,
 | 
						|
                                           unsigned &Shuffle, MVT &ShuffleVT,
 | 
						|
                                           unsigned &PermuteImm) {
 | 
						|
  unsigned NumMaskElts = Mask.size();
 | 
						|
 | 
						|
  bool ContainsZeros = false;
 | 
						|
  SmallBitVector Zeroable(NumMaskElts, false);
 | 
						|
  for (unsigned i = 0; i != NumMaskElts; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    Zeroable[i] = isUndefOrZero(M);
 | 
						|
    ContainsZeros |= (M == SM_SentinelZero);
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to match against byte/bit shifts.
 | 
						|
  // FIXME: Add 512-bit support.
 | 
						|
  if (!FloatDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
 | 
						|
                       (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
 | 
						|
    int ShiftAmt = matchVectorShuffleAsShift(ShuffleVT, Shuffle,
 | 
						|
                                             MaskVT.getScalarSizeInBits(), Mask,
 | 
						|
                                             0, Zeroable, Subtarget);
 | 
						|
    if (0 < ShiftAmt) {
 | 
						|
      PermuteImm = (unsigned)ShiftAmt;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure we don't contain any zero elements.
 | 
						|
  if (ContainsZeros)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(llvm::all_of(Mask, [&](int M) {
 | 
						|
                        return SM_SentinelUndef <= M && M < (int)NumMaskElts;
 | 
						|
                      }) && "Expected unary shuffle");
 | 
						|
 | 
						|
  unsigned InputSizeInBits = MaskVT.getSizeInBits();
 | 
						|
  unsigned MaskScalarSizeInBits = InputSizeInBits / Mask.size();
 | 
						|
  MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits);
 | 
						|
 | 
						|
  // Handle PSHUFLW/PSHUFHW repeated patterns.
 | 
						|
  if (MaskScalarSizeInBits == 16) {
 | 
						|
    SmallVector<int, 4> RepeatedMask;
 | 
						|
    if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
 | 
						|
      ArrayRef<int> LoMask(Mask.data() + 0, 4);
 | 
						|
      ArrayRef<int> HiMask(Mask.data() + 4, 4);
 | 
						|
 | 
						|
      // PSHUFLW: permute lower 4 elements only.
 | 
						|
      if (isUndefOrInRange(LoMask, 0, 4) &&
 | 
						|
          isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
 | 
						|
        Shuffle = X86ISD::PSHUFLW;
 | 
						|
        ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
 | 
						|
        PermuteImm = getV4X86ShuffleImm(LoMask);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // PSHUFHW: permute upper 4 elements only.
 | 
						|
      if (isUndefOrInRange(HiMask, 4, 8) &&
 | 
						|
          isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
 | 
						|
        // Offset the HiMask so that we can create the shuffle immediate.
 | 
						|
        int OffsetHiMask[4];
 | 
						|
        for (int i = 0; i != 4; ++i)
 | 
						|
          OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4);
 | 
						|
 | 
						|
        Shuffle = X86ISD::PSHUFHW;
 | 
						|
        ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
 | 
						|
        PermuteImm = getV4X86ShuffleImm(OffsetHiMask);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We only support permutation of 32/64 bit elements after this.
 | 
						|
  if (MaskScalarSizeInBits != 32 && MaskScalarSizeInBits != 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we
 | 
						|
  // had to use 2-input SHUFPD/SHUFPS shuffles (not handled here).
 | 
						|
  if (FloatDomain && !Subtarget.hasAVX())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Pre-AVX2 we must use float shuffles on 256-bit vectors.
 | 
						|
  if (MaskVT.is256BitVector() && !Subtarget.hasAVX2())
 | 
						|
    FloatDomain = true;
 | 
						|
 | 
						|
  // Check for lane crossing permutes.
 | 
						|
  if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) {
 | 
						|
    // PERMPD/PERMQ permutes within a 256-bit vector (AVX2+).
 | 
						|
    if (Subtarget.hasAVX2() && MaskVT.is256BitVector() && Mask.size() == 4) {
 | 
						|
      Shuffle = X86ISD::VPERMI;
 | 
						|
      ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
 | 
						|
      PermuteImm = getV4X86ShuffleImm(Mask);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (Subtarget.hasAVX512() && MaskVT.is512BitVector() && Mask.size() == 8) {
 | 
						|
      SmallVector<int, 4> RepeatedMask;
 | 
						|
      if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) {
 | 
						|
        Shuffle = X86ISD::VPERMI;
 | 
						|
        ShuffleVT = (FloatDomain ? MVT::v8f64 : MVT::v8i64);
 | 
						|
        PermuteImm = getV4X86ShuffleImm(RepeatedMask);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // VPERMILPD can permute with a non-repeating shuffle.
 | 
						|
  if (FloatDomain && MaskScalarSizeInBits == 64) {
 | 
						|
    Shuffle = X86ISD::VPERMILPI;
 | 
						|
    ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size());
 | 
						|
    PermuteImm = 0;
 | 
						|
    for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      int M = Mask[i];
 | 
						|
      if (M == SM_SentinelUndef)
 | 
						|
        continue;
 | 
						|
      assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index");
 | 
						|
      PermuteImm |= (M & 1) << i;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need a repeating shuffle mask for VPERMILPS/PSHUFD.
 | 
						|
  SmallVector<int, 4> RepeatedMask;
 | 
						|
  if (!is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Narrow the repeated mask for 32-bit element permutes.
 | 
						|
  SmallVector<int, 4> WordMask = RepeatedMask;
 | 
						|
  if (MaskScalarSizeInBits == 64)
 | 
						|
    scaleShuffleMask(2, RepeatedMask, WordMask);
 | 
						|
 | 
						|
  Shuffle = (FloatDomain ? X86ISD::VPERMILPI : X86ISD::PSHUFD);
 | 
						|
  ShuffleVT = (FloatDomain ? MVT::f32 : MVT::i32);
 | 
						|
  ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32);
 | 
						|
  PermuteImm = getV4X86ShuffleImm(WordMask);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to match a combined unary shuffle mask against supported binary
 | 
						|
// shuffle instructions.
 | 
						|
// TODO: Investigate sharing more of this with shuffle lowering.
 | 
						|
static bool matchBinaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
 | 
						|
                                     bool FloatDomain, SDValue &V1, SDValue &V2,
 | 
						|
                                     const X86Subtarget &Subtarget,
 | 
						|
                                     unsigned &Shuffle, MVT &ShuffleVT,
 | 
						|
                                     bool IsUnary) {
 | 
						|
  unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
 | 
						|
 | 
						|
  if (MaskVT.is128BitVector()) {
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 0}) && FloatDomain) {
 | 
						|
      V2 = V1;
 | 
						|
      Shuffle = X86ISD::MOVLHPS;
 | 
						|
      ShuffleVT = MVT::v4f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {1, 1}) && FloatDomain) {
 | 
						|
      V2 = V1;
 | 
						|
      Shuffle = X86ISD::MOVHLPS;
 | 
						|
      ShuffleVT = MVT::v4f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() &&
 | 
						|
        (FloatDomain || !Subtarget.hasSSE41())) {
 | 
						|
      std::swap(V1, V2);
 | 
						|
      Shuffle = X86ISD::MOVSD;
 | 
						|
      ShuffleVT = MaskVT;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) &&
 | 
						|
        (FloatDomain || !Subtarget.hasSSE41())) {
 | 
						|
      Shuffle = X86ISD::MOVSS;
 | 
						|
      ShuffleVT = MaskVT;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle.
 | 
						|
  if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
 | 
						|
      (MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) ||
 | 
						|
      (MaskVT.is256BitVector() && Subtarget.hasAVX2()) ||
 | 
						|
      (MaskVT.is512BitVector() && Subtarget.hasAVX512())) {
 | 
						|
    MVT LegalVT = MaskVT;
 | 
						|
    if (LegalVT.is256BitVector() && !Subtarget.hasAVX2())
 | 
						|
      LegalVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64);
 | 
						|
 | 
						|
    SmallVector<int, 64> Unpckl, Unpckh;
 | 
						|
    if (IsUnary) {
 | 
						|
      createUnpackShuffleMask(MaskVT, Unpckl, true, true);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckl)) {
 | 
						|
        V2 = V1;
 | 
						|
        Shuffle = X86ISD::UNPCKL;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      createUnpackShuffleMask(MaskVT, Unpckh, false, true);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckh)) {
 | 
						|
        V2 = V1;
 | 
						|
        Shuffle = X86ISD::UNPCKH;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      createUnpackShuffleMask(MaskVT, Unpckl, true, false);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckl)) {
 | 
						|
        Shuffle = X86ISD::UNPCKL;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      createUnpackShuffleMask(MaskVT, Unpckh, false, false);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckh)) {
 | 
						|
        Shuffle = X86ISD::UNPCKH;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      ShuffleVectorSDNode::commuteMask(Unpckl);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckl)) {
 | 
						|
        std::swap(V1, V2);
 | 
						|
        Shuffle = X86ISD::UNPCKL;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      ShuffleVectorSDNode::commuteMask(Unpckh);
 | 
						|
      if (isTargetShuffleEquivalent(Mask, Unpckh)) {
 | 
						|
        std::swap(V1, V2);
 | 
						|
        Shuffle = X86ISD::UNPCKH;
 | 
						|
        ShuffleVT = LegalVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool matchBinaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
 | 
						|
                                            bool FloatDomain,
 | 
						|
                                            SDValue &V1, SDValue &V2,
 | 
						|
                                            SDLoc &DL, SelectionDAG &DAG,
 | 
						|
                                            const X86Subtarget &Subtarget,
 | 
						|
                                            unsigned &Shuffle, MVT &ShuffleVT,
 | 
						|
                                            unsigned &PermuteImm) {
 | 
						|
  unsigned NumMaskElts = Mask.size();
 | 
						|
 | 
						|
  // Attempt to match against PALIGNR byte rotate.
 | 
						|
  if (!FloatDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) ||
 | 
						|
                       (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
 | 
						|
    int ByteRotation = matchVectorShuffleAsByteRotate(MaskVT, V1, V2, Mask);
 | 
						|
    if (0 < ByteRotation) {
 | 
						|
      Shuffle = X86ISD::PALIGNR;
 | 
						|
      ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8);
 | 
						|
      PermuteImm = ByteRotation;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to combine to X86ISD::BLENDI.
 | 
						|
  if (NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) ||
 | 
						|
                           (Subtarget.hasAVX() && MaskVT.is256BitVector()))) {
 | 
						|
    // Determine a type compatible with X86ISD::BLENDI.
 | 
						|
    // TODO - add 16i16 support (requires lane duplication).
 | 
						|
    MVT BlendVT = MaskVT;
 | 
						|
    if (Subtarget.hasAVX2()) {
 | 
						|
      if (BlendVT == MVT::v4i64)
 | 
						|
        BlendVT = MVT::v8i32;
 | 
						|
      else if (BlendVT == MVT::v2i64)
 | 
						|
        BlendVT = MVT::v4i32;
 | 
						|
    } else {
 | 
						|
      if (BlendVT == MVT::v2i64 || BlendVT == MVT::v4i32)
 | 
						|
        BlendVT = MVT::v8i16;
 | 
						|
      else if (BlendVT == MVT::v4i64)
 | 
						|
        BlendVT = MVT::v4f64;
 | 
						|
      else if (BlendVT == MVT::v8i32)
 | 
						|
        BlendVT = MVT::v8f32;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned BlendSize = BlendVT.getVectorNumElements();
 | 
						|
    unsigned MaskRatio = BlendSize / NumMaskElts;
 | 
						|
 | 
						|
    // Can we blend with zero?
 | 
						|
    if (isSequentialOrUndefOrZeroInRange(Mask, /*Pos*/ 0, /*Size*/ NumMaskElts,
 | 
						|
                                         /*Low*/ 0) &&
 | 
						|
        NumMaskElts <= BlendVT.getVectorNumElements()) {
 | 
						|
      PermuteImm = 0;
 | 
						|
      for (unsigned i = 0; i != BlendSize; ++i)
 | 
						|
        if (Mask[i / MaskRatio] < 0)
 | 
						|
          PermuteImm |= 1u << i;
 | 
						|
 | 
						|
      V2 = getZeroVector(BlendVT, Subtarget, DAG, DL);
 | 
						|
      Shuffle = X86ISD::BLENDI;
 | 
						|
      ShuffleVT = BlendVT;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Attempt to match as a binary blend.
 | 
						|
    if (NumMaskElts <= BlendVT.getVectorNumElements()) {
 | 
						|
      bool MatchBlend = true;
 | 
						|
      for (int i = 0; i != (int)NumMaskElts; ++i) {
 | 
						|
        int M = Mask[i];
 | 
						|
        if (M == SM_SentinelUndef)
 | 
						|
          continue;
 | 
						|
        else if (M == SM_SentinelZero)
 | 
						|
          MatchBlend = false;
 | 
						|
        else if ((M != i) && (M != (i + (int)NumMaskElts)))
 | 
						|
          MatchBlend = false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (MatchBlend) {
 | 
						|
        PermuteImm = 0;
 | 
						|
        for (unsigned i = 0; i != BlendSize; ++i)
 | 
						|
          if ((int)NumMaskElts <= Mask[i / MaskRatio])
 | 
						|
            PermuteImm |= 1u << i;
 | 
						|
 | 
						|
        Shuffle = X86ISD::BLENDI;
 | 
						|
        ShuffleVT = BlendVT;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to combine to INSERTPS.
 | 
						|
  if (Subtarget.hasSSE41() && MaskVT == MVT::v4f32) {
 | 
						|
    SmallBitVector Zeroable(4, false);
 | 
						|
    for (unsigned i = 0; i != NumMaskElts; ++i)
 | 
						|
      if (Mask[i] < 0)
 | 
						|
        Zeroable[i] = true;
 | 
						|
 | 
						|
    if (Zeroable.any() &&
 | 
						|
        matchVectorShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
 | 
						|
      Shuffle = X86ISD::INSERTPS;
 | 
						|
      ShuffleVT = MVT::v4f32;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to combine to SHUFPD.
 | 
						|
  if ((MaskVT == MVT::v2f64 && Subtarget.hasSSE2()) ||
 | 
						|
      (MaskVT == MVT::v4f64 && Subtarget.hasAVX()) ||
 | 
						|
      (MaskVT == MVT::v8f64 && Subtarget.hasAVX512())) {
 | 
						|
    if (matchVectorShuffleWithSHUFPD(MaskVT, V1, V2, PermuteImm, Mask)) {
 | 
						|
      Shuffle = X86ISD::SHUFP;
 | 
						|
      ShuffleVT = MaskVT;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to combine to SHUFPS.
 | 
						|
  if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
 | 
						|
      (MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
 | 
						|
      (MaskVT == MVT::v16f32 && Subtarget.hasAVX512())) {
 | 
						|
    SmallVector<int, 4> RepeatedMask;
 | 
						|
    if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) {
 | 
						|
      auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) {
 | 
						|
        int M0 = RepeatedMask[Offset];
 | 
						|
        int M1 = RepeatedMask[Offset + 1];
 | 
						|
 | 
						|
        if (isUndefInRange(RepeatedMask, Offset, 2)) {
 | 
						|
          return DAG.getUNDEF(MaskVT);
 | 
						|
        } else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) {
 | 
						|
          S0 = (SM_SentinelUndef == M0 ? -1 : 0);
 | 
						|
          S1 = (SM_SentinelUndef == M1 ? -1 : 1);
 | 
						|
          return getZeroVector(MaskVT, Subtarget, DAG, DL);
 | 
						|
        } else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) {
 | 
						|
          S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
 | 
						|
          S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
 | 
						|
          return V1;
 | 
						|
        } else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) {
 | 
						|
          S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
 | 
						|
          S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
 | 
						|
          return V2;
 | 
						|
        }
 | 
						|
 | 
						|
        return SDValue();
 | 
						|
      };
 | 
						|
 | 
						|
      int ShufMask[4] = {-1, -1, -1, -1};
 | 
						|
      SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]);
 | 
						|
      SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]);
 | 
						|
 | 
						|
      if (Lo && Hi) {
 | 
						|
        V1 = Lo;
 | 
						|
        V2 = Hi;
 | 
						|
        Shuffle = X86ISD::SHUFP;
 | 
						|
        ShuffleVT = MaskVT;
 | 
						|
        PermuteImm = getV4X86ShuffleImm(ShufMask);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Combine an arbitrary chain of shuffles into a single instruction if
 | 
						|
/// possible.
 | 
						|
///
 | 
						|
/// This is the leaf of the recursive combine below. When we have found some
 | 
						|
/// chain of single-use x86 shuffle instructions and accumulated the combined
 | 
						|
/// shuffle mask represented by them, this will try to pattern match that mask
 | 
						|
/// into either a single instruction if there is a special purpose instruction
 | 
						|
/// for this operation, or into a PSHUFB instruction which is a fully general
 | 
						|
/// instruction but should only be used to replace chains over a certain depth.
 | 
						|
static bool combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root,
 | 
						|
                                   ArrayRef<int> BaseMask, int Depth,
 | 
						|
                                   bool HasVariableMask, SelectionDAG &DAG,
 | 
						|
                                   TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                   const X86Subtarget &Subtarget) {
 | 
						|
  assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!");
 | 
						|
  assert((Inputs.size() == 1 || Inputs.size() == 2) &&
 | 
						|
         "Unexpected number of shuffle inputs!");
 | 
						|
 | 
						|
  // Find the inputs that enter the chain. Note that multiple uses are OK
 | 
						|
  // here, we're not going to remove the operands we find.
 | 
						|
  bool UnaryShuffle = (Inputs.size() == 1);
 | 
						|
  SDValue V1 = peekThroughBitcasts(Inputs[0]);
 | 
						|
  SDValue V2 = (UnaryShuffle ? V1 : peekThroughBitcasts(Inputs[1]));
 | 
						|
 | 
						|
  MVT VT1 = V1.getSimpleValueType();
 | 
						|
  MVT VT2 = V2.getSimpleValueType();
 | 
						|
  MVT RootVT = Root.getSimpleValueType();
 | 
						|
  assert(VT1.getSizeInBits() == RootVT.getSizeInBits() &&
 | 
						|
         VT2.getSizeInBits() == RootVT.getSizeInBits() &&
 | 
						|
         "Vector size mismatch");
 | 
						|
 | 
						|
  SDLoc DL(Root);
 | 
						|
  SDValue Res;
 | 
						|
 | 
						|
  unsigned NumBaseMaskElts = BaseMask.size();
 | 
						|
  if (NumBaseMaskElts == 1) {
 | 
						|
    assert(BaseMask[0] == 0 && "Invalid shuffle index found!");
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, V1),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned RootSizeInBits = RootVT.getSizeInBits();
 | 
						|
  unsigned NumRootElts = RootVT.getVectorNumElements();
 | 
						|
  unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts;
 | 
						|
  bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() ||
 | 
						|
                     (RootVT.is256BitVector() && !Subtarget.hasAVX2());
 | 
						|
 | 
						|
  // Don't combine if we are a AVX512/EVEX target and the mask element size
 | 
						|
  // is different from the root element size - this would prevent writemasks
 | 
						|
  // from being reused.
 | 
						|
  // TODO - this currently prevents all lane shuffles from occurring.
 | 
						|
  // TODO - check for writemasks usage instead of always preventing combining.
 | 
						|
  // TODO - attempt to narrow Mask back to writemask size.
 | 
						|
  bool IsEVEXShuffle =
 | 
						|
      RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128);
 | 
						|
  if (IsEVEXShuffle && (RootVT.getScalarSizeInBits() != BaseMaskEltSizeInBits))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO - handle 128/256-bit lane shuffles of 512-bit vectors.
 | 
						|
 | 
						|
  // Handle 128-bit lane shuffles of 256-bit vectors.
 | 
						|
  // TODO - this should support binary shuffles.
 | 
						|
  if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 &&
 | 
						|
      !isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) {
 | 
						|
    if (Depth == 1 && Root.getOpcode() == X86ISD::VPERM2X128)
 | 
						|
      return false; // Nothing to do!
 | 
						|
    MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
 | 
						|
    unsigned PermMask = 0;
 | 
						|
    PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0);
 | 
						|
    PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4);
 | 
						|
 | 
						|
    Res = DAG.getBitcast(ShuffleVT, V1);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res,
 | 
						|
                      DAG.getUNDEF(ShuffleVT),
 | 
						|
                      DAG.getConstant(PermMask, DL, MVT::i8));
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For masks that have been widened to 128-bit elements or more,
 | 
						|
  // narrow back down to 64-bit elements.
 | 
						|
  SmallVector<int, 64> Mask;
 | 
						|
  if (BaseMaskEltSizeInBits > 64) {
 | 
						|
    assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size");
 | 
						|
    int MaskScale = BaseMaskEltSizeInBits / 64;
 | 
						|
    scaleShuffleMask(MaskScale, BaseMask, Mask);
 | 
						|
  } else {
 | 
						|
    Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumMaskElts = Mask.size();
 | 
						|
  unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
 | 
						|
 | 
						|
  // Determine the effective mask value type.
 | 
						|
  FloatDomain &= (32 <= MaskEltSizeInBits);
 | 
						|
  MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits)
 | 
						|
                           : MVT::getIntegerVT(MaskEltSizeInBits);
 | 
						|
  MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts);
 | 
						|
 | 
						|
  // Only allow legal mask types.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Attempt to match the mask against known shuffle patterns.
 | 
						|
  MVT ShuffleSrcVT, ShuffleVT;
 | 
						|
  unsigned Shuffle, PermuteImm;
 | 
						|
 | 
						|
  if (UnaryShuffle) {
 | 
						|
    // If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load
 | 
						|
    // directly if we don't shuffle the lower element and we shuffle the upper
 | 
						|
    // (zero) elements within themselves.
 | 
						|
    if (V1.getOpcode() == X86ISD::VZEXT_LOAD &&
 | 
						|
        (V1.getScalarValueSizeInBits() % MaskEltSizeInBits) == 0) {
 | 
						|
      unsigned Scale = V1.getScalarValueSizeInBits() / MaskEltSizeInBits;
 | 
						|
      ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale);
 | 
						|
      if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) &&
 | 
						|
          isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) {
 | 
						|
        DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, V1),
 | 
						|
                      /*AddTo*/ true);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (matchUnaryVectorShuffle(MaskVT, Mask, FloatDomain, Subtarget, Shuffle,
 | 
						|
                                ShuffleSrcVT, ShuffleVT)) {
 | 
						|
      if (Depth == 1 && Root.getOpcode() == Shuffle)
 | 
						|
        return false; // Nothing to do!
 | 
						|
      if (IsEVEXShuffle && (NumRootElts != ShuffleVT.getVectorNumElements()))
 | 
						|
        return false; // AVX512 Writemask clash.
 | 
						|
      Res = DAG.getBitcast(ShuffleSrcVT, V1);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                    /*AddTo*/ true);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (matchUnaryPermuteVectorShuffle(MaskVT, Mask, FloatDomain, Subtarget,
 | 
						|
                                       Shuffle, ShuffleVT, PermuteImm)) {
 | 
						|
      if (Depth == 1 && Root.getOpcode() == Shuffle)
 | 
						|
        return false; // Nothing to do!
 | 
						|
      if (IsEVEXShuffle && (NumRootElts != ShuffleVT.getVectorNumElements()))
 | 
						|
        return false; // AVX512 Writemask clash.
 | 
						|
      Res = DAG.getBitcast(ShuffleVT, V1);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res,
 | 
						|
                        DAG.getConstant(PermuteImm, DL, MVT::i8));
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                    /*AddTo*/ true);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (matchBinaryVectorShuffle(MaskVT, Mask, FloatDomain, V1, V2, Subtarget,
 | 
						|
                               Shuffle, ShuffleVT, UnaryShuffle)) {
 | 
						|
    if (Depth == 1 && Root.getOpcode() == Shuffle)
 | 
						|
      return false; // Nothing to do!
 | 
						|
    if (IsEVEXShuffle && (NumRootElts != ShuffleVT.getVectorNumElements()))
 | 
						|
      return false; // AVX512 Writemask clash.
 | 
						|
    V1 = DAG.getBitcast(ShuffleVT, V1);
 | 
						|
    DCI.AddToWorklist(V1.getNode());
 | 
						|
    V2 = DAG.getBitcast(ShuffleVT, V2);
 | 
						|
    DCI.AddToWorklist(V2.getNode());
 | 
						|
    Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (matchBinaryPermuteVectorShuffle(MaskVT, Mask, FloatDomain, V1, V2, DL,
 | 
						|
                                      DAG, Subtarget, Shuffle, ShuffleVT,
 | 
						|
                                      PermuteImm)) {
 | 
						|
    if (Depth == 1 && Root.getOpcode() == Shuffle)
 | 
						|
      return false; // Nothing to do!
 | 
						|
    if (IsEVEXShuffle && (NumRootElts != ShuffleVT.getVectorNumElements()))
 | 
						|
      return false; // AVX512 Writemask clash.
 | 
						|
    V1 = DAG.getBitcast(ShuffleVT, V1);
 | 
						|
    DCI.AddToWorklist(V1.getNode());
 | 
						|
    V2 = DAG.getBitcast(ShuffleVT, V2);
 | 
						|
    DCI.AddToWorklist(V2.getNode());
 | 
						|
    Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2,
 | 
						|
                      DAG.getConstant(PermuteImm, DL, MVT::i8));
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't try to re-form single instruction chains under any circumstances now
 | 
						|
  // that we've done encoding canonicalization for them.
 | 
						|
  if (Depth < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MaskContainsZeros =
 | 
						|
      any_of(Mask, [](int M) { return M == SM_SentinelZero; });
 | 
						|
 | 
						|
  if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) {
 | 
						|
    // If we have a single input lane-crossing shuffle then lower to VPERMV.
 | 
						|
    if (UnaryShuffle && (Depth >= 3 || HasVariableMask) && !MaskContainsZeros &&
 | 
						|
        ((Subtarget.hasAVX2() &&
 | 
						|
          (MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
 | 
						|
         (Subtarget.hasAVX512() &&
 | 
						|
          (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
 | 
						|
           MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
 | 
						|
         (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
 | 
						|
         (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
 | 
						|
         (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
 | 
						|
         (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
 | 
						|
      MVT VPermMaskSVT = MVT::getIntegerVT(MaskEltSizeInBits);
 | 
						|
      MVT VPermMaskVT = MVT::getVectorVT(VPermMaskSVT, NumMaskElts);
 | 
						|
      SDValue VPermMask = getConstVector(Mask, VPermMaskVT, DAG, DL, true);
 | 
						|
      DCI.AddToWorklist(VPermMask.getNode());
 | 
						|
      Res = DAG.getBitcast(MaskVT, V1);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                    /*AddTo*/ true);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero
 | 
						|
    // vector as the second source.
 | 
						|
    if (UnaryShuffle && (Depth >= 3 || HasVariableMask) &&
 | 
						|
        ((Subtarget.hasAVX512() &&
 | 
						|
          (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
 | 
						|
           MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
 | 
						|
         (Subtarget.hasVLX() &&
 | 
						|
          (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
 | 
						|
           MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
 | 
						|
         (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
 | 
						|
         (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
 | 
						|
         (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
 | 
						|
         (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
 | 
						|
      // Adjust shuffle mask - replace SM_SentinelZero with second source index.
 | 
						|
      for (unsigned i = 0; i != NumMaskElts; ++i)
 | 
						|
        if (Mask[i] == SM_SentinelZero)
 | 
						|
          Mask[i] = NumMaskElts + i;
 | 
						|
 | 
						|
      MVT VPermMaskSVT = MVT::getIntegerVT(MaskEltSizeInBits);
 | 
						|
      MVT VPermMaskVT = MVT::getVectorVT(VPermMaskSVT, NumMaskElts);
 | 
						|
      SDValue VPermMask = getConstVector(Mask, VPermMaskVT, DAG, DL, true);
 | 
						|
      DCI.AddToWorklist(VPermMask.getNode());
 | 
						|
      Res = DAG.getBitcast(MaskVT, V1);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL);
 | 
						|
      DCI.AddToWorklist(Zero.getNode());
 | 
						|
      Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                    /*AddTo*/ true);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a dual input lane-crossing shuffle then lower to VPERMV3.
 | 
						|
    if ((Depth >= 3 || HasVariableMask) && !MaskContainsZeros &&
 | 
						|
        ((Subtarget.hasAVX512() &&
 | 
						|
          (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
 | 
						|
           MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
 | 
						|
         (Subtarget.hasVLX() &&
 | 
						|
          (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
 | 
						|
           MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
 | 
						|
         (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
 | 
						|
         (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
 | 
						|
         (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
 | 
						|
         (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
 | 
						|
      MVT VPermMaskSVT = MVT::getIntegerVT(MaskEltSizeInBits);
 | 
						|
      MVT VPermMaskVT = MVT::getVectorVT(VPermMaskSVT, NumMaskElts);
 | 
						|
      SDValue VPermMask = getConstVector(Mask, VPermMaskVT, DAG, DL, true);
 | 
						|
      DCI.AddToWorklist(VPermMask.getNode());
 | 
						|
      V1 = DAG.getBitcast(MaskVT, V1);
 | 
						|
      DCI.AddToWorklist(V1.getNode());
 | 
						|
      V2 = DAG.getBitcast(MaskVT, V2);
 | 
						|
      DCI.AddToWorklist(V2.getNode());
 | 
						|
      Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
 | 
						|
      DCI.AddToWorklist(Res.getNode());
 | 
						|
      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                    /*AddTo*/ true);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can combine a single input shuffle with zeros to a bit-mask,
 | 
						|
  // which is much simpler than any shuffle.
 | 
						|
  if (UnaryShuffle && MaskContainsZeros && (Depth >= 3 || HasVariableMask) &&
 | 
						|
      isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) &&
 | 
						|
      DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) {
 | 
						|
    APInt Zero = APInt::getNullValue(MaskEltSizeInBits);
 | 
						|
    APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits);
 | 
						|
    SmallBitVector UndefElts(NumMaskElts, false);
 | 
						|
    SmallVector<APInt, 64> EltBits(NumMaskElts, Zero);
 | 
						|
    for (unsigned i = 0; i != NumMaskElts; ++i) {
 | 
						|
      int M = Mask[i];
 | 
						|
      if (M == SM_SentinelUndef) {
 | 
						|
        UndefElts[i] = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (M == SM_SentinelZero)
 | 
						|
        continue;
 | 
						|
      EltBits[i] = AllOnes;
 | 
						|
    }
 | 
						|
    SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL);
 | 
						|
    DCI.AddToWorklist(BitMask.getNode());
 | 
						|
    Res = DAG.getBitcast(MaskVT, V1);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    unsigned AndOpcode =
 | 
						|
        FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND);
 | 
						|
    Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a single input shuffle with different shuffle patterns in the
 | 
						|
  // the 128-bit lanes use the variable mask to VPERMILPS.
 | 
						|
  // TODO Combine other mask types at higher depths.
 | 
						|
  if (UnaryShuffle && HasVariableMask && !MaskContainsZeros &&
 | 
						|
      ((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
 | 
						|
       (MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) {
 | 
						|
    SmallVector<SDValue, 16> VPermIdx;
 | 
						|
    for (int M : Mask) {
 | 
						|
      SDValue Idx =
 | 
						|
          M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32);
 | 
						|
      VPermIdx.push_back(Idx);
 | 
						|
    }
 | 
						|
    MVT VPermMaskVT = MVT::getVectorVT(MVT::i32, NumMaskElts);
 | 
						|
    SDValue VPermMask = DAG.getBuildVector(VPermMaskVT, DL, VPermIdx);
 | 
						|
    DCI.AddToWorklist(VPermMask.getNode());
 | 
						|
    Res = DAG.getBitcast(MaskVT, V1);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // With XOP, binary shuffles of 128/256-bit floating point vectors can combine
 | 
						|
  // to VPERMIL2PD/VPERMIL2PS.
 | 
						|
  if ((Depth >= 3 || HasVariableMask) && Subtarget.hasXOP() &&
 | 
						|
      (MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 ||
 | 
						|
       MaskVT == MVT::v8f32)) {
 | 
						|
    // VPERMIL2 Operation.
 | 
						|
    // Bits[3] - Match Bit.
 | 
						|
    // Bits[2:1] - (Per Lane) PD Shuffle Mask.
 | 
						|
    // Bits[2:0] - (Per Lane) PS Shuffle Mask.
 | 
						|
    unsigned NumLanes = MaskVT.getSizeInBits() / 128;
 | 
						|
    unsigned NumEltsPerLane = NumMaskElts / NumLanes;
 | 
						|
    SmallVector<int, 8> VPerm2Idx;
 | 
						|
    MVT MaskIdxSVT = MVT::getIntegerVT(MaskVT.getScalarSizeInBits());
 | 
						|
    MVT MaskIdxVT = MVT::getVectorVT(MaskIdxSVT, NumMaskElts);
 | 
						|
    unsigned M2ZImm = 0;
 | 
						|
    for (int M : Mask) {
 | 
						|
      if (M == SM_SentinelUndef) {
 | 
						|
        VPerm2Idx.push_back(-1);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (M == SM_SentinelZero) {
 | 
						|
        M2ZImm = 2;
 | 
						|
        VPerm2Idx.push_back(8);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane);
 | 
						|
      Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index);
 | 
						|
      VPerm2Idx.push_back(Index);
 | 
						|
    }
 | 
						|
    V1 = DAG.getBitcast(MaskVT, V1);
 | 
						|
    DCI.AddToWorklist(V1.getNode());
 | 
						|
    V2 = DAG.getBitcast(MaskVT, V2);
 | 
						|
    DCI.AddToWorklist(V2.getNode());
 | 
						|
    SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, MaskIdxVT, DAG, DL, true);
 | 
						|
    DCI.AddToWorklist(VPerm2MaskOp.getNode());
 | 
						|
    Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp,
 | 
						|
                      DAG.getConstant(M2ZImm, DL, MVT::i8));
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have 3 or more shuffle instructions or a chain involving a variable
 | 
						|
  // mask, we can replace them with a single PSHUFB instruction profitably.
 | 
						|
  // Intel's manuals suggest only using PSHUFB if doing so replacing 5
 | 
						|
  // instructions, but in practice PSHUFB tends to be *very* fast so we're
 | 
						|
  // more aggressive.
 | 
						|
  if (UnaryShuffle && (Depth >= 3 || HasVariableMask) &&
 | 
						|
      ((RootVT.is128BitVector() && Subtarget.hasSSSE3()) ||
 | 
						|
       (RootVT.is256BitVector() && Subtarget.hasAVX2()) ||
 | 
						|
       (RootVT.is512BitVector() && Subtarget.hasBWI()))) {
 | 
						|
    SmallVector<SDValue, 16> PSHUFBMask;
 | 
						|
    int NumBytes = RootVT.getSizeInBits() / 8;
 | 
						|
    int Ratio = NumBytes / NumMaskElts;
 | 
						|
    for (int i = 0; i < NumBytes; ++i) {
 | 
						|
      int M = Mask[i / Ratio];
 | 
						|
      if (M == SM_SentinelUndef) {
 | 
						|
        PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (M == SM_SentinelZero) {
 | 
						|
        PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      M = Ratio * M + i % Ratio;
 | 
						|
      assert ((M / 16) == (i / 16) && "Lane crossing detected");
 | 
						|
      PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
 | 
						|
    }
 | 
						|
    MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
 | 
						|
    Res = DAG.getBitcast(ByteVT, V1);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
 | 
						|
    DCI.AddToWorklist(PSHUFBMaskOp.getNode());
 | 
						|
    Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // With XOP, if we have a 128-bit binary input shuffle we can always combine
 | 
						|
  // to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never
 | 
						|
  // slower than PSHUFB on targets that support both.
 | 
						|
  if ((Depth >= 3 || HasVariableMask) && RootVT.is128BitVector() &&
 | 
						|
      Subtarget.hasXOP()) {
 | 
						|
    // VPPERM Mask Operation
 | 
						|
    // Bits[4:0] - Byte Index (0 - 31)
 | 
						|
    // Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO)
 | 
						|
    SmallVector<SDValue, 16> VPPERMMask;
 | 
						|
    int NumBytes = 16;
 | 
						|
    int Ratio = NumBytes / NumMaskElts;
 | 
						|
    for (int i = 0; i < NumBytes; ++i) {
 | 
						|
      int M = Mask[i / Ratio];
 | 
						|
      if (M == SM_SentinelUndef) {
 | 
						|
        VPPERMMask.push_back(DAG.getUNDEF(MVT::i8));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (M == SM_SentinelZero) {
 | 
						|
        VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      M = Ratio * M + i % Ratio;
 | 
						|
      VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8));
 | 
						|
    }
 | 
						|
    MVT ByteVT = MVT::v16i8;
 | 
						|
    V1 = DAG.getBitcast(ByteVT, V1);
 | 
						|
    DCI.AddToWorklist(V1.getNode());
 | 
						|
    V2 = DAG.getBitcast(ByteVT, V2);
 | 
						|
    DCI.AddToWorklist(V2.getNode());
 | 
						|
    SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask);
 | 
						|
    DCI.AddToWorklist(VPPERMMaskOp.getNode());
 | 
						|
    Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp);
 | 
						|
    DCI.AddToWorklist(Res.getNode());
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
 | 
						|
                  /*AddTo*/ true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Failed to find any combines.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to constant fold all of the constant source ops.
 | 
						|
// Returns true if the entire shuffle is folded to a constant.
 | 
						|
// TODO: Extend this to merge multiple constant Ops and update the mask.
 | 
						|
static bool combineX86ShufflesConstants(const SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                        ArrayRef<int> Mask, SDValue Root,
 | 
						|
                                        bool HasVariableMask, SelectionDAG &DAG,
 | 
						|
                                        TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                        const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = Root.getSimpleValueType();
 | 
						|
 | 
						|
  unsigned SizeInBits = VT.getSizeInBits();
 | 
						|
  unsigned NumMaskElts = Mask.size();
 | 
						|
  unsigned MaskSizeInBits = SizeInBits / NumMaskElts;
 | 
						|
  unsigned NumOps = Ops.size();
 | 
						|
 | 
						|
  // Extract constant bits from each source op.
 | 
						|
  bool OneUseConstantOp = false;
 | 
						|
  SmallVector<SmallBitVector, 4> UndefEltsOps(NumOps);
 | 
						|
  SmallVector<SmallVector<APInt, 8>, 4> RawBitsOps(NumOps);
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    SDValue SrcOp = Ops[i];
 | 
						|
    OneUseConstantOp |= SrcOp.hasOneUse();
 | 
						|
    if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i],
 | 
						|
                                       RawBitsOps[i]))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only fold if at least one of the constants is only used once or
 | 
						|
  // the combined shuffle has included a variable mask shuffle, this
 | 
						|
  // is to avoid constant pool bloat.
 | 
						|
  if (!OneUseConstantOp && !HasVariableMask)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Shuffle the constant bits according to the mask.
 | 
						|
  SmallBitVector UndefElts(NumMaskElts, false);
 | 
						|
  SmallBitVector ZeroElts(NumMaskElts, false);
 | 
						|
  SmallBitVector ConstantElts(NumMaskElts, false);
 | 
						|
  SmallVector<APInt, 8> ConstantBitData(NumMaskElts,
 | 
						|
                                        APInt::getNullValue(MaskSizeInBits));
 | 
						|
  for (unsigned i = 0; i != NumMaskElts; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    if (M == SM_SentinelUndef) {
 | 
						|
      UndefElts[i] = true;
 | 
						|
      continue;
 | 
						|
    } else if (M == SM_SentinelZero) {
 | 
						|
      ZeroElts[i] = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    assert(0 <= M && M < (int)(NumMaskElts * NumOps));
 | 
						|
 | 
						|
    unsigned SrcOpIdx = (unsigned)M / NumMaskElts;
 | 
						|
    unsigned SrcMaskIdx = (unsigned)M % NumMaskElts;
 | 
						|
 | 
						|
    auto &SrcUndefElts = UndefEltsOps[SrcOpIdx];
 | 
						|
    if (SrcUndefElts[SrcMaskIdx]) {
 | 
						|
      UndefElts[i] = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto &SrcEltBits = RawBitsOps[SrcOpIdx];
 | 
						|
    APInt &Bits = SrcEltBits[SrcMaskIdx];
 | 
						|
    if (!Bits) {
 | 
						|
      ZeroElts[i] = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantElts[i] = true;
 | 
						|
    ConstantBitData[i] = Bits;
 | 
						|
  }
 | 
						|
  assert((UndefElts | ZeroElts | ConstantElts).count() == NumMaskElts);
 | 
						|
 | 
						|
  // Create the constant data.
 | 
						|
  MVT MaskSVT;
 | 
						|
  if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64))
 | 
						|
    MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits);
 | 
						|
  else
 | 
						|
    MaskSVT = MVT::getIntegerVT(MaskSizeInBits);
 | 
						|
 | 
						|
  MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts);
 | 
						|
 | 
						|
  SDLoc DL(Root);
 | 
						|
  SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL);
 | 
						|
  DCI.AddToWorklist(CstOp.getNode());
 | 
						|
  DCI.CombineTo(Root.getNode(), DAG.getBitcast(VT, CstOp));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Fully generic combining of x86 shuffle instructions.
 | 
						|
///
 | 
						|
/// This should be the last combine run over the x86 shuffle instructions. Once
 | 
						|
/// they have been fully optimized, this will recursively consider all chains
 | 
						|
/// of single-use shuffle instructions, build a generic model of the cumulative
 | 
						|
/// shuffle operation, and check for simpler instructions which implement this
 | 
						|
/// operation. We use this primarily for two purposes:
 | 
						|
///
 | 
						|
/// 1) Collapse generic shuffles to specialized single instructions when
 | 
						|
///    equivalent. In most cases, this is just an encoding size win, but
 | 
						|
///    sometimes we will collapse multiple generic shuffles into a single
 | 
						|
///    special-purpose shuffle.
 | 
						|
/// 2) Look for sequences of shuffle instructions with 3 or more total
 | 
						|
///    instructions, and replace them with the slightly more expensive SSSE3
 | 
						|
///    PSHUFB instruction if available. We do this as the last combining step
 | 
						|
///    to ensure we avoid using PSHUFB if we can implement the shuffle with
 | 
						|
///    a suitable short sequence of other instructions. The PSHUFB will either
 | 
						|
///    use a register or have to read from memory and so is slightly (but only
 | 
						|
///    slightly) more expensive than the other shuffle instructions.
 | 
						|
///
 | 
						|
/// Because this is inherently a quadratic operation (for each shuffle in
 | 
						|
/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
 | 
						|
/// This should never be an issue in practice as the shuffle lowering doesn't
 | 
						|
/// produce sequences of more than 8 instructions.
 | 
						|
///
 | 
						|
/// FIXME: We will currently miss some cases where the redundant shuffling
 | 
						|
/// would simplify under the threshold for PSHUFB formation because of
 | 
						|
/// combine-ordering. To fix this, we should do the redundant instruction
 | 
						|
/// combining in this recursive walk.
 | 
						|
static bool combineX86ShufflesRecursively(ArrayRef<SDValue> SrcOps,
 | 
						|
                                          int SrcOpIndex, SDValue Root,
 | 
						|
                                          ArrayRef<int> RootMask,
 | 
						|
                                          int Depth, bool HasVariableMask,
 | 
						|
                                          SelectionDAG &DAG,
 | 
						|
                                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                          const X86Subtarget &Subtarget) {
 | 
						|
  // Bound the depth of our recursive combine because this is ultimately
 | 
						|
  // quadratic in nature.
 | 
						|
  if (Depth > 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Directly rip through bitcasts to find the underlying operand.
 | 
						|
  SDValue Op = SrcOps[SrcOpIndex];
 | 
						|
  Op = peekThroughOneUseBitcasts(Op);
 | 
						|
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  if (!VT.isVector())
 | 
						|
    return false; // Bail if we hit a non-vector.
 | 
						|
 | 
						|
  assert(Root.getSimpleValueType().isVector() &&
 | 
						|
         "Shuffles operate on vector types!");
 | 
						|
  assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
 | 
						|
         "Can only combine shuffles of the same vector register size.");
 | 
						|
 | 
						|
  // Extract target shuffle mask and resolve sentinels and inputs.
 | 
						|
  SDValue Input0, Input1;
 | 
						|
  SmallVector<int, 16> OpMask;
 | 
						|
  if (!resolveTargetShuffleInputs(Op, Input0, Input1, OpMask))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Add the inputs to the Ops list, avoiding duplicates.
 | 
						|
  SmallVector<SDValue, 8> Ops(SrcOps.begin(), SrcOps.end());
 | 
						|
 | 
						|
  int InputIdx0 = -1, InputIdx1 = -1;
 | 
						|
  for (int i = 0, e = Ops.size(); i < e; ++i) {
 | 
						|
    SDValue BC = peekThroughBitcasts(Ops[i]);
 | 
						|
    if (Input0 && BC == peekThroughBitcasts(Input0))
 | 
						|
      InputIdx0 = i;
 | 
						|
    if (Input1 && BC == peekThroughBitcasts(Input1))
 | 
						|
      InputIdx1 = i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Input0 && InputIdx0 < 0) {
 | 
						|
    InputIdx0 = SrcOpIndex;
 | 
						|
    Ops[SrcOpIndex] = Input0;
 | 
						|
  }
 | 
						|
  if (Input1 && InputIdx1 < 0) {
 | 
						|
    InputIdx1 = Ops.size();
 | 
						|
    Ops.push_back(Input1);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(((RootMask.size() > OpMask.size() &&
 | 
						|
           RootMask.size() % OpMask.size() == 0) ||
 | 
						|
          (OpMask.size() > RootMask.size() &&
 | 
						|
           OpMask.size() % RootMask.size() == 0) ||
 | 
						|
          OpMask.size() == RootMask.size()) &&
 | 
						|
         "The smaller number of elements must divide the larger.");
 | 
						|
  int MaskWidth = std::max<int>(OpMask.size(), RootMask.size());
 | 
						|
  int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
 | 
						|
  int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
 | 
						|
  assert(((RootRatio == 1 && OpRatio == 1) ||
 | 
						|
          (RootRatio == 1) != (OpRatio == 1)) &&
 | 
						|
         "Must not have a ratio for both incoming and op masks!");
 | 
						|
 | 
						|
  SmallVector<int, 16> Mask;
 | 
						|
  Mask.reserve(MaskWidth);
 | 
						|
 | 
						|
  // Merge this shuffle operation's mask into our accumulated mask. Note that
 | 
						|
  // this shuffle's mask will be the first applied to the input, followed by the
 | 
						|
  // root mask to get us all the way to the root value arrangement. The reason
 | 
						|
  // for this order is that we are recursing up the operation chain.
 | 
						|
  for (int i = 0; i < MaskWidth; ++i) {
 | 
						|
    int RootIdx = i / RootRatio;
 | 
						|
    if (RootMask[RootIdx] < 0) {
 | 
						|
      // This is a zero or undef lane, we're done.
 | 
						|
      Mask.push_back(RootMask[RootIdx]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
 | 
						|
 | 
						|
    // Just insert the scaled root mask value if it references an input other
 | 
						|
    // than the SrcOp we're currently inserting.
 | 
						|
    if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) ||
 | 
						|
        (((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) {
 | 
						|
      Mask.push_back(RootMaskedIdx);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    RootMaskedIdx %= MaskWidth;
 | 
						|
 | 
						|
    int OpIdx = RootMaskedIdx / OpRatio;
 | 
						|
    if (OpMask[OpIdx] < 0) {
 | 
						|
      // The incoming lanes are zero or undef, it doesn't matter which ones we
 | 
						|
      // are using.
 | 
						|
      Mask.push_back(OpMask[OpIdx]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Ok, we have non-zero lanes, map them through to one of the Op's inputs.
 | 
						|
    int OpMaskedIdx = OpMask[OpIdx] * OpRatio + RootMaskedIdx % OpRatio;
 | 
						|
    OpMaskedIdx %= MaskWidth;
 | 
						|
 | 
						|
    if (OpMask[OpIdx] < (int)OpMask.size()) {
 | 
						|
      assert(0 <= InputIdx0 && "Unknown target shuffle input");
 | 
						|
      OpMaskedIdx += InputIdx0 * MaskWidth;
 | 
						|
    } else {
 | 
						|
      assert(0 <= InputIdx1 && "Unknown target shuffle input");
 | 
						|
      OpMaskedIdx += InputIdx1 * MaskWidth;
 | 
						|
    }
 | 
						|
 | 
						|
    Mask.push_back(OpMaskedIdx);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the all undef/zero cases early.
 | 
						|
  if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; })) {
 | 
						|
    DCI.CombineTo(Root.getNode(), DAG.getUNDEF(Root.getValueType()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (all_of(Mask, [](int Idx) { return Idx < 0; })) {
 | 
						|
    // TODO - should we handle the mixed zero/undef case as well? Just returning
 | 
						|
    // a zero mask will lose information on undef elements possibly reducing
 | 
						|
    // future combine possibilities.
 | 
						|
    DCI.CombineTo(Root.getNode(), getZeroVector(Root.getSimpleValueType(),
 | 
						|
                                                Subtarget, DAG, SDLoc(Root)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove unused shuffle source ops.
 | 
						|
  SmallVector<SDValue, 8> UsedOps;
 | 
						|
  for (int i = 0, e = Ops.size(); i < e; ++i) {
 | 
						|
    int lo = UsedOps.size() * MaskWidth;
 | 
						|
    int hi = lo + MaskWidth;
 | 
						|
    if (any_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) {
 | 
						|
      UsedOps.push_back(Ops[i]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    for (int &M : Mask)
 | 
						|
      if (lo <= M)
 | 
						|
        M -= MaskWidth;
 | 
						|
  }
 | 
						|
  assert(!UsedOps.empty() && "Shuffle with no inputs detected");
 | 
						|
  Ops = UsedOps;
 | 
						|
 | 
						|
  HasVariableMask |= isTargetShuffleVariableMask(Op.getOpcode());
 | 
						|
 | 
						|
  // See if we can recurse into each shuffle source op (if it's a target shuffle).
 | 
						|
  for (int i = 0, e = Ops.size(); i < e; ++i)
 | 
						|
    if (Ops[i].getNode()->hasOneUse() || Op->isOnlyUserOf(Ops[i].getNode()))
 | 
						|
      if (combineX86ShufflesRecursively(Ops, i, Root, Mask, Depth + 1,
 | 
						|
                                        HasVariableMask, DAG, DCI, Subtarget))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // Attempt to constant fold all of the constant source ops.
 | 
						|
  if (combineX86ShufflesConstants(Ops, Mask, Root, HasVariableMask, DAG, DCI,
 | 
						|
                                  Subtarget))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can only combine unary and binary shuffle mask cases.
 | 
						|
  if (Ops.size() > 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Minor canonicalization of the accumulated shuffle mask to make it easier
 | 
						|
  // to match below. All this does is detect masks with sequential pairs of
 | 
						|
  // elements, and shrink them to the half-width mask. It does this in a loop
 | 
						|
  // so it will reduce the size of the mask to the minimal width mask which
 | 
						|
  // performs an equivalent shuffle.
 | 
						|
  SmallVector<int, 16> WidenedMask;
 | 
						|
  while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
 | 
						|
    Mask = std::move(WidenedMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalization of binary shuffle masks to improve pattern matching by
 | 
						|
  // commuting the inputs.
 | 
						|
  if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) {
 | 
						|
    ShuffleVectorSDNode::commuteMask(Mask);
 | 
						|
    std::swap(Ops[0], Ops[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask, DAG,
 | 
						|
                                DCI, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the PSHUF-style mask from PSHUF node.
 | 
						|
///
 | 
						|
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
 | 
						|
/// PSHUF-style masks that can be reused with such instructions.
 | 
						|
static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
 | 
						|
  MVT VT = N.getSimpleValueType();
 | 
						|
  SmallVector<int, 4> Mask;
 | 
						|
  SmallVector<SDValue, 2> Ops;
 | 
						|
  bool IsUnary;
 | 
						|
  bool HaveMask =
 | 
						|
      getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
 | 
						|
  (void)HaveMask;
 | 
						|
  assert(HaveMask);
 | 
						|
 | 
						|
  // If we have more than 128-bits, only the low 128-bits of shuffle mask
 | 
						|
  // matter. Check that the upper masks are repeats and remove them.
 | 
						|
  if (VT.getSizeInBits() > 128) {
 | 
						|
    int LaneElts = 128 / VT.getScalarSizeInBits();
 | 
						|
#ifndef NDEBUG
 | 
						|
    for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
 | 
						|
      for (int j = 0; j < LaneElts; ++j)
 | 
						|
        assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
 | 
						|
               "Mask doesn't repeat in high 128-bit lanes!");
 | 
						|
#endif
 | 
						|
    Mask.resize(LaneElts);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
    return Mask;
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
    Mask.resize(4);
 | 
						|
    return Mask;
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
    Mask.erase(Mask.begin(), Mask.begin() + 4);
 | 
						|
    for (int &M : Mask)
 | 
						|
      M -= 4;
 | 
						|
    return Mask;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("No valid shuffle instruction found!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Search for a combinable shuffle across a chain ending in pshufd.
 | 
						|
///
 | 
						|
/// We walk up the chain and look for a combinable shuffle, skipping over
 | 
						|
/// shuffles that we could hoist this shuffle's transformation past without
 | 
						|
/// altering anything.
 | 
						|
static SDValue
 | 
						|
combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
 | 
						|
                             SelectionDAG &DAG,
 | 
						|
                             TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  assert(N.getOpcode() == X86ISD::PSHUFD &&
 | 
						|
         "Called with something other than an x86 128-bit half shuffle!");
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
 | 
						|
  // of the shuffles in the chain so that we can form a fresh chain to replace
 | 
						|
  // this one.
 | 
						|
  SmallVector<SDValue, 8> Chain;
 | 
						|
  SDValue V = N.getOperand(0);
 | 
						|
  for (; V.hasOneUse(); V = V.getOperand(0)) {
 | 
						|
    switch (V.getOpcode()) {
 | 
						|
    default:
 | 
						|
      return SDValue(); // Nothing combined!
 | 
						|
 | 
						|
    case ISD::BITCAST:
 | 
						|
      // Skip bitcasts as we always know the type for the target specific
 | 
						|
      // instructions.
 | 
						|
      continue;
 | 
						|
 | 
						|
    case X86ISD::PSHUFD:
 | 
						|
      // Found another dword shuffle.
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86ISD::PSHUFLW:
 | 
						|
      // Check that the low words (being shuffled) are the identity in the
 | 
						|
      // dword shuffle, and the high words are self-contained.
 | 
						|
      if (Mask[0] != 0 || Mask[1] != 1 ||
 | 
						|
          !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      Chain.push_back(V);
 | 
						|
      continue;
 | 
						|
 | 
						|
    case X86ISD::PSHUFHW:
 | 
						|
      // Check that the high words (being shuffled) are the identity in the
 | 
						|
      // dword shuffle, and the low words are self-contained.
 | 
						|
      if (Mask[2] != 2 || Mask[3] != 3 ||
 | 
						|
          !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      Chain.push_back(V);
 | 
						|
      continue;
 | 
						|
 | 
						|
    case X86ISD::UNPCKL:
 | 
						|
    case X86ISD::UNPCKH:
 | 
						|
      // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
 | 
						|
      // shuffle into a preceding word shuffle.
 | 
						|
      if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
 | 
						|
          V.getSimpleValueType().getVectorElementType() != MVT::i16)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Search for a half-shuffle which we can combine with.
 | 
						|
      unsigned CombineOp =
 | 
						|
          V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
 | 
						|
      if (V.getOperand(0) != V.getOperand(1) ||
 | 
						|
          !V->isOnlyUserOf(V.getOperand(0).getNode()))
 | 
						|
        return SDValue();
 | 
						|
      Chain.push_back(V);
 | 
						|
      V = V.getOperand(0);
 | 
						|
      do {
 | 
						|
        switch (V.getOpcode()) {
 | 
						|
        default:
 | 
						|
          return SDValue(); // Nothing to combine.
 | 
						|
 | 
						|
        case X86ISD::PSHUFLW:
 | 
						|
        case X86ISD::PSHUFHW:
 | 
						|
          if (V.getOpcode() == CombineOp)
 | 
						|
            break;
 | 
						|
 | 
						|
          Chain.push_back(V);
 | 
						|
 | 
						|
          LLVM_FALLTHROUGH;
 | 
						|
        case ISD::BITCAST:
 | 
						|
          V = V.getOperand(0);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      } while (V.hasOneUse());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // Break out of the loop if we break out of the switch.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!V.hasOneUse())
 | 
						|
    // We fell out of the loop without finding a viable combining instruction.
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Merge this node's mask and our incoming mask.
 | 
						|
  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
 | 
						|
  for (int &M : Mask)
 | 
						|
    M = VMask[M];
 | 
						|
  V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
 | 
						|
                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
 | 
						|
  // Rebuild the chain around this new shuffle.
 | 
						|
  while (!Chain.empty()) {
 | 
						|
    SDValue W = Chain.pop_back_val();
 | 
						|
 | 
						|
    if (V.getValueType() != W.getOperand(0).getValueType())
 | 
						|
      V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
 | 
						|
 | 
						|
    switch (W.getOpcode()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
 | 
						|
 | 
						|
    case X86ISD::UNPCKL:
 | 
						|
    case X86ISD::UNPCKH:
 | 
						|
      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86ISD::PSHUFD:
 | 
						|
    case X86ISD::PSHUFLW:
 | 
						|
    case X86ISD::PSHUFHW:
 | 
						|
      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (V.getValueType() != N.getValueType())
 | 
						|
    V = DAG.getBitcast(N.getValueType(), V);
 | 
						|
 | 
						|
  // Return the new chain to replace N.
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Search for a combinable shuffle across a chain ending in pshuflw or
 | 
						|
/// pshufhw.
 | 
						|
///
 | 
						|
/// We walk up the chain, skipping shuffles of the other half and looking
 | 
						|
/// through shuffles which switch halves trying to find a shuffle of the same
 | 
						|
/// pair of dwords.
 | 
						|
static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
 | 
						|
                                        SelectionDAG &DAG,
 | 
						|
                                        TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  assert(
 | 
						|
      (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
 | 
						|
      "Called with something other than an x86 128-bit half shuffle!");
 | 
						|
  SDLoc DL(N);
 | 
						|
  unsigned CombineOpcode = N.getOpcode();
 | 
						|
 | 
						|
  // Walk up a single-use chain looking for a combinable shuffle.
 | 
						|
  SDValue V = N.getOperand(0);
 | 
						|
  for (; V.hasOneUse(); V = V.getOperand(0)) {
 | 
						|
    switch (V.getOpcode()) {
 | 
						|
    default:
 | 
						|
      return false; // Nothing combined!
 | 
						|
 | 
						|
    case ISD::BITCAST:
 | 
						|
      // Skip bitcasts as we always know the type for the target specific
 | 
						|
      // instructions.
 | 
						|
      continue;
 | 
						|
 | 
						|
    case X86ISD::PSHUFLW:
 | 
						|
    case X86ISD::PSHUFHW:
 | 
						|
      if (V.getOpcode() == CombineOpcode)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Other-half shuffles are no-ops.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Break out of the loop if we break out of the switch.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!V.hasOneUse())
 | 
						|
    // We fell out of the loop without finding a viable combining instruction.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Combine away the bottom node as its shuffle will be accumulated into
 | 
						|
  // a preceding shuffle.
 | 
						|
  DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
 | 
						|
 | 
						|
  // Record the old value.
 | 
						|
  SDValue Old = V;
 | 
						|
 | 
						|
  // Merge this node's mask and our incoming mask (adjusted to account for all
 | 
						|
  // the pshufd instructions encountered).
 | 
						|
  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
 | 
						|
  for (int &M : Mask)
 | 
						|
    M = VMask[M];
 | 
						|
  V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
 | 
						|
                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
 | 
						|
 | 
						|
  // Check that the shuffles didn't cancel each other out. If not, we need to
 | 
						|
  // combine to the new one.
 | 
						|
  if (Old != V)
 | 
						|
    // Replace the combinable shuffle with the combined one, updating all users
 | 
						|
    // so that we re-evaluate the chain here.
 | 
						|
    DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to combine x86 target specific shuffles.
 | 
						|
static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
 | 
						|
                                    TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                    const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  MVT VT = N.getSimpleValueType();
 | 
						|
  SmallVector<int, 4> Mask;
 | 
						|
 | 
						|
  unsigned Opcode = N.getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
    Mask = getPSHUFShuffleMask(N);
 | 
						|
    assert(Mask.size() == 4);
 | 
						|
    break;
 | 
						|
  case X86ISD::UNPCKL: {
 | 
						|
    auto Op0 = N.getOperand(0);
 | 
						|
    auto Op1 = N.getOperand(1);
 | 
						|
    unsigned Opcode0 = Op0.getOpcode();
 | 
						|
    unsigned Opcode1 = Op1.getOpcode();
 | 
						|
 | 
						|
    // Combine X86ISD::UNPCKL with 2 X86ISD::FHADD inputs into a single
 | 
						|
    // X86ISD::FHADD. This is generated by UINT_TO_FP v2f64 scalarization.
 | 
						|
    // TODO: Add other horizontal operations as required.
 | 
						|
    if (VT == MVT::v2f64 && Opcode0 == Opcode1 && Opcode0 == X86ISD::FHADD)
 | 
						|
      return DAG.getNode(Opcode0, DL, VT, Op0.getOperand(0), Op1.getOperand(0));
 | 
						|
 | 
						|
    // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
 | 
						|
    // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
 | 
						|
    // moves upper half elements into the lower half part. For example:
 | 
						|
    //
 | 
						|
    // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
 | 
						|
    //     undef:v16i8
 | 
						|
    // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
 | 
						|
    //
 | 
						|
    // will be combined to:
 | 
						|
    //
 | 
						|
    // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
 | 
						|
 | 
						|
    // This is only for 128-bit vectors. From SSE4.1 onward this combine may not
 | 
						|
    // happen due to advanced instructions.
 | 
						|
    if (!VT.is128BitVector())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (Op0.isUndef() && Opcode1 == ISD::VECTOR_SHUFFLE) {
 | 
						|
      ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
 | 
						|
 | 
						|
      unsigned NumElts = VT.getVectorNumElements();
 | 
						|
      SmallVector<int, 8> ExpectedMask(NumElts, -1);
 | 
						|
      std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
 | 
						|
                NumElts / 2);
 | 
						|
 | 
						|
      auto ShufOp = Op1.getOperand(0);
 | 
						|
      if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
 | 
						|
        return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  case X86ISD::BLENDI: {
 | 
						|
    SDValue V0 = N->getOperand(0);
 | 
						|
    SDValue V1 = N->getOperand(1);
 | 
						|
    assert(VT == V0.getSimpleValueType() && VT == V1.getSimpleValueType() &&
 | 
						|
           "Unexpected input vector types");
 | 
						|
 | 
						|
    // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
 | 
						|
    // operands and changing the mask to 1. This saves us a bunch of
 | 
						|
    // pattern-matching possibilities related to scalar math ops in SSE/AVX.
 | 
						|
    // x86InstrInfo knows how to commute this back after instruction selection
 | 
						|
    // if it would help register allocation.
 | 
						|
 | 
						|
    // TODO: If optimizing for size or a processor that doesn't suffer from
 | 
						|
    // partial register update stalls, this should be transformed into a MOVSD
 | 
						|
    // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
 | 
						|
 | 
						|
    if (VT == MVT::v2f64)
 | 
						|
      if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
        if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
 | 
						|
          SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
 | 
						|
          return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
 | 
						|
        }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  case X86ISD::MOVSD:
 | 
						|
  case X86ISD::MOVSS: {
 | 
						|
    bool isFloat = VT.isFloatingPoint();
 | 
						|
    SDValue V0 = peekThroughBitcasts(N->getOperand(0));
 | 
						|
    SDValue V1 = peekThroughBitcasts(N->getOperand(1));
 | 
						|
    bool isFloat0 = V0.getSimpleValueType().isFloatingPoint();
 | 
						|
    bool isFloat1 = V1.getSimpleValueType().isFloatingPoint();
 | 
						|
    bool isZero0 = ISD::isBuildVectorAllZeros(V0.getNode());
 | 
						|
    bool isZero1 = ISD::isBuildVectorAllZeros(V1.getNode());
 | 
						|
    assert(!(isZero0 && isZero1) && "Zeroable shuffle detected.");
 | 
						|
 | 
						|
    // We often lower to MOVSD/MOVSS from integer as well as native float
 | 
						|
    // types; remove unnecessary domain-crossing bitcasts if we can to make it
 | 
						|
    // easier to combine shuffles later on. We've already accounted for the
 | 
						|
    // domain switching cost when we decided to lower with it.
 | 
						|
    if ((isFloat != isFloat0 || isZero0) && (isFloat != isFloat1 || isZero1)) {
 | 
						|
      MVT NewVT = isFloat ? (X86ISD::MOVSD == Opcode ? MVT::v2i64 : MVT::v4i32)
 | 
						|
                          : (X86ISD::MOVSD == Opcode ? MVT::v2f64 : MVT::v4f32);
 | 
						|
      V0 = DAG.getBitcast(NewVT, V0);
 | 
						|
      V1 = DAG.getBitcast(NewVT, V1);
 | 
						|
      return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, NewVT, V0, V1));
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  case X86ISD::INSERTPS: {
 | 
						|
    assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
 | 
						|
    SDValue Op0 = N.getOperand(0);
 | 
						|
    SDValue Op1 = N.getOperand(1);
 | 
						|
    SDValue Op2 = N.getOperand(2);
 | 
						|
    unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
 | 
						|
    unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
 | 
						|
    unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
 | 
						|
    unsigned ZeroMask = InsertPSMask & 0xF;
 | 
						|
 | 
						|
    // If we zero out all elements from Op0 then we don't need to reference it.
 | 
						|
    if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
 | 
						|
                         DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
 | 
						|
    // If we zero out the element from Op1 then we don't need to reference it.
 | 
						|
    if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
 | 
						|
      return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
 | 
						|
                         DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
 | 
						|
    // Attempt to merge insertps Op1 with an inner target shuffle node.
 | 
						|
    SmallVector<int, 8> TargetMask1;
 | 
						|
    SmallVector<SDValue, 2> Ops1;
 | 
						|
    if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) {
 | 
						|
      int M = TargetMask1[SrcIdx];
 | 
						|
      if (isUndefOrZero(M)) {
 | 
						|
        // Zero/UNDEF insertion - zero out element and remove dependency.
 | 
						|
        InsertPSMask |= (1u << DstIdx);
 | 
						|
        return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
 | 
						|
                           DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
      }
 | 
						|
      // Update insertps mask srcidx and reference the source input directly.
 | 
						|
      assert(0 <= M && M < 8 && "Shuffle index out of range");
 | 
						|
      InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
 | 
						|
      Op1 = Ops1[M < 4 ? 0 : 1];
 | 
						|
      return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
 | 
						|
                         DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
    }
 | 
						|
 | 
						|
    // Attempt to merge insertps Op0 with an inner target shuffle node.
 | 
						|
    SmallVector<int, 8> TargetMask0;
 | 
						|
    SmallVector<SDValue, 2> Ops0;
 | 
						|
    if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    bool Updated = false;
 | 
						|
    bool UseInput00 = false;
 | 
						|
    bool UseInput01 = false;
 | 
						|
    for (int i = 0; i != 4; ++i) {
 | 
						|
      int M = TargetMask0[i];
 | 
						|
      if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
 | 
						|
        // No change if element is already zero or the inserted element.
 | 
						|
        continue;
 | 
						|
      } else if (isUndefOrZero(M)) {
 | 
						|
        // If the target mask is undef/zero then we must zero the element.
 | 
						|
        InsertPSMask |= (1u << i);
 | 
						|
        Updated = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // The input vector element must be inline.
 | 
						|
      if (M != i && M != (i + 4))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Determine which inputs of the target shuffle we're using.
 | 
						|
      UseInput00 |= (0 <= M && M < 4);
 | 
						|
      UseInput01 |= (4 <= M);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're not using both inputs of the target shuffle then use the
 | 
						|
    // referenced input directly.
 | 
						|
    if (UseInput00 && !UseInput01) {
 | 
						|
      Updated = true;
 | 
						|
      Op0 = Ops0[0];
 | 
						|
    } else if (!UseInput00 && UseInput01) {
 | 
						|
      Updated = true;
 | 
						|
      Op0 = Ops0[1];
 | 
						|
    }
 | 
						|
 | 
						|
    if (Updated)
 | 
						|
      return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
 | 
						|
                         DAG.getConstant(InsertPSMask, DL, MVT::i8));
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Nuke no-op shuffles that show up after combining.
 | 
						|
  if (isNoopShuffleMask(Mask))
 | 
						|
    return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
 | 
						|
 | 
						|
  // Look for simplifications involving one or two shuffle instructions.
 | 
						|
  SDValue V = N.getOperand(0);
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
    assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
 | 
						|
 | 
						|
    if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
 | 
						|
      return SDValue(); // We combined away this shuffle, so we're done.
 | 
						|
 | 
						|
    // See if this reduces to a PSHUFD which is no more expensive and can
 | 
						|
    // combine with more operations. Note that it has to at least flip the
 | 
						|
    // dwords as otherwise it would have been removed as a no-op.
 | 
						|
    if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
 | 
						|
      int DMask[] = {0, 1, 2, 3};
 | 
						|
      int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
 | 
						|
      DMask[DOffset + 0] = DOffset + 1;
 | 
						|
      DMask[DOffset + 1] = DOffset + 0;
 | 
						|
      MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
 | 
						|
      V = DAG.getBitcast(DVT, V);
 | 
						|
      DCI.AddToWorklist(V.getNode());
 | 
						|
      V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
 | 
						|
                      getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
 | 
						|
      DCI.AddToWorklist(V.getNode());
 | 
						|
      return DAG.getBitcast(VT, V);
 | 
						|
    }
 | 
						|
 | 
						|
    // Look for shuffle patterns which can be implemented as a single unpack.
 | 
						|
    // FIXME: This doesn't handle the location of the PSHUFD generically, and
 | 
						|
    // only works when we have a PSHUFD followed by two half-shuffles.
 | 
						|
    if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
 | 
						|
        (V.getOpcode() == X86ISD::PSHUFLW ||
 | 
						|
         V.getOpcode() == X86ISD::PSHUFHW) &&
 | 
						|
        V.getOpcode() != N.getOpcode() &&
 | 
						|
        V.hasOneUse()) {
 | 
						|
      SDValue D = peekThroughOneUseBitcasts(V.getOperand(0));
 | 
						|
      if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
 | 
						|
        SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
 | 
						|
        SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
 | 
						|
        int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
 | 
						|
        int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
 | 
						|
        int WordMask[8];
 | 
						|
        for (int i = 0; i < 4; ++i) {
 | 
						|
          WordMask[i + NOffset] = Mask[i] + NOffset;
 | 
						|
          WordMask[i + VOffset] = VMask[i] + VOffset;
 | 
						|
        }
 | 
						|
        // Map the word mask through the DWord mask.
 | 
						|
        int MappedMask[8];
 | 
						|
        for (int i = 0; i < 8; ++i)
 | 
						|
          MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
 | 
						|
        if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
 | 
						|
            makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
 | 
						|
          // We can replace all three shuffles with an unpack.
 | 
						|
          V = DAG.getBitcast(VT, D.getOperand(0));
 | 
						|
          DCI.AddToWorklist(V.getNode());
 | 
						|
          return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
 | 
						|
                                                : X86ISD::UNPCKH,
 | 
						|
                             DL, VT, V, V);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
    if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
 | 
						|
      return NewN;
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true iff the shuffle node \p N can be replaced with ADDSUB
 | 
						|
/// operation. If true is returned then the operands of ADDSUB operation
 | 
						|
/// are written to the parameters \p Opnd0 and \p Opnd1.
 | 
						|
///
 | 
						|
/// We combine shuffle to ADDSUB directly on the abstract vector shuffle nodes
 | 
						|
/// so it is easier to generically match. We also insert dummy vector shuffle
 | 
						|
/// nodes for the operands which explicitly discard the lanes which are unused
 | 
						|
/// by this operation to try to flow through the rest of the combiner
 | 
						|
/// the fact that they're unused.
 | 
						|
static bool isAddSub(SDNode *N, const X86Subtarget &Subtarget,
 | 
						|
                     SDValue &Opnd0, SDValue &Opnd1) {
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
 | 
						|
      (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) &&
 | 
						|
      (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only handle target-independent shuffles.
 | 
						|
  // FIXME: It would be easy and harmless to use the target shuffle mask
 | 
						|
  // extraction tool to support more.
 | 
						|
  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ArrayRef<int> OrigMask = cast<ShuffleVectorSDNode>(N)->getMask();
 | 
						|
  SmallVector<int, 16> Mask(OrigMask.begin(), OrigMask.end());
 | 
						|
 | 
						|
  SDValue V1 = N->getOperand(0);
 | 
						|
  SDValue V2 = N->getOperand(1);
 | 
						|
 | 
						|
  // We require the first shuffle operand to be the FSUB node, and the second to
 | 
						|
  // be the FADD node.
 | 
						|
  if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) {
 | 
						|
    ShuffleVectorSDNode::commuteMask(Mask);
 | 
						|
    std::swap(V1, V2);
 | 
						|
  } else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If there are other uses of these operations we can't fold them.
 | 
						|
  if (!V1->hasOneUse() || !V2->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure that both operations have the same operands. Note that we can
 | 
						|
  // commute the FADD operands.
 | 
						|
  SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
 | 
						|
  if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
 | 
						|
      (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We're looking for blends between FADD and FSUB nodes. We insist on these
 | 
						|
  // nodes being lined up in a specific expected pattern.
 | 
						|
  if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
 | 
						|
        isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
 | 
						|
        isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}) ||
 | 
						|
        isShuffleEquivalent(V1, V2, Mask, {0, 17, 2, 19, 4, 21, 6, 23,
 | 
						|
                                           8, 25, 10, 27, 12, 29, 14, 31})))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Opnd0 = LHS;
 | 
						|
  Opnd1 = RHS;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to combine a shuffle into a target-specific add-sub or
 | 
						|
/// mul-add-sub node.
 | 
						|
static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N,
 | 
						|
                                                const X86Subtarget &Subtarget,
 | 
						|
                                                SelectionDAG &DAG) {
 | 
						|
  SDValue Opnd0, Opnd1;
 | 
						|
  if (!isAddSub(N, Subtarget, Opnd0, Opnd1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Try to generate X86ISD::FMADDSUB node here.
 | 
						|
  SDValue Opnd2;
 | 
						|
  if (isFMAddSub(Subtarget, DAG, Opnd0, Opnd1, Opnd2))
 | 
						|
    return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2);
 | 
						|
 | 
						|
  // Do not generate X86ISD::ADDSUB node for 512-bit types even though
 | 
						|
  // the ADDSUB idiom has been successfully recognized. There are no known
 | 
						|
  // X86 targets with 512-bit ADDSUB instructions!
 | 
						|
  if (VT.is512BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
 | 
						|
}
 | 
						|
 | 
						|
// We are looking for a shuffle where both sources are concatenated with undef
 | 
						|
// and have a width that is half of the output's width. AVX2 has VPERMD/Q, so
 | 
						|
// if we can express this as a single-source shuffle, that's preferable.
 | 
						|
static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                           const X86Subtarget &Subtarget) {
 | 
						|
  if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // We only care about shuffles of 128/256-bit vectors of 32/64-bit values.
 | 
						|
  if (!VT.is128BitVector() && !VT.is256BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT.getVectorElementType() != MVT::i32 &&
 | 
						|
      VT.getVectorElementType() != MVT::i64 &&
 | 
						|
      VT.getVectorElementType() != MVT::f32 &&
 | 
						|
      VT.getVectorElementType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // Check that both sources are concats with undef.
 | 
						|
  if (N0.getOpcode() != ISD::CONCAT_VECTORS ||
 | 
						|
      N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
 | 
						|
      N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() ||
 | 
						|
      !N1.getOperand(1).isUndef())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Construct the new shuffle mask. Elements from the first source retain their
 | 
						|
  // index, but elements from the second source no longer need to skip an undef.
 | 
						|
  SmallVector<int, 8> Mask;
 | 
						|
  int NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
  for (int Elt : SVOp->getMask())
 | 
						|
    Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2));
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0),
 | 
						|
                               N1.getOperand(0));
 | 
						|
  return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
 | 
						|
                              TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                              const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // Don't create instructions with illegal types after legalize types has run.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we have legalized the vector types, look for blends of FADD and FSUB
 | 
						|
  // nodes that we can fuse into an ADDSUB node.
 | 
						|
  if (TLI.isTypeLegal(VT))
 | 
						|
    if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG))
 | 
						|
      return AddSub;
 | 
						|
 | 
						|
  // During Type Legalization, when promoting illegal vector types,
 | 
						|
  // the backend might introduce new shuffle dag nodes and bitcasts.
 | 
						|
  //
 | 
						|
  // This code performs the following transformation:
 | 
						|
  // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
 | 
						|
  //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
 | 
						|
  //
 | 
						|
  // We do this only if both the bitcast and the BINOP dag nodes have
 | 
						|
  // one use. Also, perform this transformation only if the new binary
 | 
						|
  // operation is legal. This is to avoid introducing dag nodes that
 | 
						|
  // potentially need to be further expanded (or custom lowered) into a
 | 
						|
  // less optimal sequence of dag nodes.
 | 
						|
  if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
 | 
						|
      N->getOpcode() == ISD::VECTOR_SHUFFLE &&
 | 
						|
      N->getOperand(0).getOpcode() == ISD::BITCAST &&
 | 
						|
      N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) {
 | 
						|
    SDValue N0 = N->getOperand(0);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
    SDValue BC0 = N0.getOperand(0);
 | 
						|
    EVT SVT = BC0.getValueType();
 | 
						|
    unsigned Opcode = BC0.getOpcode();
 | 
						|
    unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
    if (BC0.hasOneUse() && SVT.isVector() &&
 | 
						|
        SVT.getVectorNumElements() * 2 == NumElts &&
 | 
						|
        TLI.isOperationLegal(Opcode, VT)) {
 | 
						|
      bool CanFold = false;
 | 
						|
      switch (Opcode) {
 | 
						|
      default : break;
 | 
						|
      case ISD::ADD:
 | 
						|
      case ISD::SUB:
 | 
						|
      case ISD::MUL:
 | 
						|
        // isOperationLegal lies for integer ops on floating point types.
 | 
						|
        CanFold = VT.isInteger();
 | 
						|
        break;
 | 
						|
      case ISD::FADD:
 | 
						|
      case ISD::FSUB:
 | 
						|
      case ISD::FMUL:
 | 
						|
        // isOperationLegal lies for floating point ops on integer types.
 | 
						|
        CanFold = VT.isFloatingPoint();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned SVTNumElts = SVT.getVectorNumElements();
 | 
						|
      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
      for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
 | 
						|
        CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
 | 
						|
      for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
 | 
						|
        CanFold = SVOp->getMaskElt(i) < 0;
 | 
						|
 | 
						|
      if (CanFold) {
 | 
						|
        SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
 | 
						|
        SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
 | 
						|
        SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
 | 
						|
        return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
 | 
						|
  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
 | 
						|
  // consecutive, non-overlapping, and in the right order.
 | 
						|
  SmallVector<SDValue, 16> Elts;
 | 
						|
  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
 | 
						|
    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
 | 
						|
 | 
						|
  if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true))
 | 
						|
    return LD;
 | 
						|
 | 
						|
  // For AVX2, we sometimes want to combine
 | 
						|
  // (vector_shuffle <mask> (concat_vectors t1, undef)
 | 
						|
  //                        (concat_vectors t2, undef))
 | 
						|
  // Into:
 | 
						|
  // (vector_shuffle <mask> (concat_vectors t1, t2), undef)
 | 
						|
  // Since the latter can be efficiently lowered with VPERMD/VPERMQ
 | 
						|
  if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget))
 | 
						|
    return ShufConcat;
 | 
						|
 | 
						|
  if (isTargetShuffle(N->getOpcode())) {
 | 
						|
    SDValue Op(N, 0);
 | 
						|
    if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget))
 | 
						|
      return Shuffle;
 | 
						|
 | 
						|
    // Try recursively combining arbitrary sequences of x86 shuffle
 | 
						|
    // instructions into higher-order shuffles. We do this after combining
 | 
						|
    // specific PSHUF instruction sequences into their minimal form so that we
 | 
						|
    // can evaluate how many specialized shuffle instructions are involved in
 | 
						|
    // a particular chain.
 | 
						|
    SmallVector<int, 1> NonceMask; // Just a placeholder.
 | 
						|
    NonceMask.push_back(0);
 | 
						|
    if (combineX86ShufflesRecursively({Op}, 0, Op, NonceMask,
 | 
						|
                                      /*Depth*/ 1, /*HasVarMask*/ false, DAG,
 | 
						|
                                      DCI, Subtarget))
 | 
						|
      return SDValue(); // This routine will use CombineTo to replace N.
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Check if a vector extract from a target-specific shuffle of a load can be
 | 
						|
/// folded into a single element load.
 | 
						|
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
 | 
						|
/// shuffles have been custom lowered so we need to handle those here.
 | 
						|
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                         TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue InVec = N->getOperand(0);
 | 
						|
  SDValue EltNo = N->getOperand(1);
 | 
						|
  EVT EltVT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(EltNo))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT OriginalVT = InVec.getValueType();
 | 
						|
 | 
						|
  if (InVec.getOpcode() == ISD::BITCAST) {
 | 
						|
    // Don't duplicate a load with other uses.
 | 
						|
    if (!InVec.hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
    EVT BCVT = InVec.getOperand(0).getValueType();
 | 
						|
    if (!BCVT.isVector() ||
 | 
						|
        BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
 | 
						|
      return SDValue();
 | 
						|
    InVec = InVec.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  EVT CurrentVT = InVec.getValueType();
 | 
						|
 | 
						|
  if (!isTargetShuffle(InVec.getOpcode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Don't duplicate a load with other uses.
 | 
						|
  if (!InVec.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SmallVector<int, 16> ShuffleMask;
 | 
						|
  SmallVector<SDValue, 2> ShuffleOps;
 | 
						|
  bool UnaryShuffle;
 | 
						|
  if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true,
 | 
						|
                            ShuffleOps, ShuffleMask, UnaryShuffle))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Select the input vector, guarding against out of range extract vector.
 | 
						|
  unsigned NumElems = CurrentVT.getVectorNumElements();
 | 
						|
  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
 | 
						|
  int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt];
 | 
						|
 | 
						|
  if (Idx == SM_SentinelZero)
 | 
						|
    return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT)
 | 
						|
                             : DAG.getConstantFP(+0.0, SDLoc(N), EltVT);
 | 
						|
  if (Idx == SM_SentinelUndef)
 | 
						|
    return DAG.getUNDEF(EltVT);
 | 
						|
 | 
						|
  assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range");
 | 
						|
  SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0]
 | 
						|
                                         : ShuffleOps[1];
 | 
						|
 | 
						|
  // If inputs to shuffle are the same for both ops, then allow 2 uses
 | 
						|
  unsigned AllowedUses =
 | 
						|
      (ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1;
 | 
						|
 | 
						|
  if (LdNode.getOpcode() == ISD::BITCAST) {
 | 
						|
    // Don't duplicate a load with other uses.
 | 
						|
    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    AllowedUses = 1; // only allow 1 load use if we have a bitcast
 | 
						|
    LdNode = LdNode.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ISD::isNormalLoad(LdNode.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
 | 
						|
 | 
						|
  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If there's a bitcast before the shuffle, check if the load type and
 | 
						|
  // alignment is valid.
 | 
						|
  unsigned Align = LN0->getAlignment();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
 | 
						|
      EltVT.getTypeForEVT(*DAG.getContext()));
 | 
						|
 | 
						|
  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // All checks match so transform back to vector_shuffle so that DAG combiner
 | 
						|
  // can finish the job
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // Create shuffle node taking into account the case that its a unary shuffle
 | 
						|
  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1];
 | 
						|
  Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle,
 | 
						|
                                 ShuffleMask);
 | 
						|
  Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
 | 
						|
                     EltNo);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
 | 
						|
                              const X86Subtarget &Subtarget) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // Detect bitcasts between i32 to x86mmx low word. Since MMX types are
 | 
						|
  // special and don't usually play with other vector types, it's better to
 | 
						|
  // handle them early to be sure we emit efficient code by avoiding
 | 
						|
  // store-load conversions.
 | 
						|
  if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
      N0.getValueType() == MVT::v2i32 &&
 | 
						|
      isNullConstant(N0.getOperand(1))) {
 | 
						|
    SDValue N00 = N0->getOperand(0);
 | 
						|
    if (N00.getValueType() == MVT::i32)
 | 
						|
      return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert a bitcasted integer logic operation that has one bitcasted
 | 
						|
  // floating-point operand into a floating-point logic operation. This may
 | 
						|
  // create a load of a constant, but that is cheaper than materializing the
 | 
						|
  // constant in an integer register and transferring it to an SSE register or
 | 
						|
  // transferring the SSE operand to integer register and back.
 | 
						|
  unsigned FPOpcode;
 | 
						|
  switch (N0.getOpcode()) {
 | 
						|
    case ISD::AND: FPOpcode = X86ISD::FAND; break;
 | 
						|
    case ISD::OR:  FPOpcode = X86ISD::FOR;  break;
 | 
						|
    case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
 | 
						|
    default: return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
 | 
						|
        (Subtarget.hasSSE2() && VT == MVT::f64)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LogicOp0 = N0.getOperand(0);
 | 
						|
  SDValue LogicOp1 = N0.getOperand(1);
 | 
						|
  SDLoc DL0(N0);
 | 
						|
 | 
						|
  // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
 | 
						|
  if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST &&
 | 
						|
      LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT &&
 | 
						|
      !isa<ConstantSDNode>(LogicOp0.getOperand(0))) {
 | 
						|
    SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1);
 | 
						|
    return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1);
 | 
						|
  }
 | 
						|
  // bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y)
 | 
						|
  if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST &&
 | 
						|
      LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT &&
 | 
						|
      !isa<ConstantSDNode>(LogicOp1.getOperand(0))) {
 | 
						|
    SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0);
 | 
						|
    return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Match a binop + shuffle pyramid that represents a horizontal reduction over
 | 
						|
// the elements of a vector.
 | 
						|
// Returns the vector that is being reduced on, or SDValue() if a reduction
 | 
						|
// was not matched.
 | 
						|
static SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType BinOp) {
 | 
						|
  // The pattern must end in an extract from index 0.
 | 
						|
  if ((Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) ||
 | 
						|
      !isNullConstant(Extract->getOperand(1)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned Stages =
 | 
						|
      Log2_32(Extract->getOperand(0).getValueType().getVectorNumElements());
 | 
						|
 | 
						|
  SDValue Op = Extract->getOperand(0);
 | 
						|
  // At each stage, we're looking for something that looks like:
 | 
						|
  // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
 | 
						|
  //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
 | 
						|
  //                               i32 undef, i32 undef, i32 undef, i32 undef>
 | 
						|
  // %a = binop <8 x i32> %op, %s
 | 
						|
  // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
 | 
						|
  // we expect something like:
 | 
						|
  // <4,5,6,7,u,u,u,u>
 | 
						|
  // <2,3,u,u,u,u,u,u>
 | 
						|
  // <1,u,u,u,u,u,u,u>
 | 
						|
  for (unsigned i = 0; i < Stages; ++i) {
 | 
						|
    if (Op.getOpcode() != BinOp)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    ShuffleVectorSDNode *Shuffle =
 | 
						|
        dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0).getNode());
 | 
						|
    if (Shuffle) {
 | 
						|
      Op = Op.getOperand(1);
 | 
						|
    } else {
 | 
						|
      Shuffle = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1).getNode());
 | 
						|
      Op = Op.getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // The first operand of the shuffle should be the same as the other operand
 | 
						|
    // of the add.
 | 
						|
    if (!Shuffle || (Shuffle->getOperand(0) != Op))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Verify the shuffle has the expected (at this stage of the pyramid) mask.
 | 
						|
    for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
 | 
						|
      if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
 | 
						|
        return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Given a select, detect the following pattern:
 | 
						|
// 1:    %2 = zext <N x i8> %0 to <N x i32>
 | 
						|
// 2:    %3 = zext <N x i8> %1 to <N x i32>
 | 
						|
// 3:    %4 = sub nsw <N x i32> %2, %3
 | 
						|
// 4:    %5 = icmp sgt <N x i32> %4, [0 x N] or [-1 x N]
 | 
						|
// 5:    %6 = sub nsw <N x i32> zeroinitializer, %4
 | 
						|
// 6:    %7 = select <N x i1> %5, <N x i32> %4, <N x i32> %6
 | 
						|
// This is useful as it is the input into a SAD pattern.
 | 
						|
static bool detectZextAbsDiff(const SDValue &Select, SDValue &Op0,
 | 
						|
                              SDValue &Op1) {
 | 
						|
  // Check the condition of the select instruction is greater-than.
 | 
						|
  SDValue SetCC = Select->getOperand(0);
 | 
						|
  if (SetCC.getOpcode() != ISD::SETCC)
 | 
						|
    return false;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
 | 
						|
  if (CC != ISD::SETGT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue SelectOp1 = Select->getOperand(1);
 | 
						|
  SDValue SelectOp2 = Select->getOperand(2);
 | 
						|
 | 
						|
  // The second operand of the select should be the negation of the first
 | 
						|
  // operand, which is implemented as 0 - SelectOp1.
 | 
						|
  if (!(SelectOp2.getOpcode() == ISD::SUB &&
 | 
						|
        ISD::isBuildVectorAllZeros(SelectOp2.getOperand(0).getNode()) &&
 | 
						|
        SelectOp2.getOperand(1) == SelectOp1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The first operand of SetCC is the first operand of the select, which is the
 | 
						|
  // difference between the two input vectors.
 | 
						|
  if (SetCC.getOperand(0) != SelectOp1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The second operand of the comparison can be either -1 or 0.
 | 
						|
  if (!(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()) ||
 | 
						|
        ISD::isBuildVectorAllOnes(SetCC.getOperand(1).getNode())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The first operand of the select is the difference between the two input
 | 
						|
  // vectors.
 | 
						|
  if (SelectOp1.getOpcode() != ISD::SUB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Op0 = SelectOp1.getOperand(0);
 | 
						|
  Op1 = SelectOp1.getOperand(1);
 | 
						|
 | 
						|
  // Check if the operands of the sub are zero-extended from vectors of i8.
 | 
						|
  if (Op0.getOpcode() != ISD::ZERO_EXTEND ||
 | 
						|
      Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 ||
 | 
						|
      Op1.getOpcode() != ISD::ZERO_EXTEND ||
 | 
						|
      Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs
 | 
						|
// to these zexts.
 | 
						|
static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0,
 | 
						|
                            const SDValue &Zext1, const SDLoc &DL) {
 | 
						|
 | 
						|
  // Find the appropriate width for the PSADBW.
 | 
						|
  EVT InVT = Zext0.getOperand(0).getValueType();
 | 
						|
  unsigned RegSize = std::max(128u, InVT.getSizeInBits());
 | 
						|
 | 
						|
  // "Zero-extend" the i8 vectors. This is not a per-element zext, rather we
 | 
						|
  // fill in the missing vector elements with 0.
 | 
						|
  unsigned NumConcat = RegSize / InVT.getSizeInBits();
 | 
						|
  SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT));
 | 
						|
  Ops[0] = Zext0.getOperand(0);
 | 
						|
  MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8);
 | 
						|
  SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
 | 
						|
  Ops[0] = Zext1.getOperand(0);
 | 
						|
  SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
 | 
						|
 | 
						|
  // Actually build the SAD
 | 
						|
  MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64);
 | 
						|
  return DAG.getNode(X86ISD::PSADBW, DL, SadVT, SadOp0, SadOp1);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG,
 | 
						|
                                      const X86Subtarget &Subtarget) {
 | 
						|
  // PSADBW is only supported on SSE2 and up.
 | 
						|
  if (!Subtarget.hasSSE2())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Verify the type we're extracting from is appropriate
 | 
						|
  // TODO: There's nothing special about i32, any integer type above i16 should
 | 
						|
  // work just as well.
 | 
						|
  EVT VT = Extract->getOperand(0).getValueType();
 | 
						|
  if (!VT.isSimple() || !(VT.getVectorElementType() == MVT::i32))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned RegSize = 128;
 | 
						|
  if (Subtarget.hasBWI())
 | 
						|
    RegSize = 512;
 | 
						|
  else if (Subtarget.hasAVX2())
 | 
						|
    RegSize = 256;
 | 
						|
 | 
						|
  // We only handle v16i32 for SSE2 / v32i32 for AVX2 / v64i32 for AVX512.
 | 
						|
  // TODO: We should be able to handle larger vectors by splitting them before
 | 
						|
  // feeding them into several SADs, and then reducing over those.
 | 
						|
  if (VT.getSizeInBits() / 4 > RegSize)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Match shuffle + add pyramid.
 | 
						|
  SDValue Root = matchBinOpReduction(Extract, ISD::ADD);
 | 
						|
 | 
						|
  // If there was a match, we want Root to be a select that is the root of an
 | 
						|
  // abs-diff pattern.
 | 
						|
  if (!Root || (Root.getOpcode() != ISD::VSELECT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check whether we have an abs-diff pattern feeding into the select.
 | 
						|
  SDValue Zext0, Zext1;
 | 
						|
  if (!detectZextAbsDiff(Root, Zext0, Zext1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Create the SAD instruction
 | 
						|
  SDLoc DL(Extract);
 | 
						|
  SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL);
 | 
						|
 | 
						|
  // If the original vector was wider than 8 elements, sum over the results
 | 
						|
  // in the SAD vector.
 | 
						|
  unsigned Stages = Log2_32(VT.getVectorNumElements());
 | 
						|
  MVT SadVT = SAD.getSimpleValueType();
 | 
						|
  if (Stages > 3) {
 | 
						|
    unsigned SadElems = SadVT.getVectorNumElements();
 | 
						|
 | 
						|
    for(unsigned i = Stages - 3; i > 0; --i) {
 | 
						|
      SmallVector<int, 16> Mask(SadElems, -1);
 | 
						|
      for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j)
 | 
						|
        Mask[j] = MaskEnd + j;
 | 
						|
 | 
						|
      SDValue Shuffle =
 | 
						|
          DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask);
 | 
						|
      SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the lowest i32.
 | 
						|
  MVT ResVT = MVT::getVectorVT(MVT::i32, SadVT.getSizeInBits() / 32);
 | 
						|
  SAD = DAG.getNode(ISD::BITCAST, DL, ResVT, SAD);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SAD,
 | 
						|
                     Extract->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
/// Detect vector gather/scatter index generation and convert it from being a
 | 
						|
/// bunch of shuffles and extracts into a somewhat faster sequence.
 | 
						|
/// For i686, the best sequence is apparently storing the value and loading
 | 
						|
/// scalars back, while for x64 we should use 64-bit extracts and shifts.
 | 
						|
static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                       TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                       const X86Subtarget &Subtarget) {
 | 
						|
  if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
 | 
						|
    return NewOp;
 | 
						|
 | 
						|
  SDValue InputVector = N->getOperand(0);
 | 
						|
  SDLoc dl(InputVector);
 | 
						|
  // Detect mmx to i32 conversion through a v2i32 elt extract.
 | 
						|
  if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
 | 
						|
      N->getValueType(0) == MVT::i32 &&
 | 
						|
      InputVector.getValueType() == MVT::v2i32 &&
 | 
						|
      isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
      N->getConstantOperandVal(1) == 0) {
 | 
						|
    SDValue MMXSrc = InputVector.getOperand(0);
 | 
						|
 | 
						|
    // The bitcast source is a direct mmx result.
 | 
						|
    if (MMXSrc.getValueType() == MVT::x86mmx)
 | 
						|
      return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
 | 
						|
  }
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
      InputVector.getOpcode() == ISD::BITCAST &&
 | 
						|
      isa<ConstantSDNode>(InputVector.getOperand(0))) {
 | 
						|
    uint64_t ExtractedElt =
 | 
						|
        cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
    uint64_t InputValue =
 | 
						|
        cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue();
 | 
						|
    uint64_t Res = (InputValue >> ExtractedElt) & 1;
 | 
						|
    return DAG.getConstant(Res, dl, MVT::i1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether this extract is the root of a sum of absolute differences
 | 
						|
  // pattern. This has to be done here because we really want it to happen
 | 
						|
  // pre-legalization,
 | 
						|
  if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget))
 | 
						|
    return SAD;
 | 
						|
 | 
						|
  // Only operate on vectors of 4 elements, where the alternative shuffling
 | 
						|
  // gets to be more expensive.
 | 
						|
  if (InputVector.getValueType() != MVT::v4i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
 | 
						|
  // single use which is a sign-extend or zero-extend, and all elements are
 | 
						|
  // used.
 | 
						|
  SmallVector<SDNode *, 4> Uses;
 | 
						|
  unsigned ExtractedElements = 0;
 | 
						|
  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
 | 
						|
       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
 | 
						|
    if (UI.getUse().getResNo() != InputVector.getResNo())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDNode *Extract = *UI;
 | 
						|
    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (Extract->getValueType(0) != MVT::i32)
 | 
						|
      return SDValue();
 | 
						|
    if (!Extract->hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
 | 
						|
      return SDValue();
 | 
						|
    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Record which element was extracted.
 | 
						|
    ExtractedElements |=
 | 
						|
      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
    Uses.push_back(Extract);
 | 
						|
  }
 | 
						|
 | 
						|
  // If not all the elements were used, this may not be worthwhile.
 | 
						|
  if (ExtractedElements != 15)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Ok, we've now decided to do the transformation.
 | 
						|
  // If 64-bit shifts are legal, use the extract-shift sequence,
 | 
						|
  // otherwise bounce the vector off the cache.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  SDValue Vals[4];
 | 
						|
 | 
						|
  if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
 | 
						|
    SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
 | 
						|
    auto &DL = DAG.getDataLayout();
 | 
						|
    EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL);
 | 
						|
    SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
 | 
						|
      DAG.getConstant(0, dl, VecIdxTy));
 | 
						|
    SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
 | 
						|
      DAG.getConstant(1, dl, VecIdxTy));
 | 
						|
 | 
						|
    SDValue ShAmt = DAG.getConstant(
 | 
						|
        32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL));
 | 
						|
    Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
 | 
						|
    Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
 | 
						|
      DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
 | 
						|
    Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
 | 
						|
    Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
 | 
						|
      DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
 | 
						|
  } else {
 | 
						|
    // Store the value to a temporary stack slot.
 | 
						|
    SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
 | 
						|
    SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
 | 
						|
                              MachinePointerInfo());
 | 
						|
 | 
						|
    EVT ElementType = InputVector.getValueType().getVectorElementType();
 | 
						|
    unsigned EltSize = ElementType.getSizeInBits() / 8;
 | 
						|
 | 
						|
    // Replace each use (extract) with a load of the appropriate element.
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      uint64_t Offset = EltSize * i;
 | 
						|
      auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | 
						|
      SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT);
 | 
						|
 | 
						|
      SDValue ScalarAddr =
 | 
						|
          DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal);
 | 
						|
 | 
						|
      // Load the scalar.
 | 
						|
      Vals[i] =
 | 
						|
          DAG.getLoad(ElementType, dl, Ch, ScalarAddr, MachinePointerInfo());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace the extracts
 | 
						|
  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
 | 
						|
    UE = Uses.end(); UI != UE; ++UI) {
 | 
						|
    SDNode *Extract = *UI;
 | 
						|
 | 
						|
    SDValue Idx = Extract->getOperand(1);
 | 
						|
    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
 | 
						|
  }
 | 
						|
 | 
						|
  // The replacement was made in place; don't return anything.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If a vector select has an operand that is -1 or 0, simplify the select to a
 | 
						|
/// bitwise logic operation.
 | 
						|
static SDValue combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                                const X86Subtarget &Subtarget) {
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  EVT VT = LHS.getValueType();
 | 
						|
  EVT CondVT = Cond.getValueType();
 | 
						|
  SDLoc DL(N);
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::VSELECT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool FValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
 | 
						|
  // Check if the first operand is all zeros.This situation only
 | 
						|
  // applies to avx512.
 | 
						|
  if (FValIsAllZeros  && Subtarget.hasAVX512() && Cond.hasOneUse()) {
 | 
						|
      //Invert the cond to not(cond) : xor(op,allones)=not(op)
 | 
						|
      SDValue CondNew = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | 
						|
        DAG.getConstant(1, DL, Cond.getValueType()));
 | 
						|
      //Vselect cond, op1, op2 = Vselect not(cond), op2, op1
 | 
						|
      return DAG.getNode(ISD::VSELECT, DL, VT, CondNew, RHS, LHS);
 | 
						|
  }
 | 
						|
  assert(CondVT.isVector() && "Vector select expects a vector selector!");
 | 
						|
 | 
						|
  // To use the condition operand as a bitwise mask, it must have elements that
 | 
						|
  // are the same size as the select elements. Ie, the condition operand must
 | 
						|
  // have already been promoted from the IR select condition type <N x i1>.
 | 
						|
  // Don't check if the types themselves are equal because that excludes
 | 
						|
  // vector floating-point selects.
 | 
						|
  if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
 | 
						|
  FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
 | 
						|
 | 
						|
  // Try to invert the condition if true value is not all 1s and false value is
 | 
						|
  // not all 0s.
 | 
						|
  if (!TValIsAllOnes && !FValIsAllZeros &&
 | 
						|
      // Check if the selector will be produced by CMPP*/PCMP*.
 | 
						|
      Cond.getOpcode() == ISD::SETCC &&
 | 
						|
      // Check if SETCC has already been promoted.
 | 
						|
      TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
 | 
						|
          CondVT) {
 | 
						|
    bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
 | 
						|
    bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
 | 
						|
 | 
						|
    if (TValIsAllZeros || FValIsAllOnes) {
 | 
						|
      SDValue CC = Cond.getOperand(2);
 | 
						|
      ISD::CondCode NewCC =
 | 
						|
          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
 | 
						|
                               Cond.getOperand(0).getValueType().isInteger());
 | 
						|
      Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
 | 
						|
                          NewCC);
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
      TValIsAllOnes = FValIsAllOnes;
 | 
						|
      FValIsAllZeros = TValIsAllZeros;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TValIsAllOnes && !FValIsAllZeros)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Ret;
 | 
						|
  if (TValIsAllOnes && FValIsAllZeros)
 | 
						|
    Ret = Cond;
 | 
						|
  else if (TValIsAllOnes)
 | 
						|
    Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
 | 
						|
  else if (FValIsAllZeros)
 | 
						|
    Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, DAG.getBitcast(CondVT, LHS));
 | 
						|
 | 
						|
  return DAG.getBitcast(VT, Ret);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  auto *TrueC = dyn_cast<ConstantSDNode>(LHS);
 | 
						|
  auto *FalseC = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
  if (!TrueC || !FalseC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Don't do this for crazy integer types.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If this is efficiently invertible, canonicalize the LHSC/RHSC values
 | 
						|
  // so that TrueC (the true value) is larger than FalseC.
 | 
						|
  bool NeedsCondInvert = false;
 | 
						|
  if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
 | 
						|
      // Efficiently invertible.
 | 
						|
      (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
 | 
						|
       (Cond.getOpcode() == ISD::XOR &&  // xor(X, C) -> invertible.
 | 
						|
        isa<ConstantSDNode>(Cond.getOperand(1))))) {
 | 
						|
    NeedsCondInvert = true;
 | 
						|
    std::swap(TrueC, FalseC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
 | 
						|
  if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
 | 
						|
    if (NeedsCondInvert) // Invert the condition if needed.
 | 
						|
      Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | 
						|
                         DAG.getConstant(1, DL, Cond.getValueType()));
 | 
						|
 | 
						|
    // Zero extend the condition if needed.
 | 
						|
    Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
 | 
						|
 | 
						|
    unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | 
						|
    return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
 | 
						|
                       DAG.getConstant(ShAmt, DL, MVT::i8));
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
 | 
						|
  if (FalseC->getAPIntValue() + 1 == TrueC->getAPIntValue()) {
 | 
						|
    if (NeedsCondInvert) // Invert the condition if needed.
 | 
						|
      Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | 
						|
                         DAG.getConstant(1, DL, Cond.getValueType()));
 | 
						|
 | 
						|
    // Zero extend the condition if needed.
 | 
						|
    Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond);
 | 
						|
    return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | 
						|
                       SDValue(FalseC, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize cases that will turn into an LEA instruction.  This requires
 | 
						|
  // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | 
						|
  if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | 
						|
    uint64_t Diff = TrueC->getZExtValue() - FalseC->getZExtValue();
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      Diff = (unsigned)Diff;
 | 
						|
 | 
						|
    bool isFastMultiplier = false;
 | 
						|
    if (Diff < 10) {
 | 
						|
      switch ((unsigned char)Diff) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case 1: // result = add base, cond
 | 
						|
      case 2: // result = lea base(    , cond*2)
 | 
						|
      case 3: // result = lea base(cond, cond*2)
 | 
						|
      case 4: // result = lea base(    , cond*4)
 | 
						|
      case 5: // result = lea base(cond, cond*4)
 | 
						|
      case 8: // result = lea base(    , cond*8)
 | 
						|
      case 9: // result = lea base(cond, cond*8)
 | 
						|
        isFastMultiplier = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFastMultiplier) {
 | 
						|
      APInt Diff = TrueC->getAPIntValue() - FalseC->getAPIntValue();
 | 
						|
      if (NeedsCondInvert) // Invert the condition if needed.
 | 
						|
        Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | 
						|
                           DAG.getConstant(1, DL, Cond.getValueType()));
 | 
						|
 | 
						|
      // Zero extend the condition if needed.
 | 
						|
      Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond);
 | 
						|
      // Scale the condition by the difference.
 | 
						|
      if (Diff != 1)
 | 
						|
        Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | 
						|
                           DAG.getConstant(Diff, DL, Cond.getValueType()));
 | 
						|
 | 
						|
      // Add the base if non-zero.
 | 
						|
      if (FalseC->getAPIntValue() != 0)
 | 
						|
        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | 
						|
                           SDValue(FalseC, 0));
 | 
						|
      return Cond;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// If this is a bitcasted op that can be represented as another type, push the
 | 
						|
// the bitcast to the inputs. This allows more opportunities for pattern
 | 
						|
// matching masked instructions. This is called when we know that the operation
 | 
						|
// is used as one of the inputs of a vselect.
 | 
						|
static bool combineBitcastForMaskedOp(SDValue OrigOp, SelectionDAG &DAG,
 | 
						|
                                      TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // Make sure we have a bitcast.
 | 
						|
  if (OrigOp.getOpcode() != ISD::BITCAST)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue Op = OrigOp.getOperand(0);
 | 
						|
 | 
						|
  // If the operation is used by anything other than the bitcast, we shouldn't
 | 
						|
  // do this combine as that would replicate the operation.
 | 
						|
  if (!Op.hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT VT = OrigOp.getSimpleValueType();
 | 
						|
  MVT EltVT = VT.getVectorElementType();
 | 
						|
  SDLoc DL(Op.getNode());
 | 
						|
 | 
						|
  auto BitcastAndCombineShuffle = [&](unsigned Opcode, SDValue Op0, SDValue Op1,
 | 
						|
                                      SDValue Op2) {
 | 
						|
    Op0 = DAG.getBitcast(VT, Op0);
 | 
						|
    DCI.AddToWorklist(Op0.getNode());
 | 
						|
    Op1 = DAG.getBitcast(VT, Op1);
 | 
						|
    DCI.AddToWorklist(Op1.getNode());
 | 
						|
    DCI.CombineTo(OrigOp.getNode(),
 | 
						|
                  DAG.getNode(Opcode, DL, VT, Op0, Op1, Op2));
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned Opcode = Op.getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case X86ISD::PALIGNR:
 | 
						|
    // PALIGNR can be converted to VALIGND/Q for 128-bit vectors.
 | 
						|
    if (!VT.is128BitVector())
 | 
						|
      return false;
 | 
						|
    Opcode = X86ISD::VALIGN;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case X86ISD::VALIGN: {
 | 
						|
    if (EltVT != MVT::i32 && EltVT != MVT::i64)
 | 
						|
      return false;
 | 
						|
    uint64_t Imm = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
    MVT OpEltVT = Op.getSimpleValueType().getVectorElementType();
 | 
						|
    unsigned ShiftAmt = Imm * OpEltVT.getSizeInBits();
 | 
						|
    unsigned EltSize = EltVT.getSizeInBits();
 | 
						|
    // Make sure we can represent the same shift with the new VT.
 | 
						|
    if ((ShiftAmt % EltSize) != 0)
 | 
						|
      return false;
 | 
						|
    Imm = ShiftAmt / EltSize;
 | 
						|
    return BitcastAndCombineShuffle(Opcode, Op.getOperand(0), Op.getOperand(1),
 | 
						|
                                    DAG.getConstant(Imm, DL, MVT::i8));
 | 
						|
  }
 | 
						|
  case X86ISD::SHUF128: {
 | 
						|
    if (EltVT.getSizeInBits() != 32 && EltVT.getSizeInBits() != 64)
 | 
						|
      return false;
 | 
						|
    // Only change element size, not type.
 | 
						|
    if (VT.isInteger() != Op.getSimpleValueType().isInteger())
 | 
						|
      return false;
 | 
						|
    return BitcastAndCombineShuffle(Opcode, Op.getOperand(0), Op.getOperand(1),
 | 
						|
                                    Op.getOperand(2));
 | 
						|
  }
 | 
						|
  case ISD::INSERT_SUBVECTOR: {
 | 
						|
    unsigned EltSize = EltVT.getSizeInBits();
 | 
						|
    if (EltSize != 32 && EltSize != 64)
 | 
						|
      return false;
 | 
						|
    MVT OpEltVT = Op.getSimpleValueType().getVectorElementType();
 | 
						|
    // Only change element size, not type.
 | 
						|
    if (VT.isInteger() != OpEltVT.isInteger())
 | 
						|
      return false;
 | 
						|
    uint64_t Imm = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
    Imm = (Imm * OpEltVT.getSizeInBits()) / EltSize;
 | 
						|
    SDValue Op0 = DAG.getBitcast(VT, Op.getOperand(0));
 | 
						|
    DCI.AddToWorklist(Op0.getNode());
 | 
						|
    // Op1 needs to be bitcasted to a smaller vector with the same element type.
 | 
						|
    SDValue Op1 = Op.getOperand(1);
 | 
						|
    MVT Op1VT = MVT::getVectorVT(EltVT,
 | 
						|
                            Op1.getSimpleValueType().getSizeInBits() / EltSize);
 | 
						|
    Op1 = DAG.getBitcast(Op1VT, Op1);
 | 
						|
    DCI.AddToWorklist(Op1.getNode());
 | 
						|
    DCI.CombineTo(OrigOp.getNode(),
 | 
						|
                  DAG.getNode(Opcode, DL, VT, Op0, Op1,
 | 
						|
                              DAG.getConstant(Imm, DL, MVT::i8)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case ISD::EXTRACT_SUBVECTOR: {
 | 
						|
    unsigned EltSize = EltVT.getSizeInBits();
 | 
						|
    if (EltSize != 32 && EltSize != 64)
 | 
						|
      return false;
 | 
						|
    MVT OpEltVT = Op.getSimpleValueType().getVectorElementType();
 | 
						|
    // Only change element size, not type.
 | 
						|
    if (VT.isInteger() != OpEltVT.isInteger())
 | 
						|
      return false;
 | 
						|
    uint64_t Imm = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
    Imm = (Imm * OpEltVT.getSizeInBits()) / EltSize;
 | 
						|
    // Op0 needs to be bitcasted to a larger vector with the same element type.
 | 
						|
    SDValue Op0 = Op.getOperand(0);
 | 
						|
    MVT Op0VT = MVT::getVectorVT(EltVT,
 | 
						|
                            Op0.getSimpleValueType().getSizeInBits() / EltSize);
 | 
						|
    Op0 = DAG.getBitcast(Op0VT, Op0);
 | 
						|
    DCI.AddToWorklist(Op0.getNode());
 | 
						|
    DCI.CombineTo(OrigOp.getNode(),
 | 
						|
                  DAG.getNode(Opcode, DL, VT, Op0,
 | 
						|
                              DAG.getConstant(Imm, DL, MVT::i8)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on SELECT and VSELECT nodes.
 | 
						|
static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
 | 
						|
                             TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                             const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  // Get the LHS/RHS of the select.
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  EVT VT = LHS.getValueType();
 | 
						|
  EVT CondVT = Cond.getValueType();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
 | 
						|
  // instructions match the semantics of the common C idiom x<y?x:y but not
 | 
						|
  // x<=y?x:y, because of how they handle negative zero (which can be
 | 
						|
  // ignored in unsafe-math mode).
 | 
						|
  // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
 | 
						|
  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
 | 
						|
      VT != MVT::f80 && VT != MVT::f128 &&
 | 
						|
      (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
 | 
						|
      (Subtarget.hasSSE2() ||
 | 
						|
       (Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | 
						|
 | 
						|
    unsigned Opcode = 0;
 | 
						|
    // Check for x CC y ? x : y.
 | 
						|
    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
 | 
						|
        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETULT:
 | 
						|
        // Converting this to a min would handle NaNs incorrectly, and swapping
 | 
						|
        // the operands would cause it to handle comparisons between positive
 | 
						|
        // and negative zero incorrectly.
 | 
						|
        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
 | 
						|
          if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | 
						|
            break;
 | 
						|
          std::swap(LHS, RHS);
 | 
						|
        }
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
      case ISD::SETOLE:
 | 
						|
        // Converting this to a min would handle comparisons between positive
 | 
						|
        // and negative zero incorrectly.
 | 
						|
        if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
 | 
						|
          break;
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
      case ISD::SETULE:
 | 
						|
        // Converting this to a min would handle both negative zeros and NaNs
 | 
						|
        // incorrectly, but we can swap the operands to fix both.
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
      case ISD::SETOLT:
 | 
						|
      case ISD::SETLT:
 | 
						|
      case ISD::SETLE:
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
 | 
						|
      case ISD::SETOGE:
 | 
						|
        // Converting this to a max would handle comparisons between positive
 | 
						|
        // and negative zero incorrectly.
 | 
						|
        if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
 | 
						|
          break;
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      case ISD::SETUGT:
 | 
						|
        // Converting this to a max would handle NaNs incorrectly, and swapping
 | 
						|
        // the operands would cause it to handle comparisons between positive
 | 
						|
        // and negative zero incorrectly.
 | 
						|
        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
 | 
						|
          if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | 
						|
            break;
 | 
						|
          std::swap(LHS, RHS);
 | 
						|
        }
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      case ISD::SETUGE:
 | 
						|
        // Converting this to a max would handle both negative zeros and NaNs
 | 
						|
        // incorrectly, but we can swap the operands to fix both.
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
      case ISD::SETOGT:
 | 
						|
      case ISD::SETGT:
 | 
						|
      case ISD::SETGE:
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    // Check for x CC y ? y : x -- a min/max with reversed arms.
 | 
						|
    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
 | 
						|
               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETOGE:
 | 
						|
        // Converting this to a min would handle comparisons between positive
 | 
						|
        // and negative zero incorrectly, and swapping the operands would
 | 
						|
        // cause it to handle NaNs incorrectly.
 | 
						|
        if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
 | 
						|
          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | 
						|
            break;
 | 
						|
          std::swap(LHS, RHS);
 | 
						|
        }
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
      case ISD::SETUGT:
 | 
						|
        // Converting this to a min would handle NaNs incorrectly.
 | 
						|
        if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
 | 
						|
          break;
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
      case ISD::SETUGE:
 | 
						|
        // Converting this to a min would handle both negative zeros and NaNs
 | 
						|
        // incorrectly, but we can swap the operands to fix both.
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
      case ISD::SETOGT:
 | 
						|
      case ISD::SETGT:
 | 
						|
      case ISD::SETGE:
 | 
						|
        Opcode = X86ISD::FMIN;
 | 
						|
        break;
 | 
						|
 | 
						|
      case ISD::SETULT:
 | 
						|
        // Converting this to a max would handle NaNs incorrectly.
 | 
						|
        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | 
						|
          break;
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      case ISD::SETOLE:
 | 
						|
        // Converting this to a max would handle comparisons between positive
 | 
						|
        // and negative zero incorrectly, and swapping the operands would
 | 
						|
        // cause it to handle NaNs incorrectly.
 | 
						|
        if (!DAG.getTarget().Options.UnsafeFPMath &&
 | 
						|
            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
 | 
						|
          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | 
						|
            break;
 | 
						|
          std::swap(LHS, RHS);
 | 
						|
        }
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      case ISD::SETULE:
 | 
						|
        // Converting this to a max would handle both negative zeros and NaNs
 | 
						|
        // incorrectly, but we can swap the operands to fix both.
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
      case ISD::SETOLT:
 | 
						|
      case ISD::SETLT:
 | 
						|
      case ISD::SETLE:
 | 
						|
        Opcode = X86ISD::FMAX;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode)
 | 
						|
      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
 | 
						|
  // lowering on KNL. In this case we convert it to
 | 
						|
  // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
 | 
						|
  // The same situation for all 128 and 256-bit vectors of i8 and i16.
 | 
						|
  // Since SKX these selects have a proper lowering.
 | 
						|
  if (Subtarget.hasAVX512() && CondVT.isVector() &&
 | 
						|
      CondVT.getVectorElementType() == MVT::i1 &&
 | 
						|
      (VT.is128BitVector() || VT.is256BitVector()) &&
 | 
						|
      (VT.getVectorElementType() == MVT::i8 ||
 | 
						|
       VT.getVectorElementType() == MVT::i16) &&
 | 
						|
      !(Subtarget.hasBWI() && Subtarget.hasVLX())) {
 | 
						|
    Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
 | 
						|
    DCI.AddToWorklist(Cond.getNode());
 | 
						|
    return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue V = combineSelectOfTwoConstants(N, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Canonicalize max and min:
 | 
						|
  // (x > y) ? x : y -> (x >= y) ? x : y
 | 
						|
  // (x < y) ? x : y -> (x <= y) ? x : y
 | 
						|
  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
 | 
						|
  // the need for an extra compare
 | 
						|
  // against zero. e.g.
 | 
						|
  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
 | 
						|
  // subl   %esi, %edi
 | 
						|
  // testl  %edi, %edi
 | 
						|
  // movl   $0, %eax
 | 
						|
  // cmovgl %edi, %eax
 | 
						|
  // =>
 | 
						|
  // xorl   %eax, %eax
 | 
						|
  // subl   %esi, $edi
 | 
						|
  // cmovsl %eax, %edi
 | 
						|
  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
 | 
						|
      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
 | 
						|
      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | 
						|
    switch (CC) {
 | 
						|
    default: break;
 | 
						|
    case ISD::SETLT:
 | 
						|
    case ISD::SETGT: {
 | 
						|
      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
 | 
						|
      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
 | 
						|
                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
 | 
						|
      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Early exit check
 | 
						|
  if (!TLI.isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Match VSELECTs into subs with unsigned saturation.
 | 
						|
  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
 | 
						|
      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
 | 
						|
      ((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
 | 
						|
       (Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | 
						|
 | 
						|
    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
 | 
						|
    // left side invert the predicate to simplify logic below.
 | 
						|
    SDValue Other;
 | 
						|
    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
 | 
						|
      Other = RHS;
 | 
						|
      CC = ISD::getSetCCInverse(CC, true);
 | 
						|
    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
 | 
						|
      Other = LHS;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Other.getNode() && Other->getNumOperands() == 2 &&
 | 
						|
        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
 | 
						|
      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
 | 
						|
      SDValue CondRHS = Cond->getOperand(1);
 | 
						|
 | 
						|
      // Look for a general sub with unsigned saturation first.
 | 
						|
      // x >= y ? x-y : 0 --> subus x, y
 | 
						|
      // x >  y ? x-y : 0 --> subus x, y
 | 
						|
      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
 | 
						|
          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
 | 
						|
        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
 | 
						|
 | 
						|
      if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
 | 
						|
        if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
 | 
						|
          if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
 | 
						|
            if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
 | 
						|
              // If the RHS is a constant we have to reverse the const
 | 
						|
              // canonicalization.
 | 
						|
              // x > C-1 ? x+-C : 0 --> subus x, C
 | 
						|
              if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
 | 
						|
                  CondRHSConst->getAPIntValue() ==
 | 
						|
                      (-OpRHSConst->getAPIntValue() - 1))
 | 
						|
                return DAG.getNode(
 | 
						|
                    X86ISD::SUBUS, DL, VT, OpLHS,
 | 
						|
                    DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
 | 
						|
 | 
						|
          // Another special case: If C was a sign bit, the sub has been
 | 
						|
          // canonicalized into a xor.
 | 
						|
          // FIXME: Would it be better to use computeKnownBits to determine
 | 
						|
          //        whether it's safe to decanonicalize the xor?
 | 
						|
          // x s< 0 ? x^C : 0 --> subus x, C
 | 
						|
          if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
 | 
						|
              ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
 | 
						|
              OpRHSConst->getAPIntValue().isSignBit())
 | 
						|
            // Note that we have to rebuild the RHS constant here to ensure we
 | 
						|
            // don't rely on particular values of undef lanes.
 | 
						|
            return DAG.getNode(
 | 
						|
                X86ISD::SUBUS, DL, VT, OpLHS,
 | 
						|
                DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // If this is a *dynamic* select (non-constant condition) and we can match
 | 
						|
  // this node with one of the variable blend instructions, restructure the
 | 
						|
  // condition so that the blends can use the high bit of each element and use
 | 
						|
  // SimplifyDemandedBits to simplify the condition operand.
 | 
						|
  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
 | 
						|
      !DCI.isBeforeLegalize() &&
 | 
						|
      !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
 | 
						|
    unsigned BitWidth = Cond.getScalarValueSizeInBits();
 | 
						|
 | 
						|
    // Don't optimize vector selects that map to mask-registers.
 | 
						|
    if (BitWidth == 1)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // We can only handle the cases where VSELECT is directly legal on the
 | 
						|
    // subtarget. We custom lower VSELECT nodes with constant conditions and
 | 
						|
    // this makes it hard to see whether a dynamic VSELECT will correctly
 | 
						|
    // lower, so we both check the operation's status and explicitly handle the
 | 
						|
    // cases where a *dynamic* blend will fail even though a constant-condition
 | 
						|
    // blend could be custom lowered.
 | 
						|
    // FIXME: We should find a better way to handle this class of problems.
 | 
						|
    // Potentially, we should combine constant-condition vselect nodes
 | 
						|
    // pre-legalization into shuffles and not mark as many types as custom
 | 
						|
    // lowered.
 | 
						|
    if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
 | 
						|
      return SDValue();
 | 
						|
    // FIXME: We don't support i16-element blends currently. We could and
 | 
						|
    // should support them by making *all* the bits in the condition be set
 | 
						|
    // rather than just the high bit and using an i8-element blend.
 | 
						|
    if (VT.getVectorElementType() == MVT::i16)
 | 
						|
      return SDValue();
 | 
						|
    // Dynamic blending was only available from SSE4.1 onward.
 | 
						|
    if (VT.is128BitVector() && !Subtarget.hasSSE41())
 | 
						|
      return SDValue();
 | 
						|
    // Byte blends are only available in AVX2
 | 
						|
    if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
 | 
						|
    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
 | 
						|
 | 
						|
    APInt KnownZero, KnownOne;
 | 
						|
    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
 | 
						|
                                          DCI.isBeforeLegalizeOps());
 | 
						|
    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
 | 
						|
        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
 | 
						|
                                 TLO)) {
 | 
						|
      // If we changed the computation somewhere in the DAG, this change
 | 
						|
      // will affect all users of Cond.
 | 
						|
      // Make sure it is fine and update all the nodes so that we do not
 | 
						|
      // use the generic VSELECT anymore. Otherwise, we may perform
 | 
						|
      // wrong optimizations as we messed up with the actual expectation
 | 
						|
      // for the vector boolean values.
 | 
						|
      if (Cond != TLO.Old) {
 | 
						|
        // Check all uses of that condition operand to check whether it will be
 | 
						|
        // consumed by non-BLEND instructions, which may depend on all bits are
 | 
						|
        // set properly.
 | 
						|
        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
 | 
						|
             I != E; ++I)
 | 
						|
          if (I->getOpcode() != ISD::VSELECT)
 | 
						|
            // TODO: Add other opcodes eventually lowered into BLEND.
 | 
						|
            return SDValue();
 | 
						|
 | 
						|
        // Update all the users of the condition, before committing the change,
 | 
						|
        // so that the VSELECT optimizations that expect the correct vector
 | 
						|
        // boolean value will not be triggered.
 | 
						|
        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
 | 
						|
             I != E; ++I)
 | 
						|
          DAG.ReplaceAllUsesOfValueWith(
 | 
						|
              SDValue(*I, 0),
 | 
						|
              DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
 | 
						|
                          Cond, I->getOperand(1), I->getOperand(2)));
 | 
						|
        DCI.CommitTargetLoweringOpt(TLO);
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
      // At this point, only Cond is changed. Change the condition
 | 
						|
      // just for N to keep the opportunity to optimize all other
 | 
						|
      // users their own way.
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(
 | 
						|
          SDValue(N, 0),
 | 
						|
          DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
 | 
						|
                      TLO.New, N->getOperand(1), N->getOperand(2)));
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for vselects with LHS/RHS being bitcasted from an operation that
 | 
						|
  // can be executed on another type. Push the bitcast to the inputs of
 | 
						|
  // the operation. This exposes opportunities for using masking instructions.
 | 
						|
  if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalizeOps() &&
 | 
						|
      CondVT.getVectorElementType() == MVT::i1) {
 | 
						|
    if (combineBitcastForMaskedOp(LHS, DAG, DCI))
 | 
						|
      return SDValue(N, 0);
 | 
						|
    if (combineBitcastForMaskedOp(RHS, DAG, DCI))
 | 
						|
      return SDValue(N, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Combine:
 | 
						|
///   (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
 | 
						|
/// to:
 | 
						|
///   (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
 | 
						|
/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
 | 
						|
/// Note that this is only legal for some op/cc combinations.
 | 
						|
static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  // This combine only operates on CMP-like nodes.
 | 
						|
  if (!(Cmp.getOpcode() == X86ISD::CMP ||
 | 
						|
        (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // This only applies to variations of the common case:
 | 
						|
  //   (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
 | 
						|
  //   (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
 | 
						|
  //   (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
 | 
						|
  //   (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
 | 
						|
  // Using the proper condcodes (see below), overflow is checked for.
 | 
						|
 | 
						|
  // FIXME: We can generalize both constraints:
 | 
						|
  // - XOR/OR/AND (if they were made to survive AtomicExpand)
 | 
						|
  // - LHS != 1
 | 
						|
  // if the result is compared.
 | 
						|
 | 
						|
  SDValue CmpLHS = Cmp.getOperand(0);
 | 
						|
  SDValue CmpRHS = Cmp.getOperand(1);
 | 
						|
 | 
						|
  if (!CmpLHS.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
 | 
						|
  if (!CmpRHSC || CmpRHSC->getZExtValue() != 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const unsigned Opc = CmpLHS.getOpcode();
 | 
						|
 | 
						|
  if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue OpRHS = CmpLHS.getOperand(2);
 | 
						|
  auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
 | 
						|
  if (!OpRHSC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  APInt Addend = OpRHSC->getAPIntValue();
 | 
						|
  if (Opc == ISD::ATOMIC_LOAD_SUB)
 | 
						|
    Addend = -Addend;
 | 
						|
 | 
						|
  if (CC == X86::COND_S && Addend == 1)
 | 
						|
    CC = X86::COND_LE;
 | 
						|
  else if (CC == X86::COND_NS && Addend == 1)
 | 
						|
    CC = X86::COND_G;
 | 
						|
  else if (CC == X86::COND_G && Addend == -1)
 | 
						|
    CC = X86::COND_GE;
 | 
						|
  else if (CC == X86::COND_LE && Addend == -1)
 | 
						|
    CC = X86::COND_L;
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG);
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
 | 
						|
                                DAG.getUNDEF(CmpLHS.getValueType()));
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
 | 
						|
  return LockOp;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether a boolean test is testing a boolean value generated by
 | 
						|
// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
 | 
						|
// code.
 | 
						|
//
 | 
						|
// Simplify the following patterns:
 | 
						|
// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
 | 
						|
// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
 | 
						|
// to (Op EFLAGS Cond)
 | 
						|
//
 | 
						|
// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
 | 
						|
// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
 | 
						|
// to (Op EFLAGS !Cond)
 | 
						|
//
 | 
						|
// where Op could be BRCOND or CMOV.
 | 
						|
//
 | 
						|
static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
 | 
						|
  // This combine only operates on CMP-like nodes.
 | 
						|
  if (!(Cmp.getOpcode() == X86ISD::CMP ||
 | 
						|
        (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Quit if not used as a boolean value.
 | 
						|
  if (CC != X86::COND_E && CC != X86::COND_NE)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check CMP operands. One of them should be 0 or 1 and the other should be
 | 
						|
  // an SetCC or extended from it.
 | 
						|
  SDValue Op1 = Cmp.getOperand(0);
 | 
						|
  SDValue Op2 = Cmp.getOperand(1);
 | 
						|
 | 
						|
  SDValue SetCC;
 | 
						|
  const ConstantSDNode* C = nullptr;
 | 
						|
  bool needOppositeCond = (CC == X86::COND_E);
 | 
						|
  bool checkAgainstTrue = false; // Is it a comparison against 1?
 | 
						|
 | 
						|
  if ((C = dyn_cast<ConstantSDNode>(Op1)))
 | 
						|
    SetCC = Op2;
 | 
						|
  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
 | 
						|
    SetCC = Op1;
 | 
						|
  else // Quit if all operands are not constants.
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (C->getZExtValue() == 1) {
 | 
						|
    needOppositeCond = !needOppositeCond;
 | 
						|
    checkAgainstTrue = true;
 | 
						|
  } else if (C->getZExtValue() != 0)
 | 
						|
    // Quit if the constant is neither 0 or 1.
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool truncatedToBoolWithAnd = false;
 | 
						|
  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
 | 
						|
  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
         SetCC.getOpcode() == ISD::TRUNCATE ||
 | 
						|
         SetCC.getOpcode() == ISD::AND) {
 | 
						|
    if (SetCC.getOpcode() == ISD::AND) {
 | 
						|
      int OpIdx = -1;
 | 
						|
      if (isOneConstant(SetCC.getOperand(0)))
 | 
						|
        OpIdx = 1;
 | 
						|
      if (isOneConstant(SetCC.getOperand(1)))
 | 
						|
        OpIdx = 0;
 | 
						|
      if (OpIdx < 0)
 | 
						|
        break;
 | 
						|
      SetCC = SetCC.getOperand(OpIdx);
 | 
						|
      truncatedToBoolWithAnd = true;
 | 
						|
    } else
 | 
						|
      SetCC = SetCC.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SetCC.getOpcode()) {
 | 
						|
  case X86ISD::SETCC_CARRY:
 | 
						|
    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
 | 
						|
    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
 | 
						|
    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
 | 
						|
    // truncated to i1 using 'and'.
 | 
						|
    if (checkAgainstTrue && !truncatedToBoolWithAnd)
 | 
						|
      break;
 | 
						|
    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
 | 
						|
           "Invalid use of SETCC_CARRY!");
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case X86ISD::SETCC:
 | 
						|
    // Set the condition code or opposite one if necessary.
 | 
						|
    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
 | 
						|
    if (needOppositeCond)
 | 
						|
      CC = X86::GetOppositeBranchCondition(CC);
 | 
						|
    return SetCC.getOperand(1);
 | 
						|
  case X86ISD::CMOV: {
 | 
						|
    // Check whether false/true value has canonical one, i.e. 0 or 1.
 | 
						|
    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
 | 
						|
    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
 | 
						|
    // Quit if true value is not a constant.
 | 
						|
    if (!TVal)
 | 
						|
      return SDValue();
 | 
						|
    // Quit if false value is not a constant.
 | 
						|
    if (!FVal) {
 | 
						|
      SDValue Op = SetCC.getOperand(0);
 | 
						|
      // Skip 'zext' or 'trunc' node.
 | 
						|
      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
          Op.getOpcode() == ISD::TRUNCATE)
 | 
						|
        Op = Op.getOperand(0);
 | 
						|
      // A special case for rdrand/rdseed, where 0 is set if false cond is
 | 
						|
      // found.
 | 
						|
      if ((Op.getOpcode() != X86ISD::RDRAND &&
 | 
						|
           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
 | 
						|
        return SDValue();
 | 
						|
    }
 | 
						|
    // Quit if false value is not the constant 0 or 1.
 | 
						|
    bool FValIsFalse = true;
 | 
						|
    if (FVal && FVal->getZExtValue() != 0) {
 | 
						|
      if (FVal->getZExtValue() != 1)
 | 
						|
        return SDValue();
 | 
						|
      // If FVal is 1, opposite cond is needed.
 | 
						|
      needOppositeCond = !needOppositeCond;
 | 
						|
      FValIsFalse = false;
 | 
						|
    }
 | 
						|
    // Quit if TVal is not the constant opposite of FVal.
 | 
						|
    if (FValIsFalse && TVal->getZExtValue() != 1)
 | 
						|
      return SDValue();
 | 
						|
    if (!FValIsFalse && TVal->getZExtValue() != 0)
 | 
						|
      return SDValue();
 | 
						|
    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
 | 
						|
    if (needOppositeCond)
 | 
						|
      CC = X86::GetOppositeBranchCondition(CC);
 | 
						|
    return SetCC.getOperand(3);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
 | 
						|
/// Match:
 | 
						|
///   (X86or (X86setcc) (X86setcc))
 | 
						|
///   (X86cmp (and (X86setcc) (X86setcc)), 0)
 | 
						|
static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
 | 
						|
                                           X86::CondCode &CC1, SDValue &Flags,
 | 
						|
                                           bool &isAnd) {
 | 
						|
  if (Cond->getOpcode() == X86ISD::CMP) {
 | 
						|
    if (!isNullConstant(Cond->getOperand(1)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Cond = Cond->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  isAnd = false;
 | 
						|
 | 
						|
  SDValue SetCC0, SetCC1;
 | 
						|
  switch (Cond->getOpcode()) {
 | 
						|
  default: return false;
 | 
						|
  case ISD::AND:
 | 
						|
  case X86ISD::AND:
 | 
						|
    isAnd = true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::OR:
 | 
						|
  case X86ISD::OR:
 | 
						|
    SetCC0 = Cond->getOperand(0);
 | 
						|
    SetCC1 = Cond->getOperand(1);
 | 
						|
    break;
 | 
						|
  };
 | 
						|
 | 
						|
  // Make sure we have SETCC nodes, using the same flags value.
 | 
						|
  if (SetCC0.getOpcode() != X86ISD::SETCC ||
 | 
						|
      SetCC1.getOpcode() != X86ISD::SETCC ||
 | 
						|
      SetCC0->getOperand(1) != SetCC1->getOperand(1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
 | 
						|
  CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
 | 
						|
  Flags = SetCC0->getOperand(1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize an EFLAGS definition used according to the condition code \p CC
 | 
						|
/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
 | 
						|
/// uses of chain values.
 | 
						|
static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
 | 
						|
    return R;
 | 
						|
  return combineSetCCAtomicArith(EFLAGS, CC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
 | 
						|
static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // If the flag operand isn't dead, don't touch this CMOV.
 | 
						|
  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue FalseOp = N->getOperand(0);
 | 
						|
  SDValue TrueOp = N->getOperand(1);
 | 
						|
  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
 | 
						|
  SDValue Cond = N->getOperand(3);
 | 
						|
 | 
						|
  if (CC == X86::COND_E || CC == X86::COND_NE) {
 | 
						|
    switch (Cond.getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case X86ISD::BSR:
 | 
						|
    case X86ISD::BSF:
 | 
						|
      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
 | 
						|
      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
 | 
						|
        return (CC == X86::COND_E) ? FalseOp : TrueOp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to simplify the EFLAGS and condition code operands.
 | 
						|
  // We can't always do this as FCMOV only supports a subset of X86 cond.
 | 
						|
  if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG)) {
 | 
						|
    if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
 | 
						|
      SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8),
 | 
						|
        Flags};
 | 
						|
      return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a select between two integer constants, try to do some
 | 
						|
  // optimizations.  Note that the operands are ordered the opposite of SELECT
 | 
						|
  // operands.
 | 
						|
  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
 | 
						|
    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
 | 
						|
      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
 | 
						|
      // larger than FalseC (the false value).
 | 
						|
      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
 | 
						|
        CC = X86::GetOppositeBranchCondition(CC);
 | 
						|
        std::swap(TrueC, FalseC);
 | 
						|
        std::swap(TrueOp, FalseOp);
 | 
						|
      }
 | 
						|
 | 
						|
      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
 | 
						|
      // This is efficient for any integer data type (including i8/i16) and
 | 
						|
      // shift amount.
 | 
						|
      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
 | 
						|
        Cond = getSETCC(CC, Cond, DL, DAG);
 | 
						|
 | 
						|
        // Zero extend the condition if needed.
 | 
						|
        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
 | 
						|
 | 
						|
        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | 
						|
        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
 | 
						|
                           DAG.getConstant(ShAmt, DL, MVT::i8));
 | 
						|
        if (N->getNumValues() == 2)  // Dead flag value?
 | 
						|
          return DCI.CombineTo(N, Cond, SDValue());
 | 
						|
        return Cond;
 | 
						|
      }
 | 
						|
 | 
						|
      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
 | 
						|
      // for any integer data type, including i8/i16.
 | 
						|
      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
 | 
						|
        Cond = getSETCC(CC, Cond, DL, DAG);
 | 
						|
 | 
						|
        // Zero extend the condition if needed.
 | 
						|
        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
 | 
						|
                           FalseC->getValueType(0), Cond);
 | 
						|
        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | 
						|
                           SDValue(FalseC, 0));
 | 
						|
 | 
						|
        if (N->getNumValues() == 2)  // Dead flag value?
 | 
						|
          return DCI.CombineTo(N, Cond, SDValue());
 | 
						|
        return Cond;
 | 
						|
      }
 | 
						|
 | 
						|
      // Optimize cases that will turn into an LEA instruction.  This requires
 | 
						|
      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | 
						|
      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | 
						|
        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
 | 
						|
        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
 | 
						|
 | 
						|
        bool isFastMultiplier = false;
 | 
						|
        if (Diff < 10) {
 | 
						|
          switch ((unsigned char)Diff) {
 | 
						|
          default: break;
 | 
						|
          case 1:  // result = add base, cond
 | 
						|
          case 2:  // result = lea base(    , cond*2)
 | 
						|
          case 3:  // result = lea base(cond, cond*2)
 | 
						|
          case 4:  // result = lea base(    , cond*4)
 | 
						|
          case 5:  // result = lea base(cond, cond*4)
 | 
						|
          case 8:  // result = lea base(    , cond*8)
 | 
						|
          case 9:  // result = lea base(cond, cond*8)
 | 
						|
            isFastMultiplier = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (isFastMultiplier) {
 | 
						|
          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
 | 
						|
          Cond = getSETCC(CC, Cond, DL ,DAG);
 | 
						|
          // Zero extend the condition if needed.
 | 
						|
          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
 | 
						|
                             Cond);
 | 
						|
          // Scale the condition by the difference.
 | 
						|
          if (Diff != 1)
 | 
						|
            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | 
						|
                               DAG.getConstant(Diff, DL, Cond.getValueType()));
 | 
						|
 | 
						|
          // Add the base if non-zero.
 | 
						|
          if (FalseC->getAPIntValue() != 0)
 | 
						|
            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | 
						|
                               SDValue(FalseC, 0));
 | 
						|
          if (N->getNumValues() == 2)  // Dead flag value?
 | 
						|
            return DCI.CombineTo(N, Cond, SDValue());
 | 
						|
          return Cond;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle these cases:
 | 
						|
  //   (select (x != c), e, c) -> select (x != c), e, x),
 | 
						|
  //   (select (x == c), c, e) -> select (x == c), x, e)
 | 
						|
  // where the c is an integer constant, and the "select" is the combination
 | 
						|
  // of CMOV and CMP.
 | 
						|
  //
 | 
						|
  // The rationale for this change is that the conditional-move from a constant
 | 
						|
  // needs two instructions, however, conditional-move from a register needs
 | 
						|
  // only one instruction.
 | 
						|
  //
 | 
						|
  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
 | 
						|
  //  some instruction-combining opportunities. This opt needs to be
 | 
						|
  //  postponed as late as possible.
 | 
						|
  //
 | 
						|
  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
 | 
						|
    // the DCI.xxxx conditions are provided to postpone the optimization as
 | 
						|
    // late as possible.
 | 
						|
 | 
						|
    ConstantSDNode *CmpAgainst = nullptr;
 | 
						|
    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
 | 
						|
        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
 | 
						|
        !isa<ConstantSDNode>(Cond.getOperand(0))) {
 | 
						|
 | 
						|
      if (CC == X86::COND_NE &&
 | 
						|
          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
 | 
						|
        CC = X86::GetOppositeBranchCondition(CC);
 | 
						|
        std::swap(TrueOp, FalseOp);
 | 
						|
      }
 | 
						|
 | 
						|
      if (CC == X86::COND_E &&
 | 
						|
          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
 | 
						|
        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
 | 
						|
                          DAG.getConstant(CC, DL, MVT::i8), Cond };
 | 
						|
        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fold and/or of setcc's to double CMOV:
 | 
						|
  //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
 | 
						|
  //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
 | 
						|
  //
 | 
						|
  // This combine lets us generate:
 | 
						|
  //   cmovcc1 (jcc1 if we don't have CMOV)
 | 
						|
  //   cmovcc2 (same)
 | 
						|
  // instead of:
 | 
						|
  //   setcc1
 | 
						|
  //   setcc2
 | 
						|
  //   and/or
 | 
						|
  //   cmovne (jne if we don't have CMOV)
 | 
						|
  // When we can't use the CMOV instruction, it might increase branch
 | 
						|
  // mispredicts.
 | 
						|
  // When we can use CMOV, or when there is no mispredict, this improves
 | 
						|
  // throughput and reduces register pressure.
 | 
						|
  //
 | 
						|
  if (CC == X86::COND_NE) {
 | 
						|
    SDValue Flags;
 | 
						|
    X86::CondCode CC0, CC1;
 | 
						|
    bool isAndSetCC;
 | 
						|
    if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
 | 
						|
      if (isAndSetCC) {
 | 
						|
        std::swap(FalseOp, TrueOp);
 | 
						|
        CC0 = X86::GetOppositeBranchCondition(CC0);
 | 
						|
        CC1 = X86::GetOppositeBranchCondition(CC1);
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
 | 
						|
        Flags};
 | 
						|
      SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
 | 
						|
      SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
 | 
						|
      SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
 | 
						|
      return CMOV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Different mul shrinking modes.
 | 
						|
enum ShrinkMode { MULS8, MULU8, MULS16, MULU16 };
 | 
						|
 | 
						|
static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) {
 | 
						|
  EVT VT = N->getOperand(0).getValueType();
 | 
						|
  if (VT.getScalarSizeInBits() != 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2");
 | 
						|
  unsigned SignBits[2] = {1, 1};
 | 
						|
  bool IsPositive[2] = {false, false};
 | 
						|
  for (unsigned i = 0; i < 2; i++) {
 | 
						|
    SDValue Opd = N->getOperand(i);
 | 
						|
 | 
						|
    // DAG.ComputeNumSignBits return 1 for ISD::ANY_EXTEND, so we need to
 | 
						|
    // compute signbits for it separately.
 | 
						|
    if (Opd.getOpcode() == ISD::ANY_EXTEND) {
 | 
						|
      // For anyextend, it is safe to assume an appropriate number of leading
 | 
						|
      // sign/zero bits.
 | 
						|
      if (Opd.getOperand(0).getValueType().getVectorElementType() == MVT::i8)
 | 
						|
        SignBits[i] = 25;
 | 
						|
      else if (Opd.getOperand(0).getValueType().getVectorElementType() ==
 | 
						|
               MVT::i16)
 | 
						|
        SignBits[i] = 17;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
      IsPositive[i] = true;
 | 
						|
    } else if (Opd.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						|
      // All the operands of BUILD_VECTOR need to be int constant.
 | 
						|
      // Find the smallest value range which all the operands belong to.
 | 
						|
      SignBits[i] = 32;
 | 
						|
      IsPositive[i] = true;
 | 
						|
      for (const SDValue &SubOp : Opd.getNode()->op_values()) {
 | 
						|
        if (SubOp.isUndef())
 | 
						|
          continue;
 | 
						|
        auto *CN = dyn_cast<ConstantSDNode>(SubOp);
 | 
						|
        if (!CN)
 | 
						|
          return false;
 | 
						|
        APInt IntVal = CN->getAPIntValue();
 | 
						|
        if (IntVal.isNegative())
 | 
						|
          IsPositive[i] = false;
 | 
						|
        SignBits[i] = std::min(SignBits[i], IntVal.getNumSignBits());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      SignBits[i] = DAG.ComputeNumSignBits(Opd);
 | 
						|
      if (Opd.getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
        IsPositive[i] = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool AllPositive = IsPositive[0] && IsPositive[1];
 | 
						|
  unsigned MinSignBits = std::min(SignBits[0], SignBits[1]);
 | 
						|
  // When ranges are from -128 ~ 127, use MULS8 mode.
 | 
						|
  if (MinSignBits >= 25)
 | 
						|
    Mode = MULS8;
 | 
						|
  // When ranges are from 0 ~ 255, use MULU8 mode.
 | 
						|
  else if (AllPositive && MinSignBits >= 24)
 | 
						|
    Mode = MULU8;
 | 
						|
  // When ranges are from -32768 ~ 32767, use MULS16 mode.
 | 
						|
  else if (MinSignBits >= 17)
 | 
						|
    Mode = MULS16;
 | 
						|
  // When ranges are from 0 ~ 65535, use MULU16 mode.
 | 
						|
  else if (AllPositive && MinSignBits >= 16)
 | 
						|
    Mode = MULU16;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// When the operands of vector mul are extended from smaller size values,
 | 
						|
/// like i8 and i16, the type of mul may be shrinked to generate more
 | 
						|
/// efficient code. Two typical patterns are handled:
 | 
						|
/// Pattern1:
 | 
						|
///     %2 = sext/zext <N x i8> %1 to <N x i32>
 | 
						|
///     %4 = sext/zext <N x i8> %3 to <N x i32>
 | 
						|
//   or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
 | 
						|
///     %5 = mul <N x i32> %2, %4
 | 
						|
///
 | 
						|
/// Pattern2:
 | 
						|
///     %2 = zext/sext <N x i16> %1 to <N x i32>
 | 
						|
///     %4 = zext/sext <N x i16> %3 to <N x i32>
 | 
						|
///  or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
 | 
						|
///     %5 = mul <N x i32> %2, %4
 | 
						|
///
 | 
						|
/// There are four mul shrinking modes:
 | 
						|
/// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is
 | 
						|
/// -128 to 128, and the scalar value range of %4 is also -128 to 128,
 | 
						|
/// generate pmullw+sext32 for it (MULS8 mode).
 | 
						|
/// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is
 | 
						|
/// 0 to 255, and the scalar value range of %4 is also 0 to 255,
 | 
						|
/// generate pmullw+zext32 for it (MULU8 mode).
 | 
						|
/// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is
 | 
						|
/// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767,
 | 
						|
/// generate pmullw+pmulhw for it (MULS16 mode).
 | 
						|
/// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is
 | 
						|
/// 0 to 65535, and the scalar value range of %4 is also 0 to 65535,
 | 
						|
/// generate pmullw+pmulhuw for it (MULU16 mode).
 | 
						|
static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  // Check for legality
 | 
						|
  // pmullw/pmulhw are not supported by SSE.
 | 
						|
  if (!Subtarget.hasSSE2())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check for profitability
 | 
						|
  // pmulld is supported since SSE41. It is better to use pmulld
 | 
						|
  // instead of pmullw+pmulhw, except for subtargets where pmulld is slower than
 | 
						|
  // the expansion.
 | 
						|
  bool OptForMinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
 | 
						|
  if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ShrinkMode Mode;
 | 
						|
  if (!canReduceVMulWidth(N, DAG, Mode))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getOperand(0).getValueType();
 | 
						|
  unsigned RegSize = 128;
 | 
						|
  MVT OpsVT = MVT::getVectorVT(MVT::i16, RegSize / 16);
 | 
						|
  EVT ReducedVT =
 | 
						|
      EVT::getVectorVT(*DAG.getContext(), MVT::i16, VT.getVectorNumElements());
 | 
						|
  // Shrink the operands of mul.
 | 
						|
  SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0);
 | 
						|
  SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1);
 | 
						|
 | 
						|
  if (VT.getVectorNumElements() >= OpsVT.getVectorNumElements()) {
 | 
						|
    // Generate the lower part of mul: pmullw. For MULU8/MULS8, only the
 | 
						|
    // lower part is needed.
 | 
						|
    SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1);
 | 
						|
    if (Mode == MULU8 || Mode == MULS8) {
 | 
						|
      return DAG.getNode((Mode == MULU8) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND,
 | 
						|
                         DL, VT, MulLo);
 | 
						|
    } else {
 | 
						|
      MVT ResVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
 | 
						|
      // Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16,
 | 
						|
      // the higher part is also needed.
 | 
						|
      SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
 | 
						|
                                  ReducedVT, NewN0, NewN1);
 | 
						|
 | 
						|
      // Repack the lower part and higher part result of mul into a wider
 | 
						|
      // result.
 | 
						|
      // Generate shuffle functioning as punpcklwd.
 | 
						|
      SmallVector<int, 16> ShuffleMask(VT.getVectorNumElements());
 | 
						|
      for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++) {
 | 
						|
        ShuffleMask[2 * i] = i;
 | 
						|
        ShuffleMask[2 * i + 1] = i + VT.getVectorNumElements();
 | 
						|
      }
 | 
						|
      SDValue ResLo =
 | 
						|
          DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
 | 
						|
      ResLo = DAG.getNode(ISD::BITCAST, DL, ResVT, ResLo);
 | 
						|
      // Generate shuffle functioning as punpckhwd.
 | 
						|
      for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++) {
 | 
						|
        ShuffleMask[2 * i] = i + VT.getVectorNumElements() / 2;
 | 
						|
        ShuffleMask[2 * i + 1] = i + VT.getVectorNumElements() * 3 / 2;
 | 
						|
      }
 | 
						|
      SDValue ResHi =
 | 
						|
          DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
 | 
						|
      ResHi = DAG.getNode(ISD::BITCAST, DL, ResVT, ResHi);
 | 
						|
      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // When VT.getVectorNumElements() < OpsVT.getVectorNumElements(), we want
 | 
						|
    // to legalize the mul explicitly because implicit legalization for type
 | 
						|
    // <4 x i16> to <4 x i32> sometimes involves unnecessary unpack
 | 
						|
    // instructions which will not exist when we explicitly legalize it by
 | 
						|
    // extending <4 x i16> to <8 x i16> (concatenating the <4 x i16> val with
 | 
						|
    // <4 x i16> undef).
 | 
						|
    //
 | 
						|
    // Legalize the operands of mul.
 | 
						|
    // FIXME: We may be able to handle non-concatenated vectors by insertion.
 | 
						|
    unsigned ReducedSizeInBits = ReducedVT.getSizeInBits();
 | 
						|
    if ((RegSize % ReducedSizeInBits) != 0)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SmallVector<SDValue, 16> Ops(RegSize / ReducedSizeInBits,
 | 
						|
                                 DAG.getUNDEF(ReducedVT));
 | 
						|
    Ops[0] = NewN0;
 | 
						|
    NewN0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
 | 
						|
    Ops[0] = NewN1;
 | 
						|
    NewN1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
 | 
						|
 | 
						|
    if (Mode == MULU8 || Mode == MULS8) {
 | 
						|
      // Generate lower part of mul: pmullw. For MULU8/MULS8, only the lower
 | 
						|
      // part is needed.
 | 
						|
      SDValue Mul = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
 | 
						|
 | 
						|
      // convert the type of mul result to VT.
 | 
						|
      MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
 | 
						|
      SDValue Res = DAG.getNode(Mode == MULU8 ? ISD::ZERO_EXTEND_VECTOR_INREG
 | 
						|
                                              : ISD::SIGN_EXTEND_VECTOR_INREG,
 | 
						|
                                DL, ResVT, Mul);
 | 
						|
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
 | 
						|
                         DAG.getIntPtrConstant(0, DL));
 | 
						|
    } else {
 | 
						|
      // Generate the lower and higher part of mul: pmulhw/pmulhuw. For
 | 
						|
      // MULU16/MULS16, both parts are needed.
 | 
						|
      SDValue MulLo = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
 | 
						|
      SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
 | 
						|
                                  OpsVT, NewN0, NewN1);
 | 
						|
 | 
						|
      // Repack the lower part and higher part result of mul into a wider
 | 
						|
      // result. Make sure the type of mul result is VT.
 | 
						|
      MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
 | 
						|
      SDValue Res = DAG.getNode(X86ISD::UNPCKL, DL, OpsVT, MulLo, MulHi);
 | 
						|
      Res = DAG.getNode(ISD::BITCAST, DL, ResVT, Res);
 | 
						|
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
 | 
						|
                         DAG.getIntPtrConstant(0, DL));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize a single multiply with constant into two operations in order to
 | 
						|
/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
 | 
						|
static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (DCI.isBeforeLegalize() && VT.isVector())
 | 
						|
    return reduceVMULWidth(N, DAG, Subtarget);
 | 
						|
 | 
						|
  // An imul is usually smaller than the alternative sequence.
 | 
						|
  if (DAG.getMachineFunction().getFunction()->optForMinSize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT != MVT::i64 && VT != MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return SDValue();
 | 
						|
  uint64_t MulAmt = C->getZExtValue();
 | 
						|
  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  uint64_t MulAmt1 = 0;
 | 
						|
  uint64_t MulAmt2 = 0;
 | 
						|
  if ((MulAmt % 9) == 0) {
 | 
						|
    MulAmt1 = 9;
 | 
						|
    MulAmt2 = MulAmt / 9;
 | 
						|
  } else if ((MulAmt % 5) == 0) {
 | 
						|
    MulAmt1 = 5;
 | 
						|
    MulAmt2 = MulAmt / 5;
 | 
						|
  } else if ((MulAmt % 3) == 0) {
 | 
						|
    MulAmt1 = 3;
 | 
						|
    MulAmt2 = MulAmt / 3;
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue NewMul;
 | 
						|
  if (MulAmt2 &&
 | 
						|
      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
 | 
						|
 | 
						|
    if (isPowerOf2_64(MulAmt2) &&
 | 
						|
        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
 | 
						|
      // If second multiplifer is pow2, issue it first. We want the multiply by
 | 
						|
      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
 | 
						|
      // is an add.
 | 
						|
      std::swap(MulAmt1, MulAmt2);
 | 
						|
 | 
						|
    if (isPowerOf2_64(MulAmt1))
 | 
						|
      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | 
						|
                           DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
 | 
						|
    else
 | 
						|
      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
 | 
						|
                           DAG.getConstant(MulAmt1, DL, VT));
 | 
						|
 | 
						|
    if (isPowerOf2_64(MulAmt2))
 | 
						|
      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
 | 
						|
                           DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
 | 
						|
    else
 | 
						|
      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
 | 
						|
                           DAG.getConstant(MulAmt2, DL, VT));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NewMul) {
 | 
						|
    assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX)
 | 
						|
           && "Both cases that could cause potential overflows should have "
 | 
						|
              "already been handled.");
 | 
						|
    if (isPowerOf2_64(MulAmt - 1))
 | 
						|
      // (mul x, 2^N + 1) => (add (shl x, N), x)
 | 
						|
      NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
 | 
						|
                                DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | 
						|
                                DAG.getConstant(Log2_64(MulAmt - 1), DL,
 | 
						|
                                MVT::i8)));
 | 
						|
 | 
						|
    else if (isPowerOf2_64(MulAmt + 1))
 | 
						|
      // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | 
						|
      NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT,
 | 
						|
                                N->getOperand(0),
 | 
						|
                                DAG.getConstant(Log2_64(MulAmt + 1),
 | 
						|
                                DL, MVT::i8)), N->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewMul)
 | 
						|
    // Do not add new nodes to DAG combiner worklist.
 | 
						|
    DCI.CombineTo(N, NewMul, false);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | 
						|
  EVT VT = N0.getValueType();
 | 
						|
 | 
						|
  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
 | 
						|
  // since the result of setcc_c is all zero's or all ones.
 | 
						|
  if (VT.isInteger() && !VT.isVector() &&
 | 
						|
      N1C && N0.getOpcode() == ISD::AND &&
 | 
						|
      N0.getOperand(1).getOpcode() == ISD::Constant) {
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | 
						|
    const APInt &ShAmt = N1C->getAPIntValue();
 | 
						|
    Mask = Mask.shl(ShAmt);
 | 
						|
    bool MaskOK = false;
 | 
						|
    // We can handle cases concerning bit-widening nodes containing setcc_c if
 | 
						|
    // we carefully interrogate the mask to make sure we are semantics
 | 
						|
    // preserving.
 | 
						|
    // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
 | 
						|
    // of the underlying setcc_c operation if the setcc_c was zero extended.
 | 
						|
    // Consider the following example:
 | 
						|
    //   zext(setcc_c)                 -> i32 0x0000FFFF
 | 
						|
    //   c1                            -> i32 0x0000FFFF
 | 
						|
    //   c2                            -> i32 0x00000001
 | 
						|
    //   (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
 | 
						|
    //   (and setcc_c, (c1 << c2))     -> i32 0x0000FFFE
 | 
						|
    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
 | 
						|
      MaskOK = true;
 | 
						|
    } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
 | 
						|
               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
 | 
						|
      MaskOK = true;
 | 
						|
    } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
                N00.getOpcode() == ISD::ANY_EXTEND) &&
 | 
						|
               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
 | 
						|
      MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
 | 
						|
    }
 | 
						|
    if (MaskOK && Mask != 0) {
 | 
						|
      SDLoc DL(N);
 | 
						|
      return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Hardware support for vector shifts is sparse which makes us scalarize the
 | 
						|
  // vector operations in many cases. Also, on sandybridge ADD is faster than
 | 
						|
  // shl.
 | 
						|
  // (shl V, 1) -> add V,V
 | 
						|
  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
 | 
						|
    if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
 | 
						|
      assert(N0.getValueType().isVector() && "Invalid vector shift type");
 | 
						|
      // We shift all of the values by one. In many cases we do not have
 | 
						|
      // hardware support for this operation. This is better expressed as an ADD
 | 
						|
      // of two values.
 | 
						|
      if (N1SplatC->getAPIntValue() == 1)
 | 
						|
        return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
 | 
						|
    }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineShiftRightAlgebraic(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N0.getValueType();
 | 
						|
  unsigned Size = VT.getSizeInBits();
 | 
						|
 | 
						|
  // fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
 | 
						|
  // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
 | 
						|
  // into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
 | 
						|
  // depending on sign of (SarConst - [56,48,32,24,16])
 | 
						|
 | 
						|
  // sexts in X86 are MOVs. The MOVs have the same code size
 | 
						|
  // as above SHIFTs (only SHIFT on 1 has lower code size).
 | 
						|
  // However the MOVs have 2 advantages to a SHIFT:
 | 
						|
  // 1. MOVs can write to a register that differs from source
 | 
						|
  // 2. MOVs accept memory operands
 | 
						|
 | 
						|
  if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant ||
 | 
						|
      N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
 | 
						|
      N0.getOperand(1).getOpcode() != ISD::Constant)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N00 = N0.getOperand(0);
 | 
						|
  SDValue N01 = N0.getOperand(1);
 | 
						|
  APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
 | 
						|
  APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
 | 
						|
  EVT CVT = N1.getValueType();
 | 
						|
 | 
						|
  if (SarConst.isNegative())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  for (MVT SVT : MVT::integer_valuetypes()) {
 | 
						|
    unsigned ShiftSize = SVT.getSizeInBits();
 | 
						|
    // skipping types without corresponding sext/zext and
 | 
						|
    // ShlConst that is not one of [56,48,32,24,16]
 | 
						|
    if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize)
 | 
						|
      continue;
 | 
						|
    SDLoc DL(N);
 | 
						|
    SDValue NN =
 | 
						|
        DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
 | 
						|
    SarConst = SarConst - (Size - ShiftSize);
 | 
						|
    if (SarConst == 0)
 | 
						|
      return NN;
 | 
						|
    else if (SarConst.isNegative())
 | 
						|
      return DAG.getNode(ISD::SHL, DL, VT, NN,
 | 
						|
                         DAG.getConstant(-SarConst, DL, CVT));
 | 
						|
    else
 | 
						|
      return DAG.getNode(ISD::SRA, DL, VT, NN,
 | 
						|
                         DAG.getConstant(SarConst, DL, CVT));
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns a vector of 0s if the node in input is a vector logical
 | 
						|
/// shift by a constant amount which is known to be bigger than or equal
 | 
						|
/// to the vector element size in bits.
 | 
						|
static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                      const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
 | 
						|
      (!Subtarget.hasInt256() ||
 | 
						|
       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Amt = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
  if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
 | 
						|
    if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
 | 
						|
      const APInt &ShiftAmt = AmtSplat->getAPIntValue();
 | 
						|
      unsigned MaxAmount =
 | 
						|
        VT.getSimpleVT().getScalarSizeInBits();
 | 
						|
 | 
						|
      // SSE2/AVX2 logical shifts always return a vector of 0s
 | 
						|
      // if the shift amount is bigger than or equal to
 | 
						|
      // the element size. The constant shift amount will be
 | 
						|
      // encoded as a 8-bit immediate.
 | 
						|
      if (ShiftAmt.trunc(8).uge(MaxAmount))
 | 
						|
        return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL);
 | 
						|
    }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineShift(SDNode* N, SelectionDAG &DAG,
 | 
						|
                            TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                            const X86Subtarget &Subtarget) {
 | 
						|
  if (N->getOpcode() == ISD::SHL)
 | 
						|
    if (SDValue V = combineShiftLeft(N, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::SRA)
 | 
						|
    if (SDValue V = combineShiftRightAlgebraic(N, DAG))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // Try to fold this logical shift into a zero vector.
 | 
						|
  if (N->getOpcode() != ISD::SRA)
 | 
						|
    if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget))
 | 
						|
      return V;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineVectorShift(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                  TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                  const X86Subtarget &Subtarget) {
 | 
						|
  assert((X86ISD::VSHLI == N->getOpcode() || X86ISD::VSRLI == N->getOpcode()) &&
 | 
						|
         "Unexpected opcode");
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | 
						|
 | 
						|
  // This fails for mask register (vXi1) shifts.
 | 
						|
  if ((NumBitsPerElt % 8) != 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Out of range logical bit shifts are guaranteed to be zero.
 | 
						|
  APInt ShiftVal = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
 | 
						|
  if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt))
 | 
						|
    return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
 | 
						|
 | 
						|
  // Shift N0 by zero -> N0.
 | 
						|
  if (!ShiftVal)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  // Shift zero -> zero.
 | 
						|
  if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
 | 
						|
    return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
 | 
						|
 | 
						|
  // We can decode 'whole byte' logical bit shifts as shuffles.
 | 
						|
  if ((ShiftVal.getZExtValue() % 8) == 0) {
 | 
						|
    SDValue Op(N, 0);
 | 
						|
    SmallVector<int, 1> NonceMask; // Just a placeholder.
 | 
						|
    NonceMask.push_back(0);
 | 
						|
    if (combineX86ShufflesRecursively({Op}, 0, Op, NonceMask,
 | 
						|
                                      /*Depth*/ 1, /*HasVarMask*/ false, DAG,
 | 
						|
                                      DCI, Subtarget))
 | 
						|
      return SDValue(); // This routine will use CombineTo to replace N.
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
 | 
						|
/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
 | 
						|
/// OR -> CMPNEQSS.
 | 
						|
static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                   TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                   const X86Subtarget &Subtarget) {
 | 
						|
  unsigned opcode;
 | 
						|
 | 
						|
  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
 | 
						|
  // we're requiring SSE2 for both.
 | 
						|
  if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
 | 
						|
    SDValue N0 = N->getOperand(0);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    SDValue CMP0 = N0->getOperand(1);
 | 
						|
    SDValue CMP1 = N1->getOperand(1);
 | 
						|
    SDLoc DL(N);
 | 
						|
 | 
						|
    // The SETCCs should both refer to the same CMP.
 | 
						|
    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue CMP00 = CMP0->getOperand(0);
 | 
						|
    SDValue CMP01 = CMP0->getOperand(1);
 | 
						|
    EVT     VT    = CMP00.getValueType();
 | 
						|
 | 
						|
    if (VT == MVT::f32 || VT == MVT::f64) {
 | 
						|
      bool ExpectingFlags = false;
 | 
						|
      // Check for any users that want flags:
 | 
						|
      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | 
						|
           !ExpectingFlags && UI != UE; ++UI)
 | 
						|
        switch (UI->getOpcode()) {
 | 
						|
        default:
 | 
						|
        case ISD::BR_CC:
 | 
						|
        case ISD::BRCOND:
 | 
						|
        case ISD::SELECT:
 | 
						|
          ExpectingFlags = true;
 | 
						|
          break;
 | 
						|
        case ISD::CopyToReg:
 | 
						|
        case ISD::SIGN_EXTEND:
 | 
						|
        case ISD::ZERO_EXTEND:
 | 
						|
        case ISD::ANY_EXTEND:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (!ExpectingFlags) {
 | 
						|
        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
 | 
						|
        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
 | 
						|
 | 
						|
        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
 | 
						|
          X86::CondCode tmp = cc0;
 | 
						|
          cc0 = cc1;
 | 
						|
          cc1 = tmp;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
 | 
						|
            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
 | 
						|
          // FIXME: need symbolic constants for these magic numbers.
 | 
						|
          // See X86ATTInstPrinter.cpp:printSSECC().
 | 
						|
          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
 | 
						|
          if (Subtarget.hasAVX512()) {
 | 
						|
            SDValue FSetCC = DAG.getNode(X86ISD::FSETCCM, DL, MVT::i1, CMP00,
 | 
						|
                                         CMP01,
 | 
						|
                                         DAG.getConstant(x86cc, DL, MVT::i8));
 | 
						|
            if (N->getValueType(0) != MVT::i1)
 | 
						|
              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
 | 
						|
                                 FSetCC);
 | 
						|
            return FSetCC;
 | 
						|
          }
 | 
						|
          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
 | 
						|
                                              CMP00.getValueType(), CMP00, CMP01,
 | 
						|
                                              DAG.getConstant(x86cc, DL,
 | 
						|
                                                              MVT::i8));
 | 
						|
 | 
						|
          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
 | 
						|
          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
 | 
						|
 | 
						|
          if (is64BitFP && !Subtarget.is64Bit()) {
 | 
						|
            // On a 32-bit target, we cannot bitcast the 64-bit float to a
 | 
						|
            // 64-bit integer, since that's not a legal type. Since
 | 
						|
            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
 | 
						|
            // bits, but can do this little dance to extract the lowest 32 bits
 | 
						|
            // and work with those going forward.
 | 
						|
            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
 | 
						|
                                           OnesOrZeroesF);
 | 
						|
            SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
 | 
						|
            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
 | 
						|
                                        Vector32, DAG.getIntPtrConstant(0, DL));
 | 
						|
            IntVT = MVT::i32;
 | 
						|
          }
 | 
						|
 | 
						|
          SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
 | 
						|
          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
 | 
						|
                                      DAG.getConstant(1, DL, IntVT));
 | 
						|
          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
 | 
						|
                                              ANDed);
 | 
						|
          return OneBitOfTruth;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
 | 
						|
static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == ISD::AND);
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  if (VT != MVT::v2i64 && VT != MVT::v4i64 && VT != MVT::v8i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Canonicalize XOR to the left.
 | 
						|
  if (N1.getOpcode() == ISD::XOR)
 | 
						|
    std::swap(N0, N1);
 | 
						|
 | 
						|
  if (N0.getOpcode() != ISD::XOR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N00 = N0->getOperand(0);
 | 
						|
  SDValue N01 = N0->getOperand(1);
 | 
						|
 | 
						|
  N01 = peekThroughBitcasts(N01);
 | 
						|
 | 
						|
  // Either match a direct AllOnes for 128, 256, and 512-bit vectors, or an
 | 
						|
  // insert_subvector building a 256-bit AllOnes vector.
 | 
						|
  if (!ISD::isBuildVectorAllOnes(N01.getNode())) {
 | 
						|
    if (!VT.is256BitVector() || N01->getOpcode() != ISD::INSERT_SUBVECTOR)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue V1 = N01->getOperand(0);
 | 
						|
    SDValue V2 = N01->getOperand(1);
 | 
						|
    if (V1.getOpcode() != ISD::INSERT_SUBVECTOR ||
 | 
						|
        !V1.getOperand(0).isUndef() ||
 | 
						|
        !ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) ||
 | 
						|
        !ISD::isBuildVectorAllOnes(V2.getNode()))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  return DAG.getNode(X86ISD::ANDNP, DL, VT, N00, N1);
 | 
						|
}
 | 
						|
 | 
						|
// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
 | 
						|
// register. In most cases we actually compare or select YMM-sized registers
 | 
						|
// and mixing the two types creates horrible code. This method optimizes
 | 
						|
// some of the transition sequences.
 | 
						|
static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.is256BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((N->getOpcode() == ISD::ANY_EXTEND ||
 | 
						|
          N->getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
 | 
						|
 | 
						|
  SDValue Narrow = N->getOperand(0);
 | 
						|
  EVT NarrowVT = Narrow->getValueType(0);
 | 
						|
  if (!NarrowVT.is128BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Narrow->getOpcode() != ISD::XOR &&
 | 
						|
      Narrow->getOpcode() != ISD::AND &&
 | 
						|
      Narrow->getOpcode() != ISD::OR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0  = Narrow->getOperand(0);
 | 
						|
  SDValue N1  = Narrow->getOperand(1);
 | 
						|
  SDLoc DL(Narrow);
 | 
						|
 | 
						|
  // The Left side has to be a trunc.
 | 
						|
  if (N0.getOpcode() != ISD::TRUNCATE)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The type of the truncated inputs.
 | 
						|
  EVT WideVT = N0->getOperand(0)->getValueType(0);
 | 
						|
  if (WideVT != VT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The right side has to be a 'trunc' or a constant vector.
 | 
						|
  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
 | 
						|
  ConstantSDNode *RHSConstSplat = nullptr;
 | 
						|
  if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
 | 
						|
    RHSConstSplat = RHSBV->getConstantSplatNode();
 | 
						|
  if (!RHSTrunc && !RHSConstSplat)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Set N0 and N1 to hold the inputs to the new wide operation.
 | 
						|
  N0 = N0->getOperand(0);
 | 
						|
  if (RHSConstSplat) {
 | 
						|
    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(),
 | 
						|
                     SDValue(RHSConstSplat, 0));
 | 
						|
    N1 = DAG.getSplatBuildVector(WideVT, DL, N1);
 | 
						|
  } else if (RHSTrunc) {
 | 
						|
    N1 = N1->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate the wide operation.
 | 
						|
  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
    return Op;
 | 
						|
  case ISD::ZERO_EXTEND: {
 | 
						|
    unsigned InBits = NarrowVT.getScalarSizeInBits();
 | 
						|
    APInt Mask = APInt::getAllOnesValue(InBits);
 | 
						|
    Mask = Mask.zext(VT.getScalarSizeInBits());
 | 
						|
    return DAG.getNode(ISD::AND, DL, VT,
 | 
						|
                       Op, DAG.getConstant(Mask, DL, VT));
 | 
						|
  }
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
 | 
						|
                       Op, DAG.getValueType(NarrowVT));
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If both input operands of a logic op are being cast from floating point
 | 
						|
/// types, try to convert this into a floating point logic node to avoid
 | 
						|
/// unnecessary moves from SSE to integer registers.
 | 
						|
static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                        const X86Subtarget &Subtarget) {
 | 
						|
  unsigned FPOpcode = ISD::DELETED_NODE;
 | 
						|
  if (N->getOpcode() == ISD::AND)
 | 
						|
    FPOpcode = X86ISD::FAND;
 | 
						|
  else if (N->getOpcode() == ISD::OR)
 | 
						|
    FPOpcode = X86ISD::FOR;
 | 
						|
  else if (N->getOpcode() == ISD::XOR)
 | 
						|
    FPOpcode = X86ISD::FXOR;
 | 
						|
 | 
						|
  assert(FPOpcode != ISD::DELETED_NODE &&
 | 
						|
         "Unexpected input node for FP logic conversion");
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
  if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
 | 
						|
      ((Subtarget.hasSSE1() && VT == MVT::i32) ||
 | 
						|
       (Subtarget.hasSSE2() && VT == MVT::i64))) {
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
    SDValue N10 = N1.getOperand(0);
 | 
						|
    EVT N00Type = N00.getValueType();
 | 
						|
    EVT N10Type = N10.getValueType();
 | 
						|
    if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
 | 
						|
      SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
 | 
						|
      return DAG.getBitcast(VT, FPLogic);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If this is a PCMPEQ or PCMPGT result that is bitwise-anded with 1 (this is
 | 
						|
/// the x86 lowering of a SETCC + ZEXT), replace the 'and' with a shift-right to
 | 
						|
/// eliminate loading the vector constant mask value. This relies on the fact
 | 
						|
/// that a PCMP always creates an all-ones or all-zeros bitmask per element.
 | 
						|
static SDValue combinePCMPAnd1(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = peekThroughBitcasts(N->getOperand(0));
 | 
						|
  SDValue Op1 = peekThroughBitcasts(N->getOperand(1));
 | 
						|
 | 
						|
  // TODO: Use AssertSext to mark any nodes that have the property of producing
 | 
						|
  // all-ones or all-zeros. Then check for that node rather than particular
 | 
						|
  // opcodes.
 | 
						|
  if (Op0.getOpcode() != X86ISD::PCMPEQ && Op0.getOpcode() != X86ISD::PCMPGT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The existence of the PCMP node guarantees that we have the required SSE2 or
 | 
						|
  // AVX2 for a shift of this vector type, but there is no vector shift by
 | 
						|
  // immediate for a vector with byte elements (PSRLB). 512-bit vectors use the
 | 
						|
  // masked compare nodes, so they should not make it here.
 | 
						|
  EVT VT0 = Op0.getValueType();
 | 
						|
  EVT VT1 = Op1.getValueType();
 | 
						|
  unsigned EltBitWidth = VT0.getScalarSizeInBits();
 | 
						|
  if (VT0 != VT1 || EltBitWidth == 8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(VT0.getSizeInBits() == 128 || VT0.getSizeInBits() == 256);
 | 
						|
 | 
						|
  APInt SplatVal;
 | 
						|
  if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) || SplatVal != 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue ShAmt = DAG.getConstant(EltBitWidth - 1, DL, MVT::i8);
 | 
						|
  SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt);
 | 
						|
  return DAG.getBitcast(N->getValueType(0), Shift);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
 | 
						|
    return R;
 | 
						|
 | 
						|
  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
 | 
						|
    return FPLogic;
 | 
						|
 | 
						|
  if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
 | 
						|
    return R;
 | 
						|
 | 
						|
  if (SDValue ShiftRight = combinePCMPAnd1(N, DAG))
 | 
						|
    return ShiftRight;
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Attempt to recursively combine a bitmask AND with shuffles.
 | 
						|
  if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
 | 
						|
    SDValue Op(N, 0);
 | 
						|
    SmallVector<int, 1> NonceMask; // Just a placeholder.
 | 
						|
    NonceMask.push_back(0);
 | 
						|
    if (combineX86ShufflesRecursively({Op}, 0, Op, NonceMask,
 | 
						|
                                      /*Depth*/ 1, /*HasVarMask*/ false, DAG,
 | 
						|
                                      DCI, Subtarget))
 | 
						|
      return SDValue(); // This routine will use CombineTo to replace N.
 | 
						|
  }
 | 
						|
 | 
						|
  // Create BEXTR instructions
 | 
						|
  // BEXTR is ((X >> imm) & (2**size-1))
 | 
						|
  if (VT != MVT::i32 && VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!Subtarget.hasBMI() && !Subtarget.hasTBM())
 | 
						|
    return SDValue();
 | 
						|
  if (N0.getOpcode() != ISD::SRA && N0.getOpcode() != ISD::SRL)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
 | 
						|
  ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | 
						|
  if (MaskNode && ShiftNode) {
 | 
						|
    uint64_t Mask = MaskNode->getZExtValue();
 | 
						|
    uint64_t Shift = ShiftNode->getZExtValue();
 | 
						|
    if (isMask_64(Mask)) {
 | 
						|
      uint64_t MaskSize = countPopulation(Mask);
 | 
						|
      if (Shift + MaskSize <= VT.getSizeInBits())
 | 
						|
        return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
 | 
						|
                           DAG.getConstant(Shift | (MaskSize << 8), DL,
 | 
						|
                                           VT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try to fold:
 | 
						|
//   (or (and (m, y), (pandn m, x)))
 | 
						|
// into:
 | 
						|
//   (vselect m, x, y)
 | 
						|
// As a special case, try to fold:
 | 
						|
//   (or (and (m, (sub 0, x)), (pandn m, x)))
 | 
						|
// into:
 | 
						|
//   (sub (xor X, M), M)
 | 
						|
static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                            const X86Subtarget &Subtarget) {
 | 
						|
  assert(N->getOpcode() == ISD::OR);
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!((VT == MVT::v2i64) || (VT == MVT::v4i64 && Subtarget.hasInt256())))
 | 
						|
    return SDValue();
 | 
						|
  assert(Subtarget.hasSSE2() && "Unexpected i64 vector without SSE2!");
 | 
						|
 | 
						|
  // Canonicalize pandn to RHS
 | 
						|
  if (N0.getOpcode() == X86ISD::ANDNP)
 | 
						|
    std::swap(N0, N1);
 | 
						|
 | 
						|
  if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Mask = N1.getOperand(0);
 | 
						|
  SDValue X = N1.getOperand(1);
 | 
						|
  SDValue Y;
 | 
						|
  if (N0.getOperand(0) == Mask)
 | 
						|
    Y = N0.getOperand(1);
 | 
						|
  if (N0.getOperand(1) == Mask)
 | 
						|
    Y = N0.getOperand(0);
 | 
						|
 | 
						|
  // Check to see if the mask appeared in both the AND and ANDNP.
 | 
						|
  if (!Y.getNode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Validate that X, Y, and Mask are bitcasts, and see through them.
 | 
						|
  Mask = peekThroughBitcasts(Mask);
 | 
						|
  X = peekThroughBitcasts(X);
 | 
						|
  Y = peekThroughBitcasts(Y);
 | 
						|
 | 
						|
  EVT MaskVT = Mask.getValueType();
 | 
						|
 | 
						|
  // Validate that the Mask operand is a vector sra node.
 | 
						|
  // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
 | 
						|
  // there is no psrai.b
 | 
						|
  unsigned EltBits = MaskVT.getScalarSizeInBits();
 | 
						|
  unsigned SraAmt = ~0;
 | 
						|
  if (Mask.getOpcode() == ISD::SRA) {
 | 
						|
    if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
 | 
						|
      if (auto *AmtConst = AmtBV->getConstantSplatNode())
 | 
						|
        SraAmt = AmtConst->getZExtValue();
 | 
						|
  } else if (Mask.getOpcode() == X86ISD::VSRAI) {
 | 
						|
    SDValue SraC = Mask.getOperand(1);
 | 
						|
    SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
 | 
						|
  }
 | 
						|
  if ((SraAmt + 1) != EltBits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Try to match:
 | 
						|
  //   (or (and (M, (sub 0, X)), (pandn M, X)))
 | 
						|
  // which is a special case of vselect:
 | 
						|
  //   (vselect M, (sub 0, X), X)
 | 
						|
  // Per:
 | 
						|
  // http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
 | 
						|
  // We know that, if fNegate is 0 or 1:
 | 
						|
  //   (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
 | 
						|
  //
 | 
						|
  // Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
 | 
						|
  //   ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
 | 
						|
  //   ( M      ? -X : X) == ((X ^   M     ) + (M & 1))
 | 
						|
  // This lets us transform our vselect to:
 | 
						|
  //   (add (xor X, M), (and M, 1))
 | 
						|
  // And further to:
 | 
						|
  //   (sub (xor X, M), M)
 | 
						|
  if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
 | 
						|
    auto IsNegV = [](SDNode *N, SDValue V) {
 | 
						|
      return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
 | 
						|
        ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
 | 
						|
    };
 | 
						|
    SDValue V;
 | 
						|
    if (IsNegV(Y.getNode(), X))
 | 
						|
      V = X;
 | 
						|
    else if (IsNegV(X.getNode(), Y))
 | 
						|
      V = Y;
 | 
						|
 | 
						|
    if (V) {
 | 
						|
      assert(EltBits == 8 || EltBits == 16 || EltBits == 32);
 | 
						|
      SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
 | 
						|
      SDValue SubOp2 = Mask;
 | 
						|
 | 
						|
      // If the negate was on the false side of the select, then
 | 
						|
      // the operands of the SUB need to be swapped. PR 27251.
 | 
						|
      // This is because the pattern being matched above is
 | 
						|
      // (vselect M, (sub (0, X), X)  -> (sub (xor X, M), M)
 | 
						|
      // but if the pattern matched was
 | 
						|
      // (vselect M, X, (sub (0, X))), that is really negation of the pattern
 | 
						|
      // above, -(vselect M, (sub 0, X), X), and therefore the replacement
 | 
						|
      // pattern also needs to be a negation of the replacement pattern above.
 | 
						|
      // And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
 | 
						|
      // sub accomplishes the negation of the replacement pattern.
 | 
						|
      if (V == Y)
 | 
						|
         std::swap(SubOp1, SubOp2);
 | 
						|
 | 
						|
      return DAG.getBitcast(VT,
 | 
						|
                            DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // PBLENDVB is only available on SSE 4.1.
 | 
						|
  if (!Subtarget.hasSSE41())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
 | 
						|
 | 
						|
  X = DAG.getBitcast(BlendVT, X);
 | 
						|
  Y = DAG.getBitcast(BlendVT, Y);
 | 
						|
  Mask = DAG.getBitcast(BlendVT, Mask);
 | 
						|
  Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
 | 
						|
  return DAG.getBitcast(VT, Mask);
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for combineOrCmpEqZeroToCtlzSrl
 | 
						|
// Transforms:
 | 
						|
//   seteq(cmp x, 0)
 | 
						|
//   into:
 | 
						|
//   srl(ctlz x), log2(bitsize(x))
 | 
						|
// Input pattern is checked by caller.
 | 
						|
static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  SDValue Cmp = Op.getOperand(1);
 | 
						|
  EVT VT = Cmp.getOperand(0).getValueType();
 | 
						|
  unsigned Log2b = Log2_32(VT.getSizeInBits());
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0));
 | 
						|
  // The result of the shift is true or false, and on X86, the 32-bit
 | 
						|
  // encoding of shr and lzcnt is more desirable.
 | 
						|
  SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32);
 | 
						|
  SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc,
 | 
						|
                            DAG.getConstant(Log2b, dl, VT));
 | 
						|
  return DAG.getZExtOrTrunc(Scc, dl, ExtTy);
 | 
						|
}
 | 
						|
 | 
						|
// Try to transform:
 | 
						|
//   zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
 | 
						|
//   into:
 | 
						|
//   srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
 | 
						|
// Will also attempt to match more generic cases, eg:
 | 
						|
//   zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0)))
 | 
						|
// Only applies if the target supports the FastLZCNT feature.
 | 
						|
static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                           const X86Subtarget &Subtarget) {
 | 
						|
  if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  auto isORCandidate = [](SDValue N) {
 | 
						|
    return (N->getOpcode() == ISD::OR && N->hasOneUse());
 | 
						|
  };
 | 
						|
 | 
						|
  // Check the zero extend is extending to 32-bit or more. The code generated by
 | 
						|
  // srl(ctlz) for 16-bit or less variants of the pattern would require extra
 | 
						|
  // instructions to clear the upper bits.
 | 
						|
  if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) ||
 | 
						|
      !isORCandidate(N->getOperand(0)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check the node matches: setcc(eq, cmp 0)
 | 
						|
  auto isSetCCCandidate = [](SDValue N) {
 | 
						|
    return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() &&
 | 
						|
           X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E &&
 | 
						|
           N->getOperand(1).getOpcode() == X86ISD::CMP &&
 | 
						|
           N->getOperand(1).getConstantOperandVal(1) == 0 &&
 | 
						|
           N->getOperand(1).getValueType().bitsGE(MVT::i32);
 | 
						|
  };
 | 
						|
 | 
						|
  SDNode *OR = N->getOperand(0).getNode();
 | 
						|
  SDValue LHS = OR->getOperand(0);
 | 
						|
  SDValue RHS = OR->getOperand(1);
 | 
						|
 | 
						|
  // Save nodes matching or(or, setcc(eq, cmp 0)).
 | 
						|
  SmallVector<SDNode *, 2> ORNodes;
 | 
						|
  while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) ||
 | 
						|
          (isORCandidate(RHS) && isSetCCCandidate(LHS)))) {
 | 
						|
    ORNodes.push_back(OR);
 | 
						|
    OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode();
 | 
						|
    LHS = OR->getOperand(0);
 | 
						|
    RHS = OR->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)).
 | 
						|
  if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) ||
 | 
						|
      !isORCandidate(SDValue(OR, 0)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it
 | 
						|
  // to
 | 
						|
  // or(srl(ctlz),srl(ctlz)).
 | 
						|
  // The dag combiner can then fold it into:
 | 
						|
  // srl(or(ctlz, ctlz)).
 | 
						|
  EVT VT = OR->getValueType(0);
 | 
						|
  SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG);
 | 
						|
  SDValue Ret, NewRHS;
 | 
						|
  if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG)))
 | 
						|
    Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS);
 | 
						|
 | 
						|
  if (!Ret)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern.
 | 
						|
  while (ORNodes.size() > 0) {
 | 
						|
    OR = ORNodes.pop_back_val();
 | 
						|
    LHS = OR->getOperand(0);
 | 
						|
    RHS = OR->getOperand(1);
 | 
						|
    // Swap rhs with lhs to match or(setcc(eq, cmp, 0), or).
 | 
						|
    if (RHS->getOpcode() == ISD::OR)
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
    EVT VT = OR->getValueType(0);
 | 
						|
    SDValue NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG);
 | 
						|
    if (!NewRHS)
 | 
						|
      return SDValue();
 | 
						|
    Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ret)
 | 
						|
    Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret);
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
 | 
						|
                         TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                         const X86Subtarget &Subtarget) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
 | 
						|
    return R;
 | 
						|
 | 
						|
  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
 | 
						|
    return FPLogic;
 | 
						|
 | 
						|
  if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
 | 
						|
    return R;
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
 | 
						|
  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
 | 
						|
 | 
						|
  // SHLD/SHRD instructions have lower register pressure, but on some
 | 
						|
  // platforms they have higher latency than the equivalent
 | 
						|
  // series of shifts/or that would otherwise be generated.
 | 
						|
  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
 | 
						|
  // have higher latencies and we are not optimizing for size.
 | 
						|
  if (!OptForSize && Subtarget.isSHLDSlow())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
 | 
						|
    std::swap(N0, N1);
 | 
						|
  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
 | 
						|
    return SDValue();
 | 
						|
  if (!N0.hasOneUse() || !N1.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ShAmt0 = N0.getOperand(1);
 | 
						|
  if (ShAmt0.getValueType() != MVT::i8)
 | 
						|
    return SDValue();
 | 
						|
  SDValue ShAmt1 = N1.getOperand(1);
 | 
						|
  if (ShAmt1.getValueType() != MVT::i8)
 | 
						|
    return SDValue();
 | 
						|
  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
 | 
						|
    ShAmt0 = ShAmt0.getOperand(0);
 | 
						|
  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
 | 
						|
    ShAmt1 = ShAmt1.getOperand(0);
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  unsigned Opc = X86ISD::SHLD;
 | 
						|
  SDValue Op0 = N0.getOperand(0);
 | 
						|
  SDValue Op1 = N1.getOperand(0);
 | 
						|
  if (ShAmt0.getOpcode() == ISD::SUB ||
 | 
						|
      ShAmt0.getOpcode() == ISD::XOR) {
 | 
						|
    Opc = X86ISD::SHRD;
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
    std::swap(ShAmt0, ShAmt1);
 | 
						|
  }
 | 
						|
 | 
						|
  // OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> SHLD( X, Y, C )
 | 
						|
  // OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> SHRD( X, Y, C )
 | 
						|
  // OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> SHLD( X, Y, C )
 | 
						|
  // OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> SHRD( X, Y, C )
 | 
						|
  unsigned Bits = VT.getSizeInBits();
 | 
						|
  if (ShAmt1.getOpcode() == ISD::SUB) {
 | 
						|
    SDValue Sum = ShAmt1.getOperand(0);
 | 
						|
    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
 | 
						|
      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
 | 
						|
      if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE)
 | 
						|
        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
 | 
						|
      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
 | 
						|
        return DAG.getNode(Opc, DL, VT,
 | 
						|
                           Op0, Op1,
 | 
						|
                           DAG.getNode(ISD::TRUNCATE, DL,
 | 
						|
                                       MVT::i8, ShAmt0));
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
 | 
						|
    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
 | 
						|
    if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits)
 | 
						|
      return DAG.getNode(Opc, DL, VT,
 | 
						|
                         N0.getOperand(0), N1.getOperand(0),
 | 
						|
                         DAG.getNode(ISD::TRUNCATE, DL,
 | 
						|
                                       MVT::i8, ShAmt0));
 | 
						|
  } else if (ShAmt1.getOpcode() == ISD::XOR) {
 | 
						|
    SDValue Mask = ShAmt1.getOperand(1);
 | 
						|
    if (ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask)) {
 | 
						|
      unsigned InnerShift = (X86ISD::SHLD == Opc ? ISD::SRL : ISD::SHL);
 | 
						|
      SDValue ShAmt1Op0 = ShAmt1.getOperand(0);
 | 
						|
      if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE)
 | 
						|
        ShAmt1Op0 = ShAmt1Op0.getOperand(0);
 | 
						|
      if (MaskC->getSExtValue() == (Bits - 1) && ShAmt1Op0 == ShAmt0) {
 | 
						|
        if (Op1.getOpcode() == InnerShift &&
 | 
						|
            isa<ConstantSDNode>(Op1.getOperand(1)) &&
 | 
						|
            Op1.getConstantOperandVal(1) == 1) {
 | 
						|
          return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
 | 
						|
                             DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
 | 
						|
        }
 | 
						|
        // Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ).
 | 
						|
        if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD &&
 | 
						|
            Op1.getOperand(0) == Op1.getOperand(1)) {
 | 
						|
          return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
 | 
						|
                     DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Generate NEG and CMOV for integer abs.
 | 
						|
static SDValue combineIntegerAbs(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // Since X86 does not have CMOV for 8-bit integer, we don't convert
 | 
						|
  // 8-bit integer abs to NEG and CMOV.
 | 
						|
  if (VT.isInteger() && VT.getSizeInBits() == 8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
 | 
						|
  // and change it to SUB and CMOV.
 | 
						|
  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
 | 
						|
      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
 | 
						|
      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) {
 | 
						|
    auto *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | 
						|
    if (Y1C && Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
 | 
						|
      // Generate SUB & CMOV.
 | 
						|
      SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
 | 
						|
                                DAG.getConstant(0, DL, VT), N0.getOperand(0));
 | 
						|
      SDValue Ops[] = {N0.getOperand(0), Neg,
 | 
						|
                       DAG.getConstant(X86::COND_GE, DL, MVT::i8),
 | 
						|
                       SDValue(Neg.getNode(), 1)};
 | 
						|
      return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Try to turn tests against the signbit in the form of:
 | 
						|
///   XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
 | 
						|
/// into:
 | 
						|
///   SETGT(X, -1)
 | 
						|
static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  // This is only worth doing if the output type is i8 or i1.
 | 
						|
  EVT ResultType = N->getValueType(0);
 | 
						|
  if (ResultType != MVT::i8 && ResultType != MVT::i1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // We should be performing an xor against a truncated shift.
 | 
						|
  if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure we are performing an xor against one.
 | 
						|
  if (!isOneConstant(N1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // SetCC on x86 zero extends so only act on this if it's a logical shift.
 | 
						|
  SDValue Shift = N0.getOperand(0);
 | 
						|
  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure we are truncating from one of i16, i32 or i64.
 | 
						|
  EVT ShiftTy = Shift.getValueType();
 | 
						|
  if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure the shift amount extracts the sign bit.
 | 
						|
  if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
 | 
						|
      Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Create a greater-than comparison against -1.
 | 
						|
  // N.B. Using SETGE against 0 works but we want a canonical looking
 | 
						|
  // comparison, using SETGT matches up with what TranslateX86CC.
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue ShiftOp = Shift.getOperand(0);
 | 
						|
  EVT ShiftOpTy = ShiftOp.getValueType();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                               *DAG.getContext(), ResultType);
 | 
						|
  SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
 | 
						|
                              DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
 | 
						|
  if (SetCCResultType != ResultType)
 | 
						|
    Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
/// Turn vector tests of the signbit in the form of:
 | 
						|
///   xor (sra X, elt_size(X)-1), -1
 | 
						|
/// into:
 | 
						|
///   pcmpgt X, -1
 | 
						|
///
 | 
						|
/// This should be called before type legalization because the pattern may not
 | 
						|
/// persist after that.
 | 
						|
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                         const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return SDValue();
 | 
						|
  case MVT::v16i8:
 | 
						|
  case MVT::v8i16:
 | 
						|
  case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break;
 | 
						|
  case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break;
 | 
						|
  case MVT::v32i8:
 | 
						|
  case MVT::v16i16:
 | 
						|
  case MVT::v8i32:
 | 
						|
  case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
 | 
						|
  }
 | 
						|
 | 
						|
  // There must be a shift right algebraic before the xor, and the xor must be a
 | 
						|
  // 'not' operation.
 | 
						|
  SDValue Shift = N->getOperand(0);
 | 
						|
  SDValue Ones = N->getOperand(1);
 | 
						|
  if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
 | 
						|
      !ISD::isBuildVectorAllOnes(Ones.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The shift should be smearing the sign bit across each vector element.
 | 
						|
  auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1));
 | 
						|
  if (!ShiftBV)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
 | 
						|
  auto *ShiftAmt = ShiftBV->getConstantSplatNode();
 | 
						|
  if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Create a greater-than comparison against -1. We don't use the more obvious
 | 
						|
  // greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
 | 
						|
  return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if truncation with saturation form type \p SrcVT to \p DstVT
 | 
						|
/// is valid for the given \p Subtarget.
 | 
						|
static bool
 | 
						|
isSATValidOnSubtarget(EVT SrcVT, EVT DstVT, const X86Subtarget &Subtarget) {
 | 
						|
  if (!Subtarget.hasAVX512())
 | 
						|
    return false;
 | 
						|
  EVT SrcElVT = SrcVT.getScalarType();
 | 
						|
  EVT DstElVT = DstVT.getScalarType();
 | 
						|
  if (SrcElVT.getSizeInBits() < 16 || SrcElVT.getSizeInBits() > 64)
 | 
						|
    return false;
 | 
						|
  if (DstElVT.getSizeInBits() < 8 || DstElVT.getSizeInBits() > 32)
 | 
						|
    return false;
 | 
						|
  if (SrcVT.is512BitVector() || Subtarget.hasVLX())
 | 
						|
    return SrcElVT.getSizeInBits() >= 32 || Subtarget.hasBWI();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Detect a pattern of truncation with saturation:
 | 
						|
/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
 | 
						|
/// Return the source value to be truncated or SDValue() if the pattern was not
 | 
						|
/// matched or the unsupported on the current target.
 | 
						|
static SDValue
 | 
						|
detectUSatPattern(SDValue In, EVT VT, const X86Subtarget &Subtarget) {
 | 
						|
  if (In.getOpcode() != ISD::UMIN)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT InVT = In.getValueType();
 | 
						|
  // FIXME: Scalar type may be supported if we move it to vector register.
 | 
						|
  if (!InVT.isVector() || !InVT.isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!isSATValidOnSubtarget(InVT, VT, Subtarget))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  //Saturation with truncation. We truncate from InVT to VT.
 | 
						|
  assert(InVT.getScalarSizeInBits() > VT.getScalarSizeInBits() &&
 | 
						|
    "Unexpected types for truncate operation");
 | 
						|
 | 
						|
  SDValue SrcVal;
 | 
						|
  APInt C;
 | 
						|
  if (ISD::isConstantSplatVector(In.getOperand(0).getNode(), C))
 | 
						|
    SrcVal = In.getOperand(1);
 | 
						|
  else if (ISD::isConstantSplatVector(In.getOperand(1).getNode(), C))
 | 
						|
    SrcVal = In.getOperand(0);
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // C should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according
 | 
						|
  // the element size of the destination type.
 | 
						|
  return (C == ((uint64_t)1 << VT.getScalarSizeInBits()) - 1) ?
 | 
						|
    SrcVal : SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// This function detects the AVG pattern between vectors of unsigned i8/i16,
 | 
						|
/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
 | 
						|
/// X86ISD::AVG instruction.
 | 
						|
static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
 | 
						|
                                const X86Subtarget &Subtarget,
 | 
						|
                                const SDLoc &DL) {
 | 
						|
  if (!VT.isVector() || !VT.isSimple())
 | 
						|
    return SDValue();
 | 
						|
  EVT InVT = In.getValueType();
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
 | 
						|
  EVT ScalarVT = VT.getVectorElementType();
 | 
						|
  if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
 | 
						|
        isPowerOf2_32(NumElems)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // InScalarVT is the intermediate type in AVG pattern and it should be greater
 | 
						|
  // than the original input type (i8/i16).
 | 
						|
  EVT InScalarVT = InVT.getVectorElementType();
 | 
						|
  if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!Subtarget.hasSSE2())
 | 
						|
    return SDValue();
 | 
						|
  if (Subtarget.hasBWI()) {
 | 
						|
    if (VT.getSizeInBits() > 512)
 | 
						|
      return SDValue();
 | 
						|
  } else if (Subtarget.hasAVX2()) {
 | 
						|
    if (VT.getSizeInBits() > 256)
 | 
						|
      return SDValue();
 | 
						|
  } else {
 | 
						|
    if (VT.getSizeInBits() > 128)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Detect the following pattern:
 | 
						|
  //
 | 
						|
  //   %1 = zext <N x i8> %a to <N x i32>
 | 
						|
  //   %2 = zext <N x i8> %b to <N x i32>
 | 
						|
  //   %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
 | 
						|
  //   %4 = add nuw nsw <N x i32> %3, %2
 | 
						|
  //   %5 = lshr <N x i32> %N, <i32 1 x N>
 | 
						|
  //   %6 = trunc <N x i32> %5 to <N x i8>
 | 
						|
  //
 | 
						|
  // In AVX512, the last instruction can also be a trunc store.
 | 
						|
 | 
						|
  if (In.getOpcode() != ISD::SRL)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // A lambda checking the given SDValue is a constant vector and each element
 | 
						|
  // is in the range [Min, Max].
 | 
						|
  auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
 | 
						|
    BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
 | 
						|
    if (!BV || !BV->isConstant())
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) {
 | 
						|
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i));
 | 
						|
      if (!C)
 | 
						|
        return false;
 | 
						|
      uint64_t Val = C->getZExtValue();
 | 
						|
      if (Val < Min || Val > Max)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // Check if each element of the vector is left-shifted by one.
 | 
						|
  auto LHS = In.getOperand(0);
 | 
						|
  auto RHS = In.getOperand(1);
 | 
						|
  if (!IsConstVectorInRange(RHS, 1, 1))
 | 
						|
    return SDValue();
 | 
						|
  if (LHS.getOpcode() != ISD::ADD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Detect a pattern of a + b + 1 where the order doesn't matter.
 | 
						|
  SDValue Operands[3];
 | 
						|
  Operands[0] = LHS.getOperand(0);
 | 
						|
  Operands[1] = LHS.getOperand(1);
 | 
						|
 | 
						|
  // Take care of the case when one of the operands is a constant vector whose
 | 
						|
  // element is in the range [1, 256].
 | 
						|
  if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
 | 
						|
      Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
 | 
						|
      Operands[0].getOperand(0).getValueType() == VT) {
 | 
						|
    // The pattern is detected. Subtract one from the constant vector, then
 | 
						|
    // demote it and emit X86ISD::AVG instruction.
 | 
						|
    SDValue VecOnes = DAG.getConstant(1, DL, InVT);
 | 
						|
    Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
 | 
						|
    Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
 | 
						|
    return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
 | 
						|
                       Operands[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operands[0].getOpcode() == ISD::ADD)
 | 
						|
    std::swap(Operands[0], Operands[1]);
 | 
						|
  else if (Operands[1].getOpcode() != ISD::ADD)
 | 
						|
    return SDValue();
 | 
						|
  Operands[2] = Operands[1].getOperand(0);
 | 
						|
  Operands[1] = Operands[1].getOperand(1);
 | 
						|
 | 
						|
  // Now we have three operands of two additions. Check that one of them is a
 | 
						|
  // constant vector with ones, and the other two are promoted from i8/i16.
 | 
						|
  for (int i = 0; i < 3; ++i) {
 | 
						|
    if (!IsConstVectorInRange(Operands[i], 1, 1))
 | 
						|
      continue;
 | 
						|
    std::swap(Operands[i], Operands[2]);
 | 
						|
 | 
						|
    // Check if Operands[0] and Operands[1] are results of type promotion.
 | 
						|
    for (int j = 0; j < 2; ++j)
 | 
						|
      if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
 | 
						|
          Operands[j].getOperand(0).getValueType() != VT)
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
    // The pattern is detected, emit X86ISD::AVG instruction.
 | 
						|
    return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
 | 
						|
                       Operands[1].getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  LoadSDNode *Ld = cast<LoadSDNode>(N);
 | 
						|
  EVT RegVT = Ld->getValueType(0);
 | 
						|
  EVT MemVT = Ld->getMemoryVT();
 | 
						|
  SDLoc dl(Ld);
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // For chips with slow 32-byte unaligned loads, break the 32-byte operation
 | 
						|
  // into two 16-byte operations.
 | 
						|
  ISD::LoadExtType Ext = Ld->getExtensionType();
 | 
						|
  bool Fast;
 | 
						|
  unsigned AddressSpace = Ld->getAddressSpace();
 | 
						|
  unsigned Alignment = Ld->getAlignment();
 | 
						|
  if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
 | 
						|
      Ext == ISD::NON_EXTLOAD &&
 | 
						|
      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
 | 
						|
                             AddressSpace, Alignment, &Fast) && !Fast) {
 | 
						|
    unsigned NumElems = RegVT.getVectorNumElements();
 | 
						|
    if (NumElems < 2)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Ptr = Ld->getBasePtr();
 | 
						|
 | 
						|
    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
 | 
						|
                                  NumElems/2);
 | 
						|
    SDValue Load1 =
 | 
						|
        DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
 | 
						|
                    Alignment, Ld->getMemOperand()->getFlags());
 | 
						|
 | 
						|
    Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl);
 | 
						|
    SDValue Load2 =
 | 
						|
        DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
 | 
						|
                    std::min(16U, Alignment), Ld->getMemOperand()->getFlags());
 | 
						|
    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                             Load1.getValue(1),
 | 
						|
                             Load2.getValue(1));
 | 
						|
 | 
						|
    SDValue NewVec = DAG.getUNDEF(RegVT);
 | 
						|
    NewVec = insert128BitVector(NewVec, Load1, 0, DAG, dl);
 | 
						|
    NewVec = insert128BitVector(NewVec, Load2, NumElems / 2, DAG, dl);
 | 
						|
    return DCI.CombineTo(N, NewVec, TF, true);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If V is a build vector of boolean constants and exactly one of those
 | 
						|
/// constants is true, return the operand index of that true element.
 | 
						|
/// Otherwise, return -1.
 | 
						|
static int getOneTrueElt(SDValue V) {
 | 
						|
  // This needs to be a build vector of booleans.
 | 
						|
  // TODO: Checking for the i1 type matches the IR definition for the mask,
 | 
						|
  // but the mask check could be loosened to i8 or other types. That might
 | 
						|
  // also require checking more than 'allOnesValue'; eg, the x86 HW
 | 
						|
  // instructions only require that the MSB is set for each mask element.
 | 
						|
  // The ISD::MSTORE comments/definition do not specify how the mask operand
 | 
						|
  // is formatted.
 | 
						|
  auto *BV = dyn_cast<BuildVectorSDNode>(V);
 | 
						|
  if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  int TrueIndex = -1;
 | 
						|
  unsigned NumElts = BV->getValueType(0).getVectorNumElements();
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    const SDValue &Op = BV->getOperand(i);
 | 
						|
    if (Op.isUndef())
 | 
						|
      continue;
 | 
						|
    auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!ConstNode)
 | 
						|
      return -1;
 | 
						|
    if (ConstNode->getAPIntValue().isAllOnesValue()) {
 | 
						|
      // If we already found a one, this is too many.
 | 
						|
      if (TrueIndex >= 0)
 | 
						|
        return -1;
 | 
						|
      TrueIndex = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TrueIndex;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a masked memory load/store operation, return true if it has one mask
 | 
						|
/// bit set. If it has one mask bit set, then also return the memory address of
 | 
						|
/// the scalar element to load/store, the vector index to insert/extract that
 | 
						|
/// scalar element, and the alignment for the scalar memory access.
 | 
						|
static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
 | 
						|
                                         SelectionDAG &DAG, SDValue &Addr,
 | 
						|
                                         SDValue &Index, unsigned &Alignment) {
 | 
						|
  int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
 | 
						|
  if (TrueMaskElt < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the address of the one scalar element that is specified by the mask
 | 
						|
  // using the appropriate offset from the base pointer.
 | 
						|
  EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
 | 
						|
  Addr = MaskedOp->getBasePtr();
 | 
						|
  if (TrueMaskElt != 0) {
 | 
						|
    unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
 | 
						|
    Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
 | 
						|
  }
 | 
						|
 | 
						|
  Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
 | 
						|
  Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If exactly one element of the mask is set for a non-extending masked load,
 | 
						|
/// it is a scalar load and vector insert.
 | 
						|
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
 | 
						|
/// mask have already been optimized in IR, so we don't bother with those here.
 | 
						|
static SDValue
 | 
						|
reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
 | 
						|
                             TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
 | 
						|
  // However, some target hooks may need to be added to know when the transform
 | 
						|
  // is profitable. Endianness would also have to be considered.
 | 
						|
 | 
						|
  SDValue Addr, VecIndex;
 | 
						|
  unsigned Alignment;
 | 
						|
  if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Load the one scalar element that is specified by the mask using the
 | 
						|
  // appropriate offset from the base pointer.
 | 
						|
  SDLoc DL(ML);
 | 
						|
  EVT VT = ML->getValueType(0);
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  SDValue Load =
 | 
						|
      DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(),
 | 
						|
                  Alignment, ML->getMemOperand()->getFlags());
 | 
						|
 | 
						|
  // Insert the loaded element into the appropriate place in the vector.
 | 
						|
  SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(),
 | 
						|
                               Load, VecIndex);
 | 
						|
  return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue
 | 
						|
combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
 | 
						|
                              TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(ML);
 | 
						|
  EVT VT = ML->getValueType(0);
 | 
						|
 | 
						|
  // If we are loading the first and last elements of a vector, it is safe and
 | 
						|
  // always faster to load the whole vector. Replace the masked load with a
 | 
						|
  // vector load and select.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
 | 
						|
  bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
 | 
						|
  bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
 | 
						|
  if (LoadFirstElt && LoadLastElt) {
 | 
						|
    SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
 | 
						|
                                ML->getMemOperand());
 | 
						|
    SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0());
 | 
						|
    return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert a masked load with a constant mask into a masked load and a select.
 | 
						|
  // This allows the select operation to use a faster kind of select instruction
 | 
						|
  // (for example, vblendvps -> vblendps).
 | 
						|
 | 
						|
  // Don't try this if the pass-through operand is already undefined. That would
 | 
						|
  // cause an infinite loop because that's what we're about to create.
 | 
						|
  if (ML->getSrc0().isUndef())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The new masked load has an undef pass-through operand. The select uses the
 | 
						|
  // original pass-through operand.
 | 
						|
  SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
 | 
						|
                                    ML->getMask(), DAG.getUNDEF(VT),
 | 
						|
                                    ML->getMemoryVT(), ML->getMemOperand(),
 | 
						|
                                    ML->getExtensionType());
 | 
						|
  SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0());
 | 
						|
 | 
						|
  return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 const X86Subtarget &Subtarget) {
 | 
						|
  MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
 | 
						|
 | 
						|
  // TODO: Expanding load with constant mask may be optimized as well.
 | 
						|
  if (Mld->isExpandingLoad())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
 | 
						|
    if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
 | 
						|
      return ScalarLoad;
 | 
						|
    // TODO: Do some AVX512 subsets benefit from this transform?
 | 
						|
    if (!Subtarget.hasAVX512())
 | 
						|
      if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
 | 
						|
        return Blend;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mld->getExtensionType() != ISD::SEXTLOAD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Resolve extending loads.
 | 
						|
  EVT VT = Mld->getValueType(0);
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  EVT LdVT = Mld->getMemoryVT();
 | 
						|
  SDLoc dl(Mld);
 | 
						|
 | 
						|
  assert(LdVT != VT && "Cannot extend to the same type");
 | 
						|
  unsigned ToSz = VT.getScalarSizeInBits();
 | 
						|
  unsigned FromSz = LdVT.getScalarSizeInBits();
 | 
						|
  // From/To sizes and ElemCount must be pow of two.
 | 
						|
  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
 | 
						|
    "Unexpected size for extending masked load");
 | 
						|
 | 
						|
  unsigned SizeRatio  = ToSz / FromSz;
 | 
						|
  assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
 | 
						|
 | 
						|
  // Create a type on which we perform the shuffle.
 | 
						|
  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
          LdVT.getScalarType(), NumElems*SizeRatio);
 | 
						|
  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 | 
						|
 | 
						|
  // Convert Src0 value.
 | 
						|
  SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
 | 
						|
  if (!Mld->getSrc0().isUndef()) {
 | 
						|
    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
 | 
						|
    for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
      ShuffleVec[i] = i * SizeRatio;
 | 
						|
 | 
						|
    // Can't shuffle using an illegal type.
 | 
						|
    assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
 | 
						|
           "WideVecVT should be legal");
 | 
						|
    WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
 | 
						|
                                    DAG.getUNDEF(WideVecVT), ShuffleVec);
 | 
						|
  }
 | 
						|
  // Prepare the new mask.
 | 
						|
  SDValue NewMask;
 | 
						|
  SDValue Mask = Mld->getMask();
 | 
						|
  if (Mask.getValueType() == VT) {
 | 
						|
    // Mask and original value have the same type.
 | 
						|
    NewMask = DAG.getBitcast(WideVecVT, Mask);
 | 
						|
    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
 | 
						|
    for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
      ShuffleVec[i] = i * SizeRatio;
 | 
						|
    for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
 | 
						|
      ShuffleVec[i] = NumElems * SizeRatio;
 | 
						|
    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
 | 
						|
                                   DAG.getConstant(0, dl, WideVecVT),
 | 
						|
                                   ShuffleVec);
 | 
						|
  } else {
 | 
						|
    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
 | 
						|
    unsigned WidenNumElts = NumElems*SizeRatio;
 | 
						|
    unsigned MaskNumElts = VT.getVectorNumElements();
 | 
						|
    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
 | 
						|
                                     WidenNumElts);
 | 
						|
 | 
						|
    unsigned NumConcat = WidenNumElts / MaskNumElts;
 | 
						|
    SmallVector<SDValue, 16> Ops(NumConcat);
 | 
						|
    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
 | 
						|
    Ops[0] = Mask;
 | 
						|
    for (unsigned i = 1; i != NumConcat; ++i)
 | 
						|
      Ops[i] = ZeroVal;
 | 
						|
 | 
						|
    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
 | 
						|
                                     Mld->getBasePtr(), NewMask, WideSrc0,
 | 
						|
                                     Mld->getMemoryVT(), Mld->getMemOperand(),
 | 
						|
                                     ISD::NON_EXTLOAD);
 | 
						|
  SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
 | 
						|
  return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
 | 
						|
}
 | 
						|
 | 
						|
/// If exactly one element of the mask is set for a non-truncating masked store,
 | 
						|
/// it is a vector extract and scalar store.
 | 
						|
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
 | 
						|
/// mask have already been optimized in IR, so we don't bother with those here.
 | 
						|
static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
  // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
 | 
						|
  // However, some target hooks may need to be added to know when the transform
 | 
						|
  // is profitable. Endianness would also have to be considered.
 | 
						|
 | 
						|
  SDValue Addr, VecIndex;
 | 
						|
  unsigned Alignment;
 | 
						|
  if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Extract the one scalar element that is actually being stored.
 | 
						|
  SDLoc DL(MS);
 | 
						|
  EVT VT = MS->getValue().getValueType();
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
 | 
						|
                                MS->getValue(), VecIndex);
 | 
						|
 | 
						|
  // Store that element at the appropriate offset from the base pointer.
 | 
						|
  return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
 | 
						|
                      Alignment, MS->getMemOperand()->getFlags());
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                  const X86Subtarget &Subtarget) {
 | 
						|
  MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
 | 
						|
 | 
						|
  if (Mst->isCompressingStore())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!Mst->isTruncatingStore())
 | 
						|
    return reduceMaskedStoreToScalarStore(Mst, DAG);
 | 
						|
 | 
						|
  // Resolve truncating stores.
 | 
						|
  EVT VT = Mst->getValue().getValueType();
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  EVT StVT = Mst->getMemoryVT();
 | 
						|
  SDLoc dl(Mst);
 | 
						|
 | 
						|
  assert(StVT != VT && "Cannot truncate to the same type");
 | 
						|
  unsigned FromSz = VT.getScalarSizeInBits();
 | 
						|
  unsigned ToSz = StVT.getScalarSizeInBits();
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // The truncating store is legal in some cases. For example
 | 
						|
  // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
 | 
						|
  // are designated for truncate store.
 | 
						|
  // In this case we don't need any further transformations.
 | 
						|
  if (TLI.isTruncStoreLegal(VT, StVT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // From/To sizes and ElemCount must be pow of two.
 | 
						|
  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
 | 
						|
    "Unexpected size for truncating masked store");
 | 
						|
  // We are going to use the original vector elt for storing.
 | 
						|
  // Accumulated smaller vector elements must be a multiple of the store size.
 | 
						|
  assert (((NumElems * FromSz) % ToSz) == 0 &&
 | 
						|
          "Unexpected ratio for truncating masked store");
 | 
						|
 | 
						|
  unsigned SizeRatio  = FromSz / ToSz;
 | 
						|
  assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
 | 
						|
 | 
						|
  // Create a type on which we perform the shuffle.
 | 
						|
  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
          StVT.getScalarType(), NumElems*SizeRatio);
 | 
						|
 | 
						|
  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 | 
						|
 | 
						|
  SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
 | 
						|
  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
 | 
						|
  for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
    ShuffleVec[i] = i * SizeRatio;
 | 
						|
 | 
						|
  // Can't shuffle using an illegal type.
 | 
						|
  assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
 | 
						|
         "WideVecVT should be legal");
 | 
						|
 | 
						|
  SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
 | 
						|
                                              DAG.getUNDEF(WideVecVT),
 | 
						|
                                              ShuffleVec);
 | 
						|
 | 
						|
  SDValue NewMask;
 | 
						|
  SDValue Mask = Mst->getMask();
 | 
						|
  if (Mask.getValueType() == VT) {
 | 
						|
    // Mask and original value have the same type.
 | 
						|
    NewMask = DAG.getBitcast(WideVecVT, Mask);
 | 
						|
    for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
      ShuffleVec[i] = i * SizeRatio;
 | 
						|
    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
 | 
						|
      ShuffleVec[i] = NumElems*SizeRatio;
 | 
						|
    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
 | 
						|
                                   DAG.getConstant(0, dl, WideVecVT),
 | 
						|
                                   ShuffleVec);
 | 
						|
  } else {
 | 
						|
    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
 | 
						|
    unsigned WidenNumElts = NumElems*SizeRatio;
 | 
						|
    unsigned MaskNumElts = VT.getVectorNumElements();
 | 
						|
    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
 | 
						|
                                     WidenNumElts);
 | 
						|
 | 
						|
    unsigned NumConcat = WidenNumElts / MaskNumElts;
 | 
						|
    SmallVector<SDValue, 16> Ops(NumConcat);
 | 
						|
    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
 | 
						|
    Ops[0] = Mask;
 | 
						|
    for (unsigned i = 1; i != NumConcat; ++i)
 | 
						|
      Ops[i] = ZeroVal;
 | 
						|
 | 
						|
    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
 | 
						|
                            Mst->getBasePtr(), NewMask, StVT,
 | 
						|
                            Mst->getMemOperand(), false);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
 | 
						|
                            const X86Subtarget &Subtarget) {
 | 
						|
  StoreSDNode *St = cast<StoreSDNode>(N);
 | 
						|
  EVT VT = St->getValue().getValueType();
 | 
						|
  EVT StVT = St->getMemoryVT();
 | 
						|
  SDLoc dl(St);
 | 
						|
  SDValue StoredVal = St->getOperand(1);
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // If we are saving a concatenation of two XMM registers and 32-byte stores
 | 
						|
  // are slow, such as on Sandy Bridge, perform two 16-byte stores.
 | 
						|
  bool Fast;
 | 
						|
  unsigned AddressSpace = St->getAddressSpace();
 | 
						|
  unsigned Alignment = St->getAlignment();
 | 
						|
  if (VT.is256BitVector() && StVT == VT &&
 | 
						|
      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
 | 
						|
                             AddressSpace, Alignment, &Fast) &&
 | 
						|
      !Fast) {
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
    if (NumElems < 2)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl);
 | 
						|
    SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl);
 | 
						|
 | 
						|
    SDValue Ptr0 = St->getBasePtr();
 | 
						|
    SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl);
 | 
						|
 | 
						|
    SDValue Ch0 =
 | 
						|
        DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(),
 | 
						|
                     Alignment, St->getMemOperand()->getFlags());
 | 
						|
    SDValue Ch1 =
 | 
						|
        DAG.getStore(St->getChain(), dl, Value1, Ptr1, St->getPointerInfo(),
 | 
						|
                     std::min(16U, Alignment), St->getMemOperand()->getFlags());
 | 
						|
    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize trunc store (of multiple scalars) to shuffle and store.
 | 
						|
  // First, pack all of the elements in one place. Next, store to memory
 | 
						|
  // in fewer chunks.
 | 
						|
  if (St->isTruncatingStore() && VT.isVector()) {
 | 
						|
    // Check if we can detect an AVG pattern from the truncation. If yes,
 | 
						|
    // replace the trunc store by a normal store with the result of X86ISD::AVG
 | 
						|
    // instruction.
 | 
						|
    if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
 | 
						|
                                       Subtarget, dl))
 | 
						|
      return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
 | 
						|
                          St->getPointerInfo(), St->getAlignment(),
 | 
						|
                          St->getMemOperand()->getFlags());
 | 
						|
 | 
						|
    if (SDValue Val =
 | 
						|
        detectUSatPattern(St->getValue(), St->getMemoryVT(), Subtarget))
 | 
						|
      return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(),
 | 
						|
                             dl, Val, St->getBasePtr(),
 | 
						|
                             St->getMemoryVT(), St->getMemOperand(), DAG);
 | 
						|
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
    unsigned NumElems = VT.getVectorNumElements();
 | 
						|
    assert(StVT != VT && "Cannot truncate to the same type");
 | 
						|
    unsigned FromSz = VT.getScalarSizeInBits();
 | 
						|
    unsigned ToSz = StVT.getScalarSizeInBits();
 | 
						|
 | 
						|
    // The truncating store is legal in some cases. For example
 | 
						|
    // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
 | 
						|
    // are designated for truncate store.
 | 
						|
    // In this case we don't need any further transformations.
 | 
						|
    if (TLI.isTruncStoreLegalOrCustom(VT, StVT))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // From, To sizes and ElemCount must be pow of two
 | 
						|
    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
 | 
						|
    // We are going to use the original vector elt for storing.
 | 
						|
    // Accumulated smaller vector elements must be a multiple of the store size.
 | 
						|
    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
 | 
						|
 | 
						|
    unsigned SizeRatio  = FromSz / ToSz;
 | 
						|
 | 
						|
    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
 | 
						|
 | 
						|
    // Create a type on which we perform the shuffle
 | 
						|
    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
            StVT.getScalarType(), NumElems*SizeRatio);
 | 
						|
 | 
						|
    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 | 
						|
 | 
						|
    SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
 | 
						|
    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
 | 
						|
    for (unsigned i = 0; i != NumElems; ++i)
 | 
						|
      ShuffleVec[i] = i * SizeRatio;
 | 
						|
 | 
						|
    // Can't shuffle using an illegal type.
 | 
						|
    if (!TLI.isTypeLegal(WideVecVT))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
 | 
						|
                                         DAG.getUNDEF(WideVecVT),
 | 
						|
                                         ShuffleVec);
 | 
						|
    // At this point all of the data is stored at the bottom of the
 | 
						|
    // register. We now need to save it to mem.
 | 
						|
 | 
						|
    // Find the largest store unit
 | 
						|
    MVT StoreType = MVT::i8;
 | 
						|
    for (MVT Tp : MVT::integer_valuetypes()) {
 | 
						|
      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
 | 
						|
        StoreType = Tp;
 | 
						|
    }
 | 
						|
 | 
						|
    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
 | 
						|
    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
 | 
						|
        (64 <= NumElems * ToSz))
 | 
						|
      StoreType = MVT::f64;
 | 
						|
 | 
						|
    // Bitcast the original vector into a vector of store-size units
 | 
						|
    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
 | 
						|
    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
 | 
						|
    SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
 | 
						|
    SmallVector<SDValue, 8> Chains;
 | 
						|
    SDValue Ptr = St->getBasePtr();
 | 
						|
 | 
						|
    // Perform one or more big stores into memory.
 | 
						|
    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
 | 
						|
      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | 
						|
                                   StoreType, ShuffWide,
 | 
						|
                                   DAG.getIntPtrConstant(i, dl));
 | 
						|
      SDValue Ch =
 | 
						|
          DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(),
 | 
						|
                       St->getAlignment(), St->getMemOperand()->getFlags());
 | 
						|
      Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl);
 | 
						|
      Chains.push_back(Ch);
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
 | 
						|
  // the FP state in cases where an emms may be missing.
 | 
						|
  // A preferable solution to the general problem is to figure out the right
 | 
						|
  // places to insert EMMS.  This qualifies as a quick hack.
 | 
						|
 | 
						|
  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
 | 
						|
  if (VT.getSizeInBits() != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const Function *F = DAG.getMachineFunction().getFunction();
 | 
						|
  bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
 | 
						|
  bool F64IsLegal =
 | 
						|
      !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
 | 
						|
  if ((VT.isVector() ||
 | 
						|
       (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) &&
 | 
						|
      isa<LoadSDNode>(St->getValue()) &&
 | 
						|
      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
 | 
						|
      St->getChain().hasOneUse() && !St->isVolatile()) {
 | 
						|
    SDNode* LdVal = St->getValue().getNode();
 | 
						|
    LoadSDNode *Ld = nullptr;
 | 
						|
    int TokenFactorIndex = -1;
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    SDNode* ChainVal = St->getChain().getNode();
 | 
						|
    // Must be a store of a load.  We currently handle two cases:  the load
 | 
						|
    // is a direct child, and it's under an intervening TokenFactor.  It is
 | 
						|
    // possible to dig deeper under nested TokenFactors.
 | 
						|
    if (ChainVal == LdVal)
 | 
						|
      Ld = cast<LoadSDNode>(St->getChain());
 | 
						|
    else if (St->getValue().hasOneUse() &&
 | 
						|
             ChainVal->getOpcode() == ISD::TokenFactor) {
 | 
						|
      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
 | 
						|
        if (ChainVal->getOperand(i).getNode() == LdVal) {
 | 
						|
          TokenFactorIndex = i;
 | 
						|
          Ld = cast<LoadSDNode>(St->getValue());
 | 
						|
        } else
 | 
						|
          Ops.push_back(ChainVal->getOperand(i));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Ld || !ISD::isNormalLoad(Ld))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // If this is not the MMX case, i.e. we are just turning i64 load/store
 | 
						|
    // into f64 load/store, avoid the transformation if there are multiple
 | 
						|
    // uses of the loaded value.
 | 
						|
    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDLoc LdDL(Ld);
 | 
						|
    SDLoc StDL(N);
 | 
						|
    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
 | 
						|
    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
 | 
						|
    // pair instead.
 | 
						|
    if (Subtarget.is64Bit() || F64IsLegal) {
 | 
						|
      MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64;
 | 
						|
      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
 | 
						|
                                  Ld->getPointerInfo(), Ld->getAlignment(),
 | 
						|
                                  Ld->getMemOperand()->getFlags());
 | 
						|
      SDValue NewChain = NewLd.getValue(1);
 | 
						|
      if (TokenFactorIndex >= 0) {
 | 
						|
        Ops.push_back(NewChain);
 | 
						|
        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
 | 
						|
      }
 | 
						|
      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
 | 
						|
                          St->getPointerInfo(), St->getAlignment(),
 | 
						|
                          St->getMemOperand()->getFlags());
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, lower to two pairs of 32-bit loads / stores.
 | 
						|
    SDValue LoAddr = Ld->getBasePtr();
 | 
						|
    SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL);
 | 
						|
 | 
						|
    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
 | 
						|
                               Ld->getPointerInfo(), Ld->getAlignment(),
 | 
						|
                               Ld->getMemOperand()->getFlags());
 | 
						|
    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
 | 
						|
                               Ld->getPointerInfo().getWithOffset(4),
 | 
						|
                               MinAlign(Ld->getAlignment(), 4),
 | 
						|
                               Ld->getMemOperand()->getFlags());
 | 
						|
 | 
						|
    SDValue NewChain = LoLd.getValue(1);
 | 
						|
    if (TokenFactorIndex >= 0) {
 | 
						|
      Ops.push_back(LoLd);
 | 
						|
      Ops.push_back(HiLd);
 | 
						|
      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    LoAddr = St->getBasePtr();
 | 
						|
    HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL);
 | 
						|
 | 
						|
    SDValue LoSt =
 | 
						|
        DAG.getStore(NewChain, StDL, LoLd, LoAddr, St->getPointerInfo(),
 | 
						|
                     St->getAlignment(), St->getMemOperand()->getFlags());
 | 
						|
    SDValue HiSt = DAG.getStore(
 | 
						|
        NewChain, StDL, HiLd, HiAddr, St->getPointerInfo().getWithOffset(4),
 | 
						|
        MinAlign(St->getAlignment(), 4), St->getMemOperand()->getFlags());
 | 
						|
    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
 | 
						|
  }
 | 
						|
 | 
						|
  // This is similar to the above case, but here we handle a scalar 64-bit
 | 
						|
  // integer store that is extracted from a vector on a 32-bit target.
 | 
						|
  // If we have SSE2, then we can treat it like a floating-point double
 | 
						|
  // to get past legalization. The execution dependencies fixup pass will
 | 
						|
  // choose the optimal machine instruction for the store if this really is
 | 
						|
  // an integer or v2f32 rather than an f64.
 | 
						|
  if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
 | 
						|
      St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
    SDValue OldExtract = St->getOperand(1);
 | 
						|
    SDValue ExtOp0 = OldExtract.getOperand(0);
 | 
						|
    unsigned VecSize = ExtOp0.getValueSizeInBits();
 | 
						|
    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
 | 
						|
    SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
 | 
						|
    SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | 
						|
                                     BitCast, OldExtract.getOperand(1));
 | 
						|
    return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
 | 
						|
                        St->getPointerInfo(), St->getAlignment(),
 | 
						|
                        St->getMemOperand()->getFlags());
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Return 'true' if this vector operation is "horizontal"
 | 
						|
/// and return the operands for the horizontal operation in LHS and RHS.  A
 | 
						|
/// horizontal operation performs the binary operation on successive elements
 | 
						|
/// of its first operand, then on successive elements of its second operand,
 | 
						|
/// returning the resulting values in a vector.  For example, if
 | 
						|
///   A = < float a0, float a1, float a2, float a3 >
 | 
						|
/// and
 | 
						|
///   B = < float b0, float b1, float b2, float b3 >
 | 
						|
/// then the result of doing a horizontal operation on A and B is
 | 
						|
///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
 | 
						|
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
 | 
						|
/// A horizontal-op B, for some already available A and B, and if so then LHS is
 | 
						|
/// set to A, RHS to B, and the routine returns 'true'.
 | 
						|
/// Note that the binary operation should have the property that if one of the
 | 
						|
/// operands is UNDEF then the result is UNDEF.
 | 
						|
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
 | 
						|
  // Look for the following pattern: if
 | 
						|
  //   A = < float a0, float a1, float a2, float a3 >
 | 
						|
  //   B = < float b0, float b1, float b2, float b3 >
 | 
						|
  // and
 | 
						|
  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
 | 
						|
  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
 | 
						|
  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
 | 
						|
  // which is A horizontal-op B.
 | 
						|
 | 
						|
  // At least one of the operands should be a vector shuffle.
 | 
						|
  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
 | 
						|
      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT VT = LHS.getSimpleValueType();
 | 
						|
 | 
						|
  assert((VT.is128BitVector() || VT.is256BitVector()) &&
 | 
						|
         "Unsupported vector type for horizontal add/sub");
 | 
						|
 | 
						|
  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
 | 
						|
  // operate independently on 128-bit lanes.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned NumLanes = VT.getSizeInBits()/128;
 | 
						|
  unsigned NumLaneElts = NumElts / NumLanes;
 | 
						|
  assert((NumLaneElts % 2 == 0) &&
 | 
						|
         "Vector type should have an even number of elements in each lane");
 | 
						|
  unsigned HalfLaneElts = NumLaneElts/2;
 | 
						|
 | 
						|
  // View LHS in the form
 | 
						|
  //   LHS = VECTOR_SHUFFLE A, B, LMask
 | 
						|
  // If LHS is not a shuffle then pretend it is the shuffle
 | 
						|
  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
 | 
						|
  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
 | 
						|
  // type VT.
 | 
						|
  SDValue A, B;
 | 
						|
  SmallVector<int, 16> LMask(NumElts);
 | 
						|
  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
 | 
						|
    if (!LHS.getOperand(0).isUndef())
 | 
						|
      A = LHS.getOperand(0);
 | 
						|
    if (!LHS.getOperand(1).isUndef())
 | 
						|
      B = LHS.getOperand(1);
 | 
						|
    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
 | 
						|
    std::copy(Mask.begin(), Mask.end(), LMask.begin());
 | 
						|
  } else {
 | 
						|
    if (!LHS.isUndef())
 | 
						|
      A = LHS;
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      LMask[i] = i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Likewise, view RHS in the form
 | 
						|
  //   RHS = VECTOR_SHUFFLE C, D, RMask
 | 
						|
  SDValue C, D;
 | 
						|
  SmallVector<int, 16> RMask(NumElts);
 | 
						|
  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
 | 
						|
    if (!RHS.getOperand(0).isUndef())
 | 
						|
      C = RHS.getOperand(0);
 | 
						|
    if (!RHS.getOperand(1).isUndef())
 | 
						|
      D = RHS.getOperand(1);
 | 
						|
    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
 | 
						|
    std::copy(Mask.begin(), Mask.end(), RMask.begin());
 | 
						|
  } else {
 | 
						|
    if (!RHS.isUndef())
 | 
						|
      C = RHS;
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      RMask[i] = i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the shuffles are both shuffling the same vectors.
 | 
						|
  if (!(A == C && B == D) && !(A == D && B == C))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
 | 
						|
  if (!A.getNode() && !B.getNode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If A and B occur in reverse order in RHS, then "swap" them (which means
 | 
						|
  // rewriting the mask).
 | 
						|
  if (A != C)
 | 
						|
    ShuffleVectorSDNode::commuteMask(RMask);
 | 
						|
 | 
						|
  // At this point LHS and RHS are equivalent to
 | 
						|
  //   LHS = VECTOR_SHUFFLE A, B, LMask
 | 
						|
  //   RHS = VECTOR_SHUFFLE A, B, RMask
 | 
						|
  // Check that the masks correspond to performing a horizontal operation.
 | 
						|
  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
 | 
						|
    for (unsigned i = 0; i != NumLaneElts; ++i) {
 | 
						|
      int LIdx = LMask[i+l], RIdx = RMask[i+l];
 | 
						|
 | 
						|
      // Ignore any UNDEF components.
 | 
						|
      if (LIdx < 0 || RIdx < 0 ||
 | 
						|
          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
 | 
						|
          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check that successive elements are being operated on.  If not, this is
 | 
						|
      // not a horizontal operation.
 | 
						|
      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
 | 
						|
      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
 | 
						|
      if (!(LIdx == Index && RIdx == Index + 1) &&
 | 
						|
          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
 | 
						|
  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on floating-point adds/subs.
 | 
						|
static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
  bool IsFadd = N->getOpcode() == ISD::FADD;
 | 
						|
  assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
 | 
						|
 | 
						|
  // Try to synthesize horizontal add/sub from adds/subs of shuffles.
 | 
						|
  if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
 | 
						|
       (Subtarget.hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
 | 
						|
      isHorizontalBinOp(LHS, RHS, IsFadd)) {
 | 
						|
    auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
 | 
						|
    return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to pre-truncate inputs to arithmetic ops if it will simplify
 | 
						|
/// the codegen.
 | 
						|
/// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) )
 | 
						|
static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                          const X86Subtarget &Subtarget,
 | 
						|
                                          SDLoc &DL) {
 | 
						|
  assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode");
 | 
						|
  SDValue Src = N->getOperand(0);
 | 
						|
  unsigned Opcode = Src.getOpcode();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
  auto IsRepeatedOpOrOneUseConstant = [](SDValue Op0, SDValue Op1) {
 | 
						|
    // TODO: Add extra cases where we can truncate both inputs for the
 | 
						|
    // cost of one (or none).
 | 
						|
    // e.g. TRUNC( BINOP( EXT( X ), EXT( Y ) ) ) --> BINOP( X, Y )
 | 
						|
    if (Op0 == Op1)
 | 
						|
      return true;
 | 
						|
 | 
						|
    SDValue BC0 = peekThroughOneUseBitcasts(Op0);
 | 
						|
    SDValue BC1 = peekThroughOneUseBitcasts(Op1);
 | 
						|
    return ISD::isBuildVectorOfConstantSDNodes(BC0.getNode()) ||
 | 
						|
           ISD::isBuildVectorOfConstantSDNodes(BC1.getNode());
 | 
						|
  };
 | 
						|
 | 
						|
  auto TruncateArithmetic = [&](SDValue N0, SDValue N1) {
 | 
						|
    SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
 | 
						|
    SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
 | 
						|
    return DAG.getNode(Opcode, DL, VT, Trunc0, Trunc1);
 | 
						|
  };
 | 
						|
 | 
						|
  // Don't combine if the operation has other uses.
 | 
						|
  if (!N->isOnlyUserOf(Src.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only support vector truncation for now.
 | 
						|
  // TODO: i64 scalar math would benefit as well.
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // In most cases its only worth pre-truncating if we're only facing the cost
 | 
						|
  // of one truncation.
 | 
						|
  // i.e. if one of the inputs will constant fold or the input is repeated.
 | 
						|
  switch (Opcode) {
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::XOR:
 | 
						|
  case ISD::OR: {
 | 
						|
    SDValue Op0 = Src.getOperand(0);
 | 
						|
    SDValue Op1 = Src.getOperand(1);
 | 
						|
    if (TLI.isOperationLegalOrPromote(Opcode, VT) &&
 | 
						|
        IsRepeatedOpOrOneUseConstant(Op0, Op1))
 | 
						|
      return TruncateArithmetic(Op0, Op1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::MUL:
 | 
						|
    // X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its
 | 
						|
    // better to truncate if we have the chance.
 | 
						|
    if (SrcVT.getScalarType() == MVT::i64 && TLI.isOperationLegal(Opcode, VT) &&
 | 
						|
        !TLI.isOperationLegal(Opcode, SrcVT))
 | 
						|
      return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1));
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::ADD: {
 | 
						|
    SDValue Op0 = Src.getOperand(0);
 | 
						|
    SDValue Op1 = Src.getOperand(1);
 | 
						|
    if (TLI.isOperationLegal(Opcode, VT) &&
 | 
						|
        IsRepeatedOpOrOneUseConstant(Op0, Op1))
 | 
						|
      return TruncateArithmetic(Op0, Op1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS.
 | 
						|
static SDValue
 | 
						|
combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                  SmallVector<SDValue, 8> &Regs) {
 | 
						|
  assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 ||
 | 
						|
                             Regs[0].getValueType() == MVT::v2i64));
 | 
						|
  EVT OutVT = N->getValueType(0);
 | 
						|
  EVT OutSVT = OutVT.getVectorElementType();
 | 
						|
  EVT InVT = Regs[0].getValueType();
 | 
						|
  EVT InSVT = InVT.getVectorElementType();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // First, use mask to unset all bits that won't appear in the result.
 | 
						|
  assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) &&
 | 
						|
         "OutSVT can only be either i8 or i16.");
 | 
						|
  APInt Mask =
 | 
						|
      APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits());
 | 
						|
  SDValue MaskVal = DAG.getConstant(Mask, DL, InVT);
 | 
						|
  for (auto &Reg : Regs)
 | 
						|
    Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVal, Reg);
 | 
						|
 | 
						|
  MVT UnpackedVT, PackedVT;
 | 
						|
  if (OutSVT == MVT::i8) {
 | 
						|
    UnpackedVT = MVT::v8i16;
 | 
						|
    PackedVT = MVT::v16i8;
 | 
						|
  } else {
 | 
						|
    UnpackedVT = MVT::v4i32;
 | 
						|
    PackedVT = MVT::v8i16;
 | 
						|
  }
 | 
						|
 | 
						|
  // In each iteration, truncate the type by a half size.
 | 
						|
  auto RegNum = Regs.size();
 | 
						|
  for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits();
 | 
						|
       j < e; j *= 2, RegNum /= 2) {
 | 
						|
    for (unsigned i = 0; i < RegNum; i++)
 | 
						|
      Regs[i] = DAG.getBitcast(UnpackedVT, Regs[i]);
 | 
						|
    for (unsigned i = 0; i < RegNum / 2; i++)
 | 
						|
      Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2],
 | 
						|
                            Regs[i * 2 + 1]);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and
 | 
						|
  // then extract a subvector as the result since v8i8 is not a legal type.
 | 
						|
  if (OutVT == MVT::v8i8) {
 | 
						|
    Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]);
 | 
						|
    Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0],
 | 
						|
                          DAG.getIntPtrConstant(0, DL));
 | 
						|
    return Regs[0];
 | 
						|
  } else if (RegNum > 1) {
 | 
						|
    Regs.resize(RegNum);
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
 | 
						|
  } else
 | 
						|
    return Regs[0];
 | 
						|
}
 | 
						|
 | 
						|
/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
 | 
						|
static SDValue
 | 
						|
combineVectorTruncationWithPACKSS(SDNode *N, const X86Subtarget &Subtarget,
 | 
						|
                                  SelectionDAG &DAG,
 | 
						|
                                  SmallVector<SDValue, 8> &Regs) {
 | 
						|
  assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32);
 | 
						|
  EVT OutVT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Shift left by 16 bits, then arithmetic-shift right by 16 bits.
 | 
						|
  SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32);
 | 
						|
  for (auto &Reg : Regs) {
 | 
						|
    Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt,
 | 
						|
                              Subtarget, DAG);
 | 
						|
    Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt,
 | 
						|
                              Subtarget, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Regs.size() / 2; i < e; i++)
 | 
						|
    Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2],
 | 
						|
                          Regs[i * 2 + 1]);
 | 
						|
 | 
						|
  if (Regs.size() > 2) {
 | 
						|
    Regs.resize(Regs.size() / 2);
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
 | 
						|
  } else
 | 
						|
    return Regs[0];
 | 
						|
}
 | 
						|
 | 
						|
/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
 | 
						|
/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
 | 
						|
/// legalization the truncation will be translated into a BUILD_VECTOR with each
 | 
						|
/// element that is extracted from a vector and then truncated, and it is
 | 
						|
/// difficult to do this optimization based on them.
 | 
						|
static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                       const X86Subtarget &Subtarget) {
 | 
						|
  EVT OutVT = N->getValueType(0);
 | 
						|
  if (!OutVT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue In = N->getOperand(0);
 | 
						|
  if (!In.getValueType().isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT InVT = In.getValueType();
 | 
						|
  unsigned NumElems = OutVT.getVectorNumElements();
 | 
						|
 | 
						|
  // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
 | 
						|
  // SSE2, and we need to take care of it specially.
 | 
						|
  // AVX512 provides vpmovdb.
 | 
						|
  if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT OutSVT = OutVT.getVectorElementType();
 | 
						|
  EVT InSVT = InVT.getVectorElementType();
 | 
						|
  if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
 | 
						|
        (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
 | 
						|
        NumElems >= 8))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // SSSE3's pshufb results in less instructions in the cases below.
 | 
						|
  if (Subtarget.hasSSSE3() && NumElems == 8 &&
 | 
						|
      ((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
 | 
						|
       (InSVT == MVT::i32 && OutSVT == MVT::i16)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Split a long vector into vectors of legal type.
 | 
						|
  unsigned RegNum = InVT.getSizeInBits() / 128;
 | 
						|
  SmallVector<SDValue, 8> SubVec(RegNum);
 | 
						|
  unsigned NumSubRegElts = 128 / InSVT.getSizeInBits();
 | 
						|
  EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < RegNum; i++)
 | 
						|
    SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In,
 | 
						|
                            DAG.getIntPtrConstant(i * NumSubRegElts, DL));
 | 
						|
 | 
						|
  // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
 | 
						|
  // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
 | 
						|
  // truncate 2 x v4i32 to v8i16.
 | 
						|
  if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
 | 
						|
    return combineVectorTruncationWithPACKUS(N, DAG, SubVec);
 | 
						|
  else if (InSVT == MVT::i32)
 | 
						|
    return combineVectorTruncationWithPACKSS(N, Subtarget, DAG, SubVec);
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// This function transforms vector truncation of 'all or none' bits values.
 | 
						|
/// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS operations.
 | 
						|
static SDValue combineVectorSignBitsTruncation(SDNode *N, SDLoc &DL,
 | 
						|
                                               SelectionDAG &DAG,
 | 
						|
                                               const X86Subtarget &Subtarget) {
 | 
						|
  // Requires SSE2 but AVX512 has fast truncate.
 | 
						|
  if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue In = N->getOperand(0);
 | 
						|
  if (!In.getValueType().isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT VT = N->getValueType(0).getSimpleVT();
 | 
						|
  MVT SVT = VT.getScalarType();
 | 
						|
 | 
						|
  MVT InVT = In.getValueType().getSimpleVT();
 | 
						|
  MVT InSVT = InVT.getScalarType();
 | 
						|
 | 
						|
  // Use PACKSS if the input is a splatted sign bit.
 | 
						|
  // e.g. Comparison result, sext_in_reg, etc.
 | 
						|
  unsigned NumSignBits = DAG.ComputeNumSignBits(In);
 | 
						|
  if (NumSignBits != InSVT.getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check we have a truncation suited for PACKSS.
 | 
						|
  if (!VT.is128BitVector() && !VT.is256BitVector())
 | 
						|
    return SDValue();
 | 
						|
  if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
  if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return truncateVectorCompareWithPACKSS(VT, In, DL, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Src = N->getOperand(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Attempt to pre-truncate inputs to arithmetic ops instead.
 | 
						|
  if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Try to detect AVG pattern first.
 | 
						|
  if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
 | 
						|
    return Avg;
 | 
						|
 | 
						|
  // Try the truncation with unsigned saturation.
 | 
						|
  if (SDValue Val = detectUSatPattern(Src, VT, Subtarget))
 | 
						|
    return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, Val);
 | 
						|
 | 
						|
  // The bitcast source is a direct mmx result.
 | 
						|
  // Detect bitcasts between i32 to x86mmx
 | 
						|
  if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
 | 
						|
    SDValue BCSrc = Src.getOperand(0);
 | 
						|
    if (BCSrc.getValueType() == MVT::x86mmx)
 | 
						|
      return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to truncate extended sign bits with PACKSS.
 | 
						|
  if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return combineVectorTruncation(N, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the negated value if the node \p N flips sign of FP value.
 | 
						|
///
 | 
						|
/// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000).
 | 
						|
/// AVX512F does not have FXOR, so FNEG is lowered as
 | 
						|
/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
 | 
						|
/// In this case we go though all bitcasts.
 | 
						|
static SDValue isFNEG(SDNode *N) {
 | 
						|
  if (N->getOpcode() == ISD::FNEG)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  SDValue Op = peekThroughBitcasts(SDValue(N, 0));
 | 
						|
  if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Op1 = peekThroughBitcasts(Op.getOperand(1));
 | 
						|
  if (!Op1.getValueType().isFloatingPoint())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Op0 = peekThroughBitcasts(Op.getOperand(0));
 | 
						|
 | 
						|
  unsigned EltBits = Op1.getScalarValueSizeInBits();
 | 
						|
  auto isSignBitValue = [&](const ConstantFP *C) {
 | 
						|
    return C->getValueAPF().bitcastToAPInt() == APInt::getSignBit(EltBits);
 | 
						|
  };
 | 
						|
 | 
						|
  // There is more than one way to represent the same constant on
 | 
						|
  // the different X86 targets. The type of the node may also depend on size.
 | 
						|
  //  - load scalar value and broadcast
 | 
						|
  //  - BUILD_VECTOR node
 | 
						|
  //  - load from a constant pool.
 | 
						|
  // We check all variants here.
 | 
						|
  if (Op1.getOpcode() == X86ISD::VBROADCAST) {
 | 
						|
    if (auto *C = getTargetConstantFromNode(Op1.getOperand(0)))
 | 
						|
      if (isSignBitValue(cast<ConstantFP>(C)))
 | 
						|
        return Op0;
 | 
						|
 | 
						|
  } else if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1)) {
 | 
						|
    if (ConstantFPSDNode *CN = BV->getConstantFPSplatNode())
 | 
						|
      if (isSignBitValue(CN->getConstantFPValue()))
 | 
						|
        return Op0;
 | 
						|
 | 
						|
  } else if (auto *C = getTargetConstantFromNode(Op1)) {
 | 
						|
    if (C->getType()->isVectorTy()) {
 | 
						|
      if (auto *SplatV = C->getSplatValue())
 | 
						|
        if (isSignBitValue(cast<ConstantFP>(SplatV)))
 | 
						|
          return Op0;
 | 
						|
    } else if (auto *FPConst = dyn_cast<ConstantFP>(C))
 | 
						|
      if (isSignBitValue(FPConst))
 | 
						|
        return Op0;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on floating point negations.
 | 
						|
static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  EVT OrigVT = N->getValueType(0);
 | 
						|
  SDValue Arg = isFNEG(N);
 | 
						|
  assert(Arg.getNode() && "N is expected to be an FNEG node");
 | 
						|
 | 
						|
  EVT VT = Arg.getValueType();
 | 
						|
  EVT SVT = VT.getScalarType();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Let legalize expand this if it isn't a legal type yet.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we're negating a FMUL node on a target with FMA, then we can avoid the
 | 
						|
  // use of a constant by performing (-0 - A*B) instead.
 | 
						|
  // FIXME: Check rounding control flags as well once it becomes available.
 | 
						|
  if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
 | 
						|
      Arg->getFlags()->hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
 | 
						|
    SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
 | 
						|
    SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
 | 
						|
                                  Arg.getOperand(1), Zero);
 | 
						|
    return DAG.getBitcast(OrigVT, NewNode);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're negating an FMA node, then we can adjust the
 | 
						|
  // instruction to include the extra negation.
 | 
						|
  unsigned NewOpcode = 0;
 | 
						|
  if (Arg.hasOneUse()) {
 | 
						|
    switch (Arg.getOpcode()) {
 | 
						|
    case X86ISD::FMADD:        NewOpcode = X86ISD::FNMSUB;       break;
 | 
						|
    case X86ISD::FMSUB:        NewOpcode = X86ISD::FNMADD;       break;
 | 
						|
    case X86ISD::FNMADD:       NewOpcode = X86ISD::FMSUB;        break;
 | 
						|
    case X86ISD::FNMSUB:       NewOpcode = X86ISD::FMADD;        break;
 | 
						|
    case X86ISD::FMADD_RND:    NewOpcode = X86ISD::FNMSUB_RND;   break;
 | 
						|
    case X86ISD::FMSUB_RND:    NewOpcode = X86ISD::FNMADD_RND;   break;
 | 
						|
    case X86ISD::FNMADD_RND:   NewOpcode = X86ISD::FMSUB_RND;    break;
 | 
						|
    case X86ISD::FNMSUB_RND:   NewOpcode = X86ISD::FMADD_RND;    break;
 | 
						|
    // We can't handle scalar intrinsic node here because it would only
 | 
						|
    // invert one element and not the whole vector. But we could try to handle
 | 
						|
    // a negation of the lower element only.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NewOpcode)
 | 
						|
    return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT,
 | 
						|
                                              Arg.getNode()->ops()));
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  // If we have integer vector types available, use the integer opcodes.
 | 
						|
  if (VT.isVector() && Subtarget.hasSSE2()) {
 | 
						|
    SDLoc dl(N);
 | 
						|
 | 
						|
    MVT IntVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
 | 
						|
 | 
						|
    SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
 | 
						|
    SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
 | 
						|
    unsigned IntOpcode;
 | 
						|
    switch (N->getOpcode()) {
 | 
						|
    default: llvm_unreachable("Unexpected FP logic op");
 | 
						|
    case X86ISD::FOR: IntOpcode = ISD::OR; break;
 | 
						|
    case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
 | 
						|
    case X86ISD::FAND: IntOpcode = ISD::AND; break;
 | 
						|
    case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
 | 
						|
    }
 | 
						|
    SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
 | 
						|
    return DAG.getBitcast(VT, IntOp);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
 | 
						|
    return Cmp;
 | 
						|
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
 | 
						|
    return RV;
 | 
						|
 | 
						|
  if (Subtarget.hasCMov())
 | 
						|
    if (SDValue RV = combineIntegerAbs(N, DAG))
 | 
						|
      return RV;
 | 
						|
 | 
						|
  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
 | 
						|
    return FPLogic;
 | 
						|
 | 
						|
  if (isFNEG(N))
 | 
						|
    return combineFneg(N, DAG, Subtarget);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool isNullFPScalarOrVectorConst(SDValue V) {
 | 
						|
  return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode());
 | 
						|
}
 | 
						|
 | 
						|
/// If a value is a scalar FP zero or a vector FP zero (potentially including
 | 
						|
/// undefined elements), return a zero constant that may be used to fold away
 | 
						|
/// that value. In the case of a vector, the returned constant will not contain
 | 
						|
/// undefined elements even if the input parameter does. This makes it suitable
 | 
						|
/// to be used as a replacement operand with operations (eg, bitwise-and) where
 | 
						|
/// an undef should not propagate.
 | 
						|
static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG,
 | 
						|
                                        const X86Subtarget &Subtarget) {
 | 
						|
  if (!isNullFPScalarOrVectorConst(V))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (V.getValueType().isVector())
 | 
						|
    return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V));
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                      const X86Subtarget &Subtarget) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Vector types are handled in combineANDXORWithAllOnesIntoANDNP().
 | 
						|
  if (!((VT == MVT::f32 && Subtarget.hasSSE1()) ||
 | 
						|
        (VT == MVT::f64 && Subtarget.hasSSE2())))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  auto isAllOnesConstantFP = [](SDValue V) {
 | 
						|
    auto *C = dyn_cast<ConstantFPSDNode>(V);
 | 
						|
    return C && C->getConstantFPValue()->isAllOnesValue();
 | 
						|
  };
 | 
						|
 | 
						|
  // fand (fxor X, -1), Y --> fandn X, Y
 | 
						|
  if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1)))
 | 
						|
    return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1);
 | 
						|
 | 
						|
  // fand X, (fxor Y, -1) --> fandn Y, X
 | 
						|
  if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1)))
 | 
						|
    return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on X86ISD::FAND nodes.
 | 
						|
static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  // FAND(0.0, x) -> 0.0
 | 
						|
  if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // FAND(x, 0.0) -> 0.0
 | 
						|
  if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return lowerX86FPLogicOp(N, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on X86ISD::FANDN nodes.
 | 
						|
static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
 | 
						|
                            const X86Subtarget &Subtarget) {
 | 
						|
  // FANDN(0.0, x) -> x
 | 
						|
  if (isNullFPScalarOrVectorConst(N->getOperand(0)))
 | 
						|
    return N->getOperand(1);
 | 
						|
 | 
						|
  // FANDN(x, 0.0) -> 0.0
 | 
						|
  if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return lowerX86FPLogicOp(N, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
 | 
						|
static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
 | 
						|
 | 
						|
  // F[X]OR(0.0, x) -> x
 | 
						|
  if (isNullFPScalarOrVectorConst(N->getOperand(0)))
 | 
						|
    return N->getOperand(1);
 | 
						|
 | 
						|
  // F[X]OR(x, 0.0) -> x
 | 
						|
  if (isNullFPScalarOrVectorConst(N->getOperand(1)))
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  if (isFNEG(N))
 | 
						|
    if (SDValue NewVal = combineFneg(N, DAG, Subtarget))
 | 
						|
      return NewVal;
 | 
						|
 | 
						|
  return lowerX86FPLogicOp(N, DAG, Subtarget);
 | 
						|
}
 | 
						|
 | 
						|
/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
 | 
						|
static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
 | 
						|
 | 
						|
  // Only perform optimizations if UnsafeMath is used.
 | 
						|
  if (!DAG.getTarget().Options.UnsafeFPMath)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
 | 
						|
  // into FMINC and FMAXC, which are Commutative operations.
 | 
						|
  unsigned NewOp = 0;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
    default: llvm_unreachable("unknown opcode");
 | 
						|
    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
 | 
						|
    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
 | 
						|
                     N->getOperand(0), N->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  if (Subtarget.useSoftFloat())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // TODO: Check for global or instruction-level "nnan". In that case, we
 | 
						|
  //       should be able to lower to FMAX/FMIN alone.
 | 
						|
  // TODO: If an operand is already known to be a NaN or not a NaN, this
 | 
						|
  //       should be an optional swap and FMAX/FMIN.
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
 | 
						|
        (Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) ||
 | 
						|
        (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // This takes at least 3 instructions, so favor a library call when operating
 | 
						|
  // on a scalar and minimizing code size.
 | 
						|
  if (!VT.isVector() && DAG.getMachineFunction().getFunction()->optForMinSize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
 | 
						|
      DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						|
 | 
						|
  // There are 4 possibilities involving NaN inputs, and these are the required
 | 
						|
  // outputs:
 | 
						|
  //                   Op1
 | 
						|
  //               Num     NaN
 | 
						|
  //            ----------------
 | 
						|
  //       Num  |  Max  |  Op0 |
 | 
						|
  // Op0        ----------------
 | 
						|
  //       NaN  |  Op1  |  NaN |
 | 
						|
  //            ----------------
 | 
						|
  //
 | 
						|
  // The SSE FP max/min instructions were not designed for this case, but rather
 | 
						|
  // to implement:
 | 
						|
  //   Min = Op1 < Op0 ? Op1 : Op0
 | 
						|
  //   Max = Op1 > Op0 ? Op1 : Op0
 | 
						|
  //
 | 
						|
  // So they always return Op0 if either input is a NaN. However, we can still
 | 
						|
  // use those instructions for fmaxnum by selecting away a NaN input.
 | 
						|
 | 
						|
  // If either operand is NaN, the 2nd source operand (Op0) is passed through.
 | 
						|
  auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
 | 
						|
  SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
 | 
						|
  SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO);
 | 
						|
 | 
						|
  // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
 | 
						|
  // are NaN, the NaN value of Op1 is the result.
 | 
						|
  auto SelectOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
 | 
						|
  return DAG.getNode(SelectOpcode, DL, VT, IsOp0Nan, Op1, MinOrMax);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
 | 
						|
                         TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // BT ignores high bits in the bit index operand.
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  if (Op1.hasOneUse()) {
 | 
						|
    unsigned BitWidth = Op1.getValueSizeInBits();
 | 
						|
    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
 | 
						|
    APInt KnownZero, KnownOne;
 | 
						|
    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						|
                                          !DCI.isBeforeLegalizeOps());
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
 | 
						|
        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
 | 
						|
      DCI.CommitTargetLoweringOpt(TLO);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                      const X86Subtarget &Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
 | 
						|
  // both SSE and AVX2 since there is no sign-extended shift right
 | 
						|
  // operation on a vector with 64-bit elements.
 | 
						|
  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
 | 
						|
  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
 | 
						|
  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
 | 
						|
      N0.getOpcode() == ISD::SIGN_EXTEND)) {
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
 | 
						|
    // EXTLOAD has a better solution on AVX2,
 | 
						|
    // it may be replaced with X86ISD::VSEXT node.
 | 
						|
    if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
 | 
						|
      if (!ISD::isNormalLoad(N00.getNode()))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
 | 
						|
        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
 | 
						|
                                  N00, N1);
 | 
						|
      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
 | 
						|
/// zext(add_nuw(x, C)) --> add(zext(x), C_zext)
 | 
						|
/// Promoting a sign/zero extension ahead of a no overflow 'add' exposes
 | 
						|
/// opportunities to combine math ops, use an LEA, or use a complex addressing
 | 
						|
/// mode. This can eliminate extend, add, and shift instructions.
 | 
						|
static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG,
 | 
						|
                                   const X86Subtarget &Subtarget) {
 | 
						|
  if (Ext->getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      Ext->getOpcode() != ISD::ZERO_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // TODO: This should be valid for other integer types.
 | 
						|
  EVT VT = Ext->getValueType(0);
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Add = Ext->getOperand(0);
 | 
						|
  if (Add.getOpcode() != ISD::ADD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND;
 | 
						|
  bool NSW = Add->getFlags()->hasNoSignedWrap();
 | 
						|
  bool NUW = Add->getFlags()->hasNoUnsignedWrap();
 | 
						|
 | 
						|
  // We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding
 | 
						|
  // into the 'zext'
 | 
						|
  if ((Sext && !NSW) || (!Sext && !NUW))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Having a constant operand to the 'add' ensures that we are not increasing
 | 
						|
  // the instruction count because the constant is extended for free below.
 | 
						|
  // A constant operand can also become the displacement field of an LEA.
 | 
						|
  auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
 | 
						|
  if (!AddOp1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Don't make the 'add' bigger if there's no hope of combining it with some
 | 
						|
  // other 'add' or 'shl' instruction.
 | 
						|
  // TODO: It may be profitable to generate simpler LEA instructions in place
 | 
						|
  // of single 'add' instructions, but the cost model for selecting an LEA
 | 
						|
  // currently has a high threshold.
 | 
						|
  bool HasLEAPotential = false;
 | 
						|
  for (auto *User : Ext->uses()) {
 | 
						|
    if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
 | 
						|
      HasLEAPotential = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!HasLEAPotential)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Everything looks good, so pull the '{s|z}ext' ahead of the 'add'.
 | 
						|
  int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue();
 | 
						|
  SDValue AddOp0 = Add.getOperand(0);
 | 
						|
  SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0);
 | 
						|
  SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
 | 
						|
 | 
						|
  // The wider add is guaranteed to not wrap because both operands are
 | 
						|
  // sign-extended.
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoSignedWrap(NSW);
 | 
						|
  Flags.setNoUnsignedWrap(NUW);
 | 
						|
  return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, &Flags);
 | 
						|
}
 | 
						|
 | 
						|
/// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) ->
 | 
						|
/// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y)
 | 
						|
/// This exposes the {s/z}ext to the sdivrem lowering, so that it directly
 | 
						|
/// extends from AH (which we otherwise need to do contortions to access).
 | 
						|
static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  auto OpcodeN = N->getOpcode();
 | 
						|
  auto OpcodeN0 = N0.getOpcode();
 | 
						|
  if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) ||
 | 
						|
        (OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT InVT = N0.getValueType();
 | 
						|
  if (N0.getResNo() != 1 || InVT != MVT::i8 || VT != MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
 | 
						|
  auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG
 | 
						|
                                               : X86ISD::UDIVREM8_ZEXT_HREG;
 | 
						|
  SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0),
 | 
						|
                          N0.getOperand(1));
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
 | 
						|
  return R.getValue(1);
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or
 | 
						|
/// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating
 | 
						|
/// with UNDEFs) of the input to vectors of the same size as the target type
 | 
						|
/// which then extends the lowest elements.
 | 
						|
static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                          const X86Subtarget &Subtarget) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
  if (!DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
  if (!Subtarget.hasSSE2())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT SVT = VT.getScalarType();
 | 
						|
  EVT InVT = N0.getValueType();
 | 
						|
  EVT InSVT = InVT.getScalarType();
 | 
						|
 | 
						|
  // Input type must be a vector and we must be extending legal integer types.
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
  if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
 | 
						|
    return SDValue();
 | 
						|
  if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // On AVX2+ targets, if the input/output types are both legal then we will be
 | 
						|
  // able to use SIGN_EXTEND/ZERO_EXTEND directly.
 | 
						|
  if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
 | 
						|
      DAG.getTargetLoweringInfo().isTypeLegal(InVT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  auto ExtendVecSize = [&DAG](const SDLoc &DL, SDValue N, unsigned Size) {
 | 
						|
    EVT InVT = N.getValueType();
 | 
						|
    EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
 | 
						|
                                 Size / InVT.getScalarSizeInBits());
 | 
						|
    SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
 | 
						|
                                  DAG.getUNDEF(InVT));
 | 
						|
    Opnds[0] = N;
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
 | 
						|
  };
 | 
						|
 | 
						|
  // If target-size is less than 128-bits, extend to a type that would extend
 | 
						|
  // to 128 bits, extend that and extract the original target vector.
 | 
						|
  if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) {
 | 
						|
    unsigned Scale = 128 / VT.getSizeInBits();
 | 
						|
    EVT ExVT =
 | 
						|
        EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
 | 
						|
    SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
 | 
						|
    SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
 | 
						|
                       DAG.getIntPtrConstant(0, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  // If target-size is 128-bits (or 256-bits on AVX2 target), then convert to
 | 
						|
  // ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT.
 | 
						|
  // Also use this if we don't have SSE41 to allow the legalizer do its job.
 | 
						|
  if (!Subtarget.hasSSE41() || VT.is128BitVector() ||
 | 
						|
      (VT.is256BitVector() && Subtarget.hasInt256()) ||
 | 
						|
      (VT.is512BitVector() && Subtarget.hasAVX512())) {
 | 
						|
    SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits());
 | 
						|
    return Opcode == ISD::SIGN_EXTEND
 | 
						|
               ? DAG.getSignExtendVectorInReg(ExOp, DL, VT)
 | 
						|
               : DAG.getZeroExtendVectorInReg(ExOp, DL, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  auto SplitAndExtendInReg = [&](unsigned SplitSize) {
 | 
						|
    unsigned NumVecs = VT.getSizeInBits() / SplitSize;
 | 
						|
    unsigned NumSubElts = SplitSize / SVT.getSizeInBits();
 | 
						|
    EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
 | 
						|
    EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
 | 
						|
 | 
						|
    SmallVector<SDValue, 8> Opnds;
 | 
						|
    for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) {
 | 
						|
      SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
 | 
						|
                                   DAG.getIntPtrConstant(Offset, DL));
 | 
						|
      SrcVec = ExtendVecSize(DL, SrcVec, SplitSize);
 | 
						|
      SrcVec = Opcode == ISD::SIGN_EXTEND
 | 
						|
                   ? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT)
 | 
						|
                   : DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT);
 | 
						|
      Opnds.push_back(SrcVec);
 | 
						|
    }
 | 
						|
    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
 | 
						|
  };
 | 
						|
 | 
						|
  // On pre-AVX2 targets, split into 128-bit nodes of
 | 
						|
  // ISD::*_EXTEND_VECTOR_INREG.
 | 
						|
  if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128))
 | 
						|
    return SplitAndExtendInReg(128);
 | 
						|
 | 
						|
  // On pre-AVX512 targets, split into 256-bit nodes of
 | 
						|
  // ISD::*_EXTEND_VECTOR_INREG.
 | 
						|
  if (!Subtarget.hasAVX512() && !(VT.getSizeInBits() % 256))
 | 
						|
    return SplitAndExtendInReg(256);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT InVT = N0.getValueType();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  if (SDValue DivRem8 = getDivRem8(N, DAG))
 | 
						|
    return DivRem8;
 | 
						|
 | 
						|
  if (!DCI.isBeforeLegalizeOps()) {
 | 
						|
    if (InVT == MVT::i1) {
 | 
						|
      SDValue Zero = DAG.getConstant(0, DL, VT);
 | 
						|
      SDValue AllOnes =
 | 
						|
          DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
 | 
						|
      return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero);
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (Subtarget.hasAVX() && VT.is256BitVector())
 | 
						|
    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
 | 
						|
      return R;
 | 
						|
 | 
						|
  if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
 | 
						|
    return NewAdd;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // Let legalize expand this if it isn't a legal type yet.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT ScalarVT = VT.getScalarType();
 | 
						|
  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue A = N->getOperand(0);
 | 
						|
  SDValue B = N->getOperand(1);
 | 
						|
  SDValue C = N->getOperand(2);
 | 
						|
 | 
						|
  auto invertIfNegative = [](SDValue &V) {
 | 
						|
    if (SDValue NegVal = isFNEG(V.getNode())) {
 | 
						|
      V = NegVal;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Do not convert the passthru input of scalar intrinsics.
 | 
						|
  // FIXME: We could allow negations of the lower element only.
 | 
						|
  bool NegA = N->getOpcode() != X86ISD::FMADDS1_RND && invertIfNegative(A);
 | 
						|
  bool NegB = invertIfNegative(B);
 | 
						|
  bool NegC = N->getOpcode() != X86ISD::FMADDS3_RND && invertIfNegative(C);
 | 
						|
 | 
						|
  // Negative multiplication when NegA xor NegB
 | 
						|
  bool NegMul = (NegA != NegB);
 | 
						|
 | 
						|
  unsigned NewOpcode;
 | 
						|
  if (!NegMul)
 | 
						|
    NewOpcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
 | 
						|
  else
 | 
						|
    NewOpcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
 | 
						|
 | 
						|
 | 
						|
  if (N->getOpcode() == X86ISD::FMADD_RND) {
 | 
						|
    switch (NewOpcode) {
 | 
						|
    case X86ISD::FMADD:  NewOpcode = X86ISD::FMADD_RND; break;
 | 
						|
    case X86ISD::FMSUB:  NewOpcode = X86ISD::FMSUB_RND; break;
 | 
						|
    case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADD_RND; break;
 | 
						|
    case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUB_RND; break;
 | 
						|
    }
 | 
						|
  } else if (N->getOpcode() == X86ISD::FMADDS1_RND) {
 | 
						|
    switch (NewOpcode) {
 | 
						|
    case X86ISD::FMADD:  NewOpcode = X86ISD::FMADDS1_RND; break;
 | 
						|
    case X86ISD::FMSUB:  NewOpcode = X86ISD::FMSUBS1_RND; break;
 | 
						|
    case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS1_RND; break;
 | 
						|
    case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS1_RND; break;
 | 
						|
    }
 | 
						|
  } else if (N->getOpcode() == X86ISD::FMADDS3_RND) {
 | 
						|
    switch (NewOpcode) {
 | 
						|
    case X86ISD::FMADD:  NewOpcode = X86ISD::FMADDS3_RND; break;
 | 
						|
    case X86ISD::FMSUB:  NewOpcode = X86ISD::FMSUBS3_RND; break;
 | 
						|
    case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS3_RND; break;
 | 
						|
    case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS3_RND; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert((N->getOpcode() == X86ISD::FMADD || N->getOpcode() == ISD::FMA) &&
 | 
						|
           "Unexpected opcode!");
 | 
						|
    return DAG.getNode(NewOpcode, dl, VT, A, B, C);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           const X86Subtarget &Subtarget) {
 | 
						|
  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
 | 
						|
  //           (and (i32 x86isd::setcc_carry), 1)
 | 
						|
  // This eliminates the zext. This transformation is necessary because
 | 
						|
  // ISD::SETCC is always legalized to i8.
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (N0.getOpcode() == ISD::AND &&
 | 
						|
      N0.hasOneUse() &&
 | 
						|
      N0.getOperand(0).hasOneUse()) {
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
 | 
						|
      if (!isOneConstant(N0.getOperand(1)))
 | 
						|
        return SDValue();
 | 
						|
      return DAG.getNode(ISD::AND, dl, VT,
 | 
						|
                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
 | 
						|
                                     N00.getOperand(0), N00.getOperand(1)),
 | 
						|
                         DAG.getConstant(1, dl, VT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N0.getOpcode() == ISD::TRUNCATE &&
 | 
						|
      N0.hasOneUse() &&
 | 
						|
      N0.getOperand(0).hasOneUse()) {
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
 | 
						|
      return DAG.getNode(ISD::AND, dl, VT,
 | 
						|
                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
 | 
						|
                                     N00.getOperand(0), N00.getOperand(1)),
 | 
						|
                         DAG.getConstant(1, dl, VT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (VT.is256BitVector())
 | 
						|
    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
 | 
						|
      return R;
 | 
						|
 | 
						|
  if (SDValue DivRem8 = getDivRem8(N, DAG))
 | 
						|
    return DivRem8;
 | 
						|
 | 
						|
  if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
 | 
						|
    return NewAdd;
 | 
						|
 | 
						|
  if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget))
 | 
						|
    return R;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize x == -y --> x+y == 0
 | 
						|
///          x != -y --> x+y != 0
 | 
						|
static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
 | 
						|
                            const X86Subtarget &Subtarget) {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
 | 
						|
    if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) {
 | 
						|
      SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS,
 | 
						|
                                 LHS.getOperand(1));
 | 
						|
      return DAG.getSetCC(DL, N->getValueType(0), addV,
 | 
						|
                          DAG.getConstant(0, DL, addV.getValueType()), CC);
 | 
						|
    }
 | 
						|
  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
 | 
						|
    if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) {
 | 
						|
      SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS,
 | 
						|
                                 RHS.getOperand(1));
 | 
						|
      return DAG.getSetCC(DL, N->getValueType(0), addV,
 | 
						|
                          DAG.getConstant(0, DL, addV.getValueType()), CC);
 | 
						|
    }
 | 
						|
 | 
						|
  if (VT.getScalarType() == MVT::i1 &&
 | 
						|
      (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
 | 
						|
    bool IsSEXT0 =
 | 
						|
        (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
 | 
						|
        (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
 | 
						|
    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
 | 
						|
 | 
						|
    if (!IsSEXT0 || !IsVZero1) {
 | 
						|
      // Swap the operands and update the condition code.
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
      CC = ISD::getSetCCSwappedOperands(CC);
 | 
						|
 | 
						|
      IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
 | 
						|
                (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
 | 
						|
      IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsSEXT0 && IsVZero1) {
 | 
						|
      assert(VT == LHS.getOperand(0).getValueType() &&
 | 
						|
             "Uexpected operand type");
 | 
						|
      if (CC == ISD::SETGT)
 | 
						|
        return DAG.getConstant(0, DL, VT);
 | 
						|
      if (CC == ISD::SETLE)
 | 
						|
        return DAG.getConstant(1, DL, VT);
 | 
						|
      if (CC == ISD::SETEQ || CC == ISD::SETGE)
 | 
						|
        return DAG.getNOT(DL, LHS.getOperand(0), VT);
 | 
						|
 | 
						|
      assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
 | 
						|
             "Unexpected condition code!");
 | 
						|
      return LHS.getOperand(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early
 | 
						|
  // to avoid scalarization via legalization because v4i32 is not a legal type.
 | 
						|
  if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 &&
 | 
						|
      LHS.getValueType() == MVT::v4f32)
 | 
						|
    return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  // Gather and Scatter instructions use k-registers for masks. The type of
 | 
						|
  // the masks is v*i1. So the mask will be truncated anyway.
 | 
						|
  // The SIGN_EXTEND_INREG my be dropped.
 | 
						|
  SDValue Mask = N->getOperand(2);
 | 
						|
  if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) {
 | 
						|
    SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
 | 
						|
    NewOps[2] = Mask.getOperand(0);
 | 
						|
    DAG.UpdateNodeOperands(N, NewOps);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Helper function of performSETCCCombine. It is to materialize "setb reg"
 | 
						|
// as "sbb reg,reg", since it can be extended without zext and produces
 | 
						|
// an all-ones bit which is more useful than 0/1 in some cases.
 | 
						|
static SDValue MaterializeSETB(const SDLoc &DL, SDValue EFLAGS,
 | 
						|
                               SelectionDAG &DAG, MVT VT) {
 | 
						|
  if (VT == MVT::i8)
 | 
						|
    return DAG.getNode(ISD::AND, DL, VT,
 | 
						|
                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
 | 
						|
                                   DAG.getConstant(X86::COND_B, DL, MVT::i8),
 | 
						|
                                   EFLAGS),
 | 
						|
                       DAG.getConstant(1, DL, VT));
 | 
						|
  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
 | 
						|
                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
 | 
						|
                                 DAG.getConstant(X86::COND_B, DL, MVT::i8),
 | 
						|
                                 EFLAGS));
 | 
						|
}
 | 
						|
 | 
						|
// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
 | 
						|
static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
 | 
						|
  SDValue EFLAGS = N->getOperand(1);
 | 
						|
 | 
						|
  if (CC == X86::COND_A) {
 | 
						|
    // Try to convert COND_A into COND_B in an attempt to facilitate
 | 
						|
    // materializing "setb reg".
 | 
						|
    //
 | 
						|
    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
 | 
						|
    // cannot take an immediate as its first operand.
 | 
						|
    //
 | 
						|
    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
 | 
						|
        EFLAGS.getValueType().isInteger() &&
 | 
						|
        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
 | 
						|
      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
 | 
						|
                                   EFLAGS.getNode()->getVTList(),
 | 
						|
                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
 | 
						|
      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
 | 
						|
      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
 | 
						|
  // a zext and produces an all-ones bit which is more useful than 0/1 in some
 | 
						|
  // cases.
 | 
						|
  if (CC == X86::COND_B)
 | 
						|
    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
 | 
						|
 | 
						|
  // Try to simplify the EFLAGS and condition code operands.
 | 
						|
  if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG))
 | 
						|
    return getSETCC(CC, Flags, DL, DAG);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize branch condition evaluation.
 | 
						|
static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
 | 
						|
                             TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                             const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue EFLAGS = N->getOperand(3);
 | 
						|
  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
 | 
						|
 | 
						|
  // Try to simplify the EFLAGS and condition code operands.
 | 
						|
  // Make sure to not keep references to operands, as combineSetCCEFLAGS can
 | 
						|
  // RAUW them under us.
 | 
						|
  if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG)) {
 | 
						|
    SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
 | 
						|
    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
 | 
						|
                       N->getOperand(1), Cond, Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
 | 
						|
                                                  SelectionDAG &DAG) {
 | 
						|
  // Take advantage of vector comparisons producing 0 or -1 in each lane to
 | 
						|
  // optimize away operation when it's from a constant.
 | 
						|
  //
 | 
						|
  // The general transformation is:
 | 
						|
  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
 | 
						|
  //       AND(VECTOR_CMP(x,y), constant2)
 | 
						|
  //    constant2 = UNARYOP(constant)
 | 
						|
 | 
						|
  // Early exit if this isn't a vector operation, the operand of the
 | 
						|
  // unary operation isn't a bitwise AND, or if the sizes of the operations
 | 
						|
  // aren't the same.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
 | 
						|
      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
 | 
						|
      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Now check that the other operand of the AND is a constant. We could
 | 
						|
  // make the transformation for non-constant splats as well, but it's unclear
 | 
						|
  // that would be a benefit as it would not eliminate any operations, just
 | 
						|
  // perform one more step in scalar code before moving to the vector unit.
 | 
						|
  if (BuildVectorSDNode *BV =
 | 
						|
          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
 | 
						|
    // Bail out if the vector isn't a constant.
 | 
						|
    if (!BV->isConstant())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Everything checks out. Build up the new and improved node.
 | 
						|
    SDLoc DL(N);
 | 
						|
    EVT IntVT = BV->getValueType(0);
 | 
						|
    // Create a new constant of the appropriate type for the transformed
 | 
						|
    // DAG.
 | 
						|
    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
 | 
						|
    // The AND node needs bitcasts to/from an integer vector type around it.
 | 
						|
    SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
 | 
						|
    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
 | 
						|
                                 N->getOperand(0)->getOperand(0), MaskConst);
 | 
						|
    SDValue Res = DAG.getBitcast(VT, NewAnd);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT InVT = Op0.getValueType();
 | 
						|
  EVT InSVT = InVT.getScalarType();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
 | 
						|
  // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
 | 
						|
  if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
 | 
						|
                                 InVT.getVectorNumElements());
 | 
						|
    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
 | 
						|
 | 
						|
    if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT))
 | 
						|
      return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
 | 
						|
  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
 | 
						|
  // the optimization here.
 | 
						|
  if (DAG.SignBitIsZero(Op0))
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
 | 
						|
                               const X86Subtarget &Subtarget) {
 | 
						|
  // First try to optimize away the conversion entirely when it's
 | 
						|
  // conditionally from a constant. Vectors only.
 | 
						|
  if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Now move on to more general possibilities.
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT InVT = Op0.getValueType();
 | 
						|
  EVT InSVT = InVT.getScalarType();
 | 
						|
 | 
						|
  // SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
 | 
						|
  // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
 | 
						|
  // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
 | 
						|
  if (InVT.isVector() &&
 | 
						|
      (InSVT == MVT::i8 || InSVT == MVT::i16 ||
 | 
						|
       (InSVT == MVT::i1 && !DAG.getTargetLoweringInfo().isTypeLegal(InVT)))) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
 | 
						|
                                 InVT.getVectorNumElements());
 | 
						|
    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Without AVX512DQ we only support i64 to float scalar conversion. For both
 | 
						|
  // vectors and scalars, see if we know that the upper bits are all the sign
 | 
						|
  // bit, in which case we can truncate the input to i32 and convert from that.
 | 
						|
  if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) {
 | 
						|
    unsigned BitWidth = InVT.getScalarSizeInBits();
 | 
						|
    unsigned NumSignBits = DAG.ComputeNumSignBits(Op0);
 | 
						|
    if (NumSignBits >= (BitWidth - 31)) {
 | 
						|
      EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), 32);
 | 
						|
      if (InVT.isVector())
 | 
						|
        TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT,
 | 
						|
                                   InVT.getVectorNumElements());
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0);
 | 
						|
      return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
 | 
						|
  // a 32-bit target where SSE doesn't support i64->FP operations.
 | 
						|
  if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
 | 
						|
    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
 | 
						|
    EVT LdVT = Ld->getValueType(0);
 | 
						|
 | 
						|
    // This transformation is not supported if the result type is f16 or f128.
 | 
						|
    if (VT == MVT::f16 || VT == MVT::f128)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (!Ld->isVolatile() && !VT.isVector() &&
 | 
						|
        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
 | 
						|
        !Subtarget.is64Bit() && LdVT == MVT::i64) {
 | 
						|
      SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD(
 | 
						|
          SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
 | 
						|
      return FILDChain;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
 | 
						|
static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          X86TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
 | 
						|
  // the result is either zero or one (depending on the input carry bit).
 | 
						|
  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
 | 
						|
  if (X86::isZeroNode(N->getOperand(0)) &&
 | 
						|
      X86::isZeroNode(N->getOperand(1)) &&
 | 
						|
      // We don't have a good way to replace an EFLAGS use, so only do this when
 | 
						|
      // dead right now.
 | 
						|
      SDValue(N, 1).use_empty()) {
 | 
						|
    SDLoc DL(N);
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
 | 
						|
    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
 | 
						|
                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
 | 
						|
                                           DAG.getConstant(X86::COND_B, DL,
 | 
						|
                                                           MVT::i8),
 | 
						|
                                           N->getOperand(2)),
 | 
						|
                               DAG.getConstant(1, DL, VT));
 | 
						|
    return DCI.CombineTo(N, Res1, CarryOut);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// fold (add Y, (sete  X, 0)) -> adc  0, Y
 | 
						|
///      (add Y, (setne X, 0)) -> sbb -1, Y
 | 
						|
///      (sub (sete  X, 0), Y) -> sbb  0, Y
 | 
						|
///      (sub (setne X, 0), Y) -> adc -1, Y
 | 
						|
static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Look through ZExts.
 | 
						|
  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
 | 
						|
  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue SetCC = Ext.getOperand(0);
 | 
						|
  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
 | 
						|
  if (CC != X86::COND_E && CC != X86::COND_NE)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Cmp = SetCC.getOperand(1);
 | 
						|
  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
 | 
						|
      !X86::isZeroNode(Cmp.getOperand(1)) ||
 | 
						|
      !Cmp.getOperand(0).getValueType().isInteger())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue CmpOp0 = Cmp.getOperand(0);
 | 
						|
  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
 | 
						|
                               DAG.getConstant(1, DL, CmpOp0.getValueType()));
 | 
						|
 | 
						|
  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
 | 
						|
  if (CC == X86::COND_NE)
 | 
						|
    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
 | 
						|
                       DL, OtherVal.getValueType(), OtherVal,
 | 
						|
                       DAG.getConstant(-1ULL, DL, OtherVal.getValueType()),
 | 
						|
                       NewCmp);
 | 
						|
  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
 | 
						|
                     DL, OtherVal.getValueType(), OtherVal,
 | 
						|
                     DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                     const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
 | 
						|
  // TODO: There's nothing special about i32, any integer type above i16 should
 | 
						|
  // work just as well.
 | 
						|
  if (!VT.isVector() || !VT.isSimple() ||
 | 
						|
      !(VT.getVectorElementType() == MVT::i32))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned RegSize = 128;
 | 
						|
  if (Subtarget.hasBWI())
 | 
						|
    RegSize = 512;
 | 
						|
  else if (Subtarget.hasAVX2())
 | 
						|
    RegSize = 256;
 | 
						|
 | 
						|
  // We only handle v16i32 for SSE2 / v32i32 for AVX2 / v64i32 for AVX512.
 | 
						|
  // TODO: We should be able to handle larger vectors by splitting them before
 | 
						|
  // feeding them into several SADs, and then reducing over those.
 | 
						|
  if (VT.getSizeInBits() / 4 > RegSize)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We know N is a reduction add, which means one of its operands is a phi.
 | 
						|
  // To match SAD, we need the other operand to be a vector select.
 | 
						|
  SDValue SelectOp, Phi;
 | 
						|
  if (Op0.getOpcode() == ISD::VSELECT) {
 | 
						|
    SelectOp = Op0;
 | 
						|
    Phi = Op1;
 | 
						|
  } else if (Op1.getOpcode() == ISD::VSELECT) {
 | 
						|
    SelectOp = Op1;
 | 
						|
    Phi = Op0;
 | 
						|
  } else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check whether we have an abs-diff pattern feeding into the select.
 | 
						|
  if(!detectZextAbsDiff(SelectOp, Op0, Op1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // SAD pattern detected. Now build a SAD instruction and an addition for
 | 
						|
  // reduction. Note that the number of elements of the result of SAD is less
 | 
						|
  // than the number of elements of its input. Therefore, we could only update
 | 
						|
  // part of elements in the reduction vector.
 | 
						|
  SDValue Sad = createPSADBW(DAG, Op0, Op1, DL);
 | 
						|
 | 
						|
  // The output of PSADBW is a vector of i64.
 | 
						|
  // We need to turn the vector of i64 into a vector of i32.
 | 
						|
  // If the reduction vector is at least as wide as the psadbw result, just
 | 
						|
  // bitcast. If it's narrower, truncate - the high i32 of each i64 is zero
 | 
						|
  // anyway.
 | 
						|
  MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32);
 | 
						|
  if (VT.getSizeInBits() >= ResVT.getSizeInBits())
 | 
						|
    Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad);
 | 
						|
  else
 | 
						|
    Sad = DAG.getNode(ISD::TRUNCATE, DL, VT, Sad);
 | 
						|
 | 
						|
  if (VT.getSizeInBits() > ResVT.getSizeInBits()) {
 | 
						|
    // Update part of elements of the reduction vector. This is done by first
 | 
						|
    // extracting a sub-vector from it, updating this sub-vector, and inserting
 | 
						|
    // it back.
 | 
						|
    SDValue SubPhi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Phi,
 | 
						|
                                 DAG.getIntPtrConstant(0, DL));
 | 
						|
    SDValue Res = DAG.getNode(ISD::ADD, DL, ResVT, Sad, SubPhi);
 | 
						|
    return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Phi, Res,
 | 
						|
                       DAG.getIntPtrConstant(0, DL));
 | 
						|
  } else
 | 
						|
    return DAG.getNode(ISD::ADD, DL, VT, Sad, Phi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
 | 
						|
  if (Flags->hasVectorReduction()) {
 | 
						|
    if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget))
 | 
						|
      return Sad;
 | 
						|
  }
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
 | 
						|
  // Try to synthesize horizontal adds from adds of shuffles.
 | 
						|
  if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
 | 
						|
       (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
 | 
						|
      isHorizontalBinOp(Op0, Op1, true))
 | 
						|
    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
 | 
						|
 | 
						|
  return OptimizeConditionalInDecrement(N, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          const X86Subtarget &Subtarget) {
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
 | 
						|
  // X86 can't encode an immediate LHS of a sub. See if we can push the
 | 
						|
  // negation into a preceding instruction.
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
 | 
						|
    // If the RHS of the sub is a XOR with one use and a constant, invert the
 | 
						|
    // immediate. Then add one to the LHS of the sub so we can turn
 | 
						|
    // X-Y -> X+~Y+1, saving one register.
 | 
						|
    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
 | 
						|
        isa<ConstantSDNode>(Op1.getOperand(1))) {
 | 
						|
      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
 | 
						|
      EVT VT = Op0.getValueType();
 | 
						|
      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
 | 
						|
                                   Op1.getOperand(0),
 | 
						|
                                   DAG.getConstant(~XorC, SDLoc(Op1), VT));
 | 
						|
      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
 | 
						|
                         DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to synthesize horizontal adds from adds of shuffles.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
 | 
						|
       (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
 | 
						|
      isHorizontalBinOp(Op0, Op1, true))
 | 
						|
    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
 | 
						|
 | 
						|
  return OptimizeConditionalInDecrement(N, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineVSZext(SDNode *N, SelectionDAG &DAG,
 | 
						|
                             TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                             const X86Subtarget &Subtarget) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  MVT SVT = VT.getVectorElementType();
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
  MVT OpVT = Op.getSimpleValueType();
 | 
						|
  MVT OpEltVT = OpVT.getVectorElementType();
 | 
						|
  unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
 | 
						|
 | 
						|
  // Perform any constant folding.
 | 
						|
  // FIXME: Reduce constant pool usage and don't fold when OptSize is enabled.
 | 
						|
  if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
 | 
						|
    unsigned NumDstElts = VT.getVectorNumElements();
 | 
						|
    SmallBitVector Undefs(NumDstElts, false);
 | 
						|
    SmallVector<APInt, 4> Vals(NumDstElts, APInt(SVT.getSizeInBits(), 0));
 | 
						|
    for (unsigned i = 0; i != NumDstElts; ++i) {
 | 
						|
      SDValue OpElt = Op.getOperand(i);
 | 
						|
      if (OpElt.getOpcode() == ISD::UNDEF) {
 | 
						|
        Undefs[i] = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      APInt Cst = cast<ConstantSDNode>(OpElt.getNode())->getAPIntValue();
 | 
						|
      Vals[i] = Opcode == X86ISD::VZEXT ? Cst.zextOrTrunc(SVT.getSizeInBits())
 | 
						|
                                        : Cst.sextOrTrunc(SVT.getSizeInBits());
 | 
						|
    }
 | 
						|
    return getConstVector(Vals, Undefs, VT, DAG, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  // (vzext (bitcast (vzext (x)) -> (vzext x)
 | 
						|
  // TODO: (vsext (bitcast (vsext (x)) -> (vsext x)
 | 
						|
  SDValue V = peekThroughBitcasts(Op);
 | 
						|
  if (Opcode == X86ISD::VZEXT && V != Op && V.getOpcode() == X86ISD::VZEXT) {
 | 
						|
    MVT InnerVT = V.getSimpleValueType();
 | 
						|
    MVT InnerEltVT = InnerVT.getVectorElementType();
 | 
						|
 | 
						|
    // If the element sizes match exactly, we can just do one larger vzext. This
 | 
						|
    // is always an exact type match as vzext operates on integer types.
 | 
						|
    if (OpEltVT == InnerEltVT) {
 | 
						|
      assert(OpVT == InnerVT && "Types must match for vzext!");
 | 
						|
      return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    // The only other way we can combine them is if only a single element of the
 | 
						|
    // inner vzext is used in the input to the outer vzext.
 | 
						|
    if (InnerEltVT.getSizeInBits() < InputBits)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // In this case, the inner vzext is completely dead because we're going to
 | 
						|
    // only look at bits inside of the low element. Just do the outer vzext on
 | 
						|
    // a bitcast of the input to the inner.
 | 
						|
    return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we can bypass extracting and re-inserting an element of an input
 | 
						|
  // vector. Essentially:
 | 
						|
  // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
 | 
						|
  // TODO: Add X86ISD::VSEXT support
 | 
						|
  if (Opcode == X86ISD::VZEXT &&
 | 
						|
      V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | 
						|
      V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | 
						|
      V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
 | 
						|
    SDValue ExtractedV = V.getOperand(0);
 | 
						|
    SDValue OrigV = ExtractedV.getOperand(0);
 | 
						|
    if (isNullConstant(ExtractedV.getOperand(1))) {
 | 
						|
        MVT OrigVT = OrigV.getSimpleValueType();
 | 
						|
        // Extract a subvector if necessary...
 | 
						|
        if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
 | 
						|
          int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
 | 
						|
          OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
 | 
						|
                                    OrigVT.getVectorNumElements() / Ratio);
 | 
						|
          OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
 | 
						|
                              DAG.getIntPtrConstant(0, DL));
 | 
						|
        }
 | 
						|
        Op = DAG.getBitcast(OpVT, OrigV);
 | 
						|
        return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Canonicalize (LSUB p, 1) -> (LADD p, -1).
 | 
						|
static SDValue combineLockSub(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                  const X86Subtarget &Subtarget) {
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  MVT VT = RHS.getSimpleValueType();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  auto *C = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
  if (!C || C->getZExtValue() != 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  RHS = DAG.getConstant(-1, DL, VT);
 | 
						|
  MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  return DAG.getMemIntrinsicNode(X86ISD::LADD, DL,
 | 
						|
                                 DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
                                 {Chain, LHS, RHS}, VT, MMO);
 | 
						|
}
 | 
						|
 | 
						|
// TEST (AND a, b) ,(AND a, b) -> TEST a, b
 | 
						|
static SDValue combineTestM(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
 | 
						|
  if (Op0 != Op1 || Op1->getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  return DAG.getNode(X86ISD::TESTM, DL, VT,
 | 
						|
                     Op0->getOperand(0), Op0->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                    const X86Subtarget &Subtarget) {
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  if (N->getOperand(0) == N->getOperand(1)) {
 | 
						|
    if (N->getOpcode() == X86ISD::PCMPEQ)
 | 
						|
      return getOnesVector(VT, Subtarget, DAG, DL);
 | 
						|
    if (N->getOpcode() == X86ISD::PCMPGT)
 | 
						|
      return getZeroVector(VT, Subtarget, DAG, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                             DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::EXTRACT_VECTOR_ELT:
 | 
						|
    return combineExtractVectorElt(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::VSELECT:
 | 
						|
  case ISD::SELECT:
 | 
						|
  case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::BITCAST:        return combineBitcast(N, DAG, Subtarget);
 | 
						|
  case X86ISD::CMOV:        return combineCMov(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::ADD:            return combineAdd(N, DAG, Subtarget);
 | 
						|
  case ISD::SUB:            return combineSub(N, DAG, Subtarget);
 | 
						|
  case X86ISD::ADC:         return combineADC(N, DAG, DCI);
 | 
						|
  case ISD::MUL:            return combineMul(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:            return combineShift(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::AND:            return combineAnd(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::OR:             return combineOr(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::XOR:            return combineXor(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::LOAD:           return combineLoad(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::MLOAD:          return combineMaskedLoad(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::STORE:          return combineStore(N, DAG, Subtarget);
 | 
						|
  case ISD::MSTORE:         return combineMaskedStore(N, DAG, Subtarget);
 | 
						|
  case ISD::SINT_TO_FP:     return combineSIntToFP(N, DAG, Subtarget);
 | 
						|
  case ISD::UINT_TO_FP:     return combineUIntToFP(N, DAG, Subtarget);
 | 
						|
  case ISD::FADD:
 | 
						|
  case ISD::FSUB:           return combineFaddFsub(N, DAG, Subtarget);
 | 
						|
  case ISD::FNEG:           return combineFneg(N, DAG, Subtarget);
 | 
						|
  case ISD::TRUNCATE:       return combineTruncate(N, DAG, Subtarget);
 | 
						|
  case X86ISD::FAND:        return combineFAnd(N, DAG, Subtarget);
 | 
						|
  case X86ISD::FANDN:       return combineFAndn(N, DAG, Subtarget);
 | 
						|
  case X86ISD::FXOR:
 | 
						|
  case X86ISD::FOR:         return combineFOr(N, DAG, Subtarget);
 | 
						|
  case X86ISD::FMIN:
 | 
						|
  case X86ISD::FMAX:        return combineFMinFMax(N, DAG);
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case ISD::FMAXNUM:        return combineFMinNumFMaxNum(N, DAG, Subtarget);
 | 
						|
  case X86ISD::BT:          return combineBT(N, DAG, DCI);
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:    return combineZext(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::SIGN_EXTEND:    return combineSext(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
 | 
						|
  case ISD::SETCC:          return combineSetCC(N, DAG, Subtarget);
 | 
						|
  case X86ISD::SETCC:       return combineX86SetCC(N, DAG, DCI, Subtarget);
 | 
						|
  case X86ISD::BRCOND:      return combineBrCond(N, DAG, DCI, Subtarget);
 | 
						|
  case X86ISD::VSHLI:
 | 
						|
  case X86ISD::VSRLI:       return combineVectorShift(N, DAG, DCI, Subtarget);
 | 
						|
  case X86ISD::VSEXT:
 | 
						|
  case X86ISD::VZEXT:       return combineVSZext(N, DAG, DCI, Subtarget);
 | 
						|
  case X86ISD::SHUFP:       // Handle all target specific shuffles
 | 
						|
  case X86ISD::INSERTPS:
 | 
						|
  case X86ISD::PALIGNR:
 | 
						|
  case X86ISD::VSHLDQ:
 | 
						|
  case X86ISD::VSRLDQ:
 | 
						|
  case X86ISD::BLENDI:
 | 
						|
  case X86ISD::UNPCKH:
 | 
						|
  case X86ISD::UNPCKL:
 | 
						|
  case X86ISD::MOVHLPS:
 | 
						|
  case X86ISD::MOVLHPS:
 | 
						|
  case X86ISD::PSHUFB:
 | 
						|
  case X86ISD::PSHUFD:
 | 
						|
  case X86ISD::PSHUFHW:
 | 
						|
  case X86ISD::PSHUFLW:
 | 
						|
  case X86ISD::MOVSHDUP:
 | 
						|
  case X86ISD::MOVSLDUP:
 | 
						|
  case X86ISD::MOVDDUP:
 | 
						|
  case X86ISD::MOVSS:
 | 
						|
  case X86ISD::MOVSD:
 | 
						|
  case X86ISD::VPPERM:
 | 
						|
  case X86ISD::VPERMI:
 | 
						|
  case X86ISD::VPERMV:
 | 
						|
  case X86ISD::VPERMV3:
 | 
						|
  case X86ISD::VPERMIV3:
 | 
						|
  case X86ISD::VPERMIL2:
 | 
						|
  case X86ISD::VPERMILPI:
 | 
						|
  case X86ISD::VPERMILPV:
 | 
						|
  case X86ISD::VPERM2X128:
 | 
						|
  case X86ISD::VZEXT_MOVL:
 | 
						|
  case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
 | 
						|
  case X86ISD::FMADD:
 | 
						|
  case X86ISD::FMADD_RND:
 | 
						|
  case X86ISD::FMADDS1_RND:
 | 
						|
  case X86ISD::FMADDS3_RND:
 | 
						|
  case ISD::FMA:            return combineFMA(N, DAG, Subtarget);
 | 
						|
  case ISD::MGATHER:
 | 
						|
  case ISD::MSCATTER:       return combineGatherScatter(N, DAG);
 | 
						|
  case X86ISD::LSUB:        return combineLockSub(N, DAG, Subtarget);
 | 
						|
  case X86ISD::TESTM:       return combineTestM(N, DAG);
 | 
						|
  case X86ISD::PCMPEQ:
 | 
						|
  case X86ISD::PCMPGT:      return combineVectorCompare(N, DAG, Subtarget);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the target has native support for the specified value type
 | 
						|
/// and it is 'desirable' to use the type for the given node type. e.g. On x86
 | 
						|
/// i16 is legal, but undesirable since i16 instruction encodings are longer and
 | 
						|
/// some i16 instructions are slow.
 | 
						|
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
 | 
						|
  if (!isTypeLegal(VT))
 | 
						|
    return false;
 | 
						|
  if (VT != MVT::i16)
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  case ISD::LOAD:
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::SUB:
 | 
						|
  case ISD::ADD:
 | 
						|
  case ISD::MUL:
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::OR:
 | 
						|
  case ISD::XOR:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
 | 
						|
/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
 | 
						|
/// we don't adjust the stack we clobber the first frame index.
 | 
						|
/// See X86InstrInfo::copyPhysReg.
 | 
						|
bool X86TargetLowering::hasCopyImplyingStackAdjustment(
 | 
						|
    MachineFunction *MF) const {
 | 
						|
  const MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  return any_of(MRI.reg_instructions(X86::EFLAGS),
 | 
						|
                [](const MachineInstr &RI) { return RI.isCopy(); });
 | 
						|
}
 | 
						|
 | 
						|
/// This method query the target whether it is beneficial for dag combiner to
 | 
						|
/// promote the specified node. If true, it should return the desired promotion
 | 
						|
/// type by reference.
 | 
						|
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT != MVT::i16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Promote = false;
 | 
						|
  bool Commute = false;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
    Promote = true;
 | 
						|
    break;
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRL: {
 | 
						|
    SDValue N0 = Op.getOperand(0);
 | 
						|
    // Look out for (store (shl (load), x)).
 | 
						|
    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
 | 
						|
      return false;
 | 
						|
    Promote = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::ADD:
 | 
						|
  case ISD::MUL:
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::OR:
 | 
						|
  case ISD::XOR:
 | 
						|
    Commute = true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SUB: {
 | 
						|
    SDValue N0 = Op.getOperand(0);
 | 
						|
    SDValue N1 = Op.getOperand(1);
 | 
						|
    if (!Commute && MayFoldLoad(N1))
 | 
						|
      return false;
 | 
						|
    // Avoid disabling potential load folding opportunities.
 | 
						|
    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
 | 
						|
      return false;
 | 
						|
    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
 | 
						|
      return false;
 | 
						|
    Promote = true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  PVT = MVT::i32;
 | 
						|
  return Promote;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           X86 Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Helper to match a string separated by whitespace.
 | 
						|
static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
 | 
						|
  S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
 | 
						|
 | 
						|
  for (StringRef Piece : Pieces) {
 | 
						|
    if (!S.startswith(Piece)) // Check if the piece matches.
 | 
						|
      return false;
 | 
						|
 | 
						|
    S = S.substr(Piece.size());
 | 
						|
    StringRef::size_type Pos = S.find_first_not_of(" \t");
 | 
						|
    if (Pos == 0) // We matched a prefix.
 | 
						|
      return false;
 | 
						|
 | 
						|
    S = S.substr(Pos);
 | 
						|
  }
 | 
						|
 | 
						|
  return S.empty();
 | 
						|
}
 | 
						|
 | 
						|
static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
 | 
						|
 | 
						|
  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
 | 
						|
    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
 | 
						|
        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
 | 
						|
        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
 | 
						|
 | 
						|
      if (AsmPieces.size() == 3)
 | 
						|
        return true;
 | 
						|
      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | 
						|
  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | 
						|
 | 
						|
  const std::string &AsmStr = IA->getAsmString();
 | 
						|
 | 
						|
  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | 
						|
  if (!Ty || Ty->getBitWidth() % 16 != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
 | 
						|
  SmallVector<StringRef, 4> AsmPieces;
 | 
						|
  SplitString(AsmStr, AsmPieces, ";\n");
 | 
						|
 | 
						|
  switch (AsmPieces.size()) {
 | 
						|
  default: return false;
 | 
						|
  case 1:
 | 
						|
    // FIXME: this should verify that we are targeting a 486 or better.  If not,
 | 
						|
    // we will turn this bswap into something that will be lowered to logical
 | 
						|
    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
 | 
						|
    // lower so don't worry about this.
 | 
						|
    // bswap $0
 | 
						|
    if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
 | 
						|
        matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
 | 
						|
        matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
 | 
						|
        matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
 | 
						|
        matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
 | 
						|
        matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
 | 
						|
      // No need to check constraints, nothing other than the equivalent of
 | 
						|
      // "=r,0" would be valid here.
 | 
						|
      return IntrinsicLowering::LowerToByteSwap(CI);
 | 
						|
    }
 | 
						|
 | 
						|
    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
 | 
						|
    if (CI->getType()->isIntegerTy(16) &&
 | 
						|
        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
 | 
						|
        (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
 | 
						|
         matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
 | 
						|
      AsmPieces.clear();
 | 
						|
      StringRef ConstraintsStr = IA->getConstraintString();
 | 
						|
      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
 | 
						|
      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
 | 
						|
      if (clobbersFlagRegisters(AsmPieces))
 | 
						|
        return IntrinsicLowering::LowerToByteSwap(CI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    if (CI->getType()->isIntegerTy(32) &&
 | 
						|
        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
 | 
						|
        matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
 | 
						|
        matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
 | 
						|
        matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
 | 
						|
      AsmPieces.clear();
 | 
						|
      StringRef ConstraintsStr = IA->getConstraintString();
 | 
						|
      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
 | 
						|
      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
 | 
						|
      if (clobbersFlagRegisters(AsmPieces))
 | 
						|
        return IntrinsicLowering::LowerToByteSwap(CI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (CI->getType()->isIntegerTy(64)) {
 | 
						|
      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
 | 
						|
      if (Constraints.size() >= 2 &&
 | 
						|
          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
 | 
						|
          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
 | 
						|
        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
 | 
						|
        if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
 | 
						|
            matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
 | 
						|
            matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
 | 
						|
          return IntrinsicLowering::LowerToByteSwap(CI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a constraint letter, return the type of constraint for this target.
 | 
						|
X86TargetLowering::ConstraintType
 | 
						|
X86TargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'R':
 | 
						|
    case 'q':
 | 
						|
    case 'Q':
 | 
						|
    case 'f':
 | 
						|
    case 't':
 | 
						|
    case 'u':
 | 
						|
    case 'y':
 | 
						|
    case 'x':
 | 
						|
    case 'v':
 | 
						|
    case 'Y':
 | 
						|
    case 'l':
 | 
						|
      return C_RegisterClass;
 | 
						|
    case 'k': // AVX512 masking registers.
 | 
						|
    case 'a':
 | 
						|
    case 'b':
 | 
						|
    case 'c':
 | 
						|
    case 'd':
 | 
						|
    case 'S':
 | 
						|
    case 'D':
 | 
						|
    case 'A':
 | 
						|
      return C_Register;
 | 
						|
    case 'I':
 | 
						|
    case 'J':
 | 
						|
    case 'K':
 | 
						|
    case 'L':
 | 
						|
    case 'M':
 | 
						|
    case 'N':
 | 
						|
    case 'G':
 | 
						|
    case 'C':
 | 
						|
    case 'e':
 | 
						|
    case 'Z':
 | 
						|
      return C_Other;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (Constraint.size() == 2) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case 'Y':
 | 
						|
      switch (Constraint[1]) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case 'k':
 | 
						|
        return C_Register;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
/// Examine constraint type and operand type and determine a weight value.
 | 
						|
/// This object must already have been set up with the operand type
 | 
						|
/// and the current alternative constraint selected.
 | 
						|
TargetLowering::ConstraintWeight
 | 
						|
  X86TargetLowering::getSingleConstraintMatchWeight(
 | 
						|
    AsmOperandInfo &info, const char *constraint) const {
 | 
						|
  ConstraintWeight weight = CW_Invalid;
 | 
						|
  Value *CallOperandVal = info.CallOperandVal;
 | 
						|
    // If we don't have a value, we can't do a match,
 | 
						|
    // but allow it at the lowest weight.
 | 
						|
  if (!CallOperandVal)
 | 
						|
    return CW_Default;
 | 
						|
  Type *type = CallOperandVal->getType();
 | 
						|
  // Look at the constraint type.
 | 
						|
  switch (*constraint) {
 | 
						|
  default:
 | 
						|
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | 
						|
  case 'R':
 | 
						|
  case 'q':
 | 
						|
  case 'Q':
 | 
						|
  case 'a':
 | 
						|
  case 'b':
 | 
						|
  case 'c':
 | 
						|
  case 'd':
 | 
						|
  case 'S':
 | 
						|
  case 'D':
 | 
						|
  case 'A':
 | 
						|
    if (CallOperandVal->getType()->isIntegerTy())
 | 
						|
      weight = CW_SpecificReg;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
  case 't':
 | 
						|
  case 'u':
 | 
						|
    if (type->isFloatingPointTy())
 | 
						|
      weight = CW_SpecificReg;
 | 
						|
    break;
 | 
						|
  case 'y':
 | 
						|
    if (type->isX86_MMXTy() && Subtarget.hasMMX())
 | 
						|
      weight = CW_SpecificReg;
 | 
						|
    break;
 | 
						|
  case 'Y':
 | 
						|
    // Other "Y<x>" (e.g. "Yk") constraints should be implemented below.
 | 
						|
    if (constraint[1] == 'k') {
 | 
						|
      // Support for 'Yk' (similarly to the 'k' variant below).
 | 
						|
      weight = CW_SpecificReg;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  // Else fall through (handle "Y" constraint).
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case 'v':
 | 
						|
    if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512())
 | 
						|
      weight = CW_Register;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case 'x':
 | 
						|
    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
 | 
						|
        ((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasFp256()))
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'k':
 | 
						|
    // Enable conditional vector operations using %k<#> registers.
 | 
						|
    weight = CW_SpecificReg;
 | 
						|
    break;
 | 
						|
  case 'I':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
 | 
						|
      if (C->getZExtValue() <= 31)
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'J':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if (C->getZExtValue() <= 63)
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'K':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'L':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'M':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if (C->getZExtValue() <= 3)
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'N':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if (C->getZExtValue() <= 0xff)
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'G':
 | 
						|
  case 'C':
 | 
						|
    if (isa<ConstantFP>(CallOperandVal)) {
 | 
						|
      weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'e':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if ((C->getSExtValue() >= -0x80000000LL) &&
 | 
						|
          (C->getSExtValue() <= 0x7fffffffLL))
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'Z':
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | 
						|
      if (C->getZExtValue() <= 0xffffffff)
 | 
						|
        weight = CW_Constant;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return weight;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to replace an X constraint, which matches anything, with another that
 | 
						|
/// has more specific requirements based on the type of the corresponding
 | 
						|
/// operand.
 | 
						|
const char *X86TargetLowering::
 | 
						|
LowerXConstraint(EVT ConstraintVT) const {
 | 
						|
  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
 | 
						|
  // 'f' like normal targets.
 | 
						|
  if (ConstraintVT.isFloatingPoint()) {
 | 
						|
    if (Subtarget.hasSSE2())
 | 
						|
      return "Y";
 | 
						|
    if (Subtarget.hasSSE1())
 | 
						|
      return "x";
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::LowerXConstraint(ConstraintVT);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower the specified operand into the Ops vector.
 | 
						|
/// If it is invalid, don't add anything to Ops.
 | 
						|
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | 
						|
                                                     std::string &Constraint,
 | 
						|
                                                     std::vector<SDValue>&Ops,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Result;
 | 
						|
 | 
						|
  // Only support length 1 constraints for now.
 | 
						|
  if (Constraint.length() > 1) return;
 | 
						|
 | 
						|
  char ConstraintLetter = Constraint[0];
 | 
						|
  switch (ConstraintLetter) {
 | 
						|
  default: break;
 | 
						|
  case 'I':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() <= 31) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'J':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() <= 63) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'K':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (isInt<8>(C->getSExtValue())) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'L':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
 | 
						|
          (Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
 | 
						|
        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'M':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() <= 3) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'N':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() <= 255) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'O':
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (C->getZExtValue() <= 127) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case 'e': {
 | 
						|
    // 32-bit signed value
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
 | 
						|
                                           C->getSExtValue())) {
 | 
						|
        // Widen to 64 bits here to get it sign extended.
 | 
						|
        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    // FIXME gcc accepts some relocatable values here too, but only in certain
 | 
						|
    // memory models; it's complicated.
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case 'Z': {
 | 
						|
    // 32-bit unsigned value
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
 | 
						|
                                           C->getZExtValue())) {
 | 
						|
        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | 
						|
                                       Op.getValueType());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // FIXME gcc accepts some relocatable values here too, but only in certain
 | 
						|
    // memory models; it's complicated.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case 'i': {
 | 
						|
    // Literal immediates are always ok.
 | 
						|
    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
      // Widen to 64 bits here to get it sign extended.
 | 
						|
      Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // In any sort of PIC mode addresses need to be computed at runtime by
 | 
						|
    // adding in a register or some sort of table lookup.  These can't
 | 
						|
    // be used as immediates.
 | 
						|
    if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
 | 
						|
      return;
 | 
						|
 | 
						|
    // If we are in non-pic codegen mode, we allow the address of a global (with
 | 
						|
    // an optional displacement) to be used with 'i'.
 | 
						|
    GlobalAddressSDNode *GA = nullptr;
 | 
						|
    int64_t Offset = 0;
 | 
						|
 | 
						|
    // Match either (GA), (GA+C), (GA+C1+C2), etc.
 | 
						|
    while (1) {
 | 
						|
      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
 | 
						|
        Offset += GA->getOffset();
 | 
						|
        break;
 | 
						|
      } else if (Op.getOpcode() == ISD::ADD) {
 | 
						|
        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						|
          Offset += C->getZExtValue();
 | 
						|
          Op = Op.getOperand(0);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else if (Op.getOpcode() == ISD::SUB) {
 | 
						|
        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						|
          Offset += -C->getZExtValue();
 | 
						|
          Op = Op.getOperand(0);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this isn't something we can handle, reject it.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    const GlobalValue *GV = GA->getGlobal();
 | 
						|
    // If we require an extra load to get this address, as in PIC mode, we
 | 
						|
    // can't accept it.
 | 
						|
    if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV)))
 | 
						|
      return;
 | 
						|
 | 
						|
    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
 | 
						|
                                        GA->getValueType(0), Offset);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if \p RC is a general purpose register class.
 | 
						|
/// I.e., GR* or one of their variant.
 | 
						|
static bool isGRClass(const TargetRegisterClass &RC) {
 | 
						|
  return RC.hasSuperClassEq(&X86::GR8RegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::GR16RegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::GR32RegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::GR64RegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if \p RC is a vector register class.
 | 
						|
/// I.e., FR* / VR* or one of their variant.
 | 
						|
static bool isFRClass(const TargetRegisterClass &RC) {
 | 
						|
  return RC.hasSuperClassEq(&X86::FR32XRegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::FR64XRegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::VR128XRegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::VR256XRegClass) ||
 | 
						|
         RC.hasSuperClassEq(&X86::VR512RegClass);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass *>
 | 
						|
X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | 
						|
                                                StringRef Constraint,
 | 
						|
                                                MVT VT) const {
 | 
						|
  // First, see if this is a constraint that directly corresponds to an LLVM
 | 
						|
  // register class.
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    // GCC Constraint Letters
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default: break;
 | 
						|
      // TODO: Slight differences here in allocation order and leaving
 | 
						|
      // RIP in the class. Do they matter any more here than they do
 | 
						|
      // in the normal allocation?
 | 
						|
    case 'k':
 | 
						|
      if (Subtarget.hasAVX512()) {
 | 
						|
        //  Only supported in AVX512 or later.
 | 
						|
        switch (VT.SimpleTy) {
 | 
						|
        default: break;
 | 
						|
        case MVT::i32:
 | 
						|
          return std::make_pair(0U, &X86::VK32RegClass);
 | 
						|
        case MVT::i16:
 | 
						|
          return std::make_pair(0U, &X86::VK16RegClass);
 | 
						|
        case MVT::i8:
 | 
						|
          return std::make_pair(0U, &X86::VK8RegClass);
 | 
						|
        case MVT::i1:
 | 
						|
          return std::make_pair(0U, &X86::VK1RegClass);
 | 
						|
        case MVT::i64:
 | 
						|
          return std::make_pair(0U, &X86::VK64RegClass);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
 | 
						|
      if (Subtarget.is64Bit()) {
 | 
						|
        if (VT == MVT::i32 || VT == MVT::f32)
 | 
						|
          return std::make_pair(0U, &X86::GR32RegClass);
 | 
						|
        if (VT == MVT::i16)
 | 
						|
          return std::make_pair(0U, &X86::GR16RegClass);
 | 
						|
        if (VT == MVT::i8 || VT == MVT::i1)
 | 
						|
          return std::make_pair(0U, &X86::GR8RegClass);
 | 
						|
        if (VT == MVT::i64 || VT == MVT::f64)
 | 
						|
          return std::make_pair(0U, &X86::GR64RegClass);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // 32-bit fallthrough
 | 
						|
    case 'Q':   // Q_REGS
 | 
						|
      if (VT == MVT::i32 || VT == MVT::f32)
 | 
						|
        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
 | 
						|
      if (VT == MVT::i16)
 | 
						|
        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
 | 
						|
      if (VT == MVT::i8 || VT == MVT::i1)
 | 
						|
        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
 | 
						|
      if (VT == MVT::i64)
 | 
						|
        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
 | 
						|
      break;
 | 
						|
    case 'r':   // GENERAL_REGS
 | 
						|
    case 'l':   // INDEX_REGS
 | 
						|
      if (VT == MVT::i8 || VT == MVT::i1)
 | 
						|
        return std::make_pair(0U, &X86::GR8RegClass);
 | 
						|
      if (VT == MVT::i16)
 | 
						|
        return std::make_pair(0U, &X86::GR16RegClass);
 | 
						|
      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
 | 
						|
        return std::make_pair(0U, &X86::GR32RegClass);
 | 
						|
      return std::make_pair(0U, &X86::GR64RegClass);
 | 
						|
    case 'R':   // LEGACY_REGS
 | 
						|
      if (VT == MVT::i8 || VT == MVT::i1)
 | 
						|
        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
 | 
						|
      if (VT == MVT::i16)
 | 
						|
        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
 | 
						|
      if (VT == MVT::i32 || !Subtarget.is64Bit())
 | 
						|
        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
 | 
						|
      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
 | 
						|
    case 'f':  // FP Stack registers.
 | 
						|
      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
 | 
						|
      // value to the correct fpstack register class.
 | 
						|
      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
 | 
						|
        return std::make_pair(0U, &X86::RFP32RegClass);
 | 
						|
      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
 | 
						|
        return std::make_pair(0U, &X86::RFP64RegClass);
 | 
						|
      return std::make_pair(0U, &X86::RFP80RegClass);
 | 
						|
    case 'y':   // MMX_REGS if MMX allowed.
 | 
						|
      if (!Subtarget.hasMMX()) break;
 | 
						|
      return std::make_pair(0U, &X86::VR64RegClass);
 | 
						|
    case 'Y':   // SSE_REGS if SSE2 allowed
 | 
						|
      if (!Subtarget.hasSSE2()) break;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case 'v':
 | 
						|
    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
 | 
						|
      if (!Subtarget.hasSSE1()) break;
 | 
						|
      bool VConstraint = (Constraint[0] == 'v');
 | 
						|
 | 
						|
      switch (VT.SimpleTy) {
 | 
						|
      default: break;
 | 
						|
      // Scalar SSE types.
 | 
						|
      case MVT::f32:
 | 
						|
      case MVT::i32:
 | 
						|
        if (VConstraint && Subtarget.hasAVX512() && Subtarget.hasVLX())
 | 
						|
          return std::make_pair(0U, &X86::FR32XRegClass);
 | 
						|
        return std::make_pair(0U, &X86::FR32RegClass);
 | 
						|
      case MVT::f64:
 | 
						|
      case MVT::i64:
 | 
						|
        if (VConstraint && Subtarget.hasVLX())
 | 
						|
          return std::make_pair(0U, &X86::FR64XRegClass);
 | 
						|
        return std::make_pair(0U, &X86::FR64RegClass);
 | 
						|
      // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
 | 
						|
      // Vector types.
 | 
						|
      case MVT::v16i8:
 | 
						|
      case MVT::v8i16:
 | 
						|
      case MVT::v4i32:
 | 
						|
      case MVT::v2i64:
 | 
						|
      case MVT::v4f32:
 | 
						|
      case MVT::v2f64:
 | 
						|
        if (VConstraint && Subtarget.hasVLX())
 | 
						|
          return std::make_pair(0U, &X86::VR128XRegClass);
 | 
						|
        return std::make_pair(0U, &X86::VR128RegClass);
 | 
						|
      // AVX types.
 | 
						|
      case MVT::v32i8:
 | 
						|
      case MVT::v16i16:
 | 
						|
      case MVT::v8i32:
 | 
						|
      case MVT::v4i64:
 | 
						|
      case MVT::v8f32:
 | 
						|
      case MVT::v4f64:
 | 
						|
        if (VConstraint && Subtarget.hasVLX())
 | 
						|
          return std::make_pair(0U, &X86::VR256XRegClass);
 | 
						|
        return std::make_pair(0U, &X86::VR256RegClass);
 | 
						|
      case MVT::v8f64:
 | 
						|
      case MVT::v16f32:
 | 
						|
      case MVT::v16i32:
 | 
						|
      case MVT::v8i64:
 | 
						|
        return std::make_pair(0U, &X86::VR512RegClass);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else if (Constraint.size() == 2 && Constraint[0] == 'Y') {
 | 
						|
    switch (Constraint[1]) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case 'k':
 | 
						|
      // This register class doesn't allocate k0 for masked vector operation.
 | 
						|
      if (Subtarget.hasAVX512()) { // Only supported in AVX512.
 | 
						|
        switch (VT.SimpleTy) {
 | 
						|
        default: break;
 | 
						|
        case MVT::i32:
 | 
						|
          return std::make_pair(0U, &X86::VK32WMRegClass);
 | 
						|
        case MVT::i16:
 | 
						|
          return std::make_pair(0U, &X86::VK16WMRegClass);
 | 
						|
        case MVT::i8:
 | 
						|
          return std::make_pair(0U, &X86::VK8WMRegClass);
 | 
						|
        case MVT::i1:
 | 
						|
          return std::make_pair(0U, &X86::VK1WMRegClass);
 | 
						|
        case MVT::i64:
 | 
						|
          return std::make_pair(0U, &X86::VK64WMRegClass);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use the default implementation in TargetLowering to convert the register
 | 
						|
  // constraint into a member of a register class.
 | 
						|
  std::pair<unsigned, const TargetRegisterClass*> Res;
 | 
						|
  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
 | 
						|
  // Not found as a standard register?
 | 
						|
  if (!Res.second) {
 | 
						|
    // Map st(0) -> st(7) -> ST0
 | 
						|
    if (Constraint.size() == 7 && Constraint[0] == '{' &&
 | 
						|
        tolower(Constraint[1]) == 's' &&
 | 
						|
        tolower(Constraint[2]) == 't' &&
 | 
						|
        Constraint[3] == '(' &&
 | 
						|
        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
 | 
						|
        Constraint[5] == ')' &&
 | 
						|
        Constraint[6] == '}') {
 | 
						|
 | 
						|
      Res.first = X86::FP0+Constraint[4]-'0';
 | 
						|
      Res.second = &X86::RFP80RegClass;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
 | 
						|
    // GCC allows "st(0)" to be called just plain "st".
 | 
						|
    if (StringRef("{st}").equals_lower(Constraint)) {
 | 
						|
      Res.first = X86::FP0;
 | 
						|
      Res.second = &X86::RFP80RegClass;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
 | 
						|
    // flags -> EFLAGS
 | 
						|
    if (StringRef("{flags}").equals_lower(Constraint)) {
 | 
						|
      Res.first = X86::EFLAGS;
 | 
						|
      Res.second = &X86::CCRRegClass;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
 | 
						|
    // 'A' means EAX + EDX.
 | 
						|
    if (Constraint == "A") {
 | 
						|
      Res.first = X86::EAX;
 | 
						|
      Res.second = &X86::GR32_ADRegClass;
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, check to see if this is a register class of the wrong value
 | 
						|
  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
 | 
						|
  // turn into {ax},{dx}.
 | 
						|
  // MVT::Other is used to specify clobber names.
 | 
						|
  if (Res.second->hasType(VT) || VT == MVT::Other)
 | 
						|
    return Res;   // Correct type already, nothing to do.
 | 
						|
 | 
						|
  // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
 | 
						|
  // return "eax". This should even work for things like getting 64bit integer
 | 
						|
  // registers when given an f64 type.
 | 
						|
  const TargetRegisterClass *Class = Res.second;
 | 
						|
  // The generic code will match the first register class that contains the
 | 
						|
  // given register. Thus, based on the ordering of the tablegened file,
 | 
						|
  // the "plain" GR classes might not come first.
 | 
						|
  // Therefore, use a helper method.
 | 
						|
  if (isGRClass(*Class)) {
 | 
						|
    unsigned Size = VT.getSizeInBits();
 | 
						|
    if (Size == 1) Size = 8;
 | 
						|
    unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
 | 
						|
    if (DestReg > 0) {
 | 
						|
      Res.first = DestReg;
 | 
						|
      Res.second = Size == 8 ? &X86::GR8RegClass
 | 
						|
                 : Size == 16 ? &X86::GR16RegClass
 | 
						|
                 : Size == 32 ? &X86::GR32RegClass
 | 
						|
                 : &X86::GR64RegClass;
 | 
						|
      assert(Res.second->contains(Res.first) && "Register in register class");
 | 
						|
    } else {
 | 
						|
      // No register found/type mismatch.
 | 
						|
      Res.first = 0;
 | 
						|
      Res.second = nullptr;
 | 
						|
    }
 | 
						|
  } else if (isFRClass(*Class)) {
 | 
						|
    // Handle references to XMM physical registers that got mapped into the
 | 
						|
    // wrong class.  This can happen with constraints like {xmm0} where the
 | 
						|
    // target independent register mapper will just pick the first match it can
 | 
						|
    // find, ignoring the required type.
 | 
						|
 | 
						|
    // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
 | 
						|
    if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
      Res.second = &X86::FR32RegClass;
 | 
						|
    else if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
      Res.second = &X86::FR64RegClass;
 | 
						|
    else if (X86::VR128RegClass.hasType(VT))
 | 
						|
      Res.second = &X86::VR128RegClass;
 | 
						|
    else if (X86::VR256RegClass.hasType(VT))
 | 
						|
      Res.second = &X86::VR256RegClass;
 | 
						|
    else if (X86::VR512RegClass.hasType(VT))
 | 
						|
      Res.second = &X86::VR512RegClass;
 | 
						|
    else {
 | 
						|
      // Type mismatch and not a clobber: Return an error;
 | 
						|
      Res.first = 0;
 | 
						|
      Res.second = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
 | 
						|
                                            const AddrMode &AM, Type *Ty,
 | 
						|
                                            unsigned AS) const {
 | 
						|
  // Scaling factors are not free at all.
 | 
						|
  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
 | 
						|
  // will take 2 allocations in the out of order engine instead of 1
 | 
						|
  // for plain addressing mode, i.e. inst (reg1).
 | 
						|
  // E.g.,
 | 
						|
  // vaddps (%rsi,%drx), %ymm0, %ymm1
 | 
						|
  // Requires two allocations (one for the load, one for the computation)
 | 
						|
  // whereas:
 | 
						|
  // vaddps (%rsi), %ymm0, %ymm1
 | 
						|
  // Requires just 1 allocation, i.e., freeing allocations for other operations
 | 
						|
  // and having less micro operations to execute.
 | 
						|
  //
 | 
						|
  // For some X86 architectures, this is even worse because for instance for
 | 
						|
  // stores, the complex addressing mode forces the instruction to use the
 | 
						|
  // "load" ports instead of the dedicated "store" port.
 | 
						|
  // E.g., on Haswell:
 | 
						|
  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
 | 
						|
  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
 | 
						|
  if (isLegalAddressingMode(DL, AM, Ty, AS))
 | 
						|
    // Scale represents reg2 * scale, thus account for 1
 | 
						|
    // as soon as we use a second register.
 | 
						|
    return AM.Scale != 0;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
 | 
						|
  // Integer division on x86 is expensive. However, when aggressively optimizing
 | 
						|
  // for code size, we prefer to use a div instruction, as it is usually smaller
 | 
						|
  // than the alternative sequence.
 | 
						|
  // The exception to this is vector division. Since x86 doesn't have vector
 | 
						|
  // integer division, leaving the division as-is is a loss even in terms of
 | 
						|
  // size, because it will have to be scalarized, while the alternative code
 | 
						|
  // sequence can be performed in vector form.
 | 
						|
  bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                   Attribute::MinSize);
 | 
						|
  return OptSize && !VT.isVector();
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
 | 
						|
  if (!Subtarget.is64Bit())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Update IsSplitCSR in X86MachineFunctionInfo.
 | 
						|
  X86MachineFunctionInfo *AFI =
 | 
						|
    Entry->getParent()->getInfo<X86MachineFunctionInfo>();
 | 
						|
  AFI->setIsSplitCSR(true);
 | 
						|
}
 | 
						|
 | 
						|
void X86TargetLowering::insertCopiesSplitCSR(
 | 
						|
    MachineBasicBlock *Entry,
 | 
						|
    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
 | 
						|
  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
 | 
						|
  if (!IStart)
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
 | 
						|
  MachineBasicBlock::iterator MBBI = Entry->begin();
 | 
						|
  for (const MCPhysReg *I = IStart; *I; ++I) {
 | 
						|
    const TargetRegisterClass *RC = nullptr;
 | 
						|
    if (X86::GR64RegClass.contains(*I))
 | 
						|
      RC = &X86::GR64RegClass;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
 | 
						|
    unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
    // Create copy from CSR to a virtual register.
 | 
						|
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
 | 
						|
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
 | 
						|
    // nounwind. If we want to generalize this later, we may need to emit
 | 
						|
    // CFI pseudo-instructions.
 | 
						|
    assert(Entry->getParent()->getFunction()->hasFnAttribute(
 | 
						|
               Attribute::NoUnwind) &&
 | 
						|
           "Function should be nounwind in insertCopiesSplitCSR!");
 | 
						|
    Entry->addLiveIn(*I);
 | 
						|
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
 | 
						|
        .addReg(*I);
 | 
						|
 | 
						|
    // Insert the copy-back instructions right before the terminator.
 | 
						|
    for (auto *Exit : Exits)
 | 
						|
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), *I)
 | 
						|
          .addReg(NewVR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::supportSwiftError() const {
 | 
						|
  return Subtarget.is64Bit();
 | 
						|
}
 |