forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1270 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1270 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// This file implements interprocedural passes which walk the
 | 
						|
/// call-graph deducing and/or propagating function attributes.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CallGraphSCCPass.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "functionattrs"
 | 
						|
 | 
						|
STATISTIC(NumReadNone, "Number of functions marked readnone");
 | 
						|
STATISTIC(NumReadOnly, "Number of functions marked readonly");
 | 
						|
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
 | 
						|
STATISTIC(NumReturned, "Number of arguments marked returned");
 | 
						|
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
 | 
						|
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
 | 
						|
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
 | 
						|
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
 | 
						|
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
 | 
						|
 | 
						|
namespace {
 | 
						|
typedef SmallSetVector<Function *, 8> SCCNodeSet;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// The three kinds of memory access relevant to 'readonly' and
 | 
						|
/// 'readnone' attributes.
 | 
						|
enum MemoryAccessKind {
 | 
						|
  MAK_ReadNone = 0,
 | 
						|
  MAK_ReadOnly = 1,
 | 
						|
  MAK_MayWrite = 2
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
 | 
						|
                                                  const SCCNodeSet &SCCNodes) {
 | 
						|
  FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
 | 
						|
  if (MRB == FMRB_DoesNotAccessMemory)
 | 
						|
    // Already perfect!
 | 
						|
    return MAK_ReadNone;
 | 
						|
 | 
						|
  // Non-exact function definitions may not be selected at link time, and an
 | 
						|
  // alternative version that writes to memory may be selected.  See the comment
 | 
						|
  // on GlobalValue::isDefinitionExact for more details.
 | 
						|
  if (!F.hasExactDefinition()) {
 | 
						|
    if (AliasAnalysis::onlyReadsMemory(MRB))
 | 
						|
      return MAK_ReadOnly;
 | 
						|
 | 
						|
    // Conservatively assume it writes to memory.
 | 
						|
    return MAK_MayWrite;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the function body for instructions that may read or write memory.
 | 
						|
  bool ReadsMemory = false;
 | 
						|
  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | 
						|
    Instruction *I = &*II;
 | 
						|
 | 
						|
    // Some instructions can be ignored even if they read or write memory.
 | 
						|
    // Detect these now, skipping to the next instruction if one is found.
 | 
						|
    CallSite CS(cast<Value>(I));
 | 
						|
    if (CS) {
 | 
						|
      // Ignore calls to functions in the same SCC, as long as the call sites
 | 
						|
      // don't have operand bundles.  Calls with operand bundles are allowed to
 | 
						|
      // have memory effects not described by the memory effects of the call
 | 
						|
      // target.
 | 
						|
      if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
 | 
						|
          SCCNodes.count(CS.getCalledFunction()))
 | 
						|
        continue;
 | 
						|
      FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
 | 
						|
 | 
						|
      // If the call doesn't access memory, we're done.
 | 
						|
      if (!(MRB & MRI_ModRef))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
 | 
						|
        // The call could access any memory. If that includes writes, give up.
 | 
						|
        if (MRB & MRI_Mod)
 | 
						|
          return MAK_MayWrite;
 | 
						|
        // If it reads, note it.
 | 
						|
        if (MRB & MRI_Ref)
 | 
						|
          ReadsMemory = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check whether all pointer arguments point to local memory, and
 | 
						|
      // ignore calls that only access local memory.
 | 
						|
      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | 
						|
           CI != CE; ++CI) {
 | 
						|
        Value *Arg = *CI;
 | 
						|
        if (!Arg->getType()->isPtrOrPtrVectorTy())
 | 
						|
          continue;
 | 
						|
 | 
						|
        AAMDNodes AAInfo;
 | 
						|
        I->getAAMetadata(AAInfo);
 | 
						|
        MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
 | 
						|
 | 
						|
        // Skip accesses to local or constant memory as they don't impact the
 | 
						|
        // externally visible mod/ref behavior.
 | 
						|
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (MRB & MRI_Mod)
 | 
						|
          // Writes non-local memory.  Give up.
 | 
						|
          return MAK_MayWrite;
 | 
						|
        if (MRB & MRI_Ref)
 | 
						|
          // Ok, it reads non-local memory.
 | 
						|
          ReadsMemory = true;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      // Ignore non-volatile loads from local memory. (Atomic is okay here.)
 | 
						|
      if (!LI->isVolatile()) {
 | 
						|
        MemoryLocation Loc = MemoryLocation::get(LI);
 | 
						|
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
      // Ignore non-volatile stores to local memory. (Atomic is okay here.)
 | 
						|
      if (!SI->isVolatile()) {
 | 
						|
        MemoryLocation Loc = MemoryLocation::get(SI);
 | 
						|
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
    } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
 | 
						|
      // Ignore vaargs on local memory.
 | 
						|
      MemoryLocation Loc = MemoryLocation::get(VI);
 | 
						|
      if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Any remaining instructions need to be taken seriously!  Check if they
 | 
						|
    // read or write memory.
 | 
						|
    if (I->mayWriteToMemory())
 | 
						|
      // Writes memory.  Just give up.
 | 
						|
      return MAK_MayWrite;
 | 
						|
 | 
						|
    // If this instruction may read memory, remember that.
 | 
						|
    ReadsMemory |= I->mayReadFromMemory();
 | 
						|
  }
 | 
						|
 | 
						|
  return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
 | 
						|
}
 | 
						|
 | 
						|
/// Deduce readonly/readnone attributes for the SCC.
 | 
						|
template <typename AARGetterT>
 | 
						|
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
 | 
						|
  // Check if any of the functions in the SCC read or write memory.  If they
 | 
						|
  // write memory then they can't be marked readnone or readonly.
 | 
						|
  bool ReadsMemory = false;
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    // Call the callable parameter to look up AA results for this function.
 | 
						|
    AAResults &AAR = AARGetter(*F);
 | 
						|
 | 
						|
    switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
 | 
						|
    case MAK_MayWrite:
 | 
						|
      return false;
 | 
						|
    case MAK_ReadOnly:
 | 
						|
      ReadsMemory = true;
 | 
						|
      break;
 | 
						|
    case MAK_ReadNone:
 | 
						|
      // Nothing to do!
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Success!  Functions in this SCC do not access memory, or only read memory.
 | 
						|
  // Give them the appropriate attribute.
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    if (F->doesNotAccessMemory())
 | 
						|
      // Already perfect!
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (F->onlyReadsMemory() && ReadsMemory)
 | 
						|
      // No change.
 | 
						|
      continue;
 | 
						|
 | 
						|
    MadeChange = true;
 | 
						|
 | 
						|
    // Clear out any existing attributes.
 | 
						|
    AttrBuilder B;
 | 
						|
    B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
 | 
						|
    F->removeAttributes(
 | 
						|
        AttributeSet::FunctionIndex,
 | 
						|
        AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
 | 
						|
 | 
						|
    // Add in the new attribute.
 | 
						|
    F->addAttribute(AttributeSet::FunctionIndex,
 | 
						|
                    ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
 | 
						|
 | 
						|
    if (ReadsMemory)
 | 
						|
      ++NumReadOnly;
 | 
						|
    else
 | 
						|
      ++NumReadNone;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// For a given pointer Argument, this retains a list of Arguments of functions
 | 
						|
/// in the same SCC that the pointer data flows into. We use this to build an
 | 
						|
/// SCC of the arguments.
 | 
						|
struct ArgumentGraphNode {
 | 
						|
  Argument *Definition;
 | 
						|
  SmallVector<ArgumentGraphNode *, 4> Uses;
 | 
						|
};
 | 
						|
 | 
						|
class ArgumentGraph {
 | 
						|
  // We store pointers to ArgumentGraphNode objects, so it's important that
 | 
						|
  // that they not move around upon insert.
 | 
						|
  typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
 | 
						|
 | 
						|
  ArgumentMapTy ArgumentMap;
 | 
						|
 | 
						|
  // There is no root node for the argument graph, in fact:
 | 
						|
  //   void f(int *x, int *y) { if (...) f(x, y); }
 | 
						|
  // is an example where the graph is disconnected. The SCCIterator requires a
 | 
						|
  // single entry point, so we maintain a fake ("synthetic") root node that
 | 
						|
  // uses every node. Because the graph is directed and nothing points into
 | 
						|
  // the root, it will not participate in any SCCs (except for its own).
 | 
						|
  ArgumentGraphNode SyntheticRoot;
 | 
						|
 | 
						|
public:
 | 
						|
  ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
 | 
						|
 | 
						|
  typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
 | 
						|
 | 
						|
  iterator begin() { return SyntheticRoot.Uses.begin(); }
 | 
						|
  iterator end() { return SyntheticRoot.Uses.end(); }
 | 
						|
  ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
 | 
						|
 | 
						|
  ArgumentGraphNode *operator[](Argument *A) {
 | 
						|
    ArgumentGraphNode &Node = ArgumentMap[A];
 | 
						|
    Node.Definition = A;
 | 
						|
    SyntheticRoot.Uses.push_back(&Node);
 | 
						|
    return &Node;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// This tracker checks whether callees are in the SCC, and if so it does not
 | 
						|
/// consider that a capture, instead adding it to the "Uses" list and
 | 
						|
/// continuing with the analysis.
 | 
						|
struct ArgumentUsesTracker : public CaptureTracker {
 | 
						|
  ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
 | 
						|
      : Captured(false), SCCNodes(SCCNodes) {}
 | 
						|
 | 
						|
  void tooManyUses() override { Captured = true; }
 | 
						|
 | 
						|
  bool captured(const Use *U) override {
 | 
						|
    CallSite CS(U->getUser());
 | 
						|
    if (!CS.getInstruction()) {
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Function *F = CS.getCalledFunction();
 | 
						|
    if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: the callee and the two successor blocks *follow* the argument
 | 
						|
    // operands.  This means there is no need to adjust UseIndex to account for
 | 
						|
    // these.
 | 
						|
 | 
						|
    unsigned UseIndex =
 | 
						|
        std::distance(const_cast<const Use *>(CS.arg_begin()), U);
 | 
						|
 | 
						|
    assert(UseIndex < CS.data_operands_size() &&
 | 
						|
           "Indirect function calls should have been filtered above!");
 | 
						|
 | 
						|
    if (UseIndex >= CS.getNumArgOperands()) {
 | 
						|
      // Data operand, but not a argument operand -- must be a bundle operand
 | 
						|
      assert(CS.hasOperandBundles() && "Must be!");
 | 
						|
 | 
						|
      // CaptureTracking told us that we're being captured by an operand bundle
 | 
						|
      // use.  In this case it does not matter if the callee is within our SCC
 | 
						|
      // or not -- we've been captured in some unknown way, and we have to be
 | 
						|
      // conservative.
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (UseIndex >= F->arg_size()) {
 | 
						|
      assert(F->isVarArg() && "More params than args in non-varargs call");
 | 
						|
      Captured = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Captured; // True only if certainly captured (used outside our SCC).
 | 
						|
  SmallVector<Argument *, 4> Uses; // Uses within our SCC.
 | 
						|
 | 
						|
  const SCCNodeSet &SCCNodes;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct GraphTraits<ArgumentGraphNode *> {
 | 
						|
  typedef ArgumentGraphNode NodeType;
 | 
						|
  typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
 | 
						|
 | 
						|
  static inline NodeType *getEntryNode(NodeType *A) { return A; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return N->Uses.begin();
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return N->Uses.end();
 | 
						|
  }
 | 
						|
};
 | 
						|
template <>
 | 
						|
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
 | 
						|
  static NodeType *getEntryNode(ArgumentGraph *AG) {
 | 
						|
    return AG->getEntryNode();
 | 
						|
  }
 | 
						|
  static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
 | 
						|
    return AG->begin();
 | 
						|
  }
 | 
						|
  static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
 | 
						|
static Attribute::AttrKind
 | 
						|
determinePointerReadAttrs(Argument *A,
 | 
						|
                          const SmallPtrSet<Argument *, 8> &SCCNodes) {
 | 
						|
 | 
						|
  SmallVector<Use *, 32> Worklist;
 | 
						|
  SmallSet<Use *, 32> Visited;
 | 
						|
 | 
						|
  // inalloca arguments are always clobbered by the call.
 | 
						|
  if (A->hasInAllocaAttr())
 | 
						|
    return Attribute::None;
 | 
						|
 | 
						|
  bool IsRead = false;
 | 
						|
  // We don't need to track IsWritten. If A is written to, return immediately.
 | 
						|
 | 
						|
  for (Use &U : A->uses()) {
 | 
						|
    Visited.insert(&U);
 | 
						|
    Worklist.push_back(&U);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Use *U = Worklist.pop_back_val();
 | 
						|
    Instruction *I = cast<Instruction>(U->getUser());
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::PHI:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::AddrSpaceCast:
 | 
						|
      // The original value is not read/written via this if the new value isn't.
 | 
						|
      for (Use &UU : I->uses())
 | 
						|
        if (Visited.insert(&UU).second)
 | 
						|
          Worklist.push_back(&UU);
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::Call:
 | 
						|
    case Instruction::Invoke: {
 | 
						|
      bool Captures = true;
 | 
						|
 | 
						|
      if (I->getType()->isVoidTy())
 | 
						|
        Captures = false;
 | 
						|
 | 
						|
      auto AddUsersToWorklistIfCapturing = [&] {
 | 
						|
        if (Captures)
 | 
						|
          for (Use &UU : I->uses())
 | 
						|
            if (Visited.insert(&UU).second)
 | 
						|
              Worklist.push_back(&UU);
 | 
						|
      };
 | 
						|
 | 
						|
      CallSite CS(I);
 | 
						|
      if (CS.doesNotAccessMemory()) {
 | 
						|
        AddUsersToWorklistIfCapturing();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Function *F = CS.getCalledFunction();
 | 
						|
      if (!F) {
 | 
						|
        if (CS.onlyReadsMemory()) {
 | 
						|
          IsRead = true;
 | 
						|
          AddUsersToWorklistIfCapturing();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        return Attribute::None;
 | 
						|
      }
 | 
						|
 | 
						|
      // Note: the callee and the two successor blocks *follow* the argument
 | 
						|
      // operands.  This means there is no need to adjust UseIndex to account
 | 
						|
      // for these.
 | 
						|
 | 
						|
      unsigned UseIndex = std::distance(CS.arg_begin(), U);
 | 
						|
 | 
						|
      // U cannot be the callee operand use: since we're exploring the
 | 
						|
      // transitive uses of an Argument, having such a use be a callee would
 | 
						|
      // imply the CallSite is an indirect call or invoke; and we'd take the
 | 
						|
      // early exit above.
 | 
						|
      assert(UseIndex < CS.data_operands_size() &&
 | 
						|
             "Data operand use expected!");
 | 
						|
 | 
						|
      bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
 | 
						|
 | 
						|
      if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
 | 
						|
        assert(F->isVarArg() && "More params than args in non-varargs call");
 | 
						|
        return Attribute::None;
 | 
						|
      }
 | 
						|
 | 
						|
      Captures &= !CS.doesNotCapture(UseIndex);
 | 
						|
 | 
						|
      // Since the optimizer (by design) cannot see the data flow corresponding
 | 
						|
      // to a operand bundle use, these cannot participate in the optimistic SCC
 | 
						|
      // analysis.  Instead, we model the operand bundle uses as arguments in
 | 
						|
      // call to a function external to the SCC.
 | 
						|
      if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
 | 
						|
          IsOperandBundleUse) {
 | 
						|
 | 
						|
        // The accessors used on CallSite here do the right thing for calls and
 | 
						|
        // invokes with operand bundles.
 | 
						|
 | 
						|
        if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
 | 
						|
          return Attribute::None;
 | 
						|
        if (!CS.doesNotAccessMemory(UseIndex))
 | 
						|
          IsRead = true;
 | 
						|
      }
 | 
						|
 | 
						|
      AddUsersToWorklistIfCapturing();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::Load:
 | 
						|
      // A volatile load has side effects beyond what readonly can be relied
 | 
						|
      // upon.
 | 
						|
      if (cast<LoadInst>(I)->isVolatile())
 | 
						|
        return Attribute::None;
 | 
						|
 | 
						|
      IsRead = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::Ret:
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      return Attribute::None;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
 | 
						|
}
 | 
						|
 | 
						|
/// Deduce returned attributes for the SCC.
 | 
						|
static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  AttrBuilder B;
 | 
						|
  B.addAttribute(Attribute::Returned);
 | 
						|
 | 
						|
  // Check each function in turn, determining if an argument is always returned.
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    // We can infer and propagate function attributes only when we know that the
 | 
						|
    // definition we'll get at link time is *exactly* the definition we see now.
 | 
						|
    // For more details, see GlobalValue::mayBeDerefined.
 | 
						|
    if (!F->hasExactDefinition())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (F->getReturnType()->isVoidTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallPtrSet<Value *, 2> RetArgs;
 | 
						|
    for (BasicBlock &BB : *F)
 | 
						|
      if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
 | 
						|
        // Note that stripPointerCasts should look through functions with
 | 
						|
        // returned arguments.
 | 
						|
        Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
 | 
						|
        if (RetVal->getType() == F->getReturnType() && isa<Argument>(RetVal))
 | 
						|
          RetArgs.insert(RetVal);
 | 
						|
      }
 | 
						|
 | 
						|
    if (RetArgs.size() == 1) {
 | 
						|
      auto *A = cast<Argument>(*RetArgs.begin());
 | 
						|
      A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
 | 
						|
      ++NumReturned;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Deduce nocapture attributes for the SCC.
 | 
						|
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  ArgumentGraph AG;
 | 
						|
 | 
						|
  AttrBuilder B;
 | 
						|
  B.addAttribute(Attribute::NoCapture);
 | 
						|
 | 
						|
  // Check each function in turn, determining which pointer arguments are not
 | 
						|
  // captured.
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    // We can infer and propagate function attributes only when we know that the
 | 
						|
    // definition we'll get at link time is *exactly* the definition we see now.
 | 
						|
    // For more details, see GlobalValue::mayBeDerefined.
 | 
						|
    if (!F->hasExactDefinition())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Functions that are readonly (or readnone) and nounwind and don't return
 | 
						|
    // a value can't capture arguments. Don't analyze them.
 | 
						|
    if (F->onlyReadsMemory() && F->doesNotThrow() &&
 | 
						|
        F->getReturnType()->isVoidTy()) {
 | 
						|
      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
 | 
						|
           ++A) {
 | 
						|
        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
 | 
						|
          A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
 | 
						|
          ++NumNoCapture;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
 | 
						|
         ++A) {
 | 
						|
      if (!A->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
      bool HasNonLocalUses = false;
 | 
						|
      if (!A->hasNoCaptureAttr()) {
 | 
						|
        ArgumentUsesTracker Tracker(SCCNodes);
 | 
						|
        PointerMayBeCaptured(&*A, &Tracker);
 | 
						|
        if (!Tracker.Captured) {
 | 
						|
          if (Tracker.Uses.empty()) {
 | 
						|
            // If it's trivially not captured, mark it nocapture now.
 | 
						|
            A->addAttr(
 | 
						|
                AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
 | 
						|
            ++NumNoCapture;
 | 
						|
            Changed = true;
 | 
						|
          } else {
 | 
						|
            // If it's not trivially captured and not trivially not captured,
 | 
						|
            // then it must be calling into another function in our SCC. Save
 | 
						|
            // its particulars for Argument-SCC analysis later.
 | 
						|
            ArgumentGraphNode *Node = AG[&*A];
 | 
						|
            for (Argument *Use : Tracker.Uses) {
 | 
						|
              Node->Uses.push_back(AG[Use]);
 | 
						|
              if (Use != &*A)
 | 
						|
                HasNonLocalUses = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
 | 
						|
      }
 | 
						|
      if (!HasNonLocalUses && !A->onlyReadsMemory()) {
 | 
						|
        // Can we determine that it's readonly/readnone without doing an SCC?
 | 
						|
        // Note that we don't allow any calls at all here, or else our result
 | 
						|
        // will be dependent on the iteration order through the functions in the
 | 
						|
        // SCC.
 | 
						|
        SmallPtrSet<Argument *, 8> Self;
 | 
						|
        Self.insert(&*A);
 | 
						|
        Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
 | 
						|
        if (R != Attribute::None) {
 | 
						|
          AttrBuilder B;
 | 
						|
          B.addAttribute(R);
 | 
						|
          A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | 
						|
          Changed = true;
 | 
						|
          R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The graph we've collected is partial because we stopped scanning for
 | 
						|
  // argument uses once we solved the argument trivially. These partial nodes
 | 
						|
  // show up as ArgumentGraphNode objects with an empty Uses list, and for
 | 
						|
  // these nodes the final decision about whether they capture has already been
 | 
						|
  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
 | 
						|
  // captures.
 | 
						|
 | 
						|
  for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
 | 
						|
    const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
 | 
						|
    if (ArgumentSCC.size() == 1) {
 | 
						|
      if (!ArgumentSCC[0]->Definition)
 | 
						|
        continue; // synthetic root node
 | 
						|
 | 
						|
      // eg. "void f(int* x) { if (...) f(x); }"
 | 
						|
      if (ArgumentSCC[0]->Uses.size() == 1 &&
 | 
						|
          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
 | 
						|
        Argument *A = ArgumentSCC[0]->Definition;
 | 
						|
        A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | 
						|
        ++NumNoCapture;
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool SCCCaptured = false;
 | 
						|
    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
 | 
						|
         I != E && !SCCCaptured; ++I) {
 | 
						|
      ArgumentGraphNode *Node = *I;
 | 
						|
      if (Node->Uses.empty()) {
 | 
						|
        if (!Node->Definition->hasNoCaptureAttr())
 | 
						|
          SCCCaptured = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (SCCCaptured)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
 | 
						|
    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
 | 
						|
    // quickly looking up whether a given Argument is in this ArgumentSCC.
 | 
						|
    for (ArgumentGraphNode *I : ArgumentSCC) {
 | 
						|
      ArgumentSCCNodes.insert(I->Definition);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
 | 
						|
         I != E && !SCCCaptured; ++I) {
 | 
						|
      ArgumentGraphNode *N = *I;
 | 
						|
      for (ArgumentGraphNode *Use : N->Uses) {
 | 
						|
        Argument *A = Use->Definition;
 | 
						|
        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
 | 
						|
          continue;
 | 
						|
        SCCCaptured = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (SCCCaptured)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | 
						|
      Argument *A = ArgumentSCC[i]->Definition;
 | 
						|
      A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | 
						|
      ++NumNoCapture;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We also want to compute readonly/readnone. With a small number of false
 | 
						|
    // negatives, we can assume that any pointer which is captured isn't going
 | 
						|
    // to be provably readonly or readnone, since by definition we can't
 | 
						|
    // analyze all uses of a captured pointer.
 | 
						|
    //
 | 
						|
    // The false negatives happen when the pointer is captured by a function
 | 
						|
    // that promises readonly/readnone behaviour on the pointer, then the
 | 
						|
    // pointer's lifetime ends before anything that writes to arbitrary memory.
 | 
						|
    // Also, a readonly/readnone pointer may be returned, but returning a
 | 
						|
    // pointer is capturing it.
 | 
						|
 | 
						|
    Attribute::AttrKind ReadAttr = Attribute::ReadNone;
 | 
						|
    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | 
						|
      Argument *A = ArgumentSCC[i]->Definition;
 | 
						|
      Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
 | 
						|
      if (K == Attribute::ReadNone)
 | 
						|
        continue;
 | 
						|
      if (K == Attribute::ReadOnly) {
 | 
						|
        ReadAttr = Attribute::ReadOnly;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ReadAttr = K;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ReadAttr != Attribute::None) {
 | 
						|
      AttrBuilder B, R;
 | 
						|
      B.addAttribute(ReadAttr);
 | 
						|
      R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
 | 
						|
      for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
 | 
						|
        Argument *A = ArgumentSCC[i]->Definition;
 | 
						|
        // Clear out existing readonly/readnone attributes
 | 
						|
        A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
 | 
						|
        A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
 | 
						|
        ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Tests whether a function is "malloc-like".
 | 
						|
///
 | 
						|
/// A function is "malloc-like" if it returns either null or a pointer that
 | 
						|
/// doesn't alias any other pointer visible to the caller.
 | 
						|
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
 | 
						|
  SmallSetVector<Value *, 8> FlowsToReturn;
 | 
						|
  for (BasicBlock &BB : *F)
 | 
						|
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
 | 
						|
      FlowsToReturn.insert(Ret->getReturnValue());
 | 
						|
 | 
						|
  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
 | 
						|
    Value *RetVal = FlowsToReturn[i];
 | 
						|
 | 
						|
    if (Constant *C = dyn_cast<Constant>(RetVal)) {
 | 
						|
      if (!C->isNullValue() && !isa<UndefValue>(C))
 | 
						|
        return false;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<Argument>(RetVal))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
 | 
						|
      switch (RVI->getOpcode()) {
 | 
						|
      // Extend the analysis by looking upwards.
 | 
						|
      case Instruction::BitCast:
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
      case Instruction::AddrSpaceCast:
 | 
						|
        FlowsToReturn.insert(RVI->getOperand(0));
 | 
						|
        continue;
 | 
						|
      case Instruction::Select: {
 | 
						|
        SelectInst *SI = cast<SelectInst>(RVI);
 | 
						|
        FlowsToReturn.insert(SI->getTrueValue());
 | 
						|
        FlowsToReturn.insert(SI->getFalseValue());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case Instruction::PHI: {
 | 
						|
        PHINode *PN = cast<PHINode>(RVI);
 | 
						|
        for (Value *IncValue : PN->incoming_values())
 | 
						|
          FlowsToReturn.insert(IncValue);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check whether the pointer came from an allocation.
 | 
						|
      case Instruction::Alloca:
 | 
						|
        break;
 | 
						|
      case Instruction::Call:
 | 
						|
      case Instruction::Invoke: {
 | 
						|
        CallSite CS(RVI);
 | 
						|
        if (CS.paramHasAttr(0, Attribute::NoAlias))
 | 
						|
          break;
 | 
						|
        if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
 | 
						|
          break;
 | 
						|
      } // fall-through
 | 
						|
      default:
 | 
						|
        return false; // Did not come from an allocation.
 | 
						|
      }
 | 
						|
 | 
						|
    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Deduce noalias attributes for the SCC.
 | 
						|
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  // Check each function in turn, determining which functions return noalias
 | 
						|
  // pointers.
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    // Already noalias.
 | 
						|
    if (F->doesNotAlias(0))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can infer and propagate function attributes only when we know that the
 | 
						|
    // definition we'll get at link time is *exactly* the definition we see now.
 | 
						|
    // For more details, see GlobalValue::mayBeDerefined.
 | 
						|
    if (!F->hasExactDefinition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We annotate noalias return values, which are only applicable to
 | 
						|
    // pointer types.
 | 
						|
    if (!F->getReturnType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!isFunctionMallocLike(F, SCCNodes))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    F->setDoesNotAlias(0);
 | 
						|
    ++NumNoAlias;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Tests whether this function is known to not return null.
 | 
						|
///
 | 
						|
/// Requires that the function returns a pointer.
 | 
						|
///
 | 
						|
/// Returns true if it believes the function will not return a null, and sets
 | 
						|
/// \p Speculative based on whether the returned conclusion is a speculative
 | 
						|
/// conclusion due to SCC calls.
 | 
						|
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
 | 
						|
                            bool &Speculative) {
 | 
						|
  assert(F->getReturnType()->isPointerTy() &&
 | 
						|
         "nonnull only meaningful on pointer types");
 | 
						|
  Speculative = false;
 | 
						|
 | 
						|
  SmallSetVector<Value *, 8> FlowsToReturn;
 | 
						|
  for (BasicBlock &BB : *F)
 | 
						|
    if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
 | 
						|
      FlowsToReturn.insert(Ret->getReturnValue());
 | 
						|
 | 
						|
  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
 | 
						|
    Value *RetVal = FlowsToReturn[i];
 | 
						|
 | 
						|
    // If this value is locally known to be non-null, we're good
 | 
						|
    if (isKnownNonNull(RetVal))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, we need to look upwards since we can't make any local
 | 
						|
    // conclusions.
 | 
						|
    Instruction *RVI = dyn_cast<Instruction>(RetVal);
 | 
						|
    if (!RVI)
 | 
						|
      return false;
 | 
						|
    switch (RVI->getOpcode()) {
 | 
						|
    // Extend the analysis by looking upwards.
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::AddrSpaceCast:
 | 
						|
      FlowsToReturn.insert(RVI->getOperand(0));
 | 
						|
      continue;
 | 
						|
    case Instruction::Select: {
 | 
						|
      SelectInst *SI = cast<SelectInst>(RVI);
 | 
						|
      FlowsToReturn.insert(SI->getTrueValue());
 | 
						|
      FlowsToReturn.insert(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case Instruction::PHI: {
 | 
						|
      PHINode *PN = cast<PHINode>(RVI);
 | 
						|
      for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        FlowsToReturn.insert(PN->getIncomingValue(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case Instruction::Call:
 | 
						|
    case Instruction::Invoke: {
 | 
						|
      CallSite CS(RVI);
 | 
						|
      Function *Callee = CS.getCalledFunction();
 | 
						|
      // A call to a node within the SCC is assumed to return null until
 | 
						|
      // proven otherwise
 | 
						|
      if (Callee && SCCNodes.count(Callee)) {
 | 
						|
        Speculative = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      return false; // Unknown source, may be null
 | 
						|
    };
 | 
						|
    llvm_unreachable("should have either continued or returned");
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Deduce nonnull attributes for the SCC.
 | 
						|
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  // Speculative that all functions in the SCC return only nonnull
 | 
						|
  // pointers.  We may refute this as we analyze functions.
 | 
						|
  bool SCCReturnsNonNull = true;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Check each function in turn, determining which functions return nonnull
 | 
						|
  // pointers.
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    // Already nonnull.
 | 
						|
    if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | 
						|
                                        Attribute::NonNull))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can infer and propagate function attributes only when we know that the
 | 
						|
    // definition we'll get at link time is *exactly* the definition we see now.
 | 
						|
    // For more details, see GlobalValue::mayBeDerefined.
 | 
						|
    if (!F->hasExactDefinition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We annotate nonnull return values, which are only applicable to
 | 
						|
    // pointer types.
 | 
						|
    if (!F->getReturnType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool Speculative = false;
 | 
						|
    if (isReturnNonNull(F, SCCNodes, Speculative)) {
 | 
						|
      if (!Speculative) {
 | 
						|
        // Mark the function eagerly since we may discover a function
 | 
						|
        // which prevents us from speculating about the entire SCC
 | 
						|
        DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
 | 
						|
        F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
 | 
						|
        ++NumNonNullReturn;
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // At least one function returns something which could be null, can't
 | 
						|
    // speculate any more.
 | 
						|
    SCCReturnsNonNull = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SCCReturnsNonNull) {
 | 
						|
    for (Function *F : SCCNodes) {
 | 
						|
      if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | 
						|
                                          Attribute::NonNull) ||
 | 
						|
          !F->getReturnType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
 | 
						|
      F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
 | 
						|
      ++NumNonNullReturn;
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove the convergent attribute from all functions in the SCC if every
 | 
						|
/// callsite within the SCC is not convergent (except for calls to functions
 | 
						|
/// within the SCC).  Returns true if changes were made.
 | 
						|
static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  // For every function in SCC, ensure that either
 | 
						|
  //  * it is not convergent, or
 | 
						|
  //  * we can remove its convergent attribute.
 | 
						|
  bool HasConvergentFn = false;
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    if (!F->isConvergent()) continue;
 | 
						|
    HasConvergentFn = true;
 | 
						|
 | 
						|
    // Can't remove convergent from function declarations.
 | 
						|
    if (F->isDeclaration()) return false;
 | 
						|
 | 
						|
    // Can't remove convergent if any of our functions has a convergent call to a
 | 
						|
    // function not in the SCC.
 | 
						|
    for (Instruction &I : instructions(*F)) {
 | 
						|
      CallSite CS(&I);
 | 
						|
      // Bail if CS is a convergent call to a function not in the SCC.
 | 
						|
      if (CS && CS.isConvergent() &&
 | 
						|
          SCCNodes.count(CS.getCalledFunction()) == 0)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the SCC doesn't have any convergent functions, we have nothing to do.
 | 
						|
  if (!HasConvergentFn) return false;
 | 
						|
 | 
						|
  // If we got here, all of the calls the SCC makes to functions not in the SCC
 | 
						|
  // are non-convergent.  Therefore all of the SCC's functions can also be made
 | 
						|
  // non-convergent.  We'll remove the attr from the callsites in
 | 
						|
  // InstCombineCalls.
 | 
						|
  for (Function *F : SCCNodes) {
 | 
						|
    if (!F->isConvergent()) continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
 | 
						|
                 << "\n");
 | 
						|
    F->setNotConvergent();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool setDoesNotRecurse(Function &F) {
 | 
						|
  if (F.doesNotRecurse())
 | 
						|
    return false;
 | 
						|
  F.setDoesNotRecurse();
 | 
						|
  ++NumNoRecurse;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
 | 
						|
  // Try and identify functions that do not recurse.
 | 
						|
 | 
						|
  // If the SCC contains multiple nodes we know for sure there is recursion.
 | 
						|
  if (SCCNodes.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Function *F = *SCCNodes.begin();
 | 
						|
  if (!F || F->isDeclaration() || F->doesNotRecurse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If all of the calls in F are identifiable and are to norecurse functions, F
 | 
						|
  // is norecurse. This check also detects self-recursion as F is not currently
 | 
						|
  // marked norecurse, so any called from F to F will not be marked norecurse.
 | 
						|
  for (Instruction &I : instructions(*F))
 | 
						|
    if (auto CS = CallSite(&I)) {
 | 
						|
      Function *Callee = CS.getCalledFunction();
 | 
						|
      if (!Callee || Callee == F || !Callee->doesNotRecurse())
 | 
						|
        // Function calls a potentially recursive function.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // Every call was to a non-recursive function other than this function, and
 | 
						|
  // we have no indirect recursion as the SCC size is one. This function cannot
 | 
						|
  // recurse.
 | 
						|
  return setDoesNotRecurse(*F);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
 | 
						|
                                                  CGSCCAnalysisManager &AM) {
 | 
						|
  FunctionAnalysisManager &FAM =
 | 
						|
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
 | 
						|
 | 
						|
  // We pass a lambda into functions to wire them up to the analysis manager
 | 
						|
  // for getting function analyses.
 | 
						|
  auto AARGetter = [&](Function &F) -> AAResults & {
 | 
						|
    return FAM.getResult<AAManager>(F);
 | 
						|
  };
 | 
						|
 | 
						|
  // Fill SCCNodes with the elements of the SCC. Also track whether there are
 | 
						|
  // any external or opt-none nodes that will prevent us from optimizing any
 | 
						|
  // part of the SCC.
 | 
						|
  SCCNodeSet SCCNodes;
 | 
						|
  bool HasUnknownCall = false;
 | 
						|
  for (LazyCallGraph::Node &N : C) {
 | 
						|
    Function &F = N.getFunction();
 | 
						|
    if (F.hasFnAttribute(Attribute::OptimizeNone)) {
 | 
						|
      // Treat any function we're trying not to optimize as if it were an
 | 
						|
      // indirect call and omit it from the node set used below.
 | 
						|
      HasUnknownCall = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Track whether any functions in this SCC have an unknown call edge.
 | 
						|
    // Note: if this is ever a performance hit, we can common it with
 | 
						|
    // subsequent routines which also do scans over the instructions of the
 | 
						|
    // function.
 | 
						|
    if (!HasUnknownCall)
 | 
						|
      for (Instruction &I : instructions(F))
 | 
						|
        if (auto CS = CallSite(&I))
 | 
						|
          if (!CS.getCalledFunction()) {
 | 
						|
            HasUnknownCall = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
    SCCNodes.insert(&F);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  Changed |= addArgumentReturnedAttrs(SCCNodes);
 | 
						|
  Changed |= addReadAttrs(SCCNodes, AARGetter);
 | 
						|
  Changed |= addArgumentAttrs(SCCNodes);
 | 
						|
 | 
						|
  // If we have no external nodes participating in the SCC, we can deduce some
 | 
						|
  // more precise attributes as well.
 | 
						|
  if (!HasUnknownCall) {
 | 
						|
    Changed |= addNoAliasAttrs(SCCNodes);
 | 
						|
    Changed |= addNonNullAttrs(SCCNodes);
 | 
						|
    Changed |= removeConvergentAttrs(SCCNodes);
 | 
						|
    Changed |= addNoRecurseAttrs(SCCNodes);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
 | 
						|
    initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnSCC(CallGraphSCC &SCC) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    getAAResultsAnalysisUsage(AU);
 | 
						|
    CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char PostOrderFunctionAttrsLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
 | 
						|
                      "Deduce function attributes", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | 
						|
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
 | 
						|
                    "Deduce function attributes", false, false)
 | 
						|
 | 
						|
Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
 | 
						|
 | 
						|
template <typename AARGetterT>
 | 
						|
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
 | 
						|
  // whether a given CallGraphNode is in this SCC. Also track whether there are
 | 
						|
  // any external or opt-none nodes that will prevent us from optimizing any
 | 
						|
  // part of the SCC.
 | 
						|
  SCCNodeSet SCCNodes;
 | 
						|
  bool ExternalNode = false;
 | 
						|
  for (CallGraphNode *I : SCC) {
 | 
						|
    Function *F = I->getFunction();
 | 
						|
    if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
 | 
						|
      // External node or function we're trying not to optimize - we both avoid
 | 
						|
      // transform them and avoid leveraging information they provide.
 | 
						|
      ExternalNode = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SCCNodes.insert(F);
 | 
						|
  }
 | 
						|
 | 
						|
  Changed |= addArgumentReturnedAttrs(SCCNodes);
 | 
						|
  Changed |= addReadAttrs(SCCNodes, AARGetter);
 | 
						|
  Changed |= addArgumentAttrs(SCCNodes);
 | 
						|
 | 
						|
  // If we have no external nodes participating in the SCC, we can deduce some
 | 
						|
  // more precise attributes as well.
 | 
						|
  if (!ExternalNode) {
 | 
						|
    Changed |= addNoAliasAttrs(SCCNodes);
 | 
						|
    Changed |= addNonNullAttrs(SCCNodes);
 | 
						|
    Changed |= removeConvergentAttrs(SCCNodes);
 | 
						|
    Changed |= addNoRecurseAttrs(SCCNodes);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
 | 
						|
  if (skipSCC(SCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We compute dedicated AA results for each function in the SCC as needed. We
 | 
						|
  // use a lambda referencing external objects so that they live long enough to
 | 
						|
  // be queried, but we re-use them each time.
 | 
						|
  Optional<BasicAAResult> BAR;
 | 
						|
  Optional<AAResults> AAR;
 | 
						|
  auto AARGetter = [&](Function &F) -> AAResults & {
 | 
						|
    BAR.emplace(createLegacyPMBasicAAResult(*this, F));
 | 
						|
    AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
 | 
						|
    return *AAR;
 | 
						|
  };
 | 
						|
 | 
						|
  return runImpl(SCC, AARGetter);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
 | 
						|
    initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<CallGraphWrapperPass>();
 | 
						|
    AU.addPreserved<CallGraphWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
 | 
						|
                      "Deduce function attributes in RPO", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
 | 
						|
                    "Deduce function attributes in RPO", false, false)
 | 
						|
 | 
						|
Pass *llvm::createReversePostOrderFunctionAttrsPass() {
 | 
						|
  return new ReversePostOrderFunctionAttrsLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
static bool addNoRecurseAttrsTopDown(Function &F) {
 | 
						|
  // We check the preconditions for the function prior to calling this to avoid
 | 
						|
  // the cost of building up a reversible post-order list. We assert them here
 | 
						|
  // to make sure none of the invariants this relies on were violated.
 | 
						|
  assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
 | 
						|
  assert(!F.doesNotRecurse() &&
 | 
						|
         "This function has already been deduced as norecurs!");
 | 
						|
  assert(F.hasInternalLinkage() &&
 | 
						|
         "Can only do top-down deduction for internal linkage functions!");
 | 
						|
 | 
						|
  // If F is internal and all of its uses are calls from a non-recursive
 | 
						|
  // functions, then none of its calls could in fact recurse without going
 | 
						|
  // through a function marked norecurse, and so we can mark this function too
 | 
						|
  // as norecurse. Note that the uses must actually be calls -- otherwise
 | 
						|
  // a pointer to this function could be returned from a norecurse function but
 | 
						|
  // this function could be recursively (indirectly) called. Note that this
 | 
						|
  // also detects if F is directly recursive as F is not yet marked as
 | 
						|
  // a norecurse function.
 | 
						|
  for (auto *U : F.users()) {
 | 
						|
    auto *I = dyn_cast<Instruction>(U);
 | 
						|
    if (!I)
 | 
						|
      return false;
 | 
						|
    CallSite CS(I);
 | 
						|
    if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return setDoesNotRecurse(F);
 | 
						|
}
 | 
						|
 | 
						|
static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
 | 
						|
  // We only have a post-order SCC traversal (because SCCs are inherently
 | 
						|
  // discovered in post-order), so we accumulate them in a vector and then walk
 | 
						|
  // it in reverse. This is simpler than using the RPO iterator infrastructure
 | 
						|
  // because we need to combine SCC detection and the PO walk of the call
 | 
						|
  // graph. We can also cheat egregiously because we're primarily interested in
 | 
						|
  // synthesizing norecurse and so we can only save the singular SCCs as SCCs
 | 
						|
  // with multiple functions in them will clearly be recursive.
 | 
						|
  SmallVector<Function *, 16> Worklist;
 | 
						|
  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
 | 
						|
    if (I->size() != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Function *F = I->front()->getFunction();
 | 
						|
    if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
 | 
						|
        F->hasInternalLinkage())
 | 
						|
      Worklist.push_back(F);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto *F : reverse(Worklist))
 | 
						|
    Changed |= addNoRecurseAttrsTopDown(*F);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
 | 
						|
  if (skipModule(M))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
 | 
						|
 | 
						|
  return deduceFunctionAttributeInRPO(M, CG);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
ReversePostOrderFunctionAttrsPass::run(Module &M, AnalysisManager<Module> &AM) {
 | 
						|
  auto &CG = AM.getResult<CallGraphAnalysis>(M);
 | 
						|
 | 
						|
  bool Changed = deduceFunctionAttributeInRPO(M, CG);
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<CallGraphAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |