forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1262 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1262 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inline cost analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "inline-cost"
 | |
| #include "llvm/Analysis/InlineCost.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/InstVisitor.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
 | |
|   typedef InstVisitor<CallAnalyzer, bool> Base;
 | |
|   friend class InstVisitor<CallAnalyzer, bool>;
 | |
| 
 | |
|   // DataLayout if available, or null.
 | |
|   const DataLayout *const TD;
 | |
| 
 | |
|   /// The TargetTransformInfo available for this compilation.
 | |
|   const TargetTransformInfo &TTI;
 | |
| 
 | |
|   // The called function.
 | |
|   Function &F;
 | |
| 
 | |
|   int Threshold;
 | |
|   int Cost;
 | |
| 
 | |
|   bool IsCallerRecursive;
 | |
|   bool IsRecursiveCall;
 | |
|   bool ExposesReturnsTwice;
 | |
|   bool HasDynamicAlloca;
 | |
|   bool ContainsNoDuplicateCall;
 | |
| 
 | |
|   /// Number of bytes allocated statically by the callee.
 | |
|   uint64_t AllocatedSize;
 | |
|   unsigned NumInstructions, NumVectorInstructions;
 | |
|   int FiftyPercentVectorBonus, TenPercentVectorBonus;
 | |
|   int VectorBonus;
 | |
| 
 | |
|   // While we walk the potentially-inlined instructions, we build up and
 | |
|   // maintain a mapping of simplified values specific to this callsite. The
 | |
|   // idea is to propagate any special information we have about arguments to
 | |
|   // this call through the inlinable section of the function, and account for
 | |
|   // likely simplifications post-inlining. The most important aspect we track
 | |
|   // is CFG altering simplifications -- when we prove a basic block dead, that
 | |
|   // can cause dramatic shifts in the cost of inlining a function.
 | |
|   DenseMap<Value *, Constant *> SimplifiedValues;
 | |
| 
 | |
|   // Keep track of the values which map back (through function arguments) to
 | |
|   // allocas on the caller stack which could be simplified through SROA.
 | |
|   DenseMap<Value *, Value *> SROAArgValues;
 | |
| 
 | |
|   // The mapping of caller Alloca values to their accumulated cost savings. If
 | |
|   // we have to disable SROA for one of the allocas, this tells us how much
 | |
|   // cost must be added.
 | |
|   DenseMap<Value *, int> SROAArgCosts;
 | |
| 
 | |
|   // Keep track of values which map to a pointer base and constant offset.
 | |
|   DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
 | |
| 
 | |
|   // Custom simplification helper routines.
 | |
|   bool isAllocaDerivedArg(Value *V);
 | |
|   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
 | |
|                             DenseMap<Value *, int>::iterator &CostIt);
 | |
|   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
 | |
|   void disableSROA(Value *V);
 | |
|   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
 | |
|                           int InstructionCost);
 | |
|   bool handleSROACandidate(bool IsSROAValid,
 | |
|                            DenseMap<Value *, int>::iterator CostIt,
 | |
|                            int InstructionCost);
 | |
|   bool isGEPOffsetConstant(GetElementPtrInst &GEP);
 | |
|   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
 | |
|   bool simplifyCallSite(Function *F, CallSite CS);
 | |
|   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
 | |
| 
 | |
|   // Custom analysis routines.
 | |
|   bool analyzeBlock(BasicBlock *BB);
 | |
| 
 | |
|   // Disable several entry points to the visitor so we don't accidentally use
 | |
|   // them by declaring but not defining them here.
 | |
|   void visit(Module *);     void visit(Module &);
 | |
|   void visit(Function *);   void visit(Function &);
 | |
|   void visit(BasicBlock *); void visit(BasicBlock &);
 | |
| 
 | |
|   // Provide base case for our instruction visit.
 | |
|   bool visitInstruction(Instruction &I);
 | |
| 
 | |
|   // Our visit overrides.
 | |
|   bool visitAlloca(AllocaInst &I);
 | |
|   bool visitPHI(PHINode &I);
 | |
|   bool visitGetElementPtr(GetElementPtrInst &I);
 | |
|   bool visitBitCast(BitCastInst &I);
 | |
|   bool visitPtrToInt(PtrToIntInst &I);
 | |
|   bool visitIntToPtr(IntToPtrInst &I);
 | |
|   bool visitCastInst(CastInst &I);
 | |
|   bool visitUnaryInstruction(UnaryInstruction &I);
 | |
|   bool visitCmpInst(CmpInst &I);
 | |
|   bool visitSub(BinaryOperator &I);
 | |
|   bool visitBinaryOperator(BinaryOperator &I);
 | |
|   bool visitLoad(LoadInst &I);
 | |
|   bool visitStore(StoreInst &I);
 | |
|   bool visitExtractValue(ExtractValueInst &I);
 | |
|   bool visitInsertValue(InsertValueInst &I);
 | |
|   bool visitCallSite(CallSite CS);
 | |
| 
 | |
| public:
 | |
|   CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
 | |
|                Function &Callee, int Threshold)
 | |
|       : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
 | |
|         IsCallerRecursive(false), IsRecursiveCall(false),
 | |
|         ExposesReturnsTwice(false), HasDynamicAlloca(false),
 | |
|         ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
 | |
|         NumVectorInstructions(0), FiftyPercentVectorBonus(0),
 | |
|         TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
 | |
|         NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
 | |
|         NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
 | |
|         SROACostSavings(0), SROACostSavingsLost(0) {}
 | |
| 
 | |
|   bool analyzeCall(CallSite CS);
 | |
| 
 | |
|   int getThreshold() { return Threshold; }
 | |
|   int getCost() { return Cost; }
 | |
| 
 | |
|   // Keep a bunch of stats about the cost savings found so we can print them
 | |
|   // out when debugging.
 | |
|   unsigned NumConstantArgs;
 | |
|   unsigned NumConstantOffsetPtrArgs;
 | |
|   unsigned NumAllocaArgs;
 | |
|   unsigned NumConstantPtrCmps;
 | |
|   unsigned NumConstantPtrDiffs;
 | |
|   unsigned NumInstructionsSimplified;
 | |
|   unsigned SROACostSavings;
 | |
|   unsigned SROACostSavingsLost;
 | |
| 
 | |
|   void dump();
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// \brief Test whether the given value is an Alloca-derived function argument.
 | |
| bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
 | |
|   return SROAArgValues.count(V);
 | |
| }
 | |
| 
 | |
| /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
 | |
| /// Returns false if V does not map to a SROA-candidate.
 | |
| bool CallAnalyzer::lookupSROAArgAndCost(
 | |
|     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
 | |
|   if (SROAArgValues.empty() || SROAArgCosts.empty())
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
 | |
|   if (ArgIt == SROAArgValues.end())
 | |
|     return false;
 | |
| 
 | |
|   Arg = ArgIt->second;
 | |
|   CostIt = SROAArgCosts.find(Arg);
 | |
|   return CostIt != SROAArgCosts.end();
 | |
| }
 | |
| 
 | |
| /// \brief Disable SROA for the candidate marked by this cost iterator.
 | |
| ///
 | |
| /// This marks the candidate as no longer viable for SROA, and adds the cost
 | |
| /// savings associated with it back into the inline cost measurement.
 | |
| void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
 | |
|   // If we're no longer able to perform SROA we need to undo its cost savings
 | |
|   // and prevent subsequent analysis.
 | |
|   Cost += CostIt->second;
 | |
|   SROACostSavings -= CostIt->second;
 | |
|   SROACostSavingsLost += CostIt->second;
 | |
|   SROAArgCosts.erase(CostIt);
 | |
| }
 | |
| 
 | |
| /// \brief If 'V' maps to a SROA candidate, disable SROA for it.
 | |
| void CallAnalyzer::disableSROA(Value *V) {
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
 | |
|     disableSROA(CostIt);
 | |
| }
 | |
| 
 | |
| /// \brief Accumulate the given cost for a particular SROA candidate.
 | |
| void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
 | |
|                                       int InstructionCost) {
 | |
|   CostIt->second += InstructionCost;
 | |
|   SROACostSavings += InstructionCost;
 | |
| }
 | |
| 
 | |
| /// \brief Helper for the common pattern of handling a SROA candidate.
 | |
| /// Either accumulates the cost savings if the SROA remains valid, or disables
 | |
| /// SROA for the candidate.
 | |
| bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
 | |
|                                        DenseMap<Value *, int>::iterator CostIt,
 | |
|                                        int InstructionCost) {
 | |
|   if (IsSROAValid) {
 | |
|     accumulateSROACost(CostIt, InstructionCost);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   disableSROA(CostIt);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether a GEP's indices are all constant.
 | |
| ///
 | |
| /// Respects any simplified values known during the analysis of this callsite.
 | |
| bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
 | |
|   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
 | |
|     if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Accumulate a constant GEP offset into an APInt if possible.
 | |
| ///
 | |
| /// Returns false if unable to compute the offset for any reason. Respects any
 | |
| /// simplified values known during the analysis of this callsite.
 | |
| bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
 | |
|   if (!TD)
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntPtrWidth = TD->getPointerSizeInBits();
 | |
|   assert(IntPtrWidth == Offset.getBitWidth());
 | |
| 
 | |
|   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
 | |
|        GTI != GTE; ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | |
|     if (!OpC)
 | |
|       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
 | |
|         OpC = dyn_cast<ConstantInt>(SimpleOp);
 | |
|     if (!OpC)
 | |
|       return false;
 | |
|     if (OpC->isZero()) continue;
 | |
| 
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       unsigned ElementIdx = OpC->getZExtValue();
 | |
|       const StructLayout *SL = TD->getStructLayout(STy);
 | |
|       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
 | |
|     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitAlloca(AllocaInst &I) {
 | |
|   // FIXME: Check whether inlining will turn a dynamic alloca into a static
 | |
|   // alloca, and handle that case.
 | |
| 
 | |
|   // Accumulate the allocated size.
 | |
|   if (I.isStaticAlloca()) {
 | |
|     Type *Ty = I.getAllocatedType();
 | |
|     AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
 | |
|                       Ty->getPrimitiveSizeInBits());
 | |
|   }
 | |
| 
 | |
|   // We will happily inline static alloca instructions.
 | |
|   if (I.isStaticAlloca())
 | |
|     return Base::visitAlloca(I);
 | |
| 
 | |
|   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
 | |
|   // a variety of reasons, and so we would like to not inline them into
 | |
|   // functions which don't currently have a dynamic alloca. This simply
 | |
|   // disables inlining altogether in the presence of a dynamic alloca.
 | |
|   HasDynamicAlloca = true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitPHI(PHINode &I) {
 | |
|   // FIXME: We should potentially be tracking values through phi nodes,
 | |
|   // especially when they collapse to a single value due to deleted CFG edges
 | |
|   // during inlining.
 | |
| 
 | |
|   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
 | |
|   // though we don't want to propagate it's bonuses. The idea is to disable
 | |
|   // SROA if it *might* be used in an inappropriate manner.
 | |
| 
 | |
|   // Phi nodes are always zero-cost.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
 | |
|                                             SROAArg, CostIt);
 | |
| 
 | |
|   // Try to fold GEPs of constant-offset call site argument pointers. This
 | |
|   // requires target data and inbounds GEPs.
 | |
|   if (TD && I.isInBounds()) {
 | |
|     // Check if we have a base + offset for the pointer.
 | |
|     Value *Ptr = I.getPointerOperand();
 | |
|     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
 | |
|     if (BaseAndOffset.first) {
 | |
|       // Check if the offset of this GEP is constant, and if so accumulate it
 | |
|       // into Offset.
 | |
|       if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
 | |
|         // Non-constant GEPs aren't folded, and disable SROA.
 | |
|         if (SROACandidate)
 | |
|           disableSROA(CostIt);
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Add the result as a new mapping to Base + Offset.
 | |
|       ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
| 
 | |
|       // Also handle SROA candidates here, we already know that the GEP is
 | |
|       // all-constant indexed.
 | |
|       if (SROACandidate)
 | |
|         SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isGEPOffsetConstant(I)) {
 | |
|     if (SROACandidate)
 | |
|       SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|     // Constant GEPs are modeled as free.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Variable GEPs will require math and will disable SROA.
 | |
|   if (SROACandidate)
 | |
|     disableSROA(CostIt);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitBitCast(BitCastInst &I) {
 | |
|   // Propagate constants through bitcasts.
 | |
|   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(I.getOperand(0));
 | |
|   if (COp)
 | |
|     if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
 | |
|       SimplifiedValues[&I] = C;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Track base/offsets through casts
 | |
|   std::pair<Value *, APInt> BaseAndOffset
 | |
|     = ConstantOffsetPtrs.lookup(I.getOperand(0));
 | |
|   // Casts don't change the offset, just wrap it up.
 | |
|   if (BaseAndOffset.first)
 | |
|     ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
| 
 | |
|   // Also look for SROA candidates here.
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   // Bitcasts are always zero cost.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
 | |
|   // Propagate constants through ptrtoint.
 | |
|   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(I.getOperand(0));
 | |
|   if (COp)
 | |
|     if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
 | |
|       SimplifiedValues[&I] = C;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Track base/offset pairs when converted to a plain integer provided the
 | |
|   // integer is large enough to represent the pointer.
 | |
|   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
 | |
|   if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
 | |
|     std::pair<Value *, APInt> BaseAndOffset
 | |
|       = ConstantOffsetPtrs.lookup(I.getOperand(0));
 | |
|     if (BaseAndOffset.first)
 | |
|       ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
|   }
 | |
| 
 | |
|   // This is really weird. Technically, ptrtoint will disable SROA. However,
 | |
|   // unless that ptrtoint is *used* somewhere in the live basic blocks after
 | |
|   // inlining, it will be nuked, and SROA should proceed. All of the uses which
 | |
|   // would block SROA would also block SROA if applied directly to a pointer,
 | |
|   // and so we can just add the integer in here. The only places where SROA is
 | |
|   // preserved either cannot fire on an integer, or won't in-and-of themselves
 | |
|   // disable SROA (ext) w/o some later use that we would see and disable.
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
 | |
|   // Propagate constants through ptrtoint.
 | |
|   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(I.getOperand(0));
 | |
|   if (COp)
 | |
|     if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
 | |
|       SimplifiedValues[&I] = C;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Track base/offset pairs when round-tripped through a pointer without
 | |
|   // modifications provided the integer is not too large.
 | |
|   Value *Op = I.getOperand(0);
 | |
|   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
 | |
|   if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
 | |
|     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
 | |
|     if (BaseAndOffset.first)
 | |
|       ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
|   }
 | |
| 
 | |
|   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCastInst(CastInst &I) {
 | |
|   // Propagate constants through ptrtoint.
 | |
|   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(I.getOperand(0));
 | |
|   if (COp)
 | |
|     if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
 | |
|       SimplifiedValues[&I] = C;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
 | |
|   disableSROA(I.getOperand(0));
 | |
| 
 | |
|   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
 | |
|   Value *Operand = I.getOperand(0);
 | |
|   Constant *COp = dyn_cast<Constant>(Operand);
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(Operand);
 | |
|   if (COp)
 | |
|     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
 | |
|                                                COp, TD)) {
 | |
|       SimplifiedValues[&I] = C;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Disable any SROA on the argument to arbitrary unary operators.
 | |
|   disableSROA(Operand);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCmpInst(CmpInst &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   // First try to handle simplified comparisons.
 | |
|   if (!isa<Constant>(LHS))
 | |
|     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|       LHS = SimpleLHS;
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|       RHS = SimpleRHS;
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (I.getOpcode() == Instruction::FCmp)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise look for a comparison between constant offset pointers with
 | |
|   // a common base.
 | |
|   Value *LHSBase, *RHSBase;
 | |
|   APInt LHSOffset, RHSOffset;
 | |
|   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | |
|   if (LHSBase) {
 | |
|     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | |
|     if (RHSBase && LHSBase == RHSBase) {
 | |
|       // We have common bases, fold the icmp to a constant based on the
 | |
|       // offsets.
 | |
|       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | |
|       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | |
|       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         ++NumConstantPtrCmps;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is an equality comparison with null, we can simplify it
 | |
|   // for any alloca-derived argument.
 | |
|   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
 | |
|     if (isAllocaDerivedArg(I.getOperand(0))) {
 | |
|       // We can actually predict the result of comparisons between an
 | |
|       // alloca-derived value and null. Note that this fires regardless of
 | |
|       // SROA firing.
 | |
|       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
 | |
|       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
 | |
|                                         : ConstantInt::getFalse(I.getType());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Finally check for SROA candidates in comparisons.
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
 | |
|     if (isa<ConstantPointerNull>(I.getOperand(1))) {
 | |
|       accumulateSROACost(CostIt, InlineConstants::InstrCost);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     disableSROA(CostIt);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitSub(BinaryOperator &I) {
 | |
|   // Try to handle a special case: we can fold computing the difference of two
 | |
|   // constant-related pointers.
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   Value *LHSBase, *RHSBase;
 | |
|   APInt LHSOffset, RHSOffset;
 | |
|   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | |
|   if (LHSBase) {
 | |
|     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | |
|     if (RHSBase && LHSBase == RHSBase) {
 | |
|       // We have common bases, fold the subtract to a constant based on the
 | |
|       // offsets.
 | |
|       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | |
|       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | |
|       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         ++NumConstantPtrDiffs;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fall back to the generic logic for simplifying and handling
 | |
|   // instructions.
 | |
|   return Base::visitSub(I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   if (!isa<Constant>(LHS))
 | |
|     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|       LHS = SimpleLHS;
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|       RHS = SimpleRHS;
 | |
|   Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
 | |
|   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
 | |
|     SimplifiedValues[&I] = C;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
 | |
|   disableSROA(LHS);
 | |
|   disableSROA(RHS);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitLoad(LoadInst &I) {
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
 | |
|     if (I.isSimple()) {
 | |
|       accumulateSROACost(CostIt, InlineConstants::InstrCost);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     disableSROA(CostIt);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitStore(StoreInst &I) {
 | |
|   Value *SROAArg;
 | |
|   DenseMap<Value *, int>::iterator CostIt;
 | |
|   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
 | |
|     if (I.isSimple()) {
 | |
|       accumulateSROACost(CostIt, InlineConstants::InstrCost);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     disableSROA(CostIt);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
 | |
|   // Constant folding for extract value is trivial.
 | |
|   Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
 | |
|   if (!C)
 | |
|     C = SimplifiedValues.lookup(I.getAggregateOperand());
 | |
|   if (C) {
 | |
|     SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // SROA can look through these but give them a cost.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
 | |
|   // Constant folding for insert value is trivial.
 | |
|   Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
 | |
|   if (!AggC)
 | |
|     AggC = SimplifiedValues.lookup(I.getAggregateOperand());
 | |
|   Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
 | |
|   if (!InsertedC)
 | |
|     InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
 | |
|   if (AggC && InsertedC) {
 | |
|     SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
 | |
|                                                         I.getIndices());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // SROA can look through these but give them a cost.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Try to simplify a call site.
 | |
| ///
 | |
| /// Takes a concrete function and callsite and tries to actually simplify it by
 | |
| /// analyzing the arguments and call itself with instsimplify. Returns true if
 | |
| /// it has simplified the callsite to some other entity (a constant), making it
 | |
| /// free.
 | |
| bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
 | |
|   // FIXME: Using the instsimplify logic directly for this is inefficient
 | |
|   // because we have to continually rebuild the argument list even when no
 | |
|   // simplifications can be performed. Until that is fixed with remapping
 | |
|   // inside of instsimplify, directly constant fold calls here.
 | |
|   if (!canConstantFoldCallTo(F))
 | |
|     return false;
 | |
| 
 | |
|   // Try to re-map the arguments to constants.
 | |
|   SmallVector<Constant *, 4> ConstantArgs;
 | |
|   ConstantArgs.reserve(CS.arg_size());
 | |
|   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I) {
 | |
|     Constant *C = dyn_cast<Constant>(*I);
 | |
|     if (!C)
 | |
|       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
 | |
|     if (!C)
 | |
|       return false; // This argument doesn't map to a constant.
 | |
| 
 | |
|     ConstantArgs.push_back(C);
 | |
|   }
 | |
|   if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
 | |
|     SimplifiedValues[CS.getInstruction()] = C;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCallSite(CallSite CS) {
 | |
|   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
 | |
|       !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                       Attribute::ReturnsTwice)) {
 | |
|     // This aborts the entire analysis.
 | |
|     ExposesReturnsTwice = true;
 | |
|     return false;
 | |
|   }
 | |
|   if (CS.isCall() &&
 | |
|       cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
 | |
|     ContainsNoDuplicateCall = true;
 | |
| 
 | |
|   if (Function *F = CS.getCalledFunction()) {
 | |
|     // When we have a concrete function, first try to simplify it directly.
 | |
|     if (simplifyCallSite(F, CS))
 | |
|       return true;
 | |
| 
 | |
|     // Next check if it is an intrinsic we know about.
 | |
|     // FIXME: Lift this into part of the InstVisitor.
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default:
 | |
|         return Base::visitCallSite(CS);
 | |
| 
 | |
|       case Intrinsic::memset:
 | |
|       case Intrinsic::memcpy:
 | |
|       case Intrinsic::memmove:
 | |
|         // SROA can usually chew through these intrinsics, but they aren't free.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (F == CS.getInstruction()->getParent()->getParent()) {
 | |
|       // This flag will fully abort the analysis, so don't bother with anything
 | |
|       // else.
 | |
|       IsRecursiveCall = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (TTI.isLoweredToCall(F)) {
 | |
|       // We account for the average 1 instruction per call argument setup
 | |
|       // here.
 | |
|       Cost += CS.arg_size() * InlineConstants::InstrCost;
 | |
| 
 | |
|       // Everything other than inline ASM will also have a significant cost
 | |
|       // merely from making the call.
 | |
|       if (!isa<InlineAsm>(CS.getCalledValue()))
 | |
|         Cost += InlineConstants::CallPenalty;
 | |
|     }
 | |
| 
 | |
|     return Base::visitCallSite(CS);
 | |
|   }
 | |
| 
 | |
|   // Otherwise we're in a very special case -- an indirect function call. See
 | |
|   // if we can be particularly clever about this.
 | |
|   Value *Callee = CS.getCalledValue();
 | |
| 
 | |
|   // First, pay the price of the argument setup. We account for the average
 | |
|   // 1 instruction per call argument setup here.
 | |
|   Cost += CS.arg_size() * InlineConstants::InstrCost;
 | |
| 
 | |
|   // Next, check if this happens to be an indirect function call to a known
 | |
|   // function in this inline context. If not, we've done all we can.
 | |
|   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
 | |
|   if (!F)
 | |
|     return Base::visitCallSite(CS);
 | |
| 
 | |
|   // If we have a constant that we are calling as a function, we can peer
 | |
|   // through it and see the function target. This happens not infrequently
 | |
|   // during devirtualization and so we want to give it a hefty bonus for
 | |
|   // inlining, but cap that bonus in the event that inlining wouldn't pan
 | |
|   // out. Pretend to inline the function, with a custom threshold.
 | |
|   CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
 | |
|   if (CA.analyzeCall(CS)) {
 | |
|     // We were able to inline the indirect call! Subtract the cost from the
 | |
|     // bonus we want to apply, but don't go below zero.
 | |
|     Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
 | |
|   }
 | |
| 
 | |
|   return Base::visitCallSite(CS);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitInstruction(Instruction &I) {
 | |
|   // Some instructions are free. All of the free intrinsics can also be
 | |
|   // handled by SROA, etc.
 | |
|   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
 | |
|     return true;
 | |
| 
 | |
|   // We found something we don't understand or can't handle. Mark any SROA-able
 | |
|   // values in the operand list as no longer viable.
 | |
|   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
 | |
|     disableSROA(*OI);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Analyze a basic block for its contribution to the inline cost.
 | |
| ///
 | |
| /// This method walks the analyzer over every instruction in the given basic
 | |
| /// block and accounts for their cost during inlining at this callsite. It
 | |
| /// aborts early if the threshold has been exceeded or an impossible to inline
 | |
| /// construct has been detected. It returns false if inlining is no longer
 | |
| /// viable, and true if inlining remains viable.
 | |
| bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
 | |
|        I != E; ++I) {
 | |
|     ++NumInstructions;
 | |
|     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|     // If the instruction simplified to a constant, there is no cost to this
 | |
|     // instruction. Visit the instructions using our InstVisitor to account for
 | |
|     // all of the per-instruction logic. The visit tree returns true if we
 | |
|     // consumed the instruction in any way, and false if the instruction's base
 | |
|     // cost should count against inlining.
 | |
|     if (Base::visit(I))
 | |
|       ++NumInstructionsSimplified;
 | |
|     else
 | |
|       Cost += InlineConstants::InstrCost;
 | |
| 
 | |
|     // If the visit this instruction detected an uninlinable pattern, abort.
 | |
|     if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
 | |
|       return false;
 | |
| 
 | |
|     // If the caller is a recursive function then we don't want to inline
 | |
|     // functions which allocate a lot of stack space because it would increase
 | |
|     // the caller stack usage dramatically.
 | |
|     if (IsCallerRecursive &&
 | |
|         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
 | |
|       return false;
 | |
| 
 | |
|     if (NumVectorInstructions > NumInstructions/2)
 | |
|       VectorBonus = FiftyPercentVectorBonus;
 | |
|     else if (NumVectorInstructions > NumInstructions/10)
 | |
|       VectorBonus = TenPercentVectorBonus;
 | |
|     else
 | |
|       VectorBonus = 0;
 | |
| 
 | |
|     // Check if we've past the threshold so we don't spin in huge basic
 | |
|     // blocks that will never inline.
 | |
|     if (Cost > (Threshold + VectorBonus))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the base pointer and cumulative constant offsets for V.
 | |
| ///
 | |
| /// This strips all constant offsets off of V, leaving it the base pointer, and
 | |
| /// accumulates the total constant offset applied in the returned constant. It
 | |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | |
| /// no constant offsets applied.
 | |
| ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
 | |
|   if (!TD || !V->getType()->isPointerTy())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned IntPtrWidth = TD->getPointerSizeInBits();
 | |
|   APInt Offset = APInt::getNullValue(IntPtrWidth);
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
 | |
|         return 0;
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         break;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V));
 | |
| 
 | |
|   Type *IntPtrTy = TD->getIntPtrType(V->getContext());
 | |
|   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
 | |
| }
 | |
| 
 | |
| /// \brief Analyze a call site for potential inlining.
 | |
| ///
 | |
| /// Returns true if inlining this call is viable, and false if it is not
 | |
| /// viable. It computes the cost and adjusts the threshold based on numerous
 | |
| /// factors and heuristics. If this method returns false but the computed cost
 | |
| /// is below the computed threshold, then inlining was forcibly disabled by
 | |
| /// some artifact of the routine.
 | |
| bool CallAnalyzer::analyzeCall(CallSite CS) {
 | |
|   ++NumCallsAnalyzed;
 | |
| 
 | |
|   // Track whether the post-inlining function would have more than one basic
 | |
|   // block. A single basic block is often intended for inlining. Balloon the
 | |
|   // threshold by 50% until we pass the single-BB phase.
 | |
|   bool SingleBB = true;
 | |
|   int SingleBBBonus = Threshold / 2;
 | |
|   Threshold += SingleBBBonus;
 | |
| 
 | |
|   // Perform some tweaks to the cost and threshold based on the direct
 | |
|   // callsite information.
 | |
| 
 | |
|   // We want to more aggressively inline vector-dense kernels, so up the
 | |
|   // threshold, and we'll lower it if the % of vector instructions gets too
 | |
|   // low.
 | |
|   assert(NumInstructions == 0);
 | |
|   assert(NumVectorInstructions == 0);
 | |
|   FiftyPercentVectorBonus = Threshold;
 | |
|   TenPercentVectorBonus = Threshold / 2;
 | |
| 
 | |
|   // Give out bonuses per argument, as the instructions setting them up will
 | |
|   // be gone after inlining.
 | |
|   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
 | |
|     if (TD && CS.isByValArgument(I)) {
 | |
|       // We approximate the number of loads and stores needed by dividing the
 | |
|       // size of the byval type by the target's pointer size.
 | |
|       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
 | |
|       unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
 | |
|       unsigned PointerSize = TD->getPointerSizeInBits();
 | |
|       // Ceiling division.
 | |
|       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
 | |
| 
 | |
|       // If it generates more than 8 stores it is likely to be expanded as an
 | |
|       // inline memcpy so we take that as an upper bound. Otherwise we assume
 | |
|       // one load and one store per word copied.
 | |
|       // FIXME: The maxStoresPerMemcpy setting from the target should be used
 | |
|       // here instead of a magic number of 8, but it's not available via
 | |
|       // DataLayout.
 | |
|       NumStores = std::min(NumStores, 8U);
 | |
| 
 | |
|       Cost -= 2 * NumStores * InlineConstants::InstrCost;
 | |
|     } else {
 | |
|       // For non-byval arguments subtract off one instruction per call
 | |
|       // argument.
 | |
|       Cost -= InlineConstants::InstrCost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there is only one call of the function, and it has internal linkage,
 | |
|   // the cost of inlining it drops dramatically.
 | |
|   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
 | |
|     &F == CS.getCalledFunction();
 | |
|   if (OnlyOneCallAndLocalLinkage)
 | |
|     Cost += InlineConstants::LastCallToStaticBonus;
 | |
| 
 | |
|   // If the instruction after the call, or if the normal destination of the
 | |
|   // invoke is an unreachable instruction, the function is noreturn. As such,
 | |
|   // there is little point in inlining this unless there is literally zero
 | |
|   // cost.
 | |
|   Instruction *Instr = CS.getInstruction();
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
 | |
|     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
 | |
|       Threshold = 1;
 | |
|   } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
 | |
|     Threshold = 1;
 | |
| 
 | |
|   // If this function uses the coldcc calling convention, prefer not to inline
 | |
|   // it.
 | |
|   if (F.getCallingConv() == CallingConv::Cold)
 | |
|     Cost += InlineConstants::ColdccPenalty;
 | |
| 
 | |
|   // Check if we're done. This can happen due to bonuses and penalties.
 | |
|   if (Cost > Threshold)
 | |
|     return false;
 | |
| 
 | |
|   if (F.empty())
 | |
|     return true;
 | |
| 
 | |
|   Function *Caller = CS.getInstruction()->getParent()->getParent();
 | |
|   // Check if the caller function is recursive itself.
 | |
|   for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
 | |
|        U != E; ++U) {
 | |
|     CallSite Site(cast<Value>(*U));
 | |
|     if (!Site)
 | |
|       continue;
 | |
|     Instruction *I = Site.getInstruction();
 | |
|     if (I->getParent()->getParent() == Caller) {
 | |
|       IsCallerRecursive = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Track whether we've seen a return instruction. The first return
 | |
|   // instruction is free, as at least one will usually disappear in inlining.
 | |
|   bool HasReturn = false;
 | |
| 
 | |
|   // Populate our simplified values by mapping from function arguments to call
 | |
|   // arguments with known important simplifications.
 | |
|   CallSite::arg_iterator CAI = CS.arg_begin();
 | |
|   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
 | |
|        FAI != FAE; ++FAI, ++CAI) {
 | |
|     assert(CAI != CS.arg_end());
 | |
|     if (Constant *C = dyn_cast<Constant>(CAI))
 | |
|       SimplifiedValues[FAI] = C;
 | |
| 
 | |
|     Value *PtrArg = *CAI;
 | |
|     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
 | |
|       ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
 | |
| 
 | |
|       // We can SROA any pointer arguments derived from alloca instructions.
 | |
|       if (isa<AllocaInst>(PtrArg)) {
 | |
|         SROAArgValues[FAI] = PtrArg;
 | |
|         SROAArgCosts[PtrArg] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   NumConstantArgs = SimplifiedValues.size();
 | |
|   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
 | |
|   NumAllocaArgs = SROAArgValues.size();
 | |
| 
 | |
|   // The worklist of live basic blocks in the callee *after* inlining. We avoid
 | |
|   // adding basic blocks of the callee which can be proven to be dead for this
 | |
|   // particular call site in order to get more accurate cost estimates. This
 | |
|   // requires a somewhat heavyweight iteration pattern: we need to walk the
 | |
|   // basic blocks in a breadth-first order as we insert live successors. To
 | |
|   // accomplish this, prioritizing for small iterations because we exit after
 | |
|   // crossing our threshold, we use a small-size optimized SetVector.
 | |
|   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
 | |
|                                   SmallPtrSet<BasicBlock *, 16> > BBSetVector;
 | |
|   BBSetVector BBWorklist;
 | |
|   BBWorklist.insert(&F.getEntryBlock());
 | |
|   // Note that we *must not* cache the size, this loop grows the worklist.
 | |
|   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
 | |
|     // Bail out the moment we cross the threshold. This means we'll under-count
 | |
|     // the cost, but only when undercounting doesn't matter.
 | |
|     if (Cost > (Threshold + VectorBonus))
 | |
|       break;
 | |
| 
 | |
|     BasicBlock *BB = BBWorklist[Idx];
 | |
|     if (BB->empty())
 | |
|       continue;
 | |
| 
 | |
|     // Handle the terminator cost here where we can track returns and other
 | |
|     // function-wide constructs.
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|     // We never want to inline functions that contain an indirectbr.  This is
 | |
|     // incorrect because all the blockaddress's (in static global initializers
 | |
|     // for example) would be referring to the original function, and this
 | |
|     // indirect jump would jump from the inlined copy of the function into the 
 | |
|     // original function which is extremely undefined behavior.
 | |
|     // FIXME: This logic isn't really right; we can safely inline functions
 | |
|     // with indirectbr's as long as no other function or global references the
 | |
|     // blockaddress of a block within the current function.  And as a QOI issue,
 | |
|     // if someone is using a blockaddress without an indirectbr, and that
 | |
|     // reference somehow ends up in another function or global, we probably
 | |
|     // don't want to inline this function.
 | |
|     if (isa<IndirectBrInst>(TI))
 | |
|       return false;
 | |
| 
 | |
|     if (!HasReturn && isa<ReturnInst>(TI))
 | |
|       HasReturn = true;
 | |
|     else
 | |
|       Cost += InlineConstants::InstrCost;
 | |
| 
 | |
|     // Analyze the cost of this block. If we blow through the threshold, this
 | |
|     // returns false, and we can bail on out.
 | |
|     if (!analyzeBlock(BB)) {
 | |
|       if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
 | |
|         return false;
 | |
| 
 | |
|       // If the caller is a recursive function then we don't want to inline
 | |
|       // functions which allocate a lot of stack space because it would increase
 | |
|       // the caller stack usage dramatically.
 | |
|       if (IsCallerRecursive &&
 | |
|           AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
 | |
|         return false;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Add in the live successors by first checking whether we have terminator
 | |
|     // that may be simplified based on the values simplified by this call.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isConditional()) {
 | |
|         Value *Cond = BI->getCondition();
 | |
|         if (ConstantInt *SimpleCond
 | |
|               = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | |
|           BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       Value *Cond = SI->getCondition();
 | |
|       if (ConstantInt *SimpleCond
 | |
|             = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | |
|         BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we're unable to select a particular successor, just count all of
 | |
|     // them.
 | |
|     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
 | |
|          ++TIdx)
 | |
|       BBWorklist.insert(TI->getSuccessor(TIdx));
 | |
| 
 | |
|     // If we had any successors at this point, than post-inlining is likely to
 | |
|     // have them as well. Note that we assume any basic blocks which existed
 | |
|     // due to branches or switches which folded above will also fold after
 | |
|     // inlining.
 | |
|     if (SingleBB && TI->getNumSuccessors() > 1) {
 | |
|       // Take off the bonus we applied to the threshold.
 | |
|       Threshold -= SingleBBBonus;
 | |
|       SingleBB = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a noduplicate call, we can still inline as long as 
 | |
|   // inlining this would cause the removal of the caller (so the instruction
 | |
|   // is not actually duplicated, just moved).
 | |
|   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
 | |
|     return false;
 | |
| 
 | |
|   Threshold += VectorBonus;
 | |
| 
 | |
|   return Cost < Threshold;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// \brief Dump stats about this call's analysis.
 | |
| void CallAnalyzer::dump() {
 | |
| #define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
 | |
|   DEBUG_PRINT_STAT(NumConstantArgs);
 | |
|   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
 | |
|   DEBUG_PRINT_STAT(NumAllocaArgs);
 | |
|   DEBUG_PRINT_STAT(NumConstantPtrCmps);
 | |
|   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
 | |
|   DEBUG_PRINT_STAT(NumInstructionsSimplified);
 | |
|   DEBUG_PRINT_STAT(SROACostSavings);
 | |
|   DEBUG_PRINT_STAT(SROACostSavingsLost);
 | |
|   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
 | |
| #undef DEBUG_PRINT_STAT
 | |
| }
 | |
| #endif
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
 | |
|                       true, true)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
 | |
|                     true, true)
 | |
| 
 | |
| char InlineCostAnalysis::ID = 0;
 | |
| 
 | |
| InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
 | |
| 
 | |
| InlineCostAnalysis::~InlineCostAnalysis() {}
 | |
| 
 | |
| void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<TargetTransformInfo>();
 | |
|   CallGraphSCCPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
 | |
|   TD = getAnalysisIfAvailable<DataLayout>();
 | |
|   TTI = &getAnalysis<TargetTransformInfo>();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
 | |
|   return getInlineCost(CS, CS.getCalledFunction(), Threshold);
 | |
| }
 | |
| 
 | |
| /// \brief Test that two functions either have or have not the given attribute
 | |
| ///        at the same time.
 | |
| static bool attributeMatches(Function *F1, Function *F2,
 | |
|                              Attribute::AttrKind Attr) {
 | |
|   return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr);
 | |
| }
 | |
| 
 | |
| /// \brief Test that there are no attribute conflicts between Caller and Callee
 | |
| ///        that prevent inlining.
 | |
| static bool functionsHaveCompatibleAttributes(Function *Caller,
 | |
|                                               Function *Callee) {
 | |
|   return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) &&
 | |
|          attributeMatches(Caller, Callee, Attribute::SanitizeMemory) &&
 | |
|          attributeMatches(Caller, Callee, Attribute::SanitizeThread);
 | |
| }
 | |
| 
 | |
| InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
 | |
|                                              int Threshold) {
 | |
|   // Cannot inline indirect calls.
 | |
|   if (!Callee)
 | |
|     return llvm::InlineCost::getNever();
 | |
| 
 | |
|   // Calls to functions with always-inline attributes should be inlined
 | |
|   // whenever possible.
 | |
|   if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
 | |
|     if (isInlineViable(*Callee))
 | |
|       return llvm::InlineCost::getAlways();
 | |
|     return llvm::InlineCost::getNever();
 | |
|   }
 | |
| 
 | |
|   // Never inline functions with conflicting attributes (unless callee has
 | |
|   // always-inline attribute).
 | |
|   if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee))
 | |
|     return llvm::InlineCost::getNever();
 | |
| 
 | |
|   // Don't inline functions which can be redefined at link-time to mean
 | |
|   // something else.  Don't inline functions marked noinline or call sites
 | |
|   // marked noinline.
 | |
|   if (Callee->mayBeOverridden() ||
 | |
|       Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline())
 | |
|     return llvm::InlineCost::getNever();
 | |
| 
 | |
|   DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
 | |
|         << "...\n");
 | |
| 
 | |
|   CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
 | |
|   bool ShouldInline = CA.analyzeCall(CS);
 | |
| 
 | |
|   DEBUG(CA.dump());
 | |
| 
 | |
|   // Check if there was a reason to force inlining or no inlining.
 | |
|   if (!ShouldInline && CA.getCost() < CA.getThreshold())
 | |
|     return InlineCost::getNever();
 | |
|   if (ShouldInline && CA.getCost() >= CA.getThreshold())
 | |
|     return InlineCost::getAlways();
 | |
| 
 | |
|   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
 | |
| }
 | |
| 
 | |
| bool InlineCostAnalysis::isInlineViable(Function &F) {
 | |
|   bool ReturnsTwice =
 | |
|     F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                    Attribute::ReturnsTwice);
 | |
|   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
 | |
|     // Disallow inlining of functions which contain an indirect branch.
 | |
|     if (isa<IndirectBrInst>(BI->getTerminator()))
 | |
|       return false;
 | |
| 
 | |
|     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
 | |
|          ++II) {
 | |
|       CallSite CS(II);
 | |
|       if (!CS)
 | |
|         continue;
 | |
| 
 | |
|       // Disallow recursive calls.
 | |
|       if (&F == CS.getCalledFunction())
 | |
|         return false;
 | |
| 
 | |
|       // Disallow calls which expose returns-twice to a function not previously
 | |
|       // attributed as such.
 | |
|       if (!ReturnsTwice && CS.isCall() &&
 | |
|           cast<CallInst>(CS.getInstruction())->canReturnTwice())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |