forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			650 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass identifies loops where we can generate the PPC branch instructions
 | |
| // that decrement and test the count register (CTR) (bdnz and friends).
 | |
| //
 | |
| // The pattern that defines the induction variable can changed depending on
 | |
| // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
 | |
| // normalizes induction variables, and the Loop Strength Reduction pass
 | |
| // run by 'llc' may also make changes to the induction variable.
 | |
| //
 | |
| // Criteria for CTR loops:
 | |
| //  - Countable loops (w/ ind. var for a trip count)
 | |
| //  - Try inner-most loops first
 | |
| //  - No nested CTR loops.
 | |
| //  - No function calls in loops.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ctrloops"
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/PassSupport.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPC.h"
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
 | |
| #endif
 | |
| 
 | |
| STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializePPCCTRLoopsPass(PassRegistry&);
 | |
| #ifndef NDEBUG
 | |
|   void initializePPCCTRLoopsVerifyPass(PassRegistry&);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct PPCCTRLoops : public FunctionPass {
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     static int Counter;
 | |
| #endif
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
| 
 | |
|     PPCCTRLoops() : FunctionPass(ID), TM(0) {
 | |
|       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|     PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
 | |
|       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool mightUseCTR(const Triple &TT, BasicBlock *BB);
 | |
|     bool convertToCTRLoop(Loop *L);
 | |
| 
 | |
|   private:
 | |
|     PPCTargetMachine *TM;
 | |
|     LoopInfo *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DataLayout *TD;
 | |
|     DominatorTree *DT;
 | |
|     const TargetLibraryInfo *LibInfo;
 | |
|   };
 | |
| 
 | |
|   char PPCCTRLoops::ID = 0;
 | |
| #ifndef NDEBUG
 | |
|   int PPCCTRLoops::Counter = 0;
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   struct PPCCTRLoopsVerify : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID;
 | |
| 
 | |
|     PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
 | |
|       initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|   private:
 | |
|     MachineDominatorTree *MDT;
 | |
|   };
 | |
| 
 | |
|   char PPCCTRLoopsVerify::ID = 0;
 | |
| #endif // NDEBUG
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | |
|                     false, false)
 | |
| 
 | |
| FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
 | |
|   return new PPCCTRLoops(TM);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
 | |
|                       "PowerPC CTR Loops Verify", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
 | |
|                     "PowerPC CTR Loops Verify", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createPPCCTRLoopsVerify() {
 | |
|   return new PPCCTRLoopsVerify();
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| bool PPCCTRLoops::runOnFunction(Function &F) {
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   TD = getAnalysisIfAvailable<DataLayout>();
 | |
|   LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (LoopInfo::iterator I = LI->begin(), E = LI->end();
 | |
|        I != E; ++I) {
 | |
|     Loop *L = *I;
 | |
|     if (!L->getParentLoop())
 | |
|       MadeChange |= convertToCTRLoop(L);
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
 | |
|        J != JE; ++J) {
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(J)) {
 | |
|       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
 | |
|         // Inline ASM is okay, unless it clobbers the ctr register.
 | |
|         InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
 | |
|         for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
 | |
|           InlineAsm::ConstraintInfo &C = CIV[i];
 | |
|           if (C.Type != InlineAsm::isInput)
 | |
|             for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
 | |
|               if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
 | |
|                 return true;
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!TM)
 | |
|         return true;
 | |
|       const TargetLowering *TLI = TM->getTargetLowering();
 | |
| 
 | |
|       if (Function *F = CI->getCalledFunction()) {
 | |
|         // Most intrinsics don't become function calls, but some might.
 | |
|         // sin, cos, exp and log are always calls.
 | |
|         unsigned Opcode;
 | |
|         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           default: continue;
 | |
| 
 | |
| // VisualStudio defines setjmp as _setjmp
 | |
| #if defined(_MSC_VER) && defined(setjmp) && \
 | |
|                        !defined(setjmp_undefined_for_msvc)
 | |
| #  pragma push_macro("setjmp")
 | |
| #  undef setjmp
 | |
| #  define setjmp_undefined_for_msvc
 | |
| #endif
 | |
| 
 | |
|           case Intrinsic::setjmp:
 | |
| 
 | |
| #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
 | |
|  // let's return it to _setjmp state
 | |
| #  pragma pop_macro("setjmp")
 | |
| #  undef setjmp_undefined_for_msvc
 | |
| #endif
 | |
| 
 | |
|           case Intrinsic::longjmp:
 | |
| 
 | |
|           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
 | |
|           // because, although it does clobber the counter register, the
 | |
|           // control can't then return to inside the loop unless there is also
 | |
|           // an eh_sjlj_setjmp.
 | |
|           case Intrinsic::eh_sjlj_setjmp:
 | |
| 
 | |
|           case Intrinsic::memcpy:
 | |
|           case Intrinsic::memmove:
 | |
|           case Intrinsic::memset:
 | |
|           case Intrinsic::powi:
 | |
|           case Intrinsic::log:
 | |
|           case Intrinsic::log2:
 | |
|           case Intrinsic::log10:
 | |
|           case Intrinsic::exp:
 | |
|           case Intrinsic::exp2:
 | |
|           case Intrinsic::pow:
 | |
|           case Intrinsic::sin:
 | |
|           case Intrinsic::cos:
 | |
|             return true;
 | |
|           case Intrinsic::copysign:
 | |
|             if (CI->getArgOperand(0)->getType()->getScalarType()->
 | |
|                 isPPC_FP128Ty())
 | |
|               return true;
 | |
|             else
 | |
|               continue; // ISD::FCOPYSIGN is never a library call.
 | |
|           case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
 | |
|           case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
 | |
|           case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
 | |
|           case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
 | |
|           case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
 | |
|           case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
 | |
|           case Intrinsic::round:     Opcode = ISD::FROUND;     break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // PowerPC does not use [US]DIVREM or other library calls for
 | |
|         // operations on regular types which are not otherwise library calls
 | |
|         // (i.e. soft float or atomics). If adapting for targets that do,
 | |
|         // additional care is required here.
 | |
| 
 | |
|         LibFunc::Func Func;
 | |
|         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
 | |
|             LibInfo->getLibFunc(F->getName(), Func) &&
 | |
|             LibInfo->hasOptimizedCodeGen(Func)) {
 | |
|           // Non-read-only functions are never treated as intrinsics.
 | |
|           if (!CI->onlyReadsMemory())
 | |
|             return true;
 | |
| 
 | |
|           // Conversion happens only for FP calls.
 | |
|           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
 | |
|             return true;
 | |
| 
 | |
|           switch (Func) {
 | |
|           default: return true;
 | |
|           case LibFunc::copysign:
 | |
|           case LibFunc::copysignf:
 | |
|             continue; // ISD::FCOPYSIGN is never a library call.
 | |
|           case LibFunc::copysignl:
 | |
|             return true;
 | |
|           case LibFunc::fabs:
 | |
|           case LibFunc::fabsf:
 | |
|           case LibFunc::fabsl:
 | |
|             continue; // ISD::FABS is never a library call.
 | |
|           case LibFunc::sqrt:
 | |
|           case LibFunc::sqrtf:
 | |
|           case LibFunc::sqrtl:
 | |
|             Opcode = ISD::FSQRT; break;
 | |
|           case LibFunc::floor:
 | |
|           case LibFunc::floorf:
 | |
|           case LibFunc::floorl:
 | |
|             Opcode = ISD::FFLOOR; break;
 | |
|           case LibFunc::nearbyint:
 | |
|           case LibFunc::nearbyintf:
 | |
|           case LibFunc::nearbyintl:
 | |
|             Opcode = ISD::FNEARBYINT; break;
 | |
|           case LibFunc::ceil:
 | |
|           case LibFunc::ceilf:
 | |
|           case LibFunc::ceill:
 | |
|             Opcode = ISD::FCEIL; break;
 | |
|           case LibFunc::rint:
 | |
|           case LibFunc::rintf:
 | |
|           case LibFunc::rintl:
 | |
|             Opcode = ISD::FRINT; break;
 | |
|           case LibFunc::round:
 | |
|           case LibFunc::roundf:
 | |
|           case LibFunc::roundl:
 | |
|             Opcode = ISD::FROUND; break;
 | |
|           case LibFunc::trunc:
 | |
|           case LibFunc::truncf:
 | |
|           case LibFunc::truncl:
 | |
|             Opcode = ISD::FTRUNC; break;
 | |
|           }
 | |
| 
 | |
|           MVT VTy =
 | |
|             TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true);
 | |
|           if (VTy == MVT::Other)
 | |
|             return true;
 | |
|           
 | |
|           if (TLI->isOperationLegalOrCustom(Opcode, VTy))
 | |
|             continue;
 | |
|           else if (VTy.isVector() &&
 | |
|                    TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
 | |
|             continue;
 | |
| 
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     } else if (isa<BinaryOperator>(J) &&
 | |
|                J->getType()->getScalarType()->isPPC_FP128Ty()) {
 | |
|       // Most operations on ppc_f128 values become calls.
 | |
|       return true;
 | |
|     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
 | |
|                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
 | |
|       CastInst *CI = cast<CastInst>(J);
 | |
|       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
 | |
|           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
 | |
|           (TT.isArch32Bit() &&
 | |
|            (CI->getSrcTy()->getScalarType()->isIntegerTy(64) ||
 | |
|             CI->getDestTy()->getScalarType()->isIntegerTy(64))
 | |
|           ))
 | |
|         return true;
 | |
|     } else if (TT.isArch32Bit() &&
 | |
|                J->getType()->getScalarType()->isIntegerTy(64) &&
 | |
|                (J->getOpcode() == Instruction::UDiv ||
 | |
|                 J->getOpcode() == Instruction::SDiv ||
 | |
|                 J->getOpcode() == Instruction::URem ||
 | |
|                 J->getOpcode() == Instruction::SRem)) {
 | |
|       return true;
 | |
|     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
 | |
|       // On PowerPC, indirect jumps use the counter register.
 | |
|       return true;
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
 | |
|       if (!TM)
 | |
|         return true;
 | |
|       const TargetLowering *TLI = TM->getTargetLowering();
 | |
| 
 | |
|       if (TLI->supportJumpTables() &&
 | |
|           SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   Triple TT = Triple(L->getHeader()->getParent()->getParent()->
 | |
|                      getTargetTriple());
 | |
|   if (!TT.isArch32Bit() && !TT.isArch64Bit())
 | |
|     return MadeChange; // Unknown arch. type.
 | |
| 
 | |
|   // Process nested loops first.
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | |
|     MadeChange |= convertToCTRLoop(*I);
 | |
|   }
 | |
| 
 | |
|   // If a nested loop has been converted, then we can't convert this loop.
 | |
|   if (MadeChange)
 | |
|     return MadeChange;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Stop trying after reaching the limit (if any).
 | |
|   int Limit = CTRLoopLimit;
 | |
|   if (Limit >= 0) {
 | |
|     if (Counter >= CTRLoopLimit)
 | |
|       return false;
 | |
|     Counter++;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // We don't want to spill/restore the counter register, and so we don't
 | |
|   // want to use the counter register if the loop contains calls.
 | |
|   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
 | |
|        I != IE; ++I)
 | |
|     if (mightUseCTR(TT, *I))
 | |
|       return MadeChange;
 | |
| 
 | |
|   SmallVector<BasicBlock*, 4> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   BasicBlock *CountedExitBlock = 0;
 | |
|   const SCEV *ExitCount = 0;
 | |
|   BranchInst *CountedExitBranch = 0;
 | |
|   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
 | |
|        IE = ExitingBlocks.end(); I != IE; ++I) {
 | |
|     const SCEV *EC = SE->getExitCount(L, *I);
 | |
|     DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
 | |
|                     (*I)->getName() << ": " << *EC << "\n");
 | |
|     if (isa<SCEVCouldNotCompute>(EC))
 | |
|       continue;
 | |
|     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
 | |
|       if (ConstEC->getValue()->isZero())
 | |
|         continue;
 | |
|     } else if (!SE->isLoopInvariant(EC, L))
 | |
|       continue;
 | |
| 
 | |
|     if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
 | |
|       continue;
 | |
| 
 | |
|     // We now have a loop-invariant count of loop iterations (which is not the
 | |
|     // constant zero) for which we know that this loop will not exit via this
 | |
|     // exisiting block.
 | |
| 
 | |
|     // We need to make sure that this block will run on every loop iteration.
 | |
|     // For this to be true, we must dominate all blocks with backedges. Such
 | |
|     // blocks are in-loop predecessors to the header block.
 | |
|     bool NotAlways = false;
 | |
|     for (pred_iterator PI = pred_begin(L->getHeader()),
 | |
|          PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
 | |
|       if (!L->contains(*PI))
 | |
|         continue;
 | |
| 
 | |
|       if (!DT->dominates(*I, *PI)) {
 | |
|         NotAlways = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NotAlways)
 | |
|       continue;
 | |
| 
 | |
|     // Make sure this blocks ends with a conditional branch.
 | |
|     Instruction *TI = (*I)->getTerminator();
 | |
|     if (!TI)
 | |
|       continue;
 | |
| 
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (!BI->isConditional())
 | |
|         continue;
 | |
| 
 | |
|       CountedExitBranch = BI;
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     // Note that this block may not be the loop latch block, even if the loop
 | |
|     // has a latch block.
 | |
|     CountedExitBlock = *I;
 | |
|     ExitCount = EC;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!CountedExitBlock)
 | |
|     return MadeChange;
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // If we don't have a preheader, then insert one. If we already have a
 | |
|   // preheader, then we can use it (except if the preheader contains a use of
 | |
|   // the CTR register because some such uses might be reordered by the
 | |
|   // selection DAG after the mtctr instruction).
 | |
|   if (!Preheader || mightUseCTR(TT, Preheader))
 | |
|     Preheader = InsertPreheaderForLoop(L, this);
 | |
|   if (!Preheader)
 | |
|     return MadeChange;
 | |
| 
 | |
|   DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
 | |
| 
 | |
|   // Insert the count into the preheader and replace the condition used by the
 | |
|   // selected branch.
 | |
|   MadeChange = true;
 | |
| 
 | |
|   SCEVExpander SCEVE(*SE, "loopcnt");
 | |
|   LLVMContext &C = SE->getContext();
 | |
|   Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
 | |
|                                        Type::getInt32Ty(C);
 | |
|   if (!ExitCount->getType()->isPointerTy() &&
 | |
|       ExitCount->getType() != CountType)
 | |
|     ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
 | |
|   ExitCount = SE->getAddExpr(ExitCount,
 | |
|                              SE->getConstant(CountType, 1)); 
 | |
|   Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType,
 | |
|                                        Preheader->getTerminator());
 | |
| 
 | |
|   IRBuilder<> CountBuilder(Preheader->getTerminator());
 | |
|   Module *M = Preheader->getParent()->getParent();
 | |
|   Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
 | |
|                                                CountType);
 | |
|   CountBuilder.CreateCall(MTCTRFunc, ECValue);
 | |
| 
 | |
|   IRBuilder<> CondBuilder(CountedExitBranch);
 | |
|   Value *DecFunc =
 | |
|     Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
 | |
|   Value *NewCond = CondBuilder.CreateCall(DecFunc);
 | |
|   Value *OldCond = CountedExitBranch->getCondition();
 | |
|   CountedExitBranch->setCondition(NewCond);
 | |
| 
 | |
|   // The false branch must exit the loop.
 | |
|   if (!L->contains(CountedExitBranch->getSuccessor(0)))
 | |
|     CountedExitBranch->swapSuccessors();
 | |
| 
 | |
|   // The old condition may be dead now, and may have even created a dead PHI
 | |
|   // (the original induction variable).
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | |
|   DeleteDeadPHIs(CountedExitBlock);
 | |
| 
 | |
|   ++NumCTRLoops;
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool clobbersCTR(const MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg()) {
 | |
|       if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
 | |
|         return true;
 | |
|     } else if (MO.isRegMask()) {
 | |
|       if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool verifyCTRBranch(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator I) {
 | |
|   MachineBasicBlock::iterator BI = I;
 | |
|   SmallSet<MachineBasicBlock *, 16>   Visited;
 | |
|   SmallVector<MachineBasicBlock *, 8> Preds;
 | |
|   bool CheckPreds;
 | |
| 
 | |
|   if (I == MBB->begin()) {
 | |
|     Visited.insert(MBB);
 | |
|     goto queue_preds;
 | |
|   } else
 | |
|     --I;
 | |
| 
 | |
| check_block:
 | |
|   Visited.insert(MBB);
 | |
|   if (I == MBB->end())
 | |
|     goto queue_preds;
 | |
| 
 | |
|   CheckPreds = true;
 | |
|   for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
 | |
|     unsigned Opc = I->getOpcode();
 | |
|     if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
 | |
|       CheckPreds = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (I != BI && clobbersCTR(I)) {
 | |
|       DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
 | |
|                       MBB->getFullName() << ") instruction " << *I <<
 | |
|                       " clobbers CTR, invalidating " << "BB#" <<
 | |
|                       BI->getParent()->getNumber() << " (" <<
 | |
|                       BI->getParent()->getFullName() << ") instruction " <<
 | |
|                       *BI << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (I == IE)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (!CheckPreds && Preds.empty())
 | |
|     return true;
 | |
| 
 | |
|   if (CheckPreds) {
 | |
| queue_preds:
 | |
|     if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
 | |
|       DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
 | |
|                       BI->getParent()->getNumber() << " (" <<
 | |
|                       BI->getParent()->getFullName() << ") instruction " <<
 | |
|                       *BI << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|          PIE = MBB->pred_end(); PI != PIE; ++PI)
 | |
|       Preds.push_back(*PI);
 | |
|   }
 | |
| 
 | |
|   do {
 | |
|     MBB = Preds.pop_back_val();
 | |
|     if (!Visited.count(MBB)) {
 | |
|       I = MBB->getLastNonDebugInstr();
 | |
|       goto check_block;
 | |
|     }
 | |
|   } while (!Preds.empty());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
| 
 | |
|   // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
 | |
|   // any other instructions that might clobber the ctr register.
 | |
|   for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
 | |
|        I != IE; ++I) {
 | |
|     MachineBasicBlock *MBB = I;
 | |
|     if (!MDT->isReachableFromEntry(MBB))
 | |
|       continue;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
 | |
|       MIIE = MBB->end(); MII != MIIE; ++MII) {
 | |
|       unsigned Opc = MII->getOpcode();
 | |
|       if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
 | |
|           Opc == PPC::BDZ8  || Opc == PPC::BDZ)
 | |
|         if (!verifyCTRBranch(MBB, MII))
 | |
|           llvm_unreachable("Invalid PPC CTR loop!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 |