forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2684 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2684 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmLexer.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmParser.h"
 | 
						|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/MC/MCTargetAsmParser.h"
 | 
						|
#include "llvm/Support/SourceMgr.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
struct X86Operand;
 | 
						|
 | 
						|
static const char OpPrecedence[] = {
 | 
						|
  0, // IC_PLUS
 | 
						|
  0, // IC_MINUS
 | 
						|
  1, // IC_MULTIPLY
 | 
						|
  1, // IC_DIVIDE
 | 
						|
  2, // IC_RPAREN
 | 
						|
  3, // IC_LPAREN
 | 
						|
  0, // IC_IMM
 | 
						|
  0  // IC_REGISTER
 | 
						|
};
 | 
						|
 | 
						|
class X86AsmParser : public MCTargetAsmParser {
 | 
						|
  MCSubtargetInfo &STI;
 | 
						|
  MCAsmParser &Parser;
 | 
						|
  ParseInstructionInfo *InstInfo;
 | 
						|
private:
 | 
						|
  enum InfixCalculatorTok {
 | 
						|
    IC_PLUS = 0,
 | 
						|
    IC_MINUS,
 | 
						|
    IC_MULTIPLY,
 | 
						|
    IC_DIVIDE,
 | 
						|
    IC_RPAREN,
 | 
						|
    IC_LPAREN,
 | 
						|
    IC_IMM,
 | 
						|
    IC_REGISTER
 | 
						|
  };
 | 
						|
 | 
						|
  class InfixCalculator {
 | 
						|
    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
 | 
						|
    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
 | 
						|
    SmallVector<ICToken, 4> PostfixStack;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    int64_t popOperand() {
 | 
						|
      assert (!PostfixStack.empty() && "Poped an empty stack!");
 | 
						|
      ICToken Op = PostfixStack.pop_back_val();
 | 
						|
      assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
 | 
						|
              && "Expected and immediate or register!");
 | 
						|
      return Op.second;
 | 
						|
    }
 | 
						|
    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
 | 
						|
      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
 | 
						|
              "Unexpected operand!");
 | 
						|
      PostfixStack.push_back(std::make_pair(Op, Val));
 | 
						|
    }
 | 
						|
    
 | 
						|
    void popOperator() { InfixOperatorStack.pop_back(); }
 | 
						|
    void pushOperator(InfixCalculatorTok Op) {
 | 
						|
      // Push the new operator if the stack is empty.
 | 
						|
      if (InfixOperatorStack.empty()) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Push the new operator if it has a higher precedence than the operator
 | 
						|
      // on the top of the stack or the operator on the top of the stack is a
 | 
						|
      // left parentheses.
 | 
						|
      unsigned Idx = InfixOperatorStack.size() - 1;
 | 
						|
      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
 | 
						|
      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // The operator on the top of the stack has higher precedence than the
 | 
						|
      // new operator.
 | 
						|
      unsigned ParenCount = 0;
 | 
						|
      while (1) {
 | 
						|
        // Nothing to process.
 | 
						|
        if (InfixOperatorStack.empty())
 | 
						|
          break;
 | 
						|
        
 | 
						|
        Idx = InfixOperatorStack.size() - 1;
 | 
						|
        StackOp = InfixOperatorStack[Idx];
 | 
						|
        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
 | 
						|
          break;
 | 
						|
        
 | 
						|
        // If we have an even parentheses count and we see a left parentheses,
 | 
						|
        // then stop processing.
 | 
						|
        if (!ParenCount && StackOp == IC_LPAREN)
 | 
						|
          break;
 | 
						|
        
 | 
						|
        if (StackOp == IC_RPAREN) {
 | 
						|
          ++ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else if (StackOp == IC_LPAREN) {
 | 
						|
          --ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else {
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Push the new operator.
 | 
						|
      InfixOperatorStack.push_back(Op);
 | 
						|
    }
 | 
						|
    int64_t execute() {
 | 
						|
      // Push any remaining operators onto the postfix stack.
 | 
						|
      while (!InfixOperatorStack.empty()) {
 | 
						|
        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
 | 
						|
        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (PostfixStack.empty())
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      SmallVector<ICToken, 16> OperandStack;
 | 
						|
      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
 | 
						|
        ICToken Op = PostfixStack[i];
 | 
						|
        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
 | 
						|
          OperandStack.push_back(Op);
 | 
						|
        } else {
 | 
						|
          assert (OperandStack.size() > 1 && "Too few operands.");
 | 
						|
          int64_t Val;
 | 
						|
          ICToken Op2 = OperandStack.pop_back_val();
 | 
						|
          ICToken Op1 = OperandStack.pop_back_val();
 | 
						|
          switch (Op.first) {
 | 
						|
          default:
 | 
						|
            report_fatal_error("Unexpected operator!");
 | 
						|
            break;
 | 
						|
          case IC_PLUS:
 | 
						|
            Val = Op1.second + Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MINUS:
 | 
						|
            Val = Op1.second - Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MULTIPLY:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Multiply operation with an immediate and a register!");
 | 
						|
            Val = Op1.second * Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_DIVIDE:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Divide operation with an immediate and a register!");
 | 
						|
            assert (Op2.second != 0 && "Division by zero!");
 | 
						|
            Val = Op1.second / Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert (OperandStack.size() == 1 && "Expected a single result.");
 | 
						|
      return OperandStack.pop_back_val().second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  enum IntelExprState {
 | 
						|
    IES_PLUS,
 | 
						|
    IES_MINUS,
 | 
						|
    IES_MULTIPLY,
 | 
						|
    IES_DIVIDE,
 | 
						|
    IES_LBRAC,
 | 
						|
    IES_RBRAC,
 | 
						|
    IES_LPAREN,
 | 
						|
    IES_RPAREN,
 | 
						|
    IES_REGISTER,
 | 
						|
    IES_INTEGER,
 | 
						|
    IES_IDENTIFIER,
 | 
						|
    IES_ERROR
 | 
						|
  };
 | 
						|
 | 
						|
  class IntelExprStateMachine {
 | 
						|
    IntelExprState State, PrevState;
 | 
						|
    unsigned BaseReg, IndexReg, TmpReg, Scale;
 | 
						|
    int64_t Imm;
 | 
						|
    const MCExpr *Sym;
 | 
						|
    StringRef SymName;
 | 
						|
    bool StopOnLBrac, AddImmPrefix;
 | 
						|
    InfixCalculator IC;
 | 
						|
    InlineAsmIdentifierInfo Info;
 | 
						|
  public:
 | 
						|
    IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
 | 
						|
      State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
 | 
						|
      Scale(1), Imm(imm), Sym(0), StopOnLBrac(stoponlbrac),
 | 
						|
      AddImmPrefix(addimmprefix) { Info.clear(); }
 | 
						|
    
 | 
						|
    unsigned getBaseReg() { return BaseReg; }
 | 
						|
    unsigned getIndexReg() { return IndexReg; }
 | 
						|
    unsigned getScale() { return Scale; }
 | 
						|
    const MCExpr *getSym() { return Sym; }
 | 
						|
    StringRef getSymName() { return SymName; }
 | 
						|
    int64_t getImm() { return Imm + IC.execute(); }
 | 
						|
    bool isValidEndState() {
 | 
						|
      return State == IES_RBRAC || State == IES_INTEGER;
 | 
						|
    }
 | 
						|
    bool getStopOnLBrac() { return StopOnLBrac; }
 | 
						|
    bool getAddImmPrefix() { return AddImmPrefix; }
 | 
						|
    bool hadError() { return State == IES_ERROR; }
 | 
						|
 | 
						|
    InlineAsmIdentifierInfo &getIdentifierInfo() {
 | 
						|
      return Info;
 | 
						|
    }
 | 
						|
 | 
						|
    void onPlus() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onMinus() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_LBRAC:
 | 
						|
      case IES_RBRAC:
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_MINUS;
 | 
						|
        // Only push the minus operator if it is not a unary operator.
 | 
						|
        if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
 | 
						|
              CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
 | 
						|
              CurrState == IES_LPAREN || CurrState == IES_LBRAC))
 | 
						|
          IC.pushOperator(IC_MINUS);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRegister(unsigned Reg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_LPAREN:
 | 
						|
        State = IES_REGISTER;
 | 
						|
        TmpReg = Reg;
 | 
						|
        IC.pushOperand(IC_REGISTER);
 | 
						|
        break;
 | 
						|
      case IES_MULTIPLY:
 | 
						|
        // Index Register - Scale * Register
 | 
						|
        if (PrevState == IES_INTEGER) {
 | 
						|
          assert (!IndexReg && "IndexReg already set!");
 | 
						|
          State = IES_REGISTER;
 | 
						|
          IndexReg = Reg;
 | 
						|
          // Get the scale and replace the 'Scale * Register' with '0'.
 | 
						|
          Scale = IC.popOperand();
 | 
						|
          IC.pushOperand(IC_IMM);
 | 
						|
          IC.popOperator();
 | 
						|
        } else {
 | 
						|
          State = IES_ERROR;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
        State = IES_INTEGER;
 | 
						|
        Sym = SymRef;
 | 
						|
        SymName = SymRefName;
 | 
						|
        IC.pushOperand(IC_IMM);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onInteger(int64_t TmpInt) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_LPAREN:
 | 
						|
        State = IES_INTEGER;
 | 
						|
        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | 
						|
          // Index Register - Register * Scale
 | 
						|
          assert (!IndexReg && "IndexReg already set!");
 | 
						|
          IndexReg = TmpReg;
 | 
						|
          Scale = TmpInt;
 | 
						|
          // Get the scale and replace the 'Register * Scale' with '0'.
 | 
						|
          IC.popOperator();
 | 
						|
        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | 
						|
                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | 
						|
                    PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
 | 
						|
                   CurrState == IES_MINUS) {
 | 
						|
          // Unary minus.  No need to pop the minus operand because it was never
 | 
						|
          // pushed.
 | 
						|
          IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
 | 
						|
        } else {
 | 
						|
          IC.pushOperand(IC_IMM, TmpInt);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onStar() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_MULTIPLY;
 | 
						|
        IC.pushOperator(IC_MULTIPLY);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onDivide() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_DIVIDE;
 | 
						|
        IC.pushOperator(IC_DIVIDE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onLBrac() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_RBRAC:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onRBrac() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_RBRAC;
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // a scale of 1.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onLParen() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_LPAREN:
 | 
						|
        // FIXME: We don't handle this type of unary minus, yet.
 | 
						|
        if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | 
						|
            PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | 
						|
            PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
 | 
						|
            CurrState == IES_MINUS) {
 | 
						|
          State = IES_ERROR;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        State = IES_LPAREN;
 | 
						|
        IC.pushOperator(IC_LPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRParen() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_RPAREN;
 | 
						|
        IC.pushOperator(IC_RPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  MCAsmParser &getParser() const { return Parser; }
 | 
						|
 | 
						|
  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
 | 
						|
 | 
						|
  bool Error(SMLoc L, const Twine &Msg,
 | 
						|
             ArrayRef<SMRange> Ranges = None,
 | 
						|
             bool MatchingInlineAsm = false) {
 | 
						|
    if (MatchingInlineAsm) return true;
 | 
						|
    return Parser.Error(L, Msg, Ranges);
 | 
						|
  }
 | 
						|
 | 
						|
  X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
 | 
						|
    Error(Loc, Msg);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  X86Operand *ParseOperand();
 | 
						|
  X86Operand *ParseATTOperand();
 | 
						|
  X86Operand *ParseIntelOperand();
 | 
						|
  X86Operand *ParseIntelOffsetOfOperator();
 | 
						|
  X86Operand *ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
 | 
						|
  X86Operand *ParseIntelOperator(unsigned OpKind);
 | 
						|
  X86Operand *ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
 | 
						|
  X86Operand *ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc,
 | 
						|
                                   unsigned Size);
 | 
						|
  X86Operand *ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
 | 
						|
  X86Operand *ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
 | 
						|
                                       int64_t ImmDisp, unsigned Size);
 | 
						|
  X86Operand *ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
 | 
						|
                                   InlineAsmIdentifierInfo &Info,
 | 
						|
                                   bool IsUnevaluatedOperand, SMLoc &End);
 | 
						|
 | 
						|
  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
 | 
						|
 | 
						|
  X86Operand *CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
 | 
						|
                                    unsigned BaseReg, unsigned IndexReg,
 | 
						|
                                    unsigned Scale, SMLoc Start, SMLoc End,
 | 
						|
                                    unsigned Size, StringRef Identifier,
 | 
						|
                                    InlineAsmIdentifierInfo &Info);
 | 
						|
 | 
						|
  bool ParseDirectiveWord(unsigned Size, SMLoc L);
 | 
						|
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | 
						|
 | 
						|
  bool processInstruction(MCInst &Inst,
 | 
						|
                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
 | 
						|
 | 
						|
  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
 | 
						|
                               MCStreamer &Out, unsigned &ErrorInfo,
 | 
						|
                               bool MatchingInlineAsm);
 | 
						|
 | 
						|
  /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
 | 
						|
  /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode.
 | 
						|
  bool isSrcOp(X86Operand &Op);
 | 
						|
 | 
						|
  /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi)
 | 
						|
  /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
 | 
						|
  bool isDstOp(X86Operand &Op);
 | 
						|
 | 
						|
  bool is64BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
 | 
						|
  }
 | 
						|
  void SwitchMode() {
 | 
						|
    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
 | 
						|
    setAvailableFeatures(FB);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isParsingIntelSyntax() {
 | 
						|
    return getParser().getAssemblerDialect();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @name Auto-generated Matcher Functions
 | 
						|
  /// {
 | 
						|
 | 
						|
#define GET_ASSEMBLER_HEADER
 | 
						|
#include "X86GenAsmMatcher.inc"
 | 
						|
 | 
						|
  /// }
 | 
						|
 | 
						|
public:
 | 
						|
  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
 | 
						|
               const MCInstrInfo &MII)
 | 
						|
      : MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) {
 | 
						|
 | 
						|
    // Initialize the set of available features.
 | 
						|
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
 | 
						|
  }
 | 
						|
  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
 | 
						|
 | 
						|
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | 
						|
                                SMLoc NameLoc,
 | 
						|
                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
 | 
						|
 | 
						|
  virtual bool ParseDirective(AsmToken DirectiveID);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// @name Auto-generated Match Functions
 | 
						|
/// {
 | 
						|
 | 
						|
static unsigned MatchRegisterName(StringRef Name);
 | 
						|
 | 
						|
/// }
 | 
						|
 | 
						|
static bool isImmSExti16i8Value(uint64_t Value) {
 | 
						|
  return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
          (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
 | 
						|
          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
}
 | 
						|
 | 
						|
static bool isImmSExti32i8Value(uint64_t Value) {
 | 
						|
  return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
          (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
 | 
						|
          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
}
 | 
						|
 | 
						|
static bool isImmZExtu32u8Value(uint64_t Value) {
 | 
						|
    return (Value <= 0x00000000000000FFULL);
 | 
						|
}
 | 
						|
 | 
						|
static bool isImmSExti64i8Value(uint64_t Value) {
 | 
						|
  return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
}
 | 
						|
 | 
						|
static bool isImmSExti64i32Value(uint64_t Value) {
 | 
						|
  return ((                                  Value <= 0x000000007FFFFFFFULL)||
 | 
						|
          (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
}
 | 
						|
namespace {
 | 
						|
 | 
						|
/// X86Operand - Instances of this class represent a parsed X86 machine
 | 
						|
/// instruction.
 | 
						|
struct X86Operand : public MCParsedAsmOperand {
 | 
						|
  enum KindTy {
 | 
						|
    Token,
 | 
						|
    Register,
 | 
						|
    Immediate,
 | 
						|
    Memory
 | 
						|
  } Kind;
 | 
						|
 | 
						|
  SMLoc StartLoc, EndLoc;
 | 
						|
  SMLoc OffsetOfLoc;
 | 
						|
  StringRef SymName;
 | 
						|
  void *OpDecl;
 | 
						|
  bool AddressOf;
 | 
						|
 | 
						|
  struct TokOp {
 | 
						|
    const char *Data;
 | 
						|
    unsigned Length;
 | 
						|
  };
 | 
						|
 | 
						|
  struct RegOp {
 | 
						|
    unsigned RegNo;
 | 
						|
  };
 | 
						|
 | 
						|
  struct ImmOp {
 | 
						|
    const MCExpr *Val;
 | 
						|
  };
 | 
						|
 | 
						|
  struct MemOp {
 | 
						|
    unsigned SegReg;
 | 
						|
    const MCExpr *Disp;
 | 
						|
    unsigned BaseReg;
 | 
						|
    unsigned IndexReg;
 | 
						|
    unsigned Scale;
 | 
						|
    unsigned Size;
 | 
						|
  };
 | 
						|
 | 
						|
  union {
 | 
						|
    struct TokOp Tok;
 | 
						|
    struct RegOp Reg;
 | 
						|
    struct ImmOp Imm;
 | 
						|
    struct MemOp Mem;
 | 
						|
  };
 | 
						|
 | 
						|
  X86Operand(KindTy K, SMLoc Start, SMLoc End)
 | 
						|
    : Kind(K), StartLoc(Start), EndLoc(End) {}
 | 
						|
 | 
						|
  StringRef getSymName() { return SymName; }
 | 
						|
  void *getOpDecl() { return OpDecl; }
 | 
						|
 | 
						|
  /// getStartLoc - Get the location of the first token of this operand.
 | 
						|
  SMLoc getStartLoc() const { return StartLoc; }
 | 
						|
  /// getEndLoc - Get the location of the last token of this operand.
 | 
						|
  SMLoc getEndLoc() const { return EndLoc; }
 | 
						|
  /// getLocRange - Get the range between the first and last token of this
 | 
						|
  /// operand.
 | 
						|
  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
 | 
						|
  /// getOffsetOfLoc - Get the location of the offset operator.
 | 
						|
  SMLoc getOffsetOfLoc() const { return OffsetOfLoc; }
 | 
						|
 | 
						|
  virtual void print(raw_ostream &OS) const {}
 | 
						|
 | 
						|
  StringRef getToken() const {
 | 
						|
    assert(Kind == Token && "Invalid access!");
 | 
						|
    return StringRef(Tok.Data, Tok.Length);
 | 
						|
  }
 | 
						|
  void setTokenValue(StringRef Value) {
 | 
						|
    assert(Kind == Token && "Invalid access!");
 | 
						|
    Tok.Data = Value.data();
 | 
						|
    Tok.Length = Value.size();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getReg() const {
 | 
						|
    assert(Kind == Register && "Invalid access!");
 | 
						|
    return Reg.RegNo;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCExpr *getImm() const {
 | 
						|
    assert(Kind == Immediate && "Invalid access!");
 | 
						|
    return Imm.Val;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCExpr *getMemDisp() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.Disp;
 | 
						|
  }
 | 
						|
  unsigned getMemSegReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.SegReg;
 | 
						|
  }
 | 
						|
  unsigned getMemBaseReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.BaseReg;
 | 
						|
  }
 | 
						|
  unsigned getMemIndexReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.IndexReg;
 | 
						|
  }
 | 
						|
  unsigned getMemScale() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.Scale;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isToken() const {return Kind == Token; }
 | 
						|
 | 
						|
  bool isImm() const { return Kind == Immediate; }
 | 
						|
 | 
						|
  bool isImmSExti16i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    return isImmSExti16i8Value(CE->getValue());
 | 
						|
  }
 | 
						|
  bool isImmSExti32i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    return isImmSExti32i8Value(CE->getValue());
 | 
						|
  }
 | 
						|
  bool isImmZExtu32u8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    return isImmZExtu32u8Value(CE->getValue());
 | 
						|
  }
 | 
						|
  bool isImmSExti64i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    return isImmSExti64i8Value(CE->getValue());
 | 
						|
  }
 | 
						|
  bool isImmSExti64i32() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    return isImmSExti64i32Value(CE->getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isOffsetOf() const {
 | 
						|
    return OffsetOfLoc.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  bool needAddressOf() const {
 | 
						|
    return AddressOf;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMem() const { return Kind == Memory; }
 | 
						|
  bool isMem8() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 8);
 | 
						|
  }
 | 
						|
  bool isMem16() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 16);
 | 
						|
  }
 | 
						|
  bool isMem32() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 32);
 | 
						|
  }
 | 
						|
  bool isMem64() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 64);
 | 
						|
  }
 | 
						|
  bool isMem80() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 80);
 | 
						|
  }
 | 
						|
  bool isMem128() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 128);
 | 
						|
  }
 | 
						|
  bool isMem256() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 256);
 | 
						|
  }
 | 
						|
  bool isMem512() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 512);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMemVX32() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
 | 
						|
      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
 | 
						|
  }
 | 
						|
  bool isMemVY32() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
 | 
						|
      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
 | 
						|
  }
 | 
						|
  bool isMemVX64() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
 | 
						|
      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
 | 
						|
  }
 | 
						|
  bool isMemVY64() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
 | 
						|
      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
 | 
						|
  }
 | 
						|
  bool isMemVZ32() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
 | 
						|
      getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
 | 
						|
  }
 | 
						|
  bool isMemVZ64() const {
 | 
						|
    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
 | 
						|
      getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isAbsMem() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMemOffs8() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 8);
 | 
						|
  }
 | 
						|
  bool isMemOffs16() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 16);
 | 
						|
  }
 | 
						|
  bool isMemOffs32() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 32);
 | 
						|
  }
 | 
						|
  bool isMemOffs64() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 64);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isReg() const { return Kind == Register; }
 | 
						|
 | 
						|
  bool isGR32orGR64() const {
 | 
						|
    return Kind == Register &&
 | 
						|
      (X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
 | 
						|
      X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
 | 
						|
  }
 | 
						|
 | 
						|
  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
 | 
						|
    // Add as immediates when possible.
 | 
						|
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
 | 
						|
      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
 | 
						|
    else
 | 
						|
      Inst.addOperand(MCOperand::CreateExpr(Expr));
 | 
						|
  }
 | 
						|
 | 
						|
  void addRegOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert(N == 1 && "Invalid number of operands!");
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getReg()));
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getGR32FromGR64(unsigned RegNo) {
 | 
						|
    switch (RegNo) {
 | 
						|
    default: llvm_unreachable("Unexpected register");
 | 
						|
    case X86::RAX: return X86::EAX;
 | 
						|
    case X86::RCX: return X86::ECX;
 | 
						|
    case X86::RDX: return X86::EDX;
 | 
						|
    case X86::RBX: return X86::EBX;
 | 
						|
    case X86::RBP: return X86::EBP;
 | 
						|
    case X86::RSP: return X86::ESP;
 | 
						|
    case X86::RSI: return X86::ESI;
 | 
						|
    case X86::RDI: return X86::EDI;
 | 
						|
    case X86::R8: return X86::R8D;
 | 
						|
    case X86::R9: return X86::R9D;
 | 
						|
    case X86::R10: return X86::R10D;
 | 
						|
    case X86::R11: return X86::R11D;
 | 
						|
    case X86::R12: return X86::R12D;
 | 
						|
    case X86::R13: return X86::R13D;
 | 
						|
    case X86::R14: return X86::R14D;
 | 
						|
    case X86::R15: return X86::R15D;
 | 
						|
    case X86::RIP: return X86::EIP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert(N == 1 && "Invalid number of operands!");
 | 
						|
    unsigned RegNo = getReg();
 | 
						|
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
 | 
						|
      RegNo = getGR32FromGR64(RegNo);
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(RegNo));
 | 
						|
  }
 | 
						|
 | 
						|
  void addImmOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert(N == 1 && "Invalid number of operands!");
 | 
						|
    addExpr(Inst, getImm());
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert((N == 5) && "Invalid number of operands!");
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
 | 
						|
    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
 | 
						|
    addExpr(Inst, getMemDisp());
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
 | 
						|
  }
 | 
						|
 | 
						|
  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert((N == 1) && "Invalid number of operands!");
 | 
						|
    // Add as immediates when possible.
 | 
						|
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
 | 
						|
      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
 | 
						|
    else
 | 
						|
      Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemOffsOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert((N == 1) && "Invalid number of operands!");
 | 
						|
    // Add as immediates when possible.
 | 
						|
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
 | 
						|
      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
 | 
						|
    else
 | 
						|
      Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
 | 
						|
    SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
 | 
						|
    X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
 | 
						|
    Res->Tok.Data = Str.data();
 | 
						|
    Res->Tok.Length = Str.size();
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
 | 
						|
                               bool AddressOf = false,
 | 
						|
                               SMLoc OffsetOfLoc = SMLoc(),
 | 
						|
                               StringRef SymName = StringRef(),
 | 
						|
                               void *OpDecl = 0) {
 | 
						|
    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
 | 
						|
    Res->Reg.RegNo = RegNo;
 | 
						|
    Res->AddressOf = AddressOf;
 | 
						|
    Res->OffsetOfLoc = OffsetOfLoc;
 | 
						|
    Res->SymName = SymName;
 | 
						|
    Res->OpDecl = OpDecl;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
 | 
						|
    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
 | 
						|
    Res->Imm.Val = Val;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create an absolute memory operand.
 | 
						|
  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
 | 
						|
                               unsigned Size = 0, StringRef SymName = StringRef(),
 | 
						|
                               void *OpDecl = 0) {
 | 
						|
    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
 | 
						|
    Res->Mem.SegReg   = 0;
 | 
						|
    Res->Mem.Disp     = Disp;
 | 
						|
    Res->Mem.BaseReg  = 0;
 | 
						|
    Res->Mem.IndexReg = 0;
 | 
						|
    Res->Mem.Scale    = 1;
 | 
						|
    Res->Mem.Size     = Size;
 | 
						|
    Res->SymName      = SymName;
 | 
						|
    Res->OpDecl       = OpDecl;
 | 
						|
    Res->AddressOf    = false;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create a generalized memory operand.
 | 
						|
  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
 | 
						|
                               unsigned BaseReg, unsigned IndexReg,
 | 
						|
                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
 | 
						|
                               unsigned Size = 0,
 | 
						|
                               StringRef SymName = StringRef(),
 | 
						|
                               void *OpDecl = 0) {
 | 
						|
    // We should never just have a displacement, that should be parsed as an
 | 
						|
    // absolute memory operand.
 | 
						|
    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
 | 
						|
 | 
						|
    // The scale should always be one of {1,2,4,8}.
 | 
						|
    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
 | 
						|
           "Invalid scale!");
 | 
						|
    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
 | 
						|
    Res->Mem.SegReg   = SegReg;
 | 
						|
    Res->Mem.Disp     = Disp;
 | 
						|
    Res->Mem.BaseReg  = BaseReg;
 | 
						|
    Res->Mem.IndexReg = IndexReg;
 | 
						|
    Res->Mem.Scale    = Scale;
 | 
						|
    Res->Mem.Size     = Size;
 | 
						|
    Res->SymName      = SymName;
 | 
						|
    Res->OpDecl       = OpDecl;
 | 
						|
    Res->AddressOf    = false;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
bool X86AsmParser::isSrcOp(X86Operand &Op) {
 | 
						|
  unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
 | 
						|
 | 
						|
  return (Op.isMem() &&
 | 
						|
    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
 | 
						|
    isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::isDstOp(X86Operand &Op) {
 | 
						|
  unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
 | 
						|
 | 
						|
  return Op.isMem() &&
 | 
						|
    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) &&
 | 
						|
    isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseRegister(unsigned &RegNo,
 | 
						|
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
 | 
						|
  RegNo = 0;
 | 
						|
  const AsmToken &PercentTok = Parser.getTok();
 | 
						|
  StartLoc = PercentTok.getLoc();
 | 
						|
 | 
						|
  // If we encounter a %, ignore it. This code handles registers with and
 | 
						|
  // without the prefix, unprefixed registers can occur in cfi directives.
 | 
						|
  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
 | 
						|
    Parser.Lex(); // Eat percent token.
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  EndLoc = Tok.getEndLoc();
 | 
						|
 | 
						|
  if (Tok.isNot(AsmToken::Identifier)) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  RegNo = MatchRegisterName(Tok.getString());
 | 
						|
 | 
						|
  // If the match failed, try the register name as lowercase.
 | 
						|
  if (RegNo == 0)
 | 
						|
    RegNo = MatchRegisterName(Tok.getString().lower());
 | 
						|
 | 
						|
  if (!is64BitMode()) {
 | 
						|
    // FIXME: This should be done using Requires<In32BitMode> and
 | 
						|
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | 
						|
    // checked.
 | 
						|
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | 
						|
    // REX prefix.
 | 
						|
    if (RegNo == X86::RIZ ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | 
						|
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | 
						|
        X86II::isX86_64ExtendedReg(RegNo))
 | 
						|
      return Error(StartLoc, "register %"
 | 
						|
                   + Tok.getString() + " is only available in 64-bit mode",
 | 
						|
                   SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | 
						|
  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
 | 
						|
    RegNo = X86::ST0;
 | 
						|
    Parser.Lex(); // Eat 'st'
 | 
						|
 | 
						|
    // Check to see if we have '(4)' after %st.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen))
 | 
						|
      return false;
 | 
						|
    // Lex the paren.
 | 
						|
    getParser().Lex();
 | 
						|
 | 
						|
    const AsmToken &IntTok = Parser.getTok();
 | 
						|
    if (IntTok.isNot(AsmToken::Integer))
 | 
						|
      return Error(IntTok.getLoc(), "expected stack index");
 | 
						|
    switch (IntTok.getIntVal()) {
 | 
						|
    case 0: RegNo = X86::ST0; break;
 | 
						|
    case 1: RegNo = X86::ST1; break;
 | 
						|
    case 2: RegNo = X86::ST2; break;
 | 
						|
    case 3: RegNo = X86::ST3; break;
 | 
						|
    case 4: RegNo = X86::ST4; break;
 | 
						|
    case 5: RegNo = X86::ST5; break;
 | 
						|
    case 6: RegNo = X86::ST6; break;
 | 
						|
    case 7: RegNo = X86::ST7; break;
 | 
						|
    default: return Error(IntTok.getLoc(), "invalid stack index");
 | 
						|
    }
 | 
						|
 | 
						|
    if (getParser().Lex().isNot(AsmToken::RParen))
 | 
						|
      return Error(Parser.getTok().getLoc(), "expected ')'");
 | 
						|
 | 
						|
    EndLoc = Parser.getTok().getEndLoc();
 | 
						|
    Parser.Lex(); // Eat ')'
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  EndLoc = Parser.getTok().getEndLoc();
 | 
						|
 | 
						|
  // If this is "db[0-7]", match it as an alias
 | 
						|
  // for dr[0-7].
 | 
						|
  if (RegNo == 0 && Tok.getString().size() == 3 &&
 | 
						|
      Tok.getString().startswith("db")) {
 | 
						|
    switch (Tok.getString()[2]) {
 | 
						|
    case '0': RegNo = X86::DR0; break;
 | 
						|
    case '1': RegNo = X86::DR1; break;
 | 
						|
    case '2': RegNo = X86::DR2; break;
 | 
						|
    case '3': RegNo = X86::DR3; break;
 | 
						|
    case '4': RegNo = X86::DR4; break;
 | 
						|
    case '5': RegNo = X86::DR5; break;
 | 
						|
    case '6': RegNo = X86::DR6; break;
 | 
						|
    case '7': RegNo = X86::DR7; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RegNo != 0) {
 | 
						|
      EndLoc = Parser.getTok().getEndLoc();
 | 
						|
      Parser.Lex(); // Eat it.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegNo == 0) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  Parser.Lex(); // Eat identifier token.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *X86AsmParser::ParseOperand() {
 | 
						|
  if (isParsingIntelSyntax())
 | 
						|
    return ParseIntelOperand();
 | 
						|
  return ParseATTOperand();
 | 
						|
}
 | 
						|
 | 
						|
/// getIntelMemOperandSize - Return intel memory operand size.
 | 
						|
static unsigned getIntelMemOperandSize(StringRef OpStr) {
 | 
						|
  unsigned Size = StringSwitch<unsigned>(OpStr)
 | 
						|
    .Cases("BYTE", "byte", 8)
 | 
						|
    .Cases("WORD", "word", 16)
 | 
						|
    .Cases("DWORD", "dword", 32)
 | 
						|
    .Cases("QWORD", "qword", 64)
 | 
						|
    .Cases("XWORD", "xword", 80)
 | 
						|
    .Cases("XMMWORD", "xmmword", 128)
 | 
						|
    .Cases("YMMWORD", "ymmword", 256)
 | 
						|
    .Default(0);
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *
 | 
						|
X86AsmParser::CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
 | 
						|
                                    unsigned BaseReg, unsigned IndexReg,
 | 
						|
                                    unsigned Scale, SMLoc Start, SMLoc End,
 | 
						|
                                    unsigned Size, StringRef Identifier,
 | 
						|
                                    InlineAsmIdentifierInfo &Info){
 | 
						|
  if (isa<MCSymbolRefExpr>(Disp)) {
 | 
						|
    // If this is not a VarDecl then assume it is a FuncDecl or some other label
 | 
						|
    // reference.  We need an 'r' constraint here, so we need to create register
 | 
						|
    // operand to ensure proper matching.  Just pick a GPR based on the size of
 | 
						|
    // a pointer.
 | 
						|
    if (!Info.IsVarDecl) {
 | 
						|
      unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
 | 
						|
                                   SMLoc(), Identifier, Info.OpDecl);
 | 
						|
    }
 | 
						|
    if (!Size) {
 | 
						|
      Size = Info.Type * 8; // Size is in terms of bits in this context.
 | 
						|
      if (Size)
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
 | 
						|
                                                    /*Len=*/0, Size));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When parsing inline assembly we set the base register to a non-zero value
 | 
						|
  // if we don't know the actual value at this time.  This is necessary to
 | 
						|
  // get the matching correct in some cases.
 | 
						|
  BaseReg = BaseReg ? BaseReg : 1;
 | 
						|
  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                               End, Size, Identifier, Info.OpDecl);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
 | 
						|
                           StringRef SymName, int64_t ImmDisp,
 | 
						|
                           int64_t FinalImmDisp, SMLoc &BracLoc,
 | 
						|
                           SMLoc &StartInBrac, SMLoc &End) {
 | 
						|
  // Remove the '[' and ']' from the IR string.
 | 
						|
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
 | 
						|
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
 | 
						|
 | 
						|
  // If ImmDisp is non-zero, then we parsed a displacement before the
 | 
						|
  // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
 | 
						|
  // If ImmDisp doesn't match the displacement computed by the state machine
 | 
						|
  // then we have an additional displacement in the bracketed expression.
 | 
						|
  if (ImmDisp != FinalImmDisp) {
 | 
						|
    if (ImmDisp) {
 | 
						|
      // We have an immediate displacement before the bracketed expression.
 | 
						|
      // Adjust this to match the final immediate displacement.
 | 
						|
      bool Found = false;
 | 
						|
      for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
 | 
						|
             E = AsmRewrites->end(); I != E; ++I) {
 | 
						|
        if ((*I).Loc.getPointer() > BracLoc.getPointer())
 | 
						|
          continue;
 | 
						|
        if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
 | 
						|
          assert (!Found && "ImmDisp already rewritten.");
 | 
						|
          (*I).Kind = AOK_Imm;
 | 
						|
          (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
 | 
						|
          (*I).Val = FinalImmDisp;
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert (Found && "Unable to rewrite ImmDisp.");
 | 
						|
      (void)Found;
 | 
						|
    } else {
 | 
						|
      // We have a symbolic and an immediate displacement, but no displacement
 | 
						|
      // before the bracketed expression.  Put the immediate displacement
 | 
						|
      // before the bracketed expression.
 | 
						|
      AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Remove all the ImmPrefix rewrites within the brackets.
 | 
						|
  for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
 | 
						|
         E = AsmRewrites->end(); I != E; ++I) {
 | 
						|
    if ((*I).Loc.getPointer() < StartInBrac.getPointer())
 | 
						|
      continue;
 | 
						|
    if ((*I).Kind == AOK_ImmPrefix)
 | 
						|
      (*I).Kind = AOK_Delete;
 | 
						|
  }
 | 
						|
  const char *SymLocPtr = SymName.data();
 | 
						|
  // Skip everything before the symbol.        
 | 
						|
  if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
 | 
						|
    assert(Len > 0 && "Expected a non-negative length.");
 | 
						|
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
 | 
						|
  }
 | 
						|
  // Skip everything after the symbol.
 | 
						|
  if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
 | 
						|
    SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
 | 
						|
    assert(Len > 0 && "Expected a non-negative length.");
 | 
						|
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *
 | 
						|
X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
 | 
						|
  bool Done = false;
 | 
						|
  while (!Done) {
 | 
						|
    bool UpdateLocLex = true;
 | 
						|
 | 
						|
    // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
 | 
						|
    // identifier.  Don't try an parse it as a register.
 | 
						|
    if (Tok.getString().startswith("."))
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // If we're parsing an immediate expression, we don't expect a '['.
 | 
						|
    if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
 | 
						|
      break;
 | 
						|
 | 
						|
    switch (getLexer().getKind()) {
 | 
						|
    default: {
 | 
						|
      if (SM.isValidEndState()) {
 | 
						|
        Done = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
 | 
						|
    }
 | 
						|
    case AsmToken::EndOfStatement: {
 | 
						|
      Done = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case AsmToken::Identifier: {
 | 
						|
      // This could be a register or a symbolic displacement.
 | 
						|
      unsigned TmpReg;
 | 
						|
      const MCExpr *Val;
 | 
						|
      SMLoc IdentLoc = Tok.getLoc();
 | 
						|
      StringRef Identifier = Tok.getString();
 | 
						|
      if(!ParseRegister(TmpReg, IdentLoc, End)) {
 | 
						|
        SM.onRegister(TmpReg);
 | 
						|
        UpdateLocLex = false;
 | 
						|
        break;
 | 
						|
      } else {
 | 
						|
        if (!isParsingInlineAsm()) {
 | 
						|
          if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
            return ErrorOperand(Tok.getLoc(), "Unexpected identifier!");
 | 
						|
        } else {
 | 
						|
          InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | 
						|
          if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                                     /*Unevaluated*/ false, End))
 | 
						|
            return Err;
 | 
						|
        }
 | 
						|
        SM.onIdentifierExpr(Val, Identifier);
 | 
						|
        UpdateLocLex = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unexpected identifier!");
 | 
						|
    }
 | 
						|
    case AsmToken::Integer:
 | 
						|
      if (isParsingInlineAsm() && SM.getAddImmPrefix())
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
 | 
						|
                                                    Tok.getLoc()));
 | 
						|
      SM.onInteger(Tok.getIntVal());
 | 
						|
      break;
 | 
						|
    case AsmToken::Plus:    SM.onPlus(); break;
 | 
						|
    case AsmToken::Minus:   SM.onMinus(); break;
 | 
						|
    case AsmToken::Star:    SM.onStar(); break;
 | 
						|
    case AsmToken::Slash:   SM.onDivide(); break;
 | 
						|
    case AsmToken::LBrac:   SM.onLBrac(); break;
 | 
						|
    case AsmToken::RBrac:   SM.onRBrac(); break;
 | 
						|
    case AsmToken::LParen:  SM.onLParen(); break;
 | 
						|
    case AsmToken::RParen:  SM.onRParen(); break;
 | 
						|
    }
 | 
						|
    if (SM.hadError())
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
 | 
						|
 | 
						|
    if (!Done && UpdateLocLex) {
 | 
						|
      End = Tok.getLoc();
 | 
						|
      Parser.Lex(); // Consume the token.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
 | 
						|
                                                   int64_t ImmDisp,
 | 
						|
                                                   unsigned Size) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
 | 
						|
  if (getLexer().isNot(AsmToken::LBrac))
 | 
						|
    return ErrorOperand(BracLoc, "Expected '[' token!");
 | 
						|
  Parser.Lex(); // Eat '['
 | 
						|
 | 
						|
  SMLoc StartInBrac = Tok.getLoc();
 | 
						|
  // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
 | 
						|
  // may have already parsed an immediate displacement before the bracketed
 | 
						|
  // expression.
 | 
						|
  IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
 | 
						|
  if (X86Operand *Err = ParseIntelExpression(SM, End))
 | 
						|
    return Err;
 | 
						|
 | 
						|
  const MCExpr *Disp;
 | 
						|
  if (const MCExpr *Sym = SM.getSym()) {
 | 
						|
    // A symbolic displacement.
 | 
						|
    Disp = Sym;
 | 
						|
    if (isParsingInlineAsm())
 | 
						|
      RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
 | 
						|
                                 ImmDisp, SM.getImm(), BracLoc, StartInBrac,
 | 
						|
                                 End);
 | 
						|
  } else {
 | 
						|
    // An immediate displacement only.   
 | 
						|
    Disp = MCConstantExpr::Create(SM.getImm(), getContext());
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse the dot operator (e.g., [ebx].foo.bar).
 | 
						|
  if (Tok.getString().startswith(".")) {
 | 
						|
    const MCExpr *NewDisp;
 | 
						|
    if (X86Operand *Err = ParseIntelDotOperator(Disp, NewDisp))
 | 
						|
      return Err;
 | 
						|
    
 | 
						|
    End = Tok.getEndLoc();
 | 
						|
    Parser.Lex();  // Eat the field.
 | 
						|
    Disp = NewDisp;
 | 
						|
  }
 | 
						|
 | 
						|
  int BaseReg = SM.getBaseReg();
 | 
						|
  int IndexReg = SM.getIndexReg();
 | 
						|
  int Scale = SM.getScale();
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    // handle [-42]
 | 
						|
    if (!BaseReg && !IndexReg) {
 | 
						|
      if (!SegReg)
 | 
						|
        return X86Operand::CreateMem(Disp, Start, End, Size);
 | 
						|
      else
 | 
						|
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
 | 
						|
    }
 | 
						|
    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                                 End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | 
						|
  return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | 
						|
                               End, Size, SM.getSymName(), Info);
 | 
						|
}
 | 
						|
 | 
						|
// Inline assembly may use variable names with namespace alias qualifiers.
 | 
						|
X86Operand *X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
 | 
						|
                                               StringRef &Identifier,
 | 
						|
                                               InlineAsmIdentifierInfo &Info,
 | 
						|
                                               bool IsUnevaluatedOperand,
 | 
						|
                                               SMLoc &End) {
 | 
						|
  assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
 | 
						|
  Val = 0;
 | 
						|
 | 
						|
  StringRef LineBuf(Identifier.data());
 | 
						|
  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
 | 
						|
  // Advance the token stream until the end of the current token is
 | 
						|
  // after the end of what the frontend claimed.
 | 
						|
  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
 | 
						|
  while (true) {
 | 
						|
    End = Tok.getEndLoc();
 | 
						|
    getLexer().Lex();
 | 
						|
 | 
						|
    assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
 | 
						|
    if (End.getPointer() == EndPtr) break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the symbol reference.
 | 
						|
  Identifier = LineBuf;
 | 
						|
  MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
 | 
						|
  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | 
						|
  Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Parse intel style segment override.
 | 
						|
X86Operand *X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg,
 | 
						|
                                                    SMLoc Start,
 | 
						|
                                                    unsigned Size) {
 | 
						|
  assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
 | 
						|
  const AsmToken &Tok = Parser.getTok(); // Eat colon.
 | 
						|
  if (Tok.isNot(AsmToken::Colon))
 | 
						|
    return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
 | 
						|
  Parser.Lex(); // Eat ':'
 | 
						|
 | 
						|
  int64_t ImmDisp = 0;
 | 
						|
  if (getLexer().is(AsmToken::Integer)) {
 | 
						|
    ImmDisp = Tok.getIntVal();
 | 
						|
    AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
 | 
						|
 | 
						|
    if (isParsingInlineAsm())
 | 
						|
      InstInfo->AsmRewrites->push_back(
 | 
						|
          AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::LBrac)) {
 | 
						|
      // An immediate following a 'segment register', 'colon' token sequence can
 | 
						|
      // be followed by a bracketed expression.  If it isn't we know we have our
 | 
						|
      // final segment override.
 | 
						|
      const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
 | 
						|
      return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
 | 
						|
                                   /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
 | 
						|
                                   Size);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::LBrac))
 | 
						|
    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  SMLoc End;
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
 | 
						|
 | 
						|
    return X86Operand::CreateMem(Val, Start, End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                             /*Unevaluated*/ false, End))
 | 
						|
    return Err;
 | 
						|
  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
 | 
						|
                               /*Scale=*/1, Start, End, Size, Identifier, Info);
 | 
						|
}
 | 
						|
 | 
						|
/// ParseIntelMemOperand - Parse intel style memory operand.
 | 
						|
X86Operand *X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp, SMLoc Start,
 | 
						|
                                               unsigned Size) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc End;
 | 
						|
 | 
						|
  // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
 | 
						|
  if (getLexer().is(AsmToken::LBrac))
 | 
						|
    return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  if (!isParsingInlineAsm()) {
 | 
						|
    if (getParser().parsePrimaryExpr(Val, End))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
 | 
						|
 | 
						|
    return X86Operand::CreateMem(Val, Start, End, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                             /*Unevaluated*/ false, End))
 | 
						|
    return Err;
 | 
						|
  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
 | 
						|
                               /*Scale=*/1, Start, End, Size, Identifier, Info);
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the '.' operator.
 | 
						|
X86Operand *X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
 | 
						|
                                                const MCExpr *&NewDisp) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  int64_t OrigDispVal, DotDispVal;
 | 
						|
 | 
						|
  // FIXME: Handle non-constant expressions.
 | 
						|
  if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
 | 
						|
    OrigDispVal = OrigDisp->getValue();
 | 
						|
  else
 | 
						|
    return ErrorOperand(Tok.getLoc(), "Non-constant offsets are not supported!");
 | 
						|
 | 
						|
  // Drop the '.'.
 | 
						|
  StringRef DotDispStr = Tok.getString().drop_front(1);
 | 
						|
 | 
						|
  // .Imm gets lexed as a real.
 | 
						|
  if (Tok.is(AsmToken::Real)) {
 | 
						|
    APInt DotDisp;
 | 
						|
    DotDispStr.getAsInteger(10, DotDisp);
 | 
						|
    DotDispVal = DotDisp.getZExtValue();
 | 
						|
  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | 
						|
    unsigned DotDisp;
 | 
						|
    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
 | 
						|
    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
 | 
						|
                                           DotDisp))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Unable to lookup field reference!");
 | 
						|
    DotDispVal = DotDisp;
 | 
						|
  } else
 | 
						|
    return ErrorOperand(Tok.getLoc(), "Unexpected token type!");
 | 
						|
 | 
						|
  if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | 
						|
    SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
 | 
						|
    unsigned Len = DotDispStr.size();
 | 
						|
    unsigned Val = OrigDispVal + DotDispVal;
 | 
						|
    InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
 | 
						|
                                                Val));
 | 
						|
  }
 | 
						|
 | 
						|
  NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the 'offset' operator.  This operator is used to specify the
 | 
						|
/// location rather then the content of a variable.
 | 
						|
X86Operand *X86AsmParser::ParseIntelOffsetOfOperator() {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc OffsetOfLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat offset.
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                             /*Unevaluated*/ false, End))
 | 
						|
    return Err;
 | 
						|
 | 
						|
  // Don't emit the offset operator.
 | 
						|
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
 | 
						|
 | 
						|
  // The offset operator will have an 'r' constraint, thus we need to create
 | 
						|
  // register operand to ensure proper matching.  Just pick a GPR based on
 | 
						|
  // the size of a pointer.
 | 
						|
  unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
 | 
						|
  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
 | 
						|
                               OffsetOfLoc, Identifier, Info.OpDecl);
 | 
						|
}
 | 
						|
 | 
						|
enum IntelOperatorKind {
 | 
						|
  IOK_LENGTH,
 | 
						|
  IOK_SIZE,
 | 
						|
  IOK_TYPE
 | 
						|
};
 | 
						|
 | 
						|
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
 | 
						|
/// returns the number of elements in an array.  It returns the value 1 for
 | 
						|
/// non-array variables.  The SIZE operator returns the size of a C or C++
 | 
						|
/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
 | 
						|
/// TYPE operator returns the size of a C or C++ type or variable. If the
 | 
						|
/// variable is an array, TYPE returns the size of a single element.
 | 
						|
X86Operand *X86AsmParser::ParseIntelOperator(unsigned OpKind) {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc TypeLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat operator.
 | 
						|
 | 
						|
  const MCExpr *Val = 0;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
 | 
						|
                                             /*Unevaluated*/ true, End))
 | 
						|
    return Err;
 | 
						|
 | 
						|
  unsigned CVal = 0;
 | 
						|
  switch(OpKind) {
 | 
						|
  default: llvm_unreachable("Unexpected operand kind!");
 | 
						|
  case IOK_LENGTH: CVal = Info.Length; break;
 | 
						|
  case IOK_SIZE: CVal = Info.Size; break;
 | 
						|
  case IOK_TYPE: CVal = Info.Type; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the type operator and the C or C++ type or variable in terms of an
 | 
						|
  // immediate.  E.g. TYPE foo -> $$4
 | 
						|
  unsigned Len = End.getPointer() - TypeLoc.getPointer();
 | 
						|
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
 | 
						|
 | 
						|
  const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
 | 
						|
  return X86Operand::CreateImm(Imm, Start, End);
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *X86AsmParser::ParseIntelOperand() {
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc Start, End;
 | 
						|
 | 
						|
  // Offset, length, type and size operators.
 | 
						|
  if (isParsingInlineAsm()) {
 | 
						|
    StringRef AsmTokStr = Tok.getString();
 | 
						|
    if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
 | 
						|
      return ParseIntelOffsetOfOperator();
 | 
						|
    if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
 | 
						|
      return ParseIntelOperator(IOK_LENGTH);
 | 
						|
    if (AsmTokStr == "size" || AsmTokStr == "SIZE")
 | 
						|
      return ParseIntelOperator(IOK_SIZE);
 | 
						|
    if (AsmTokStr == "type" || AsmTokStr == "TYPE")
 | 
						|
      return ParseIntelOperator(IOK_TYPE);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Size = getIntelMemOperandSize(Tok.getString());
 | 
						|
  if (Size) {
 | 
						|
    Parser.Lex(); // Eat operand size (e.g., byte, word).
 | 
						|
    if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
 | 
						|
      return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
 | 
						|
    Parser.Lex(); // Eat ptr.
 | 
						|
  }
 | 
						|
  Start = Tok.getLoc();
 | 
						|
 | 
						|
  // Immediate.
 | 
						|
  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
 | 
						|
      getLexer().is(AsmToken::LParen)) {    
 | 
						|
    AsmToken StartTok = Tok;
 | 
						|
    IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
 | 
						|
                             /*AddImmPrefix=*/false);
 | 
						|
    if (X86Operand *Err = ParseIntelExpression(SM, End))
 | 
						|
      return Err;
 | 
						|
 | 
						|
    int64_t Imm = SM.getImm();
 | 
						|
    if (isParsingInlineAsm()) {
 | 
						|
      unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
 | 
						|
      if (StartTok.getString().size() == Len)
 | 
						|
        // Just add a prefix if this wasn't a complex immediate expression.
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
 | 
						|
      else
 | 
						|
        // Otherwise, rewrite the complex expression as a single immediate.
 | 
						|
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::LBrac)) {
 | 
						|
      const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
 | 
						|
      return X86Operand::CreateImm(ImmExpr, Start, End);
 | 
						|
    }
 | 
						|
 | 
						|
    // Only positive immediates are valid.
 | 
						|
    if (Imm < 0)
 | 
						|
      return ErrorOperand(Start, "expected a positive immediate displacement "
 | 
						|
                          "before bracketed expr.");
 | 
						|
 | 
						|
    // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
 | 
						|
    return ParseIntelMemOperand(Imm, Start, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Register.
 | 
						|
  unsigned RegNo = 0;
 | 
						|
  if (!ParseRegister(RegNo, Start, End)) {
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a segment override, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
    return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Memory operand.
 | 
						|
  return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *X86AsmParser::ParseATTOperand() {
 | 
						|
  switch (getLexer().getKind()) {
 | 
						|
  default:
 | 
						|
    // Parse a memory operand with no segment register.
 | 
						|
    return ParseMemOperand(0, Parser.getTok().getLoc());
 | 
						|
  case AsmToken::Percent: {
 | 
						|
    // Read the register.
 | 
						|
    unsigned RegNo;
 | 
						|
    SMLoc Start, End;
 | 
						|
    if (ParseRegister(RegNo, Start, End)) return 0;
 | 
						|
    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
 | 
						|
      Error(Start, "%eiz and %riz can only be used as index registers",
 | 
						|
            SMRange(Start, End));
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a memory reference, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
    getParser().Lex(); // Eat the colon.
 | 
						|
    return ParseMemOperand(RegNo, Start);
 | 
						|
  }
 | 
						|
  case AsmToken::Dollar: {
 | 
						|
    // $42 -> immediate.
 | 
						|
    SMLoc Start = Parser.getTok().getLoc(), End;
 | 
						|
    Parser.Lex();
 | 
						|
    const MCExpr *Val;
 | 
						|
    if (getParser().parseExpression(Val, End))
 | 
						|
      return 0;
 | 
						|
    return X86Operand::CreateImm(Val, Start, End);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
 | 
						|
/// has already been parsed if present.
 | 
						|
X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
 | 
						|
 | 
						|
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
 | 
						|
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
 | 
						|
  // only way to do this without lookahead is to eat the '(' and see what is
 | 
						|
  // after it.
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
 | 
						|
  if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
    SMLoc ExprEnd;
 | 
						|
    if (getParser().parseExpression(Disp, ExprEnd)) return 0;
 | 
						|
 | 
						|
    // After parsing the base expression we could either have a parenthesized
 | 
						|
    // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
      // Unless we have a segment register, treat this as an immediate.
 | 
						|
      if (SegReg == 0)
 | 
						|
        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
 | 
						|
      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
    }
 | 
						|
 | 
						|
    // Eat the '('.
 | 
						|
    Parser.Lex();
 | 
						|
  } else {
 | 
						|
    // Okay, we have a '('.  We don't know if this is an expression or not, but
 | 
						|
    // so we have to eat the ( to see beyond it.
 | 
						|
    SMLoc LParenLoc = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex(); // Eat the '('.
 | 
						|
 | 
						|
    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
 | 
						|
      // Nothing to do here, fall into the code below with the '(' part of the
 | 
						|
      // memory operand consumed.
 | 
						|
    } else {
 | 
						|
      SMLoc ExprEnd;
 | 
						|
 | 
						|
      // It must be an parenthesized expression, parse it now.
 | 
						|
      if (getParser().parseParenExpression(Disp, ExprEnd))
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // After parsing the base expression we could either have a parenthesized
 | 
						|
      // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
      if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
        // Unless we have a segment register, treat this as an immediate.
 | 
						|
        if (SegReg == 0)
 | 
						|
          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
 | 
						|
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
      }
 | 
						|
 | 
						|
      // Eat the '('.
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, then we just ate the ( of the memory operand.  Process
 | 
						|
  // the rest of the memory operand.
 | 
						|
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | 
						|
  SMLoc IndexLoc;
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Percent)) {
 | 
						|
    SMLoc StartLoc, EndLoc;
 | 
						|
    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
 | 
						|
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
 | 
						|
      Error(StartLoc, "eiz and riz can only be used as index registers",
 | 
						|
            SMRange(StartLoc, EndLoc));
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Comma)) {
 | 
						|
    Parser.Lex(); // Eat the comma.
 | 
						|
    IndexLoc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
    // Following the comma we should have either an index register, or a scale
 | 
						|
    // value. We don't support the later form, but we want to parse it
 | 
						|
    // correctly.
 | 
						|
    //
 | 
						|
    // Not that even though it would be completely consistent to support syntax
 | 
						|
    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | 
						|
    if (getLexer().is(AsmToken::Percent)) {
 | 
						|
      SMLoc L;
 | 
						|
      if (ParseRegister(IndexReg, L, L)) return 0;
 | 
						|
 | 
						|
      if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
        // Parse the scale amount:
 | 
						|
        //  ::= ',' [scale-expression]
 | 
						|
        if (getLexer().isNot(AsmToken::Comma)) {
 | 
						|
          Error(Parser.getTok().getLoc(),
 | 
						|
                "expected comma in scale expression");
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
        Parser.Lex(); // Eat the comma.
 | 
						|
 | 
						|
        if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
          SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
          int64_t ScaleVal;
 | 
						|
          if (getParser().parseAbsoluteExpression(ScaleVal)){
 | 
						|
            Error(Loc, "expected scale expression");
 | 
						|
            return 0;
 | 
						|
          }
 | 
						|
 | 
						|
          // Validate the scale amount.
 | 
						|
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
 | 
						|
            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
 | 
						|
            return 0;
 | 
						|
          }
 | 
						|
          Scale = (unsigned)ScaleVal;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
      // A scale amount without an index is ignored.
 | 
						|
      // index.
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
      int64_t Value;
 | 
						|
      if (getParser().parseAbsoluteExpression(Value))
 | 
						|
        return 0;
 | 
						|
 | 
						|
      if (Value != 1)
 | 
						|
        Warning(Loc, "scale factor without index register is ignored");
 | 
						|
      Scale = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | 
						|
  if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  SMLoc MemEnd = Parser.getTok().getEndLoc();
 | 
						|
  Parser.Lex(); // Eat the ')'.
 | 
						|
 | 
						|
  // If we have both a base register and an index register make sure they are
 | 
						|
  // both 64-bit or 32-bit registers.
 | 
						|
  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
 | 
						|
  if (BaseReg != 0 && IndexReg != 0) {
 | 
						|
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
 | 
						|
        IndexReg != X86::RIZ) {
 | 
						|
      Error(IndexLoc, "index register is 32-bit, but base register is 64-bit");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
 | 
						|
        IndexReg != X86::EIZ){
 | 
						|
      Error(IndexLoc, "index register is 64-bit, but base register is 32-bit");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
 | 
						|
                               MemStart, MemEnd);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::
 | 
						|
ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
 | 
						|
                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
 | 
						|
  InstInfo = &Info;
 | 
						|
  StringRef PatchedName = Name;
 | 
						|
 | 
						|
  // FIXME: Hack to recognize setneb as setne.
 | 
						|
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | 
						|
      PatchedName != "setb" && PatchedName != "setnb")
 | 
						|
    PatchedName = PatchedName.substr(0, Name.size()-1);
 | 
						|
 | 
						|
  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | 
						|
  const MCExpr *ExtraImmOp = 0;
 | 
						|
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | 
						|
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | 
						|
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | 
						|
    bool IsVCMP = PatchedName[0] == 'v';
 | 
						|
    unsigned SSECCIdx = IsVCMP ? 4 : 3;
 | 
						|
    unsigned SSEComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
 | 
						|
      .Case("eq",       0x00)
 | 
						|
      .Case("lt",       0x01)
 | 
						|
      .Case("le",       0x02)
 | 
						|
      .Case("unord",    0x03)
 | 
						|
      .Case("neq",      0x04)
 | 
						|
      .Case("nlt",      0x05)
 | 
						|
      .Case("nle",      0x06)
 | 
						|
      .Case("ord",      0x07)
 | 
						|
      /* AVX only from here */
 | 
						|
      .Case("eq_uq",    0x08)
 | 
						|
      .Case("nge",      0x09)
 | 
						|
      .Case("ngt",      0x0A)
 | 
						|
      .Case("false",    0x0B)
 | 
						|
      .Case("neq_oq",   0x0C)
 | 
						|
      .Case("ge",       0x0D)
 | 
						|
      .Case("gt",       0x0E)
 | 
						|
      .Case("true",     0x0F)
 | 
						|
      .Case("eq_os",    0x10)
 | 
						|
      .Case("lt_oq",    0x11)
 | 
						|
      .Case("le_oq",    0x12)
 | 
						|
      .Case("unord_s",  0x13)
 | 
						|
      .Case("neq_us",   0x14)
 | 
						|
      .Case("nlt_uq",   0x15)
 | 
						|
      .Case("nle_uq",   0x16)
 | 
						|
      .Case("ord_s",    0x17)
 | 
						|
      .Case("eq_us",    0x18)
 | 
						|
      .Case("nge_uq",   0x19)
 | 
						|
      .Case("ngt_uq",   0x1A)
 | 
						|
      .Case("false_os", 0x1B)
 | 
						|
      .Case("neq_os",   0x1C)
 | 
						|
      .Case("ge_oq",    0x1D)
 | 
						|
      .Case("gt_oq",    0x1E)
 | 
						|
      .Case("true_us",  0x1F)
 | 
						|
      .Default(~0U);
 | 
						|
    if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
 | 
						|
      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
 | 
						|
                                          getParser().getContext());
 | 
						|
      if (PatchedName.endswith("ss")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
 | 
						|
      } else if (PatchedName.endswith("sd")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
 | 
						|
      } else if (PatchedName.endswith("ps")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
 | 
						|
      } else {
 | 
						|
        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
 | 
						|
        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | 
						|
 | 
						|
  if (ExtraImmOp && !isParsingIntelSyntax())
 | 
						|
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
  // Determine whether this is an instruction prefix.
 | 
						|
  bool isPrefix =
 | 
						|
    Name == "lock" || Name == "rep" ||
 | 
						|
    Name == "repe" || Name == "repz" ||
 | 
						|
    Name == "repne" || Name == "repnz" ||
 | 
						|
    Name == "rex64" || Name == "data16";
 | 
						|
 | 
						|
 | 
						|
  // This does the actual operand parsing.  Don't parse any more if we have a
 | 
						|
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | 
						|
  // just want to parse the "lock" as the first instruction and the "incl" as
 | 
						|
  // the next one.
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | 
						|
 | 
						|
    // Parse '*' modifier.
 | 
						|
    if (getLexer().is(AsmToken::Star)) {
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
      Operands.push_back(X86Operand::CreateToken("*", Loc));
 | 
						|
      Parser.Lex(); // Eat the star.
 | 
						|
    }
 | 
						|
 | 
						|
    // Read the first operand.
 | 
						|
    if (X86Operand *Op = ParseOperand())
 | 
						|
      Operands.push_back(Op);
 | 
						|
    else {
 | 
						|
      Parser.eatToEndOfStatement();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    while (getLexer().is(AsmToken::Comma)) {
 | 
						|
      Parser.Lex();  // Eat the comma.
 | 
						|
 | 
						|
      // Parse and remember the operand.
 | 
						|
      if (X86Operand *Op = ParseOperand())
 | 
						|
        Operands.push_back(Op);
 | 
						|
      else {
 | 
						|
        Parser.eatToEndOfStatement();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (STI.getFeatureBits() & X86::FeatureAVX512) {
 | 
						|
      // Parse mask register {%k1}
 | 
						|
      if (getLexer().is(AsmToken::LCurly)) {
 | 
						|
        SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
        Operands.push_back(X86Operand::CreateToken("{", Loc));
 | 
						|
        Parser.Lex();  // Eat the {
 | 
						|
        if (X86Operand *Op = ParseOperand()) {
 | 
						|
          Operands.push_back(Op);
 | 
						|
          if (!getLexer().is(AsmToken::RCurly)) {
 | 
						|
            SMLoc Loc = getLexer().getLoc();
 | 
						|
            Parser.eatToEndOfStatement();
 | 
						|
            return Error(Loc, "Expected } at this point");
 | 
						|
          }
 | 
						|
          Loc = Parser.getTok().getLoc();
 | 
						|
          Operands.push_back(X86Operand::CreateToken("}", Loc));
 | 
						|
          Parser.Lex();  // Eat the }
 | 
						|
        } else {
 | 
						|
          Parser.eatToEndOfStatement();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Parse "zeroing non-masked" semantic {z}
 | 
						|
      if (getLexer().is(AsmToken::LCurly)) {
 | 
						|
        SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
        Operands.push_back(X86Operand::CreateToken("{z}", Loc));
 | 
						|
        Parser.Lex();  // Eat the {
 | 
						|
        if (!getLexer().is(AsmToken::Identifier) || getLexer().getTok().getIdentifier() != "z") {
 | 
						|
          SMLoc Loc = getLexer().getLoc();
 | 
						|
          Parser.eatToEndOfStatement();
 | 
						|
          return Error(Loc, "Expected z at this point");
 | 
						|
        }
 | 
						|
        Parser.Lex();  // Eat the z
 | 
						|
        if (!getLexer().is(AsmToken::RCurly)) {
 | 
						|
            SMLoc Loc = getLexer().getLoc();
 | 
						|
            Parser.eatToEndOfStatement();
 | 
						|
            return Error(Loc, "Expected } at this point");
 | 
						|
        }
 | 
						|
        Parser.Lex();  // Eat the }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      SMLoc Loc = getLexer().getLoc();
 | 
						|
      Parser.eatToEndOfStatement();
 | 
						|
      return Error(Loc, "unexpected token in argument list");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::EndOfStatement))
 | 
						|
    Parser.Lex(); // Consume the EndOfStatement
 | 
						|
  else if (isPrefix && getLexer().is(AsmToken::Slash))
 | 
						|
    Parser.Lex(); // Consume the prefix separator Slash
 | 
						|
 | 
						|
  if (ExtraImmOp && isParsingIntelSyntax())
 | 
						|
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
 | 
						|
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | 
						|
  // documented form in various unofficial manuals, so a lot of code uses it.
 | 
						|
  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.back();
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
      delete &Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
 | 
						|
  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
      delete &Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
 | 
						|
  if (Name.startswith("ins") && Operands.size() == 3 &&
 | 
						|
      (Name == "insb" || Name == "insw" || Name == "insl")) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
 | 
						|
  if (Name.startswith("outs") && Operands.size() == 3 &&
 | 
						|
      (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
 | 
						|
  if (Name.startswith("movs") && Operands.size() == 3 &&
 | 
						|
      (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
 | 
						|
       (is64BitMode() && Name == "movsq"))) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (isSrcOp(Op) && isDstOp(Op2)) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
 | 
						|
  if (Name.startswith("lods") && Operands.size() == 3 &&
 | 
						|
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | 
						|
       Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
 | 
						|
    if (isSrcOp(*Op1) && Op2->isReg()) {
 | 
						|
      const char *ins;
 | 
						|
      unsigned reg = Op2->getReg();
 | 
						|
      bool isLods = Name == "lods";
 | 
						|
      if (reg == X86::AL && (isLods || Name == "lodsb"))
 | 
						|
        ins = "lodsb";
 | 
						|
      else if (reg == X86::AX && (isLods || Name == "lodsw"))
 | 
						|
        ins = "lodsw";
 | 
						|
      else if (reg == X86::EAX && (isLods || Name == "lodsl"))
 | 
						|
        ins = "lodsl";
 | 
						|
      else if (reg == X86::RAX && (isLods || Name == "lodsq"))
 | 
						|
        ins = "lodsq";
 | 
						|
      else
 | 
						|
        ins = NULL;
 | 
						|
      if (ins != NULL) {
 | 
						|
        Operands.pop_back();
 | 
						|
        Operands.pop_back();
 | 
						|
        delete Op1;
 | 
						|
        delete Op2;
 | 
						|
        if (Name != ins)
 | 
						|
          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
 | 
						|
  if (Name.startswith("stos") && Operands.size() == 3 &&
 | 
						|
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | 
						|
       Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
 | 
						|
    if (isDstOp(*Op2) && Op1->isReg()) {
 | 
						|
      const char *ins;
 | 
						|
      unsigned reg = Op1->getReg();
 | 
						|
      bool isStos = Name == "stos";
 | 
						|
      if (reg == X86::AL && (isStos || Name == "stosb"))
 | 
						|
        ins = "stosb";
 | 
						|
      else if (reg == X86::AX && (isStos || Name == "stosw"))
 | 
						|
        ins = "stosw";
 | 
						|
      else if (reg == X86::EAX && (isStos || Name == "stosl"))
 | 
						|
        ins = "stosl";
 | 
						|
      else if (reg == X86::RAX && (isStos || Name == "stosq"))
 | 
						|
        ins = "stosq";
 | 
						|
      else
 | 
						|
        ins = NULL;
 | 
						|
      if (ins != NULL) {
 | 
						|
        Operands.pop_back();
 | 
						|
        Operands.pop_back();
 | 
						|
        delete Op1;
 | 
						|
        delete Op2;
 | 
						|
        if (Name != ins)
 | 
						|
          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | 
						|
  // "shift <op>".
 | 
						|
  if ((Name.startswith("shr") || Name.startswith("sar") ||
 | 
						|
       Name.startswith("shl") || Name.startswith("sal") ||
 | 
						|
       Name.startswith("rcl") || Name.startswith("rcr") ||
 | 
						|
       Name.startswith("rol") || Name.startswith("ror")) &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    if (isParsingIntelSyntax()) {
 | 
						|
      // Intel syntax
 | 
						|
      X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
 | 
						|
      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
 | 
						|
        delete Operands[2];
 | 
						|
        Operands.pop_back();
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
 | 
						|
        delete Operands[1];
 | 
						|
        Operands.erase(Operands.begin() + 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | 
						|
  // instalias with an immediate operand yet.
 | 
						|
  if (Name == "int" && Operands.size() == 2) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
 | 
						|
        cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
 | 
						|
      delete Operands[1];
 | 
						|
      Operands.erase(Operands.begin() + 1);
 | 
						|
      static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
 | 
						|
                            bool isCmp) {
 | 
						|
  MCInst TmpInst;
 | 
						|
  TmpInst.setOpcode(Opcode);
 | 
						|
  if (!isCmp)
 | 
						|
    TmpInst.addOperand(MCOperand::CreateReg(Reg));
 | 
						|
  TmpInst.addOperand(MCOperand::CreateReg(Reg));
 | 
						|
  TmpInst.addOperand(Inst.getOperand(0));
 | 
						|
  Inst = TmpInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
 | 
						|
                                bool isCmp = false) {
 | 
						|
  if (!Inst.getOperand(0).isImm() ||
 | 
						|
      !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::
 | 
						|
processInstruction(MCInst &Inst,
 | 
						|
                   const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
 | 
						|
  switch (Inst.getOpcode()) {
 | 
						|
  default: return false;
 | 
						|
  case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
 | 
						|
  case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
 | 
						|
  case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
 | 
						|
  case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
 | 
						|
  case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
 | 
						|
  case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
 | 
						|
  case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
 | 
						|
  case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
 | 
						|
  case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
 | 
						|
  case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
 | 
						|
  case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
 | 
						|
  case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
 | 
						|
  case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
 | 
						|
  case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
 | 
						|
  case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
 | 
						|
  case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
 | 
						|
  case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
 | 
						|
  case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
 | 
						|
  case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
 | 
						|
  case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
 | 
						|
  case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
 | 
						|
  case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
 | 
						|
  case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
 | 
						|
  case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
 | 
						|
  case X86::VMOVAPDrr:
 | 
						|
  case X86::VMOVAPDYrr:
 | 
						|
  case X86::VMOVAPSrr:
 | 
						|
  case X86::VMOVAPSYrr:
 | 
						|
  case X86::VMOVDQArr:
 | 
						|
  case X86::VMOVDQAYrr:
 | 
						|
  case X86::VMOVDQUrr:
 | 
						|
  case X86::VMOVDQUYrr:
 | 
						|
  case X86::VMOVUPDrr:
 | 
						|
  case X86::VMOVUPDYrr:
 | 
						|
  case X86::VMOVUPSrr:
 | 
						|
  case X86::VMOVUPSYrr: {
 | 
						|
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
 | 
						|
        !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NewOpc;
 | 
						|
    switch (Inst.getOpcode()) {
 | 
						|
    default: llvm_unreachable("Invalid opcode");
 | 
						|
    case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
 | 
						|
    case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
 | 
						|
    case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
 | 
						|
    case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
 | 
						|
    case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
 | 
						|
    case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
 | 
						|
    case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
 | 
						|
    case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
 | 
						|
    case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
 | 
						|
    case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
 | 
						|
    case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
 | 
						|
    case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
 | 
						|
    }
 | 
						|
    Inst.setOpcode(NewOpc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case X86::VMOVSDrr:
 | 
						|
  case X86::VMOVSSrr: {
 | 
						|
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
 | 
						|
        !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
 | 
						|
      return false;
 | 
						|
    unsigned NewOpc;
 | 
						|
    switch (Inst.getOpcode()) {
 | 
						|
    default: llvm_unreachable("Invalid opcode");
 | 
						|
    case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV;   break;
 | 
						|
    case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV;   break;
 | 
						|
    }
 | 
						|
    Inst.setOpcode(NewOpc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const char *getSubtargetFeatureName(unsigned Val);
 | 
						|
bool X86AsmParser::
 | 
						|
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
 | 
						|
                        MCStreamer &Out, unsigned &ErrorInfo,
 | 
						|
                        bool MatchingInlineAsm) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
 | 
						|
  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
  ArrayRef<SMRange> EmptyRanges = None;
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  // FIXME: This should be replaced with a real .td file alias mechanism.
 | 
						|
  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
 | 
						|
  // call.
 | 
						|
  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
 | 
						|
      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
 | 
						|
      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
 | 
						|
      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
 | 
						|
    MCInst Inst;
 | 
						|
    Inst.setOpcode(X86::WAIT);
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      Out.EmitInstruction(Inst);
 | 
						|
 | 
						|
    const char *Repl =
 | 
						|
      StringSwitch<const char*>(Op->getToken())
 | 
						|
        .Case("finit",  "fninit")
 | 
						|
        .Case("fsave",  "fnsave")
 | 
						|
        .Case("fstcw",  "fnstcw")
 | 
						|
        .Case("fstcww",  "fnstcw")
 | 
						|
        .Case("fstenv", "fnstenv")
 | 
						|
        .Case("fstsw",  "fnstsw")
 | 
						|
        .Case("fstsww", "fnstsw")
 | 
						|
        .Case("fclex",  "fnclex")
 | 
						|
        .Default(0);
 | 
						|
    assert(Repl && "Unknown wait-prefixed instruction");
 | 
						|
    delete Operands[0];
 | 
						|
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  bool WasOriginallyInvalidOperand = false;
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  // First, try a direct match.
 | 
						|
  switch (MatchInstructionImpl(Operands, Inst,
 | 
						|
                               ErrorInfo, MatchingInlineAsm,
 | 
						|
                               isParsingIntelSyntax())) {
 | 
						|
  default: break;
 | 
						|
  case Match_Success:
 | 
						|
    // Some instructions need post-processing to, for example, tweak which
 | 
						|
    // encoding is selected. Loop on it while changes happen so the
 | 
						|
    // individual transformations can chain off each other.
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      while (processInstruction(Inst, Operands))
 | 
						|
        ;
 | 
						|
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      Out.EmitInstruction(Inst);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  case Match_MissingFeature: {
 | 
						|
    assert(ErrorInfo && "Unknown missing feature!");
 | 
						|
    // Special case the error message for the very common case where only
 | 
						|
    // a single subtarget feature is missing.
 | 
						|
    std::string Msg = "instruction requires:";
 | 
						|
    unsigned Mask = 1;
 | 
						|
    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
 | 
						|
      if (ErrorInfo & Mask) {
 | 
						|
        Msg += " ";
 | 
						|
        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
 | 
						|
      }
 | 
						|
      Mask <<= 1;
 | 
						|
    }
 | 
						|
    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
 | 
						|
  }
 | 
						|
  case Match_InvalidOperand:
 | 
						|
    WasOriginallyInvalidOperand = true;
 | 
						|
    break;
 | 
						|
  case Match_MnemonicFail:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Ideally, we would only attempt suffix matches for things which are
 | 
						|
  // valid prefixes, and we could just infer the right unambiguous
 | 
						|
  // type. However, that requires substantially more matcher support than the
 | 
						|
  // following hack.
 | 
						|
 | 
						|
  // Change the operand to point to a temporary token.
 | 
						|
  StringRef Base = Op->getToken();
 | 
						|
  SmallString<16> Tmp;
 | 
						|
  Tmp += Base;
 | 
						|
  Tmp += ' ';
 | 
						|
  Op->setTokenValue(Tmp.str());
 | 
						|
 | 
						|
  // If this instruction starts with an 'f', then it is a floating point stack
 | 
						|
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | 
						|
  // 80-bit floating point, which use the suffixes s,l,t respectively.
 | 
						|
  //
 | 
						|
  // Otherwise, we assume that this may be an integer instruction, which comes
 | 
						|
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | 
						|
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | 
						|
 | 
						|
  // Check for the various suffix matches.
 | 
						|
  Tmp[Base.size()] = Suffixes[0];
 | 
						|
  unsigned ErrorInfoIgnore;
 | 
						|
  unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
 | 
						|
  unsigned Match1, Match2, Match3, Match4;
 | 
						|
 | 
						|
  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
  // If this returned as a missing feature failure, remember that.
 | 
						|
  if (Match1 == Match_MissingFeature)
 | 
						|
    ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
  Tmp[Base.size()] = Suffixes[1];
 | 
						|
  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
  // If this returned as a missing feature failure, remember that.
 | 
						|
  if (Match2 == Match_MissingFeature)
 | 
						|
    ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
  Tmp[Base.size()] = Suffixes[2];
 | 
						|
  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
  // If this returned as a missing feature failure, remember that.
 | 
						|
  if (Match3 == Match_MissingFeature)
 | 
						|
    ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
  Tmp[Base.size()] = Suffixes[3];
 | 
						|
  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
  // If this returned as a missing feature failure, remember that.
 | 
						|
  if (Match4 == Match_MissingFeature)
 | 
						|
    ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
 | 
						|
  // Restore the old token.
 | 
						|
  Op->setTokenValue(Base);
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
    (Match1 == Match_Success) + (Match2 == Match_Success) +
 | 
						|
    (Match3 == Match_Success) + (Match4 == Match_Success);
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      Out.EmitInstruction(Inst);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the match failed, try to produce a decent error message.
 | 
						|
 | 
						|
  // If we had multiple suffix matches, then identify this as an ambiguous
 | 
						|
  // match.
 | 
						|
  if (NumSuccessfulMatches > 1) {
 | 
						|
    char MatchChars[4];
 | 
						|
    unsigned NumMatches = 0;
 | 
						|
    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
 | 
						|
    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
 | 
						|
    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
 | 
						|
    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
 | 
						|
 | 
						|
    SmallString<126> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ambiguous instructions require an explicit suffix (could be ";
 | 
						|
    for (unsigned i = 0; i != NumMatches; ++i) {
 | 
						|
      if (i != 0)
 | 
						|
        OS << ", ";
 | 
						|
      if (i + 1 == NumMatches)
 | 
						|
        OS << "or ";
 | 
						|
      OS << "'" << Base << MatchChars[i] << "'";
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
    Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know that none of the variants matched successfully.
 | 
						|
 | 
						|
  // If all of the instructions reported an invalid mnemonic, then the original
 | 
						|
  // mnemonic was invalid.
 | 
						|
  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
 | 
						|
      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
 | 
						|
    if (!WasOriginallyInvalidOperand) {
 | 
						|
      ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges :
 | 
						|
        Op->getLocRange();
 | 
						|
      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
 | 
						|
                   Ranges, MatchingInlineAsm);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recover location info for the operand if we know which was the problem.
 | 
						|
    if (ErrorInfo != ~0U) {
 | 
						|
      if (ErrorInfo >= Operands.size())
 | 
						|
        return Error(IDLoc, "too few operands for instruction",
 | 
						|
                     EmptyRanges, MatchingInlineAsm);
 | 
						|
 | 
						|
      X86Operand *Operand = (X86Operand*)Operands[ErrorInfo];
 | 
						|
      if (Operand->getStartLoc().isValid()) {
 | 
						|
        SMRange OperandRange = Operand->getLocRange();
 | 
						|
        return Error(Operand->getStartLoc(), "invalid operand for instruction",
 | 
						|
                     OperandRange, MatchingInlineAsm);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
 | 
						|
      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
 | 
						|
    std::string Msg = "instruction requires:";
 | 
						|
    unsigned Mask = 1;
 | 
						|
    for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
 | 
						|
      if (ErrorInfoMissingFeature & Mask) {
 | 
						|
        Msg += " ";
 | 
						|
        Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
 | 
						|
      }
 | 
						|
      Mask <<= 1;
 | 
						|
    }
 | 
						|
    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
 | 
						|
      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
 | 
						|
    Error(IDLoc, "invalid operand for instruction", EmptyRanges,
 | 
						|
          MatchingInlineAsm);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
 | 
						|
        EmptyRanges, MatchingInlineAsm);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
 | 
						|
  StringRef IDVal = DirectiveID.getIdentifier();
 | 
						|
  if (IDVal == ".word")
 | 
						|
    return ParseDirectiveWord(2, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".code"))
 | 
						|
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".att_syntax")) {
 | 
						|
    getParser().setAssemblerDialect(0);
 | 
						|
    return false;
 | 
						|
  } else if (IDVal.startswith(".intel_syntax")) {
 | 
						|
    getParser().setAssemblerDialect(1);
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      if(Parser.getTok().getString() == "noprefix") {
 | 
						|
        // FIXME : Handle noprefix
 | 
						|
        Parser.Lex();
 | 
						|
      } else
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveWord
 | 
						|
///  ::= .word [ expression (, expression)* ]
 | 
						|
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
    for (;;) {
 | 
						|
      const MCExpr *Value;
 | 
						|
      if (getParser().parseExpression(Value))
 | 
						|
        return true;
 | 
						|
 | 
						|
      getParser().getStreamer().EmitValue(Value, Size);
 | 
						|
 | 
						|
      if (getLexer().is(AsmToken::EndOfStatement))
 | 
						|
        break;
 | 
						|
 | 
						|
      // FIXME: Improve diagnostic.
 | 
						|
      if (getLexer().isNot(AsmToken::Comma))
 | 
						|
        return Error(L, "unexpected token in directive");
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Parser.Lex();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveCode
 | 
						|
///  ::= .code32 | .code64
 | 
						|
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | 
						|
  if (IDVal == ".code32") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (is64BitMode()) {
 | 
						|
      SwitchMode();
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code64") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is64BitMode()) {
 | 
						|
      SwitchMode();
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return Error(L, "unexpected directive " + IDVal);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Force static initialization.
 | 
						|
extern "C" void LLVMInitializeX86AsmParser() {
 | 
						|
  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
 | 
						|
  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
 | 
						|
}
 | 
						|
 | 
						|
#define GET_REGISTER_MATCHER
 | 
						|
#define GET_MATCHER_IMPLEMENTATION
 | 
						|
#define GET_SUBTARGET_FEATURE_NAME
 | 
						|
#include "X86GenAsmMatcher.inc"
 |