forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3582 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3582 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This transformation implements the well known scalar replacement of
 | |
| /// aggregates transformation. It tries to identify promotable elements of an
 | |
| /// aggregate alloca, and promote them to registers. It will also try to
 | |
| /// convert uses of an element (or set of elements) of an alloca into a vector
 | |
| /// or bitfield-style integer scalar if appropriate.
 | |
| ///
 | |
| /// It works to do this with minimal slicing of the alloca so that regions
 | |
| /// which are merely transferred in and out of external memory remain unchanged
 | |
| /// and are not decomposed to scalar code.
 | |
| ///
 | |
| /// Because this also performs alloca promotion, it can be thought of as also
 | |
| /// serving the purpose of SSA formation. The algorithm iterates on the
 | |
| /// function until all opportunities for promotion have been realized.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sroa"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/PtrUseVisitor.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/DIBuilder.h"
 | |
| #include "llvm/DebugInfo.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/InstVisitor.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
 | |
| STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
 | |
| STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
 | |
| STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
 | |
| STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
 | |
| STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
 | |
| STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
 | |
| STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
 | |
| STATISTIC(NumDeleted, "Number of instructions deleted");
 | |
| STATISTIC(NumVectorized, "Number of vectorized aggregates");
 | |
| 
 | |
| /// Hidden option to force the pass to not use DomTree and mem2reg, instead
 | |
| /// forming SSA values through the SSAUpdater infrastructure.
 | |
| static cl::opt<bool>
 | |
| ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| /// \brief A custom IRBuilder inserter which prefixes all names if they are
 | |
| /// preserved.
 | |
| template <bool preserveNames = true>
 | |
| class IRBuilderPrefixedInserter :
 | |
|     public IRBuilderDefaultInserter<preserveNames> {
 | |
|   std::string Prefix;
 | |
| 
 | |
| public:
 | |
|   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
 | |
| 
 | |
| protected:
 | |
|   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
 | |
|                     BasicBlock::iterator InsertPt) const {
 | |
|     IRBuilderDefaultInserter<preserveNames>::InsertHelper(
 | |
|         I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Specialization for not preserving the name is trivial.
 | |
| template <>
 | |
| class IRBuilderPrefixedInserter<false> :
 | |
|     public IRBuilderDefaultInserter<false> {
 | |
| public:
 | |
|   void SetNamePrefix(const Twine &P) {}
 | |
| };
 | |
| 
 | |
| /// \brief Provide a typedef for IRBuilder that drops names in release builds.
 | |
| #ifndef NDEBUG
 | |
| typedef llvm::IRBuilder<true, ConstantFolder,
 | |
|                         IRBuilderPrefixedInserter<true> > IRBuilderTy;
 | |
| #else
 | |
| typedef llvm::IRBuilder<false, ConstantFolder,
 | |
|                         IRBuilderPrefixedInserter<false> > IRBuilderTy;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief A used slice of an alloca.
 | |
| ///
 | |
| /// This structure represents a slice of an alloca used by some instruction. It
 | |
| /// stores both the begin and end offsets of this use, a pointer to the use
 | |
| /// itself, and a flag indicating whether we can classify the use as splittable
 | |
| /// or not when forming partitions of the alloca.
 | |
| class Slice {
 | |
|   /// \brief The beginning offset of the range.
 | |
|   uint64_t BeginOffset;
 | |
| 
 | |
|   /// \brief The ending offset, not included in the range.
 | |
|   uint64_t EndOffset;
 | |
| 
 | |
|   /// \brief Storage for both the use of this slice and whether it can be
 | |
|   /// split.
 | |
|   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
 | |
| 
 | |
| public:
 | |
|   Slice() : BeginOffset(), EndOffset() {}
 | |
|   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
 | |
|       : BeginOffset(BeginOffset), EndOffset(EndOffset),
 | |
|         UseAndIsSplittable(U, IsSplittable) {}
 | |
| 
 | |
|   uint64_t beginOffset() const { return BeginOffset; }
 | |
|   uint64_t endOffset() const { return EndOffset; }
 | |
| 
 | |
|   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
 | |
|   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
 | |
| 
 | |
|   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
 | |
| 
 | |
|   bool isDead() const { return getUse() == 0; }
 | |
|   void kill() { UseAndIsSplittable.setPointer(0); }
 | |
| 
 | |
|   /// \brief Support for ordering ranges.
 | |
|   ///
 | |
|   /// This provides an ordering over ranges such that start offsets are
 | |
|   /// always increasing, and within equal start offsets, the end offsets are
 | |
|   /// decreasing. Thus the spanning range comes first in a cluster with the
 | |
|   /// same start position.
 | |
|   bool operator<(const Slice &RHS) const {
 | |
|     if (beginOffset() < RHS.beginOffset()) return true;
 | |
|     if (beginOffset() > RHS.beginOffset()) return false;
 | |
|     if (isSplittable() != RHS.isSplittable()) return !isSplittable();
 | |
|     if (endOffset() > RHS.endOffset()) return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// \brief Support comparison with a single offset to allow binary searches.
 | |
|   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
 | |
|                                               uint64_t RHSOffset) {
 | |
|     return LHS.beginOffset() < RHSOffset;
 | |
|   }
 | |
|   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
 | |
|                                               const Slice &RHS) {
 | |
|     return LHSOffset < RHS.beginOffset();
 | |
|   }
 | |
| 
 | |
|   bool operator==(const Slice &RHS) const {
 | |
|     return isSplittable() == RHS.isSplittable() &&
 | |
|            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
 | |
|   }
 | |
|   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| template <typename T> struct isPodLike;
 | |
| template <> struct isPodLike<Slice> {
 | |
|    static const bool value = true;
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Representation of the alloca slices.
 | |
| ///
 | |
| /// This class represents the slices of an alloca which are formed by its
 | |
| /// various uses. If a pointer escapes, we can't fully build a representation
 | |
| /// for the slices used and we reflect that in this structure. The uses are
 | |
| /// stored, sorted by increasing beginning offset and with unsplittable slices
 | |
| /// starting at a particular offset before splittable slices.
 | |
| class AllocaSlices {
 | |
| public:
 | |
|   /// \brief Construct the slices of a particular alloca.
 | |
|   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
 | |
| 
 | |
|   /// \brief Test whether a pointer to the allocation escapes our analysis.
 | |
|   ///
 | |
|   /// If this is true, the slices are never fully built and should be
 | |
|   /// ignored.
 | |
|   bool isEscaped() const { return PointerEscapingInstr; }
 | |
| 
 | |
|   /// \brief Support for iterating over the slices.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Slice>::iterator iterator;
 | |
|   iterator begin() { return Slices.begin(); }
 | |
|   iterator end() { return Slices.end(); }
 | |
| 
 | |
|   typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
 | |
|   const_iterator begin() const { return Slices.begin(); }
 | |
|   const_iterator end() const { return Slices.end(); }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Allow iterating the dead users for this alloca.
 | |
|   ///
 | |
|   /// These are instructions which will never actually use the alloca as they
 | |
|   /// are outside the allocated range. They are safe to replace with undef and
 | |
|   /// delete.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
 | |
|   dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
 | |
|   dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
 | |
|   /// @}
 | |
| 
 | |
|   /// \brief Allow iterating the dead expressions referring to this alloca.
 | |
|   ///
 | |
|   /// These are operands which have cannot actually be used to refer to the
 | |
|   /// alloca as they are outside its range and the user doesn't correct for
 | |
|   /// that. These mostly consist of PHI node inputs and the like which we just
 | |
|   /// need to replace with undef.
 | |
|   /// @{
 | |
|   typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
 | |
|   dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
 | |
|   dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
 | |
|   /// @}
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
 | |
|   void printSlice(raw_ostream &OS, const_iterator I,
 | |
|                   StringRef Indent = "  ") const;
 | |
|   void printUse(raw_ostream &OS, const_iterator I,
 | |
|                 StringRef Indent = "  ") const;
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
 | |
|   void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|   template <typename DerivedT, typename RetT = void> class BuilderBase;
 | |
|   class SliceBuilder;
 | |
|   friend class AllocaSlices::SliceBuilder;
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   /// \brief Handle to alloca instruction to simplify method interfaces.
 | |
|   AllocaInst &AI;
 | |
| #endif
 | |
| 
 | |
|   /// \brief The instruction responsible for this alloca not having a known set
 | |
|   /// of slices.
 | |
|   ///
 | |
|   /// When an instruction (potentially) escapes the pointer to the alloca, we
 | |
|   /// store a pointer to that here and abort trying to form slices of the
 | |
|   /// alloca. This will be null if the alloca slices are analyzed successfully.
 | |
|   Instruction *PointerEscapingInstr;
 | |
| 
 | |
|   /// \brief The slices of the alloca.
 | |
|   ///
 | |
|   /// We store a vector of the slices formed by uses of the alloca here. This
 | |
|   /// vector is sorted by increasing begin offset, and then the unsplittable
 | |
|   /// slices before the splittable ones. See the Slice inner class for more
 | |
|   /// details.
 | |
|   SmallVector<Slice, 8> Slices;
 | |
| 
 | |
|   /// \brief Instructions which will become dead if we rewrite the alloca.
 | |
|   ///
 | |
|   /// Note that these are not separated by slice. This is because we expect an
 | |
|   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
 | |
|   /// all these instructions can simply be removed and replaced with undef as
 | |
|   /// they come from outside of the allocated space.
 | |
|   SmallVector<Instruction *, 8> DeadUsers;
 | |
| 
 | |
|   /// \brief Operands which will become dead if we rewrite the alloca.
 | |
|   ///
 | |
|   /// These are operands that in their particular use can be replaced with
 | |
|   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
 | |
|   /// to PHI nodes and the like. They aren't entirely dead (there might be
 | |
|   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
 | |
|   /// want to swap this particular input for undef to simplify the use lists of
 | |
|   /// the alloca.
 | |
|   SmallVector<Use *, 8> DeadOperands;
 | |
| };
 | |
| }
 | |
| 
 | |
| static Value *foldSelectInst(SelectInst &SI) {
 | |
|   // If the condition being selected on is a constant or the same value is
 | |
|   // being selected between, fold the select. Yes this does (rarely) happen
 | |
|   // early on.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
 | |
|     return SI.getOperand(1+CI->isZero());
 | |
|   if (SI.getOperand(1) == SI.getOperand(2))
 | |
|     return SI.getOperand(1);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Builder for the alloca slices.
 | |
| ///
 | |
| /// This class builds a set of alloca slices by recursively visiting the uses
 | |
| /// of an alloca and making a slice for each load and store at each offset.
 | |
| class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
 | |
|   friend class PtrUseVisitor<SliceBuilder>;
 | |
|   friend class InstVisitor<SliceBuilder>;
 | |
|   typedef PtrUseVisitor<SliceBuilder> Base;
 | |
| 
 | |
|   const uint64_t AllocSize;
 | |
|   AllocaSlices &S;
 | |
| 
 | |
|   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
 | |
|   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
 | |
| 
 | |
|   /// \brief Set to de-duplicate dead instructions found in the use walk.
 | |
|   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
 | |
| 
 | |
| public:
 | |
|   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
 | |
|       : PtrUseVisitor<SliceBuilder>(DL),
 | |
|         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
 | |
| 
 | |
| private:
 | |
|   void markAsDead(Instruction &I) {
 | |
|     if (VisitedDeadInsts.insert(&I))
 | |
|       S.DeadUsers.push_back(&I);
 | |
|   }
 | |
| 
 | |
|   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
 | |
|                  bool IsSplittable = false) {
 | |
|     // Completely skip uses which have a zero size or start either before or
 | |
|     // past the end of the allocation.
 | |
|     if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
 | |
|       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
 | |
|                    << " which has zero size or starts outside of the "
 | |
|                    << AllocSize << " byte alloca:\n"
 | |
|                    << "    alloca: " << S.AI << "\n"
 | |
|                    << "       use: " << I << "\n");
 | |
|       return markAsDead(I);
 | |
|     }
 | |
| 
 | |
|     uint64_t BeginOffset = Offset.getZExtValue();
 | |
|     uint64_t EndOffset = BeginOffset + Size;
 | |
| 
 | |
|     // Clamp the end offset to the end of the allocation. Note that this is
 | |
|     // formulated to handle even the case where "BeginOffset + Size" overflows.
 | |
|     // This may appear superficially to be something we could ignore entirely,
 | |
|     // but that is not so! There may be widened loads or PHI-node uses where
 | |
|     // some instructions are dead but not others. We can't completely ignore
 | |
|     // them, and so have to record at least the information here.
 | |
|     assert(AllocSize >= BeginOffset); // Established above.
 | |
|     if (Size > AllocSize - BeginOffset) {
 | |
|       DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
 | |
|                    << " to remain within the " << AllocSize << " byte alloca:\n"
 | |
|                    << "    alloca: " << S.AI << "\n"
 | |
|                    << "       use: " << I << "\n");
 | |
|       EndOffset = AllocSize;
 | |
|     }
 | |
| 
 | |
|     S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
 | |
|   }
 | |
| 
 | |
|   void visitBitCastInst(BitCastInst &BC) {
 | |
|     if (BC.use_empty())
 | |
|       return markAsDead(BC);
 | |
| 
 | |
|     return Base::visitBitCastInst(BC);
 | |
|   }
 | |
| 
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|     if (GEPI.use_empty())
 | |
|       return markAsDead(GEPI);
 | |
| 
 | |
|     return Base::visitGetElementPtrInst(GEPI);
 | |
|   }
 | |
| 
 | |
|   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
 | |
|                          uint64_t Size, bool IsVolatile) {
 | |
|     // We allow splitting of loads and stores where the type is an integer type
 | |
|     // and cover the entire alloca. This prevents us from splitting over
 | |
|     // eagerly.
 | |
|     // FIXME: In the great blue eventually, we should eagerly split all integer
 | |
|     // loads and stores, and then have a separate step that merges adjacent
 | |
|     // alloca partitions into a single partition suitable for integer widening.
 | |
|     // Or we should skip the merge step and rely on GVN and other passes to
 | |
|     // merge adjacent loads and stores that survive mem2reg.
 | |
|     bool IsSplittable =
 | |
|         Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
 | |
| 
 | |
|     insertUse(I, Offset, Size, IsSplittable);
 | |
|   }
 | |
| 
 | |
|   void visitLoadInst(LoadInst &LI) {
 | |
|     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
 | |
|            "All simple FCA loads should have been pre-split");
 | |
| 
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&LI);
 | |
| 
 | |
|     uint64_t Size = DL.getTypeStoreSize(LI.getType());
 | |
|     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
 | |
|   }
 | |
| 
 | |
|   void visitStoreInst(StoreInst &SI) {
 | |
|     Value *ValOp = SI.getValueOperand();
 | |
|     if (ValOp == *U)
 | |
|       return PI.setEscapedAndAborted(&SI);
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&SI);
 | |
| 
 | |
|     uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
 | |
| 
 | |
|     // If this memory access can be shown to *statically* extend outside the
 | |
|     // bounds of of the allocation, it's behavior is undefined, so simply
 | |
|     // ignore it. Note that this is more strict than the generic clamping
 | |
|     // behavior of insertUse. We also try to handle cases which might run the
 | |
|     // risk of overflow.
 | |
|     // FIXME: We should instead consider the pointer to have escaped if this
 | |
|     // function is being instrumented for addressing bugs or race conditions.
 | |
|     if (Offset.isNegative() || Size > AllocSize ||
 | |
|         Offset.ugt(AllocSize - Size)) {
 | |
|       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
 | |
|                    << " which extends past the end of the " << AllocSize
 | |
|                    << " byte alloca:\n"
 | |
|                    << "    alloca: " << S.AI << "\n"
 | |
|                    << "       use: " << SI << "\n");
 | |
|       return markAsDead(SI);
 | |
|     }
 | |
| 
 | |
|     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
 | |
|            "All simple FCA stores should have been pre-split");
 | |
|     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void visitMemSetInst(MemSetInst &II) {
 | |
|     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     if ((Length && Length->getValue() == 0) ||
 | |
|         (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
 | |
|       // Zero-length mem transfer intrinsics can be ignored entirely.
 | |
|       return markAsDead(II);
 | |
| 
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&II);
 | |
| 
 | |
|     insertUse(II, Offset,
 | |
|               Length ? Length->getLimitedValue()
 | |
|                      : AllocSize - Offset.getLimitedValue(),
 | |
|               (bool)Length);
 | |
|   }
 | |
| 
 | |
|   void visitMemTransferInst(MemTransferInst &II) {
 | |
|     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
 | |
|     if ((Length && Length->getValue() == 0) ||
 | |
|         (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
 | |
|       // Zero-length mem transfer intrinsics can be ignored entirely.
 | |
|       return markAsDead(II);
 | |
| 
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&II);
 | |
| 
 | |
|     uint64_t RawOffset = Offset.getLimitedValue();
 | |
|     uint64_t Size = Length ? Length->getLimitedValue()
 | |
|                            : AllocSize - RawOffset;
 | |
| 
 | |
|     // Check for the special case where the same exact value is used for both
 | |
|     // source and dest.
 | |
|     if (*U == II.getRawDest() && *U == II.getRawSource()) {
 | |
|       // For non-volatile transfers this is a no-op.
 | |
|       if (!II.isVolatile())
 | |
|         return markAsDead(II);
 | |
| 
 | |
|       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
 | |
|     }
 | |
| 
 | |
|     // If we have seen both source and destination for a mem transfer, then
 | |
|     // they both point to the same alloca.
 | |
|     bool Inserted;
 | |
|     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
 | |
|     llvm::tie(MTPI, Inserted) =
 | |
|         MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
 | |
|     unsigned PrevIdx = MTPI->second;
 | |
|     if (!Inserted) {
 | |
|       Slice &PrevP = S.Slices[PrevIdx];
 | |
| 
 | |
|       // Check if the begin offsets match and this is a non-volatile transfer.
 | |
|       // In that case, we can completely elide the transfer.
 | |
|       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
 | |
|         PrevP.kill();
 | |
|         return markAsDead(II);
 | |
|       }
 | |
| 
 | |
|       // Otherwise we have an offset transfer within the same alloca. We can't
 | |
|       // split those.
 | |
|       PrevP.makeUnsplittable();
 | |
|     }
 | |
| 
 | |
|     // Insert the use now that we've fixed up the splittable nature.
 | |
|     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
 | |
| 
 | |
|     // Check that we ended up with a valid index in the map.
 | |
|     assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
 | |
|            "Map index doesn't point back to a slice with this user.");
 | |
|   }
 | |
| 
 | |
|   // Disable SRoA for any intrinsics except for lifetime invariants.
 | |
|   // FIXME: What about debug intrinsics? This matches old behavior, but
 | |
|   // doesn't make sense.
 | |
|   void visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&II);
 | |
| 
 | |
|     if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|         II.getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
 | |
|       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
 | |
|                                Length->getLimitedValue());
 | |
|       insertUse(II, Offset, Size, true);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Base::visitIntrinsicInst(II);
 | |
|   }
 | |
| 
 | |
|   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
 | |
|     // We consider any PHI or select that results in a direct load or store of
 | |
|     // the same offset to be a viable use for slicing purposes. These uses
 | |
|     // are considered unsplittable and the size is the maximum loaded or stored
 | |
|     // size.
 | |
|     SmallPtrSet<Instruction *, 4> Visited;
 | |
|     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
 | |
|     Visited.insert(Root);
 | |
|     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
 | |
|     // If there are no loads or stores, the access is dead. We mark that as
 | |
|     // a size zero access.
 | |
|     Size = 0;
 | |
|     do {
 | |
|       Instruction *I, *UsedI;
 | |
|       llvm::tie(UsedI, I) = Uses.pop_back_val();
 | |
| 
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
 | |
|         continue;
 | |
|       }
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|         Value *Op = SI->getOperand(0);
 | |
|         if (Op == UsedI)
 | |
|           return SI;
 | |
|         Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         if (!GEP->hasAllZeroIndices())
 | |
|           return GEP;
 | |
|       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
 | |
|                  !isa<SelectInst>(I)) {
 | |
|         return I;
 | |
|       }
 | |
| 
 | |
|       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
 | |
|            ++UI)
 | |
|         if (Visited.insert(cast<Instruction>(*UI)))
 | |
|           Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
 | |
|     } while (!Uses.empty());
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   void visitPHINode(PHINode &PN) {
 | |
|     if (PN.use_empty())
 | |
|       return markAsDead(PN);
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&PN);
 | |
| 
 | |
|     // See if we already have computed info on this node.
 | |
|     uint64_t &PHISize = PHIOrSelectSizes[&PN];
 | |
|     if (!PHISize) {
 | |
|       // This is a new PHI node, check for an unsafe use of the PHI node.
 | |
|       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
 | |
|         return PI.setAborted(UnsafeI);
 | |
|     }
 | |
| 
 | |
|     // For PHI and select operands outside the alloca, we can't nuke the entire
 | |
|     // phi or select -- the other side might still be relevant, so we special
 | |
|     // case them here and use a separate structure to track the operands
 | |
|     // themselves which should be replaced with undef.
 | |
|     // FIXME: This should instead be escaped in the event we're instrumenting
 | |
|     // for address sanitization.
 | |
|     if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
 | |
|         (!Offset.isNegative() && Offset.uge(AllocSize))) {
 | |
|       S.DeadOperands.push_back(U);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     insertUse(PN, Offset, PHISize);
 | |
|   }
 | |
| 
 | |
|   void visitSelectInst(SelectInst &SI) {
 | |
|     if (SI.use_empty())
 | |
|       return markAsDead(SI);
 | |
|     if (Value *Result = foldSelectInst(SI)) {
 | |
|       if (Result == *U)
 | |
|         // If the result of the constant fold will be the pointer, recurse
 | |
|         // through the select as if we had RAUW'ed it.
 | |
|         enqueueUsers(SI);
 | |
|       else
 | |
|         // Otherwise the operand to the select is dead, and we can replace it
 | |
|         // with undef.
 | |
|         S.DeadOperands.push_back(U);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
|     if (!IsOffsetKnown)
 | |
|       return PI.setAborted(&SI);
 | |
| 
 | |
|     // See if we already have computed info on this node.
 | |
|     uint64_t &SelectSize = PHIOrSelectSizes[&SI];
 | |
|     if (!SelectSize) {
 | |
|       // This is a new Select, check for an unsafe use of it.
 | |
|       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
 | |
|         return PI.setAborted(UnsafeI);
 | |
|     }
 | |
| 
 | |
|     // For PHI and select operands outside the alloca, we can't nuke the entire
 | |
|     // phi or select -- the other side might still be relevant, so we special
 | |
|     // case them here and use a separate structure to track the operands
 | |
|     // themselves which should be replaced with undef.
 | |
|     // FIXME: This should instead be escaped in the event we're instrumenting
 | |
|     // for address sanitization.
 | |
|     if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
 | |
|         (!Offset.isNegative() && Offset.uge(AllocSize))) {
 | |
|       S.DeadOperands.push_back(U);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     insertUse(SI, Offset, SelectSize);
 | |
|   }
 | |
| 
 | |
|   /// \brief Disable SROA entirely if there are unhandled users of the alloca.
 | |
|   void visitInstruction(Instruction &I) {
 | |
|     PI.setAborted(&I);
 | |
|   }
 | |
| };
 | |
| 
 | |
| AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
 | |
|     :
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|       AI(AI),
 | |
| #endif
 | |
|       PointerEscapingInstr(0) {
 | |
|   SliceBuilder PB(DL, AI, *this);
 | |
|   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
 | |
|   if (PtrI.isEscaped() || PtrI.isAborted()) {
 | |
|     // FIXME: We should sink the escape vs. abort info into the caller nicely,
 | |
|     // possibly by just storing the PtrInfo in the AllocaSlices.
 | |
|     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
 | |
|                                                   : PtrI.getAbortingInst();
 | |
|     assert(PointerEscapingInstr && "Did not track a bad instruction");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
 | |
|                               std::mem_fun_ref(&Slice::isDead)),
 | |
|                Slices.end());
 | |
| 
 | |
|   // Sort the uses. This arranges for the offsets to be in ascending order,
 | |
|   // and the sizes to be in descending order.
 | |
|   std::sort(Slices.begin(), Slices.end());
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| 
 | |
| void AllocaSlices::print(raw_ostream &OS, const_iterator I,
 | |
|                          StringRef Indent) const {
 | |
|   printSlice(OS, I, Indent);
 | |
|   printUse(OS, I, Indent);
 | |
| }
 | |
| 
 | |
| void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
 | |
|                               StringRef Indent) const {
 | |
|   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
 | |
|      << " slice #" << (I - begin())
 | |
|      << (I->isSplittable() ? " (splittable)" : "") << "\n";
 | |
| }
 | |
| 
 | |
| void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
 | |
|                             StringRef Indent) const {
 | |
|   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
 | |
| }
 | |
| 
 | |
| void AllocaSlices::print(raw_ostream &OS) const {
 | |
|   if (PointerEscapingInstr) {
 | |
|     OS << "Can't analyze slices for alloca: " << AI << "\n"
 | |
|        << "  A pointer to this alloca escaped by:\n"
 | |
|        << "  " << *PointerEscapingInstr << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   OS << "Slices of alloca: " << AI << "\n";
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I)
 | |
|     print(OS, I);
 | |
| }
 | |
| 
 | |
| void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); }
 | |
| void AllocaSlices::dump() const { print(dbgs()); }
 | |
| 
 | |
| #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| 
 | |
| namespace {
 | |
| /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
 | |
| ///
 | |
| /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
 | |
| /// the loads and stores of an alloca instruction, as well as updating its
 | |
| /// debug information. This is used when a domtree is unavailable and thus
 | |
| /// mem2reg in its full form can't be used to handle promotion of allocas to
 | |
| /// scalar values.
 | |
| class AllocaPromoter : public LoadAndStorePromoter {
 | |
|   AllocaInst &AI;
 | |
|   DIBuilder &DIB;
 | |
| 
 | |
|   SmallVector<DbgDeclareInst *, 4> DDIs;
 | |
|   SmallVector<DbgValueInst *, 4> DVIs;
 | |
| 
 | |
| public:
 | |
|   AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
 | |
|                  AllocaInst &AI, DIBuilder &DIB)
 | |
|       : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
 | |
| 
 | |
|   void run(const SmallVectorImpl<Instruction*> &Insts) {
 | |
|     // Retain the debug information attached to the alloca for use when
 | |
|     // rewriting loads and stores.
 | |
|     if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
 | |
|       for (Value::use_iterator UI = DebugNode->use_begin(),
 | |
|                                UE = DebugNode->use_end();
 | |
|            UI != UE; ++UI)
 | |
|         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | |
|           DDIs.push_back(DDI);
 | |
|         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
 | |
|           DVIs.push_back(DVI);
 | |
|     }
 | |
| 
 | |
|     LoadAndStorePromoter::run(Insts);
 | |
| 
 | |
|     // While we have the debug information, clear it off of the alloca. The
 | |
|     // caller takes care of deleting the alloca.
 | |
|     while (!DDIs.empty())
 | |
|       DDIs.pop_back_val()->eraseFromParent();
 | |
|     while (!DVIs.empty())
 | |
|       DVIs.pop_back_val()->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   virtual bool isInstInList(Instruction *I,
 | |
|                             const SmallVectorImpl<Instruction*> &Insts) const {
 | |
|     Value *Ptr;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|       Ptr = LI->getOperand(0);
 | |
|     else
 | |
|       Ptr = cast<StoreInst>(I)->getPointerOperand();
 | |
| 
 | |
|     // Only used to detect cycles, which will be rare and quickly found as
 | |
|     // we're walking up a chain of defs rather than down through uses.
 | |
|     SmallPtrSet<Value *, 4> Visited;
 | |
| 
 | |
|     do {
 | |
|       if (Ptr == &AI)
 | |
|         return true;
 | |
| 
 | |
|       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
 | |
|         Ptr = BCI->getOperand(0);
 | |
|       else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|         Ptr = GEPI->getPointerOperand();
 | |
|       else
 | |
|         return false;
 | |
| 
 | |
|     } while (Visited.insert(Ptr));
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual void updateDebugInfo(Instruction *Inst) const {
 | |
|     for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
 | |
|            E = DDIs.end(); I != E; ++I) {
 | |
|       DbgDeclareInst *DDI = *I;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | |
|       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | |
|     }
 | |
|     for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
 | |
|            E = DVIs.end(); I != E; ++I) {
 | |
|       DbgValueInst *DVI = *I;
 | |
|       Value *Arg = 0;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|         // If an argument is zero extended then use argument directly. The ZExt
 | |
|         // may be zapped by an optimization pass in future.
 | |
|         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
 | |
|         else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(SExt->getOperand(0));
 | |
|         if (!Arg)
 | |
|           Arg = SI->getValueOperand();
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|         Arg = LI->getPointerOperand();
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|       Instruction *DbgVal =
 | |
|         DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
 | |
|                                      Inst);
 | |
|       DbgVal->setDebugLoc(DVI->getDebugLoc());
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// \brief An optimization pass providing Scalar Replacement of Aggregates.
 | |
| ///
 | |
| /// This pass takes allocations which can be completely analyzed (that is, they
 | |
| /// don't escape) and tries to turn them into scalar SSA values. There are
 | |
| /// a few steps to this process.
 | |
| ///
 | |
| /// 1) It takes allocations of aggregates and analyzes the ways in which they
 | |
| ///    are used to try to split them into smaller allocations, ideally of
 | |
| ///    a single scalar data type. It will split up memcpy and memset accesses
 | |
| ///    as necessary and try to isolate individual scalar accesses.
 | |
| /// 2) It will transform accesses into forms which are suitable for SSA value
 | |
| ///    promotion. This can be replacing a memset with a scalar store of an
 | |
| ///    integer value, or it can involve speculating operations on a PHI or
 | |
| ///    select to be a PHI or select of the results.
 | |
| /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
 | |
| ///    onto insert and extract operations on a vector value, and convert them to
 | |
| ///    this form. By doing so, it will enable promotion of vector aggregates to
 | |
| ///    SSA vector values.
 | |
| class SROA : public FunctionPass {
 | |
|   const bool RequiresDomTree;
 | |
| 
 | |
|   LLVMContext *C;
 | |
|   const DataLayout *DL;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   /// \brief Worklist of alloca instructions to simplify.
 | |
|   ///
 | |
|   /// Each alloca in the function is added to this. Each new alloca formed gets
 | |
|   /// added to it as well to recursively simplify unless that alloca can be
 | |
|   /// directly promoted. Finally, each time we rewrite a use of an alloca other
 | |
|   /// the one being actively rewritten, we add it back onto the list if not
 | |
|   /// already present to ensure it is re-visited.
 | |
|   SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
 | |
| 
 | |
|   /// \brief A collection of instructions to delete.
 | |
|   /// We try to batch deletions to simplify code and make things a bit more
 | |
|   /// efficient.
 | |
|   SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
 | |
| 
 | |
|   /// \brief Post-promotion worklist.
 | |
|   ///
 | |
|   /// Sometimes we discover an alloca which has a high probability of becoming
 | |
|   /// viable for SROA after a round of promotion takes place. In those cases,
 | |
|   /// the alloca is enqueued here for re-processing.
 | |
|   ///
 | |
|   /// Note that we have to be very careful to clear allocas out of this list in
 | |
|   /// the event they are deleted.
 | |
|   SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
 | |
| 
 | |
|   /// \brief A collection of alloca instructions we can directly promote.
 | |
|   std::vector<AllocaInst *> PromotableAllocas;
 | |
| 
 | |
|   /// \brief A worklist of PHIs to speculate prior to promoting allocas.
 | |
|   ///
 | |
|   /// All of these PHIs have been checked for the safety of speculation and by
 | |
|   /// being speculated will allow promoting allocas currently in the promotable
 | |
|   /// queue.
 | |
|   SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
 | |
| 
 | |
|   /// \brief A worklist of select instructions to speculate prior to promoting
 | |
|   /// allocas.
 | |
|   ///
 | |
|   /// All of these select instructions have been checked for the safety of
 | |
|   /// speculation and by being speculated will allow promoting allocas
 | |
|   /// currently in the promotable queue.
 | |
|   SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
 | |
| 
 | |
| public:
 | |
|   SROA(bool RequiresDomTree = true)
 | |
|       : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
 | |
|         C(0), DL(0), DT(0) {
 | |
|     initializeSROAPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   bool runOnFunction(Function &F);
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   const char *getPassName() const { return "SROA"; }
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   friend class PHIOrSelectSpeculator;
 | |
|   friend class AllocaSliceRewriter;
 | |
| 
 | |
|   bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
 | |
|                         AllocaSlices::iterator B, AllocaSlices::iterator E,
 | |
|                         int64_t BeginOffset, int64_t EndOffset,
 | |
|                         ArrayRef<AllocaSlices::iterator> SplitUses);
 | |
|   bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
 | |
|   bool runOnAlloca(AllocaInst &AI);
 | |
|   void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
 | |
|   bool promoteAllocas(Function &F);
 | |
| };
 | |
| }
 | |
| 
 | |
| char SROA::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
 | |
|   return new SROA(RequiresDomTree);
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
 | |
|                     false, false)
 | |
| 
 | |
| /// Walk the range of a partitioning looking for a common type to cover this
 | |
| /// sequence of slices.
 | |
| static Type *findCommonType(AllocaSlices::const_iterator B,
 | |
|                             AllocaSlices::const_iterator E,
 | |
|                             uint64_t EndOffset) {
 | |
|   Type *Ty = 0;
 | |
|   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
 | |
|     Use *U = I->getUse();
 | |
|     if (isa<IntrinsicInst>(*U->getUser()))
 | |
|       continue;
 | |
|     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
 | |
|       continue;
 | |
| 
 | |
|     Type *UserTy = 0;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
 | |
|       UserTy = LI->getType();
 | |
|     else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
 | |
|       UserTy = SI->getValueOperand()->getType();
 | |
|     else
 | |
|       return 0; // Bail if we have weird uses.
 | |
| 
 | |
|     if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
 | |
|       // If the type is larger than the partition, skip it. We only encounter
 | |
|       // this for split integer operations where we want to use the type of the
 | |
|       // entity causing the split.
 | |
|       if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
 | |
|         continue;
 | |
| 
 | |
|       // If we have found an integer type use covering the alloca, use that
 | |
|       // regardless of the other types, as integers are often used for a
 | |
|       // "bucket
 | |
|       // of bits" type.
 | |
|       return ITy;
 | |
|     }
 | |
| 
 | |
|     if (Ty && Ty != UserTy)
 | |
|       return 0;
 | |
| 
 | |
|     Ty = UserTy;
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// PHI instructions that use an alloca and are subsequently loaded can be
 | |
| /// rewritten to load both input pointers in the pred blocks and then PHI the
 | |
| /// results, allowing the load of the alloca to be promoted.
 | |
| /// From this:
 | |
| ///   %P2 = phi [i32* %Alloca, i32* %Other]
 | |
| ///   %V = load i32* %P2
 | |
| /// to:
 | |
| ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
| ///   ...
 | |
| ///   %V2 = load i32* %Other
 | |
| ///   ...
 | |
| ///   %V = phi [i32 %V1, i32 %V2]
 | |
| ///
 | |
| /// We can do this to a select if its only uses are loads and if the operands
 | |
| /// to the select can be loaded unconditionally.
 | |
| ///
 | |
| /// FIXME: This should be hoisted into a generic utility, likely in
 | |
| /// Transforms/Util/Local.h
 | |
| static bool isSafePHIToSpeculate(PHINode &PN,
 | |
|                                  const DataLayout *DL = 0) {
 | |
|   // For now, we can only do this promotion if the load is in the same block
 | |
|   // as the PHI, and if there are no stores between the phi and load.
 | |
|   // TODO: Allow recursive phi users.
 | |
|   // TODO: Allow stores.
 | |
|   BasicBlock *BB = PN.getParent();
 | |
|   unsigned MaxAlign = 0;
 | |
|   bool HaveLoad = false;
 | |
|   for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
 | |
|        ++UI) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|     if (LI == 0 || !LI->isSimple())
 | |
|       return false;
 | |
| 
 | |
|     // For now we only allow loads in the same block as the PHI.  This is
 | |
|     // a common case that happens when instcombine merges two loads through
 | |
|     // a PHI.
 | |
|     if (LI->getParent() != BB)
 | |
|       return false;
 | |
| 
 | |
|     // Ensure that there are no instructions between the PHI and the load that
 | |
|     // could store.
 | |
|     for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
 | |
|       if (BBI->mayWriteToMemory())
 | |
|         return false;
 | |
| 
 | |
|     MaxAlign = std::max(MaxAlign, LI->getAlignment());
 | |
|     HaveLoad = true;
 | |
|   }
 | |
| 
 | |
|   if (!HaveLoad)
 | |
|     return false;
 | |
| 
 | |
|   // We can only transform this if it is safe to push the loads into the
 | |
|   // predecessor blocks. The only thing to watch out for is that we can't put
 | |
|   // a possibly trapping load in the predecessor if it is a critical edge.
 | |
|   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
 | |
|     TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
 | |
|     Value *InVal = PN.getIncomingValue(Idx);
 | |
| 
 | |
|     // If the value is produced by the terminator of the predecessor (an
 | |
|     // invoke) or it has side-effects, there is no valid place to put a load
 | |
|     // in the predecessor.
 | |
|     if (TI == InVal || TI->mayHaveSideEffects())
 | |
|       return false;
 | |
| 
 | |
|     // If the predecessor has a single successor, then the edge isn't
 | |
|     // critical.
 | |
|     if (TI->getNumSuccessors() == 1)
 | |
|       continue;
 | |
| 
 | |
|     // If this pointer is always safe to load, or if we can prove that there
 | |
|     // is already a load in the block, then we can move the load to the pred
 | |
|     // block.
 | |
|     if (InVal->isDereferenceablePointer() ||
 | |
|         isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
 | |
|       continue;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void speculatePHINodeLoads(PHINode &PN) {
 | |
|   DEBUG(dbgs() << "    original: " << PN << "\n");
 | |
| 
 | |
|   Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
 | |
|   IRBuilderTy PHIBuilder(&PN);
 | |
|   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
 | |
|                                         PN.getName() + ".sroa.speculated");
 | |
| 
 | |
|   // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
 | |
|   // matter which one we get and if any differ.
 | |
|   LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
 | |
|   MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
 | |
|   unsigned Align = SomeLoad->getAlignment();
 | |
| 
 | |
|   // Rewrite all loads of the PN to use the new PHI.
 | |
|   while (!PN.use_empty()) {
 | |
|     LoadInst *LI = cast<LoadInst>(*PN.use_begin());
 | |
|     LI->replaceAllUsesWith(NewPN);
 | |
|     LI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Inject loads into all of the pred blocks.
 | |
|   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
 | |
|     BasicBlock *Pred = PN.getIncomingBlock(Idx);
 | |
|     TerminatorInst *TI = Pred->getTerminator();
 | |
|     Value *InVal = PN.getIncomingValue(Idx);
 | |
|     IRBuilderTy PredBuilder(TI);
 | |
| 
 | |
|     LoadInst *Load = PredBuilder.CreateLoad(
 | |
|         InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
 | |
|     ++NumLoadsSpeculated;
 | |
|     Load->setAlignment(Align);
 | |
|     if (TBAATag)
 | |
|       Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
|     NewPN->addIncoming(Load, Pred);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
 | |
|   PN.eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// Select instructions that use an alloca and are subsequently loaded can be
 | |
| /// rewritten to load both input pointers and then select between the result,
 | |
| /// allowing the load of the alloca to be promoted.
 | |
| /// From this:
 | |
| ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
 | |
| ///   %V = load i32* %P2
 | |
| /// to:
 | |
| ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
| ///   %V2 = load i32* %Other
 | |
| ///   %V = select i1 %cond, i32 %V1, i32 %V2
 | |
| ///
 | |
| /// We can do this to a select if its only uses are loads and if the operand
 | |
| /// to the select can be loaded unconditionally.
 | |
| static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
 | |
|   Value *TValue = SI.getTrueValue();
 | |
|   Value *FValue = SI.getFalseValue();
 | |
|   bool TDerefable = TValue->isDereferenceablePointer();
 | |
|   bool FDerefable = FValue->isDereferenceablePointer();
 | |
| 
 | |
|   for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
 | |
|        ++UI) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|     if (LI == 0 || !LI->isSimple())
 | |
|       return false;
 | |
| 
 | |
|     // Both operands to the select need to be dereferencable, either
 | |
|     // absolutely (e.g. allocas) or at this point because we can see other
 | |
|     // accesses to it.
 | |
|     if (!TDerefable &&
 | |
|         !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
 | |
|       return false;
 | |
|     if (!FDerefable &&
 | |
|         !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void speculateSelectInstLoads(SelectInst &SI) {
 | |
|   DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
| 
 | |
|   IRBuilderTy IRB(&SI);
 | |
|   Value *TV = SI.getTrueValue();
 | |
|   Value *FV = SI.getFalseValue();
 | |
|   // Replace the loads of the select with a select of two loads.
 | |
|   while (!SI.use_empty()) {
 | |
|     LoadInst *LI = cast<LoadInst>(*SI.use_begin());
 | |
|     assert(LI->isSimple() && "We only speculate simple loads");
 | |
| 
 | |
|     IRB.SetInsertPoint(LI);
 | |
|     LoadInst *TL =
 | |
|         IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
 | |
|     LoadInst *FL =
 | |
|         IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
 | |
|     NumLoadsSpeculated += 2;
 | |
| 
 | |
|     // Transfer alignment and TBAA info if present.
 | |
|     TL->setAlignment(LI->getAlignment());
 | |
|     FL->setAlignment(LI->getAlignment());
 | |
|     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
 | |
|       TL->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|       FL->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|     }
 | |
| 
 | |
|     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
 | |
|                                 LI->getName() + ".sroa.speculated");
 | |
| 
 | |
|     DEBUG(dbgs() << "          speculated to: " << *V << "\n");
 | |
|     LI->replaceAllUsesWith(V);
 | |
|     LI->eraseFromParent();
 | |
|   }
 | |
|   SI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// \brief Build a GEP out of a base pointer and indices.
 | |
| ///
 | |
| /// This will return the BasePtr if that is valid, or build a new GEP
 | |
| /// instruction using the IRBuilder if GEP-ing is needed.
 | |
| static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
 | |
|                        SmallVectorImpl<Value *> &Indices) {
 | |
|   if (Indices.empty())
 | |
|     return BasePtr;
 | |
| 
 | |
|   // A single zero index is a no-op, so check for this and avoid building a GEP
 | |
|   // in that case.
 | |
|   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
 | |
|     return BasePtr;
 | |
| 
 | |
|   return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
 | |
| }
 | |
| 
 | |
| /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
 | |
| /// TargetTy without changing the offset of the pointer.
 | |
| ///
 | |
| /// This routine assumes we've already established a properly offset GEP with
 | |
| /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
 | |
| /// zero-indices down through type layers until we find one the same as
 | |
| /// TargetTy. If we can't find one with the same type, we at least try to use
 | |
| /// one with the same size. If none of that works, we just produce the GEP as
 | |
| /// indicated by Indices to have the correct offset.
 | |
| static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
 | |
|                                     Value *BasePtr, Type *Ty, Type *TargetTy,
 | |
|                                     SmallVectorImpl<Value *> &Indices) {
 | |
|   if (Ty == TargetTy)
 | |
|     return buildGEP(IRB, BasePtr, Indices);
 | |
| 
 | |
|   // See if we can descend into a struct and locate a field with the correct
 | |
|   // type.
 | |
|   unsigned NumLayers = 0;
 | |
|   Type *ElementTy = Ty;
 | |
|   do {
 | |
|     if (ElementTy->isPointerTy())
 | |
|       break;
 | |
|     if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
 | |
|       ElementTy = SeqTy->getElementType();
 | |
|       // Note that we use the default address space as this index is over an
 | |
|       // array or a vector, not a pointer.
 | |
|       Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
 | |
|     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
 | |
|       if (STy->element_begin() == STy->element_end())
 | |
|         break; // Nothing left to descend into.
 | |
|       ElementTy = *STy->element_begin();
 | |
|       Indices.push_back(IRB.getInt32(0));
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     ++NumLayers;
 | |
|   } while (ElementTy != TargetTy);
 | |
|   if (ElementTy != TargetTy)
 | |
|     Indices.erase(Indices.end() - NumLayers, Indices.end());
 | |
| 
 | |
|   return buildGEP(IRB, BasePtr, Indices);
 | |
| }
 | |
| 
 | |
| /// \brief Recursively compute indices for a natural GEP.
 | |
| ///
 | |
| /// This is the recursive step for getNaturalGEPWithOffset that walks down the
 | |
| /// element types adding appropriate indices for the GEP.
 | |
| static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
 | |
|                                        Value *Ptr, Type *Ty, APInt &Offset,
 | |
|                                        Type *TargetTy,
 | |
|                                        SmallVectorImpl<Value *> &Indices) {
 | |
|   if (Offset == 0)
 | |
|     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
 | |
| 
 | |
|   // We can't recurse through pointer types.
 | |
|   if (Ty->isPointerTy())
 | |
|     return 0;
 | |
| 
 | |
|   // We try to analyze GEPs over vectors here, but note that these GEPs are
 | |
|   // extremely poorly defined currently. The long-term goal is to remove GEPing
 | |
|   // over a vector from the IR completely.
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
 | |
|     unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
 | |
|     if (ElementSizeInBits % 8)
 | |
|       return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
 | |
|     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
 | |
|     APInt NumSkippedElements = Offset.sdiv(ElementSize);
 | |
|     if (NumSkippedElements.ugt(VecTy->getNumElements()))
 | |
|       return 0;
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
|     Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
 | |
|                                     Offset, TargetTy, Indices);
 | |
|   }
 | |
| 
 | |
|   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Type *ElementTy = ArrTy->getElementType();
 | |
|     APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
 | |
|     APInt NumSkippedElements = Offset.sdiv(ElementSize);
 | |
|     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
 | |
|       return 0;
 | |
| 
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
|     Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                     Indices);
 | |
|   }
 | |
| 
 | |
|   StructType *STy = dyn_cast<StructType>(Ty);
 | |
|   if (!STy)
 | |
|     return 0;
 | |
| 
 | |
|   const StructLayout *SL = DL.getStructLayout(STy);
 | |
|   uint64_t StructOffset = Offset.getZExtValue();
 | |
|   if (StructOffset >= SL->getSizeInBytes())
 | |
|     return 0;
 | |
|   unsigned Index = SL->getElementContainingOffset(StructOffset);
 | |
|   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
 | |
|   Type *ElementTy = STy->getElementType(Index);
 | |
|   if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
 | |
|     return 0; // The offset points into alignment padding.
 | |
| 
 | |
|   Indices.push_back(IRB.getInt32(Index));
 | |
|   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                   Indices);
 | |
| }
 | |
| 
 | |
| /// \brief Get a natural GEP from a base pointer to a particular offset and
 | |
| /// resulting in a particular type.
 | |
| ///
 | |
| /// The goal is to produce a "natural" looking GEP that works with the existing
 | |
| /// composite types to arrive at the appropriate offset and element type for
 | |
| /// a pointer. TargetTy is the element type the returned GEP should point-to if
 | |
| /// possible. We recurse by decreasing Offset, adding the appropriate index to
 | |
| /// Indices, and setting Ty to the result subtype.
 | |
| ///
 | |
| /// If no natural GEP can be constructed, this function returns null.
 | |
| static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
 | |
|                                       Value *Ptr, APInt Offset, Type *TargetTy,
 | |
|                                       SmallVectorImpl<Value *> &Indices) {
 | |
|   PointerType *Ty = cast<PointerType>(Ptr->getType());
 | |
| 
 | |
|   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
 | |
|   // an i8.
 | |
|   if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
 | |
|     return 0;
 | |
| 
 | |
|   Type *ElementTy = Ty->getElementType();
 | |
|   if (!ElementTy->isSized())
 | |
|     return 0; // We can't GEP through an unsized element.
 | |
|   APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
 | |
|   if (ElementSize == 0)
 | |
|     return 0; // Zero-length arrays can't help us build a natural GEP.
 | |
|   APInt NumSkippedElements = Offset.sdiv(ElementSize);
 | |
| 
 | |
|   Offset -= NumSkippedElements * ElementSize;
 | |
|   Indices.push_back(IRB.getInt(NumSkippedElements));
 | |
|   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
 | |
|                                   Indices);
 | |
| }
 | |
| 
 | |
| /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
 | |
| /// resulting pointer has PointerTy.
 | |
| ///
 | |
| /// This tries very hard to compute a "natural" GEP which arrives at the offset
 | |
| /// and produces the pointer type desired. Where it cannot, it will try to use
 | |
| /// the natural GEP to arrive at the offset and bitcast to the type. Where that
 | |
| /// fails, it will try to use an existing i8* and GEP to the byte offset and
 | |
| /// bitcast to the type.
 | |
| ///
 | |
| /// The strategy for finding the more natural GEPs is to peel off layers of the
 | |
| /// pointer, walking back through bit casts and GEPs, searching for a base
 | |
| /// pointer from which we can compute a natural GEP with the desired
 | |
| /// properties. The algorithm tries to fold as many constant indices into
 | |
| /// a single GEP as possible, thus making each GEP more independent of the
 | |
| /// surrounding code.
 | |
| static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
 | |
|                              Value *Ptr, APInt Offset, Type *PointerTy) {
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(Ptr);
 | |
|   SmallVector<Value *, 4> Indices;
 | |
| 
 | |
|   // We may end up computing an offset pointer that has the wrong type. If we
 | |
|   // never are able to compute one directly that has the correct type, we'll
 | |
|   // fall back to it, so keep it around here.
 | |
|   Value *OffsetPtr = 0;
 | |
| 
 | |
|   // Remember any i8 pointer we come across to re-use if we need to do a raw
 | |
|   // byte offset.
 | |
|   Value *Int8Ptr = 0;
 | |
|   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
 | |
| 
 | |
|   Type *TargetTy = PointerTy->getPointerElementType();
 | |
| 
 | |
|   do {
 | |
|     // First fold any existing GEPs into the offset.
 | |
|     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | |
|       APInt GEPOffset(Offset.getBitWidth(), 0);
 | |
|       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
 | |
|         break;
 | |
|       Offset += GEPOffset;
 | |
|       Ptr = GEP->getPointerOperand();
 | |
|       if (!Visited.insert(Ptr))
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // See if we can perform a natural GEP here.
 | |
|     Indices.clear();
 | |
|     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
 | |
|                                            Indices)) {
 | |
|       if (P->getType() == PointerTy) {
 | |
|         // Zap any offset pointer that we ended up computing in previous rounds.
 | |
|         if (OffsetPtr && OffsetPtr->use_empty())
 | |
|           if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
 | |
|             I->eraseFromParent();
 | |
|         return P;
 | |
|       }
 | |
|       if (!OffsetPtr) {
 | |
|         OffsetPtr = P;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Stash this pointer if we've found an i8*.
 | |
|     if (Ptr->getType()->isIntegerTy(8)) {
 | |
|       Int8Ptr = Ptr;
 | |
|       Int8PtrOffset = Offset;
 | |
|     }
 | |
| 
 | |
|     // Peel off a layer of the pointer and update the offset appropriately.
 | |
|     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
 | |
|       Ptr = cast<Operator>(Ptr)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         break;
 | |
|       Ptr = GA->getAliasee();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(Ptr));
 | |
| 
 | |
|   if (!OffsetPtr) {
 | |
|     if (!Int8Ptr) {
 | |
|       Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
 | |
|                                   "raw_cast");
 | |
|       Int8PtrOffset = Offset;
 | |
|     }
 | |
| 
 | |
|     OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
 | |
|       IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
 | |
|                             "raw_idx");
 | |
|   }
 | |
|   Ptr = OffsetPtr;
 | |
| 
 | |
|   // On the off chance we were targeting i8*, guard the bitcast here.
 | |
|   if (Ptr->getType() != PointerTy)
 | |
|     Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
 | |
| 
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether we can convert a value from the old to the new type.
 | |
| ///
 | |
| /// This predicate should be used to guard calls to convertValue in order to
 | |
| /// ensure that we only try to convert viable values. The strategy is that we
 | |
| /// will peel off single element struct and array wrappings to get to an
 | |
| /// underlying value, and convert that value.
 | |
| static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
 | |
|   if (OldTy == NewTy)
 | |
|     return true;
 | |
|   if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
 | |
|     if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
 | |
|       if (NewITy->getBitWidth() >= OldITy->getBitWidth())
 | |
|         return true;
 | |
|   if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
 | |
|     return false;
 | |
|   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
 | |
|     return false;
 | |
| 
 | |
|   // We can convert pointers to integers and vice-versa. Same for vectors
 | |
|   // of pointers and integers.
 | |
|   OldTy = OldTy->getScalarType();
 | |
|   NewTy = NewTy->getScalarType();
 | |
|   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
 | |
|     if (NewTy->isPointerTy() && OldTy->isPointerTy())
 | |
|       return true;
 | |
|     if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Generic routine to convert an SSA value to a value of a different
 | |
| /// type.
 | |
| ///
 | |
| /// This will try various different casting techniques, such as bitcasts,
 | |
| /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
 | |
| /// two types for viability with this routine.
 | |
| static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
 | |
|                            Type *NewTy) {
 | |
|   Type *OldTy = V->getType();
 | |
|   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
 | |
| 
 | |
|   if (OldTy == NewTy)
 | |
|     return V;
 | |
| 
 | |
|   if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
 | |
|     if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
 | |
|       if (NewITy->getBitWidth() > OldITy->getBitWidth())
 | |
|         return IRB.CreateZExt(V, NewITy);
 | |
| 
 | |
|   // See if we need inttoptr for this type pair. A cast involving both scalars
 | |
|   // and vectors requires and additional bitcast.
 | |
|   if (OldTy->getScalarType()->isIntegerTy() &&
 | |
|       NewTy->getScalarType()->isPointerTy()) {
 | |
|     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
 | |
|     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
 | |
|       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
 | |
|                                 NewTy);
 | |
| 
 | |
|     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
 | |
|     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
 | |
|       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
 | |
|                                 NewTy);
 | |
| 
 | |
|     return IRB.CreateIntToPtr(V, NewTy);
 | |
|   }
 | |
| 
 | |
|   // See if we need ptrtoint for this type pair. A cast involving both scalars
 | |
|   // and vectors requires and additional bitcast.
 | |
|   if (OldTy->getScalarType()->isPointerTy() &&
 | |
|       NewTy->getScalarType()->isIntegerTy()) {
 | |
|     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
 | |
|     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
 | |
|       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
 | |
|                                NewTy);
 | |
| 
 | |
|     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
 | |
|     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
 | |
|       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
 | |
|                                NewTy);
 | |
| 
 | |
|     return IRB.CreatePtrToInt(V, NewTy);
 | |
|   }
 | |
| 
 | |
|   return IRB.CreateBitCast(V, NewTy);
 | |
| }
 | |
| 
 | |
| /// \brief Test whether the given slice use can be promoted to a vector.
 | |
| ///
 | |
| /// This function is called to test each entry in a partioning which is slated
 | |
| /// for a single slice.
 | |
| static bool isVectorPromotionViableForSlice(
 | |
|     const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
 | |
|     uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
 | |
|     AllocaSlices::const_iterator I) {
 | |
|   // First validate the slice offsets.
 | |
|   uint64_t BeginOffset =
 | |
|       std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
 | |
|   uint64_t BeginIndex = BeginOffset / ElementSize;
 | |
|   if (BeginIndex * ElementSize != BeginOffset ||
 | |
|       BeginIndex >= Ty->getNumElements())
 | |
|     return false;
 | |
|   uint64_t EndOffset =
 | |
|       std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
 | |
|   uint64_t EndIndex = EndOffset / ElementSize;
 | |
|   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
 | |
|     return false;
 | |
| 
 | |
|   assert(EndIndex > BeginIndex && "Empty vector!");
 | |
|   uint64_t NumElements = EndIndex - BeginIndex;
 | |
|   Type *SliceTy =
 | |
|       (NumElements == 1) ? Ty->getElementType()
 | |
|                          : VectorType::get(Ty->getElementType(), NumElements);
 | |
| 
 | |
|   Type *SplitIntTy =
 | |
|       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
 | |
| 
 | |
|   Use *U = I->getUse();
 | |
| 
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
 | |
|     if (MI->isVolatile())
 | |
|       return false;
 | |
|     if (!I->isSplittable())
 | |
|       return false; // Skip any unsplittable intrinsics.
 | |
|   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
 | |
|     // Disable vector promotion when there are loads or stores of an FCA.
 | |
|     return false;
 | |
|   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
 | |
|     if (LI->isVolatile())
 | |
|       return false;
 | |
|     Type *LTy = LI->getType();
 | |
|     if (SliceBeginOffset > I->beginOffset() ||
 | |
|         SliceEndOffset < I->endOffset()) {
 | |
|       assert(LTy->isIntegerTy());
 | |
|       LTy = SplitIntTy;
 | |
|     }
 | |
|     if (!canConvertValue(DL, SliceTy, LTy))
 | |
|       return false;
 | |
|   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
 | |
|     if (SI->isVolatile())
 | |
|       return false;
 | |
|     Type *STy = SI->getValueOperand()->getType();
 | |
|     if (SliceBeginOffset > I->beginOffset() ||
 | |
|         SliceEndOffset < I->endOffset()) {
 | |
|       assert(STy->isIntegerTy());
 | |
|       STy = SplitIntTy;
 | |
|     }
 | |
|     if (!canConvertValue(DL, STy, SliceTy))
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether the given alloca partitioning and range of slices can be
 | |
| /// promoted to a vector.
 | |
| ///
 | |
| /// This is a quick test to check whether we can rewrite a particular alloca
 | |
| /// partition (and its newly formed alloca) into a vector alloca with only
 | |
| /// whole-vector loads and stores such that it could be promoted to a vector
 | |
| /// SSA value. We only can ensure this for a limited set of operations, and we
 | |
| /// don't want to do the rewrites unless we are confident that the result will
 | |
| /// be promotable, so we have an early test here.
 | |
| static bool
 | |
| isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
 | |
|                         uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
 | |
|                         AllocaSlices::const_iterator I,
 | |
|                         AllocaSlices::const_iterator E,
 | |
|                         ArrayRef<AllocaSlices::iterator> SplitUses) {
 | |
|   VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
 | |
|   if (!Ty)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
 | |
| 
 | |
|   // While the definition of LLVM vectors is bitpacked, we don't support sizes
 | |
|   // that aren't byte sized.
 | |
|   if (ElementSize % 8)
 | |
|     return false;
 | |
|   assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
 | |
|          "vector size not a multiple of element size?");
 | |
|   ElementSize /= 8;
 | |
| 
 | |
|   for (; I != E; ++I)
 | |
|     if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
 | |
|                                          SliceEndOffset, Ty, ElementSize, I))
 | |
|       return false;
 | |
| 
 | |
|   for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
 | |
|                                                         SUE = SplitUses.end();
 | |
|        SUI != SUE; ++SUI)
 | |
|     if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
 | |
|                                          SliceEndOffset, Ty, ElementSize, *SUI))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether a slice of an alloca is valid for integer widening.
 | |
| ///
 | |
| /// This implements the necessary checking for the \c isIntegerWideningViable
 | |
| /// test below on a single slice of the alloca.
 | |
| static bool isIntegerWideningViableForSlice(const DataLayout &DL,
 | |
|                                             Type *AllocaTy,
 | |
|                                             uint64_t AllocBeginOffset,
 | |
|                                             uint64_t Size, AllocaSlices &S,
 | |
|                                             AllocaSlices::const_iterator I,
 | |
|                                             bool &WholeAllocaOp) {
 | |
|   uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
 | |
|   uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
 | |
| 
 | |
|   // We can't reasonably handle cases where the load or store extends past
 | |
|   // the end of the aloca's type and into its padding.
 | |
|   if (RelEnd > Size)
 | |
|     return false;
 | |
| 
 | |
|   Use *U = I->getUse();
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
 | |
|     if (LI->isVolatile())
 | |
|       return false;
 | |
|     if (RelBegin == 0 && RelEnd == Size)
 | |
|       WholeAllocaOp = true;
 | |
|     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
 | |
|       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
 | |
|         return false;
 | |
|     } else if (RelBegin != 0 || RelEnd != Size ||
 | |
|                !canConvertValue(DL, AllocaTy, LI->getType())) {
 | |
|       // Non-integer loads need to be convertible from the alloca type so that
 | |
|       // they are promotable.
 | |
|       return false;
 | |
|     }
 | |
|   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
 | |
|     Type *ValueTy = SI->getValueOperand()->getType();
 | |
|     if (SI->isVolatile())
 | |
|       return false;
 | |
|     if (RelBegin == 0 && RelEnd == Size)
 | |
|       WholeAllocaOp = true;
 | |
|     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
 | |
|       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
 | |
|         return false;
 | |
|     } else if (RelBegin != 0 || RelEnd != Size ||
 | |
|                !canConvertValue(DL, ValueTy, AllocaTy)) {
 | |
|       // Non-integer stores need to be convertible to the alloca type so that
 | |
|       // they are promotable.
 | |
|       return false;
 | |
|     }
 | |
|   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
 | |
|     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
 | |
|       return false;
 | |
|     if (!I->isSplittable())
 | |
|       return false; // Skip any unsplittable intrinsics.
 | |
|   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
 | |
|     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
 | |
|         II->getIntrinsicID() != Intrinsic::lifetime_end)
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether the given alloca partition's integer operations can be
 | |
| /// widened to promotable ones.
 | |
| ///
 | |
| /// This is a quick test to check whether we can rewrite the integer loads and
 | |
| /// stores to a particular alloca into wider loads and stores and be able to
 | |
| /// promote the resulting alloca.
 | |
| static bool
 | |
| isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
 | |
|                         uint64_t AllocBeginOffset, AllocaSlices &S,
 | |
|                         AllocaSlices::const_iterator I,
 | |
|                         AllocaSlices::const_iterator E,
 | |
|                         ArrayRef<AllocaSlices::iterator> SplitUses) {
 | |
|   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
 | |
|   // Don't create integer types larger than the maximum bitwidth.
 | |
|   if (SizeInBits > IntegerType::MAX_INT_BITS)
 | |
|     return false;
 | |
| 
 | |
|   // Don't try to handle allocas with bit-padding.
 | |
|   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
 | |
|     return false;
 | |
| 
 | |
|   // We need to ensure that an integer type with the appropriate bitwidth can
 | |
|   // be converted to the alloca type, whatever that is. We don't want to force
 | |
|   // the alloca itself to have an integer type if there is a more suitable one.
 | |
|   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
 | |
|   if (!canConvertValue(DL, AllocaTy, IntTy) ||
 | |
|       !canConvertValue(DL, IntTy, AllocaTy))
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Size = DL.getTypeStoreSize(AllocaTy);
 | |
| 
 | |
|   // While examining uses, we ensure that the alloca has a covering load or
 | |
|   // store. We don't want to widen the integer operations only to fail to
 | |
|   // promote due to some other unsplittable entry (which we may make splittable
 | |
|   // later). However, if there are only splittable uses, go ahead and assume
 | |
|   // that we cover the alloca.
 | |
|   bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
 | |
| 
 | |
|   for (; I != E; ++I)
 | |
|     if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
 | |
|                                          S, I, WholeAllocaOp))
 | |
|       return false;
 | |
| 
 | |
|   for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
 | |
|                                                         SUE = SplitUses.end();
 | |
|        SUI != SUE; ++SUI)
 | |
|     if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
 | |
|                                          S, *SUI, WholeAllocaOp))
 | |
|       return false;
 | |
| 
 | |
|   return WholeAllocaOp;
 | |
| }
 | |
| 
 | |
| static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
 | |
|                              IntegerType *Ty, uint64_t Offset,
 | |
|                              const Twine &Name) {
 | |
|   DEBUG(dbgs() << "       start: " << *V << "\n");
 | |
|   IntegerType *IntTy = cast<IntegerType>(V->getType());
 | |
|   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
 | |
|          "Element extends past full value");
 | |
|   uint64_t ShAmt = 8*Offset;
 | |
|   if (DL.isBigEndian())
 | |
|     ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
 | |
|   if (ShAmt) {
 | |
|     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
 | |
|     DEBUG(dbgs() << "     shifted: " << *V << "\n");
 | |
|   }
 | |
|   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
 | |
|          "Cannot extract to a larger integer!");
 | |
|   if (Ty != IntTy) {
 | |
|     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
 | |
|     DEBUG(dbgs() << "     trunced: " << *V << "\n");
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
 | |
|                             Value *V, uint64_t Offset, const Twine &Name) {
 | |
|   IntegerType *IntTy = cast<IntegerType>(Old->getType());
 | |
|   IntegerType *Ty = cast<IntegerType>(V->getType());
 | |
|   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
 | |
|          "Cannot insert a larger integer!");
 | |
|   DEBUG(dbgs() << "       start: " << *V << "\n");
 | |
|   if (Ty != IntTy) {
 | |
|     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
 | |
|     DEBUG(dbgs() << "    extended: " << *V << "\n");
 | |
|   }
 | |
|   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
 | |
|          "Element store outside of alloca store");
 | |
|   uint64_t ShAmt = 8*Offset;
 | |
|   if (DL.isBigEndian())
 | |
|     ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
 | |
|   if (ShAmt) {
 | |
|     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
 | |
|     DEBUG(dbgs() << "     shifted: " << *V << "\n");
 | |
|   }
 | |
| 
 | |
|   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
 | |
|     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
 | |
|     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
 | |
|     DEBUG(dbgs() << "      masked: " << *Old << "\n");
 | |
|     V = IRB.CreateOr(Old, V, Name + ".insert");
 | |
|     DEBUG(dbgs() << "    inserted: " << *V << "\n");
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static Value *extractVector(IRBuilderTy &IRB, Value *V,
 | |
|                             unsigned BeginIndex, unsigned EndIndex,
 | |
|                             const Twine &Name) {
 | |
|   VectorType *VecTy = cast<VectorType>(V->getType());
 | |
|   unsigned NumElements = EndIndex - BeginIndex;
 | |
|   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
 | |
| 
 | |
|   if (NumElements == VecTy->getNumElements())
 | |
|     return V;
 | |
| 
 | |
|   if (NumElements == 1) {
 | |
|     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
 | |
|                                  Name + ".extract");
 | |
|     DEBUG(dbgs() << "     extract: " << *V << "\n");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   SmallVector<Constant*, 8> Mask;
 | |
|   Mask.reserve(NumElements);
 | |
|   for (unsigned i = BeginIndex; i != EndIndex; ++i)
 | |
|     Mask.push_back(IRB.getInt32(i));
 | |
|   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | |
|                               ConstantVector::get(Mask),
 | |
|                               Name + ".extract");
 | |
|   DEBUG(dbgs() << "     shuffle: " << *V << "\n");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
 | |
|                            unsigned BeginIndex, const Twine &Name) {
 | |
|   VectorType *VecTy = cast<VectorType>(Old->getType());
 | |
|   assert(VecTy && "Can only insert a vector into a vector");
 | |
| 
 | |
|   VectorType *Ty = dyn_cast<VectorType>(V->getType());
 | |
|   if (!Ty) {
 | |
|     // Single element to insert.
 | |
|     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
 | |
|                                 Name + ".insert");
 | |
|     DEBUG(dbgs() <<  "     insert: " << *V << "\n");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
 | |
|          "Too many elements!");
 | |
|   if (Ty->getNumElements() == VecTy->getNumElements()) {
 | |
|     assert(V->getType() == VecTy && "Vector type mismatch");
 | |
|     return V;
 | |
|   }
 | |
|   unsigned EndIndex = BeginIndex + Ty->getNumElements();
 | |
| 
 | |
|   // When inserting a smaller vector into the larger to store, we first
 | |
|   // use a shuffle vector to widen it with undef elements, and then
 | |
|   // a second shuffle vector to select between the loaded vector and the
 | |
|   // incoming vector.
 | |
|   SmallVector<Constant*, 8> Mask;
 | |
|   Mask.reserve(VecTy->getNumElements());
 | |
|   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
 | |
|     if (i >= BeginIndex && i < EndIndex)
 | |
|       Mask.push_back(IRB.getInt32(i - BeginIndex));
 | |
|     else
 | |
|       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
 | |
|   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | |
|                               ConstantVector::get(Mask),
 | |
|                               Name + ".expand");
 | |
|   DEBUG(dbgs() << "    shuffle: " << *V << "\n");
 | |
| 
 | |
|   Mask.clear();
 | |
|   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
 | |
|     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
 | |
| 
 | |
|   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
 | |
| 
 | |
|   DEBUG(dbgs() << "    blend: " << *V << "\n");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Visitor to rewrite instructions using p particular slice of an alloca
 | |
| /// to use a new alloca.
 | |
| ///
 | |
| /// Also implements the rewriting to vector-based accesses when the partition
 | |
| /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
 | |
| /// lives here.
 | |
| class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
 | |
|   // Befriend the base class so it can delegate to private visit methods.
 | |
|   friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
 | |
|   typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
 | |
| 
 | |
|   const DataLayout &DL;
 | |
|   AllocaSlices &S;
 | |
|   SROA &Pass;
 | |
|   AllocaInst &OldAI, &NewAI;
 | |
|   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
 | |
|   Type *NewAllocaTy;
 | |
| 
 | |
|   // If we are rewriting an alloca partition which can be written as pure
 | |
|   // vector operations, we stash extra information here. When VecTy is
 | |
|   // non-null, we have some strict guarantees about the rewritten alloca:
 | |
|   //   - The new alloca is exactly the size of the vector type here.
 | |
|   //   - The accesses all either map to the entire vector or to a single
 | |
|   //     element.
 | |
|   //   - The set of accessing instructions is only one of those handled above
 | |
|   //     in isVectorPromotionViable. Generally these are the same access kinds
 | |
|   //     which are promotable via mem2reg.
 | |
|   VectorType *VecTy;
 | |
|   Type *ElementTy;
 | |
|   uint64_t ElementSize;
 | |
| 
 | |
|   // This is a convenience and flag variable that will be null unless the new
 | |
|   // alloca's integer operations should be widened to this integer type due to
 | |
|   // passing isIntegerWideningViable above. If it is non-null, the desired
 | |
|   // integer type will be stored here for easy access during rewriting.
 | |
|   IntegerType *IntTy;
 | |
| 
 | |
|   // The offset of the slice currently being rewritten.
 | |
|   uint64_t BeginOffset, EndOffset;
 | |
|   bool IsSplittable;
 | |
|   bool IsSplit;
 | |
|   Use *OldUse;
 | |
|   Instruction *OldPtr;
 | |
| 
 | |
|   // Output members carrying state about the result of visiting and rewriting
 | |
|   // the slice of the alloca.
 | |
|   bool IsUsedByRewrittenSpeculatableInstructions;
 | |
| 
 | |
|   // Utility IR builder, whose name prefix is setup for each visited use, and
 | |
|   // the insertion point is set to point to the user.
 | |
|   IRBuilderTy IRB;
 | |
| 
 | |
| public:
 | |
|   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
 | |
|                       AllocaInst &OldAI, AllocaInst &NewAI,
 | |
|                       uint64_t NewBeginOffset, uint64_t NewEndOffset,
 | |
|                       bool IsVectorPromotable = false,
 | |
|                       bool IsIntegerPromotable = false)
 | |
|       : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
 | |
|         NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
 | |
|         NewAllocaTy(NewAI.getAllocatedType()),
 | |
|         VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
 | |
|         ElementTy(VecTy ? VecTy->getElementType() : 0),
 | |
|         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
 | |
|         IntTy(IsIntegerPromotable
 | |
|                   ? Type::getIntNTy(
 | |
|                         NewAI.getContext(),
 | |
|                         DL.getTypeSizeInBits(NewAI.getAllocatedType()))
 | |
|                   : 0),
 | |
|         BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
 | |
|         OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
 | |
|         IRB(NewAI.getContext(), ConstantFolder()) {
 | |
|     if (VecTy) {
 | |
|       assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
 | |
|              "Only multiple-of-8 sized vector elements are viable");
 | |
|       ++NumVectorized;
 | |
|     }
 | |
|     assert((!IsVectorPromotable && !IsIntegerPromotable) ||
 | |
|            IsVectorPromotable != IsIntegerPromotable);
 | |
|   }
 | |
| 
 | |
|   bool visit(AllocaSlices::const_iterator I) {
 | |
|     bool CanSROA = true;
 | |
|     BeginOffset = I->beginOffset();
 | |
|     EndOffset = I->endOffset();
 | |
|     IsSplittable = I->isSplittable();
 | |
|     IsSplit =
 | |
|         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
 | |
| 
 | |
|     OldUse = I->getUse();
 | |
|     OldPtr = cast<Instruction>(OldUse->get());
 | |
| 
 | |
|     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
 | |
|     IRB.SetInsertPoint(OldUserI);
 | |
|     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
 | |
|     IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
 | |
| 
 | |
|     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
 | |
|     if (VecTy || IntTy)
 | |
|       assert(CanSROA);
 | |
|     return CanSROA;
 | |
|   }
 | |
| 
 | |
|   /// \brief Query whether this slice is used by speculatable instructions after
 | |
|   /// rewriting.
 | |
|   ///
 | |
|   /// These instructions (PHIs and Selects currently) require the alloca slice
 | |
|   /// to run back through the rewriter. Thus, they are promotable, but not on
 | |
|   /// this iteration. This is distinct from a slice which is unpromotable for
 | |
|   /// some other reason, in which case we don't even want to perform the
 | |
|   /// speculation. This can be querried at any time and reflects whether (at
 | |
|   /// that point) a visit call has rewritten a speculatable instruction on the
 | |
|   /// current slice.
 | |
|   bool isUsedByRewrittenSpeculatableInstructions() const {
 | |
|     return IsUsedByRewrittenSpeculatableInstructions;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Make sure the other visit overloads are visible.
 | |
|   using Base::visit;
 | |
| 
 | |
|   // Every instruction which can end up as a user must have a rewrite rule.
 | |
|   bool visitInstruction(Instruction &I) {
 | |
|     DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
 | |
|     llvm_unreachable("No rewrite rule for this instruction!");
 | |
|   }
 | |
| 
 | |
|   Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
 | |
|                               Type *PointerTy) {
 | |
|     assert(Offset >= NewAllocaBeginOffset);
 | |
|     return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
 | |
|                                                  Offset - NewAllocaBeginOffset),
 | |
|                           PointerTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute suitable alignment to access an offset into the new alloca.
 | |
|   unsigned getOffsetAlign(uint64_t Offset) {
 | |
|     unsigned NewAIAlign = NewAI.getAlignment();
 | |
|     if (!NewAIAlign)
 | |
|       NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
 | |
|     return MinAlign(NewAIAlign, Offset);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute suitable alignment to access a type at an offset of the
 | |
|   /// new alloca.
 | |
|   ///
 | |
|   /// \returns zero if the type's ABI alignment is a suitable alignment,
 | |
|   /// otherwise returns the maximal suitable alignment.
 | |
|   unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
 | |
|     unsigned Align = getOffsetAlign(Offset);
 | |
|     return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
 | |
|   }
 | |
| 
 | |
|   unsigned getIndex(uint64_t Offset) {
 | |
|     assert(VecTy && "Can only call getIndex when rewriting a vector");
 | |
|     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
 | |
|     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
 | |
|     uint32_t Index = RelOffset / ElementSize;
 | |
|     assert(Index * ElementSize == RelOffset);
 | |
|     return Index;
 | |
|   }
 | |
| 
 | |
|   void deleteIfTriviallyDead(Value *V) {
 | |
|     Instruction *I = cast<Instruction>(V);
 | |
|     if (isInstructionTriviallyDead(I))
 | |
|       Pass.DeadInsts.insert(I);
 | |
|   }
 | |
| 
 | |
|   Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
 | |
|                                    uint64_t NewEndOffset) {
 | |
|     unsigned BeginIndex = getIndex(NewBeginOffset);
 | |
|     unsigned EndIndex = getIndex(NewEndOffset);
 | |
|     assert(EndIndex > BeginIndex && "Empty vector!");
 | |
| 
 | |
|     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                      "load");
 | |
|     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
 | |
|   }
 | |
| 
 | |
|   Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
 | |
|                             uint64_t NewEndOffset) {
 | |
|     assert(IntTy && "We cannot insert an integer to the alloca");
 | |
|     assert(!LI.isVolatile());
 | |
|     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                      "load");
 | |
|     V = convertValue(DL, IRB, V, IntTy);
 | |
|     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
 | |
|     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
 | |
|     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
 | |
|       V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
 | |
|                          "extract");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   bool visitLoadInst(LoadInst &LI) {
 | |
|     DEBUG(dbgs() << "    original: " << LI << "\n");
 | |
|     Value *OldOp = LI.getOperand(0);
 | |
|     assert(OldOp == OldPtr);
 | |
| 
 | |
|     // Compute the intersecting offset range.
 | |
|     assert(BeginOffset < NewAllocaEndOffset);
 | |
|     assert(EndOffset > NewAllocaBeginOffset);
 | |
|     uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
 | |
|     uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
 | |
| 
 | |
|     uint64_t Size = NewEndOffset - NewBeginOffset;
 | |
| 
 | |
|     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
 | |
|                              : LI.getType();
 | |
|     bool IsPtrAdjusted = false;
 | |
|     Value *V;
 | |
|     if (VecTy) {
 | |
|       V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
 | |
|     } else if (IntTy && LI.getType()->isIntegerTy()) {
 | |
|       V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
 | |
|     } else if (NewBeginOffset == NewAllocaBeginOffset &&
 | |
|                canConvertValue(DL, NewAllocaTy, LI.getType())) {
 | |
|       V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                 LI.isVolatile(), "load");
 | |
|     } else {
 | |
|       Type *LTy = TargetTy->getPointerTo();
 | |
|       V = IRB.CreateAlignedLoad(
 | |
|           getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
 | |
|           getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
 | |
|           LI.isVolatile(), "load");
 | |
|       IsPtrAdjusted = true;
 | |
|     }
 | |
|     V = convertValue(DL, IRB, V, TargetTy);
 | |
| 
 | |
|     if (IsSplit) {
 | |
|       assert(!LI.isVolatile());
 | |
|       assert(LI.getType()->isIntegerTy() &&
 | |
|              "Only integer type loads and stores are split");
 | |
|       assert(Size < DL.getTypeStoreSize(LI.getType()) &&
 | |
|              "Split load isn't smaller than original load");
 | |
|       assert(LI.getType()->getIntegerBitWidth() ==
 | |
|              DL.getTypeStoreSizeInBits(LI.getType()) &&
 | |
|              "Non-byte-multiple bit width");
 | |
|       // Move the insertion point just past the load so that we can refer to it.
 | |
|       IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
 | |
|       // Create a placeholder value with the same type as LI to use as the
 | |
|       // basis for the new value. This allows us to replace the uses of LI with
 | |
|       // the computed value, and then replace the placeholder with LI, leaving
 | |
|       // LI only used for this computation.
 | |
|       Value *Placeholder
 | |
|         = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
 | |
|       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
 | |
|                         "insert");
 | |
|       LI.replaceAllUsesWith(V);
 | |
|       Placeholder->replaceAllUsesWith(&LI);
 | |
|       delete Placeholder;
 | |
|     } else {
 | |
|       LI.replaceAllUsesWith(V);
 | |
|     }
 | |
| 
 | |
|     Pass.DeadInsts.insert(&LI);
 | |
|     deleteIfTriviallyDead(OldOp);
 | |
|     DEBUG(dbgs() << "          to: " << *V << "\n");
 | |
|     return !LI.isVolatile() && !IsPtrAdjusted;
 | |
|   }
 | |
| 
 | |
|   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
 | |
|                                   uint64_t NewBeginOffset,
 | |
|                                   uint64_t NewEndOffset) {
 | |
|     if (V->getType() != VecTy) {
 | |
|       unsigned BeginIndex = getIndex(NewBeginOffset);
 | |
|       unsigned EndIndex = getIndex(NewEndOffset);
 | |
|       assert(EndIndex > BeginIndex && "Empty vector!");
 | |
|       unsigned NumElements = EndIndex - BeginIndex;
 | |
|       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
 | |
|       Type *SliceTy =
 | |
|           (NumElements == 1) ? ElementTy
 | |
|                              : VectorType::get(ElementTy, NumElements);
 | |
|       if (V->getType() != SliceTy)
 | |
|         V = convertValue(DL, IRB, V, SliceTy);
 | |
| 
 | |
|       // Mix in the existing elements.
 | |
|       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                          "load");
 | |
|       V = insertVector(IRB, Old, V, BeginIndex, "vec");
 | |
|     }
 | |
|     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
 | |
|     Pass.DeadInsts.insert(&SI);
 | |
| 
 | |
|     (void)Store;
 | |
|     DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool rewriteIntegerStore(Value *V, StoreInst &SI,
 | |
|                            uint64_t NewBeginOffset, uint64_t NewEndOffset) {
 | |
|     assert(IntTy && "We cannot extract an integer from the alloca");
 | |
|     assert(!SI.isVolatile());
 | |
|     if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
 | |
|       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                          "oldload");
 | |
|       Old = convertValue(DL, IRB, Old, IntTy);
 | |
|       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
 | |
|       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
 | |
|       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
 | |
|                         "insert");
 | |
|     }
 | |
|     V = convertValue(DL, IRB, V, NewAllocaTy);
 | |
|     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
 | |
|     Pass.DeadInsts.insert(&SI);
 | |
|     (void)Store;
 | |
|     DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitStoreInst(StoreInst &SI) {
 | |
|     DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
|     Value *OldOp = SI.getOperand(1);
 | |
|     assert(OldOp == OldPtr);
 | |
| 
 | |
|     Value *V = SI.getValueOperand();
 | |
| 
 | |
|     // Strip all inbounds GEPs and pointer casts to try to dig out any root
 | |
|     // alloca that should be re-examined after promoting this alloca.
 | |
|     if (V->getType()->isPointerTy())
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
 | |
|         Pass.PostPromotionWorklist.insert(AI);
 | |
| 
 | |
|     // Compute the intersecting offset range.
 | |
|     assert(BeginOffset < NewAllocaEndOffset);
 | |
|     assert(EndOffset > NewAllocaBeginOffset);
 | |
|     uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
 | |
|     uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
 | |
| 
 | |
|     uint64_t Size = NewEndOffset - NewBeginOffset;
 | |
|     if (Size < DL.getTypeStoreSize(V->getType())) {
 | |
|       assert(!SI.isVolatile());
 | |
|       assert(V->getType()->isIntegerTy() &&
 | |
|              "Only integer type loads and stores are split");
 | |
|       assert(V->getType()->getIntegerBitWidth() ==
 | |
|              DL.getTypeStoreSizeInBits(V->getType()) &&
 | |
|              "Non-byte-multiple bit width");
 | |
|       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
 | |
|       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
 | |
|                          "extract");
 | |
|     }
 | |
| 
 | |
|     if (VecTy)
 | |
|       return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
 | |
|                                         NewEndOffset);
 | |
|     if (IntTy && V->getType()->isIntegerTy())
 | |
|       return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
 | |
| 
 | |
|     StoreInst *NewSI;
 | |
|     if (NewBeginOffset == NewAllocaBeginOffset &&
 | |
|         NewEndOffset == NewAllocaEndOffset &&
 | |
|         canConvertValue(DL, V->getType(), NewAllocaTy)) {
 | |
|       V = convertValue(DL, IRB, V, NewAllocaTy);
 | |
|       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
 | |
|                                      SI.isVolatile());
 | |
|     } else {
 | |
|       Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
 | |
|                                            V->getType()->getPointerTo());
 | |
|       NewSI = IRB.CreateAlignedStore(
 | |
|           V, NewPtr, getOffsetTypeAlign(
 | |
|                          V->getType(), NewBeginOffset - NewAllocaBeginOffset),
 | |
|           SI.isVolatile());
 | |
|     }
 | |
|     (void)NewSI;
 | |
|     Pass.DeadInsts.insert(&SI);
 | |
|     deleteIfTriviallyDead(OldOp);
 | |
| 
 | |
|     DEBUG(dbgs() << "          to: " << *NewSI << "\n");
 | |
|     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute an integer value from splatting an i8 across the given
 | |
|   /// number of bytes.
 | |
|   ///
 | |
|   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
 | |
|   /// call this routine.
 | |
|   /// FIXME: Heed the advice above.
 | |
|   ///
 | |
|   /// \param V The i8 value to splat.
 | |
|   /// \param Size The number of bytes in the output (assuming i8 is one byte)
 | |
|   Value *getIntegerSplat(Value *V, unsigned Size) {
 | |
|     assert(Size > 0 && "Expected a positive number of bytes.");
 | |
|     IntegerType *VTy = cast<IntegerType>(V->getType());
 | |
|     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
 | |
|     if (Size == 1)
 | |
|       return V;
 | |
| 
 | |
|     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
 | |
|     V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
 | |
|                       ConstantExpr::getUDiv(
 | |
|                         Constant::getAllOnesValue(SplatIntTy),
 | |
|                         ConstantExpr::getZExt(
 | |
|                           Constant::getAllOnesValue(V->getType()),
 | |
|                           SplatIntTy)),
 | |
|                       "isplat");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute a vector splat for a given element value.
 | |
|   Value *getVectorSplat(Value *V, unsigned NumElements) {
 | |
|     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
 | |
|     DEBUG(dbgs() << "       splat: " << *V << "\n");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   bool visitMemSetInst(MemSetInst &II) {
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
|     assert(II.getRawDest() == OldPtr);
 | |
| 
 | |
|     // If the memset has a variable size, it cannot be split, just adjust the
 | |
|     // pointer to the new alloca.
 | |
|     if (!isa<Constant>(II.getLength())) {
 | |
|       assert(!IsSplit);
 | |
|       assert(BeginOffset >= NewAllocaBeginOffset);
 | |
|       II.setDest(
 | |
|           getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
 | |
|       Type *CstTy = II.getAlignmentCst()->getType();
 | |
|       II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
 | |
| 
 | |
|       deleteIfTriviallyDead(OldPtr);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Record this instruction for deletion.
 | |
|     Pass.DeadInsts.insert(&II);
 | |
| 
 | |
|     Type *AllocaTy = NewAI.getAllocatedType();
 | |
|     Type *ScalarTy = AllocaTy->getScalarType();
 | |
| 
 | |
|     // Compute the intersecting offset range.
 | |
|     assert(BeginOffset < NewAllocaEndOffset);
 | |
|     assert(EndOffset > NewAllocaBeginOffset);
 | |
|     uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
 | |
|     uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
 | |
|     uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
 | |
| 
 | |
|     // If this doesn't map cleanly onto the alloca type, and that type isn't
 | |
|     // a single value type, just emit a memset.
 | |
|     if (!VecTy && !IntTy &&
 | |
|         (BeginOffset > NewAllocaBeginOffset ||
 | |
|          EndOffset < NewAllocaEndOffset ||
 | |
|          !AllocaTy->isSingleValueType() ||
 | |
|          !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
 | |
|          DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
 | |
|       Type *SizeTy = II.getLength()->getType();
 | |
|       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
 | |
|       CallInst *New = IRB.CreateMemSet(
 | |
|           getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
 | |
|           II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
 | |
|       (void)New;
 | |
|       DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we can represent this as a simple value, we have to build the actual
 | |
|     // value to store, which requires expanding the byte present in memset to
 | |
|     // a sensible representation for the alloca type. This is essentially
 | |
|     // splatting the byte to a sufficiently wide integer, splatting it across
 | |
|     // any desired vector width, and bitcasting to the final type.
 | |
|     Value *V;
 | |
| 
 | |
|     if (VecTy) {
 | |
|       // If this is a memset of a vectorized alloca, insert it.
 | |
|       assert(ElementTy == ScalarTy);
 | |
| 
 | |
|       unsigned BeginIndex = getIndex(NewBeginOffset);
 | |
|       unsigned EndIndex = getIndex(NewEndOffset);
 | |
|       assert(EndIndex > BeginIndex && "Empty vector!");
 | |
|       unsigned NumElements = EndIndex - BeginIndex;
 | |
|       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
 | |
| 
 | |
|       Value *Splat =
 | |
|           getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
 | |
|       Splat = convertValue(DL, IRB, Splat, ElementTy);
 | |
|       if (NumElements > 1)
 | |
|         Splat = getVectorSplat(Splat, NumElements);
 | |
| 
 | |
|       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                          "oldload");
 | |
|       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
 | |
|     } else if (IntTy) {
 | |
|       // If this is a memset on an alloca where we can widen stores, insert the
 | |
|       // set integer.
 | |
|       assert(!II.isVolatile());
 | |
| 
 | |
|       uint64_t Size = NewEndOffset - NewBeginOffset;
 | |
|       V = getIntegerSplat(II.getValue(), Size);
 | |
| 
 | |
|       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
 | |
|                     EndOffset != NewAllocaBeginOffset)) {
 | |
|         Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                            "oldload");
 | |
|         Old = convertValue(DL, IRB, Old, IntTy);
 | |
|         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
 | |
|         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
 | |
|       } else {
 | |
|         assert(V->getType() == IntTy &&
 | |
|                "Wrong type for an alloca wide integer!");
 | |
|       }
 | |
|       V = convertValue(DL, IRB, V, AllocaTy);
 | |
|     } else {
 | |
|       // Established these invariants above.
 | |
|       assert(NewBeginOffset == NewAllocaBeginOffset);
 | |
|       assert(NewEndOffset == NewAllocaEndOffset);
 | |
| 
 | |
|       V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
 | |
|       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
 | |
|         V = getVectorSplat(V, AllocaVecTy->getNumElements());
 | |
| 
 | |
|       V = convertValue(DL, IRB, V, AllocaTy);
 | |
|     }
 | |
| 
 | |
|     Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
 | |
|                                         II.isVolatile());
 | |
|     (void)New;
 | |
|     DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|     return !II.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool visitMemTransferInst(MemTransferInst &II) {
 | |
|     // Rewriting of memory transfer instructions can be a bit tricky. We break
 | |
|     // them into two categories: split intrinsics and unsplit intrinsics.
 | |
| 
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
| 
 | |
|     // Compute the intersecting offset range.
 | |
|     assert(BeginOffset < NewAllocaEndOffset);
 | |
|     assert(EndOffset > NewAllocaBeginOffset);
 | |
|     uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
 | |
|     uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
 | |
| 
 | |
|     assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
 | |
|     bool IsDest = II.getRawDest() == OldPtr;
 | |
| 
 | |
|     // Compute the relative offset within the transfer.
 | |
|     unsigned IntPtrWidth = DL.getPointerSizeInBits();
 | |
|     APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
 | |
| 
 | |
|     unsigned Align = II.getAlignment();
 | |
|     uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
 | |
|     if (Align > 1)
 | |
|       Align =
 | |
|           MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
 | |
|                    MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
 | |
| 
 | |
|     // For unsplit intrinsics, we simply modify the source and destination
 | |
|     // pointers in place. This isn't just an optimization, it is a matter of
 | |
|     // correctness. With unsplit intrinsics we may be dealing with transfers
 | |
|     // within a single alloca before SROA ran, or with transfers that have
 | |
|     // a variable length. We may also be dealing with memmove instead of
 | |
|     // memcpy, and so simply updating the pointers is the necessary for us to
 | |
|     // update both source and dest of a single call.
 | |
|     if (!IsSplittable) {
 | |
|       Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
 | |
|       if (IsDest)
 | |
|         II.setDest(
 | |
|             getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
 | |
|       else
 | |
|         II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
 | |
|                                           II.getRawSource()->getType()));
 | |
| 
 | |
|       Type *CstTy = II.getAlignmentCst()->getType();
 | |
|       II.setAlignment(ConstantInt::get(CstTy, Align));
 | |
| 
 | |
|       DEBUG(dbgs() << "          to: " << II << "\n");
 | |
|       deleteIfTriviallyDead(OldOp);
 | |
|       return false;
 | |
|     }
 | |
|     // For split transfer intrinsics we have an incredibly useful assurance:
 | |
|     // the source and destination do not reside within the same alloca, and at
 | |
|     // least one of them does not escape. This means that we can replace
 | |
|     // memmove with memcpy, and we don't need to worry about all manner of
 | |
|     // downsides to splitting and transforming the operations.
 | |
| 
 | |
|     // If this doesn't map cleanly onto the alloca type, and that type isn't
 | |
|     // a single value type, just emit a memcpy.
 | |
|     bool EmitMemCpy
 | |
|       = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
 | |
|                              EndOffset < NewAllocaEndOffset ||
 | |
|                              !NewAI.getAllocatedType()->isSingleValueType());
 | |
| 
 | |
|     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
 | |
|     // size hasn't been shrunk based on analysis of the viable range, this is
 | |
|     // a no-op.
 | |
|     if (EmitMemCpy && &OldAI == &NewAI) {
 | |
|       // Ensure the start lines up.
 | |
|       assert(NewBeginOffset == BeginOffset);
 | |
| 
 | |
|       // Rewrite the size as needed.
 | |
|       if (NewEndOffset != EndOffset)
 | |
|         II.setLength(ConstantInt::get(II.getLength()->getType(),
 | |
|                                       NewEndOffset - NewBeginOffset));
 | |
|       return false;
 | |
|     }
 | |
|     // Record this instruction for deletion.
 | |
|     Pass.DeadInsts.insert(&II);
 | |
| 
 | |
|     // Strip all inbounds GEPs and pointer casts to try to dig out any root
 | |
|     // alloca that should be re-examined after rewriting this instruction.
 | |
|     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
 | |
|     if (AllocaInst *AI
 | |
|           = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
 | |
|       Pass.Worklist.insert(AI);
 | |
| 
 | |
|     if (EmitMemCpy) {
 | |
|       Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
 | |
|                                 : II.getRawDest()->getType();
 | |
| 
 | |
|       // Compute the other pointer, folding as much as possible to produce
 | |
|       // a single, simple GEP in most cases.
 | |
|       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
 | |
| 
 | |
|       Value *OurPtr = getAdjustedAllocaPtr(
 | |
|           IRB, NewBeginOffset,
 | |
|           IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
 | |
|       Type *SizeTy = II.getLength()->getType();
 | |
|       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
 | |
| 
 | |
|       CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
 | |
|                                        IsDest ? OtherPtr : OurPtr,
 | |
|                                        Size, Align, II.isVolatile());
 | |
|       (void)New;
 | |
|       DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
 | |
|     // is equivalent to 1, but that isn't true if we end up rewriting this as
 | |
|     // a load or store.
 | |
|     if (!Align)
 | |
|       Align = 1;
 | |
| 
 | |
|     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
 | |
|                          NewEndOffset == NewAllocaEndOffset;
 | |
|     uint64_t Size = NewEndOffset - NewBeginOffset;
 | |
|     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
 | |
|     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
 | |
|     unsigned NumElements = EndIndex - BeginIndex;
 | |
|     IntegerType *SubIntTy
 | |
|       = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
 | |
| 
 | |
|     Type *OtherPtrTy = NewAI.getType();
 | |
|     if (VecTy && !IsWholeAlloca) {
 | |
|       if (NumElements == 1)
 | |
|         OtherPtrTy = VecTy->getElementType();
 | |
|       else
 | |
|         OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
 | |
| 
 | |
|       OtherPtrTy = OtherPtrTy->getPointerTo();
 | |
|     } else if (IntTy && !IsWholeAlloca) {
 | |
|       OtherPtrTy = SubIntTy->getPointerTo();
 | |
|     }
 | |
| 
 | |
|     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
 | |
|     Value *DstPtr = &NewAI;
 | |
|     if (!IsDest)
 | |
|       std::swap(SrcPtr, DstPtr);
 | |
| 
 | |
|     Value *Src;
 | |
|     if (VecTy && !IsWholeAlloca && !IsDest) {
 | |
|       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                   "load");
 | |
|       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
 | |
|     } else if (IntTy && !IsWholeAlloca && !IsDest) {
 | |
|       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                   "load");
 | |
|       Src = convertValue(DL, IRB, Src, IntTy);
 | |
|       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
 | |
|       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
 | |
|     } else {
 | |
|       Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
 | |
|                                   "copyload");
 | |
|     }
 | |
| 
 | |
|     if (VecTy && !IsWholeAlloca && IsDest) {
 | |
|       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                          "oldload");
 | |
|       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
 | |
|     } else if (IntTy && !IsWholeAlloca && IsDest) {
 | |
|       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
 | |
|                                          "oldload");
 | |
|       Old = convertValue(DL, IRB, Old, IntTy);
 | |
|       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
 | |
|       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
 | |
|       Src = convertValue(DL, IRB, Src, NewAllocaTy);
 | |
|     }
 | |
| 
 | |
|     StoreInst *Store = cast<StoreInst>(
 | |
|       IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
 | |
|     (void)Store;
 | |
|     DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     return !II.isVolatile();
 | |
|   }
 | |
| 
 | |
|   bool visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|            II.getIntrinsicID() == Intrinsic::lifetime_end);
 | |
|     DEBUG(dbgs() << "    original: " << II << "\n");
 | |
|     assert(II.getArgOperand(1) == OldPtr);
 | |
| 
 | |
|     // Compute the intersecting offset range.
 | |
|     assert(BeginOffset < NewAllocaEndOffset);
 | |
|     assert(EndOffset > NewAllocaBeginOffset);
 | |
|     uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
 | |
|     uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
 | |
| 
 | |
|     // Record this instruction for deletion.
 | |
|     Pass.DeadInsts.insert(&II);
 | |
| 
 | |
|     ConstantInt *Size
 | |
|       = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
 | |
|                          NewEndOffset - NewBeginOffset);
 | |
|     Value *Ptr =
 | |
|         getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
 | |
|     Value *New;
 | |
|     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|       New = IRB.CreateLifetimeStart(Ptr, Size);
 | |
|     else
 | |
|       New = IRB.CreateLifetimeEnd(Ptr, Size);
 | |
| 
 | |
|     (void)New;
 | |
|     DEBUG(dbgs() << "          to: " << *New << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitPHINode(PHINode &PN) {
 | |
|     DEBUG(dbgs() << "    original: " << PN << "\n");
 | |
|     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
 | |
|     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
 | |
| 
 | |
|     // We would like to compute a new pointer in only one place, but have it be
 | |
|     // as local as possible to the PHI. To do that, we re-use the location of
 | |
|     // the old pointer, which necessarily must be in the right position to
 | |
|     // dominate the PHI.
 | |
|     IRBuilderTy PtrBuilder(OldPtr);
 | |
|     PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
 | |
|                              ".");
 | |
| 
 | |
|     Value *NewPtr =
 | |
|         getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
 | |
|     // Replace the operands which were using the old pointer.
 | |
|     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
 | |
| 
 | |
|     DEBUG(dbgs() << "          to: " << PN << "\n");
 | |
|     deleteIfTriviallyDead(OldPtr);
 | |
| 
 | |
|     // Check whether we can speculate this PHI node, and if so remember that
 | |
|     // fact and queue it up for another iteration after the speculation
 | |
|     // occurs.
 | |
|     if (isSafePHIToSpeculate(PN, &DL)) {
 | |
|       Pass.SpeculatablePHIs.insert(&PN);
 | |
|       IsUsedByRewrittenSpeculatableInstructions = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false; // PHIs can't be promoted on their own.
 | |
|   }
 | |
| 
 | |
|   bool visitSelectInst(SelectInst &SI) {
 | |
|     DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
|     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
 | |
|            "Pointer isn't an operand!");
 | |
|     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
 | |
|     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
 | |
| 
 | |
|     Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
 | |
|     // Replace the operands which were using the old pointer.
 | |
|     if (SI.getOperand(1) == OldPtr)
 | |
|       SI.setOperand(1, NewPtr);
 | |
|     if (SI.getOperand(2) == OldPtr)
 | |
|       SI.setOperand(2, NewPtr);
 | |
| 
 | |
|     DEBUG(dbgs() << "          to: " << SI << "\n");
 | |
|     deleteIfTriviallyDead(OldPtr);
 | |
| 
 | |
|     // Check whether we can speculate this select instruction, and if so
 | |
|     // remember that fact and queue it up for another iteration after the
 | |
|     // speculation occurs.
 | |
|     if (isSafeSelectToSpeculate(SI, &DL)) {
 | |
|       Pass.SpeculatableSelects.insert(&SI);
 | |
|       IsUsedByRewrittenSpeculatableInstructions = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false; // Selects can't be promoted on their own.
 | |
|   }
 | |
| 
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Visitor to rewrite aggregate loads and stores as scalar.
 | |
| ///
 | |
| /// This pass aggressively rewrites all aggregate loads and stores on
 | |
| /// a particular pointer (or any pointer derived from it which we can identify)
 | |
| /// with scalar loads and stores.
 | |
| class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
 | |
|   // Befriend the base class so it can delegate to private visit methods.
 | |
|   friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
 | |
| 
 | |
|   const DataLayout &DL;
 | |
| 
 | |
|   /// Queue of pointer uses to analyze and potentially rewrite.
 | |
|   SmallVector<Use *, 8> Queue;
 | |
| 
 | |
|   /// Set to prevent us from cycling with phi nodes and loops.
 | |
|   SmallPtrSet<User *, 8> Visited;
 | |
| 
 | |
|   /// The current pointer use being rewritten. This is used to dig up the used
 | |
|   /// value (as opposed to the user).
 | |
|   Use *U;
 | |
| 
 | |
| public:
 | |
|   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
 | |
| 
 | |
|   /// Rewrite loads and stores through a pointer and all pointers derived from
 | |
|   /// it.
 | |
|   bool rewrite(Instruction &I) {
 | |
|     DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
 | |
|     enqueueUsers(I);
 | |
|     bool Changed = false;
 | |
|     while (!Queue.empty()) {
 | |
|       U = Queue.pop_back_val();
 | |
|       Changed |= visit(cast<Instruction>(U->getUser()));
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Enqueue all the users of the given instruction for further processing.
 | |
|   /// This uses a set to de-duplicate users.
 | |
|   void enqueueUsers(Instruction &I) {
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
 | |
|          ++UI)
 | |
|       if (Visited.insert(*UI))
 | |
|         Queue.push_back(&UI.getUse());
 | |
|   }
 | |
| 
 | |
|   // Conservative default is to not rewrite anything.
 | |
|   bool visitInstruction(Instruction &I) { return false; }
 | |
| 
 | |
|   /// \brief Generic recursive split emission class.
 | |
|   template <typename Derived>
 | |
|   class OpSplitter {
 | |
|   protected:
 | |
|     /// The builder used to form new instructions.
 | |
|     IRBuilderTy IRB;
 | |
|     /// The indices which to be used with insert- or extractvalue to select the
 | |
|     /// appropriate value within the aggregate.
 | |
|     SmallVector<unsigned, 4> Indices;
 | |
|     /// The indices to a GEP instruction which will move Ptr to the correct slot
 | |
|     /// within the aggregate.
 | |
|     SmallVector<Value *, 4> GEPIndices;
 | |
|     /// The base pointer of the original op, used as a base for GEPing the
 | |
|     /// split operations.
 | |
|     Value *Ptr;
 | |
| 
 | |
|     /// Initialize the splitter with an insertion point, Ptr and start with a
 | |
|     /// single zero GEP index.
 | |
|     OpSplitter(Instruction *InsertionPoint, Value *Ptr)
 | |
|       : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
 | |
| 
 | |
|   public:
 | |
|     /// \brief Generic recursive split emission routine.
 | |
|     ///
 | |
|     /// This method recursively splits an aggregate op (load or store) into
 | |
|     /// scalar or vector ops. It splits recursively until it hits a single value
 | |
|     /// and emits that single value operation via the template argument.
 | |
|     ///
 | |
|     /// The logic of this routine relies on GEPs and insertvalue and
 | |
|     /// extractvalue all operating with the same fundamental index list, merely
 | |
|     /// formatted differently (GEPs need actual values).
 | |
|     ///
 | |
|     /// \param Ty  The type being split recursively into smaller ops.
 | |
|     /// \param Agg The aggregate value being built up or stored, depending on
 | |
|     /// whether this is splitting a load or a store respectively.
 | |
|     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
 | |
|       if (Ty->isSingleValueType())
 | |
|         return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
 | |
| 
 | |
|       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|         unsigned OldSize = Indices.size();
 | |
|         (void)OldSize;
 | |
|         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
 | |
|              ++Idx) {
 | |
|           assert(Indices.size() == OldSize && "Did not return to the old size");
 | |
|           Indices.push_back(Idx);
 | |
|           GEPIndices.push_back(IRB.getInt32(Idx));
 | |
|           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
 | |
|           GEPIndices.pop_back();
 | |
|           Indices.pop_back();
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|         unsigned OldSize = Indices.size();
 | |
|         (void)OldSize;
 | |
|         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
 | |
|              ++Idx) {
 | |
|           assert(Indices.size() == OldSize && "Did not return to the old size");
 | |
|           Indices.push_back(Idx);
 | |
|           GEPIndices.push_back(IRB.getInt32(Idx));
 | |
|           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
 | |
|           GEPIndices.pop_back();
 | |
|           Indices.pop_back();
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       llvm_unreachable("Only arrays and structs are aggregate loadable types");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
 | |
|     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
 | |
|       : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
 | |
| 
 | |
|     /// Emit a leaf load of a single value. This is called at the leaves of the
 | |
|     /// recursive emission to actually load values.
 | |
|     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
 | |
|       assert(Ty->isSingleValueType());
 | |
|       // Load the single value and insert it using the indices.
 | |
|       Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
 | |
|       Value *Load = IRB.CreateLoad(GEP, Name + ".load");
 | |
|       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
 | |
|       DEBUG(dbgs() << "          to: " << *Load << "\n");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool visitLoadInst(LoadInst &LI) {
 | |
|     assert(LI.getPointerOperand() == *U);
 | |
|     if (!LI.isSimple() || LI.getType()->isSingleValueType())
 | |
|       return false;
 | |
| 
 | |
|     // We have an aggregate being loaded, split it apart.
 | |
|     DEBUG(dbgs() << "    original: " << LI << "\n");
 | |
|     LoadOpSplitter Splitter(&LI, *U);
 | |
|     Value *V = UndefValue::get(LI.getType());
 | |
|     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
 | |
|     LI.replaceAllUsesWith(V);
 | |
|     LI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
 | |
|     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
 | |
|       : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
 | |
| 
 | |
|     /// Emit a leaf store of a single value. This is called at the leaves of the
 | |
|     /// recursive emission to actually produce stores.
 | |
|     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
 | |
|       assert(Ty->isSingleValueType());
 | |
|       // Extract the single value and store it using the indices.
 | |
|       Value *Store = IRB.CreateStore(
 | |
|         IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
 | |
|         IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
 | |
|       (void)Store;
 | |
|       DEBUG(dbgs() << "          to: " << *Store << "\n");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool visitStoreInst(StoreInst &SI) {
 | |
|     if (!SI.isSimple() || SI.getPointerOperand() != *U)
 | |
|       return false;
 | |
|     Value *V = SI.getValueOperand();
 | |
|     if (V->getType()->isSingleValueType())
 | |
|       return false;
 | |
| 
 | |
|     // We have an aggregate being stored, split it apart.
 | |
|     DEBUG(dbgs() << "    original: " << SI << "\n");
 | |
|     StoreOpSplitter Splitter(&SI, *U);
 | |
|     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
 | |
|     SI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitBitCastInst(BitCastInst &BC) {
 | |
|     enqueueUsers(BC);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|     enqueueUsers(GEPI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool visitPHINode(PHINode &PN) {
 | |
|     enqueueUsers(PN);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool visitSelectInst(SelectInst &SI) {
 | |
|     enqueueUsers(SI);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Strip aggregate type wrapping.
 | |
| ///
 | |
| /// This removes no-op aggregate types wrapping an underlying type. It will
 | |
| /// strip as many layers of types as it can without changing either the type
 | |
| /// size or the allocated size.
 | |
| static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
 | |
|   if (Ty->isSingleValueType())
 | |
|     return Ty;
 | |
| 
 | |
|   uint64_t AllocSize = DL.getTypeAllocSize(Ty);
 | |
|   uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
 | |
| 
 | |
|   Type *InnerTy;
 | |
|   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
 | |
|     InnerTy = ArrTy->getElementType();
 | |
|   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = DL.getStructLayout(STy);
 | |
|     unsigned Index = SL->getElementContainingOffset(0);
 | |
|     InnerTy = STy->getElementType(Index);
 | |
|   } else {
 | |
|     return Ty;
 | |
|   }
 | |
| 
 | |
|   if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
 | |
|       TypeSize > DL.getTypeSizeInBits(InnerTy))
 | |
|     return Ty;
 | |
| 
 | |
|   return stripAggregateTypeWrapping(DL, InnerTy);
 | |
| }
 | |
| 
 | |
| /// \brief Try to find a partition of the aggregate type passed in for a given
 | |
| /// offset and size.
 | |
| ///
 | |
| /// This recurses through the aggregate type and tries to compute a subtype
 | |
| /// based on the offset and size. When the offset and size span a sub-section
 | |
| /// of an array, it will even compute a new array type for that sub-section,
 | |
| /// and the same for structs.
 | |
| ///
 | |
| /// Note that this routine is very strict and tries to find a partition of the
 | |
| /// type which produces the *exact* right offset and size. It is not forgiving
 | |
| /// when the size or offset cause either end of type-based partition to be off.
 | |
| /// Also, this is a best-effort routine. It is reasonable to give up and not
 | |
| /// return a type if necessary.
 | |
| static Type *getTypePartition(const DataLayout &DL, Type *Ty,
 | |
|                               uint64_t Offset, uint64_t Size) {
 | |
|   if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
 | |
|     return stripAggregateTypeWrapping(DL, Ty);
 | |
|   if (Offset > DL.getTypeAllocSize(Ty) ||
 | |
|       (DL.getTypeAllocSize(Ty) - Offset) < Size)
 | |
|     return 0;
 | |
| 
 | |
|   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
 | |
|     // We can't partition pointers...
 | |
|     if (SeqTy->isPointerTy())
 | |
|       return 0;
 | |
| 
 | |
|     Type *ElementTy = SeqTy->getElementType();
 | |
|     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
 | |
|     uint64_t NumSkippedElements = Offset / ElementSize;
 | |
|     if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
 | |
|       if (NumSkippedElements >= ArrTy->getNumElements())
 | |
|         return 0;
 | |
|     } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
 | |
|       if (NumSkippedElements >= VecTy->getNumElements())
 | |
|         return 0;
 | |
|     }
 | |
|     Offset -= NumSkippedElements * ElementSize;
 | |
| 
 | |
|     // First check if we need to recurse.
 | |
|     if (Offset > 0 || Size < ElementSize) {
 | |
|       // Bail if the partition ends in a different array element.
 | |
|       if ((Offset + Size) > ElementSize)
 | |
|         return 0;
 | |
|       // Recurse through the element type trying to peel off offset bytes.
 | |
|       return getTypePartition(DL, ElementTy, Offset, Size);
 | |
|     }
 | |
|     assert(Offset == 0);
 | |
| 
 | |
|     if (Size == ElementSize)
 | |
|       return stripAggregateTypeWrapping(DL, ElementTy);
 | |
|     assert(Size > ElementSize);
 | |
|     uint64_t NumElements = Size / ElementSize;
 | |
|     if (NumElements * ElementSize != Size)
 | |
|       return 0;
 | |
|     return ArrayType::get(ElementTy, NumElements);
 | |
|   }
 | |
| 
 | |
|   StructType *STy = dyn_cast<StructType>(Ty);
 | |
|   if (!STy)
 | |
|     return 0;
 | |
| 
 | |
|   const StructLayout *SL = DL.getStructLayout(STy);
 | |
|   if (Offset >= SL->getSizeInBytes())
 | |
|     return 0;
 | |
|   uint64_t EndOffset = Offset + Size;
 | |
|   if (EndOffset > SL->getSizeInBytes())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Index = SL->getElementContainingOffset(Offset);
 | |
|   Offset -= SL->getElementOffset(Index);
 | |
| 
 | |
|   Type *ElementTy = STy->getElementType(Index);
 | |
|   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
 | |
|   if (Offset >= ElementSize)
 | |
|     return 0; // The offset points into alignment padding.
 | |
| 
 | |
|   // See if any partition must be contained by the element.
 | |
|   if (Offset > 0 || Size < ElementSize) {
 | |
|     if ((Offset + Size) > ElementSize)
 | |
|       return 0;
 | |
|     return getTypePartition(DL, ElementTy, Offset, Size);
 | |
|   }
 | |
|   assert(Offset == 0);
 | |
| 
 | |
|   if (Size == ElementSize)
 | |
|     return stripAggregateTypeWrapping(DL, ElementTy);
 | |
| 
 | |
|   StructType::element_iterator EI = STy->element_begin() + Index,
 | |
|                                EE = STy->element_end();
 | |
|   if (EndOffset < SL->getSizeInBytes()) {
 | |
|     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
 | |
|     if (Index == EndIndex)
 | |
|       return 0; // Within a single element and its padding.
 | |
| 
 | |
|     // Don't try to form "natural" types if the elements don't line up with the
 | |
|     // expected size.
 | |
|     // FIXME: We could potentially recurse down through the last element in the
 | |
|     // sub-struct to find a natural end point.
 | |
|     if (SL->getElementOffset(EndIndex) != EndOffset)
 | |
|       return 0;
 | |
| 
 | |
|     assert(Index < EndIndex);
 | |
|     EE = STy->element_begin() + EndIndex;
 | |
|   }
 | |
| 
 | |
|   // Try to build up a sub-structure.
 | |
|   StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
 | |
|                                       STy->isPacked());
 | |
|   const StructLayout *SubSL = DL.getStructLayout(SubTy);
 | |
|   if (Size != SubSL->getSizeInBytes())
 | |
|     return 0; // The sub-struct doesn't have quite the size needed.
 | |
| 
 | |
|   return SubTy;
 | |
| }
 | |
| 
 | |
| /// \brief Rewrite an alloca partition's users.
 | |
| ///
 | |
| /// This routine drives both of the rewriting goals of the SROA pass. It tries
 | |
| /// to rewrite uses of an alloca partition to be conducive for SSA value
 | |
| /// promotion. If the partition needs a new, more refined alloca, this will
 | |
| /// build that new alloca, preserving as much type information as possible, and
 | |
| /// rewrite the uses of the old alloca to point at the new one and have the
 | |
| /// appropriate new offsets. It also evaluates how successful the rewrite was
 | |
| /// at enabling promotion and if it was successful queues the alloca to be
 | |
| /// promoted.
 | |
| bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
 | |
|                             AllocaSlices::iterator B, AllocaSlices::iterator E,
 | |
|                             int64_t BeginOffset, int64_t EndOffset,
 | |
|                             ArrayRef<AllocaSlices::iterator> SplitUses) {
 | |
|   assert(BeginOffset < EndOffset);
 | |
|   uint64_t SliceSize = EndOffset - BeginOffset;
 | |
| 
 | |
|   // Try to compute a friendly type for this partition of the alloca. This
 | |
|   // won't always succeed, in which case we fall back to a legal integer type
 | |
|   // or an i8 array of an appropriate size.
 | |
|   Type *SliceTy = 0;
 | |
|   if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
 | |
|     if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
 | |
|       SliceTy = CommonUseTy;
 | |
|   if (!SliceTy)
 | |
|     if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
 | |
|                                                  BeginOffset, SliceSize))
 | |
|       SliceTy = TypePartitionTy;
 | |
|   if ((!SliceTy || (SliceTy->isArrayTy() &&
 | |
|                     SliceTy->getArrayElementType()->isIntegerTy())) &&
 | |
|       DL->isLegalInteger(SliceSize * 8))
 | |
|     SliceTy = Type::getIntNTy(*C, SliceSize * 8);
 | |
|   if (!SliceTy)
 | |
|     SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
 | |
|   assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
 | |
| 
 | |
|   bool IsVectorPromotable = isVectorPromotionViable(
 | |
|       *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
 | |
| 
 | |
|   bool IsIntegerPromotable =
 | |
|       !IsVectorPromotable &&
 | |
|       isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
 | |
| 
 | |
|   // Check for the case where we're going to rewrite to a new alloca of the
 | |
|   // exact same type as the original, and with the same access offsets. In that
 | |
|   // case, re-use the existing alloca, but still run through the rewriter to
 | |
|   // perform phi and select speculation.
 | |
|   AllocaInst *NewAI;
 | |
|   if (SliceTy == AI.getAllocatedType()) {
 | |
|     assert(BeginOffset == 0 &&
 | |
|            "Non-zero begin offset but same alloca type");
 | |
|     NewAI = &AI;
 | |
|     // FIXME: We should be able to bail at this point with "nothing changed".
 | |
|     // FIXME: We might want to defer PHI speculation until after here.
 | |
|   } else {
 | |
|     unsigned Alignment = AI.getAlignment();
 | |
|     if (!Alignment) {
 | |
|       // The minimum alignment which users can rely on when the explicit
 | |
|       // alignment is omitted or zero is that required by the ABI for this
 | |
|       // type.
 | |
|       Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
 | |
|     }
 | |
|     Alignment = MinAlign(Alignment, BeginOffset);
 | |
|     // If we will get at least this much alignment from the type alone, leave
 | |
|     // the alloca's alignment unconstrained.
 | |
|     if (Alignment <= DL->getABITypeAlignment(SliceTy))
 | |
|       Alignment = 0;
 | |
|     NewAI = new AllocaInst(SliceTy, 0, Alignment,
 | |
|                            AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
 | |
|     ++NumNewAllocas;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Rewriting alloca partition "
 | |
|                << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
 | |
|                << "\n");
 | |
| 
 | |
|   // Track the high watermark on several worklists that are only relevant for
 | |
|   // promoted allocas. We will reset it to this point if the alloca is not in
 | |
|   // fact scheduled for promotion.
 | |
|   unsigned PPWOldSize = PostPromotionWorklist.size();
 | |
|   unsigned SPOldSize = SpeculatablePHIs.size();
 | |
|   unsigned SSOldSize = SpeculatableSelects.size();
 | |
|   unsigned NumUses = 0;
 | |
| 
 | |
|   AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
 | |
|                                EndOffset, IsVectorPromotable,
 | |
|                                IsIntegerPromotable);
 | |
|   bool Promotable = true;
 | |
|   for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
 | |
|                                                         SUE = SplitUses.end();
 | |
|        SUI != SUE; ++SUI) {
 | |
|     DEBUG(dbgs() << "  rewriting split ");
 | |
|     DEBUG(S.printSlice(dbgs(), *SUI, ""));
 | |
|     Promotable &= Rewriter.visit(*SUI);
 | |
|     ++NumUses;
 | |
|   }
 | |
|   for (AllocaSlices::iterator I = B; I != E; ++I) {
 | |
|     DEBUG(dbgs() << "  rewriting ");
 | |
|     DEBUG(S.printSlice(dbgs(), I, ""));
 | |
|     Promotable &= Rewriter.visit(I);
 | |
|     ++NumUses;
 | |
|   }
 | |
| 
 | |
|   NumAllocaPartitionUses += NumUses;
 | |
|   MaxUsesPerAllocaPartition =
 | |
|       std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
 | |
| 
 | |
|   if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
 | |
|     DEBUG(dbgs() << "  and queuing for promotion\n");
 | |
|     PromotableAllocas.push_back(NewAI);
 | |
|   } else if (NewAI != &AI ||
 | |
|              (Promotable &&
 | |
|               Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
 | |
|     // If we can't promote the alloca, iterate on it to check for new
 | |
|     // refinements exposed by splitting the current alloca. Don't iterate on an
 | |
|     // alloca which didn't actually change and didn't get promoted.
 | |
|     //
 | |
|     // Alternatively, if we could promote the alloca but have speculatable
 | |
|     // instructions then we will speculate them after finishing our processing
 | |
|     // of the original alloca. Mark the new one for re-visiting in the next
 | |
|     // iteration so the speculated operations can be rewritten.
 | |
|     //
 | |
|     // FIXME: We should actually track whether the rewriter changed anything.
 | |
|     Worklist.insert(NewAI);
 | |
|   }
 | |
| 
 | |
|   // Drop any post-promotion work items if promotion didn't happen.
 | |
|   if (!Promotable) {
 | |
|     while (PostPromotionWorklist.size() > PPWOldSize)
 | |
|       PostPromotionWorklist.pop_back();
 | |
|     while (SpeculatablePHIs.size() > SPOldSize)
 | |
|       SpeculatablePHIs.pop_back();
 | |
|     while (SpeculatableSelects.size() > SSOldSize)
 | |
|       SpeculatableSelects.pop_back();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct IsSliceEndLessOrEqualTo {
 | |
|   uint64_t UpperBound;
 | |
| 
 | |
|   IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
 | |
| 
 | |
|   bool operator()(const AllocaSlices::iterator &I) {
 | |
|     return I->endOffset() <= UpperBound;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static void
 | |
| removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
 | |
|                         uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
 | |
|   if (Offset >= MaxSplitUseEndOffset) {
 | |
|     SplitUses.clear();
 | |
|     MaxSplitUseEndOffset = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   size_t SplitUsesOldSize = SplitUses.size();
 | |
|   SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
 | |
|                                  IsSliceEndLessOrEqualTo(Offset)),
 | |
|                   SplitUses.end());
 | |
|   if (SplitUsesOldSize == SplitUses.size())
 | |
|     return;
 | |
| 
 | |
|   // Recompute the max. While this is linear, so is remove_if.
 | |
|   MaxSplitUseEndOffset = 0;
 | |
|   for (SmallVectorImpl<AllocaSlices::iterator>::iterator
 | |
|            SUI = SplitUses.begin(),
 | |
|            SUE = SplitUses.end();
 | |
|        SUI != SUE; ++SUI)
 | |
|     MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
 | |
| }
 | |
| 
 | |
| /// \brief Walks the slices of an alloca and form partitions based on them,
 | |
| /// rewriting each of their uses.
 | |
| bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
 | |
|   if (S.begin() == S.end())
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumPartitions = 0;
 | |
|   bool Changed = false;
 | |
|   SmallVector<AllocaSlices::iterator, 4> SplitUses;
 | |
|   uint64_t MaxSplitUseEndOffset = 0;
 | |
| 
 | |
|   uint64_t BeginOffset = S.begin()->beginOffset();
 | |
| 
 | |
|   for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
 | |
|        SI != SE; SI = SJ) {
 | |
|     uint64_t MaxEndOffset = SI->endOffset();
 | |
| 
 | |
|     if (!SI->isSplittable()) {
 | |
|       // When we're forming an unsplittable region, it must always start at the
 | |
|       // first slice and will extend through its end.
 | |
|       assert(BeginOffset == SI->beginOffset());
 | |
| 
 | |
|       // Form a partition including all of the overlapping slices with this
 | |
|       // unsplittable slice.
 | |
|       while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
 | |
|         if (!SJ->isSplittable())
 | |
|           MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
 | |
|         ++SJ;
 | |
|       }
 | |
|     } else {
 | |
|       assert(SI->isSplittable()); // Established above.
 | |
| 
 | |
|       // Collect all of the overlapping splittable slices.
 | |
|       while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
 | |
|              SJ->isSplittable()) {
 | |
|         MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
 | |
|         ++SJ;
 | |
|       }
 | |
| 
 | |
|       // Back up MaxEndOffset and SJ if we ended the span early when
 | |
|       // encountering an unsplittable slice.
 | |
|       if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
 | |
|         assert(!SJ->isSplittable());
 | |
|         MaxEndOffset = SJ->beginOffset();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check if we have managed to move the end offset forward yet. If so,
 | |
|     // we'll have to rewrite uses and erase old split uses.
 | |
|     if (BeginOffset < MaxEndOffset) {
 | |
|       // Rewrite a sequence of overlapping slices.
 | |
|       Changed |=
 | |
|           rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
 | |
|       ++NumPartitions;
 | |
| 
 | |
|       removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
 | |
|     }
 | |
| 
 | |
|     // Accumulate all the splittable slices from the [SI,SJ) region which
 | |
|     // overlap going forward.
 | |
|     for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
 | |
|       if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
 | |
|         SplitUses.push_back(SK);
 | |
|         MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
 | |
|       }
 | |
| 
 | |
|     // If we're already at the end and we have no split uses, we're done.
 | |
|     if (SJ == SE && SplitUses.empty())
 | |
|       break;
 | |
| 
 | |
|     // If we have no split uses or no gap in offsets, we're ready to move to
 | |
|     // the next slice.
 | |
|     if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
 | |
|       BeginOffset = SJ->beginOffset();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Even if we have split slices, if the next slice is splittable and the
 | |
|     // split slices reach it, we can simply set up the beginning offset of the
 | |
|     // next iteration to bridge between them.
 | |
|     if (SJ != SE && SJ->isSplittable() &&
 | |
|         MaxSplitUseEndOffset > SJ->beginOffset()) {
 | |
|       BeginOffset = MaxEndOffset;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have a tail of split slices. Rewrite them with an empty
 | |
|     // range of slices.
 | |
|     uint64_t PostSplitEndOffset =
 | |
|         SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
 | |
| 
 | |
|     Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
 | |
|                                 SplitUses);
 | |
|     ++NumPartitions;
 | |
| 
 | |
|     if (SJ == SE)
 | |
|       break; // Skip the rest, we don't need to do any cleanup.
 | |
| 
 | |
|     removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
 | |
|                             PostSplitEndOffset);
 | |
| 
 | |
|     // Now just reset the begin offset for the next iteration.
 | |
|     BeginOffset = SJ->beginOffset();
 | |
|   }
 | |
| 
 | |
|   NumAllocaPartitions += NumPartitions;
 | |
|   MaxPartitionsPerAlloca =
 | |
|       std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Analyze an alloca for SROA.
 | |
| ///
 | |
| /// This analyzes the alloca to ensure we can reason about it, builds
 | |
| /// the slices of the alloca, and then hands it off to be split and
 | |
| /// rewritten as needed.
 | |
| bool SROA::runOnAlloca(AllocaInst &AI) {
 | |
|   DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
 | |
|   ++NumAllocasAnalyzed;
 | |
| 
 | |
|   // Special case dead allocas, as they're trivial.
 | |
|   if (AI.use_empty()) {
 | |
|     AI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Skip alloca forms that this analysis can't handle.
 | |
|   if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
 | |
|       DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // First, split any FCA loads and stores touching this alloca to promote
 | |
|   // better splitting and promotion opportunities.
 | |
|   AggLoadStoreRewriter AggRewriter(*DL);
 | |
|   Changed |= AggRewriter.rewrite(AI);
 | |
| 
 | |
|   // Build the slices using a recursive instruction-visiting builder.
 | |
|   AllocaSlices S(*DL, AI);
 | |
|   DEBUG(S.print(dbgs()));
 | |
|   if (S.isEscaped())
 | |
|     return Changed;
 | |
| 
 | |
|   // Delete all the dead users of this alloca before splitting and rewriting it.
 | |
|   for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
 | |
|                                         DE = S.dead_user_end();
 | |
|        DI != DE; ++DI) {
 | |
|     Changed = true;
 | |
|     (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
 | |
|     DeadInsts.insert(*DI);
 | |
|   }
 | |
|   for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
 | |
|                                       DE = S.dead_op_end();
 | |
|        DO != DE; ++DO) {
 | |
|     Value *OldV = **DO;
 | |
|     // Clobber the use with an undef value.
 | |
|     **DO = UndefValue::get(OldV->getType());
 | |
|     if (Instruction *OldI = dyn_cast<Instruction>(OldV))
 | |
|       if (isInstructionTriviallyDead(OldI)) {
 | |
|         Changed = true;
 | |
|         DeadInsts.insert(OldI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // No slices to split. Leave the dead alloca for a later pass to clean up.
 | |
|   if (S.begin() == S.end())
 | |
|     return Changed;
 | |
| 
 | |
|   Changed |= splitAlloca(AI, S);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Speculating PHIs\n");
 | |
|   while (!SpeculatablePHIs.empty())
 | |
|     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
 | |
| 
 | |
|   DEBUG(dbgs() << "  Speculating Selects\n");
 | |
|   while (!SpeculatableSelects.empty())
 | |
|     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Delete the dead instructions accumulated in this run.
 | |
| ///
 | |
| /// Recursively deletes the dead instructions we've accumulated. This is done
 | |
| /// at the very end to maximize locality of the recursive delete and to
 | |
| /// minimize the problems of invalidated instruction pointers as such pointers
 | |
| /// are used heavily in the intermediate stages of the algorithm.
 | |
| ///
 | |
| /// We also record the alloca instructions deleted here so that they aren't
 | |
| /// subsequently handed to mem2reg to promote.
 | |
| void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *I = DeadInsts.pop_back_val();
 | |
|     DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
 | |
| 
 | |
|     I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
| 
 | |
|     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | |
|       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | |
|         // Zero out the operand and see if it becomes trivially dead.
 | |
|         *OI = 0;
 | |
|         if (isInstructionTriviallyDead(U))
 | |
|           DeadInsts.insert(U);
 | |
|       }
 | |
| 
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       DeletedAllocas.insert(AI);
 | |
| 
 | |
|     ++NumDeleted;
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void enqueueUsersInWorklist(Instruction &I,
 | |
|                                    SmallVectorImpl<Instruction *> &Worklist,
 | |
|                                    SmallPtrSet<Instruction *, 8> &Visited) {
 | |
|   for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
 | |
|        ++UI)
 | |
|     if (Visited.insert(cast<Instruction>(*UI)))
 | |
|       Worklist.push_back(cast<Instruction>(*UI));
 | |
| }
 | |
| 
 | |
| /// \brief Promote the allocas, using the best available technique.
 | |
| ///
 | |
| /// This attempts to promote whatever allocas have been identified as viable in
 | |
| /// the PromotableAllocas list. If that list is empty, there is nothing to do.
 | |
| /// If there is a domtree available, we attempt to promote using the full power
 | |
| /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
 | |
| /// based on the SSAUpdater utilities. This function returns whether any
 | |
| /// promotion occurred.
 | |
| bool SROA::promoteAllocas(Function &F) {
 | |
|   if (PromotableAllocas.empty())
 | |
|     return false;
 | |
| 
 | |
|   NumPromoted += PromotableAllocas.size();
 | |
| 
 | |
|   if (DT && !ForceSSAUpdater) {
 | |
|     DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
 | |
|     PromoteMemToReg(PromotableAllocas, *DT);
 | |
|     PromotableAllocas.clear();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
 | |
|   SSAUpdater SSA;
 | |
|   DIBuilder DIB(*F.getParent());
 | |
|   SmallVector<Instruction *, 64> Insts;
 | |
| 
 | |
|   // We need a worklist to walk the uses of each alloca.
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   SmallVector<Instruction *, 32> DeadInsts;
 | |
| 
 | |
|   for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
 | |
|     AllocaInst *AI = PromotableAllocas[Idx];
 | |
|     Insts.clear();
 | |
|     Worklist.clear();
 | |
|     Visited.clear();
 | |
| 
 | |
|     enqueueUsersInWorklist(*AI, Worklist, Visited);
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       Instruction *I = Worklist.pop_back_val();
 | |
| 
 | |
|       // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
 | |
|       // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
 | |
|       // leading to them) here. Eventually it should use them to optimize the
 | |
|       // scalar values produced.
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|                II->getIntrinsicID() == Intrinsic::lifetime_end);
 | |
|         II->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Push the loads and stores we find onto the list. SROA will already
 | |
|       // have validated that all loads and stores are viable candidates for
 | |
|       // promotion.
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         assert(LI->getType() == AI->getAllocatedType());
 | |
|         Insts.push_back(LI);
 | |
|         continue;
 | |
|       }
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|         assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
 | |
|         Insts.push_back(SI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For everything else, we know that only no-op bitcasts and GEPs will
 | |
|       // make it this far, just recurse through them and recall them for later
 | |
|       // removal.
 | |
|       DeadInsts.push_back(I);
 | |
|       enqueueUsersInWorklist(*I, Worklist, Visited);
 | |
|     }
 | |
|     AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
 | |
|     while (!DeadInsts.empty())
 | |
|       DeadInsts.pop_back_val()->eraseFromParent();
 | |
|     AI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   PromotableAllocas.clear();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief A predicate to test whether an alloca belongs to a set.
 | |
|   class IsAllocaInSet {
 | |
|     typedef SmallPtrSet<AllocaInst *, 4> SetType;
 | |
|     const SetType &Set;
 | |
| 
 | |
|   public:
 | |
|     typedef AllocaInst *argument_type;
 | |
| 
 | |
|     IsAllocaInSet(const SetType &Set) : Set(Set) {}
 | |
|     bool operator()(AllocaInst *AI) const { return Set.count(AI); }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
 | |
|   C = &F.getContext();
 | |
|   DL = getAnalysisIfAvailable<DataLayout>();
 | |
|   if (!DL) {
 | |
|     DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
 | |
|     return false;
 | |
|   }
 | |
|   DT = getAnalysisIfAvailable<DominatorTree>();
 | |
| 
 | |
|   BasicBlock &EntryBB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
 | |
|        I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       Worklist.insert(AI);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // A set of deleted alloca instruction pointers which should be removed from
 | |
|   // the list of promotable allocas.
 | |
|   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
 | |
| 
 | |
|   do {
 | |
|     while (!Worklist.empty()) {
 | |
|       Changed |= runOnAlloca(*Worklist.pop_back_val());
 | |
|       deleteDeadInstructions(DeletedAllocas);
 | |
| 
 | |
|       // Remove the deleted allocas from various lists so that we don't try to
 | |
|       // continue processing them.
 | |
|       if (!DeletedAllocas.empty()) {
 | |
|         Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
 | |
|         PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
 | |
|         PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
 | |
|                                                PromotableAllocas.end(),
 | |
|                                                IsAllocaInSet(DeletedAllocas)),
 | |
|                                 PromotableAllocas.end());
 | |
|         DeletedAllocas.clear();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Changed |= promoteAllocas(F);
 | |
| 
 | |
|     Worklist = PostPromotionWorklist;
 | |
|     PostPromotionWorklist.clear();
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   if (RequiresDomTree)
 | |
|     AU.addRequired<DominatorTree>();
 | |
|   AU.setPreservesCFG();
 | |
| }
 |