forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			780 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			780 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the interface to tear out a code region, such as an
 | |
| // individual loop or a parallel section, into a new function, replacing it with
 | |
| // a call to the new function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/CodeExtractor.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/RegionInfo.h"
 | |
| #include "llvm/Analysis/RegionIterator.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Provide a command-line option to aggregate function arguments into a struct
 | |
| // for functions produced by the code extractor. This is useful when converting
 | |
| // extracted functions to pthread-based code, as only one argument (void*) can
 | |
| // be passed in to pthread_create().
 | |
| static cl::opt<bool>
 | |
| AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
 | |
|                  cl::desc("Aggregate arguments to code-extracted functions"));
 | |
| 
 | |
| /// \brief Test whether a block is valid for extraction.
 | |
| static bool isBlockValidForExtraction(const BasicBlock &BB) {
 | |
|   // Landing pads must be in the function where they were inserted for cleanup.
 | |
|   if (BB.isLandingPad())
 | |
|     return false;
 | |
| 
 | |
|   // Don't hoist code containing allocas, invokes, or vastarts.
 | |
|   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
 | |
|     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
 | |
|       return false;
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|       if (const Function *F = CI->getCalledFunction())
 | |
|         if (F->getIntrinsicID() == Intrinsic::vastart)
 | |
|           return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Build a set of blocks to extract if the input blocks are viable.
 | |
| template <typename IteratorT>
 | |
| static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
 | |
|                                                        IteratorT BBEnd) {
 | |
|   SetVector<BasicBlock *> Result;
 | |
| 
 | |
|   assert(BBBegin != BBEnd);
 | |
| 
 | |
|   // Loop over the blocks, adding them to our set-vector, and aborting with an
 | |
|   // empty set if we encounter invalid blocks.
 | |
|   for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
 | |
|     if (!Result.insert(*I))
 | |
|       llvm_unreachable("Repeated basic blocks in extraction input");
 | |
| 
 | |
|     if (!isBlockValidForExtraction(**I)) {
 | |
|       Result.clear();
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()),
 | |
|                                          E = Result.end();
 | |
|        I != E; ++I)
 | |
|     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
 | |
|          PI != PE; ++PI)
 | |
|       assert(Result.count(*PI) &&
 | |
|              "No blocks in this region may have entries from outside the region"
 | |
|              " except for the first block!");
 | |
| #endif
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
 | |
| static SetVector<BasicBlock *>
 | |
| buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
 | |
|   return buildExtractionBlockSet(BBs.begin(), BBs.end());
 | |
| }
 | |
| 
 | |
| /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
 | |
| static SetVector<BasicBlock *>
 | |
| buildExtractionBlockSet(const RegionNode &RN) {
 | |
|   if (!RN.isSubRegion())
 | |
|     // Just a single BasicBlock.
 | |
|     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
 | |
| 
 | |
|   const Region &R = *RN.getNodeAs<Region>();
 | |
| 
 | |
|   return buildExtractionBlockSet(R.block_begin(), R.block_end());
 | |
| }
 | |
| 
 | |
| CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
 | |
|   : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | |
|     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
 | |
| 
 | |
| CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
 | |
|                              bool AggregateArgs)
 | |
|   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | |
|     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
 | |
| 
 | |
| CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
 | |
|   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | |
|     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
 | |
| 
 | |
| CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
 | |
|                              bool AggregateArgs)
 | |
|   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | |
|     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
 | |
| 
 | |
| /// definedInRegion - Return true if the specified value is defined in the
 | |
| /// extracted region.
 | |
| static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (Blocks.count(I->getParent()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// definedInCaller - Return true if the specified value is defined in the
 | |
| /// function being code extracted, but not in the region being extracted.
 | |
| /// These values must be passed in as live-ins to the function.
 | |
| static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | |
|   if (isa<Argument>(V)) return true;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (!Blocks.count(I->getParent()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
 | |
|                                       ValueSet &Outputs) const {
 | |
|   for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
 | |
|                                                E = Blocks.end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
| 
 | |
|     // If a used value is defined outside the region, it's an input.  If an
 | |
|     // instruction is used outside the region, it's an output.
 | |
|     for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
 | |
|          II != IE; ++II) {
 | |
|       for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
 | |
|            OI != OE; ++OI)
 | |
|         if (definedInCaller(Blocks, *OI))
 | |
|           Inputs.insert(*OI);
 | |
| 
 | |
|       for (Value::use_iterator UI = II->use_begin(), UE = II->use_end();
 | |
|            UI != UE; ++UI)
 | |
|         if (!definedInRegion(Blocks, *UI)) {
 | |
|           Outputs.insert(II);
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
 | |
| /// region, we need to split the entry block of the region so that the PHI node
 | |
| /// is easier to deal with.
 | |
| void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
 | |
|   unsigned NumPredsFromRegion = 0;
 | |
|   unsigned NumPredsOutsideRegion = 0;
 | |
| 
 | |
|   if (Header != &Header->getParent()->getEntryBlock()) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(Header->begin());
 | |
|     if (!PN) return;  // No PHI nodes.
 | |
| 
 | |
|     // If the header node contains any PHI nodes, check to see if there is more
 | |
|     // than one entry from outside the region.  If so, we need to sever the
 | |
|     // header block into two.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (Blocks.count(PN->getIncomingBlock(i)))
 | |
|         ++NumPredsFromRegion;
 | |
|       else
 | |
|         ++NumPredsOutsideRegion;
 | |
| 
 | |
|     // If there is one (or fewer) predecessor from outside the region, we don't
 | |
|     // need to do anything special.
 | |
|     if (NumPredsOutsideRegion <= 1) return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we need to split the header block into two pieces: one
 | |
|   // containing PHI nodes merging values from outside of the region, and a
 | |
|   // second that contains all of the code for the block and merges back any
 | |
|   // incoming values from inside of the region.
 | |
|   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
 | |
|   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
 | |
|                                               Header->getName()+".ce");
 | |
| 
 | |
|   // We only want to code extract the second block now, and it becomes the new
 | |
|   // header of the region.
 | |
|   BasicBlock *OldPred = Header;
 | |
|   Blocks.remove(OldPred);
 | |
|   Blocks.insert(NewBB);
 | |
|   Header = NewBB;
 | |
| 
 | |
|   // Okay, update dominator sets. The blocks that dominate the new one are the
 | |
|   // blocks that dominate TIBB plus the new block itself.
 | |
|   if (DT)
 | |
|     DT->splitBlock(NewBB);
 | |
| 
 | |
|   // Okay, now we need to adjust the PHI nodes and any branches from within the
 | |
|   // region to go to the new header block instead of the old header block.
 | |
|   if (NumPredsFromRegion) {
 | |
|     PHINode *PN = cast<PHINode>(OldPred->begin());
 | |
|     // Loop over all of the predecessors of OldPred that are in the region,
 | |
|     // changing them to branch to NewBB instead.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
 | |
|         TI->replaceUsesOfWith(OldPred, NewBB);
 | |
|       }
 | |
| 
 | |
|     // Okay, everything within the region is now branching to the right block, we
 | |
|     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
 | |
|     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
 | |
|       PHINode *PN = cast<PHINode>(AfterPHIs);
 | |
|       // Create a new PHI node in the new region, which has an incoming value
 | |
|       // from OldPred of PN.
 | |
|       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
 | |
|                                        PN->getName()+".ce", NewBB->begin());
 | |
|       NewPN->addIncoming(PN, OldPred);
 | |
| 
 | |
|       // Loop over all of the incoming value in PN, moving them to NewPN if they
 | |
|       // are from the extracted region.
 | |
|       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
 | |
|         if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
 | |
|           PN->removeIncomingValue(i);
 | |
|           --i;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::splitReturnBlocks() {
 | |
|   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
 | |
|        I != E; ++I)
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
 | |
|       BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
 | |
|       if (DT) {
 | |
|         // Old dominates New. New node dominates all other nodes dominated
 | |
|         // by Old.
 | |
|         DomTreeNode *OldNode = DT->getNode(*I);
 | |
|         SmallVector<DomTreeNode*, 8> Children;
 | |
|         for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
 | |
|              DI != DE; ++DI) 
 | |
|           Children.push_back(*DI);
 | |
| 
 | |
|         DomTreeNode *NewNode = DT->addNewBlock(New, *I);
 | |
| 
 | |
|         for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
 | |
|                E = Children.end(); I != E; ++I)
 | |
|           DT->changeImmediateDominator(*I, NewNode);
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// constructFunction - make a function based on inputs and outputs, as follows:
 | |
| /// f(in0, ..., inN, out0, ..., outN)
 | |
| ///
 | |
| Function *CodeExtractor::constructFunction(const ValueSet &inputs,
 | |
|                                            const ValueSet &outputs,
 | |
|                                            BasicBlock *header,
 | |
|                                            BasicBlock *newRootNode,
 | |
|                                            BasicBlock *newHeader,
 | |
|                                            Function *oldFunction,
 | |
|                                            Module *M) {
 | |
|   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
 | |
|   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
 | |
| 
 | |
|   // This function returns unsigned, outputs will go back by reference.
 | |
|   switch (NumExitBlocks) {
 | |
|   case 0:
 | |
|   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
 | |
|   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
 | |
|   default: RetTy = Type::getInt16Ty(header->getContext()); break;
 | |
|   }
 | |
| 
 | |
|   std::vector<Type*> paramTy;
 | |
| 
 | |
|   // Add the types of the input values to the function's argument list
 | |
|   for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
 | |
|        i != e; ++i) {
 | |
|     const Value *value = *i;
 | |
|     DEBUG(dbgs() << "value used in func: " << *value << "\n");
 | |
|     paramTy.push_back(value->getType());
 | |
|   }
 | |
| 
 | |
|   // Add the types of the output values to the function's argument list.
 | |
|   for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
 | |
|        I != E; ++I) {
 | |
|     DEBUG(dbgs() << "instr used in func: " << **I << "\n");
 | |
|     if (AggregateArgs)
 | |
|       paramTy.push_back((*I)->getType());
 | |
|     else
 | |
|       paramTy.push_back(PointerType::getUnqual((*I)->getType()));
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
 | |
|   for (std::vector<Type*>::iterator i = paramTy.begin(),
 | |
|          e = paramTy.end(); i != e; ++i)
 | |
|     DEBUG(dbgs() << **i << ", ");
 | |
|   DEBUG(dbgs() << ")\n");
 | |
| 
 | |
|   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | |
|     PointerType *StructPtr =
 | |
|            PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
 | |
|     paramTy.clear();
 | |
|     paramTy.push_back(StructPtr);
 | |
|   }
 | |
|   FunctionType *funcType =
 | |
|                   FunctionType::get(RetTy, paramTy, false);
 | |
| 
 | |
|   // Create the new function
 | |
|   Function *newFunction = Function::Create(funcType,
 | |
|                                            GlobalValue::InternalLinkage,
 | |
|                                            oldFunction->getName() + "_" +
 | |
|                                            header->getName(), M);
 | |
|   // If the old function is no-throw, so is the new one.
 | |
|   if (oldFunction->doesNotThrow())
 | |
|     newFunction->setDoesNotThrow();
 | |
|   
 | |
|   newFunction->getBasicBlockList().push_back(newRootNode);
 | |
| 
 | |
|   // Create an iterator to name all of the arguments we inserted.
 | |
|   Function::arg_iterator AI = newFunction->arg_begin();
 | |
| 
 | |
|   // Rewrite all users of the inputs in the extracted region to use the
 | |
|   // arguments (or appropriate addressing into struct) instead.
 | |
|   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | |
|     Value *RewriteVal;
 | |
|     if (AggregateArgs) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
 | |
|       TerminatorInst *TI = newFunction->begin()->getTerminator();
 | |
|       GetElementPtrInst *GEP = 
 | |
|         GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
 | |
|       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
 | |
|     } else
 | |
|       RewriteVal = AI++;
 | |
| 
 | |
|     std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
 | |
|     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
 | |
|          use != useE; ++use)
 | |
|       if (Instruction* inst = dyn_cast<Instruction>(*use))
 | |
|         if (Blocks.count(inst->getParent()))
 | |
|           inst->replaceUsesOfWith(inputs[i], RewriteVal);
 | |
|   }
 | |
| 
 | |
|   // Set names for input and output arguments.
 | |
|   if (!AggregateArgs) {
 | |
|     AI = newFunction->arg_begin();
 | |
|     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
 | |
|       AI->setName(inputs[i]->getName());
 | |
|     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
 | |
|       AI->setName(outputs[i]->getName()+".out");
 | |
|   }
 | |
| 
 | |
|   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
 | |
|   // within the new function. This must be done before we lose track of which
 | |
|   // blocks were originally in the code region.
 | |
|   std::vector<User*> Users(header->use_begin(), header->use_end());
 | |
|   for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | |
|     // The BasicBlock which contains the branch is not in the region
 | |
|     // modify the branch target to a new block
 | |
|     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
 | |
|       if (!Blocks.count(TI->getParent()) &&
 | |
|           TI->getParent()->getParent() == oldFunction)
 | |
|         TI->replaceUsesOfWith(header, newHeader);
 | |
| 
 | |
|   return newFunction;
 | |
| }
 | |
| 
 | |
| /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
 | |
| /// that uses the value within the basic block, and return the predecessor
 | |
| /// block associated with that use, or return 0 if none is found.
 | |
| static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
 | |
|   for (Value::use_iterator UI = Used->use_begin(),
 | |
|        UE = Used->use_end(); UI != UE; ++UI) {
 | |
|      PHINode *P = dyn_cast<PHINode>(*UI);
 | |
|      if (P && P->getParent() == BB)
 | |
|        return P->getIncomingBlock(UI);
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// emitCallAndSwitchStatement - This method sets up the caller side by adding
 | |
| /// the call instruction, splitting any PHI nodes in the header block as
 | |
| /// necessary.
 | |
| void CodeExtractor::
 | |
| emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
 | |
|                            ValueSet &inputs, ValueSet &outputs) {
 | |
|   // Emit a call to the new function, passing in: *pointer to struct (if
 | |
|   // aggregating parameters), or plan inputs and allocated memory for outputs
 | |
|   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
 | |
|   
 | |
|   LLVMContext &Context = newFunction->getContext();
 | |
| 
 | |
|   // Add inputs as params, or to be filled into the struct
 | |
|   for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
 | |
|     if (AggregateArgs)
 | |
|       StructValues.push_back(*i);
 | |
|     else
 | |
|       params.push_back(*i);
 | |
| 
 | |
|   // Create allocas for the outputs
 | |
|   for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
 | |
|     if (AggregateArgs) {
 | |
|       StructValues.push_back(*i);
 | |
|     } else {
 | |
|       AllocaInst *alloca =
 | |
|         new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
 | |
|                        codeReplacer->getParent()->begin()->begin());
 | |
|       ReloadOutputs.push_back(alloca);
 | |
|       params.push_back(alloca);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AllocaInst *Struct = 0;
 | |
|   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | |
|     std::vector<Type*> ArgTypes;
 | |
|     for (ValueSet::iterator v = StructValues.begin(),
 | |
|            ve = StructValues.end(); v != ve; ++v)
 | |
|       ArgTypes.push_back((*v)->getType());
 | |
| 
 | |
|     // Allocate a struct at the beginning of this function
 | |
|     Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
 | |
|     Struct =
 | |
|       new AllocaInst(StructArgTy, 0, "structArg",
 | |
|                      codeReplacer->getParent()->begin()->begin());
 | |
|     params.push_back(Struct);
 | |
| 
 | |
|     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
 | |
|       GetElementPtrInst *GEP =
 | |
|         GetElementPtrInst::Create(Struct, Idx,
 | |
|                                   "gep_" + StructValues[i]->getName());
 | |
|       codeReplacer->getInstList().push_back(GEP);
 | |
|       StoreInst *SI = new StoreInst(StructValues[i], GEP);
 | |
|       codeReplacer->getInstList().push_back(SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the call to the function
 | |
|   CallInst *call = CallInst::Create(newFunction, params,
 | |
|                                     NumExitBlocks > 1 ? "targetBlock" : "");
 | |
|   codeReplacer->getInstList().push_back(call);
 | |
| 
 | |
|   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
 | |
|   unsigned FirstOut = inputs.size();
 | |
|   if (!AggregateArgs)
 | |
|     std::advance(OutputArgBegin, inputs.size());
 | |
| 
 | |
|   // Reload the outputs passed in by reference
 | |
|   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
 | |
|     Value *Output = 0;
 | |
|     if (AggregateArgs) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
 | |
|       GetElementPtrInst *GEP
 | |
|         = GetElementPtrInst::Create(Struct, Idx,
 | |
|                                     "gep_reload_" + outputs[i]->getName());
 | |
|       codeReplacer->getInstList().push_back(GEP);
 | |
|       Output = GEP;
 | |
|     } else {
 | |
|       Output = ReloadOutputs[i];
 | |
|     }
 | |
|     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
 | |
|     Reloads.push_back(load);
 | |
|     codeReplacer->getInstList().push_back(load);
 | |
|     std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
 | |
|     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
 | |
|       Instruction *inst = cast<Instruction>(Users[u]);
 | |
|       if (!Blocks.count(inst->getParent()))
 | |
|         inst->replaceUsesOfWith(outputs[i], load);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we can emit a switch statement using the call as a value.
 | |
|   SwitchInst *TheSwitch =
 | |
|       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
 | |
|                          codeReplacer, 0, codeReplacer);
 | |
| 
 | |
|   // Since there may be multiple exits from the original region, make the new
 | |
|   // function return an unsigned, switch on that number.  This loop iterates
 | |
|   // over all of the blocks in the extracted region, updating any terminator
 | |
|   // instructions in the to-be-extracted region that branch to blocks that are
 | |
|   // not in the region to be extracted.
 | |
|   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
 | |
| 
 | |
|   unsigned switchVal = 0;
 | |
|   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
 | |
|          e = Blocks.end(); i != e; ++i) {
 | |
|     TerminatorInst *TI = (*i)->getTerminator();
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       if (!Blocks.count(TI->getSuccessor(i))) {
 | |
|         BasicBlock *OldTarget = TI->getSuccessor(i);
 | |
|         // add a new basic block which returns the appropriate value
 | |
|         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
 | |
|         if (!NewTarget) {
 | |
|           // If we don't already have an exit stub for this non-extracted
 | |
|           // destination, create one now!
 | |
|           NewTarget = BasicBlock::Create(Context,
 | |
|                                          OldTarget->getName() + ".exitStub",
 | |
|                                          newFunction);
 | |
|           unsigned SuccNum = switchVal++;
 | |
| 
 | |
|           Value *brVal = 0;
 | |
|           switch (NumExitBlocks) {
 | |
|           case 0:
 | |
|           case 1: break;  // No value needed.
 | |
|           case 2:         // Conditional branch, return a bool
 | |
|             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
 | |
|             break;
 | |
|           default:
 | |
|             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
 | |
| 
 | |
|           // Update the switch instruction.
 | |
|           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
 | |
|                                               SuccNum),
 | |
|                              OldTarget);
 | |
| 
 | |
|           // Restore values just before we exit
 | |
|           Function::arg_iterator OAI = OutputArgBegin;
 | |
|           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
 | |
|             // For an invoke, the normal destination is the only one that is
 | |
|             // dominated by the result of the invocation
 | |
|             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
 | |
| 
 | |
|             bool DominatesDef = true;
 | |
| 
 | |
|             if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
 | |
|               DefBlock = Invoke->getNormalDest();
 | |
| 
 | |
|               // Make sure we are looking at the original successor block, not
 | |
|               // at a newly inserted exit block, which won't be in the dominator
 | |
|               // info.
 | |
|               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
 | |
|                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
 | |
|                 if (DefBlock == I->second) {
 | |
|                   DefBlock = I->first;
 | |
|                   break;
 | |
|                 }
 | |
| 
 | |
|               // In the extract block case, if the block we are extracting ends
 | |
|               // with an invoke instruction, make sure that we don't emit a
 | |
|               // store of the invoke value for the unwind block.
 | |
|               if (!DT && DefBlock != OldTarget)
 | |
|                 DominatesDef = false;
 | |
|             }
 | |
| 
 | |
|             if (DT) {
 | |
|               DominatesDef = DT->dominates(DefBlock, OldTarget);
 | |
|               
 | |
|               // If the output value is used by a phi in the target block,
 | |
|               // then we need to test for dominance of the phi's predecessor
 | |
|               // instead.  Unfortunately, this a little complicated since we
 | |
|               // have already rewritten uses of the value to uses of the reload.
 | |
|               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 
 | |
|                                                           OldTarget);
 | |
|               if (pred && DT && DT->dominates(DefBlock, pred))
 | |
|                 DominatesDef = true;
 | |
|             }
 | |
| 
 | |
|             if (DominatesDef) {
 | |
|               if (AggregateArgs) {
 | |
|                 Value *Idx[2];
 | |
|                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
 | |
|                                           FirstOut+out);
 | |
|                 GetElementPtrInst *GEP =
 | |
|                   GetElementPtrInst::Create(OAI, Idx,
 | |
|                                             "gep_" + outputs[out]->getName(),
 | |
|                                             NTRet);
 | |
|                 new StoreInst(outputs[out], GEP, NTRet);
 | |
|               } else {
 | |
|                 new StoreInst(outputs[out], OAI, NTRet);
 | |
|               }
 | |
|             }
 | |
|             // Advance output iterator even if we don't emit a store
 | |
|             if (!AggregateArgs) ++OAI;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // rewrite the original branch instruction with this new target
 | |
|         TI->setSuccessor(i, NewTarget);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Now that we've done the deed, simplify the switch instruction.
 | |
|   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
 | |
|   switch (NumExitBlocks) {
 | |
|   case 0:
 | |
|     // There are no successors (the block containing the switch itself), which
 | |
|     // means that previously this was the last part of the function, and hence
 | |
|     // this should be rewritten as a `ret'
 | |
| 
 | |
|     // Check if the function should return a value
 | |
|     if (OldFnRetTy->isVoidTy()) {
 | |
|       ReturnInst::Create(Context, 0, TheSwitch);  // Return void
 | |
|     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
 | |
|       // return what we have
 | |
|       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
 | |
|     } else {
 | |
|       // Otherwise we must have code extracted an unwind or something, just
 | |
|       // return whatever we want.
 | |
|       ReturnInst::Create(Context, 
 | |
|                          Constant::getNullValue(OldFnRetTy), TheSwitch);
 | |
|     }
 | |
| 
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   case 1:
 | |
|     // Only a single destination, change the switch into an unconditional
 | |
|     // branch.
 | |
|     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   case 2:
 | |
|     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
 | |
|                        call, TheSwitch);
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   default:
 | |
|     // Otherwise, make the default destination of the switch instruction be one
 | |
|     // of the other successors.
 | |
|     TheSwitch->setCondition(call);
 | |
|     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
 | |
|     // Remove redundant case
 | |
|     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::moveCodeToFunction(Function *newFunction) {
 | |
|   Function *oldFunc = (*Blocks.begin())->getParent();
 | |
|   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
 | |
|   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
 | |
| 
 | |
|   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
 | |
|          e = Blocks.end(); i != e; ++i) {
 | |
|     // Delete the basic block from the old function, and the list of blocks
 | |
|     oldBlocks.remove(*i);
 | |
| 
 | |
|     // Insert this basic block into the new function
 | |
|     newBlocks.push_back(*i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Function *CodeExtractor::extractCodeRegion() {
 | |
|   if (!isEligible())
 | |
|     return 0;
 | |
| 
 | |
|   ValueSet inputs, outputs;
 | |
| 
 | |
|   // Assumption: this is a single-entry code region, and the header is the first
 | |
|   // block in the region.
 | |
|   BasicBlock *header = *Blocks.begin();
 | |
| 
 | |
|   // If we have to split PHI nodes or the entry block, do so now.
 | |
|   severSplitPHINodes(header);
 | |
| 
 | |
|   // If we have any return instructions in the region, split those blocks so
 | |
|   // that the return is not in the region.
 | |
|   splitReturnBlocks();
 | |
| 
 | |
|   Function *oldFunction = header->getParent();
 | |
| 
 | |
|   // This takes place of the original loop
 | |
|   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 
 | |
|                                                 "codeRepl", oldFunction,
 | |
|                                                 header);
 | |
| 
 | |
|   // The new function needs a root node because other nodes can branch to the
 | |
|   // head of the region, but the entry node of a function cannot have preds.
 | |
|   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 
 | |
|                                                "newFuncRoot");
 | |
|   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
 | |
| 
 | |
|   // Find inputs to, outputs from the code region.
 | |
|   findInputsOutputs(inputs, outputs);
 | |
| 
 | |
|   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
 | |
|   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
 | |
|        I != E; ++I)
 | |
|     for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
 | |
|       if (!Blocks.count(*SI))
 | |
|         ExitBlocks.insert(*SI);
 | |
|   NumExitBlocks = ExitBlocks.size();
 | |
| 
 | |
|   // Construct new function based on inputs/outputs & add allocas for all defs.
 | |
|   Function *newFunction = constructFunction(inputs, outputs, header,
 | |
|                                             newFuncRoot,
 | |
|                                             codeReplacer, oldFunction,
 | |
|                                             oldFunction->getParent());
 | |
| 
 | |
|   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
 | |
| 
 | |
|   moveCodeToFunction(newFunction);
 | |
| 
 | |
|   // Loop over all of the PHI nodes in the header block, and change any
 | |
|   // references to the old incoming edge to be the new incoming edge.
 | |
|   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!Blocks.count(PN->getIncomingBlock(i)))
 | |
|         PN->setIncomingBlock(i, newFuncRoot);
 | |
|   }
 | |
| 
 | |
|   // Look at all successors of the codeReplacer block.  If any of these blocks
 | |
|   // had PHI nodes in them, we need to update the "from" block to be the code
 | |
|   // replacer, not the original block in the extracted region.
 | |
|   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
 | |
|                                  succ_end(codeReplacer));
 | |
|   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
 | |
|     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       std::set<BasicBlock*> ProcessedPreds;
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
 | |
|             PN->setIncomingBlock(i, codeReplacer);
 | |
|           else {
 | |
|             // There were multiple entries in the PHI for this block, now there
 | |
|             // is only one, so remove the duplicated entries.
 | |
|             PN->removeIncomingValue(i, false);
 | |
|             --i; --e;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   //cerr << "NEW FUNCTION: " << *newFunction;
 | |
|   //  verifyFunction(*newFunction);
 | |
| 
 | |
|   //  cerr << "OLD FUNCTION: " << *oldFunction;
 | |
|   //  verifyFunction(*oldFunction);
 | |
| 
 | |
|   DEBUG(if (verifyFunction(*newFunction)) 
 | |
|         report_fatal_error("verifyFunction failed!"));
 | |
|   return newFunction;
 | |
| }
 |