forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1757 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1757 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- OutputSections.cpp -------------------------------------------------===//
 | 
						|
//
 | 
						|
//                             The LLVM Linker
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "OutputSections.h"
 | 
						|
#include "Config.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Target.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace llvm::support::endian;
 | 
						|
using namespace llvm::ELF;
 | 
						|
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf2;
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
 | 
						|
                                           uintX_t Flags)
 | 
						|
    : Name(Name) {
 | 
						|
  memset(&Header, 0, sizeof(Elf_Shdr));
 | 
						|
  Header.sh_type = Type;
 | 
						|
  Header.sh_flags = Flags;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GotPltSection<ELFT>::GotPltSection()
 | 
						|
    : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody *Sym) {
 | 
						|
  Sym->GotPltIndex = Target->getGotPltHeaderEntriesNum() + Entries.size();
 | 
						|
  Entries.push_back(Sym);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool GotPltSection<ELFT>::empty() const {
 | 
						|
  return Entries.empty();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotPltSection<ELFT>::uintX_t
 | 
						|
GotPltSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
 | 
						|
  return this->getVA() + B.GotPltIndex * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size =
 | 
						|
      (Target->getGotPltHeaderEntriesNum() + Entries.size()) * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  Target->writeGotPltHeaderEntries(Buf);
 | 
						|
  Buf += Target->getGotPltHeaderEntriesNum() * sizeof(uintX_t);
 | 
						|
  for (const SymbolBody *B : Entries) {
 | 
						|
    Target->writeGotPltEntry(Buf, Out<ELFT>::Plt->getEntryAddr(*B));
 | 
						|
    Buf += sizeof(uintX_t);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GotSection<ELFT>::GotSection()
 | 
						|
    : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
 | 
						|
  if (Config->EMachine == EM_MIPS)
 | 
						|
    this->Header.sh_flags |= SHF_MIPS_GPREL;
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody *Sym) {
 | 
						|
  Sym->GotIndex = Entries.size();
 | 
						|
  Entries.push_back(Sym);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::addMipsLocalEntry() {
 | 
						|
  ++MipsLocalEntries;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody *Sym) {
 | 
						|
  if (Sym->hasGlobalDynIndex())
 | 
						|
    return false;
 | 
						|
  Sym->GlobalDynIndex = Target->getGotHeaderEntriesNum() + Entries.size();
 | 
						|
  // Global Dynamic TLS entries take two GOT slots.
 | 
						|
  Entries.push_back(Sym);
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool GotSection<ELFT>::addCurrentModuleTlsIndex() {
 | 
						|
  if (LocalTlsIndexOff != uint32_t(-1))
 | 
						|
    return false;
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  LocalTlsIndexOff = (Entries.size() - 2) * sizeof(uintX_t);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
 | 
						|
  return this->getVA() +
 | 
						|
         (Target->getGotHeaderEntriesNum() + MipsLocalEntries + B.GotIndex) *
 | 
						|
             sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getMipsLocalFullAddr(const SymbolBody &B) {
 | 
						|
  return getMipsLocalEntryAddr(getSymVA<ELFT>(B));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getMipsLocalPageAddr(uintX_t EntryValue) {
 | 
						|
  // Initialize the entry by the %hi(EntryValue) expression
 | 
						|
  // but without right-shifting.
 | 
						|
  return getMipsLocalEntryAddr((EntryValue + 0x8000) & ~0xffff);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getMipsLocalEntryAddr(uintX_t EntryValue) {
 | 
						|
  size_t NewIndex = Target->getGotHeaderEntriesNum() + MipsLocalGotPos.size();
 | 
						|
  auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
 | 
						|
  assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries);
 | 
						|
  return this->getVA() + P.first->second * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
 | 
						|
  return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
 | 
						|
  return Entries.empty() ? nullptr : Entries.front();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
 | 
						|
  return Target->getGotHeaderEntriesNum() + MipsLocalEntries;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size =
 | 
						|
      (Target->getGotHeaderEntriesNum() + MipsLocalEntries + Entries.size()) *
 | 
						|
      sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  Target->writeGotHeaderEntries(Buf);
 | 
						|
  for (const auto &L : MipsLocalGotPos) {
 | 
						|
    uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
 | 
						|
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
 | 
						|
  }
 | 
						|
  Buf += Target->getGotHeaderEntriesNum() * sizeof(uintX_t);
 | 
						|
  Buf += MipsLocalEntries * sizeof(uintX_t);
 | 
						|
  for (const SymbolBody *B : Entries) {
 | 
						|
    uint8_t *Entry = Buf;
 | 
						|
    Buf += sizeof(uintX_t);
 | 
						|
    if (!B)
 | 
						|
      continue;
 | 
						|
    // MIPS has special rules to fill up GOT entries.
 | 
						|
    // See "Global Offset Table" in Chapter 5 in the following document
 | 
						|
    // for detailed description:
 | 
						|
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
    // As the first approach, we can just store addresses for all symbols.
 | 
						|
    if (Config->EMachine != EM_MIPS && canBePreempted(B, false))
 | 
						|
      continue; // The dynamic linker will take care of it.
 | 
						|
    uintX_t VA = getSymVA<ELFT>(*B);
 | 
						|
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
PltSection<ELFT>::PltSection()
 | 
						|
    : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
 | 
						|
  this->Header.sh_addralign = 16;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  size_t Off = 0;
 | 
						|
  bool LazyReloc = Target->supportsLazyRelocations();
 | 
						|
  if (LazyReloc) {
 | 
						|
    // First write PLT[0] entry which is special.
 | 
						|
    Target->writePltZeroEntry(Buf, Out<ELFT>::GotPlt->getVA(), this->getVA());
 | 
						|
    Off += Target->getPltZeroEntrySize();
 | 
						|
  }
 | 
						|
  for (auto &I : Entries) {
 | 
						|
    const SymbolBody *E = I.first;
 | 
						|
    unsigned RelOff = I.second;
 | 
						|
    uint64_t GotVA =
 | 
						|
        LazyReloc ? Out<ELFT>::GotPlt->getVA() : Out<ELFT>::Got->getVA();
 | 
						|
    uint64_t GotE = LazyReloc ? Out<ELFT>::GotPlt->getEntryAddr(*E)
 | 
						|
                              : Out<ELFT>::Got->getEntryAddr(*E);
 | 
						|
    uint64_t Plt = this->getVA() + Off;
 | 
						|
    Target->writePltEntry(Buf + Off, GotVA, GotE, Plt, E->PltIndex, RelOff);
 | 
						|
    Off += Target->getPltEntrySize();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody *Sym) {
 | 
						|
  Sym->PltIndex = Entries.size();
 | 
						|
  unsigned RelOff = Target->supportsLazyRelocations()
 | 
						|
                        ? Out<ELFT>::RelaPlt->getRelocOffset()
 | 
						|
                        : Out<ELFT>::RelaDyn->getRelocOffset();
 | 
						|
  Entries.push_back(std::make_pair(Sym, RelOff));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename PltSection<ELFT>::uintX_t
 | 
						|
PltSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
 | 
						|
  return this->getVA() + Target->getPltZeroEntrySize() +
 | 
						|
         B.PltIndex * Target->getPltEntrySize();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size = Target->getPltZeroEntrySize() +
 | 
						|
                         Entries.size() * Target->getPltEntrySize();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool IsRela)
 | 
						|
    : OutputSectionBase<ELFT>(Name, IsRela ? SHT_RELA : SHT_REL, SHF_ALLOC),
 | 
						|
      IsRela(IsRela) {
 | 
						|
  this->Header.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
 | 
						|
  this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
// Applies corresponding symbol and type for dynamic tls relocation.
 | 
						|
// Returns true if relocation was handled.
 | 
						|
template <class ELFT>
 | 
						|
bool RelocationSection<ELFT>::applyTlsDynamicReloc(SymbolBody *Body,
 | 
						|
                                                   uint32_t Type, Elf_Rel *P,
 | 
						|
                                                   Elf_Rel *N) {
 | 
						|
  if (Target->isTlsLocalDynamicReloc(Type)) {
 | 
						|
    P->setSymbolAndType(0, Target->getTlsModuleIndexReloc(), Config->Mips64EL);
 | 
						|
    P->r_offset = Out<ELFT>::Got->getLocalTlsIndexVA();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Body || !Target->isTlsGlobalDynamicReloc(Type))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Target->isTlsOptimized(Type, Body)) {
 | 
						|
    P->setSymbolAndType(Body->DynamicSymbolTableIndex,
 | 
						|
                        Target->getTlsGotReloc(), Config->Mips64EL);
 | 
						|
    P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  P->setSymbolAndType(Body->DynamicSymbolTableIndex,
 | 
						|
                      Target->getTlsModuleIndexReloc(), Config->Mips64EL);
 | 
						|
  P->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body);
 | 
						|
  N->setSymbolAndType(Body->DynamicSymbolTableIndex,
 | 
						|
                      Target->getTlsOffsetReloc(), Config->Mips64EL);
 | 
						|
  N->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body) + sizeof(uintX_t);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  for (const DynamicReloc<ELFT> &Rel : Relocs) {
 | 
						|
    auto *P = reinterpret_cast<Elf_Rel *>(Buf);
 | 
						|
    Buf += IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
 | 
						|
 | 
						|
    // Skip placeholder for global dynamic TLS relocation pair. It was already
 | 
						|
    // handled by the previous relocation.
 | 
						|
    if (!Rel.C)
 | 
						|
      continue;
 | 
						|
 | 
						|
    InputSectionBase<ELFT> &C = *Rel.C;
 | 
						|
    const Elf_Rel &RI = *Rel.RI;
 | 
						|
    uint32_t SymIndex = RI.getSymbol(Config->Mips64EL);
 | 
						|
    const ObjectFile<ELFT> &File = *C.getFile();
 | 
						|
    SymbolBody *Body = File.getSymbolBody(SymIndex);
 | 
						|
    if (Body)
 | 
						|
      Body = Body->repl();
 | 
						|
 | 
						|
    uint32_t Type = RI.getType(Config->Mips64EL);
 | 
						|
    if (applyTlsDynamicReloc(Body, Type, P, reinterpret_cast<Elf_Rel *>(Buf)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Writer::scanRelocs creates a RELATIVE reloc for some type of TLS reloc.
 | 
						|
    // We want to write it down as is.
 | 
						|
    if (Type == Target->getRelativeReloc()) {
 | 
						|
      P->setSymbolAndType(0, Type, Config->Mips64EL);
 | 
						|
      P->r_offset = C.getOffset(RI.r_offset) + C.OutSec->getVA();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit a copy relocation.
 | 
						|
    auto *SS = dyn_cast_or_null<SharedSymbol<ELFT>>(Body);
 | 
						|
    if (SS && SS->NeedsCopy) {
 | 
						|
      P->setSymbolAndType(Body->DynamicSymbolTableIndex, Target->getCopyReloc(),
 | 
						|
                          Config->Mips64EL);
 | 
						|
      P->r_offset = Out<ELFT>::Bss->getVA() + SS->OffsetInBss;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool NeedsGot = Body && Target->relocNeedsGot(Type, *Body);
 | 
						|
    bool CBP = canBePreempted(Body, NeedsGot);
 | 
						|
 | 
						|
    // For a symbol with STT_GNU_IFUNC type, we always create a PLT and
 | 
						|
    // a GOT entry for the symbol, and emit an IRELATIVE reloc rather than
 | 
						|
    // the usual JUMP_SLOT reloc for the GOT entry. For the details, you
 | 
						|
    // want to read http://www.airs.com/blog/archives/403
 | 
						|
    if (!CBP && Body && isGnuIFunc<ELFT>(*Body)) {
 | 
						|
      P->setSymbolAndType(0, Target->getIRelativeReloc(), Config->Mips64EL);
 | 
						|
      if (Out<ELFT>::GotPlt)
 | 
						|
        P->r_offset = Out<ELFT>::GotPlt->getEntryAddr(*Body);
 | 
						|
      else
 | 
						|
        P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool LazyReloc = Body && Target->supportsLazyRelocations() &&
 | 
						|
                     Target->relocNeedsPlt(Type, *Body);
 | 
						|
 | 
						|
    unsigned Reloc;
 | 
						|
    if (!CBP)
 | 
						|
      Reloc = Target->getRelativeReloc();
 | 
						|
    else if (LazyReloc)
 | 
						|
      Reloc = Target->getPltReloc();
 | 
						|
    else if (NeedsGot)
 | 
						|
      Reloc = Body->isTls() ? Target->getTlsGotReloc() : Target->getGotReloc();
 | 
						|
    else
 | 
						|
      Reloc = Target->getDynReloc(Type);
 | 
						|
    P->setSymbolAndType(CBP ? Body->DynamicSymbolTableIndex : 0, Reloc,
 | 
						|
                        Config->Mips64EL);
 | 
						|
 | 
						|
    if (LazyReloc)
 | 
						|
      P->r_offset = Out<ELFT>::GotPlt->getEntryAddr(*Body);
 | 
						|
    else if (NeedsGot)
 | 
						|
      P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
 | 
						|
    else
 | 
						|
      P->r_offset = C.getOffset(RI.r_offset) + C.OutSec->getVA();
 | 
						|
 | 
						|
    if (!IsRela)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto R = static_cast<const Elf_Rela &>(RI);
 | 
						|
    uintX_t Addend;
 | 
						|
    if (CBP)
 | 
						|
      Addend = NeedsGot ? 0 : R.r_addend;
 | 
						|
    else if (Body)
 | 
						|
      Addend = getSymVA<ELFT>(*Body) + (NeedsGot ? 0 : R.r_addend);
 | 
						|
    else
 | 
						|
      Addend = getLocalRelTarget(File, R, R.r_addend);
 | 
						|
    static_cast<Elf_Rela *>(P)->r_addend = Addend;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
 | 
						|
  const unsigned EntrySize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
 | 
						|
  return EntrySize * Relocs.size();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void RelocationSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
 | 
						|
                                : Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
  this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
InterpSection<ELFT>::InterpSection()
 | 
						|
    : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
 | 
						|
  this->Header.sh_size = Config->DynamicLinker.size() + 1;
 | 
						|
  this->Header.sh_addralign = 1;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *SHdr) {
 | 
						|
  Header.sh_name = Out<ELFT>::ShStrTab->addString(Name);
 | 
						|
  *SHdr = Header;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  memcpy(Buf, Config->DynamicLinker.data(), Config->DynamicLinker.size());
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
HashTableSection<ELFT>::HashTableSection()
 | 
						|
    : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Word);
 | 
						|
  this->Header.sh_addralign = sizeof(Elf_Word);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t hashSysv(StringRef Name) {
 | 
						|
  uint32_t H = 0;
 | 
						|
  for (char C : Name) {
 | 
						|
    H = (H << 4) + C;
 | 
						|
    uint32_t G = H & 0xf0000000;
 | 
						|
    if (G)
 | 
						|
      H ^= G >> 24;
 | 
						|
    H &= ~G;
 | 
						|
  }
 | 
						|
  return H;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void HashTableSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
 | 
						|
  unsigned NumEntries = 2;                 // nbucket and nchain.
 | 
						|
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
 | 
						|
 | 
						|
  // Create as many buckets as there are symbols.
 | 
						|
  // FIXME: This is simplistic. We can try to optimize it, but implementing
 | 
						|
  // support for SHT_GNU_HASH is probably even more profitable.
 | 
						|
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
 | 
						|
  this->Header.sh_size = NumEntries * sizeof(Elf_Word);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
 | 
						|
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  *P++ = NumSymbols; // nbucket
 | 
						|
  *P++ = NumSymbols; // nchain
 | 
						|
 | 
						|
  Elf_Word *Buckets = P;
 | 
						|
  Elf_Word *Chains = P + NumSymbols;
 | 
						|
 | 
						|
  for (SymbolBody *Body : Out<ELFT>::DynSymTab->getSymbols()) {
 | 
						|
    StringRef Name = Body->getName();
 | 
						|
    unsigned I = Body->DynamicSymbolTableIndex;
 | 
						|
    uint32_t Hash = hashSysv(Name) % NumSymbols;
 | 
						|
    Chains[I] = Buckets[Hash];
 | 
						|
    Buckets[Hash] = I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t hashGnu(StringRef Name) {
 | 
						|
  uint32_t H = 5381;
 | 
						|
  for (uint8_t C : Name)
 | 
						|
    H = (H << 5) + H + C;
 | 
						|
  return H;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GnuHashTableSection<ELFT>::GnuHashTableSection()
 | 
						|
    : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
 | 
						|
  this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
 | 
						|
  this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
 | 
						|
  if (!NumHashed)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // These values are prime numbers which are not greater than 2^(N-1) + 1.
 | 
						|
  // In result, for any particular NumHashed we return a prime number
 | 
						|
  // which is not greater than NumHashed.
 | 
						|
  static const unsigned Primes[] = {
 | 
						|
      1,   1,    3,    3,    7,    13,    31,    61,    127,   251,
 | 
						|
      509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
 | 
						|
 | 
						|
  return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
 | 
						|
                                   array_lengthof(Primes) - 1)];
 | 
						|
}
 | 
						|
 | 
						|
// Bloom filter estimation: at least 8 bits for each hashed symbol.
 | 
						|
// GNU Hash table requirement: it should be a power of 2,
 | 
						|
//   the minimum value is 1, even for an empty table.
 | 
						|
// Expected results for a 32-bit target:
 | 
						|
//   calcMaskWords(0..4)   = 1
 | 
						|
//   calcMaskWords(5..8)   = 2
 | 
						|
//   calcMaskWords(9..16)  = 4
 | 
						|
// For a 64-bit target:
 | 
						|
//   calcMaskWords(0..8)   = 1
 | 
						|
//   calcMaskWords(9..16)  = 2
 | 
						|
//   calcMaskWords(17..32) = 4
 | 
						|
template <class ELFT>
 | 
						|
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
 | 
						|
  if (!NumHashed)
 | 
						|
    return 1;
 | 
						|
  return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
 | 
						|
  unsigned NumHashed = HashedSymbols.size();
 | 
						|
  NBuckets = calcNBuckets(NumHashed);
 | 
						|
  MaskWords = calcMaskWords(NumHashed);
 | 
						|
  // Second hash shift estimation: just predefined values.
 | 
						|
  Shift2 = ELFT::Is64Bits ? 6 : 5;
 | 
						|
 | 
						|
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
  this->Header.sh_size = sizeof(Elf_Word) * 4            // Header
 | 
						|
                         + sizeof(Elf_Off) * MaskWords   // Bloom Filter
 | 
						|
                         + sizeof(Elf_Word) * NBuckets   // Hash Buckets
 | 
						|
                         + sizeof(Elf_Word) * NumHashed; // Hash Values
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  writeHeader(Buf);
 | 
						|
  if (HashedSymbols.empty())
 | 
						|
    return;
 | 
						|
  writeBloomFilter(Buf);
 | 
						|
  writeHashTable(Buf);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
 | 
						|
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  *P++ = NBuckets;
 | 
						|
  *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - HashedSymbols.size();
 | 
						|
  *P++ = MaskWords;
 | 
						|
  *P++ = Shift2;
 | 
						|
  Buf = reinterpret_cast<uint8_t *>(P);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
 | 
						|
  unsigned C = sizeof(Elf_Off) * 8;
 | 
						|
 | 
						|
  auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
 | 
						|
  for (const HashedSymbolData &Item : HashedSymbols) {
 | 
						|
    size_t Pos = (Item.Hash / C) & (MaskWords - 1);
 | 
						|
    uintX_t V = (uintX_t(1) << (Item.Hash % C)) |
 | 
						|
                (uintX_t(1) << ((Item.Hash >> Shift2) % C));
 | 
						|
    Masks[Pos] |= V;
 | 
						|
  }
 | 
						|
  Buf += sizeof(Elf_Off) * MaskWords;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
 | 
						|
  Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  Elf_Word *Values = Buckets + NBuckets;
 | 
						|
 | 
						|
  int PrevBucket = -1;
 | 
						|
  int I = 0;
 | 
						|
  for (const HashedSymbolData &Item : HashedSymbols) {
 | 
						|
    int Bucket = Item.Hash % NBuckets;
 | 
						|
    assert(PrevBucket <= Bucket);
 | 
						|
    if (Bucket != PrevBucket) {
 | 
						|
      Buckets[Bucket] = Item.Body->DynamicSymbolTableIndex;
 | 
						|
      PrevBucket = Bucket;
 | 
						|
      if (I > 0)
 | 
						|
        Values[I - 1] |= 1;
 | 
						|
    }
 | 
						|
    Values[I] = Item.Hash & ~1;
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  if (I > 0)
 | 
						|
    Values[I - 1] |= 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool includeInGnuHashTable(SymbolBody *B) {
 | 
						|
  // Assume that includeInDynamicSymtab() is already checked.
 | 
						|
  return !B->isUndefined();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolBody *> &Symbols) {
 | 
						|
  std::vector<SymbolBody *> NotHashed;
 | 
						|
  NotHashed.reserve(Symbols.size());
 | 
						|
  HashedSymbols.reserve(Symbols.size());
 | 
						|
  for (SymbolBody *B : Symbols) {
 | 
						|
    if (includeInGnuHashTable(B))
 | 
						|
      HashedSymbols.push_back(HashedSymbolData{B, hashGnu(B->getName())});
 | 
						|
    else
 | 
						|
      NotHashed.push_back(B);
 | 
						|
  }
 | 
						|
  if (HashedSymbols.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned NBuckets = calcNBuckets(HashedSymbols.size());
 | 
						|
  std::stable_sort(HashedSymbols.begin(), HashedSymbols.end(),
 | 
						|
                   [&](const HashedSymbolData &L, const HashedSymbolData &R) {
 | 
						|
                     return L.Hash % NBuckets < R.Hash % NBuckets;
 | 
						|
                   });
 | 
						|
 | 
						|
  Symbols = std::move(NotHashed);
 | 
						|
  for (const HashedSymbolData &Item : HashedSymbols)
 | 
						|
    Symbols.push_back(Item.Body);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab)
 | 
						|
    : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE),
 | 
						|
      SymTab(SymTab) {
 | 
						|
  Elf_Shdr &Header = this->Header;
 | 
						|
  Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
 | 
						|
  Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
 | 
						|
 | 
						|
  // .dynamic section is not writable on MIPS.
 | 
						|
  // See "Special Section" in Chapter 4 in the following document:
 | 
						|
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
  if (Config->EMachine == EM_MIPS)
 | 
						|
    Header.sh_flags = SHF_ALLOC;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void DynamicSection<ELFT>::finalize() {
 | 
						|
  if (this->Header.sh_size)
 | 
						|
    return; // Already finalized.
 | 
						|
 | 
						|
  Elf_Shdr &Header = this->Header;
 | 
						|
  Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
 | 
						|
 | 
						|
  // Reserve strings. We know that these are the last string to be added to
 | 
						|
  // DynStrTab and doing this here allows this function to set DT_STRSZ.
 | 
						|
  if (!Config->RPath.empty())
 | 
						|
    Out<ELFT>::DynStrTab->reserve(Config->RPath);
 | 
						|
  if (!Config->SoName.empty())
 | 
						|
    Out<ELFT>::DynStrTab->reserve(Config->SoName);
 | 
						|
  for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
 | 
						|
    if (F->isNeeded())
 | 
						|
      Out<ELFT>::DynStrTab->reserve(F->getSoName());
 | 
						|
  Out<ELFT>::DynStrTab->finalize();
 | 
						|
 | 
						|
  auto Add = [=](Entry E) { Entries.push_back(E); };
 | 
						|
 | 
						|
  if (Out<ELFT>::RelaDyn->hasRelocs()) {
 | 
						|
    bool IsRela = Out<ELFT>::RelaDyn->isRela();
 | 
						|
    Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
 | 
						|
    Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
 | 
						|
    Add({IsRela ? DT_RELAENT : DT_RELENT,
 | 
						|
         uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
 | 
						|
  }
 | 
						|
  if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
 | 
						|
    Add({DT_JMPREL, Out<ELFT>::RelaPlt});
 | 
						|
    Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
 | 
						|
    Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
 | 
						|
         Out<ELFT>::GotPlt});
 | 
						|
    Add({DT_PLTREL, uint64_t(Out<ELFT>::RelaPlt->isRela() ? DT_RELA : DT_REL)});
 | 
						|
  }
 | 
						|
 | 
						|
  Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
 | 
						|
  Add({DT_SYMENT, sizeof(Elf_Sym)});
 | 
						|
  Add({DT_STRTAB, Out<ELFT>::DynStrTab});
 | 
						|
  Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
 | 
						|
  if (Out<ELFT>::GnuHashTab)
 | 
						|
    Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
 | 
						|
  if (Out<ELFT>::HashTab)
 | 
						|
    Add({DT_HASH, Out<ELFT>::HashTab});
 | 
						|
 | 
						|
  if (!Config->RPath.empty())
 | 
						|
    Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
 | 
						|
         Out<ELFT>::DynStrTab->addString(Config->RPath)});
 | 
						|
 | 
						|
  if (!Config->SoName.empty())
 | 
						|
    Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
 | 
						|
 | 
						|
  if (PreInitArraySec) {
 | 
						|
    Add({DT_PREINIT_ARRAY, PreInitArraySec});
 | 
						|
    Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
 | 
						|
  }
 | 
						|
  if (InitArraySec) {
 | 
						|
    Add({DT_INIT_ARRAY, InitArraySec});
 | 
						|
    Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
 | 
						|
  }
 | 
						|
  if (FiniArraySec) {
 | 
						|
    Add({DT_FINI_ARRAY, FiniArraySec});
 | 
						|
    Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
 | 
						|
  }
 | 
						|
 | 
						|
  for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
 | 
						|
    if (F->isNeeded())
 | 
						|
      Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
 | 
						|
 | 
						|
  if (SymbolBody *B = SymTab.find(Config->Init))
 | 
						|
    Add({DT_INIT, B});
 | 
						|
  if (SymbolBody *B = SymTab.find(Config->Fini))
 | 
						|
    Add({DT_FINI, B});
 | 
						|
 | 
						|
  uint32_t DtFlags = 0;
 | 
						|
  uint32_t DtFlags1 = 0;
 | 
						|
  if (Config->Bsymbolic)
 | 
						|
    DtFlags |= DF_SYMBOLIC;
 | 
						|
  if (Config->ZNodelete)
 | 
						|
    DtFlags1 |= DF_1_NODELETE;
 | 
						|
  if (Config->ZNow) {
 | 
						|
    DtFlags |= DF_BIND_NOW;
 | 
						|
    DtFlags1 |= DF_1_NOW;
 | 
						|
  }
 | 
						|
  if (Config->ZOrigin) {
 | 
						|
    DtFlags |= DF_ORIGIN;
 | 
						|
    DtFlags1 |= DF_1_ORIGIN;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DtFlags)
 | 
						|
    Add({DT_FLAGS, DtFlags});
 | 
						|
  if (DtFlags1)
 | 
						|
    Add({DT_FLAGS_1, DtFlags1});
 | 
						|
 | 
						|
  if (!Config->Entry.empty())
 | 
						|
    Add({DT_DEBUG, (uint64_t)0});
 | 
						|
 | 
						|
  if (Config->EMachine == EM_MIPS) {
 | 
						|
    Add({DT_MIPS_RLD_VERSION, 1});
 | 
						|
    Add({DT_MIPS_FLAGS, RHF_NOTPOT});
 | 
						|
    Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()});
 | 
						|
    Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
 | 
						|
    Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
 | 
						|
    if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
 | 
						|
      Add({DT_MIPS_GOTSYM, B->DynamicSymbolTableIndex});
 | 
						|
    else
 | 
						|
      Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
 | 
						|
    Add({DT_PLTGOT, Out<ELFT>::Got});
 | 
						|
    if (Out<ELFT>::MipsRldMap)
 | 
						|
      Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
 | 
						|
  }
 | 
						|
 | 
						|
  // +1 for DT_NULL
 | 
						|
  Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
 | 
						|
 | 
						|
  for (const Entry &E : Entries) {
 | 
						|
    P->d_tag = E.Tag;
 | 
						|
    switch (E.Kind) {
 | 
						|
    case Entry::SecAddr:
 | 
						|
      P->d_un.d_ptr = E.OutSec->getVA();
 | 
						|
      break;
 | 
						|
    case Entry::SymAddr:
 | 
						|
      P->d_un.d_ptr = getSymVA<ELFT>(*E.Sym);
 | 
						|
      break;
 | 
						|
    case Entry::PlainInt:
 | 
						|
      P->d_un.d_val = E.Val;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    ++P;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EhFrameHeader<ELFT>::EhFrameHeader()
 | 
						|
    : OutputSectionBase<ELFT>(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS,
 | 
						|
                              SHF_ALLOC) {
 | 
						|
  // It's a 4 bytes of header + pointer to the contents of the .eh_frame section
 | 
						|
  // + the number of FDE pointers in the table.
 | 
						|
  this->Header.sh_size = 12;
 | 
						|
}
 | 
						|
 | 
						|
// We have to get PC values of FDEs. They depend on relocations
 | 
						|
// which are target specific, so we run this code after performing
 | 
						|
// all relocations. We read the values from ouput buffer according to the
 | 
						|
// encoding given for FDEs. Return value is an offset to the initial PC value
 | 
						|
// for the FDE.
 | 
						|
template <class ELFT>
 | 
						|
typename EhFrameHeader<ELFT>::uintX_t
 | 
						|
EhFrameHeader<ELFT>::getFdePc(uintX_t EhVA, const FdeData &F) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  assert((F.Enc & 0xF0) != dwarf::DW_EH_PE_datarel);
 | 
						|
 | 
						|
  uintX_t FdeOff = EhVA + F.Off + 8;
 | 
						|
  switch (F.Enc & 0xF) {
 | 
						|
  case dwarf::DW_EH_PE_udata2:
 | 
						|
  case dwarf::DW_EH_PE_sdata2:
 | 
						|
    return FdeOff + read16<E>(F.PCRel);
 | 
						|
  case dwarf::DW_EH_PE_udata4:
 | 
						|
  case dwarf::DW_EH_PE_sdata4:
 | 
						|
    return FdeOff + read32<E>(F.PCRel);
 | 
						|
  case dwarf::DW_EH_PE_udata8:
 | 
						|
  case dwarf::DW_EH_PE_sdata8:
 | 
						|
    return FdeOff + read64<E>(F.PCRel);
 | 
						|
  case dwarf::DW_EH_PE_absptr:
 | 
						|
    if (sizeof(uintX_t) == 8)
 | 
						|
      return FdeOff + read64<E>(F.PCRel);
 | 
						|
    return FdeOff + read32<E>(F.PCRel);
 | 
						|
  }
 | 
						|
  error("unknown FDE size encoding");
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  const uint8_t Header[] = {1, dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4,
 | 
						|
                            dwarf::DW_EH_PE_udata4,
 | 
						|
                            dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4};
 | 
						|
  memcpy(Buf, Header, sizeof(Header));
 | 
						|
 | 
						|
  uintX_t EhVA = Sec->getVA();
 | 
						|
  uintX_t VA = this->getVA();
 | 
						|
  uintX_t EhOff = EhVA - VA - 4;
 | 
						|
  write32<E>(Buf + 4, EhOff);
 | 
						|
  write32<E>(Buf + 8, this->FdeList.size());
 | 
						|
  Buf += 12;
 | 
						|
 | 
						|
  // InitialPC -> Offset in .eh_frame, sorted by InitialPC.
 | 
						|
  std::map<uintX_t, size_t> PcToOffset;
 | 
						|
  for (const FdeData &F : FdeList)
 | 
						|
    PcToOffset[getFdePc(EhVA, F)] = F.Off;
 | 
						|
 | 
						|
  for (auto &I : PcToOffset) {
 | 
						|
    // The first four bytes are an offset to the initial PC value for the FDE.
 | 
						|
    write32<E>(Buf, I.first - VA);
 | 
						|
    // The last four bytes are an offset to the FDE data itself.
 | 
						|
    write32<E>(Buf + 4, EhVA + I.second - VA);
 | 
						|
    Buf += 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EhFrameHeader<ELFT>::assignEhFrame(EHOutputSection<ELFT> *Sec) {
 | 
						|
  assert((!this->Sec || this->Sec == Sec) &&
 | 
						|
         "multiple .eh_frame sections not supported for .eh_frame_hdr");
 | 
						|
  Live = Config->EhFrameHdr;
 | 
						|
  this->Sec = Sec;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EhFrameHeader<ELFT>::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) {
 | 
						|
  if (Live && (Enc & 0xF0) == dwarf::DW_EH_PE_datarel)
 | 
						|
    error("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr");
 | 
						|
  FdeList.push_back(FdeData{Enc, Off, PCRel});
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EhFrameHeader<ELFT>::reserveFde() {
 | 
						|
  // Each FDE entry is 8 bytes long:
 | 
						|
  // The first four bytes are an offset to the initial PC value for the FDE. The
 | 
						|
  // last four byte are an offset to the FDE data itself.
 | 
						|
  this->Header.sh_size += 8;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type,
 | 
						|
                                   uintX_t Flags)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags) {}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<InputSection<ELFT>>(C);
 | 
						|
  Sections.push_back(S);
 | 
						|
  S->OutSec = this;
 | 
						|
  uint32_t Align = S->getAlign();
 | 
						|
  if (Align > this->Header.sh_addralign)
 | 
						|
    this->Header.sh_addralign = Align;
 | 
						|
 | 
						|
  uintX_t Off = this->Header.sh_size;
 | 
						|
  Off = alignTo(Off, Align);
 | 
						|
  S->OutSecOff = Off;
 | 
						|
  Off += S->getSize();
 | 
						|
  this->Header.sh_size = Off;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename ELFFile<ELFT>::uintX_t elf2::getSymVA(const SymbolBody &S) {
 | 
						|
  switch (S.kind()) {
 | 
						|
  case SymbolBody::DefinedSyntheticKind: {
 | 
						|
    auto &D = cast<DefinedSynthetic<ELFT>>(S);
 | 
						|
    return D.Section.getVA() + D.Value;
 | 
						|
  }
 | 
						|
  case SymbolBody::DefinedRegularKind: {
 | 
						|
    const auto &DR = cast<DefinedRegular<ELFT>>(S);
 | 
						|
    InputSectionBase<ELFT> *SC = DR.Section;
 | 
						|
    if (!SC)
 | 
						|
      return DR.Sym.st_value;
 | 
						|
 | 
						|
    // Symbol offsets for AMDGPU need to be the offset in bytes of the symbol
 | 
						|
    // from the beginning of the section.
 | 
						|
    if (Config->EMachine == EM_AMDGPU)
 | 
						|
      return SC->getOffset(DR.Sym);
 | 
						|
    if (DR.Sym.getType() == STT_TLS)
 | 
						|
      return SC->OutSec->getVA() + SC->getOffset(DR.Sym) -
 | 
						|
             Out<ELFT>::TlsPhdr->p_vaddr;
 | 
						|
    return SC->OutSec->getVA() + SC->getOffset(DR.Sym);
 | 
						|
  }
 | 
						|
  case SymbolBody::DefinedCommonKind:
 | 
						|
    return Out<ELFT>::Bss->getVA() + cast<DefinedCommon>(S).OffsetInBss;
 | 
						|
  case SymbolBody::SharedKind: {
 | 
						|
    auto &SS = cast<SharedSymbol<ELFT>>(S);
 | 
						|
    if (SS.NeedsCopy)
 | 
						|
      return Out<ELFT>::Bss->getVA() + SS.OffsetInBss;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case SymbolBody::UndefinedElfKind:
 | 
						|
  case SymbolBody::UndefinedKind:
 | 
						|
    return 0;
 | 
						|
  case SymbolBody::LazyKind:
 | 
						|
    assert(S.isUsedInRegularObj() && "Lazy symbol reached writer");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid symbol kind");
 | 
						|
}
 | 
						|
 | 
						|
// Returns a VA which a relocatin RI refers to. Used only for local symbols.
 | 
						|
// For non-local symbols, use getSymVA instead.
 | 
						|
template <class ELFT, bool IsRela>
 | 
						|
typename ELFFile<ELFT>::uintX_t
 | 
						|
elf2::getLocalRelTarget(const ObjectFile<ELFT> &File,
 | 
						|
                        const Elf_Rel_Impl<ELFT, IsRela> &RI,
 | 
						|
                        typename ELFFile<ELFT>::uintX_t Addend) {
 | 
						|
  typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
 | 
						|
  typedef typename ELFFile<ELFT>::uintX_t uintX_t;
 | 
						|
 | 
						|
  // PPC64 has a special relocation representing the TOC base pointer
 | 
						|
  // that does not have a corresponding symbol.
 | 
						|
  if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC)
 | 
						|
    return getPPC64TocBase() + Addend;
 | 
						|
 | 
						|
  const Elf_Sym *Sym =
 | 
						|
      File.getObj().getRelocationSymbol(&RI, File.getSymbolTable());
 | 
						|
 | 
						|
  if (!Sym)
 | 
						|
    error("Unsupported relocation without symbol");
 | 
						|
 | 
						|
  InputSectionBase<ELFT> *Section = File.getSection(*Sym);
 | 
						|
 | 
						|
  if (Sym->getType() == STT_TLS)
 | 
						|
    return (Section->OutSec->getVA() + Section->getOffset(*Sym) + Addend) -
 | 
						|
           Out<ELFT>::TlsPhdr->p_vaddr;
 | 
						|
 | 
						|
  // According to the ELF spec reference to a local symbol from outside
 | 
						|
  // the group are not allowed. Unfortunately .eh_frame breaks that rule
 | 
						|
  // and must be treated specially. For now we just replace the symbol with
 | 
						|
  // 0.
 | 
						|
  if (Section == &InputSection<ELFT>::Discarded || !Section->isLive())
 | 
						|
    return Addend;
 | 
						|
 | 
						|
  uintX_t VA = Section->OutSec->getVA();
 | 
						|
  if (isa<InputSection<ELFT>>(Section))
 | 
						|
    return VA + Section->getOffset(*Sym) + Addend;
 | 
						|
 | 
						|
  uintX_t Offset = Sym->st_value;
 | 
						|
  if (Sym->getType() == STT_SECTION) {
 | 
						|
    Offset += Addend;
 | 
						|
    Addend = 0;
 | 
						|
  }
 | 
						|
  return VA + Section->getOffset(Offset) + Addend;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if a symbol can be replaced at load-time by a symbol
 | 
						|
// with the same name defined in other ELF executable or DSO.
 | 
						|
bool elf2::canBePreempted(const SymbolBody *Body, bool NeedsGot) {
 | 
						|
  if (!Body)
 | 
						|
    return false;  // Body is a local symbol.
 | 
						|
  if (Body->isShared())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Body->isUndefined()) {
 | 
						|
    if (!Body->isWeak())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // This is an horrible corner case. Ideally we would like to say that any
 | 
						|
    // undefined symbol can be preempted so that the dynamic linker has a
 | 
						|
    // chance of finding it at runtime.
 | 
						|
    //
 | 
						|
    // The problem is that the code sequence used to test for weak undef
 | 
						|
    // functions looks like
 | 
						|
    // if (func) func()
 | 
						|
    // If the code is -fPIC the first reference is a load from the got and
 | 
						|
    // everything works.
 | 
						|
    // If the code is not -fPIC there is no reasonable way to solve it:
 | 
						|
    // * A relocation writing to the text segment will fail (it is ro).
 | 
						|
    // * A copy relocation doesn't work for functions.
 | 
						|
    // * The trick of using a plt entry as the address would fail here since
 | 
						|
    //   the plt entry would have a non zero address.
 | 
						|
    // Since we cannot do anything better, we just resolve the symbol to 0 and
 | 
						|
    // don't produce a dynamic relocation.
 | 
						|
    //
 | 
						|
    // As an extra hack, assume that if we are producing a shared library the
 | 
						|
    // user knows what he or she is doing and can handle a dynamic relocation.
 | 
						|
    return Config->Shared || NeedsGot;
 | 
						|
  }
 | 
						|
  if (!Config->Shared)
 | 
						|
    return false;
 | 
						|
  return Body->getVisibility() == STV_DEFAULT;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  for (InputSection<ELFT> *C : Sections)
 | 
						|
    C->writeTo(Buf);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type,
 | 
						|
                                       uintX_t Flags)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags) {
 | 
						|
  Out<ELFT>::EhFrameHdr->assignEhFrame(this);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EHRegion<ELFT>::EHRegion(EHInputSection<ELFT> *S, unsigned Index)
 | 
						|
    : S(S), Index(Index) {}
 | 
						|
 | 
						|
template <class ELFT> StringRef EHRegion<ELFT>::data() const {
 | 
						|
  ArrayRef<uint8_t> SecData = S->getSectionData();
 | 
						|
  ArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets;
 | 
						|
  size_t Start = Offsets[Index].first;
 | 
						|
  size_t End =
 | 
						|
      Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first;
 | 
						|
  return StringRef((const char *)SecData.data() + Start, End - Start);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
Cie<ELFT>::Cie(EHInputSection<ELFT> *S, unsigned Index)
 | 
						|
    : EHRegion<ELFT>(S, Index) {}
 | 
						|
 | 
						|
// Read a byte and advance D by one byte.
 | 
						|
static uint8_t readByte(ArrayRef<uint8_t> &D) {
 | 
						|
  if (D.empty())
 | 
						|
    error("corrupted or unsupported CIE information");
 | 
						|
  uint8_t B = D.front();
 | 
						|
  D = D.slice(1);
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
static void skipLeb128(ArrayRef<uint8_t> &D) {
 | 
						|
  while (!D.empty()) {
 | 
						|
    uint8_t Val = D.front();
 | 
						|
    D = D.slice(1);
 | 
						|
    if ((Val & 0x80) == 0)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  error("corrupted or unsupported CIE information");
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> static unsigned getSizeForEncoding(unsigned Enc) {
 | 
						|
  typedef typename ELFFile<ELFT>::uintX_t uintX_t;
 | 
						|
  switch (Enc & 0x0f) {
 | 
						|
  default:
 | 
						|
    error("unknown FDE encoding");
 | 
						|
  case dwarf::DW_EH_PE_absptr:
 | 
						|
  case dwarf::DW_EH_PE_signed:
 | 
						|
    return sizeof(uintX_t);
 | 
						|
  case dwarf::DW_EH_PE_udata2:
 | 
						|
  case dwarf::DW_EH_PE_sdata2:
 | 
						|
    return 2;
 | 
						|
  case dwarf::DW_EH_PE_udata4:
 | 
						|
  case dwarf::DW_EH_PE_sdata4:
 | 
						|
    return 4;
 | 
						|
  case dwarf::DW_EH_PE_udata8:
 | 
						|
  case dwarf::DW_EH_PE_sdata8:
 | 
						|
    return 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
uint8_t EHOutputSection<ELFT>::getFdeEncoding(ArrayRef<uint8_t> D) {
 | 
						|
  auto Check = [](bool C) {
 | 
						|
    if (!C)
 | 
						|
      error("corrupted or unsupported CIE information");
 | 
						|
  };
 | 
						|
 | 
						|
  Check(D.size() >= 8);
 | 
						|
  D = D.slice(8);
 | 
						|
 | 
						|
  uint8_t Version = readByte(D);
 | 
						|
  if (Version != 1 && Version != 3)
 | 
						|
    error("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version));
 | 
						|
 | 
						|
  auto AugEnd = std::find(D.begin() + 1, D.end(), '\0');
 | 
						|
  Check(AugEnd != D.end());
 | 
						|
  ArrayRef<uint8_t> AugString(D.begin(), AugEnd - D.begin());
 | 
						|
  D = D.slice(AugString.size() + 1);
 | 
						|
 | 
						|
  // Code alignment factor should always be 1 for .eh_frame.
 | 
						|
  if (readByte(D) != 1)
 | 
						|
    error("CIE code alignment must be 1");
 | 
						|
  // Skip data alignment factor
 | 
						|
  skipLeb128(D);
 | 
						|
 | 
						|
  // Skip the return address register. In CIE version 1 this is a single
 | 
						|
  // byte. In CIE version 3 this is an unsigned LEB128.
 | 
						|
  if (Version == 1)
 | 
						|
    readByte(D);
 | 
						|
  else
 | 
						|
    skipLeb128(D);
 | 
						|
 | 
						|
  while (!AugString.empty()) {
 | 
						|
    switch (readByte(AugString)) {
 | 
						|
    case 'z':
 | 
						|
      skipLeb128(D);
 | 
						|
      break;
 | 
						|
    case 'R':
 | 
						|
      return readByte(D);
 | 
						|
    case 'P': {
 | 
						|
      uint8_t Enc = readByte(D);
 | 
						|
      if ((Enc & 0xf0) == dwarf::DW_EH_PE_aligned)
 | 
						|
        error("DW_EH_PE_aligned encoding for address of a personality routine "
 | 
						|
              "handler not supported");
 | 
						|
      unsigned EncSize = getSizeForEncoding<ELFT>(Enc);
 | 
						|
      Check(D.size() >= EncSize);
 | 
						|
      D = D.slice(EncSize);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case 'S':
 | 
						|
    case 'L':
 | 
						|
      // L: Language Specific Data Area (LSDA) encoding
 | 
						|
      // S: This CIE represents a stack frame for the invocation of a signal
 | 
						|
      //    handler
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      error("unknown .eh_frame augmentation string value");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return dwarf::DW_EH_PE_absptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
template <bool IsRela>
 | 
						|
void EHOutputSection<ELFT>::addSectionAux(
 | 
						|
    EHInputSection<ELFT> *S,
 | 
						|
    iterator_range<const Elf_Rel_Impl<ELFT, IsRela> *> Rels) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  S->OutSec = this;
 | 
						|
  uint32_t Align = S->getAlign();
 | 
						|
  if (Align > this->Header.sh_addralign)
 | 
						|
    this->Header.sh_addralign = Align;
 | 
						|
 | 
						|
  Sections.push_back(S);
 | 
						|
 | 
						|
  ArrayRef<uint8_t> SecData = S->getSectionData();
 | 
						|
  ArrayRef<uint8_t> D = SecData;
 | 
						|
  uintX_t Offset = 0;
 | 
						|
  auto RelI = Rels.begin();
 | 
						|
  auto RelE = Rels.end();
 | 
						|
 | 
						|
  DenseMap<unsigned, unsigned> OffsetToIndex;
 | 
						|
  while (!D.empty()) {
 | 
						|
    unsigned Index = S->Offsets.size();
 | 
						|
    S->Offsets.push_back(std::make_pair(Offset, -1));
 | 
						|
 | 
						|
    uintX_t Length = readEntryLength(D);
 | 
						|
    // If CIE/FDE data length is zero then Length is 4, this
 | 
						|
    // shall be considered a terminator and processing shall end.
 | 
						|
    if (Length == 4)
 | 
						|
      break;
 | 
						|
    StringRef Entry((const char *)D.data(), Length);
 | 
						|
 | 
						|
    while (RelI != RelE && RelI->r_offset < Offset)
 | 
						|
      ++RelI;
 | 
						|
    uintX_t NextOffset = Offset + Length;
 | 
						|
    bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset;
 | 
						|
 | 
						|
    uint32_t ID = read32<E>(D.data() + 4);
 | 
						|
    if (ID == 0) {
 | 
						|
      // CIE
 | 
						|
      Cie<ELFT> C(S, Index);
 | 
						|
      if (Config->EhFrameHdr)
 | 
						|
        C.FdeEncoding = getFdeEncoding(D);
 | 
						|
 | 
						|
      StringRef Personality;
 | 
						|
      if (HasReloc) {
 | 
						|
        uint32_t SymIndex = RelI->getSymbol(Config->Mips64EL);
 | 
						|
        SymbolBody &Body = *S->getFile()->getSymbolBody(SymIndex)->repl();
 | 
						|
        Personality = Body.getName();
 | 
						|
      }
 | 
						|
 | 
						|
      std::pair<StringRef, StringRef> CieInfo(Entry, Personality);
 | 
						|
      auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size()));
 | 
						|
      if (P.second) {
 | 
						|
        Cies.push_back(C);
 | 
						|
        this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
 | 
						|
      }
 | 
						|
      OffsetToIndex[Offset] = P.first->second;
 | 
						|
    } else {
 | 
						|
      if (!HasReloc)
 | 
						|
        error("FDE doesn't reference another section");
 | 
						|
      InputSectionBase<ELFT> *Target = S->getRelocTarget(*RelI);
 | 
						|
      if (Target != &InputSection<ELFT>::Discarded && Target->isLive()) {
 | 
						|
        uint32_t CieOffset = Offset + 4 - ID;
 | 
						|
        auto I = OffsetToIndex.find(CieOffset);
 | 
						|
        if (I == OffsetToIndex.end())
 | 
						|
          error("Invalid CIE reference");
 | 
						|
        Cies[I->second].Fdes.push_back(EHRegion<ELFT>(S, Index));
 | 
						|
        Out<ELFT>::EhFrameHdr->reserveFde();
 | 
						|
        this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Offset = NextOffset;
 | 
						|
    D = D.slice(Length);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename EHOutputSection<ELFT>::uintX_t
 | 
						|
EHOutputSection<ELFT>::readEntryLength(ArrayRef<uint8_t> D) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  if (D.size() < 4)
 | 
						|
    error("Truncated CIE/FDE length");
 | 
						|
  uint64_t Len = read32<E>(D.data());
 | 
						|
  if (Len < UINT32_MAX) {
 | 
						|
    if (Len > (UINT32_MAX - 4))
 | 
						|
      error("CIE/FIE size is too large");
 | 
						|
    if (Len + 4 > D.size())
 | 
						|
      error("CIE/FIE ends past the end of the section");
 | 
						|
    return Len + 4;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.size() < 12)
 | 
						|
    error("Truncated CIE/FDE length");
 | 
						|
  Len = read64<E>(D.data() + 4);
 | 
						|
  if (Len > (UINT64_MAX - 12))
 | 
						|
    error("CIE/FIE size is too large");
 | 
						|
  if (Len + 12 > D.size())
 | 
						|
    error("CIE/FIE ends past the end of the section");
 | 
						|
  return Len + 12;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<EHInputSection<ELFT>>(C);
 | 
						|
  const Elf_Shdr *RelSec = S->RelocSection;
 | 
						|
  if (!RelSec)
 | 
						|
    return addSectionAux(
 | 
						|
        S, make_range((const Elf_Rela *)nullptr, (const Elf_Rela *)nullptr));
 | 
						|
  ELFFile<ELFT> &Obj = S->getFile()->getObj();
 | 
						|
  if (RelSec->sh_type == SHT_RELA)
 | 
						|
    return addSectionAux(S, Obj.relas(RelSec));
 | 
						|
  return addSectionAux(S, Obj.rels(RelSec));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static typename ELFFile<ELFT>::uintX_t writeAlignedCieOrFde(StringRef Data,
 | 
						|
                                                            uint8_t *Buf) {
 | 
						|
  typedef typename ELFFile<ELFT>::uintX_t uintX_t;
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  uint64_t Len = alignTo(Data.size(), sizeof(uintX_t));
 | 
						|
  write32<E>(Buf, Len - 4);
 | 
						|
  memcpy(Buf + 4, Data.data() + 4, Data.size() - 4);
 | 
						|
  return Len;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  size_t Offset = 0;
 | 
						|
  for (const Cie<ELFT> &C : Cies) {
 | 
						|
    size_t CieOffset = Offset;
 | 
						|
 | 
						|
    uintX_t CIELen = writeAlignedCieOrFde<ELFT>(C.data(), Buf + Offset);
 | 
						|
    C.S->Offsets[C.Index].second = Offset;
 | 
						|
    Offset += CIELen;
 | 
						|
 | 
						|
    for (const EHRegion<ELFT> &F : C.Fdes) {
 | 
						|
      uintX_t Len = writeAlignedCieOrFde<ELFT>(F.data(), Buf + Offset);
 | 
						|
      write32<E>(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer
 | 
						|
      F.S->Offsets[F.Index].second = Offset;
 | 
						|
      Out<ELFT>::EhFrameHdr->addFde(C.FdeEncoding, Offset, Buf + Offset + 8);
 | 
						|
      Offset += Len;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (EHInputSection<ELFT> *S : Sections) {
 | 
						|
    const Elf_Shdr *RelSec = S->RelocSection;
 | 
						|
    if (!RelSec)
 | 
						|
      continue;
 | 
						|
    ELFFile<ELFT> &EObj = S->getFile()->getObj();
 | 
						|
    if (RelSec->sh_type == SHT_RELA)
 | 
						|
      S->relocate(Buf, nullptr, EObj.relas(RelSec));
 | 
						|
    else
 | 
						|
      S->relocate(Buf, nullptr, EObj.rels(RelSec));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
 | 
						|
                                             uintX_t Flags)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags) {}
 | 
						|
 | 
						|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  if (shouldTailMerge()) {
 | 
						|
    StringRef Data = Builder.data();
 | 
						|
    memcpy(Buf, Data.data(), Data.size());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  for (const std::pair<StringRef, size_t> &P : Builder.getMap()) {
 | 
						|
    StringRef Data = P.first;
 | 
						|
    memcpy(Buf + P.second, Data.data(), Data.size());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static size_t findNull(StringRef S, size_t EntSize) {
 | 
						|
  // Optimize the common case.
 | 
						|
  if (EntSize == 1)
 | 
						|
    return S.find(0);
 | 
						|
 | 
						|
  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
 | 
						|
    const char *B = S.begin() + I;
 | 
						|
    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
 | 
						|
      return I;
 | 
						|
  }
 | 
						|
  return StringRef::npos;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<MergeInputSection<ELFT>>(C);
 | 
						|
  S->OutSec = this;
 | 
						|
  uint32_t Align = S->getAlign();
 | 
						|
  if (Align > this->Header.sh_addralign)
 | 
						|
    this->Header.sh_addralign = Align;
 | 
						|
 | 
						|
  ArrayRef<uint8_t> D = S->getSectionData();
 | 
						|
  StringRef Data((const char *)D.data(), D.size());
 | 
						|
  uintX_t EntSize = S->getSectionHdr()->sh_entsize;
 | 
						|
 | 
						|
  if (this->Header.sh_flags & SHF_STRINGS) {
 | 
						|
    uintX_t Offset = 0;
 | 
						|
    while (!Data.empty()) {
 | 
						|
      size_t End = findNull(Data, EntSize);
 | 
						|
      if (End == StringRef::npos)
 | 
						|
        error("String is not null terminated");
 | 
						|
      StringRef Entry = Data.substr(0, End + EntSize);
 | 
						|
      uintX_t OutputOffset = Builder.add(Entry);
 | 
						|
      if (shouldTailMerge())
 | 
						|
        OutputOffset = -1;
 | 
						|
      S->Offsets.push_back(std::make_pair(Offset, OutputOffset));
 | 
						|
      uintX_t Size = End + EntSize;
 | 
						|
      Data = Data.substr(Size);
 | 
						|
      Offset += Size;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (unsigned I = 0, N = Data.size(); I != N; I += EntSize) {
 | 
						|
      StringRef Entry = Data.substr(I, EntSize);
 | 
						|
      size_t OutputOffset = Builder.add(Entry);
 | 
						|
      S->Offsets.push_back(std::make_pair(I, OutputOffset));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
 | 
						|
  return Builder.getOffset(Val);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
 | 
						|
  return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
 | 
						|
  if (shouldTailMerge())
 | 
						|
    Builder.finalize();
 | 
						|
  this->Header.sh_size = Builder.getSize();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
 | 
						|
    : OutputSectionBase<ELFT>(Name, SHT_STRTAB,
 | 
						|
                              Dynamic ? (uintX_t)SHF_ALLOC : 0),
 | 
						|
      Dynamic(Dynamic) {
 | 
						|
  this->Header.sh_addralign = 1;
 | 
						|
}
 | 
						|
 | 
						|
// String tables are created in two phases. First you call reserve()
 | 
						|
// to reserve room in the string table, and then call addString() to actually
 | 
						|
// add that string.
 | 
						|
//
 | 
						|
// Why two phases? We want to know the size of the string table as early as
 | 
						|
// possible to fix file layout. So we have separated finalize(), which
 | 
						|
// determines the size of the section, from writeTo(), which writes the section
 | 
						|
// contents to the output buffer. If we merge reserve() with addString(),
 | 
						|
// we need a plumbing work for finalize() and writeTo() so that offsets
 | 
						|
// we obtained in the former function can be written in the latter.
 | 
						|
// This design eliminated that need.
 | 
						|
template <class ELFT> void StringTableSection<ELFT>::reserve(StringRef S) {
 | 
						|
  Reserved += S.size() + 1; // +1 for NUL
 | 
						|
}
 | 
						|
 | 
						|
// Adds a string to the string table. You must call reserve() with the
 | 
						|
// same string before calling addString().
 | 
						|
template <class ELFT> size_t StringTableSection<ELFT>::addString(StringRef S) {
 | 
						|
  size_t Pos = Used;
 | 
						|
  Strings.push_back(S);
 | 
						|
  Used += S.size() + 1;
 | 
						|
  Reserved -= S.size() + 1;
 | 
						|
  assert((int64_t)Reserved >= 0);
 | 
						|
  return Pos;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  // ELF string tables start with NUL byte, so advance the pointer by one.
 | 
						|
  ++Buf;
 | 
						|
  for (StringRef S : Strings) {
 | 
						|
    memcpy(Buf, S.data(), S.size());
 | 
						|
    Buf += S.size() + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
bool elf2::shouldKeepInSymtab(const ObjectFile<ELFT> &File, StringRef SymName,
 | 
						|
                              const typename ELFFile<ELFT>::Elf_Sym &Sym) {
 | 
						|
  if (Sym.getType() == STT_SECTION || Sym.getType() == STT_FILE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  InputSectionBase<ELFT> *Sec = File.getSection(Sym);
 | 
						|
  // If sym references a section in a discarded group, don't keep it.
 | 
						|
  if (Sec == &InputSection<ELFT>::Discarded)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Config->DiscardNone)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // In ELF assembly .L symbols are normally discarded by the assembler.
 | 
						|
  // If the assembler fails to do so, the linker discards them if
 | 
						|
  // * --discard-locals is used.
 | 
						|
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
 | 
						|
  //   the assembler keeping the .L symbol.
 | 
						|
  if (!SymName.startswith(".L") && !SymName.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Config->DiscardLocals)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
SymbolTableSection<ELFT>::SymbolTableSection(
 | 
						|
    SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec)
 | 
						|
    : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
 | 
						|
                              StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
 | 
						|
                              StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
 | 
						|
      Table(Table), StrTabSec(StrTabSec) {
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Sym);
 | 
						|
  this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
 | 
						|
}
 | 
						|
 | 
						|
// Orders symbols according to their positions in the GOT,
 | 
						|
// in compliance with MIPS ABI rules.
 | 
						|
// See "Global Offset Table" in Chapter 5 in the following document
 | 
						|
// for detailed description:
 | 
						|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
static bool sortMipsSymbols(SymbolBody *L, SymbolBody *R) {
 | 
						|
  if (!L->isInGot() || !R->isInGot())
 | 
						|
    return R->isInGot();
 | 
						|
  return L->GotIndex < R->GotIndex;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
 | 
						|
  if (this->Header.sh_size)
 | 
						|
    return; // Already finalized.
 | 
						|
 | 
						|
  this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
 | 
						|
  this->Header.sh_link = StrTabSec.SectionIndex;
 | 
						|
  this->Header.sh_info = NumLocals + 1;
 | 
						|
 | 
						|
  if (!StrTabSec.isDynamic()) {
 | 
						|
    std::stable_sort(Symbols.begin(), Symbols.end(),
 | 
						|
                     [](SymbolBody *L, SymbolBody *R) {
 | 
						|
                       return getSymbolBinding(L) == STB_LOCAL &&
 | 
						|
                              getSymbolBinding(R) != STB_LOCAL;
 | 
						|
                     });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Out<ELFT>::GnuHashTab)
 | 
						|
    // NB: It also sorts Symbols to meet the GNU hash table requirements.
 | 
						|
    Out<ELFT>::GnuHashTab->addSymbols(Symbols);
 | 
						|
  else if (Config->EMachine == EM_MIPS)
 | 
						|
    std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
 | 
						|
  size_t I = 0;
 | 
						|
  for (SymbolBody *B : Symbols)
 | 
						|
    B->DynamicSymbolTableIndex = ++I;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::addLocalSymbol(StringRef Name) {
 | 
						|
  StrTabSec.reserve(Name);
 | 
						|
  ++NumVisible;
 | 
						|
  ++NumLocals;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *Body) {
 | 
						|
  StrTabSec.reserve(Body->getName());
 | 
						|
  Symbols.push_back(Body);
 | 
						|
  ++NumVisible;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  Buf += sizeof(Elf_Sym);
 | 
						|
 | 
						|
  // All symbols with STB_LOCAL binding precede the weak and global symbols.
 | 
						|
  // .dynsym only contains global symbols.
 | 
						|
  if (!Config->DiscardAll && !StrTabSec.isDynamic())
 | 
						|
    writeLocalSymbols(Buf);
 | 
						|
 | 
						|
  writeGlobalSymbols(Buf);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
 | 
						|
  // Iterate over all input object files to copy their local symbols
 | 
						|
  // to the output symbol table pointed by Buf.
 | 
						|
  for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) {
 | 
						|
    Elf_Sym_Range Syms = File->getLocalSymbols();
 | 
						|
    for (const Elf_Sym &Sym : Syms) {
 | 
						|
      ErrorOr<StringRef> SymNameOrErr = Sym.getName(File->getStringTable());
 | 
						|
      error(SymNameOrErr);
 | 
						|
      StringRef SymName = *SymNameOrErr;
 | 
						|
      if (!shouldKeepInSymtab<ELFT>(*File, SymName, Sym))
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
 | 
						|
      uintX_t VA = 0;
 | 
						|
      if (Sym.st_shndx == SHN_ABS) {
 | 
						|
        ESym->st_shndx = SHN_ABS;
 | 
						|
        VA = Sym.st_value;
 | 
						|
      } else {
 | 
						|
        InputSectionBase<ELFT> *Section = File->getSection(Sym);
 | 
						|
        if (!Section->isLive())
 | 
						|
          continue;
 | 
						|
        const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
 | 
						|
        ESym->st_shndx = OutSec->SectionIndex;
 | 
						|
        VA = Section->getOffset(Sym);
 | 
						|
        // Symbol offsets for AMDGPU need to be the offset in bytes of the
 | 
						|
        // symbol from the beginning of the section.
 | 
						|
        if (Config->EMachine != EM_AMDGPU)
 | 
						|
          VA += OutSec->getVA();
 | 
						|
      }
 | 
						|
      ESym->st_name = StrTabSec.addString(SymName);
 | 
						|
      ESym->st_size = Sym.st_size;
 | 
						|
      ESym->setBindingAndType(Sym.getBinding(), Sym.getType());
 | 
						|
      ESym->st_value = VA;
 | 
						|
      Buf += sizeof(*ESym);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static const typename llvm::object::ELFFile<ELFT>::Elf_Sym *
 | 
						|
getElfSym(SymbolBody &Body) {
 | 
						|
  if (auto *EBody = dyn_cast<DefinedElf<ELFT>>(&Body))
 | 
						|
    return &EBody->Sym;
 | 
						|
  if (auto *EBody = dyn_cast<UndefinedElf<ELFT>>(&Body))
 | 
						|
    return &EBody->Sym;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
 | 
						|
  // Write the internal symbol table contents to the output symbol table
 | 
						|
  // pointed by Buf.
 | 
						|
  auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
 | 
						|
  for (SymbolBody *Body : Symbols) {
 | 
						|
    const OutputSectionBase<ELFT> *OutSec = nullptr;
 | 
						|
 | 
						|
    switch (Body->kind()) {
 | 
						|
    case SymbolBody::DefinedSyntheticKind:
 | 
						|
      OutSec = &cast<DefinedSynthetic<ELFT>>(Body)->Section;
 | 
						|
      break;
 | 
						|
    case SymbolBody::DefinedRegularKind: {
 | 
						|
      auto *Sym = cast<DefinedRegular<ELFT>>(Body->repl());
 | 
						|
      if (InputSectionBase<ELFT> *Sec = Sym->Section) {
 | 
						|
        if (!Sec->isLive())
 | 
						|
          continue;
 | 
						|
        OutSec = Sec->OutSec;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SymbolBody::DefinedCommonKind:
 | 
						|
      OutSec = Out<ELFT>::Bss;
 | 
						|
      break;
 | 
						|
    case SymbolBody::SharedKind: {
 | 
						|
      if (cast<SharedSymbol<ELFT>>(Body)->NeedsCopy)
 | 
						|
        OutSec = Out<ELFT>::Bss;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SymbolBody::UndefinedElfKind:
 | 
						|
    case SymbolBody::UndefinedKind:
 | 
						|
    case SymbolBody::LazyKind:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef Name = Body->getName();
 | 
						|
    ESym->st_name = StrTabSec.addString(Name);
 | 
						|
 | 
						|
    unsigned char Type = STT_NOTYPE;
 | 
						|
    uintX_t Size = 0;
 | 
						|
    if (const Elf_Sym *InputSym = getElfSym<ELFT>(*Body)) {
 | 
						|
      Type = InputSym->getType();
 | 
						|
      Size = InputSym->st_size;
 | 
						|
    } else if (auto *C = dyn_cast<DefinedCommon>(Body)) {
 | 
						|
      Type = STT_OBJECT;
 | 
						|
      Size = C->Size;
 | 
						|
    }
 | 
						|
 | 
						|
    ESym->setBindingAndType(getSymbolBinding(Body), Type);
 | 
						|
    ESym->st_size = Size;
 | 
						|
    ESym->setVisibility(Body->getVisibility());
 | 
						|
    ESym->st_value = getSymVA<ELFT>(*Body);
 | 
						|
 | 
						|
    if (OutSec)
 | 
						|
      ESym->st_shndx = OutSec->SectionIndex;
 | 
						|
    else if (isa<DefinedRegular<ELFT>>(Body))
 | 
						|
      ESym->st_shndx = SHN_ABS;
 | 
						|
 | 
						|
    ++ESym;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
uint8_t SymbolTableSection<ELFT>::getSymbolBinding(SymbolBody *Body) {
 | 
						|
  uint8_t Visibility = Body->getVisibility();
 | 
						|
  if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
 | 
						|
    return STB_LOCAL;
 | 
						|
  if (const Elf_Sym *ESym = getElfSym<ELFT>(*Body))
 | 
						|
    return ESym->getBinding();
 | 
						|
  if (isa<DefinedSynthetic<ELFT>>(Body))
 | 
						|
    return STB_LOCAL;
 | 
						|
  return Body->isWeak() ? STB_WEAK : STB_GLOBAL;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
 | 
						|
    : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
 | 
						|
  this->Header.sh_addralign = 4;
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
 | 
						|
  this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
 | 
						|
  R->ri_gp_value = getMipsGpAddr<ELFT>();
 | 
						|
  R->ri_gprmask = GprMask;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  // Copy input object file's .reginfo gprmask to output.
 | 
						|
  auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
 | 
						|
  GprMask |= S->Reginfo->ri_gprmask;
 | 
						|
}
 | 
						|
 | 
						|
namespace lld {
 | 
						|
namespace elf2 {
 | 
						|
template class OutputSectionBase<ELF32LE>;
 | 
						|
template class OutputSectionBase<ELF32BE>;
 | 
						|
template class OutputSectionBase<ELF64LE>;
 | 
						|
template class OutputSectionBase<ELF64BE>;
 | 
						|
 | 
						|
template class EhFrameHeader<ELF32LE>;
 | 
						|
template class EhFrameHeader<ELF32BE>;
 | 
						|
template class EhFrameHeader<ELF64LE>;
 | 
						|
template class EhFrameHeader<ELF64BE>;
 | 
						|
 | 
						|
template class GotPltSection<ELF32LE>;
 | 
						|
template class GotPltSection<ELF32BE>;
 | 
						|
template class GotPltSection<ELF64LE>;
 | 
						|
template class GotPltSection<ELF64BE>;
 | 
						|
 | 
						|
template class GotSection<ELF32LE>;
 | 
						|
template class GotSection<ELF32BE>;
 | 
						|
template class GotSection<ELF64LE>;
 | 
						|
template class GotSection<ELF64BE>;
 | 
						|
 | 
						|
template class PltSection<ELF32LE>;
 | 
						|
template class PltSection<ELF32BE>;
 | 
						|
template class PltSection<ELF64LE>;
 | 
						|
template class PltSection<ELF64BE>;
 | 
						|
 | 
						|
template class RelocationSection<ELF32LE>;
 | 
						|
template class RelocationSection<ELF32BE>;
 | 
						|
template class RelocationSection<ELF64LE>;
 | 
						|
template class RelocationSection<ELF64BE>;
 | 
						|
 | 
						|
template class InterpSection<ELF32LE>;
 | 
						|
template class InterpSection<ELF32BE>;
 | 
						|
template class InterpSection<ELF64LE>;
 | 
						|
template class InterpSection<ELF64BE>;
 | 
						|
 | 
						|
template class GnuHashTableSection<ELF32LE>;
 | 
						|
template class GnuHashTableSection<ELF32BE>;
 | 
						|
template class GnuHashTableSection<ELF64LE>;
 | 
						|
template class GnuHashTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class HashTableSection<ELF32LE>;
 | 
						|
template class HashTableSection<ELF32BE>;
 | 
						|
template class HashTableSection<ELF64LE>;
 | 
						|
template class HashTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class DynamicSection<ELF32LE>;
 | 
						|
template class DynamicSection<ELF32BE>;
 | 
						|
template class DynamicSection<ELF64LE>;
 | 
						|
template class DynamicSection<ELF64BE>;
 | 
						|
 | 
						|
template class OutputSection<ELF32LE>;
 | 
						|
template class OutputSection<ELF32BE>;
 | 
						|
template class OutputSection<ELF64LE>;
 | 
						|
template class OutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class EHOutputSection<ELF32LE>;
 | 
						|
template class EHOutputSection<ELF32BE>;
 | 
						|
template class EHOutputSection<ELF64LE>;
 | 
						|
template class EHOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class MipsReginfoOutputSection<ELF32LE>;
 | 
						|
template class MipsReginfoOutputSection<ELF32BE>;
 | 
						|
template class MipsReginfoOutputSection<ELF64LE>;
 | 
						|
template class MipsReginfoOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class MergeOutputSection<ELF32LE>;
 | 
						|
template class MergeOutputSection<ELF32BE>;
 | 
						|
template class MergeOutputSection<ELF64LE>;
 | 
						|
template class MergeOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class StringTableSection<ELF32LE>;
 | 
						|
template class StringTableSection<ELF32BE>;
 | 
						|
template class StringTableSection<ELF64LE>;
 | 
						|
template class StringTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class SymbolTableSection<ELF32LE>;
 | 
						|
template class SymbolTableSection<ELF32BE>;
 | 
						|
template class SymbolTableSection<ELF64LE>;
 | 
						|
template class SymbolTableSection<ELF64BE>;
 | 
						|
 | 
						|
template ELFFile<ELF32LE>::uintX_t getSymVA<ELF32LE>(const SymbolBody &);
 | 
						|
template ELFFile<ELF32BE>::uintX_t getSymVA<ELF32BE>(const SymbolBody &);
 | 
						|
template ELFFile<ELF64LE>::uintX_t getSymVA<ELF64LE>(const SymbolBody &);
 | 
						|
template ELFFile<ELF64BE>::uintX_t getSymVA<ELF64BE>(const SymbolBody &);
 | 
						|
 | 
						|
template uint32_t getLocalRelTarget(const ObjectFile<ELF32LE> &,
 | 
						|
                                    const ELFFile<ELF32LE>::Elf_Rel &,
 | 
						|
                                    uint32_t);
 | 
						|
template uint32_t getLocalRelTarget(const ObjectFile<ELF32BE> &,
 | 
						|
                                    const ELFFile<ELF32BE>::Elf_Rel &,
 | 
						|
                                    uint32_t);
 | 
						|
template uint64_t getLocalRelTarget(const ObjectFile<ELF64LE> &,
 | 
						|
                                    const ELFFile<ELF64LE>::Elf_Rel &,
 | 
						|
                                    uint64_t);
 | 
						|
template uint64_t getLocalRelTarget(const ObjectFile<ELF64BE> &,
 | 
						|
                                    const ELFFile<ELF64BE>::Elf_Rel &,
 | 
						|
                                    uint64_t);
 | 
						|
template uint32_t getLocalRelTarget(const ObjectFile<ELF32LE> &,
 | 
						|
                                    const ELFFile<ELF32LE>::Elf_Rela &,
 | 
						|
                                    uint32_t);
 | 
						|
template uint32_t getLocalRelTarget(const ObjectFile<ELF32BE> &,
 | 
						|
                                    const ELFFile<ELF32BE>::Elf_Rela &,
 | 
						|
                                    uint32_t);
 | 
						|
template uint64_t getLocalRelTarget(const ObjectFile<ELF64LE> &,
 | 
						|
                                    const ELFFile<ELF64LE>::Elf_Rela &,
 | 
						|
                                    uint64_t);
 | 
						|
template uint64_t getLocalRelTarget(const ObjectFile<ELF64BE> &,
 | 
						|
                                    const ELFFile<ELF64BE>::Elf_Rela &,
 | 
						|
                                    uint64_t);
 | 
						|
 | 
						|
template bool shouldKeepInSymtab<ELF32LE>(const ObjectFile<ELF32LE> &,
 | 
						|
                                          StringRef,
 | 
						|
                                          const ELFFile<ELF32LE>::Elf_Sym &);
 | 
						|
template bool shouldKeepInSymtab<ELF32BE>(const ObjectFile<ELF32BE> &,
 | 
						|
                                          StringRef,
 | 
						|
                                          const ELFFile<ELF32BE>::Elf_Sym &);
 | 
						|
template bool shouldKeepInSymtab<ELF64LE>(const ObjectFile<ELF64LE> &,
 | 
						|
                                          StringRef,
 | 
						|
                                          const ELFFile<ELF64LE>::Elf_Sym &);
 | 
						|
template bool shouldKeepInSymtab<ELF64BE>(const ObjectFile<ELF64BE> &,
 | 
						|
                                          StringRef,
 | 
						|
                                          const ELFFile<ELF64BE>::Elf_Sym &);
 | 
						|
}
 | 
						|
}
 |