forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3369 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3369 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ templates.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
 | 
						|
#include "Sema.h"
 | 
						|
#include "TreeTransform.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/Parse/DeclSpec.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// \brief Determine whether the declaration found is acceptable as the name
 | 
						|
/// of a template and, if so, return that template declaration. Otherwise,
 | 
						|
/// returns NULL.
 | 
						|
static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
 | 
						|
  if (!D)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  if (isa<TemplateDecl>(D))
 | 
						|
    return D;
 | 
						|
  
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    // C++ [temp.local]p1:
 | 
						|
    //   Like normal (non-template) classes, class templates have an
 | 
						|
    //   injected-class-name (Clause 9). The injected-class-name
 | 
						|
    //   can be used with or without a template-argument-list. When
 | 
						|
    //   it is used without a template-argument-list, it is
 | 
						|
    //   equivalent to the injected-class-name followed by the
 | 
						|
    //   template-parameters of the class template enclosed in
 | 
						|
    //   <>. When it is used with a template-argument-list, it
 | 
						|
    //   refers to the specified class template specialization,
 | 
						|
    //   which could be the current specialization or another
 | 
						|
    //   specialization.
 | 
						|
    if (Record->isInjectedClassName()) {
 | 
						|
      Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
 | 
						|
      if (Record->getDescribedClassTemplate())
 | 
						|
        return Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
 | 
						|
        return Spec->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
 | 
						|
  if (!Ovl)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
 | 
						|
                                              FEnd = Ovl->function_end();
 | 
						|
       F != FEnd; ++F) {
 | 
						|
    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
 | 
						|
      // We've found a function template. Determine whether there are
 | 
						|
      // any other function templates we need to bundle together in an
 | 
						|
      // OverloadedFunctionDecl
 | 
						|
      for (++F; F != FEnd; ++F) {
 | 
						|
        if (isa<FunctionTemplateDecl>(*F))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (F != FEnd) {
 | 
						|
        // Build an overloaded function decl containing only the
 | 
						|
        // function templates in Ovl.
 | 
						|
        OverloadedFunctionDecl *OvlTemplate 
 | 
						|
          = OverloadedFunctionDecl::Create(Context,
 | 
						|
                                           Ovl->getDeclContext(),
 | 
						|
                                           Ovl->getDeclName());
 | 
						|
        OvlTemplate->addOverload(FuncTmpl);
 | 
						|
        OvlTemplate->addOverload(*F);
 | 
						|
        for (++F; F != FEnd; ++F) {
 | 
						|
          if (isa<FunctionTemplateDecl>(*F))
 | 
						|
            OvlTemplate->addOverload(*F);
 | 
						|
        }
 | 
						|
        
 | 
						|
        return OvlTemplate;
 | 
						|
      }
 | 
						|
 | 
						|
      return FuncTmpl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
TemplateNameKind Sema::isTemplateName(Scope *S,
 | 
						|
                                      const IdentifierInfo &II, 
 | 
						|
                                      SourceLocation IdLoc,
 | 
						|
                                      const CXXScopeSpec *SS,
 | 
						|
                                      TypeTy *ObjectTypePtr,
 | 
						|
                                      bool EnteringContext,
 | 
						|
                                      TemplateTy &TemplateResult) {
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (ObjectTypePtr) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert((!SS || !SS->isSet()) && 
 | 
						|
           "ObjectType and scope specifier cannot coexist");
 | 
						|
    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
  } else if (SS && SS->isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so long into the context associated with the prior nested-name-specifier.
 | 
						|
 | 
						|
    LookupCtx = computeDeclContext(*SS, EnteringContext);
 | 
						|
    isDependent = isDependentScopeSpecifier(*SS);
 | 
						|
  }
 | 
						|
  
 | 
						|
  LookupResult Found;
 | 
						|
  bool ObjectTypeSearchedInScope = false;
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior 
 | 
						|
    // nested-name-specifier.
 | 
						|
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
 | 
						|
      return TNK_Non_template;
 | 
						|
    
 | 
						|
    Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName);
 | 
						|
    
 | 
						|
    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
 | 
						|
      // C++ [basic.lookup.classref]p1:
 | 
						|
      //   In a class member access expression (5.2.5), if the . or -> token is
 | 
						|
      //   immediately followed by an identifier followed by a <, the 
 | 
						|
      //   identifier must be looked up to determine whether the < is the 
 | 
						|
      //   beginning of a template argument list (14.2) or a less-than operator.
 | 
						|
      //   The identifier is first looked up in the class of the object 
 | 
						|
      //   expression. If the identifier is not found, it is then looked up in 
 | 
						|
      //   the context of the entire postfix-expression and shall name a class
 | 
						|
      //   or function template.
 | 
						|
      //
 | 
						|
      // FIXME: When we're instantiating a template, do we actually have to
 | 
						|
      // look in the scope of the template? Seems fishy...
 | 
						|
      Found = LookupName(S, &II, LookupOrdinaryName);
 | 
						|
      ObjectTypeSearchedInScope = true;
 | 
						|
    }
 | 
						|
  } else if (isDependent) {
 | 
						|
    // We cannot look into a dependent object type or 
 | 
						|
    return TNK_Non_template;
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup in the current scope.
 | 
						|
    Found = LookupName(S, &II, LookupOrdinaryName);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: Cope with ambiguous name-lookup results.
 | 
						|
  assert(!Found.isAmbiguous() && 
 | 
						|
         "Cannot handle template name-lookup ambiguities");
 | 
						|
 | 
						|
  NamedDecl *Template = isAcceptableTemplateName(Context, Found);
 | 
						|
  if (!Template)
 | 
						|
    return TNK_Non_template;
 | 
						|
 | 
						|
  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
 | 
						|
    // C++ [basic.lookup.classref]p1:
 | 
						|
    //   [...] If the lookup in the class of the object expression finds a 
 | 
						|
    //   template, the name is also looked up in the context of the entire
 | 
						|
    //   postfix-expression and [...]
 | 
						|
    //
 | 
						|
    LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName);
 | 
						|
    // FIXME: Handle ambiguities in this lookup better
 | 
						|
    NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter);
 | 
						|
    
 | 
						|
    if (!OuterTemplate) {
 | 
						|
      //   - if the name is not found, the name found in the class of the 
 | 
						|
      //     object expression is used, otherwise
 | 
						|
    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
 | 
						|
      //   - if the name is found in the context of the entire 
 | 
						|
      //     postfix-expression and does not name a class template, the name 
 | 
						|
      //     found in the class of the object expression is used, otherwise
 | 
						|
    } else {
 | 
						|
      //   - if the name found is a class template, it must refer to the same
 | 
						|
      //     entity as the one found in the class of the object expression, 
 | 
						|
      //     otherwise the program is ill-formed.
 | 
						|
      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
 | 
						|
        Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
 | 
						|
          << &II;
 | 
						|
        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
 | 
						|
          << QualType::getFromOpaquePtr(ObjectTypePtr);
 | 
						|
        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
 | 
						|
        
 | 
						|
        // Recover by taking the template that we found in the object 
 | 
						|
        // expression's type.
 | 
						|
      }
 | 
						|
    }      
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (SS && SS->isSet() && !SS->isInvalid()) {
 | 
						|
    NestedNameSpecifier *Qualifier 
 | 
						|
      = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
 | 
						|
    if (OverloadedFunctionDecl *Ovl 
 | 
						|
          = dyn_cast<OverloadedFunctionDecl>(Template))
 | 
						|
      TemplateResult 
 | 
						|
        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
 | 
						|
                                                            Ovl));
 | 
						|
    else
 | 
						|
      TemplateResult 
 | 
						|
        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
 | 
						|
                                                 cast<TemplateDecl>(Template)));    
 | 
						|
  } else if (OverloadedFunctionDecl *Ovl 
 | 
						|
               = dyn_cast<OverloadedFunctionDecl>(Template)) {
 | 
						|
    TemplateResult = TemplateTy::make(TemplateName(Ovl));
 | 
						|
  } else {
 | 
						|
    TemplateResult = TemplateTy::make(
 | 
						|
                                  TemplateName(cast<TemplateDecl>(Template)));
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<ClassTemplateDecl>(Template) || 
 | 
						|
      isa<TemplateTemplateParmDecl>(Template))
 | 
						|
    return TNK_Type_template;
 | 
						|
  
 | 
						|
  assert((isa<FunctionTemplateDecl>(Template) || 
 | 
						|
          isa<OverloadedFunctionDecl>(Template)) &&
 | 
						|
         "Unhandled template kind in Sema::isTemplateName");
 | 
						|
  return TNK_Function_template;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
 | 
						|
/// that the template parameter 'PrevDecl' is being shadowed by a new
 | 
						|
/// declaration at location Loc. Returns true to indicate that this is
 | 
						|
/// an error, and false otherwise.
 | 
						|
bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
 | 
						|
  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
 | 
						|
 | 
						|
  // Microsoft Visual C++ permits template parameters to be shadowed.
 | 
						|
  if (getLangOptions().Microsoft)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.local]p4:
 | 
						|
  //   A template-parameter shall not be redeclared within its
 | 
						|
  //   scope (including nested scopes).
 | 
						|
  Diag(Loc, diag::err_template_param_shadow) 
 | 
						|
    << cast<NamedDecl>(PrevDecl)->getDeclName();
 | 
						|
  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
 | 
						|
/// the parameter D to reference the templated declaration and return a pointer
 | 
						|
/// to the template declaration. Otherwise, do nothing to D and return null.
 | 
						|
TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
 | 
						|
  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
 | 
						|
    D = DeclPtrTy::make(Temp->getTemplatedDecl());
 | 
						|
    return Temp;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypeParameter - Called when a C++ template type parameter
 | 
						|
/// (e.g., "typename T") has been parsed. Typename specifies whether
 | 
						|
/// the keyword "typename" was used to declare the type parameter
 | 
						|
/// (otherwise, "class" was used), and KeyLoc is the location of the
 | 
						|
/// "class" or "typename" keyword. ParamName is the name of the
 | 
						|
/// parameter (NULL indicates an unnamed template parameter) and
 | 
						|
/// ParamName is the location of the parameter name (if any). 
 | 
						|
/// If the type parameter has a default argument, it will be added
 | 
						|
/// later via ActOnTypeParameterDefault.
 | 
						|
Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 
 | 
						|
                                         SourceLocation EllipsisLoc,
 | 
						|
                                         SourceLocation KeyLoc,
 | 
						|
                                         IdentifierInfo *ParamName,
 | 
						|
                                         SourceLocation ParamNameLoc,
 | 
						|
                                         unsigned Depth, unsigned Position) {
 | 
						|
  assert(S->isTemplateParamScope() && 
 | 
						|
	 "Template type parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter())
 | 
						|
      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
 | 
						|
							   PrevDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation Loc = ParamNameLoc;
 | 
						|
  if (!ParamName)
 | 
						|
    Loc = KeyLoc;
 | 
						|
 | 
						|
  TemplateTypeParmDecl *Param
 | 
						|
    = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 
 | 
						|
                                   Depth, Position, ParamName, Typename, 
 | 
						|
                                   Ellipsis);
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypeParameterDefault - Adds a default argument (the type
 | 
						|
/// Default) to the given template type parameter (TypeParam). 
 | 
						|
void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 
 | 
						|
                                     SourceLocation EqualLoc,
 | 
						|
                                     SourceLocation DefaultLoc, 
 | 
						|
                                     TypeTy *DefaultT) {
 | 
						|
  TemplateTypeParmDecl *Parm 
 | 
						|
    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
 | 
						|
  // FIXME: Preserve type source info.
 | 
						|
  QualType Default = GetTypeFromParser(DefaultT);
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  // A default template-argument may be specified for any kind of
 | 
						|
  // template-parameter that is not a template parameter pack.  
 | 
						|
  if (Parm->isParameterPack()) {
 | 
						|
    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
  
 | 
						|
  // Check the template argument itself.
 | 
						|
  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
 | 
						|
    Parm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Parm->setDefaultArgument(Default, DefaultLoc, false);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the type of a non-type template parameter is
 | 
						|
/// well-formed.
 | 
						|
///
 | 
						|
/// \returns the (possibly-promoted) parameter type if valid;
 | 
						|
/// otherwise, produces a diagnostic and returns a NULL type.
 | 
						|
QualType 
 | 
						|
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
 | 
						|
  // C++ [temp.param]p4:
 | 
						|
  //
 | 
						|
  // A non-type template-parameter shall have one of the following
 | 
						|
  // (optionally cv-qualified) types:
 | 
						|
  //
 | 
						|
  //       -- integral or enumeration type,
 | 
						|
  if (T->isIntegralType() || T->isEnumeralType() ||
 | 
						|
      //   -- pointer to object or pointer to function, 
 | 
						|
      (T->isPointerType() && 
 | 
						|
       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
 | 
						|
        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
 | 
						|
      //   -- reference to object or reference to function, 
 | 
						|
      T->isReferenceType() ||
 | 
						|
      //   -- pointer to member.
 | 
						|
      T->isMemberPointerType() ||
 | 
						|
      // If T is a dependent type, we can't do the check now, so we
 | 
						|
      // assume that it is well-formed.
 | 
						|
      T->isDependentType())
 | 
						|
    return T;
 | 
						|
  // C++ [temp.param]p8:
 | 
						|
  //
 | 
						|
  //   A non-type template-parameter of type "array of T" or
 | 
						|
  //   "function returning T" is adjusted to be of type "pointer to
 | 
						|
  //   T" or "pointer to function returning T", respectively.
 | 
						|
  else if (T->isArrayType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getArrayDecayedType(T);
 | 
						|
  else if (T->isFunctionType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getPointerType(T);
 | 
						|
 | 
						|
  Diag(Loc, diag::err_template_nontype_parm_bad_type)
 | 
						|
    << T;
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
 | 
						|
/// template parameter (e.g., "int Size" in "template<int Size>
 | 
						|
/// class Array") has been parsed. S is the current scope and D is
 | 
						|
/// the parsed declarator.
 | 
						|
Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
 | 
						|
                                                    unsigned Depth, 
 | 
						|
                                                    unsigned Position) {
 | 
						|
  DeclaratorInfo *DInfo = 0;
 | 
						|
  QualType T = GetTypeForDeclarator(D, S, &DInfo);
 | 
						|
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Non-type template parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  IdentifierInfo *ParamName = D.getIdentifier();
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter())
 | 
						|
      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | 
						|
                                                           PrevDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
 | 
						|
  if (T.isNull()) {
 | 
						|
    T = Context.IntTy; // Recover with an 'int' type.
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  NonTypeTemplateParmDecl *Param
 | 
						|
    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
 | 
						|
                                      Depth, Position, ParamName, T, DInfo);
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getIdentifier()) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a default argument to the given non-type template
 | 
						|
/// parameter.
 | 
						|
void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
 | 
						|
                                                SourceLocation EqualLoc,
 | 
						|
                                                ExprArg DefaultE) {
 | 
						|
  NonTypeTemplateParmDecl *TemplateParm 
 | 
						|
    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
 | 
						|
  Expr *Default = static_cast<Expr *>(DefaultE.get());
 | 
						|
  
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
  
 | 
						|
  // Check the well-formedness of the default template argument.
 | 
						|
  TemplateArgument Converted;
 | 
						|
  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
 | 
						|
                            Converted)) {
 | 
						|
    TemplateParm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
 | 
						|
/// parameter (e.g. T in template <template <typename> class T> class array)
 | 
						|
/// has been parsed. S is the current scope.
 | 
						|
Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
 | 
						|
                                                     SourceLocation TmpLoc,
 | 
						|
                                                     TemplateParamsTy *Params,
 | 
						|
                                                     IdentifierInfo *Name,
 | 
						|
                                                     SourceLocation NameLoc,
 | 
						|
                                                     unsigned Depth,
 | 
						|
                                                     unsigned Position)
 | 
						|
{
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template template parameter not in template parameter scope!");
 | 
						|
 | 
						|
  // Construct the parameter object.
 | 
						|
  TemplateTemplateParmDecl *Param =
 | 
						|
    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
 | 
						|
                                     Position, Name,
 | 
						|
                                     (TemplateParameterList*)Params);
 | 
						|
 | 
						|
  // Make sure the parameter is valid.
 | 
						|
  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
 | 
						|
  // do anything yet. However, if the template parameter list or (eventual)
 | 
						|
  // default value is ever invalidated, that will propagate here.
 | 
						|
  bool Invalid = false;
 | 
						|
  if (Invalid) {
 | 
						|
    Param->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the tt-param has a name, then link the identifier into the scope
 | 
						|
  // and lookup mechanisms.
 | 
						|
  if (Name) {
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a default argument to the given template template
 | 
						|
/// parameter.
 | 
						|
void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
 | 
						|
                                                 SourceLocation EqualLoc,
 | 
						|
                                                 ExprArg DefaultE) {
 | 
						|
  TemplateTemplateParmDecl *TemplateParm 
 | 
						|
    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
 | 
						|
 | 
						|
  // Since a template-template parameter's default argument is an
 | 
						|
  // id-expression, it must be a DeclRefExpr.
 | 
						|
  DeclRefExpr *Default 
 | 
						|
    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
 | 
						|
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
 | 
						|
  // Check the well-formedness of the template argument.
 | 
						|
  if (!isa<TemplateDecl>(Default->getDecl())) {
 | 
						|
    Diag(Default->getSourceRange().getBegin(), 
 | 
						|
         diag::err_template_arg_must_be_template)
 | 
						|
      << Default->getSourceRange();
 | 
						|
    TemplateParm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  } 
 | 
						|
  if (CheckTemplateArgument(TemplateParm, Default)) {
 | 
						|
    TemplateParm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DefaultE.release();
 | 
						|
  TemplateParm->setDefaultArgument(Default);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateParameterList - Builds a TemplateParameterList that
 | 
						|
/// contains the template parameters in Params/NumParams.
 | 
						|
Sema::TemplateParamsTy *
 | 
						|
Sema::ActOnTemplateParameterList(unsigned Depth,
 | 
						|
                                 SourceLocation ExportLoc,
 | 
						|
                                 SourceLocation TemplateLoc, 
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 DeclPtrTy *Params, unsigned NumParams,
 | 
						|
                                 SourceLocation RAngleLoc) {
 | 
						|
  if (ExportLoc.isValid())
 | 
						|
    Diag(ExportLoc, diag::note_template_export_unsupported);
 | 
						|
 | 
						|
  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
 | 
						|
                                       (Decl**)Params, NumParams, RAngleLoc);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclResult
 | 
						|
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                         SourceLocation KWLoc, const CXXScopeSpec &SS,
 | 
						|
                         IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                         AttributeList *Attr,
 | 
						|
                         TemplateParameterList *TemplateParams,
 | 
						|
                         AccessSpecifier AS) {
 | 
						|
  assert(TemplateParams && TemplateParams->size() > 0 && 
 | 
						|
         "No template parameters");
 | 
						|
  assert(TUK != TUK_Reference && "Can only declare or define class templates");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Check that we can declare a template here.
 | 
						|
  if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl::TagKind Kind;
 | 
						|
  switch (TagSpec) {
 | 
						|
  default: assert(0 && "Unknown tag type!");
 | 
						|
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
 | 
						|
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
 | 
						|
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // There is no such thing as an unnamed class template.
 | 
						|
  if (!Name) {
 | 
						|
    Diag(KWLoc, diag::err_template_unnamed_class);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find any previous declaration with this name.
 | 
						|
  DeclContext *SemanticContext;
 | 
						|
  LookupResult Previous;
 | 
						|
  if (SS.isNotEmpty() && !SS.isInvalid()) {
 | 
						|
    SemanticContext = computeDeclContext(SS, true);
 | 
						|
    if (!SemanticContext) {
 | 
						|
      // FIXME: Produce a reasonable diagnostic here
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName, 
 | 
						|
                                   true);
 | 
						|
  } else {
 | 
						|
    SemanticContext = CurContext;
 | 
						|
    Previous = LookupName(S, Name, LookupOrdinaryName, true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
 | 
						|
  NamedDecl *PrevDecl = 0;
 | 
						|
  if (Previous.begin() != Previous.end())
 | 
						|
    PrevDecl = *Previous.begin();
 | 
						|
 | 
						|
  if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
 | 
						|
    PrevDecl = 0;
 | 
						|
  
 | 
						|
  // If there is a previous declaration with the same name, check
 | 
						|
  // whether this is a valid redeclaration.
 | 
						|
  ClassTemplateDecl *PrevClassTemplate 
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
 | 
						|
  if (PrevClassTemplate) {
 | 
						|
    // Ensure that the template parameter lists are compatible.
 | 
						|
    if (!TemplateParameterListsAreEqual(TemplateParams,
 | 
						|
                                   PrevClassTemplate->getTemplateParameters(),
 | 
						|
                                        /*Complain=*/true))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // C++ [temp.class]p4:
 | 
						|
    //   In a redeclaration, partial specialization, explicit
 | 
						|
    //   specialization or explicit instantiation of a class template,
 | 
						|
    //   the class-key shall agree in kind with the original class
 | 
						|
    //   template declaration (7.1.5.3).
 | 
						|
    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
 | 
						|
    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
 | 
						|
      Diag(KWLoc, diag::err_use_with_wrong_tag) 
 | 
						|
        << Name
 | 
						|
        << CodeModificationHint::CreateReplacement(KWLoc, 
 | 
						|
                            PrevRecordDecl->getKindName());
 | 
						|
      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
 | 
						|
      Kind = PrevRecordDecl->getTagKind();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for redefinition of this class template.
 | 
						|
    if (TUK == TUK_Definition) {
 | 
						|
      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
 | 
						|
        Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
        // FIXME: Would it make sense to try to "forget" the previous
 | 
						|
        // definition, as part of error recovery?
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = 0;
 | 
						|
  } else if (PrevDecl) {
 | 
						|
    // C++ [temp]p5:
 | 
						|
    //   A class template shall not have the same name as any other
 | 
						|
    //   template, class, function, object, enumeration, enumerator,
 | 
						|
    //   namespace, or type in the same scope (3.3), except as specified
 | 
						|
    //   in (14.5.4).
 | 
						|
    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the template parameter list of this declaration, possibly
 | 
						|
  // merging in the template parameter list from the previous class
 | 
						|
  // template declaration.
 | 
						|
  if (CheckTemplateParameterList(TemplateParams,
 | 
						|
            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
 | 
						|
    Invalid = true;
 | 
						|
    
 | 
						|
  // FIXME: If we had a scope specifier, we better have a previous template
 | 
						|
  // declaration!
 | 
						|
 | 
						|
  CXXRecordDecl *NewClass = 
 | 
						|
    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
 | 
						|
                          PrevClassTemplate? 
 | 
						|
                            PrevClassTemplate->getTemplatedDecl() : 0,
 | 
						|
                          /*DelayTypeCreation=*/true);
 | 
						|
 | 
						|
  ClassTemplateDecl *NewTemplate
 | 
						|
    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
 | 
						|
                                DeclarationName(Name), TemplateParams,
 | 
						|
                                NewClass, PrevClassTemplate);
 | 
						|
  NewClass->setDescribedClassTemplate(NewTemplate);
 | 
						|
 | 
						|
  // Build the type for the class template declaration now.
 | 
						|
  QualType T = 
 | 
						|
    Context.getTypeDeclType(NewClass, 
 | 
						|
                            PrevClassTemplate? 
 | 
						|
                              PrevClassTemplate->getTemplatedDecl() : 0);  
 | 
						|
  assert(T->isDependentType() && "Class template type is not dependent?");
 | 
						|
  (void)T;
 | 
						|
 | 
						|
  // Set the access specifier.
 | 
						|
  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
 | 
						|
  
 | 
						|
  // Set the lexical context of these templates
 | 
						|
  NewClass->setLexicalDeclContext(CurContext);
 | 
						|
  NewTemplate->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    NewClass->startDefinition();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, NewClass, Attr);
 | 
						|
 | 
						|
  PushOnScopeChains(NewTemplate, S);
 | 
						|
 | 
						|
  if (Invalid) {
 | 
						|
    NewTemplate->setInvalidDecl();
 | 
						|
    NewClass->setInvalidDecl();
 | 
						|
  }
 | 
						|
  return DeclPtrTy::make(NewTemplate);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks the validity of a template parameter list, possibly
 | 
						|
/// considering the template parameter list from a previous
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// If an "old" template parameter list is provided, it must be
 | 
						|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param NewParams Template parameter list for a new template
 | 
						|
/// declaration. This template parameter list will be updated with any
 | 
						|
/// default arguments that are carried through from the previous
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param OldParams If provided, template parameter list from a
 | 
						|
/// previous declaration of the same template. Default template
 | 
						|
/// arguments will be merged from the old template parameter list to
 | 
						|
/// the new template parameter list.
 | 
						|
///
 | 
						|
/// \returns true if an error occurred, false otherwise.
 | 
						|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
 | 
						|
                                      TemplateParameterList *OldParams) {
 | 
						|
  bool Invalid = false;
 | 
						|
  
 | 
						|
  // C++ [temp.param]p10:
 | 
						|
  //   The set of default template-arguments available for use with a
 | 
						|
  //   template declaration or definition is obtained by merging the
 | 
						|
  //   default arguments from the definition (if in scope) and all
 | 
						|
  //   declarations in scope in the same way default function
 | 
						|
  //   arguments are (8.3.6).
 | 
						|
  bool SawDefaultArgument = false;
 | 
						|
  SourceLocation PreviousDefaultArgLoc;
 | 
						|
 | 
						|
  bool SawParameterPack = false;
 | 
						|
  SourceLocation ParameterPackLoc;
 | 
						|
 | 
						|
  // Dummy initialization to avoid warnings.
 | 
						|
  TemplateParameterList::iterator OldParam = NewParams->end();
 | 
						|
  if (OldParams)
 | 
						|
    OldParam = OldParams->begin();
 | 
						|
 | 
						|
  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                    NewParamEnd = NewParams->end();
 | 
						|
       NewParam != NewParamEnd; ++NewParam) {
 | 
						|
    // Variables used to diagnose redundant default arguments
 | 
						|
    bool RedundantDefaultArg = false;
 | 
						|
    SourceLocation OldDefaultLoc;
 | 
						|
    SourceLocation NewDefaultLoc;
 | 
						|
 | 
						|
    // Variables used to diagnose missing default arguments
 | 
						|
    bool MissingDefaultArg = false;
 | 
						|
 | 
						|
    // C++0x [temp.param]p11:
 | 
						|
    // If a template parameter of a class template is a template parameter pack,
 | 
						|
    // it must be the last template parameter.
 | 
						|
    if (SawParameterPack) {
 | 
						|
      Diag(ParameterPackLoc, 
 | 
						|
           diag::err_template_param_pack_must_be_last_template_parameter);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Merge default arguments for template type parameters.
 | 
						|
    if (TemplateTypeParmDecl *NewTypeParm
 | 
						|
          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
 | 
						|
      TemplateTypeParmDecl *OldTypeParm 
 | 
						|
          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
 | 
						|
      
 | 
						|
      if (NewTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
        ParameterPackLoc = NewTypeParm->getLocation();
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 
 | 
						|
          NewTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
 | 
						|
                                        OldTypeParm->getDefaultArgumentLoc(),
 | 
						|
                                        true);
 | 
						|
        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
 | 
						|
               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
 | 
						|
      // Merge default arguments for non-type template parameters
 | 
						|
      NonTypeTemplateParmDecl *OldNonTypeParm
 | 
						|
        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 
 | 
						|
          NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument"
 | 
						|
        // expression that points to a previous template template
 | 
						|
        // parameter.
 | 
						|
        NewNonTypeParm->setDefaultArgument(
 | 
						|
                                        OldNonTypeParm->getDefaultArgument());
 | 
						|
        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;      
 | 
						|
    } else {
 | 
						|
    // Merge default arguments for template template parameters
 | 
						|
      TemplateTemplateParmDecl *NewTemplateParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParam);
 | 
						|
      TemplateTemplateParmDecl *OldTemplateParm
 | 
						|
        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 
 | 
						|
          NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument" expression
 | 
						|
        // that points to a previous template template parameter.
 | 
						|
        NewTemplateParm->setDefaultArgument(
 | 
						|
                                        OldTemplateParm->getDefaultArgument());
 | 
						|
        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;      
 | 
						|
    }
 | 
						|
 | 
						|
    if (RedundantDefaultArg) {
 | 
						|
      // C++ [temp.param]p12:
 | 
						|
      //   A template-parameter shall not be given default arguments
 | 
						|
      //   by two different declarations in the same scope.
 | 
						|
      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
 | 
						|
      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    } else if (MissingDefaultArg) {
 | 
						|
      // C++ [temp.param]p11:
 | 
						|
      //   If a template-parameter has a default template-argument,
 | 
						|
      //   all subsequent template-parameters shall have a default
 | 
						|
      //   template-argument supplied.
 | 
						|
      Diag((*NewParam)->getLocation(), 
 | 
						|
           diag::err_template_param_default_arg_missing);
 | 
						|
      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an old template parameter list that we're merging
 | 
						|
    // in, move on to the next parameter.
 | 
						|
    if (OldParams)
 | 
						|
      ++OldParam;
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match the given template parameter lists to the given scope 
 | 
						|
/// specifier, returning the template parameter list that applies to the
 | 
						|
/// name.
 | 
						|
///
 | 
						|
/// \param DeclStartLoc the start of the declaration that has a scope
 | 
						|
/// specifier or a template parameter list.
 | 
						|
/// 
 | 
						|
/// \param SS the scope specifier that will be matched to the given template
 | 
						|
/// parameter lists. This scope specifier precedes a qualified name that is
 | 
						|
/// being declared.
 | 
						|
///
 | 
						|
/// \param ParamLists the template parameter lists, from the outermost to the
 | 
						|
/// innermost template parameter lists.
 | 
						|
///
 | 
						|
/// \param NumParamLists the number of template parameter lists in ParamLists.
 | 
						|
///
 | 
						|
/// \returns the template parameter list, if any, that corresponds to the 
 | 
						|
/// name that is preceded by the scope specifier @p SS. This template
 | 
						|
/// parameter list may be have template parameters (if we're declaring a
 | 
						|
/// template) or may have no template parameters (if we're declaring a 
 | 
						|
/// template specialization), or may be NULL (if we were's declaring isn't
 | 
						|
/// itself a template).
 | 
						|
TemplateParameterList *
 | 
						|
Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
 | 
						|
                                              const CXXScopeSpec &SS,
 | 
						|
                                          TemplateParameterList **ParamLists,
 | 
						|
                                              unsigned NumParamLists) {
 | 
						|
  // Find the template-ids that occur within the nested-name-specifier. These
 | 
						|
  // template-ids will match up with the template parameter lists.
 | 
						|
  llvm::SmallVector<const TemplateSpecializationType *, 4>
 | 
						|
    TemplateIdsInSpecifier;
 | 
						|
  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | 
						|
       NNS; NNS = NNS->getPrefix()) {
 | 
						|
    if (const TemplateSpecializationType *SpecType 
 | 
						|
          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
 | 
						|
      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
 | 
						|
      if (!Template)
 | 
						|
        continue; // FIXME: should this be an error? probably...
 | 
						|
   
 | 
						|
      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
 | 
						|
        ClassTemplateSpecializationDecl *SpecDecl
 | 
						|
          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
 | 
						|
        // If the nested name specifier refers to an explicit specialization,
 | 
						|
        // we don't need a template<> header.
 | 
						|
        // FIXME: revisit this approach once we cope with specialization 
 | 
						|
        // properly.
 | 
						|
        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      TemplateIdsInSpecifier.push_back(SpecType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Reverse the list of template-ids in the scope specifier, so that we can
 | 
						|
  // more easily match up the template-ids and the template parameter lists.
 | 
						|
  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
 | 
						|
  
 | 
						|
  SourceLocation FirstTemplateLoc = DeclStartLoc;
 | 
						|
  if (NumParamLists)
 | 
						|
    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
 | 
						|
      
 | 
						|
  // Match the template-ids found in the specifier to the template parameter
 | 
						|
  // lists.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
 | 
						|
       Idx != NumTemplateIds; ++Idx) {
 | 
						|
    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
 | 
						|
    bool DependentTemplateId = TemplateId->isDependentType();
 | 
						|
    if (Idx >= NumParamLists) {
 | 
						|
      // We have a template-id without a corresponding template parameter
 | 
						|
      // list.
 | 
						|
      if (DependentTemplateId) {
 | 
						|
        // FIXME: the location information here isn't great. 
 | 
						|
        Diag(SS.getRange().getBegin(), 
 | 
						|
             diag::err_template_spec_needs_template_parameters)
 | 
						|
          << TemplateId
 | 
						|
          << SS.getRange();
 | 
						|
      } else {
 | 
						|
        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
 | 
						|
          << SS.getRange()
 | 
						|
          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
 | 
						|
                                                   "template<> ");
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check the template parameter list against its corresponding template-id.
 | 
						|
    if (DependentTemplateId) {
 | 
						|
      TemplateDecl *Template 
 | 
						|
        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
 | 
						|
 | 
						|
      if (ClassTemplateDecl *ClassTemplate 
 | 
						|
            = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
        TemplateParameterList *ExpectedTemplateParams = 0;
 | 
						|
        // Is this template-id naming the primary template?
 | 
						|
        if (Context.hasSameType(TemplateId,
 | 
						|
                             ClassTemplate->getInjectedClassNameType(Context)))
 | 
						|
          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
 | 
						|
        // ... or a partial specialization?
 | 
						|
        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | 
						|
                   = ClassTemplate->findPartialSpecialization(TemplateId))
 | 
						|
          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
 | 
						|
 | 
						|
        if (ExpectedTemplateParams)
 | 
						|
          TemplateParameterListsAreEqual(ParamLists[Idx], 
 | 
						|
                                         ExpectedTemplateParams,
 | 
						|
                                         true);
 | 
						|
      } 
 | 
						|
    } else if (ParamLists[Idx]->size() > 0)
 | 
						|
      Diag(ParamLists[Idx]->getTemplateLoc(), 
 | 
						|
           diag::err_template_param_list_matches_nontemplate)
 | 
						|
        << TemplateId
 | 
						|
        << ParamLists[Idx]->getSourceRange();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there were at least as many template-ids as there were template
 | 
						|
  // parameter lists, then there are no template parameter lists remaining for
 | 
						|
  // the declaration itself.
 | 
						|
  if (Idx >= NumParamLists)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // If there were too many template parameter lists, complain about that now.
 | 
						|
  if (Idx != NumParamLists - 1) {
 | 
						|
    while (Idx < NumParamLists - 1) {
 | 
						|
      Diag(ParamLists[Idx]->getTemplateLoc(), 
 | 
						|
           diag::err_template_spec_extra_headers)
 | 
						|
        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
 | 
						|
                       ParamLists[Idx]->getRAngleLoc());
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Return the last template parameter list, which corresponds to the
 | 
						|
  // entity being declared.
 | 
						|
  return ParamLists[NumParamLists - 1];
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Translates template arguments as provided by the parser
 | 
						|
/// into template arguments used by semantic analysis.
 | 
						|
static void 
 | 
						|
translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 
 | 
						|
                           SourceLocation *TemplateArgLocs,
 | 
						|
                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
 | 
						|
  TemplateArgs.reserve(TemplateArgsIn.size());
 | 
						|
 | 
						|
  void **Args = TemplateArgsIn.getArgs();
 | 
						|
  bool *ArgIsType = TemplateArgsIn.getArgIsType();
 | 
						|
  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
 | 
						|
    TemplateArgs.push_back(
 | 
						|
      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
 | 
						|
                                       //FIXME: Preserve type source info.
 | 
						|
                                       Sema::GetTypeFromParser(Args[Arg]))
 | 
						|
                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckTemplateIdType(TemplateName Name,
 | 
						|
                                   SourceLocation TemplateLoc,
 | 
						|
                                   SourceLocation LAngleLoc,
 | 
						|
                                   const TemplateArgument *TemplateArgs,
 | 
						|
                                   unsigned NumTemplateArgs,
 | 
						|
                                   SourceLocation RAngleLoc) {
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template) {
 | 
						|
    // The template name does not resolve to a template, so we just
 | 
						|
    // build a dependent template-id type.
 | 
						|
    return Context.getTemplateSpecializationType(Name, TemplateArgs,
 | 
						|
                                                 NumTemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
 | 
						|
                                        NumTemplateArgs);
 | 
						|
  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 
 | 
						|
                                TemplateArgs, NumTemplateArgs, RAngleLoc,
 | 
						|
                                false, Converted))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  assert((Converted.structuredSize() == 
 | 
						|
            Template->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
 | 
						|
  QualType CanonType;
 | 
						|
 | 
						|
  if (TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
                                                      TemplateArgs,
 | 
						|
                                                      NumTemplateArgs)) {
 | 
						|
    // This class template specialization is a dependent
 | 
						|
    // type. Therefore, its canonical type is another class template
 | 
						|
    // specialization type that contains all of the converted
 | 
						|
    // arguments in canonical form. This ensures that, e.g., A<T> and
 | 
						|
    // A<T, T> have identical types when A is declared as:
 | 
						|
    //
 | 
						|
    //   template<typename T, typename U = T> struct A;
 | 
						|
    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
 | 
						|
    CanonType = Context.getTemplateSpecializationType(CanonName, 
 | 
						|
                                                   Converted.getFlatArguments(),
 | 
						|
                                                   Converted.flatSize());
 | 
						|
    
 | 
						|
    // FIXME: CanonType is not actually the canonical type, and unfortunately
 | 
						|
    // it is a TemplateTypeSpecializationType that we will never use again.
 | 
						|
    // In the future, we need to teach getTemplateSpecializationType to only
 | 
						|
    // build the canonical type and return that to us.
 | 
						|
    CanonType = Context.getCanonicalType(CanonType);
 | 
						|
  } else if (ClassTemplateDecl *ClassTemplate 
 | 
						|
               = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
    // Find the class template specialization declaration that
 | 
						|
    // corresponds to these arguments.
 | 
						|
    llvm::FoldingSetNodeID ID;
 | 
						|
    ClassTemplateSpecializationDecl::Profile(ID, 
 | 
						|
                                             Converted.getFlatArguments(),
 | 
						|
                                             Converted.flatSize(),
 | 
						|
                                             Context);
 | 
						|
    void *InsertPos = 0;
 | 
						|
    ClassTemplateSpecializationDecl *Decl
 | 
						|
      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    if (!Decl) {
 | 
						|
      // This is the first time we have referenced this class template
 | 
						|
      // specialization. Create the canonical declaration and add it to
 | 
						|
      // the set of specializations.
 | 
						|
      Decl = ClassTemplateSpecializationDecl::Create(Context, 
 | 
						|
                                    ClassTemplate->getDeclContext(),
 | 
						|
                                    TemplateLoc,
 | 
						|
                                    ClassTemplate,
 | 
						|
                                    Converted, 0);
 | 
						|
      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
 | 
						|
      Decl->setLexicalDeclContext(CurContext);
 | 
						|
    }
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Decl);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization, which refers back to the class template
 | 
						|
  // specialization we created or found.
 | 
						|
  //FIXME: Preserve type source info.
 | 
						|
  return Context.getTemplateSpecializationType(Name, TemplateArgs,
 | 
						|
                                               NumTemplateArgs, CanonType);
 | 
						|
}
 | 
						|
 | 
						|
Action::TypeResult
 | 
						|
Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
 | 
						|
                          SourceLocation LAngleLoc, 
 | 
						|
                          ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                          SourceLocation *TemplateArgLocs,
 | 
						|
                          SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
 | 
						|
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
 | 
						|
                                        TemplateArgs.data(),
 | 
						|
                                        TemplateArgs.size(),
 | 
						|
                                        RAngleLoc);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  if (Result.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return Result.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
 | 
						|
                                              TagUseKind TUK,
 | 
						|
                                              DeclSpec::TST TagSpec,
 | 
						|
                                              SourceLocation TagLoc) {
 | 
						|
  if (TypeResult.isInvalid())
 | 
						|
    return Sema::TypeResult();
 | 
						|
 | 
						|
  QualType Type = QualType::getFromOpaquePtr(TypeResult.get());
 | 
						|
 | 
						|
  // Verify the tag specifier.
 | 
						|
  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
 | 
						|
  
 | 
						|
  if (const RecordType *RT = Type->getAs<RecordType>()) {
 | 
						|
    RecordDecl *D = RT->getDecl();
 | 
						|
 | 
						|
    IdentifierInfo *Id = D->getIdentifier();
 | 
						|
    assert(Id && "templated class must have an identifier");
 | 
						|
 | 
						|
    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
 | 
						|
      Diag(TagLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Id
 | 
						|
        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
 | 
						|
                                                   D->getKindName());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElabType = Context.getElaboratedType(Type, TagKind);
 | 
						|
 | 
						|
  return ElabType.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
 | 
						|
                                                 SourceLocation TemplateNameLoc,
 | 
						|
                                                 SourceLocation LAngleLoc,
 | 
						|
                                           const TemplateArgument *TemplateArgs,
 | 
						|
                                                 unsigned NumTemplateArgs,
 | 
						|
                                                 SourceLocation RAngleLoc) {
 | 
						|
  // FIXME: Can we do any checking at this point? I guess we could check the
 | 
						|
  // template arguments that we have against the template name, if the template
 | 
						|
  // name refers to a single template. That's not a terribly common case, 
 | 
						|
  // though.
 | 
						|
  return Owned(TemplateIdRefExpr::Create(Context, 
 | 
						|
                                         /*FIXME: New type?*/Context.OverloadTy,
 | 
						|
                                         /*FIXME: Necessary?*/0,
 | 
						|
                                         /*FIXME: Necessary?*/SourceRange(),
 | 
						|
                                         Template, TemplateNameLoc, LAngleLoc,
 | 
						|
                                         TemplateArgs, 
 | 
						|
                                         NumTemplateArgs, RAngleLoc));
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
 | 
						|
                                                 SourceLocation TemplateNameLoc,
 | 
						|
                                                 SourceLocation LAngleLoc,
 | 
						|
                                              ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                                SourceLocation *TemplateArgLocs,
 | 
						|
                                                 SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
  
 | 
						|
  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
 | 
						|
                             TemplateArgs.data(), TemplateArgs.size(),
 | 
						|
                             RAngleLoc);
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base,
 | 
						|
                                         SourceLocation OpLoc,
 | 
						|
                                         tok::TokenKind OpKind,
 | 
						|
                                         const CXXScopeSpec &SS,
 | 
						|
                                         TemplateTy TemplateD,
 | 
						|
                                         SourceLocation TemplateNameLoc,
 | 
						|
                                         SourceLocation LAngleLoc,
 | 
						|
                                         ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                         SourceLocation *TemplateArgLocs,
 | 
						|
                                         SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
  
 | 
						|
  // FIXME: We're going to end up looking up the template based on its name,
 | 
						|
  // twice!
 | 
						|
  DeclarationName Name;
 | 
						|
  if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
 | 
						|
    Name = ActualTemplate->getDeclName();
 | 
						|
  else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
 | 
						|
    Name = Ovl->getDeclName();
 | 
						|
  else
 | 
						|
    assert(false && "Cannot support dependent template names yet");
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
  
 | 
						|
  // Do we have the save the actual template name? We might need it...
 | 
						|
  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc,
 | 
						|
                                  Name, true, LAngleLoc,
 | 
						|
                                  TemplateArgs.data(), TemplateArgs.size(),
 | 
						|
                                  RAngleLoc, DeclPtrTy(), &SS);  
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a dependent template name.
 | 
						|
///
 | 
						|
/// This action forms a dependent template name given the template
 | 
						|
/// name and its (presumably dependent) scope specifier. For
 | 
						|
/// example, given "MetaFun::template apply", the scope specifier \p
 | 
						|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
 | 
						|
/// of the "template" keyword, and "apply" is the \p Name.
 | 
						|
Sema::TemplateTy 
 | 
						|
Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
 | 
						|
                                 const IdentifierInfo &Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 TypeTy *ObjectType) {
 | 
						|
  if ((ObjectType && 
 | 
						|
       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
 | 
						|
      (SS.isSet() && computeDeclContext(SS, false))) {
 | 
						|
    // C++0x [temp.names]p5:
 | 
						|
    //   If a name prefixed by the keyword template is not the name of
 | 
						|
    //   a template, the program is ill-formed. [Note: the keyword
 | 
						|
    //   template may not be applied to non-template members of class
 | 
						|
    //   templates. -end note ] [ Note: as is the case with the
 | 
						|
    //   typename prefix, the template prefix is allowed in cases
 | 
						|
    //   where it is not strictly necessary; i.e., when the
 | 
						|
    //   nested-name-specifier or the expression on the left of the ->
 | 
						|
    //   or . is not dependent on a template-parameter, or the use
 | 
						|
    //   does not appear in the scope of a template. -end note]
 | 
						|
    //
 | 
						|
    // Note: C++03 was more strict here, because it banned the use of
 | 
						|
    // the "template" keyword prior to a template-name that was not a
 | 
						|
    // dependent name. C++ DR468 relaxed this requirement (the
 | 
						|
    // "template" keyword is now permitted). We follow the C++0x
 | 
						|
    // rules, even in C++03 mode, retroactively applying the DR.
 | 
						|
    TemplateTy Template;
 | 
						|
    TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType, 
 | 
						|
                                          false, Template);
 | 
						|
    if (TNK == TNK_Non_template) {
 | 
						|
      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
 | 
						|
        << &Name;
 | 
						|
      return TemplateTy();
 | 
						|
    }
 | 
						|
 | 
						|
    return Template;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We need to be able to create a dependent template name with just
 | 
						|
  // an identifier, to handle the x->template f<T> case.
 | 
						|
  assert(!ObjectType && 
 | 
						|
      "Cannot handle dependent template names without a nested-name-specifier");
 | 
						|
  
 | 
						|
  NestedNameSpecifier *Qualifier 
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 
 | 
						|
                                     const TemplateArgument &Arg,
 | 
						|
                                     TemplateArgumentListBuilder &Converted) {
 | 
						|
  // Check template type parameter.
 | 
						|
  if (Arg.getKind() != TemplateArgument::Type) {
 | 
						|
    // C++ [temp.arg.type]p1:
 | 
						|
    //   A template-argument for a template-parameter which is a
 | 
						|
    //   type shall be a type-id.
 | 
						|
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is not a type.
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }    
 | 
						|
 | 
						|
  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Add the converted template type argument.
 | 
						|
  Converted.Append(
 | 
						|
                 TemplateArgument(Arg.getLocation(),
 | 
						|
                                  Context.getCanonicalType(Arg.getAsType())));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument list is well-formed
 | 
						|
/// for specializing the given template.
 | 
						|
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
 | 
						|
                                     SourceLocation TemplateLoc,
 | 
						|
                                     SourceLocation LAngleLoc,
 | 
						|
                                     const TemplateArgument *TemplateArgs,
 | 
						|
                                     unsigned NumTemplateArgs,
 | 
						|
                                     SourceLocation RAngleLoc,
 | 
						|
                                     bool PartialTemplateArgs,
 | 
						|
                                     TemplateArgumentListBuilder &Converted) {
 | 
						|
  TemplateParameterList *Params = Template->getTemplateParameters();
 | 
						|
  unsigned NumParams = Params->size();
 | 
						|
  unsigned NumArgs = NumTemplateArgs;
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  bool HasParameterPack = 
 | 
						|
    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
 | 
						|
  
 | 
						|
  if ((NumArgs > NumParams && !HasParameterPack) ||
 | 
						|
      (NumArgs < Params->getMinRequiredArguments() &&
 | 
						|
       !PartialTemplateArgs)) {
 | 
						|
    // FIXME: point at either the first arg beyond what we can handle,
 | 
						|
    // or the '>', depending on whether we have too many or too few
 | 
						|
    // arguments.
 | 
						|
    SourceRange Range;
 | 
						|
    if (NumArgs > NumParams)
 | 
						|
      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
 | 
						|
    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
      << (NumArgs > NumParams)
 | 
						|
      << (isa<ClassTemplateDecl>(Template)? 0 :
 | 
						|
          isa<FunctionTemplateDecl>(Template)? 1 :
 | 
						|
          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
 | 
						|
      << Template << Range;
 | 
						|
    Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
      << Params->getSourceRange();
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [temp.arg]p1: 
 | 
						|
  //   [...] The type and form of each template-argument specified in
 | 
						|
  //   a template-id shall match the type and form specified for the
 | 
						|
  //   corresponding parameter declared by the template in its
 | 
						|
  //   template-parameter-list.
 | 
						|
  unsigned ArgIdx = 0;
 | 
						|
  for (TemplateParameterList::iterator Param = Params->begin(),
 | 
						|
                                       ParamEnd = Params->end();
 | 
						|
       Param != ParamEnd; ++Param, ++ArgIdx) {
 | 
						|
    if (ArgIdx > NumArgs && PartialTemplateArgs)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // Decode the template argument
 | 
						|
    TemplateArgument Arg;
 | 
						|
    if (ArgIdx >= NumArgs) {
 | 
						|
      // Retrieve the default template argument from the template
 | 
						|
      // parameter.
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | 
						|
        if (TTP->isParameterPack()) {
 | 
						|
          // We have an empty argument pack.
 | 
						|
          Converted.BeginPack();
 | 
						|
          Converted.EndPack();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (!TTP->hasDefaultArgument())
 | 
						|
          break;
 | 
						|
 | 
						|
        QualType ArgType = TTP->getDefaultArgument();
 | 
						|
 | 
						|
        // If the argument type is dependent, instantiate it now based
 | 
						|
        // on the previously-computed template arguments.
 | 
						|
        if (ArgType->isDependentType()) {
 | 
						|
          InstantiatingTemplate Inst(*this, TemplateLoc, 
 | 
						|
                                     Template, Converted.getFlatArguments(),
 | 
						|
                                     Converted.flatSize(),
 | 
						|
                                     SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
 | 
						|
          TemplateArgumentList TemplateArgs(Context, Converted,
 | 
						|
                                            /*TakeArgs=*/false);
 | 
						|
          ArgType = SubstType(ArgType, 
 | 
						|
                              MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                              TTP->getDefaultArgumentLoc(),
 | 
						|
                              TTP->getDeclName());
 | 
						|
        }
 | 
						|
 | 
						|
        if (ArgType.isNull())
 | 
						|
          return true;
 | 
						|
 | 
						|
        Arg = TemplateArgument(TTP->getLocation(), ArgType);
 | 
						|
      } else if (NonTypeTemplateParmDecl *NTTP 
 | 
						|
                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
        if (!NTTP->hasDefaultArgument())
 | 
						|
          break;
 | 
						|
 | 
						|
        InstantiatingTemplate Inst(*this, TemplateLoc, 
 | 
						|
                                   Template, Converted.getFlatArguments(),
 | 
						|
                                   Converted.flatSize(),
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
        
 | 
						|
        TemplateArgumentList TemplateArgs(Context, Converted,
 | 
						|
                                          /*TakeArgs=*/false);
 | 
						|
 | 
						|
        Sema::OwningExprResult E 
 | 
						|
          = SubstExpr(NTTP->getDefaultArgument(), 
 | 
						|
                      MultiLevelTemplateArgumentList(TemplateArgs));
 | 
						|
        if (E.isInvalid())
 | 
						|
          return true;
 | 
						|
        
 | 
						|
        Arg = TemplateArgument(E.takeAs<Expr>());
 | 
						|
      } else {
 | 
						|
        TemplateTemplateParmDecl *TempParm 
 | 
						|
          = cast<TemplateTemplateParmDecl>(*Param);      
 | 
						|
 | 
						|
        if (!TempParm->hasDefaultArgument())
 | 
						|
          break;
 | 
						|
 | 
						|
        // FIXME: Subst default argument
 | 
						|
        Arg = TemplateArgument(TempParm->getDefaultArgument());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Retrieve the template argument produced by the user.
 | 
						|
      Arg = TemplateArgs[ArgIdx];
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | 
						|
      if (TTP->isParameterPack()) {
 | 
						|
        Converted.BeginPack();
 | 
						|
        // Check all the remaining arguments (if any).
 | 
						|
        for (; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
 | 
						|
            Invalid = true;
 | 
						|
        }
 | 
						|
        
 | 
						|
        Converted.EndPack();
 | 
						|
      } else {
 | 
						|
        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
 | 
						|
          Invalid = true;
 | 
						|
      }
 | 
						|
    } else if (NonTypeTemplateParmDecl *NTTP 
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
      // Check non-type template parameters.
 | 
						|
 | 
						|
      // Do substitution on the type of the non-type template parameter
 | 
						|
      // with the template arguments we've seen thus far.
 | 
						|
      QualType NTTPType = NTTP->getType();
 | 
						|
      if (NTTPType->isDependentType()) {
 | 
						|
        // Do substitution on the type of the non-type template parameter.
 | 
						|
        InstantiatingTemplate Inst(*this, TemplateLoc, 
 | 
						|
                                   Template, Converted.getFlatArguments(),
 | 
						|
                                   Converted.flatSize(),
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
 | 
						|
        TemplateArgumentList TemplateArgs(Context, Converted,
 | 
						|
                                          /*TakeArgs=*/false);
 | 
						|
        NTTPType = SubstType(NTTPType, 
 | 
						|
                             MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                             NTTP->getLocation(),
 | 
						|
                             NTTP->getDeclName());
 | 
						|
        // If that worked, check the non-type template parameter type
 | 
						|
        // for validity.
 | 
						|
        if (!NTTPType.isNull())
 | 
						|
          NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 
 | 
						|
                                                       NTTP->getLocation());
 | 
						|
        if (NTTPType.isNull()) {
 | 
						|
          Invalid = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      switch (Arg.getKind()) {
 | 
						|
      case TemplateArgument::Null:
 | 
						|
        assert(false && "Should never see a NULL template argument here");
 | 
						|
        break;
 | 
						|
          
 | 
						|
      case TemplateArgument::Expression: {
 | 
						|
        Expr *E = Arg.getAsExpr();
 | 
						|
        TemplateArgument Result;
 | 
						|
        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
 | 
						|
          Invalid = true;
 | 
						|
        else
 | 
						|
          Converted.Append(Result);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case TemplateArgument::Declaration:
 | 
						|
      case TemplateArgument::Integral:
 | 
						|
        // We've already checked this template argument, so just copy
 | 
						|
        // it to the list of converted arguments.
 | 
						|
        Converted.Append(Arg);
 | 
						|
        break;
 | 
						|
 | 
						|
      case TemplateArgument::Type:
 | 
						|
        // We have a non-type template parameter but the template
 | 
						|
        // argument is a type.
 | 
						|
        
 | 
						|
        // C++ [temp.arg]p2:
 | 
						|
        //   In a template-argument, an ambiguity between a type-id and
 | 
						|
        //   an expression is resolved to a type-id, regardless of the
 | 
						|
        //   form of the corresponding template-parameter.
 | 
						|
        //
 | 
						|
        // We warn specifically about this case, since it can be rather
 | 
						|
        // confusing for users.
 | 
						|
        if (Arg.getAsType()->isFunctionType())
 | 
						|
          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
 | 
						|
            << Arg.getAsType();
 | 
						|
        else
 | 
						|
          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
 | 
						|
        Diag((*Param)->getLocation(), diag::note_template_param_here);
 | 
						|
        Invalid = true;
 | 
						|
        break;
 | 
						|
      
 | 
						|
      case TemplateArgument::Pack:
 | 
						|
        assert(0 && "FIXME: Implement!");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else { 
 | 
						|
      // Check template template parameters.
 | 
						|
      TemplateTemplateParmDecl *TempParm 
 | 
						|
        = cast<TemplateTemplateParmDecl>(*Param);
 | 
						|
     
 | 
						|
      switch (Arg.getKind()) {
 | 
						|
      case TemplateArgument::Null:
 | 
						|
        assert(false && "Should never see a NULL template argument here");
 | 
						|
        break;
 | 
						|
          
 | 
						|
      case TemplateArgument::Expression: {
 | 
						|
        Expr *ArgExpr = Arg.getAsExpr();
 | 
						|
        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
 | 
						|
            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
 | 
						|
          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
 | 
						|
            Invalid = true;
 | 
						|
          
 | 
						|
          // Add the converted template argument.
 | 
						|
          Decl *D 
 | 
						|
            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
 | 
						|
          Converted.Append(TemplateArgument(Arg.getLocation(), D));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
        // fall through
 | 
						|
        
 | 
						|
      case TemplateArgument::Type: {
 | 
						|
        // We have a template template parameter but the template
 | 
						|
        // argument does not refer to a template.
 | 
						|
        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
 | 
						|
        Invalid = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case TemplateArgument::Declaration:
 | 
						|
        // We've already checked this template argument, so just copy
 | 
						|
        // it to the list of converted arguments.
 | 
						|
        Converted.Append(Arg);
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case TemplateArgument::Integral:
 | 
						|
        assert(false && "Integral argument with template template parameter");
 | 
						|
        break;
 | 
						|
      
 | 
						|
      case TemplateArgument::Pack:
 | 
						|
        assert(0 && "FIXME: Implement!");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template type parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.type]. It
 | 
						|
/// returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 
 | 
						|
                                 QualType Arg, SourceLocation ArgLoc) {
 | 
						|
  // C++ [temp.arg.type]p2:
 | 
						|
  //   A local type, a type with no linkage, an unnamed type or a type
 | 
						|
  //   compounded from any of these types shall not be used as a
 | 
						|
  //   template-argument for a template type-parameter.
 | 
						|
  //
 | 
						|
  // FIXME: Perform the recursive and no-linkage type checks.
 | 
						|
  const TagType *Tag = 0;
 | 
						|
  if (const EnumType *EnumT = Arg->getAsEnumType())
 | 
						|
    Tag = EnumT;
 | 
						|
  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
 | 
						|
    Tag = RecordT;
 | 
						|
  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
 | 
						|
    return Diag(ArgLoc, diag::err_template_arg_local_type)
 | 
						|
      << QualType(Tag, 0);
 | 
						|
  else if (Tag && !Tag->getDecl()->getDeclName() && 
 | 
						|
           !Tag->getDecl()->getTypedefForAnonDecl()) {
 | 
						|
    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
 | 
						|
    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is the address
 | 
						|
/// of an object or function according to C++ [temp.arg.nontype]p1.
 | 
						|
bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
 | 
						|
                                                          NamedDecl *&Entity) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
    Arg = Cast->getSubExpr();
 | 
						|
 | 
						|
  // C++0x allows nullptr, and there's no further checking to be done for that.
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  // 
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- the address of an object or function with external
 | 
						|
  //        linkage, including function templates and function
 | 
						|
  //        template-ids but excluding non-static class members,
 | 
						|
  //        expressed as & id-expression where the & is optional if
 | 
						|
  //        the name refers to a function or array, or if the
 | 
						|
  //        corresponding template-parameter is a reference; or
 | 
						|
  DeclRefExpr *DRE = 0;
 | 
						|
  
 | 
						|
  // Ignore (and complain about) any excess parentheses.
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
 | 
						|
      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | 
						|
  } else
 | 
						|
    DRE = dyn_cast<DeclRefExpr>(Arg);
 | 
						|
 | 
						|
  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
                diag::err_template_arg_not_object_or_func_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Cannot refer to non-static data members
 | 
						|
  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
 | 
						|
      << Field << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Cannot refer to non-static member functions
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
 | 
						|
    if (!Method->isStatic())
 | 
						|
      return Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
                  diag::err_template_arg_method)
 | 
						|
        << Method << Arg->getSourceRange();
 | 
						|
   
 | 
						|
  // Functions must have external linkage.
 | 
						|
  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | 
						|
    if (Func->getStorageClass() == FunctionDecl::Static) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_function_not_extern)
 | 
						|
        << Func << Arg->getSourceRange();
 | 
						|
      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
        << true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay: we've named a function with external linkage.
 | 
						|
    Entity = Func;
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
 | 
						|
    if (!Var->hasGlobalStorage()) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_object_not_extern)
 | 
						|
        << Var << Arg->getSourceRange();
 | 
						|
      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
        << true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay: we've named an object with external linkage
 | 
						|
    Entity = Var;
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
       diag::err_template_arg_not_object_or_func)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
  Diag(DRE->getDecl()->getLocation(), 
 | 
						|
       diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is a pointer to
 | 
						|
/// member constant according to C++ [temp.arg.nontype]p1.
 | 
						|
bool 
 | 
						|
Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
    Arg = Cast->getSubExpr();
 | 
						|
 | 
						|
  // C++0x allows nullptr, and there's no further checking to be done for that.
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  // 
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- a pointer to member expressed as described in 5.3.1.
 | 
						|
  QualifiedDeclRefExpr *DRE = 0;
 | 
						|
 | 
						|
  // Ignore (and complain about) any excess parentheses.
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
 | 
						|
    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
 | 
						|
      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
 | 
						|
 | 
						|
  if (!DRE)
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(),
 | 
						|
                diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
 | 
						|
    assert((isa<FieldDecl>(DRE->getDecl()) ||
 | 
						|
            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
 | 
						|
           "Only non-static member pointers can make it here");
 | 
						|
 | 
						|
    // Okay: this is the address of a non-static member, and therefore
 | 
						|
    // a member pointer constant.
 | 
						|
    Member = DRE->getDecl();
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
       diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
  Diag(DRE->getDecl()->getLocation(), 
 | 
						|
       diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// non-type template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.nontype].
 | 
						|
/// It returns true if an error occurred, and false otherwise. \p
 | 
						|
/// InstantiatedParamType is the type of the non-type template
 | 
						|
/// parameter after it has been instantiated.
 | 
						|
///
 | 
						|
/// If no error was detected, Converted receives the converted template argument.
 | 
						|
bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
 | 
						|
                                 QualType InstantiatedParamType, Expr *&Arg, 
 | 
						|
                                 TemplateArgument &Converted) {
 | 
						|
  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
 | 
						|
 | 
						|
  // If either the parameter has a dependent type or the argument is
 | 
						|
  // type-dependent, there's nothing we can check now.
 | 
						|
  // FIXME: Add template argument to Converted!
 | 
						|
  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
 | 
						|
    // FIXME: Produce a cloned, canonical expression?
 | 
						|
    Converted = TemplateArgument(Arg);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p5:
 | 
						|
  //   The following conversions are performed on each expression used
 | 
						|
  //   as a non-type template-argument. If a non-type
 | 
						|
  //   template-argument cannot be converted to the type of the
 | 
						|
  //   corresponding template-parameter then the program is
 | 
						|
  //   ill-formed.
 | 
						|
  //
 | 
						|
  //     -- for a non-type template-parameter of integral or
 | 
						|
  //        enumeration type, integral promotions (4.5) and integral
 | 
						|
  //        conversions (4.7) are applied.
 | 
						|
  QualType ParamType = InstantiatedParamType;
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
 | 
						|
    // C++ [temp.arg.nontype]p1:
 | 
						|
    //   A template-argument for a non-type, non-template
 | 
						|
    //   template-parameter shall be one of:
 | 
						|
    //
 | 
						|
    //     -- an integral constant-expression of integral or enumeration
 | 
						|
    //        type; or
 | 
						|
    //     -- the name of a non-type template-parameter; or
 | 
						|
    SourceLocation NonConstantLoc;
 | 
						|
    llvm::APSInt Value;
 | 
						|
    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_not_integral_or_enumeral)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    } else if (!Arg->isValueDependent() &&
 | 
						|
               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
 | 
						|
      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: We need some way to more easily get the unqualified form
 | 
						|
    // of the types without going all the way to the
 | 
						|
    // canonical type.
 | 
						|
    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
 | 
						|
      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
 | 
						|
    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
 | 
						|
      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
 | 
						|
 | 
						|
    // Try to convert the argument to the parameter's type.
 | 
						|
    if (ParamType == ArgType) {
 | 
						|
      // Okay: no conversion necessary
 | 
						|
    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
 | 
						|
               !ParamType->isEnumeralType()) {
 | 
						|
      // This is an integral promotion or conversion.
 | 
						|
      ImpCastExprToType(Arg, ParamType);
 | 
						|
    } else {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType IntegerType = Context.getCanonicalType(ParamType);
 | 
						|
    if (const EnumType *Enum = IntegerType->getAsEnumType())
 | 
						|
      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
 | 
						|
 | 
						|
    if (!Arg->isValueDependent()) {
 | 
						|
      // Check that an unsigned parameter does not receive a negative
 | 
						|
      // value.
 | 
						|
      if (IntegerType->isUnsignedIntegerType()
 | 
						|
          && (Value.isSigned() && Value.isNegative())) {
 | 
						|
        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
 | 
						|
          << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check that we don't overflow the template parameter type.
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getActiveBits() > AllowedBits) {
 | 
						|
        Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
             diag::err_template_arg_too_large)
 | 
						|
          << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerType());
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the value of this argument to the list of converted
 | 
						|
    // arguments. We use the bitwidth and signedness of the template
 | 
						|
    // parameter.
 | 
						|
    if (Arg->isValueDependent()) {
 | 
						|
      // The argument is value-dependent. Create a new
 | 
						|
      // TemplateArgument with the converted expression.
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Converted = TemplateArgument(StartLoc, Value,
 | 
						|
                                 ParamType->isEnumeralType() ? ParamType 
 | 
						|
                                                             : IntegerType);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle pointer-to-function, reference-to-function, and
 | 
						|
  // pointer-to-member-function all in (roughly) the same way.
 | 
						|
  if (// -- For a non-type template-parameter of type pointer to
 | 
						|
      //    function, only the function-to-pointer conversion (4.3) is
 | 
						|
      //    applied. If the template-argument represents a set of
 | 
						|
      //    overloaded functions (or a pointer to such), the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      // In C++0x, any std::nullptr_t value can be converted.
 | 
						|
      (ParamType->isPointerType() &&
 | 
						|
       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type reference to
 | 
						|
      //    function, no conversions apply. If the template-argument
 | 
						|
      //    represents a set of overloaded functions, the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isReferenceType() &&
 | 
						|
       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type pointer to
 | 
						|
      //    member function, no conversions apply. If the
 | 
						|
      //    template-argument represents a set of overloaded member
 | 
						|
      //    functions, the matching member function is selected from
 | 
						|
      //    the set (13.4).
 | 
						|
      // Again, C++0x allows a std::nullptr_t value.
 | 
						|
      (ParamType->isMemberPointerType() &&
 | 
						|
       ParamType->getAs<MemberPointerType>()->getPointeeType()
 | 
						|
         ->isFunctionType())) {
 | 
						|
    if (Context.hasSameUnqualifiedType(ArgType, 
 | 
						|
                                       ParamType.getNonReferenceType())) {
 | 
						|
      // We don't have to do anything: the types already match.
 | 
						|
    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
 | 
						|
                 ParamType->isMemberPointerType())) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      ImpCastExprToType(Arg, ParamType);
 | 
						|
    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
 | 
						|
      ArgType = Context.getPointerType(ArgType);
 | 
						|
      ImpCastExprToType(Arg, ArgType);
 | 
						|
    } else if (FunctionDecl *Fn 
 | 
						|
                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
 | 
						|
      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      FixOverloadedFunctionReference(Arg, Fn);
 | 
						|
      ArgType = Arg->getType();
 | 
						|
      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
 | 
						|
        ArgType = Context.getPointerType(Arg->getType());
 | 
						|
        ImpCastExprToType(Arg, ArgType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ArgType, 
 | 
						|
                                        ParamType.getNonReferenceType())) {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ParamType->isMemberPointerType()) {
 | 
						|
      NamedDecl *Member = 0;
 | 
						|
      if (CheckTemplateArgumentPointerToMember(Arg, Member))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (Member)
 | 
						|
        Member = cast<NamedDecl>(Member->getCanonicalDecl());
 | 
						|
      Converted = TemplateArgument(StartLoc, Member);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Entity)
 | 
						|
      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(StartLoc, Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    //   -- for a non-type template-parameter of type pointer to
 | 
						|
    //      object, qualification conversions (4.4) and the
 | 
						|
    //      array-to-pointer conversion (4.2) are applied.
 | 
						|
    // C++0x also allows a value of std::nullptr_t.
 | 
						|
    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
 | 
						|
           "Only object pointers allowed here");
 | 
						|
 | 
						|
    if (ArgType->isNullPtrType()) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      ImpCastExprToType(Arg, ParamType);
 | 
						|
    } else if (ArgType->isArrayType()) {
 | 
						|
      ArgType = Context.getArrayDecayedType(ArgType);
 | 
						|
      ImpCastExprToType(Arg, ArgType);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsQualificationConversion(ArgType, ParamType)) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      ImpCastExprToType(Arg, ParamType);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Entity)
 | 
						|
      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(StartLoc, Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
 | 
						|
    //   -- For a non-type template-parameter of type reference to
 | 
						|
    //      object, no conversions apply. The type referred to by the
 | 
						|
    //      reference may be more cv-qualified than the (otherwise
 | 
						|
    //      identical) type of the template-argument. The
 | 
						|
    //      template-parameter is bound directly to the
 | 
						|
    //      template-argument, which must be an lvalue.
 | 
						|
    assert(ParamRefType->getPointeeType()->isObjectType() &&
 | 
						|
           "Only object references allowed here");
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_arg_no_ref_bind)
 | 
						|
        << InstantiatedParamType << Arg->getType()
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ParamQuals 
 | 
						|
      = Context.getCanonicalType(ParamType).getCVRQualifiers();
 | 
						|
    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
 | 
						|
    
 | 
						|
    if ((ParamQuals | ArgQuals) != ParamQuals) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_ref_bind_ignores_quals)
 | 
						|
        << InstantiatedParamType << Arg->getType()
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(StartLoc, Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- For a non-type template-parameter of type pointer to data
 | 
						|
  //        member, qualification conversions (4.4) are applied.
 | 
						|
  // C++0x allows std::nullptr_t values.
 | 
						|
  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
 | 
						|
 | 
						|
  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
 | 
						|
    // Types match exactly: nothing more to do here.
 | 
						|
  } else if (ArgType->isNullPtrType()) {
 | 
						|
    ImpCastExprToType(Arg, ParamType);
 | 
						|
  } else if (IsQualificationConversion(ArgType, ParamType)) {
 | 
						|
    ImpCastExprToType(Arg, ParamType);
 | 
						|
  } else {
 | 
						|
    // We can't perform this conversion.
 | 
						|
    Diag(Arg->getSourceRange().getBegin(), 
 | 
						|
         diag::err_template_arg_not_convertible)
 | 
						|
      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;    
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *Member = 0;
 | 
						|
  if (CheckTemplateArgumentPointerToMember(Arg, Member))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (Member)
 | 
						|
    Member = cast<NamedDecl>(Member->getCanonicalDecl());
 | 
						|
  Converted = TemplateArgument(StartLoc, Member);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.template].
 | 
						|
/// It returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
 | 
						|
                                 DeclRefExpr *Arg) {
 | 
						|
  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
 | 
						|
  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
 | 
						|
 | 
						|
  // C++ [temp.arg.template]p1:
 | 
						|
  //   A template-argument for a template template-parameter shall be
 | 
						|
  //   the name of a class template, expressed as id-expression. Only
 | 
						|
  //   primary class templates are considered when matching the
 | 
						|
  //   template template argument with the corresponding parameter;
 | 
						|
  //   partial specializations are not considered even if their
 | 
						|
  //   parameter lists match that of the template template parameter.
 | 
						|
  //
 | 
						|
  // Note that we also allow template template parameters here, which
 | 
						|
  // will happen when we are dealing with, e.g., class template
 | 
						|
  // partial specializations.
 | 
						|
  if (!isa<ClassTemplateDecl>(Template) && 
 | 
						|
      !isa<TemplateTemplateParmDecl>(Template)) {
 | 
						|
    assert(isa<FunctionTemplateDecl>(Template) && 
 | 
						|
           "Only function templates are possible here");
 | 
						|
    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
 | 
						|
    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
 | 
						|
      << Template;
 | 
						|
  }
 | 
						|
 | 
						|
  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
 | 
						|
                                         Param->getTemplateParameters(),
 | 
						|
                                         true, true,
 | 
						|
                                         Arg->getSourceRange().getBegin());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given template parameter lists are
 | 
						|
/// equivalent.
 | 
						|
///
 | 
						|
/// \param New  The new template parameter list, typically written in the 
 | 
						|
/// source code as part of a new template declaration.
 | 
						|
///
 | 
						|
/// \param Old  The old template parameter list, typically found via
 | 
						|
/// name lookup of the template declared with this template parameter
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// \param Complain  If true, this routine will produce a diagnostic if
 | 
						|
/// the template parameter lists are not equivalent.
 | 
						|
///
 | 
						|
/// \param IsTemplateTemplateParm  If true, this routine is being
 | 
						|
/// called to compare the template parameter lists of a template
 | 
						|
/// template parameter.
 | 
						|
///
 | 
						|
/// \param TemplateArgLoc If this source location is valid, then we
 | 
						|
/// are actually checking the template parameter list of a template
 | 
						|
/// argument (New) against the template parameter list of its
 | 
						|
/// corresponding template template parameter (Old). We produce
 | 
						|
/// slightly different diagnostics in this scenario.
 | 
						|
///
 | 
						|
/// \returns True if the template parameter lists are equal, false
 | 
						|
/// otherwise.
 | 
						|
bool 
 | 
						|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
 | 
						|
                                     TemplateParameterList *Old,
 | 
						|
                                     bool Complain,
 | 
						|
                                     bool IsTemplateTemplateParm,
 | 
						|
                                     SourceLocation TemplateArgLoc) {
 | 
						|
  if (Old->size() != New->size()) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_param_list_different_arity;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_param_list_different_arity;
 | 
						|
      } 
 | 
						|
      Diag(New->getTemplateLoc(), NextDiag)
 | 
						|
          << (New->size() > Old->size())
 | 
						|
          << IsTemplateTemplateParm
 | 
						|
          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
 | 
						|
      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
 | 
						|
        << IsTemplateTemplateParm
 | 
						|
        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (TemplateParameterList::iterator OldParm = Old->begin(),
 | 
						|
         OldParmEnd = Old->end(), NewParm = New->begin();
 | 
						|
       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
 | 
						|
    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
 | 
						|
      if (Complain) {
 | 
						|
        unsigned NextDiag = diag::err_template_param_different_kind;
 | 
						|
        if (TemplateArgLoc.isValid()) {
 | 
						|
          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
          NextDiag = diag::note_template_param_different_kind;
 | 
						|
        }
 | 
						|
        Diag((*NewParm)->getLocation(), NextDiag)
 | 
						|
        << IsTemplateTemplateParm;
 | 
						|
        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
 | 
						|
        << IsTemplateTemplateParm;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<TemplateTypeParmDecl>(*OldParm)) {
 | 
						|
      // Okay; all template type parameters are equivalent (since we
 | 
						|
      // know we're at the same index).
 | 
						|
#if 0
 | 
						|
      // FIXME: Enable this code in debug mode *after* we properly go through
 | 
						|
      // and "instantiate" the template parameter lists of template template
 | 
						|
      // parameters. It's only after this instantiation that (1) any dependent
 | 
						|
      // types within the template parameter list of the template template
 | 
						|
      // parameter can be checked, and (2) the template type parameter depths
 | 
						|
      // will match up.
 | 
						|
      QualType OldParmType 
 | 
						|
        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
 | 
						|
      QualType NewParmType 
 | 
						|
        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
 | 
						|
      assert(Context.getCanonicalType(OldParmType) == 
 | 
						|
             Context.getCanonicalType(NewParmType) && 
 | 
						|
             "type parameter mismatch?");
 | 
						|
#endif
 | 
						|
    } else if (NonTypeTemplateParmDecl *OldNTTP 
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
 | 
						|
      // The types of non-type template parameters must agree.
 | 
						|
      NonTypeTemplateParmDecl *NewNTTP
 | 
						|
        = cast<NonTypeTemplateParmDecl>(*NewParm);
 | 
						|
      if (Context.getCanonicalType(OldNTTP->getType()) !=
 | 
						|
            Context.getCanonicalType(NewNTTP->getType())) {
 | 
						|
        if (Complain) {
 | 
						|
          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
 | 
						|
          if (TemplateArgLoc.isValid()) {
 | 
						|
            Diag(TemplateArgLoc, 
 | 
						|
                 diag::err_template_arg_template_params_mismatch);
 | 
						|
            NextDiag = diag::note_template_nontype_parm_different_type;
 | 
						|
          }
 | 
						|
          Diag(NewNTTP->getLocation(), NextDiag)
 | 
						|
            << NewNTTP->getType()
 | 
						|
            << IsTemplateTemplateParm;
 | 
						|
          Diag(OldNTTP->getLocation(), 
 | 
						|
               diag::note_template_nontype_parm_prev_declaration)
 | 
						|
            << OldNTTP->getType();
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // The template parameter lists of template template
 | 
						|
      // parameters must agree.
 | 
						|
      // FIXME: Could we perform a faster "type" comparison here?
 | 
						|
      assert(isa<TemplateTemplateParmDecl>(*OldParm) && 
 | 
						|
             "Only template template parameters handled here");
 | 
						|
      TemplateTemplateParmDecl *OldTTP 
 | 
						|
        = cast<TemplateTemplateParmDecl>(*OldParm);
 | 
						|
      TemplateTemplateParmDecl *NewTTP
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParm);
 | 
						|
      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
 | 
						|
                                          OldTTP->getTemplateParameters(),
 | 
						|
                                          Complain,
 | 
						|
                                          /*IsTemplateTemplateParm=*/true,
 | 
						|
                                          TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a template can be declared within this scope.
 | 
						|
///
 | 
						|
/// If the template declaration is valid in this scope, returns
 | 
						|
/// false. Otherwise, issues a diagnostic and returns true.
 | 
						|
bool 
 | 
						|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
 | 
						|
  // Find the nearest enclosing declaration scope.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
  
 | 
						|
  // C++ [temp]p2:
 | 
						|
  //   A template-declaration can appear only as a namespace scope or
 | 
						|
  //   class scope declaration.
 | 
						|
  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
 | 
						|
  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
 | 
						|
      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
 | 
						|
    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 
 | 
						|
             << TemplateParams->getSourceRange();
 | 
						|
  
 | 
						|
  while (Ctx && isa<LinkageSpecDecl>(Ctx))
 | 
						|
    Ctx = Ctx->getParent();
 | 
						|
 | 
						|
  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TemplateParams->getTemplateLoc(), 
 | 
						|
              diag::err_template_outside_namespace_or_class_scope)
 | 
						|
    << TemplateParams->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a class template specialization or explicit
 | 
						|
/// instantiation in the current context is well-formed.
 | 
						|
///
 | 
						|
/// This routine determines whether a class template specialization or
 | 
						|
/// explicit instantiation can be declared in the current context 
 | 
						|
/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits 
 | 
						|
/// appropriate diagnostics if there was an error. It returns true if 
 | 
						|
// there was an error that we cannot recover from, and false otherwise.
 | 
						|
bool 
 | 
						|
Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
 | 
						|
                                   ClassTemplateSpecializationDecl *PrevDecl,
 | 
						|
                                            SourceLocation TemplateNameLoc,
 | 
						|
                                            SourceRange ScopeSpecifierRange,
 | 
						|
                                            bool PartialSpecialization,
 | 
						|
                                            bool ExplicitInstantiation) {
 | 
						|
  // C++ [temp.expl.spec]p2:
 | 
						|
  //   An explicit specialization shall be declared in the namespace
 | 
						|
  //   of which the template is a member, or, for member templates, in
 | 
						|
  //   the namespace of which the enclosing class or enclosing class
 | 
						|
  //   template is a member. An explicit specialization of a member
 | 
						|
  //   function, member class or static data member of a class
 | 
						|
  //   template shall be declared in the namespace of which the class
 | 
						|
  //   template is a member. Such a declaration may also be a
 | 
						|
  //   definition. If the declaration is not a definition, the
 | 
						|
  //   specialization may be defined later in the name- space in which
 | 
						|
  //   the explicit specialization was declared, or in a namespace
 | 
						|
  //   that encloses the one in which the explicit specialization was
 | 
						|
  //   declared.
 | 
						|
  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
 | 
						|
    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
 | 
						|
    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
 | 
						|
      << Kind << ClassTemplate;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
 | 
						|
  DeclContext *TemplateContext 
 | 
						|
    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
 | 
						|
      !ExplicitInstantiation) {
 | 
						|
    // There is no prior declaration of this entity, so this
 | 
						|
    // specialization must be in the same context as the template
 | 
						|
    // itself.
 | 
						|
    if (DC != TemplateContext) {
 | 
						|
      if (isa<TranslationUnitDecl>(TemplateContext))
 | 
						|
        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
 | 
						|
          << PartialSpecialization
 | 
						|
          << ClassTemplate << ScopeSpecifierRange;
 | 
						|
      else if (isa<NamespaceDecl>(TemplateContext))
 | 
						|
        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
 | 
						|
          << PartialSpecialization << ClassTemplate 
 | 
						|
          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
 | 
						|
 | 
						|
      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have a previous declaration of this entity. Make sure that
 | 
						|
  // this redeclaration (or definition) occurs in an enclosing namespace.
 | 
						|
  if (!CurContext->Encloses(TemplateContext)) {
 | 
						|
    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
 | 
						|
    // dependent on a -Wc++0x flag.
 | 
						|
    bool SuppressedDiag = false;
 | 
						|
    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
 | 
						|
    if (isa<TranslationUnitDecl>(TemplateContext)) {
 | 
						|
      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
 | 
						|
        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
 | 
						|
          << Kind << ClassTemplate << ScopeSpecifierRange;
 | 
						|
      else
 | 
						|
        SuppressedDiag = true;
 | 
						|
    } else if (isa<NamespaceDecl>(TemplateContext)) {
 | 
						|
      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
 | 
						|
        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
 | 
						|
          << Kind << ClassTemplate
 | 
						|
          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
 | 
						|
      else 
 | 
						|
        SuppressedDiag = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!SuppressedDiag)
 | 
						|
      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the non-type template arguments of a class template
 | 
						|
/// partial specialization according to C++ [temp.class.spec]p9.
 | 
						|
///
 | 
						|
/// \param TemplateParams the template parameters of the primary class
 | 
						|
/// template.
 | 
						|
///
 | 
						|
/// \param TemplateArg the template arguments of the class template
 | 
						|
/// partial specialization.
 | 
						|
///
 | 
						|
/// \param MirrorsPrimaryTemplate will be set true if the class
 | 
						|
/// template partial specialization arguments are identical to the
 | 
						|
/// implicit template arguments of the primary template. This is not
 | 
						|
/// necessarily an error (C++0x), and it is left to the caller to diagnose
 | 
						|
/// this condition when it is an error.
 | 
						|
///
 | 
						|
/// \returns true if there was an error, false otherwise.
 | 
						|
bool Sema::CheckClassTemplatePartialSpecializationArgs(
 | 
						|
                                        TemplateParameterList *TemplateParams,
 | 
						|
                             const TemplateArgumentListBuilder &TemplateArgs,
 | 
						|
                                        bool &MirrorsPrimaryTemplate) {
 | 
						|
  // FIXME: the interface to this function will have to change to
 | 
						|
  // accommodate variadic templates.
 | 
						|
  MirrorsPrimaryTemplate = true;
 | 
						|
  
 | 
						|
  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
 | 
						|
  
 | 
						|
  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
    // Determine whether the template argument list of the partial
 | 
						|
    // specialization is identical to the implicit argument list of
 | 
						|
    // the primary template. The caller may need to diagnostic this as
 | 
						|
    // an error per C++ [temp.class.spec]p9b3.
 | 
						|
    if (MirrorsPrimaryTemplate) {
 | 
						|
      if (TemplateTypeParmDecl *TTP 
 | 
						|
            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
 | 
						|
        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
 | 
						|
              Context.getCanonicalType(ArgList[I].getAsType()))
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
      } else if (TemplateTemplateParmDecl *TTP
 | 
						|
                   = dyn_cast<TemplateTemplateParmDecl>(
 | 
						|
                                                 TemplateParams->getParam(I))) {
 | 
						|
        // FIXME: We should settle on either Declaration storage or
 | 
						|
        // Expression storage for template template parameters.
 | 
						|
        TemplateTemplateParmDecl *ArgDecl 
 | 
						|
          = dyn_cast_or_null<TemplateTemplateParmDecl>(
 | 
						|
                                                  ArgList[I].getAsDecl());
 | 
						|
        if (!ArgDecl)
 | 
						|
          if (DeclRefExpr *DRE 
 | 
						|
                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
 | 
						|
            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
 | 
						|
 | 
						|
        if (!ArgDecl ||
 | 
						|
            ArgDecl->getIndex() != TTP->getIndex() ||
 | 
						|
            ArgDecl->getDepth() != TTP->getDepth())
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NonTypeTemplateParmDecl *Param 
 | 
						|
      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
 | 
						|
    if (!Param) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *ArgExpr = ArgList[I].getAsExpr();
 | 
						|
    if (!ArgExpr) {
 | 
						|
      MirrorsPrimaryTemplate = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p8:
 | 
						|
    //   A non-type argument is non-specialized if it is the name of a
 | 
						|
    //   non-type parameter. All other non-type arguments are
 | 
						|
    //   specialized.
 | 
						|
    //
 | 
						|
    // Below, we check the two conditions that only apply to
 | 
						|
    // specialized non-type arguments, so skip any non-specialized
 | 
						|
    // arguments.
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
 | 
						|
      if (NonTypeTemplateParmDecl *NTTP 
 | 
						|
            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
 | 
						|
        if (MirrorsPrimaryTemplate && 
 | 
						|
            (Param->getIndex() != NTTP->getIndex() ||
 | 
						|
             Param->getDepth() != NTTP->getDepth()))
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p9:
 | 
						|
    //   Within the argument list of a class template partial
 | 
						|
    //   specialization, the following restrictions apply:
 | 
						|
    //     -- A partially specialized non-type argument expression
 | 
						|
    //        shall not involve a template parameter of the partial
 | 
						|
    //        specialization except when the argument expression is a
 | 
						|
    //        simple identifier.
 | 
						|
    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
 | 
						|
      Diag(ArgExpr->getLocStart(), 
 | 
						|
           diag::err_dependent_non_type_arg_in_partial_spec)
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- The type of a template parameter corresponding to a
 | 
						|
    //        specialized non-type argument shall not be dependent on a
 | 
						|
    //        parameter of the specialization.
 | 
						|
    if (Param->getType()->isDependentType()) {
 | 
						|
      Diag(ArgExpr->getLocStart(), 
 | 
						|
           diag::err_dependent_typed_non_type_arg_in_partial_spec)
 | 
						|
        << Param->getType()
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    MirrorsPrimaryTemplate = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
 | 
						|
                                       TagUseKind TUK,
 | 
						|
                                       SourceLocation KWLoc, 
 | 
						|
                                       const CXXScopeSpec &SS,
 | 
						|
                                       TemplateTy TemplateD,
 | 
						|
                                       SourceLocation TemplateNameLoc,
 | 
						|
                                       SourceLocation LAngleLoc,
 | 
						|
                                       ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                       SourceLocation *TemplateArgLocs,
 | 
						|
                                       SourceLocation RAngleLoc,
 | 
						|
                                       AttributeList *Attr,
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists) {
 | 
						|
  assert(TUK == TUK_Declaration || TUK == TUK_Definition);
 | 
						|
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate 
 | 
						|
    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  bool isPartialSpecialization = false;
 | 
						|
 | 
						|
  // Check the validity of the template headers that introduce this
 | 
						|
  // template.
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 
 | 
						|
                        (TemplateParameterList**)TemplateParameterLists.get(), 
 | 
						|
                                              TemplateParameterLists.size());
 | 
						|
  if (TemplateParams && TemplateParams->size() > 0) {
 | 
						|
    isPartialSpecialization = true;
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p10:
 | 
						|
    //   The template parameter list of a specialization shall not
 | 
						|
    //   contain default template argument values.
 | 
						|
    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
      Decl *Param = TemplateParams->getParam(I);
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgumentLoc(), 
 | 
						|
               diag::err_default_arg_in_partial_spec);
 | 
						|
          TTP->setDefaultArgument(QualType(), SourceLocation(), false);
 | 
						|
        }
 | 
						|
      } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
        if (Expr *DefArg = NTTP->getDefaultArgument()) {
 | 
						|
          Diag(NTTP->getDefaultArgumentLoc(), 
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << DefArg->getSourceRange();
 | 
						|
          NTTP->setDefaultArgument(0);
 | 
						|
          DefArg->Destroy(Context);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
        if (Expr *DefArg = TTP->getDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgumentLoc(), 
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << DefArg->getSourceRange();
 | 
						|
          TTP->setDefaultArgument(0);
 | 
						|
          DefArg->Destroy(Context);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (!TemplateParams)
 | 
						|
    Diag(KWLoc, diag::err_template_spec_needs_header)
 | 
						|
      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagDecl::TagKind Kind;
 | 
						|
  switch (TagSpec) {
 | 
						|
  default: assert(0 && "Unknown tag type!");
 | 
						|
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
 | 
						|
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
 | 
						|
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
 | 
						|
  }
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, KWLoc, 
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag) 
 | 
						|
      << ClassTemplate
 | 
						|
      << CodeModificationHint::CreateReplacement(KWLoc, 
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
 | 
						|
                                        TemplateArgs.size());
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 
 | 
						|
                                TemplateArgs.data(), TemplateArgs.size(),
 | 
						|
                                RAngleLoc, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert((Converted.structuredSize() == 
 | 
						|
            ClassTemplate->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
  
 | 
						|
  // Find the class template (partial) specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  if (isPartialSpecialization) {
 | 
						|
    bool MirrorsPrimaryTemplate;
 | 
						|
    if (CheckClassTemplatePartialSpecializationArgs(
 | 
						|
                                         ClassTemplate->getTemplateParameters(),
 | 
						|
                                         Converted, MirrorsPrimaryTemplate))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (MirrorsPrimaryTemplate) {
 | 
						|
      // C++ [temp.class.spec]p9b3:
 | 
						|
      //
 | 
						|
      //   -- The argument list of the specialization shall not be identical 
 | 
						|
      //      to the implicit argument list of the primary template. 
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | 
						|
        << (TUK == TUK_Definition)
 | 
						|
        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 
 | 
						|
                                                           RAngleLoc));
 | 
						|
      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
 | 
						|
                                ClassTemplate->getIdentifier(),
 | 
						|
                                TemplateNameLoc,
 | 
						|
                                Attr,
 | 
						|
                                TemplateParams,
 | 
						|
                                AS_none);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Template parameter list matters, too
 | 
						|
    ClassTemplatePartialSpecializationDecl::Profile(ID, 
 | 
						|
                                                   Converted.getFlatArguments(),
 | 
						|
                                                   Converted.flatSize(),
 | 
						|
                                                    Context);
 | 
						|
  } else
 | 
						|
    ClassTemplateSpecializationDecl::Profile(ID,
 | 
						|
                                             Converted.getFlatArguments(),
 | 
						|
                                             Converted.flatSize(),
 | 
						|
                                             Context);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl = 0;
 | 
						|
 | 
						|
  if (isPartialSpecialization)
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 
 | 
						|
                                                                    InsertPos);
 | 
						|
  else
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  // Check whether we can declare a class template specialization in
 | 
						|
  // the current scope.
 | 
						|
  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
 | 
						|
                                            TemplateNameLoc, 
 | 
						|
                                            SS.getRange(),
 | 
						|
                                            isPartialSpecialization,
 | 
						|
                                            /*ExplicitInstantiation=*/false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The canonical type
 | 
						|
  QualType CanonType;
 | 
						|
  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
 | 
						|
    // Since the only prior class template specialization with these
 | 
						|
    // arguments was referenced but not declared, reuse that
 | 
						|
    // declaration node as our own, updating its source location to
 | 
						|
    // reflect our new declaration.
 | 
						|
    Specialization = PrevDecl;
 | 
						|
    Specialization->setLocation(TemplateNameLoc);
 | 
						|
    PrevDecl = 0;
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  } else if (isPartialSpecialization) {
 | 
						|
    // Build the canonical type that describes the converted template
 | 
						|
    // arguments of the class template partial specialization.
 | 
						|
    CanonType = Context.getTemplateSpecializationType(
 | 
						|
                                                  TemplateName(ClassTemplate),
 | 
						|
                                                  Converted.getFlatArguments(),
 | 
						|
                                                  Converted.flatSize());
 | 
						|
 | 
						|
    // Create a new class template partial specialization declaration node.
 | 
						|
    TemplateParameterList *TemplateParams 
 | 
						|
      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
 | 
						|
    ClassTemplatePartialSpecializationDecl *PrevPartial
 | 
						|
      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
 | 
						|
    ClassTemplatePartialSpecializationDecl *Partial 
 | 
						|
      = ClassTemplatePartialSpecializationDecl::Create(Context, 
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                       TemplateNameLoc,
 | 
						|
                                                       TemplateParams,
 | 
						|
                                                       ClassTemplate,
 | 
						|
                                                       Converted,
 | 
						|
                                                       PrevPartial);
 | 
						|
 | 
						|
    if (PrevPartial) {
 | 
						|
      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
 | 
						|
      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
 | 
						|
    } else {
 | 
						|
      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
 | 
						|
    }
 | 
						|
    Specialization = Partial;
 | 
						|
 | 
						|
    // Check that all of the template parameters of the class template
 | 
						|
    // partial specialization are deducible from the template
 | 
						|
    // arguments. If not, this class template partial specialization
 | 
						|
    // will never be used.
 | 
						|
    llvm::SmallVector<bool, 8> DeducibleParams;
 | 
						|
    DeducibleParams.resize(TemplateParams->size());
 | 
						|
    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
 | 
						|
    unsigned NumNonDeducible = 0;
 | 
						|
    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
 | 
						|
      if (!DeducibleParams[I])
 | 
						|
        ++NumNonDeducible;
 | 
						|
 | 
						|
    if (NumNonDeducible) {
 | 
						|
      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
 | 
						|
        << (NumNonDeducible > 1)
 | 
						|
        << SourceRange(TemplateNameLoc, RAngleLoc);
 | 
						|
      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
 | 
						|
        if (!DeducibleParams[I]) {
 | 
						|
          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
 | 
						|
          if (Param->getDeclName())
 | 
						|
            Diag(Param->getLocation(), 
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << Param->getDeclName();
 | 
						|
          else
 | 
						|
            Diag(Param->getLocation(), 
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << std::string("<anonymous>");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, 
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                TemplateNameLoc,
 | 
						|
                                                ClassTemplate, 
 | 
						|
                                                Converted,
 | 
						|
                                                PrevDecl);
 | 
						|
 | 
						|
    if (PrevDecl) {
 | 
						|
      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
 | 
						|
      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
 | 
						|
    } else {
 | 
						|
      ClassTemplate->getSpecializations().InsertNode(Specialization, 
 | 
						|
                                                     InsertPos);
 | 
						|
    }
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that this is an explicit specialization.
 | 
						|
  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
 | 
						|
  // Check that this isn't a redefinition of this specialization.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
 | 
						|
      // FIXME: Should also handle explicit specialization after implicit
 | 
						|
      // instantiation with a special diagnostic.
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_redefinition) 
 | 
						|
        << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      Specialization->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization as the user wrote in the specialization
 | 
						|
  // itself. This means that we'll pretty-print the type retrieved
 | 
						|
  // from the specialization's declaration the way that the user
 | 
						|
  // actually wrote the specialization, rather than formatting the
 | 
						|
  // name based on the "canonical" representation used to store the
 | 
						|
  // template arguments in the specialization.
 | 
						|
  QualType WrittenTy 
 | 
						|
    = Context.getTemplateSpecializationType(Name, 
 | 
						|
                                            TemplateArgs.data(),
 | 
						|
                                            TemplateArgs.size(),
 | 
						|
                                            CanonType);
 | 
						|
  Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p9:
 | 
						|
  //   A template explicit specialization is in the scope of the
 | 
						|
  //   namespace in which the template was defined.
 | 
						|
  //
 | 
						|
  // We actually implement this paragraph where we set the semantic
 | 
						|
  // context (in the creation of the ClassTemplateSpecializationDecl),
 | 
						|
  // but we also maintain the lexical context where the actual
 | 
						|
  // definition occurs.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
  
 | 
						|
  // We may be starting the definition of this specialization.
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    Specialization->startDefinition();
 | 
						|
 | 
						|
  // Add the specialization into its lexical context, so that it can
 | 
						|
  // be seen when iterating through the list of declarations in that
 | 
						|
  // context. However, specializations are not found by name lookup.
 | 
						|
  CurContext->addDecl(Specialization);
 | 
						|
  return DeclPtrTy::make(Specialization);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclPtrTy 
 | 
						|
Sema::ActOnTemplateDeclarator(Scope *S, 
 | 
						|
                              MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                              Declarator &D) {
 | 
						|
  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclPtrTy 
 | 
						|
Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                                      Declarator &D) {
 | 
						|
  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | 
						|
  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
 | 
						|
         "Not a function declarator!");
 | 
						|
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
 | 
						|
  
 | 
						|
  if (FTI.hasPrototype) {
 | 
						|
    // FIXME: Diagnose arguments without names in C. 
 | 
						|
  }
 | 
						|
  
 | 
						|
  Scope *ParentScope = FnBodyScope->getParent();
 | 
						|
  
 | 
						|
  DeclPtrTy DP = HandleDeclarator(ParentScope, D, 
 | 
						|
                                  move(TemplateParameterLists),
 | 
						|
                                  /*IsFunctionDefinition=*/true);
 | 
						|
  if (FunctionTemplateDecl *FunctionTemplate 
 | 
						|
        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope, 
 | 
						|
                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
 | 
						|
  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
 | 
						|
  return DeclPtrTy();
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a class template specialization
 | 
						|
// FIXME: Implement extern template semantics
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S, 
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec, 
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 TemplateTy TemplateD,
 | 
						|
                                 SourceLocation TemplateNameLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                 SourceLocation *TemplateArgLocs,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate 
 | 
						|
    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagDecl::TagKind Kind;
 | 
						|
  switch (TagSpec) {
 | 
						|
  default: assert(0 && "Unknown tag type!");
 | 
						|
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
 | 
						|
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
 | 
						|
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
 | 
						|
  }
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, KWLoc, 
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag) 
 | 
						|
      << ClassTemplate
 | 
						|
      << CodeModificationHint::CreateReplacement(KWLoc, 
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
 | 
						|
                                            TemplateNameLoc, 
 | 
						|
                                            SS.getRange(),
 | 
						|
                                            /*PartialSpecialization=*/false,
 | 
						|
                                            /*ExplicitInstantiation=*/true))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
 | 
						|
                                        TemplateArgs.size());
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 
 | 
						|
                                TemplateArgs.data(), TemplateArgs.size(),
 | 
						|
                                RAngleLoc, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert((Converted.structuredSize() == 
 | 
						|
            ClassTemplate->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
  
 | 
						|
  // Find the class template specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ClassTemplateSpecializationDecl::Profile(ID, 
 | 
						|
                                           Converted.getFlatArguments(),
 | 
						|
                                           Converted.flatSize(),
 | 
						|
                                           Context);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl
 | 
						|
    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  bool SpecializationRequiresInstantiation = true;
 | 
						|
  if (PrevDecl) {
 | 
						|
    if (PrevDecl->getSpecializationKind() 
 | 
						|
          == TSK_ExplicitInstantiationDefinition) {
 | 
						|
      // This particular specialization has already been declared or
 | 
						|
      // instantiated. We cannot explicitly instantiate it.
 | 
						|
      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
 | 
						|
        << Context.getTypeDeclType(PrevDecl);
 | 
						|
      Diag(PrevDecl->getLocation(), 
 | 
						|
           diag::note_previous_explicit_instantiation);
 | 
						|
      return DeclPtrTy::make(PrevDecl);
 | 
						|
    }
 | 
						|
 | 
						|
    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
 | 
						|
      // C++ DR 259, C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit
 | 
						|
      //   instantiation of a template appears after a declaration of
 | 
						|
      //   an explicit specialization for that template, the explicit
 | 
						|
      //   instantiation has no effect.
 | 
						|
      if (!getLangOptions().CPlusPlus0x) {
 | 
						|
        Diag(TemplateNameLoc, 
 | 
						|
             diag::ext_explicit_instantiation_after_specialization)
 | 
						|
          << Context.getTypeDeclType(PrevDecl);
 | 
						|
        Diag(PrevDecl->getLocation(), 
 | 
						|
             diag::note_previous_template_specialization);
 | 
						|
      }
 | 
						|
 | 
						|
      // Create a new class template specialization declaration node
 | 
						|
      // for this explicit specialization. This node is only used to
 | 
						|
      // record the existence of this explicit instantiation for
 | 
						|
      // accurate reproduction of the source code; we don't actually
 | 
						|
      // use it for anything, since it is semantically irrelevant.
 | 
						|
      Specialization
 | 
						|
        = ClassTemplateSpecializationDecl::Create(Context, 
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                  TemplateNameLoc,
 | 
						|
                                                  ClassTemplate,
 | 
						|
                                                  Converted, 0);
 | 
						|
      Specialization->setLexicalDeclContext(CurContext);
 | 
						|
      CurContext->addDecl(Specialization);
 | 
						|
      return DeclPtrTy::make(Specialization);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have already (implicitly) instantiated this
 | 
						|
    // specialization, there is less work to do.
 | 
						|
    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      SpecializationRequiresInstantiation = false;
 | 
						|
 | 
						|
    // Since the only prior class template specialization with these
 | 
						|
    // arguments was referenced but not declared, reuse that
 | 
						|
    // declaration node as our own, updating its source location to
 | 
						|
    // reflect our new declaration.
 | 
						|
    Specialization = PrevDecl;
 | 
						|
    Specialization->setLocation(TemplateNameLoc);
 | 
						|
    PrevDecl = 0;
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, 
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted, 0);
 | 
						|
 | 
						|
    ClassTemplate->getSpecializations().InsertNode(Specialization, 
 | 
						|
                                                   InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this explicit instantiation as
 | 
						|
  // the user wrote in the explicit instantiation itself. This means
 | 
						|
  // that we'll pretty-print the type retrieved from the
 | 
						|
  // specialization's declaration the way that the user actually wrote
 | 
						|
  // the explicit instantiation, rather than formatting the name based
 | 
						|
  // on the "canonical" representation used to store the template
 | 
						|
  // arguments in the specialization.
 | 
						|
  QualType WrittenTy 
 | 
						|
    = Context.getTemplateSpecializationType(Name, 
 | 
						|
                                            TemplateArgs.data(),
 | 
						|
                                            TemplateArgs.size(),
 | 
						|
                                  Context.getTypeDeclType(Specialization));
 | 
						|
  Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  // Add the explicit instantiation into its lexical context. However,
 | 
						|
  // since explicit instantiations are never found by name lookup, we
 | 
						|
  // just put it into the declaration context directly.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
  CurContext->addDecl(Specialization);
 | 
						|
 | 
						|
  // C++ [temp.explicit]p3:
 | 
						|
  //   A definition of a class template or class member template
 | 
						|
  //   shall be in scope at the point of the explicit instantiation of
 | 
						|
  //   the class template or class member template.
 | 
						|
  //
 | 
						|
  // This check comes when we actually try to perform the
 | 
						|
  // instantiation.
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
  if (SpecializationRequiresInstantiation)
 | 
						|
    InstantiateClassTemplateSpecialization(Specialization, TSK);
 | 
						|
  else // Instantiate the members of this class template specialization.
 | 
						|
    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization,
 | 
						|
                                                  TSK);
 | 
						|
 | 
						|
  return DeclPtrTy::make(Specialization);
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a member class of a class template.
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S, 
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec, 
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 IdentifierInfo *Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
 | 
						|
  bool Owned = false;
 | 
						|
  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
 | 
						|
                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
 | 
						|
                            MultiTemplateParamsArg(*this, 0, 0), Owned);
 | 
						|
  if (!TagD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
 | 
						|
  if (Tag->isEnum()) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
 | 
						|
      << Context.getTypeDeclType(Tag);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Tag->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
 | 
						|
  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
 | 
						|
  if (!Pattern) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
 | 
						|
      << Context.getTypeDeclType(Record);
 | 
						|
    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  if (getLangOptions().CPlusPlus0x) {
 | 
						|
    // FIXME: In C++98, we would like to turn these errors into warnings,
 | 
						|
    // dependent on a -Wc++0x flag.
 | 
						|
    DeclContext *PatternContext 
 | 
						|
      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
    if (!CurContext->Encloses(PatternContext)) {
 | 
						|
      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
 | 
						|
        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
 | 
						|
      Diag(Pattern->getLocation(), diag::note_previous_declaration);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
  
 | 
						|
  if (!Record->getDefinition(Context)) {
 | 
						|
    // If the class has a definition, instantiate it (and all of its
 | 
						|
    // members, recursively).
 | 
						|
    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
 | 
						|
    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern, 
 | 
						|
                                    getTemplateInstantiationArgs(Record),
 | 
						|
                                    TSK))
 | 
						|
      return true;
 | 
						|
  } else // Instantiate all of the members of the class.
 | 
						|
    InstantiateClassMembers(TemplateLoc, Record, 
 | 
						|
                            getTemplateInstantiationArgs(Record), TSK);
 | 
						|
 | 
						|
  // FIXME: We don't have any representation for explicit instantiations of
 | 
						|
  // member classes. Such a representation is not needed for compilation, but it
 | 
						|
  // should be available for clients that want to see all of the declarations in
 | 
						|
  // the source code.
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult
 | 
						|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
 | 
						|
                        const IdentifierInfo &II, SourceLocation IdLoc) {
 | 
						|
  NestedNameSpecifier *NNS 
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  if (!NNS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
  return T.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult
 | 
						|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
 | 
						|
                        SourceLocation TemplateLoc, TypeTy *Ty) {
 | 
						|
  QualType T = GetTypeFromParser(Ty);
 | 
						|
  NestedNameSpecifier *NNS 
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  const TemplateSpecializationType *TemplateId 
 | 
						|
    = T->getAsTemplateSpecializationType();
 | 
						|
  assert(TemplateId && "Expected a template specialization type");
 | 
						|
 | 
						|
  if (computeDeclContext(SS, false)) {
 | 
						|
    // If we can compute a declaration context, then the "typename"
 | 
						|
    // keyword was superfluous. Just build a QualifiedNameType to keep
 | 
						|
    // track of the nested-name-specifier.
 | 
						|
    
 | 
						|
    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
 | 
						|
    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build the type that describes a C++ typename specifier,
 | 
						|
/// e.g., "typename T::type".
 | 
						|
QualType
 | 
						|
Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
 | 
						|
                        SourceRange Range) {
 | 
						|
  CXXRecordDecl *CurrentInstantiation = 0;
 | 
						|
  if (NNS->isDependent()) {
 | 
						|
    CurrentInstantiation = getCurrentInstantiationOf(NNS);
 | 
						|
 | 
						|
    // If the nested-name-specifier does not refer to the current
 | 
						|
    // instantiation, then build a typename type.
 | 
						|
    if (!CurrentInstantiation)
 | 
						|
      return Context.getTypenameType(NNS, &II);
 | 
						|
    
 | 
						|
    // The nested-name-specifier refers to the current instantiation, so the
 | 
						|
    // "typename" keyword itself is superfluous. In C++03, the program is
 | 
						|
    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 
 | 
						|
    // extraneous "typename" keywords, and we retroactively apply this DR to
 | 
						|
    // C++03 code.
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *Ctx = 0;
 | 
						|
 | 
						|
  if (CurrentInstantiation)
 | 
						|
    Ctx = CurrentInstantiation;
 | 
						|
  else {
 | 
						|
    CXXScopeSpec SS;
 | 
						|
    SS.setScopeRep(NNS);
 | 
						|
    SS.setRange(Range);
 | 
						|
    if (RequireCompleteDeclContext(SS))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    Ctx = computeDeclContext(SS);
 | 
						|
  }
 | 
						|
  assert(Ctx && "No declaration context?");
 | 
						|
 | 
						|
  DeclarationName Name(&II);
 | 
						|
  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName, 
 | 
						|
                                            false);
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  Decl *Referenced = 0;
 | 
						|
  switch (Result.getKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
    if (Ctx->isTranslationUnit())
 | 
						|
      DiagID = diag::err_typename_nested_not_found_global;
 | 
						|
    else
 | 
						|
      DiagID = diag::err_typename_nested_not_found;
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
 | 
						|
      // We found a type. Build a QualifiedNameType, since the
 | 
						|
      // typename-specifier was just sugar. FIXME: Tell
 | 
						|
      // QualifiedNameType that it has a "typename" prefix.
 | 
						|
      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = Result.getAsDecl();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = *Result.begin();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::AmbiguousBaseSubobjectTypes:
 | 
						|
  case LookupResult::AmbiguousBaseSubobjects:
 | 
						|
  case LookupResult::AmbiguousReference:
 | 
						|
    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, it's because name lookup did not find a
 | 
						|
  // type. Emit an appropriate diagnostic and return an error.
 | 
						|
  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
 | 
						|
    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
 | 
						|
  else
 | 
						|
    Diag(Range.getEnd(), DiagID) << Range << Name;
 | 
						|
  if (Referenced)
 | 
						|
    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
 | 
						|
      << Name;
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // See Sema::RebuildTypeInCurrentInstantiation
 | 
						|
  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 
 | 
						|
    : public TreeTransform<CurrentInstantiationRebuilder> 
 | 
						|
  {
 | 
						|
    SourceLocation Loc;
 | 
						|
    DeclarationName Entity;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    CurrentInstantiationRebuilder(Sema &SemaRef, 
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  DeclarationName Entity) 
 | 
						|
    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 
 | 
						|
      Loc(Loc), Entity(Entity) { }
 | 
						|
    
 | 
						|
    /// \brief Determine whether the given type \p T has already been 
 | 
						|
    /// transformed.
 | 
						|
    ///
 | 
						|
    /// For the purposes of type reconstruction, a type has already been
 | 
						|
    /// transformed if it is NULL or if it is not dependent.
 | 
						|
    bool AlreadyTransformed(QualType T) {
 | 
						|
      return T.isNull() || !T->isDependentType();
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// \brief Returns the location of the entity whose type is being 
 | 
						|
    /// rebuilt.
 | 
						|
    SourceLocation getBaseLocation() { return Loc; }
 | 
						|
    
 | 
						|
    /// \brief Returns the name of the entity whose type is being rebuilt.
 | 
						|
    DeclarationName getBaseEntity() { return Entity; }
 | 
						|
    
 | 
						|
    /// \brief Transforms an expression by returning the expression itself
 | 
						|
    /// (an identity function).
 | 
						|
    ///
 | 
						|
    /// FIXME: This is completely unsafe; we will need to actually clone the
 | 
						|
    /// expressions.
 | 
						|
    Sema::OwningExprResult TransformExpr(Expr *E) {
 | 
						|
      return getSema().Owned(E);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// \brief Transforms a typename type by determining whether the type now
 | 
						|
    /// refers to a member of the current instantiation, and then
 | 
						|
    /// type-checking and building a QualifiedNameType (when possible).
 | 
						|
    QualType TransformTypenameType(const TypenameType *T);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
QualType 
 | 
						|
CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = TransformNestedNameSpecifier(T->getQualifier(),
 | 
						|
                              /*FIXME:*/SourceRange(getBaseLocation()));
 | 
						|
  if (!NNS)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // If the nested-name-specifier did not change, and we cannot compute the
 | 
						|
  // context corresponding to the nested-name-specifier, then this
 | 
						|
  // typename type will not change; exit early.
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.setRange(SourceRange(getBaseLocation()));
 | 
						|
  SS.setScopeRep(NNS);
 | 
						|
  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
 | 
						|
    return QualType(T, 0);
 | 
						|
  
 | 
						|
  // Rebuild the typename type, which will probably turn into a 
 | 
						|
  // QualifiedNameType.
 | 
						|
  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
 | 
						|
    QualType NewTemplateId 
 | 
						|
      = TransformType(QualType(TemplateId, 0));
 | 
						|
    if (NewTemplateId.isNull())
 | 
						|
      return QualType();
 | 
						|
    
 | 
						|
    if (NNS == T->getQualifier() &&
 | 
						|
        NewTemplateId == QualType(TemplateId, 0))
 | 
						|
      return QualType(T, 0);
 | 
						|
    
 | 
						|
    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Rebuilds a type within the context of the current instantiation.
 | 
						|
///
 | 
						|
/// The type \p T is part of the type of an out-of-line member definition of 
 | 
						|
/// a class template (or class template partial specialization) that was parsed
 | 
						|
/// and constructed before we entered the scope of the class template (or 
 | 
						|
/// partial specialization thereof). This routine will rebuild that type now
 | 
						|
/// that we have entered the declarator's scope, which may produce different
 | 
						|
/// canonical types, e.g.,
 | 
						|
///
 | 
						|
/// \code
 | 
						|
/// template<typename T>
 | 
						|
/// struct X {
 | 
						|
///   typedef T* pointer;
 | 
						|
///   pointer data();
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// template<typename T>
 | 
						|
/// typename X<T>::pointer X<T>::data() { ... }
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
 | 
						|
/// since we do not know that we can look into X<T> when we parsed the type.
 | 
						|
/// This function will rebuild the type, performing the lookup of "pointer"
 | 
						|
/// in X<T> and returning a QualifiedNameType whose canonical type is the same
 | 
						|
/// as the canonical type of T*, allowing the return types of the out-of-line
 | 
						|
/// definition and the declaration to match.
 | 
						|
QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
 | 
						|
                                                 DeclarationName Name) {
 | 
						|
  if (T.isNull() || !T->isDependentType())
 | 
						|
    return T;
 | 
						|
  
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
 | 
						|
  return Rebuilder.TransformType(T);
 | 
						|
}
 |