forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			11276 lines
		
	
	
		
			429 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			11276 lines
		
	
	
		
			429 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the AArch64TargetLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AArch64ISelLowering.h"
 | 
						|
#include "AArch64CallingConvention.h"
 | 
						|
#include "AArch64MachineFunctionInfo.h"
 | 
						|
#include "AArch64PerfectShuffle.h"
 | 
						|
#include "AArch64RegisterInfo.h"
 | 
						|
#include "AArch64Subtarget.h"
 | 
						|
#include "MCTargetDesc/AArch64AddressingModes.h"
 | 
						|
#include "Utils/AArch64BaseInfo.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RuntimeLibcalls.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetCallingConv.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/OperandTraits.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueTypes.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <bitset>
 | 
						|
#include <cassert>
 | 
						|
#include <cctype>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdlib>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "aarch64-lower"
 | 
						|
 | 
						|
STATISTIC(NumTailCalls, "Number of tail calls");
 | 
						|
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
 | 
						|
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
 | 
						|
                           cl::desc("Allow AArch64 SLI/SRI formation"),
 | 
						|
                           cl::init(false));
 | 
						|
 | 
						|
// FIXME: The necessary dtprel relocations don't seem to be supported
 | 
						|
// well in the GNU bfd and gold linkers at the moment. Therefore, by
 | 
						|
// default, for now, fall back to GeneralDynamic code generation.
 | 
						|
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
 | 
						|
    "aarch64-elf-ldtls-generation", cl::Hidden,
 | 
						|
    cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
 | 
						|
                         cl::desc("Enable AArch64 logical imm instruction "
 | 
						|
                                  "optimization"),
 | 
						|
                         cl::init(true));
 | 
						|
 | 
						|
/// Value type used for condition codes.
 | 
						|
static const MVT MVT_CC = MVT::i32;
 | 
						|
 | 
						|
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
 | 
						|
                                             const AArch64Subtarget &STI)
 | 
						|
    : TargetLowering(TM), Subtarget(&STI) {
 | 
						|
  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
 | 
						|
  // we have to make something up. Arbitrarily, choose ZeroOrOne.
 | 
						|
  setBooleanContents(ZeroOrOneBooleanContent);
 | 
						|
  // When comparing vectors the result sets the different elements in the
 | 
						|
  // vector to all-one or all-zero.
 | 
						|
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | 
						|
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
 | 
						|
  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
 | 
						|
 | 
						|
  if (Subtarget->hasFPARMv8()) {
 | 
						|
    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
 | 
						|
    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
 | 
						|
    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
 | 
						|
    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->hasNEON()) {
 | 
						|
    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
 | 
						|
    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
 | 
						|
    // Someone set us up the NEON.
 | 
						|
    addDRTypeForNEON(MVT::v2f32);
 | 
						|
    addDRTypeForNEON(MVT::v8i8);
 | 
						|
    addDRTypeForNEON(MVT::v4i16);
 | 
						|
    addDRTypeForNEON(MVT::v2i32);
 | 
						|
    addDRTypeForNEON(MVT::v1i64);
 | 
						|
    addDRTypeForNEON(MVT::v1f64);
 | 
						|
    addDRTypeForNEON(MVT::v4f16);
 | 
						|
 | 
						|
    addQRTypeForNEON(MVT::v4f32);
 | 
						|
    addQRTypeForNEON(MVT::v2f64);
 | 
						|
    addQRTypeForNEON(MVT::v16i8);
 | 
						|
    addQRTypeForNEON(MVT::v8i16);
 | 
						|
    addQRTypeForNEON(MVT::v4i32);
 | 
						|
    addQRTypeForNEON(MVT::v2i64);
 | 
						|
    addQRTypeForNEON(MVT::v8f16);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute derived properties from the register classes
 | 
						|
  computeRegisterProperties(Subtarget->getRegisterInfo());
 | 
						|
 | 
						|
  // Provide all sorts of operation actions
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::f16, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
 | 
						|
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f16, Custom);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f16, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FREM, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f80, Expand);
 | 
						|
 | 
						|
  // Custom lowering hooks are needed for XOR
 | 
						|
  // to fold it into CSINC/CSINV.
 | 
						|
  setOperationAction(ISD::XOR, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::XOR, MVT::i64, Custom);
 | 
						|
 | 
						|
  // Virtually no operation on f128 is legal, but LLVM can't expand them when
 | 
						|
  // there's a valid register class, so we need custom operations in most cases.
 | 
						|
  setOperationAction(ISD::FABS, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FADD, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FDIV, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::FMA, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FMUL, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::FNEG, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FPOW, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FRINT, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::FSUB, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
 | 
						|
  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
 | 
						|
 | 
						|
  // Lowering for many of the conversions is actually specified by the non-f128
 | 
						|
  // type. The LowerXXX function will be trivial when f128 isn't involved.
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
 | 
						|
  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
 | 
						|
 | 
						|
  // Variable arguments.
 | 
						|
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | 
						|
 | 
						|
  // Variable-sized objects.
 | 
						|
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | 
						|
 | 
						|
  if (Subtarget->isTargetWindows())
 | 
						|
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Constant pool entries
 | 
						|
  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
 | 
						|
 | 
						|
  // BlockAddress
 | 
						|
  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
 | 
						|
 | 
						|
  // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i64, Custom);
 | 
						|
 | 
						|
  // AArch64 lacks both left-rotate and popcount instructions.
 | 
						|
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::ROTL, MVT::i64, Expand);
 | 
						|
  for (MVT VT : MVT::vector_valuetypes()) {
 | 
						|
    setOperationAction(ISD::ROTL, VT, Expand);
 | 
						|
    setOperationAction(ISD::ROTR, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // AArch64 doesn't have {U|S}MUL_LOHI.
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | 
						|
  for (MVT VT : MVT::vector_valuetypes()) {
 | 
						|
    setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Custom lower Add/Sub/Mul with overflow.
 | 
						|
  setOperationAction(ISD::SADDO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SADDO, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::UADDO, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::USUBO, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SMULO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SMULO, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::UMULO, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::UMULO, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FPOW, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | 
						|
  if (Subtarget->hasFullFP16())
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
 | 
						|
 | 
						|
  setOperationAction(ISD::FREM,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FREM,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FREM,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FPOW,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FPOW,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FCOS,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FCOS,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FSIN,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FSIN,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FEXP,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FEXP,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FEXP2,   MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FEXP2,   MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FLOG,    MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG,    MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FLOG2,   MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG2,   MVT::v8f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
 | 
						|
  setOperationAction(ISD::FLOG10,  MVT::v4f16, Promote);
 | 
						|
  setOperationAction(ISD::FLOG10,  MVT::v8f16, Promote);
 | 
						|
 | 
						|
  if (!Subtarget->hasFullFP16()) {
 | 
						|
    setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FADD,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMA,         MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FABS,        MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote);
 | 
						|
    setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote);
 | 
						|
 | 
						|
    // promote v4f16 to v4f32 when that is known to be safe.
 | 
						|
    setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
 | 
						|
    setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
 | 
						|
    setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
 | 
						|
    setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
 | 
						|
    setOperationAction(ISD::FP_EXTEND,   MVT::v4f16, Promote);
 | 
						|
    setOperationAction(ISD::FP_ROUND,    MVT::v4f16, Promote);
 | 
						|
    AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
 | 
						|
    AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
 | 
						|
    AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
 | 
						|
    AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
 | 
						|
    AddPromotedToType(ISD::FP_EXTEND,    MVT::v4f16, MVT::v4f32);
 | 
						|
    AddPromotedToType(ISD::FP_ROUND,     MVT::v4f16, MVT::v4f32);
 | 
						|
 | 
						|
    setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
 | 
						|
    setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // AArch64 has implementations of a lot of rounding-like FP operations.
 | 
						|
  for (MVT Ty : {MVT::f32, MVT::f64}) {
 | 
						|
    setOperationAction(ISD::FFLOOR, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FRINT, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FMINNUM, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FMINNAN, Ty, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNAN, Ty, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->hasFullFP16()) {
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FRINT,   MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FROUND,  MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
 | 
						|
 | 
						|
  // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
 | 
						|
  // This requires the Performance Monitors extension.
 | 
						|
  if (Subtarget->hasPerfMon())
 | 
						|
    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
 | 
						|
 | 
						|
  if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
 | 
						|
      getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
 | 
						|
    // Issue __sincos_stret if available.
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make floating-point constants legal for the large code model, so they don't
 | 
						|
  // become loads from the constant pool.
 | 
						|
  if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
 | 
						|
    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // AArch64 does not have floating-point extending loads, i1 sign-extending
 | 
						|
  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
 | 
						|
  for (MVT VT : MVT::fp_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
 | 
						|
  }
 | 
						|
  for (MVT VT : MVT::integer_valuetypes())
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
 | 
						|
  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | 
						|
  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BITCAST, MVT::i16, Custom);
 | 
						|
  setOperationAction(ISD::BITCAST, MVT::f16, Custom);
 | 
						|
 | 
						|
  // Indexed loads and stores are supported.
 | 
						|
  for (unsigned im = (unsigned)ISD::PRE_INC;
 | 
						|
       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | 
						|
    setIndexedLoadAction(im, MVT::i8, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::i16, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::i32, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::i64, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::f64, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::f32, Legal);
 | 
						|
    setIndexedLoadAction(im, MVT::f16, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::i8, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::i16, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::i32, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::i64, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::f64, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::f32, Legal);
 | 
						|
    setIndexedStoreAction(im, MVT::f16, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Trap.
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
 | 
						|
  // We combine OR nodes for bitfield operations.
 | 
						|
  setTargetDAGCombine(ISD::OR);
 | 
						|
 | 
						|
  // Vector add and sub nodes may conceal a high-half opportunity.
 | 
						|
  // Also, try to fold ADD into CSINC/CSINV..
 | 
						|
  setTargetDAGCombine(ISD::ADD);
 | 
						|
  setTargetDAGCombine(ISD::SUB);
 | 
						|
  setTargetDAGCombine(ISD::SRL);
 | 
						|
  setTargetDAGCombine(ISD::XOR);
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::UINT_TO_FP);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::FP_TO_SINT);
 | 
						|
  setTargetDAGCombine(ISD::FP_TO_UINT);
 | 
						|
  setTargetDAGCombine(ISD::FDIV);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::ANY_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ZERO_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::SIGN_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::BITCAST);
 | 
						|
  setTargetDAGCombine(ISD::CONCAT_VECTORS);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  if (Subtarget->supportsAddressTopByteIgnored())
 | 
						|
    setTargetDAGCombine(ISD::LOAD);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::MUL);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::SELECT);
 | 
						|
  setTargetDAGCombine(ISD::VSELECT);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | 
						|
  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | 
						|
 | 
						|
  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
 | 
						|
  MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
 | 
						|
  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
 | 
						|
 | 
						|
  setStackPointerRegisterToSaveRestore(AArch64::SP);
 | 
						|
 | 
						|
  setSchedulingPreference(Sched::Hybrid);
 | 
						|
 | 
						|
  EnableExtLdPromotion = true;
 | 
						|
 | 
						|
  // Set required alignment.
 | 
						|
  setMinFunctionAlignment(2);
 | 
						|
  // Set preferred alignments.
 | 
						|
  setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
 | 
						|
  setPrefLoopAlignment(STI.getPrefLoopAlignment());
 | 
						|
 | 
						|
  // Only change the limit for entries in a jump table if specified by
 | 
						|
  // the subtarget, but not at the command line.
 | 
						|
  unsigned MaxJT = STI.getMaximumJumpTableSize();
 | 
						|
  if (MaxJT && getMaximumJumpTableSize() == 0)
 | 
						|
    setMaximumJumpTableSize(MaxJT);
 | 
						|
 | 
						|
  setHasExtractBitsInsn(true);
 | 
						|
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
 | 
						|
  if (Subtarget->hasNEON()) {
 | 
						|
    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
 | 
						|
    // silliness like this:
 | 
						|
    setOperationAction(ISD::FABS, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FADD, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FMA, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FREM, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
 | 
						|
    setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | 
						|
 | 
						|
    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
 | 
						|
    // elements smaller than i32, so promote the input to i32 first.
 | 
						|
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
 | 
						|
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
 | 
						|
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
 | 
						|
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
 | 
						|
    // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
 | 
						|
    // -> v8f16 conversions.
 | 
						|
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
 | 
						|
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
 | 
						|
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
 | 
						|
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
 | 
						|
    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
 | 
						|
    // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
 | 
						|
    // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
 | 
						|
 | 
						|
    // AArch64 doesn't have MUL.2d:
 | 
						|
    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
 | 
						|
    // Custom handling for some quad-vector types to detect MULL.
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
 | 
						|
 | 
						|
    // Vector reductions
 | 
						|
    for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
      setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
 | 
						|
      setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
 | 
						|
      setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
 | 
						|
      setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
 | 
						|
      setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
 | 
						|
    }
 | 
						|
    for (MVT VT : MVT::fp_valuetypes()) {
 | 
						|
      setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
 | 
						|
      setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
 | 
						|
    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
 | 
						|
    // Likewise, narrowing and extending vector loads/stores aren't handled
 | 
						|
    // directly.
 | 
						|
    for (MVT VT : MVT::vector_valuetypes()) {
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
 | 
						|
      for (MVT InnerVT : MVT::vector_valuetypes()) {
 | 
						|
        setTruncStoreAction(VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // AArch64 has implementations of a lot of rounding-like FP operations.
 | 
						|
    for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
 | 
						|
      setOperationAction(ISD::FFLOOR, Ty, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, Ty, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL, Ty, Legal);
 | 
						|
      setOperationAction(ISD::FRINT, Ty, Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC, Ty, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, Ty, Legal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
 | 
						|
  assert(VT.isVector() && "VT should be a vector type");
 | 
						|
 | 
						|
  if (VT.isFloatingPoint()) {
 | 
						|
    MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
 | 
						|
    setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
 | 
						|
    setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark vector float intrinsics as expand.
 | 
						|
  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
 | 
						|
    setOperationAction(ISD::FSIN, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCOS, VT, Expand);
 | 
						|
    setOperationAction(ISD::FPOW, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10, VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP, VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2, VT, Expand);
 | 
						|
 | 
						|
    // But we do support custom-lowering for FCOPYSIGN.
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | 
						|
  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
 | 
						|
  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
 | 
						|
  setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
  setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
  setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
  setOperationAction(ISD::AND, VT, Custom);
 | 
						|
  setOperationAction(ISD::OR, VT, Custom);
 | 
						|
  setOperationAction(ISD::SETCC, VT, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT, VT, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
  setOperationAction(ISD::VSELECT, VT, Expand);
 | 
						|
  for (MVT InnerVT : MVT::all_valuetypes())
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
 | 
						|
 | 
						|
  // CNT supports only B element sizes.
 | 
						|
  if (VT != MVT::v8i8 && VT != MVT::v16i8)
 | 
						|
    setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
  setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
  setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
  setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
  setOperationAction(ISD::FREM, VT, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, VT, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, VT, Custom);
 | 
						|
 | 
						|
  if (!VT.isFloatingPoint())
 | 
						|
    setOperationAction(ISD::ABS, VT, Legal);
 | 
						|
 | 
						|
  // [SU][MIN|MAX] are available for all NEON types apart from i64.
 | 
						|
  if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
 | 
						|
    for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
 | 
						|
      setOperationAction(Opcode, VT, Legal);
 | 
						|
 | 
						|
  // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
 | 
						|
  if (VT.isFloatingPoint() &&
 | 
						|
      (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
 | 
						|
    for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
 | 
						|
                            ISD::FMINNUM, ISD::FMAXNUM})
 | 
						|
      setOperationAction(Opcode, VT, Legal);
 | 
						|
 | 
						|
  if (Subtarget->isLittleEndian()) {
 | 
						|
    for (unsigned im = (unsigned)ISD::PRE_INC;
 | 
						|
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | 
						|
      setIndexedLoadAction(im, VT, Legal);
 | 
						|
      setIndexedStoreAction(im, VT, Legal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
 | 
						|
  addRegisterClass(VT, &AArch64::FPR64RegClass);
 | 
						|
  addTypeForNEON(VT, MVT::v2i32);
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
 | 
						|
  addRegisterClass(VT, &AArch64::FPR128RegClass);
 | 
						|
  addTypeForNEON(VT, MVT::v4i32);
 | 
						|
}
 | 
						|
 | 
						|
EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
 | 
						|
                                              EVT VT) const {
 | 
						|
  if (!VT.isVector())
 | 
						|
    return MVT::i32;
 | 
						|
  return VT.changeVectorElementTypeToInteger();
 | 
						|
}
 | 
						|
 | 
						|
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
 | 
						|
                               const APInt &Demanded,
 | 
						|
                               TargetLowering::TargetLoweringOpt &TLO,
 | 
						|
                               unsigned NewOpc) {
 | 
						|
  uint64_t OldImm = Imm, NewImm, Enc;
 | 
						|
  uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
 | 
						|
 | 
						|
  // Return if the immediate is already all zeros, all ones, a bimm32 or a
 | 
						|
  // bimm64.
 | 
						|
  if (Imm == 0 || Imm == Mask ||
 | 
						|
      AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned EltSize = Size;
 | 
						|
  uint64_t DemandedBits = Demanded.getZExtValue();
 | 
						|
 | 
						|
  // Clear bits that are not demanded.
 | 
						|
  Imm &= DemandedBits;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    // The goal here is to set the non-demanded bits in a way that minimizes
 | 
						|
    // the number of switching between 0 and 1. In order to achieve this goal,
 | 
						|
    // we set the non-demanded bits to the value of the preceding demanded bits.
 | 
						|
    // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
 | 
						|
    // non-demanded bit), we copy bit0 (1) to the least significant 'x',
 | 
						|
    // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
 | 
						|
    // The final result is 0b11000011.
 | 
						|
    uint64_t NonDemandedBits = ~DemandedBits;
 | 
						|
    uint64_t InvertedImm = ~Imm & DemandedBits;
 | 
						|
    uint64_t RotatedImm =
 | 
						|
        ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
 | 
						|
        NonDemandedBits;
 | 
						|
    uint64_t Sum = RotatedImm + NonDemandedBits;
 | 
						|
    bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
 | 
						|
    uint64_t Ones = (Sum + Carry) & NonDemandedBits;
 | 
						|
    NewImm = (Imm | Ones) & Mask;
 | 
						|
 | 
						|
    // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
 | 
						|
    // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
 | 
						|
    // we halve the element size and continue the search.
 | 
						|
    if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
 | 
						|
      break;
 | 
						|
 | 
						|
    // We cannot shrink the element size any further if it is 2-bits.
 | 
						|
    if (EltSize == 2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    EltSize /= 2;
 | 
						|
    Mask >>= EltSize;
 | 
						|
    uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
 | 
						|
 | 
						|
    // Return if there is mismatch in any of the demanded bits of Imm and Hi.
 | 
						|
    if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Merge the upper and lower halves of Imm and DemandedBits.
 | 
						|
    Imm |= Hi;
 | 
						|
    DemandedBits |= DemandedBitsHi;
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumOptimizedImms;
 | 
						|
 | 
						|
  // Replicate the element across the register width.
 | 
						|
  while (EltSize < Size) {
 | 
						|
    NewImm |= NewImm << EltSize;
 | 
						|
    EltSize *= 2;
 | 
						|
  }
 | 
						|
 | 
						|
  (void)OldImm;
 | 
						|
  assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
 | 
						|
         "demanded bits should never be altered");
 | 
						|
  assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
 | 
						|
 | 
						|
  // Create the new constant immediate node.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue New;
 | 
						|
 | 
						|
  // If the new constant immediate is all-zeros or all-ones, let the target
 | 
						|
  // independent DAG combine optimize this node.
 | 
						|
  if (NewImm == 0 || NewImm == OrigMask) {
 | 
						|
    New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
 | 
						|
                          TLO.DAG.getConstant(NewImm, DL, VT));
 | 
						|
  // Otherwise, create a machine node so that target independent DAG combine
 | 
						|
  // doesn't undo this optimization.
 | 
						|
  } else {
 | 
						|
    Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
 | 
						|
    SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
 | 
						|
    New = SDValue(
 | 
						|
        TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return TLO.CombineTo(Op, New);
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::targetShrinkDemandedConstant(
 | 
						|
    SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
 | 
						|
  // Delay this optimization to as late as possible.
 | 
						|
  if (!TLO.LegalOps)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!EnableOptimizeLogicalImm)
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT.isVector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Size = VT.getSizeInBits();
 | 
						|
  assert((Size == 32 || Size == 64) &&
 | 
						|
         "i32 or i64 is expected after legalization.");
 | 
						|
 | 
						|
  // Exit early if we demand all bits.
 | 
						|
  if (Demanded.countPopulation() == Size)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NewOpc;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ISD::AND:
 | 
						|
    NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
 | 
						|
    break;
 | 
						|
  case ISD::OR:
 | 
						|
    NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
 | 
						|
    break;
 | 
						|
  case ISD::XOR:
 | 
						|
    NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
  uint64_t Imm = C->getZExtValue();
 | 
						|
  return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
 | 
						|
}
 | 
						|
 | 
						|
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
 | 
						|
/// Mask are known to be either zero or one and return them Known.
 | 
						|
void AArch64TargetLowering::computeKnownBitsForTargetNode(
 | 
						|
    const SDValue Op, KnownBits &Known,
 | 
						|
    const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case AArch64ISD::CSEL: {
 | 
						|
    KnownBits Known2;
 | 
						|
    DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1);
 | 
						|
    DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1);
 | 
						|
    Known.Zero &= Known2.Zero;
 | 
						|
    Known.One &= Known2.One;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
 | 
						|
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
 | 
						|
    switch (IntID) {
 | 
						|
    default: return;
 | 
						|
    case Intrinsic::aarch64_ldaxr:
 | 
						|
    case Intrinsic::aarch64_ldxr: {
 | 
						|
      unsigned BitWidth = Known.getBitWidth();
 | 
						|
      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
 | 
						|
      unsigned MemBits = VT.getScalarSizeInBits();
 | 
						|
      Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN:
 | 
						|
  case ISD::INTRINSIC_VOID: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case Intrinsic::aarch64_neon_umaxv:
 | 
						|
    case Intrinsic::aarch64_neon_uminv: {
 | 
						|
      // Figure out the datatype of the vector operand. The UMINV instruction
 | 
						|
      // will zero extend the result, so we can mark as known zero all the
 | 
						|
      // bits larger than the element datatype. 32-bit or larget doesn't need
 | 
						|
      // this as those are legal types and will be handled by isel directly.
 | 
						|
      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
 | 
						|
      unsigned BitWidth = Known.getBitWidth();
 | 
						|
      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
 | 
						|
        assert(BitWidth >= 8 && "Unexpected width!");
 | 
						|
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
 | 
						|
        Known.Zero |= Mask;
 | 
						|
      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
 | 
						|
        assert(BitWidth >= 16 && "Unexpected width!");
 | 
						|
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
 | 
						|
        Known.Zero |= Mask;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    } break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
 | 
						|
                                                  EVT) const {
 | 
						|
  return MVT::i64;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | 
						|
                                                           unsigned AddrSpace,
 | 
						|
                                                           unsigned Align,
 | 
						|
                                                           bool *Fast) const {
 | 
						|
  if (Subtarget->requiresStrictAlign())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Fast) {
 | 
						|
    // Some CPUs are fine with unaligned stores except for 128-bit ones.
 | 
						|
    *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
 | 
						|
            // See comments in performSTORECombine() for more details about
 | 
						|
            // these conditions.
 | 
						|
 | 
						|
            // Code that uses clang vector extensions can mark that it
 | 
						|
            // wants unaligned accesses to be treated as fast by
 | 
						|
            // underspecifying alignment to be 1 or 2.
 | 
						|
            Align <= 2 ||
 | 
						|
 | 
						|
            // Disregard v2i64. Memcpy lowering produces those and splitting
 | 
						|
            // them regresses performance on micro-benchmarks and olden/bh.
 | 
						|
            VT == MVT::v2i64;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FastISel *
 | 
						|
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
 | 
						|
                                      const TargetLibraryInfo *libInfo) const {
 | 
						|
  return AArch64::createFastISel(funcInfo, libInfo);
 | 
						|
}
 | 
						|
 | 
						|
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((AArch64ISD::NodeType)Opcode) {
 | 
						|
  case AArch64ISD::FIRST_NUMBER:      break;
 | 
						|
  case AArch64ISD::CALL:              return "AArch64ISD::CALL";
 | 
						|
  case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
 | 
						|
  case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
 | 
						|
  case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
 | 
						|
  case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
 | 
						|
  case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
 | 
						|
  case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
 | 
						|
  case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
 | 
						|
  case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
 | 
						|
  case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
 | 
						|
  case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
 | 
						|
  case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
 | 
						|
  case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
 | 
						|
  case AArch64ISD::ADC:               return "AArch64ISD::ADC";
 | 
						|
  case AArch64ISD::SBC:               return "AArch64ISD::SBC";
 | 
						|
  case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
 | 
						|
  case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
 | 
						|
  case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
 | 
						|
  case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
 | 
						|
  case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
 | 
						|
  case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
 | 
						|
  case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
 | 
						|
  case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
 | 
						|
  case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
 | 
						|
  case AArch64ISD::DUP:               return "AArch64ISD::DUP";
 | 
						|
  case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
 | 
						|
  case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
 | 
						|
  case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
 | 
						|
  case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
 | 
						|
  case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
 | 
						|
  case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
 | 
						|
  case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
 | 
						|
  case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
 | 
						|
  case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
 | 
						|
  case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
 | 
						|
  case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
 | 
						|
  case AArch64ISD::BICi:              return "AArch64ISD::BICi";
 | 
						|
  case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
 | 
						|
  case AArch64ISD::BSL:               return "AArch64ISD::BSL";
 | 
						|
  case AArch64ISD::NEG:               return "AArch64ISD::NEG";
 | 
						|
  case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
 | 
						|
  case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
 | 
						|
  case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
 | 
						|
  case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
 | 
						|
  case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
 | 
						|
  case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
 | 
						|
  case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
 | 
						|
  case AArch64ISD::REV16:             return "AArch64ISD::REV16";
 | 
						|
  case AArch64ISD::REV32:             return "AArch64ISD::REV32";
 | 
						|
  case AArch64ISD::REV64:             return "AArch64ISD::REV64";
 | 
						|
  case AArch64ISD::EXT:               return "AArch64ISD::EXT";
 | 
						|
  case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
 | 
						|
  case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
 | 
						|
  case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
 | 
						|
  case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
 | 
						|
  case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
 | 
						|
  case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
 | 
						|
  case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
 | 
						|
  case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
 | 
						|
  case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
 | 
						|
  case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
 | 
						|
  case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
 | 
						|
  case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
 | 
						|
  case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
 | 
						|
  case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
 | 
						|
  case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
 | 
						|
  case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
 | 
						|
  case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
 | 
						|
  case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
 | 
						|
  case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
 | 
						|
  case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
 | 
						|
  case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
 | 
						|
  case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
 | 
						|
  case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
 | 
						|
  case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
 | 
						|
  case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
 | 
						|
  case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
 | 
						|
  case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
 | 
						|
  case AArch64ISD::NOT:               return "AArch64ISD::NOT";
 | 
						|
  case AArch64ISD::BIT:               return "AArch64ISD::BIT";
 | 
						|
  case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
 | 
						|
  case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
 | 
						|
  case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
 | 
						|
  case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
 | 
						|
  case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
 | 
						|
  case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
 | 
						|
  case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
 | 
						|
  case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
 | 
						|
  case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
 | 
						|
  case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
 | 
						|
  case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
 | 
						|
  case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
 | 
						|
  case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
 | 
						|
  case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
 | 
						|
  case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
 | 
						|
  case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
 | 
						|
  case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
 | 
						|
  case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
 | 
						|
  case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
 | 
						|
  case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
 | 
						|
  case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
 | 
						|
  case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
 | 
						|
  case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
 | 
						|
  case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
 | 
						|
  case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
 | 
						|
  case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
 | 
						|
  case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
 | 
						|
  case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
 | 
						|
  case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
 | 
						|
  case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
 | 
						|
  case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
 | 
						|
  case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
 | 
						|
  case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
 | 
						|
  case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
 | 
						|
  case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
 | 
						|
  case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
 | 
						|
  case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
 | 
						|
  case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
 | 
						|
  case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
 | 
						|
  case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
 | 
						|
  case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
 | 
						|
  case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
 | 
						|
  case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
 | 
						|
  case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
 | 
						|
                                    MachineBasicBlock *MBB) const {
 | 
						|
  // We materialise the F128CSEL pseudo-instruction as some control flow and a
 | 
						|
  // phi node:
 | 
						|
 | 
						|
  // OrigBB:
 | 
						|
  //     [... previous instrs leading to comparison ...]
 | 
						|
  //     b.ne TrueBB
 | 
						|
  //     b EndBB
 | 
						|
  // TrueBB:
 | 
						|
  //     ; Fallthrough
 | 
						|
  // EndBB:
 | 
						|
  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
 | 
						|
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | 
						|
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  MachineFunction::iterator It = ++MBB->getIterator();
 | 
						|
 | 
						|
  unsigned DestReg = MI.getOperand(0).getReg();
 | 
						|
  unsigned IfTrueReg = MI.getOperand(1).getReg();
 | 
						|
  unsigned IfFalseReg = MI.getOperand(2).getReg();
 | 
						|
  unsigned CondCode = MI.getOperand(3).getImm();
 | 
						|
  bool NZCVKilled = MI.getOperand(4).isKill();
 | 
						|
 | 
						|
  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MF->insert(It, TrueBB);
 | 
						|
  MF->insert(It, EndBB);
 | 
						|
 | 
						|
  // Transfer rest of current basic-block to EndBB
 | 
						|
  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
 | 
						|
                MBB->end());
 | 
						|
  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
 | 
						|
  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
 | 
						|
  MBB->addSuccessor(TrueBB);
 | 
						|
  MBB->addSuccessor(EndBB);
 | 
						|
 | 
						|
  // TrueBB falls through to the end.
 | 
						|
  TrueBB->addSuccessor(EndBB);
 | 
						|
 | 
						|
  if (!NZCVKilled) {
 | 
						|
    TrueBB->addLiveIn(AArch64::NZCV);
 | 
						|
    EndBB->addLiveIn(AArch64::NZCV);
 | 
						|
  }
 | 
						|
 | 
						|
  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
 | 
						|
      .addReg(IfTrueReg)
 | 
						|
      .addMBB(TrueBB)
 | 
						|
      .addReg(IfFalseReg)
 | 
						|
      .addMBB(MBB);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return EndBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
 | 
						|
    MachineInstr &MI, MachineBasicBlock *BB) const {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
#ifndef NDEBUG
 | 
						|
    MI.dump();
 | 
						|
#endif
 | 
						|
    llvm_unreachable("Unexpected instruction for custom inserter!");
 | 
						|
 | 
						|
  case AArch64::F128CSEL:
 | 
						|
    return EmitF128CSEL(MI, BB);
 | 
						|
 | 
						|
  case TargetOpcode::STACKMAP:
 | 
						|
  case TargetOpcode::PATCHPOINT:
 | 
						|
    return emitPatchPoint(MI, BB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AArch64 Lowering private implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
 | 
						|
/// CC
 | 
						|
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown condition code!");
 | 
						|
  case ISD::SETNE:
 | 
						|
    return AArch64CC::NE;
 | 
						|
  case ISD::SETEQ:
 | 
						|
    return AArch64CC::EQ;
 | 
						|
  case ISD::SETGT:
 | 
						|
    return AArch64CC::GT;
 | 
						|
  case ISD::SETGE:
 | 
						|
    return AArch64CC::GE;
 | 
						|
  case ISD::SETLT:
 | 
						|
    return AArch64CC::LT;
 | 
						|
  case ISD::SETLE:
 | 
						|
    return AArch64CC::LE;
 | 
						|
  case ISD::SETUGT:
 | 
						|
    return AArch64CC::HI;
 | 
						|
  case ISD::SETUGE:
 | 
						|
    return AArch64CC::HS;
 | 
						|
  case ISD::SETULT:
 | 
						|
    return AArch64CC::LO;
 | 
						|
  case ISD::SETULE:
 | 
						|
    return AArch64CC::LS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
 | 
						|
static void changeFPCCToAArch64CC(ISD::CondCode CC,
 | 
						|
                                  AArch64CC::CondCode &CondCode,
 | 
						|
                                  AArch64CC::CondCode &CondCode2) {
 | 
						|
  CondCode2 = AArch64CC::AL;
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown FP condition!");
 | 
						|
  case ISD::SETEQ:
 | 
						|
  case ISD::SETOEQ:
 | 
						|
    CondCode = AArch64CC::EQ;
 | 
						|
    break;
 | 
						|
  case ISD::SETGT:
 | 
						|
  case ISD::SETOGT:
 | 
						|
    CondCode = AArch64CC::GT;
 | 
						|
    break;
 | 
						|
  case ISD::SETGE:
 | 
						|
  case ISD::SETOGE:
 | 
						|
    CondCode = AArch64CC::GE;
 | 
						|
    break;
 | 
						|
  case ISD::SETOLT:
 | 
						|
    CondCode = AArch64CC::MI;
 | 
						|
    break;
 | 
						|
  case ISD::SETOLE:
 | 
						|
    CondCode = AArch64CC::LS;
 | 
						|
    break;
 | 
						|
  case ISD::SETONE:
 | 
						|
    CondCode = AArch64CC::MI;
 | 
						|
    CondCode2 = AArch64CC::GT;
 | 
						|
    break;
 | 
						|
  case ISD::SETO:
 | 
						|
    CondCode = AArch64CC::VC;
 | 
						|
    break;
 | 
						|
  case ISD::SETUO:
 | 
						|
    CondCode = AArch64CC::VS;
 | 
						|
    break;
 | 
						|
  case ISD::SETUEQ:
 | 
						|
    CondCode = AArch64CC::EQ;
 | 
						|
    CondCode2 = AArch64CC::VS;
 | 
						|
    break;
 | 
						|
  case ISD::SETUGT:
 | 
						|
    CondCode = AArch64CC::HI;
 | 
						|
    break;
 | 
						|
  case ISD::SETUGE:
 | 
						|
    CondCode = AArch64CC::PL;
 | 
						|
    break;
 | 
						|
  case ISD::SETLT:
 | 
						|
  case ISD::SETULT:
 | 
						|
    CondCode = AArch64CC::LT;
 | 
						|
    break;
 | 
						|
  case ISD::SETLE:
 | 
						|
  case ISD::SETULE:
 | 
						|
    CondCode = AArch64CC::LE;
 | 
						|
    break;
 | 
						|
  case ISD::SETNE:
 | 
						|
  case ISD::SETUNE:
 | 
						|
    CondCode = AArch64CC::NE;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a DAG fp condition code to an AArch64 CC.
 | 
						|
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
 | 
						|
/// should be AND'ed instead of OR'ed.
 | 
						|
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
 | 
						|
                                     AArch64CC::CondCode &CondCode,
 | 
						|
                                     AArch64CC::CondCode &CondCode2) {
 | 
						|
  CondCode2 = AArch64CC::AL;
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
 | 
						|
    assert(CondCode2 == AArch64CC::AL);
 | 
						|
    break;
 | 
						|
  case ISD::SETONE:
 | 
						|
    // (a one b)
 | 
						|
    // == ((a olt b) || (a ogt b))
 | 
						|
    // == ((a ord b) && (a une b))
 | 
						|
    CondCode = AArch64CC::VC;
 | 
						|
    CondCode2 = AArch64CC::NE;
 | 
						|
    break;
 | 
						|
  case ISD::SETUEQ:
 | 
						|
    // (a ueq b)
 | 
						|
    // == ((a uno b) || (a oeq b))
 | 
						|
    // == ((a ule b) && (a uge b))
 | 
						|
    CondCode = AArch64CC::PL;
 | 
						|
    CondCode2 = AArch64CC::LE;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
 | 
						|
/// CC usable with the vector instructions. Fewer operations are available
 | 
						|
/// without a real NZCV register, so we have to use less efficient combinations
 | 
						|
/// to get the same effect.
 | 
						|
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
 | 
						|
                                        AArch64CC::CondCode &CondCode,
 | 
						|
                                        AArch64CC::CondCode &CondCode2,
 | 
						|
                                        bool &Invert) {
 | 
						|
  Invert = false;
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    // Mostly the scalar mappings work fine.
 | 
						|
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
 | 
						|
    break;
 | 
						|
  case ISD::SETUO:
 | 
						|
    Invert = true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETO:
 | 
						|
    CondCode = AArch64CC::MI;
 | 
						|
    CondCode2 = AArch64CC::GE;
 | 
						|
    break;
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETUGE:
 | 
						|
    // All of the compare-mask comparisons are ordered, but we can switch
 | 
						|
    // between the two by a double inversion. E.g. ULE == !OGT.
 | 
						|
    Invert = true;
 | 
						|
    changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isLegalArithImmed(uint64_t C) {
 | 
						|
  // Matches AArch64DAGToDAGISel::SelectArithImmed().
 | 
						|
  bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
 | 
						|
  DEBUG(dbgs() << "Is imm " << C << " legal: " << (IsLegal ? "yes\n" : "no\n"));
 | 
						|
  return IsLegal;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | 
						|
                              const SDLoc &dl, SelectionDAG &DAG) {
 | 
						|
  EVT VT = LHS.getValueType();
 | 
						|
  const bool FullFP16 =
 | 
						|
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
 | 
						|
 | 
						|
  if (VT.isFloatingPoint()) {
 | 
						|
    assert(VT != MVT::f128);
 | 
						|
    if (VT == MVT::f16 && !FullFP16) {
 | 
						|
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
 | 
						|
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
 | 
						|
      VT = MVT::f32;
 | 
						|
    }
 | 
						|
    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // The CMP instruction is just an alias for SUBS, and representing it as
 | 
						|
  // SUBS means that it's possible to get CSE with subtract operations.
 | 
						|
  // A later phase can perform the optimization of setting the destination
 | 
						|
  // register to WZR/XZR if it ends up being unused.
 | 
						|
  unsigned Opcode = AArch64ISD::SUBS;
 | 
						|
 | 
						|
  if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
 | 
						|
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
 | 
						|
    // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
 | 
						|
    // can be set differently by this operation. It comes down to whether
 | 
						|
    // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
 | 
						|
    // everything is fine. If not then the optimization is wrong. Thus general
 | 
						|
    // comparisons are only valid if op2 != 0.
 | 
						|
 | 
						|
    // So, finally, the only LLVM-native comparisons that don't mention C and V
 | 
						|
    // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
 | 
						|
    // the absence of information about op2.
 | 
						|
    Opcode = AArch64ISD::ADDS;
 | 
						|
    RHS = RHS.getOperand(1);
 | 
						|
  } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
 | 
						|
             !isUnsignedIntSetCC(CC)) {
 | 
						|
    // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
 | 
						|
    // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
 | 
						|
    // of the signed comparisons.
 | 
						|
    Opcode = AArch64ISD::ANDS;
 | 
						|
    RHS = LHS.getOperand(1);
 | 
						|
    LHS = LHS.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
 | 
						|
      .getValue(1);
 | 
						|
}
 | 
						|
 | 
						|
/// \defgroup AArch64CCMP CMP;CCMP matching
 | 
						|
///
 | 
						|
/// These functions deal with the formation of CMP;CCMP;... sequences.
 | 
						|
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
 | 
						|
/// a comparison. They set the NZCV flags to a predefined value if their
 | 
						|
/// predicate is false. This allows to express arbitrary conjunctions, for
 | 
						|
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
 | 
						|
/// expressed as:
 | 
						|
///   cmp A
 | 
						|
///   ccmp B, inv(CB), CA
 | 
						|
///   check for CB flags
 | 
						|
///
 | 
						|
/// In general we can create code for arbitrary "... (and (and A B) C)"
 | 
						|
/// sequences. We can also implement some "or" expressions, because "(or A B)"
 | 
						|
/// is equivalent to "not (and (not A) (not B))" and we can implement some
 | 
						|
/// negation operations:
 | 
						|
/// We can negate the results of a single comparison by inverting the flags
 | 
						|
/// used when the predicate fails and inverting the flags tested in the next
 | 
						|
/// instruction; We can also negate the results of the whole previous
 | 
						|
/// conditional compare sequence by inverting the flags tested in the next
 | 
						|
/// instruction. However there is no way to negate the result of a partial
 | 
						|
/// sequence.
 | 
						|
///
 | 
						|
/// Therefore on encountering an "or" expression we can negate the subtree on
 | 
						|
/// one side and have to be able to push the negate to the leafs of the subtree
 | 
						|
/// on the other side (see also the comments in code). As complete example:
 | 
						|
/// "or (or (setCA (cmp A)) (setCB (cmp B)))
 | 
						|
///     (and (setCC (cmp C)) (setCD (cmp D)))"
 | 
						|
/// is transformed to
 | 
						|
/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
 | 
						|
///           (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
 | 
						|
/// and implemented as:
 | 
						|
///   cmp C
 | 
						|
///   ccmp D, inv(CD), CC
 | 
						|
///   ccmp A, CA, inv(CD)
 | 
						|
///   ccmp B, CB, inv(CA)
 | 
						|
///   check for CB flags
 | 
						|
/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
 | 
						|
/// by conditional compare sequences.
 | 
						|
/// @{
 | 
						|
 | 
						|
/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
 | 
						|
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
 | 
						|
                                         ISD::CondCode CC, SDValue CCOp,
 | 
						|
                                         AArch64CC::CondCode Predicate,
 | 
						|
                                         AArch64CC::CondCode OutCC,
 | 
						|
                                         const SDLoc &DL, SelectionDAG &DAG) {
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  const bool FullFP16 =
 | 
						|
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
 | 
						|
 | 
						|
  if (LHS.getValueType().isFloatingPoint()) {
 | 
						|
    assert(LHS.getValueType() != MVT::f128);
 | 
						|
    if (LHS.getValueType() == MVT::f16 && !FullFP16) {
 | 
						|
      LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
 | 
						|
      RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
 | 
						|
    }
 | 
						|
    Opcode = AArch64ISD::FCCMP;
 | 
						|
  } else if (RHS.getOpcode() == ISD::SUB) {
 | 
						|
    SDValue SubOp0 = RHS.getOperand(0);
 | 
						|
    if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
      // See emitComparison() on why we can only do this for SETEQ and SETNE.
 | 
						|
      Opcode = AArch64ISD::CCMN;
 | 
						|
      RHS = RHS.getOperand(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Opcode == 0)
 | 
						|
    Opcode = AArch64ISD::CCMP;
 | 
						|
 | 
						|
  SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
 | 
						|
  AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
 | 
						|
  unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
 | 
						|
  SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
 | 
						|
  return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
 | 
						|
/// CanPushNegate is set to true if we can push a negate operation through
 | 
						|
/// the tree in a was that we are left with AND operations and negate operations
 | 
						|
/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
 | 
						|
/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
 | 
						|
/// brought into such a form.
 | 
						|
static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
 | 
						|
                                         unsigned Depth = 0) {
 | 
						|
  if (!Val.hasOneUse())
 | 
						|
    return false;
 | 
						|
  unsigned Opcode = Val->getOpcode();
 | 
						|
  if (Opcode == ISD::SETCC) {
 | 
						|
    if (Val->getOperand(0).getValueType() == MVT::f128)
 | 
						|
      return false;
 | 
						|
    CanNegate = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Protect against exponential runtime and stack overflow.
 | 
						|
  if (Depth > 6)
 | 
						|
    return false;
 | 
						|
  if (Opcode == ISD::AND || Opcode == ISD::OR) {
 | 
						|
    SDValue O0 = Val->getOperand(0);
 | 
						|
    SDValue O1 = Val->getOperand(1);
 | 
						|
    bool CanNegateL;
 | 
						|
    if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
 | 
						|
      return false;
 | 
						|
    bool CanNegateR;
 | 
						|
    if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Opcode == ISD::OR) {
 | 
						|
      // For an OR expression we need to be able to negate at least one side or
 | 
						|
      // we cannot do the transformation at all.
 | 
						|
      if (!CanNegateL && !CanNegateR)
 | 
						|
        return false;
 | 
						|
      // We can however change a (not (or x y)) to (and (not x) (not y)) if we
 | 
						|
      // can negate the x and y subtrees.
 | 
						|
      CanNegate = CanNegateL && CanNegateR;
 | 
						|
    } else {
 | 
						|
      // If the operands are OR expressions then we finally need to negate their
 | 
						|
      // outputs, we can only do that for the operand with emitted last by
 | 
						|
      // negating OutCC, not for both operands.
 | 
						|
      bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
 | 
						|
      bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
 | 
						|
      if (NeedsNegOutL && NeedsNegOutR)
 | 
						|
        return false;
 | 
						|
      // We cannot negate an AND operation (it would become an OR),
 | 
						|
      CanNegate = false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
 | 
						|
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
 | 
						|
/// Tries to transform the given i1 producing node @p Val to a series compare
 | 
						|
/// and conditional compare operations. @returns an NZCV flags producing node
 | 
						|
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
 | 
						|
/// transformation was not possible.
 | 
						|
/// On recursive invocations @p PushNegate may be set to true to have negation
 | 
						|
/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
 | 
						|
/// for the comparisons in the current subtree; @p Depth limits the search
 | 
						|
/// depth to avoid stack overflow.
 | 
						|
static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
 | 
						|
    AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
 | 
						|
    AArch64CC::CondCode Predicate) {
 | 
						|
  // We're at a tree leaf, produce a conditional comparison operation.
 | 
						|
  unsigned Opcode = Val->getOpcode();
 | 
						|
  if (Opcode == ISD::SETCC) {
 | 
						|
    SDValue LHS = Val->getOperand(0);
 | 
						|
    SDValue RHS = Val->getOperand(1);
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
 | 
						|
    bool isInteger = LHS.getValueType().isInteger();
 | 
						|
    if (Negate)
 | 
						|
      CC = getSetCCInverse(CC, isInteger);
 | 
						|
    SDLoc DL(Val);
 | 
						|
    // Determine OutCC and handle FP special case.
 | 
						|
    if (isInteger) {
 | 
						|
      OutCC = changeIntCCToAArch64CC(CC);
 | 
						|
    } else {
 | 
						|
      assert(LHS.getValueType().isFloatingPoint());
 | 
						|
      AArch64CC::CondCode ExtraCC;
 | 
						|
      changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
 | 
						|
      // Some floating point conditions can't be tested with a single condition
 | 
						|
      // code. Construct an additional comparison in this case.
 | 
						|
      if (ExtraCC != AArch64CC::AL) {
 | 
						|
        SDValue ExtraCmp;
 | 
						|
        if (!CCOp.getNode())
 | 
						|
          ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
 | 
						|
        else
 | 
						|
          ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
 | 
						|
                                               ExtraCC, DL, DAG);
 | 
						|
        CCOp = ExtraCmp;
 | 
						|
        Predicate = ExtraCC;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Produce a normal comparison if we are first in the chain
 | 
						|
    if (!CCOp)
 | 
						|
      return emitComparison(LHS, RHS, CC, DL, DAG);
 | 
						|
    // Otherwise produce a ccmp.
 | 
						|
    return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
 | 
						|
                                     DAG);
 | 
						|
  }
 | 
						|
  assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
 | 
						|
         "Valid conjunction/disjunction tree");
 | 
						|
 | 
						|
  // Check if both sides can be transformed.
 | 
						|
  SDValue LHS = Val->getOperand(0);
 | 
						|
  SDValue RHS = Val->getOperand(1);
 | 
						|
 | 
						|
  // In case of an OR we need to negate our operands and the result.
 | 
						|
  // (A v B) <=> not(not(A) ^ not(B))
 | 
						|
  bool NegateOpsAndResult = Opcode == ISD::OR;
 | 
						|
  // We can negate the results of all previous operations by inverting the
 | 
						|
  // predicate flags giving us a free negation for one side. The other side
 | 
						|
  // must be negatable by itself.
 | 
						|
  if (NegateOpsAndResult) {
 | 
						|
    // See which side we can negate.
 | 
						|
    bool CanNegateL;
 | 
						|
    bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
 | 
						|
    assert(isValidL && "Valid conjunction/disjunction tree");
 | 
						|
    (void)isValidL;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    bool CanNegateR;
 | 
						|
    bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
 | 
						|
    assert(isValidR && "Valid conjunction/disjunction tree");
 | 
						|
    assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
 | 
						|
#endif
 | 
						|
 | 
						|
    // Order the side which we cannot negate to RHS so we can emit it first.
 | 
						|
    if (!CanNegateL)
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
  } else {
 | 
						|
    bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
 | 
						|
    assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
 | 
						|
           "Valid conjunction/disjunction tree");
 | 
						|
    // Order the side where we need to negate the output flags to RHS so it
 | 
						|
    // gets emitted first.
 | 
						|
    if (NeedsNegOutL)
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit RHS. If we want to negate the tree we only need to push a negate
 | 
						|
  // through if we are already in a PushNegate case, otherwise we can negate
 | 
						|
  // the "flags to test" afterwards.
 | 
						|
  AArch64CC::CondCode RHSCC;
 | 
						|
  SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
 | 
						|
                                                   CCOp, Predicate);
 | 
						|
  if (NegateOpsAndResult && !Negate)
 | 
						|
    RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
 | 
						|
  // Emit LHS. We may need to negate it.
 | 
						|
  SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
 | 
						|
                                                   NegateOpsAndResult, CmpR,
 | 
						|
                                                   RHSCC);
 | 
						|
  // If we transformed an OR to and AND then we have to negate the result
 | 
						|
  // (or absorb the Negate parameter).
 | 
						|
  if (NegateOpsAndResult && !Negate)
 | 
						|
    OutCC = AArch64CC::getInvertedCondCode(OutCC);
 | 
						|
  return CmpL;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
 | 
						|
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
 | 
						|
/// \see emitConjunctionDisjunctionTreeRec().
 | 
						|
static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
 | 
						|
                                              AArch64CC::CondCode &OutCC) {
 | 
						|
  bool CanNegate;
 | 
						|
  if (!isConjunctionDisjunctionTree(Val, CanNegate))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
 | 
						|
                                           AArch64CC::AL);
 | 
						|
}
 | 
						|
 | 
						|
/// @}
 | 
						|
 | 
						|
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | 
						|
                             SDValue &AArch64cc, SelectionDAG &DAG,
 | 
						|
                             const SDLoc &dl) {
 | 
						|
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | 
						|
    EVT VT = RHS.getValueType();
 | 
						|
    uint64_t C = RHSC->getZExtValue();
 | 
						|
    if (!isLegalArithImmed(C)) {
 | 
						|
      // Constant does not fit, try adjusting it by one?
 | 
						|
      switch (CC) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case ISD::SETLT:
 | 
						|
      case ISD::SETGE:
 | 
						|
        if ((VT == MVT::i32 && C != 0x80000000 &&
 | 
						|
             isLegalArithImmed((uint32_t)(C - 1))) ||
 | 
						|
            (VT == MVT::i64 && C != 0x80000000ULL &&
 | 
						|
             isLegalArithImmed(C - 1ULL))) {
 | 
						|
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | 
						|
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
 | 
						|
          RHS = DAG.getConstant(C, dl, VT);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETULT:
 | 
						|
      case ISD::SETUGE:
 | 
						|
        if ((VT == MVT::i32 && C != 0 &&
 | 
						|
             isLegalArithImmed((uint32_t)(C - 1))) ||
 | 
						|
            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
 | 
						|
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | 
						|
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
 | 
						|
          RHS = DAG.getConstant(C, dl, VT);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETLE:
 | 
						|
      case ISD::SETGT:
 | 
						|
        if ((VT == MVT::i32 && C != INT32_MAX &&
 | 
						|
             isLegalArithImmed((uint32_t)(C + 1))) ||
 | 
						|
            (VT == MVT::i64 && C != INT64_MAX &&
 | 
						|
             isLegalArithImmed(C + 1ULL))) {
 | 
						|
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | 
						|
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
 | 
						|
          RHS = DAG.getConstant(C, dl, VT);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETULE:
 | 
						|
      case ISD::SETUGT:
 | 
						|
        if ((VT == MVT::i32 && C != UINT32_MAX &&
 | 
						|
             isLegalArithImmed((uint32_t)(C + 1))) ||
 | 
						|
            (VT == MVT::i64 && C != UINT64_MAX &&
 | 
						|
             isLegalArithImmed(C + 1ULL))) {
 | 
						|
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | 
						|
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
 | 
						|
          RHS = DAG.getConstant(C, dl, VT);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SDValue Cmp;
 | 
						|
  AArch64CC::CondCode AArch64CC;
 | 
						|
  if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
 | 
						|
    const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
 | 
						|
 | 
						|
    // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
 | 
						|
    // For the i8 operand, the largest immediate is 255, so this can be easily
 | 
						|
    // encoded in the compare instruction. For the i16 operand, however, the
 | 
						|
    // largest immediate cannot be encoded in the compare.
 | 
						|
    // Therefore, use a sign extending load and cmn to avoid materializing the
 | 
						|
    // -1 constant. For example,
 | 
						|
    // movz w1, #65535
 | 
						|
    // ldrh w0, [x0, #0]
 | 
						|
    // cmp w0, w1
 | 
						|
    // >
 | 
						|
    // ldrsh w0, [x0, #0]
 | 
						|
    // cmn w0, #1
 | 
						|
    // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
 | 
						|
    // if and only if (sext LHS) == (sext RHS). The checks are in place to
 | 
						|
    // ensure both the LHS and RHS are truly zero extended and to make sure the
 | 
						|
    // transformation is profitable.
 | 
						|
    if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
 | 
						|
        cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
 | 
						|
        cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
 | 
						|
        LHS.getNode()->hasNUsesOfValue(1, 0)) {
 | 
						|
      int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
 | 
						|
      if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
 | 
						|
        SDValue SExt =
 | 
						|
            DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
 | 
						|
                        DAG.getValueType(MVT::i16));
 | 
						|
        Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
 | 
						|
                                                   RHS.getValueType()),
 | 
						|
                             CC, dl, DAG);
 | 
						|
        AArch64CC = changeIntCCToAArch64CC(CC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
 | 
						|
      if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
 | 
						|
        if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
 | 
						|
          AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Cmp) {
 | 
						|
    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | 
						|
    AArch64CC = changeIntCCToAArch64CC(CC);
 | 
						|
  }
 | 
						|
  AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
 | 
						|
  return Cmp;
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<SDValue, SDValue>
 | 
						|
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
 | 
						|
         "Unsupported value type");
 | 
						|
  SDValue Value, Overflow;
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  unsigned Opc = 0;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown overflow instruction!");
 | 
						|
  case ISD::SADDO:
 | 
						|
    Opc = AArch64ISD::ADDS;
 | 
						|
    CC = AArch64CC::VS;
 | 
						|
    break;
 | 
						|
  case ISD::UADDO:
 | 
						|
    Opc = AArch64ISD::ADDS;
 | 
						|
    CC = AArch64CC::HS;
 | 
						|
    break;
 | 
						|
  case ISD::SSUBO:
 | 
						|
    Opc = AArch64ISD::SUBS;
 | 
						|
    CC = AArch64CC::VS;
 | 
						|
    break;
 | 
						|
  case ISD::USUBO:
 | 
						|
    Opc = AArch64ISD::SUBS;
 | 
						|
    CC = AArch64CC::LO;
 | 
						|
    break;
 | 
						|
  // Multiply needs a little bit extra work.
 | 
						|
  case ISD::SMULO:
 | 
						|
  case ISD::UMULO: {
 | 
						|
    CC = AArch64CC::NE;
 | 
						|
    bool IsSigned = Op.getOpcode() == ISD::SMULO;
 | 
						|
    if (Op.getValueType() == MVT::i32) {
 | 
						|
      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
      // For a 32 bit multiply with overflow check we want the instruction
 | 
						|
      // selector to generate a widening multiply (SMADDL/UMADDL). For that we
 | 
						|
      // need to generate the following pattern:
 | 
						|
      // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
 | 
						|
      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
 | 
						|
      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
 | 
						|
      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
 | 
						|
      SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
 | 
						|
                                DAG.getConstant(0, DL, MVT::i64));
 | 
						|
      // On AArch64 the upper 32 bits are always zero extended for a 32 bit
 | 
						|
      // operation. We need to clear out the upper 32 bits, because we used a
 | 
						|
      // widening multiply that wrote all 64 bits. In the end this should be a
 | 
						|
      // noop.
 | 
						|
      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
 | 
						|
      if (IsSigned) {
 | 
						|
        // The signed overflow check requires more than just a simple check for
 | 
						|
        // any bit set in the upper 32 bits of the result. These bits could be
 | 
						|
        // just the sign bits of a negative number. To perform the overflow
 | 
						|
        // check we have to arithmetic shift right the 32nd bit of the result by
 | 
						|
        // 31 bits. Then we compare the result to the upper 32 bits.
 | 
						|
        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
 | 
						|
                                        DAG.getConstant(32, DL, MVT::i64));
 | 
						|
        UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
 | 
						|
        SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
 | 
						|
                                        DAG.getConstant(31, DL, MVT::i64));
 | 
						|
        // It is important that LowerBits is last, otherwise the arithmetic
 | 
						|
        // shift will not be folded into the compare (SUBS).
 | 
						|
        SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
 | 
						|
        Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
 | 
						|
                       .getValue(1);
 | 
						|
      } else {
 | 
						|
        // The overflow check for unsigned multiply is easy. We only need to
 | 
						|
        // check if any of the upper 32 bits are set. This can be done with a
 | 
						|
        // CMP (shifted register). For that we need to generate the following
 | 
						|
        // pattern:
 | 
						|
        // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
 | 
						|
        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
 | 
						|
                                        DAG.getConstant(32, DL, MVT::i64));
 | 
						|
        SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | 
						|
        Overflow =
 | 
						|
            DAG.getNode(AArch64ISD::SUBS, DL, VTs,
 | 
						|
                        DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                        UpperBits).getValue(1);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
 | 
						|
    // For the 64 bit multiply
 | 
						|
    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
 | 
						|
    if (IsSigned) {
 | 
						|
      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
 | 
						|
      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
 | 
						|
                                      DAG.getConstant(63, DL, MVT::i64));
 | 
						|
      // It is important that LowerBits is last, otherwise the arithmetic
 | 
						|
      // shift will not be folded into the compare (SUBS).
 | 
						|
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | 
						|
      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
 | 
						|
                     .getValue(1);
 | 
						|
    } else {
 | 
						|
      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
 | 
						|
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
 | 
						|
      Overflow =
 | 
						|
          DAG.getNode(AArch64ISD::SUBS, DL, VTs,
 | 
						|
                      DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                      UpperBits).getValue(1);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  } // switch (...)
 | 
						|
 | 
						|
  if (Opc) {
 | 
						|
    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
 | 
						|
 | 
						|
    // Emit the AArch64 operation with overflow check.
 | 
						|
    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
 | 
						|
    Overflow = Value.getValue(1);
 | 
						|
  }
 | 
						|
  return std::make_pair(Value, Overflow);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                             RTLIB::Libcall Call) const {
 | 
						|
  SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
 | 
						|
  return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the given Op is the overflow flag result of an overflow
 | 
						|
// intrinsic operation.
 | 
						|
static bool isOverflowIntrOpRes(SDValue Op) {
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  return (Op.getResNo() == 1 &&
 | 
						|
          (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | 
						|
           Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue Sel = Op.getOperand(0);
 | 
						|
  SDValue Other = Op.getOperand(1);
 | 
						|
  SDLoc dl(Sel);
 | 
						|
 | 
						|
  // If the operand is an overflow checking operation, invert the condition
 | 
						|
  // code and kill the Not operation. I.e., transform:
 | 
						|
  // (xor (overflow_op_bool, 1))
 | 
						|
  //   -->
 | 
						|
  // (csel 1, 0, invert(cc), overflow_op_bool)
 | 
						|
  // ... which later gets transformed to just a cset instruction with an
 | 
						|
  // inverted condition code, rather than a cset + eor sequence.
 | 
						|
  if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
 | 
						|
    // Only lower legal XALUO ops.
 | 
						|
    if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
 | 
						|
    SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
 | 
						|
    AArch64CC::CondCode CC;
 | 
						|
    SDValue Value, Overflow;
 | 
						|
    std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
 | 
						|
    SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
 | 
						|
                       CCVal, Overflow);
 | 
						|
  }
 | 
						|
  // If neither operand is a SELECT_CC, give up.
 | 
						|
  if (Sel.getOpcode() != ISD::SELECT_CC)
 | 
						|
    std::swap(Sel, Other);
 | 
						|
  if (Sel.getOpcode() != ISD::SELECT_CC)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // The folding we want to perform is:
 | 
						|
  // (xor x, (select_cc a, b, cc, 0, -1) )
 | 
						|
  //   -->
 | 
						|
  // (csel x, (xor x, -1), cc ...)
 | 
						|
  //
 | 
						|
  // The latter will get matched to a CSINV instruction.
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
 | 
						|
  SDValue LHS = Sel.getOperand(0);
 | 
						|
  SDValue RHS = Sel.getOperand(1);
 | 
						|
  SDValue TVal = Sel.getOperand(2);
 | 
						|
  SDValue FVal = Sel.getOperand(3);
 | 
						|
 | 
						|
  // FIXME: This could be generalized to non-integer comparisons.
 | 
						|
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
 | 
						|
  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
 | 
						|
 | 
						|
  // The values aren't constants, this isn't the pattern we're looking for.
 | 
						|
  if (!CFVal || !CTVal)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // We can commute the SELECT_CC by inverting the condition.  This
 | 
						|
  // might be needed to make this fit into a CSINV pattern.
 | 
						|
  if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
 | 
						|
    std::swap(TVal, FVal);
 | 
						|
    std::swap(CTVal, CFVal);
 | 
						|
    CC = ISD::getSetCCInverse(CC, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the constants line up, perform the transform!
 | 
						|
  if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
 | 
						|
    SDValue CCVal;
 | 
						|
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | 
						|
 | 
						|
    FVal = Other;
 | 
						|
    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
 | 
						|
                       DAG.getConstant(-1ULL, dl, Other.getValueType()));
 | 
						|
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
 | 
						|
                       CCVal, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // Let legalize expand this if it isn't a legal type yet.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | 
						|
 | 
						|
  unsigned Opc;
 | 
						|
  bool ExtraOp = false;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid code");
 | 
						|
  case ISD::ADDC:
 | 
						|
    Opc = AArch64ISD::ADDS;
 | 
						|
    break;
 | 
						|
  case ISD::SUBC:
 | 
						|
    Opc = AArch64ISD::SUBS;
 | 
						|
    break;
 | 
						|
  case ISD::ADDE:
 | 
						|
    Opc = AArch64ISD::ADCS;
 | 
						|
    ExtraOp = true;
 | 
						|
    break;
 | 
						|
  case ISD::SUBE:
 | 
						|
    Opc = AArch64ISD::SBCS;
 | 
						|
    ExtraOp = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ExtraOp)
 | 
						|
    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
 | 
						|
  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
 | 
						|
                     Op.getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Let legalize expand this if it isn't a legal type yet.
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  AArch64CC::CondCode CC;
 | 
						|
  // The actual operation that sets the overflow or carry flag.
 | 
						|
  SDValue Value, Overflow;
 | 
						|
  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
 | 
						|
 | 
						|
  // We use 0 and 1 as false and true values.
 | 
						|
  SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
 | 
						|
  SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
 | 
						|
 | 
						|
  // We use an inverted condition, because the conditional select is inverted
 | 
						|
  // too. This will allow it to be selected to a single instruction:
 | 
						|
  // CSINC Wd, WZR, WZR, invert(cond).
 | 
						|
  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
 | 
						|
  Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
 | 
						|
                         CCVal, Overflow);
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | 
						|
  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
 | 
						|
}
 | 
						|
 | 
						|
// Prefetch operands are:
 | 
						|
// 1: Address to prefetch
 | 
						|
// 2: bool isWrite
 | 
						|
// 3: int locality (0 = no locality ... 3 = extreme locality)
 | 
						|
// 4: bool isDataCache
 | 
						|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
 | 
						|
  unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | 
						|
 | 
						|
  bool IsStream = !Locality;
 | 
						|
  // When the locality number is set
 | 
						|
  if (Locality) {
 | 
						|
    // The front-end should have filtered out the out-of-range values
 | 
						|
    assert(Locality <= 3 && "Prefetch locality out-of-range");
 | 
						|
    // The locality degree is the opposite of the cache speed.
 | 
						|
    // Put the number the other way around.
 | 
						|
    // The encoding starts at 0 for level 1
 | 
						|
    Locality = 3 - Locality;
 | 
						|
  }
 | 
						|
 | 
						|
  // built the mask value encoding the expected behavior.
 | 
						|
  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
 | 
						|
                   (!IsData << 3) |     // IsDataCache bit
 | 
						|
                   (Locality << 1) |    // Cache level bits
 | 
						|
                   (unsigned)IsStream;  // Stream bit
 | 
						|
  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
 | 
						|
                     DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
 | 
						|
 | 
						|
  RTLIB::Libcall LC;
 | 
						|
  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
 | 
						|
  return LowerF128Call(Op, DAG, LC);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  if (Op.getOperand(0).getValueType() != MVT::f128) {
 | 
						|
    // It's legal except when f128 is involved
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  RTLIB::Libcall LC;
 | 
						|
  LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
 | 
						|
  // FP_ROUND node has a second operand indicating whether it is known to be
 | 
						|
  // precise. That doesn't take part in the LibCall so we can't directly use
 | 
						|
  // LowerF128Call.
 | 
						|
  SDValue SrcVal = Op.getOperand(0);
 | 
						|
  return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
 | 
						|
                     SDLoc(Op)).first;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
 | 
						|
  // Any additional optimization in this function should be recorded
 | 
						|
  // in the cost tables.
 | 
						|
  EVT InVT = Op.getOperand(0).getValueType();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned NumElts = InVT.getVectorNumElements();
 | 
						|
 | 
						|
  // f16 vectors are promoted to f32 before a conversion.
 | 
						|
  if (InVT.getVectorElementType() == MVT::f16) {
 | 
						|
    MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
 | 
						|
    SDLoc dl(Op);
 | 
						|
    return DAG.getNode(
 | 
						|
        Op.getOpcode(), dl, Op.getValueType(),
 | 
						|
        DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
 | 
						|
    SDLoc dl(Op);
 | 
						|
    SDValue Cv =
 | 
						|
        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
 | 
						|
                    Op.getOperand(0));
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
 | 
						|
    SDLoc dl(Op);
 | 
						|
    MVT ExtVT =
 | 
						|
        MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
 | 
						|
                         VT.getVectorNumElements());
 | 
						|
    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
 | 
						|
    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
 | 
						|
  }
 | 
						|
 | 
						|
  // Type changing conversions are illegal.
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  if (Op.getOperand(0).getValueType().isVector())
 | 
						|
    return LowerVectorFP_TO_INT(Op, DAG);
 | 
						|
 | 
						|
  // f16 conversions are promoted to f32 when full fp16 is not supported.
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::f16 &&
 | 
						|
      !Subtarget->hasFullFP16()) {
 | 
						|
    SDLoc dl(Op);
 | 
						|
    return DAG.getNode(
 | 
						|
        Op.getOpcode(), dl, Op.getValueType(),
 | 
						|
        DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op.getOperand(0).getValueType() != MVT::f128) {
 | 
						|
    // It's legal except when f128 is involved
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  RTLIB::Libcall LC;
 | 
						|
  if (Op.getOpcode() == ISD::FP_TO_SINT)
 | 
						|
    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
  else
 | 
						|
    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
 | 
						|
  SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
 | 
						|
  return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
 | 
						|
  // Any additional optimization in this function should be recorded
 | 
						|
  // in the cost tables.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue In = Op.getOperand(0);
 | 
						|
  EVT InVT = In.getValueType();
 | 
						|
 | 
						|
  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
 | 
						|
    MVT CastVT =
 | 
						|
        MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
 | 
						|
                         InVT.getVectorNumElements());
 | 
						|
    In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
 | 
						|
    return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
 | 
						|
    unsigned CastOpc =
 | 
						|
        Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
    EVT CastVT = VT.changeVectorElementTypeToInteger();
 | 
						|
    In = DAG.getNode(CastOpc, dl, CastVT, In);
 | 
						|
    return DAG.getNode(Op.getOpcode(), dl, VT, In);
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  if (Op.getValueType().isVector())
 | 
						|
    return LowerVectorINT_TO_FP(Op, DAG);
 | 
						|
 | 
						|
  // f16 conversions are promoted to f32 when full fp16 is not supported.
 | 
						|
  if (Op.getValueType() == MVT::f16 &&
 | 
						|
      !Subtarget->hasFullFP16()) {
 | 
						|
    SDLoc dl(Op);
 | 
						|
    return DAG.getNode(
 | 
						|
        ISD::FP_ROUND, dl, MVT::f16,
 | 
						|
        DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
 | 
						|
        DAG.getIntPtrConstant(0, dl));
 | 
						|
  }
 | 
						|
 | 
						|
  // i128 conversions are libcalls.
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i128)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Other conversions are legal, unless it's to the completely software-based
 | 
						|
  // fp128.
 | 
						|
  if (Op.getValueType() != MVT::f128)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  RTLIB::Libcall LC;
 | 
						|
  if (Op.getOpcode() == ISD::SINT_TO_FP)
 | 
						|
    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
  else
 | 
						|
    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
 | 
						|
 | 
						|
  return LowerF128Call(Op, DAG, LC);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  // For iOS, we want to call an alternative entry point: __sincos_stret,
 | 
						|
  // which returns the values in two S / D registers.
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Arg = Op.getOperand(0);
 | 
						|
  EVT ArgVT = Arg.getValueType();
 | 
						|
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | 
						|
 | 
						|
  ArgListTy Args;
 | 
						|
  ArgListEntry Entry;
 | 
						|
 | 
						|
  Entry.Node = Arg;
 | 
						|
  Entry.Ty = ArgTy;
 | 
						|
  Entry.IsSExt = false;
 | 
						|
  Entry.IsZExt = false;
 | 
						|
  Args.push_back(Entry);
 | 
						|
 | 
						|
  RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
 | 
						|
                                        : RTLIB::SINCOS_STRET_F32;
 | 
						|
  const char *LibcallName = getLibcallName(LC);
 | 
						|
  SDValue Callee =
 | 
						|
      DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
  StructType *RetTy = StructType::get(ArgTy, ArgTy);
 | 
						|
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						|
  CLI.setDebugLoc(dl)
 | 
						|
      .setChain(DAG.getEntryNode())
 | 
						|
      .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | 
						|
  return CallResult.first;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getValueType() != MVT::f16)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(Op.getOperand(0).getValueType() == MVT::i16);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
 | 
						|
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
 | 
						|
  return SDValue(
 | 
						|
      DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
 | 
						|
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
 | 
						|
      0);
 | 
						|
}
 | 
						|
 | 
						|
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
 | 
						|
  if (OrigVT.getSizeInBits() >= 64)
 | 
						|
    return OrigVT;
 | 
						|
 | 
						|
  assert(OrigVT.isSimple() && "Expecting a simple value type");
 | 
						|
 | 
						|
  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
 | 
						|
  switch (OrigSimpleTy) {
 | 
						|
  default: llvm_unreachable("Unexpected Vector Type");
 | 
						|
  case MVT::v2i8:
 | 
						|
  case MVT::v2i16:
 | 
						|
     return MVT::v2i32;
 | 
						|
  case MVT::v4i8:
 | 
						|
    return  MVT::v4i16;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
 | 
						|
                                                 const EVT &OrigTy,
 | 
						|
                                                 const EVT &ExtTy,
 | 
						|
                                                 unsigned ExtOpcode) {
 | 
						|
  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
 | 
						|
  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
 | 
						|
  // 64-bits we need to insert a new extension so that it will be 64-bits.
 | 
						|
  assert(ExtTy.is128BitVector() && "Unexpected extension size");
 | 
						|
  if (OrigTy.getSizeInBits() >= 64)
 | 
						|
    return N;
 | 
						|
 | 
						|
  // Must extend size to at least 64 bits to be used as an operand for VMULL.
 | 
						|
  EVT NewVT = getExtensionTo64Bits(OrigTy);
 | 
						|
 | 
						|
  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
 | 
						|
}
 | 
						|
 | 
						|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                   bool isSigned) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const SDValue &Elt : N->op_values()) {
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
 | 
						|
      unsigned EltSize = VT.getScalarSizeInBits();
 | 
						|
      unsigned HalfSize = EltSize / 2;
 | 
						|
      if (isSigned) {
 | 
						|
        if (!isIntN(HalfSize, C->getSExtValue()))
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        if (!isUIntN(HalfSize, C->getZExtValue()))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
    return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
 | 
						|
                                             N->getOperand(0)->getValueType(0),
 | 
						|
                                             N->getValueType(0),
 | 
						|
                                             N->getOpcode());
 | 
						|
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned EltSize = VT.getScalarSizeInBits() / 2;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  MVT TruncVT = MVT::getIntegerVT(EltSize);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
 | 
						|
    const APInt &CInt = C->getAPIntValue();
 | 
						|
    // Element types smaller than 32 bits are not legal, so use i32 elements.
 | 
						|
    // The values are implicitly truncated so sext vs. zext doesn't matter.
 | 
						|
    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
 | 
						|
}
 | 
						|
 | 
						|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  return N->getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
         isExtendedBUILD_VECTOR(N, DAG, true);
 | 
						|
}
 | 
						|
 | 
						|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  return N->getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
         isExtendedBUILD_VECTOR(N, DAG, false);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | 
						|
    SDNode *N0 = N->getOperand(0).getNode();
 | 
						|
    SDNode *N1 = N->getOperand(1).getNode();
 | 
						|
    return N0->hasOneUse() && N1->hasOneUse() &&
 | 
						|
      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | 
						|
    SDNode *N0 = N->getOperand(0).getNode();
 | 
						|
    SDNode *N1 = N->getOperand(1).getNode();
 | 
						|
    return N0->hasOneUse() && N1->hasOneUse() &&
 | 
						|
      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Multiplications are only custom-lowered for 128-bit vectors so that
 | 
						|
  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert(VT.is128BitVector() && VT.isInteger() &&
 | 
						|
         "unexpected type for custom-lowering ISD::MUL");
 | 
						|
  SDNode *N0 = Op.getOperand(0).getNode();
 | 
						|
  SDNode *N1 = Op.getOperand(1).getNode();
 | 
						|
  unsigned NewOpc = 0;
 | 
						|
  bool isMLA = false;
 | 
						|
  bool isN0SExt = isSignExtended(N0, DAG);
 | 
						|
  bool isN1SExt = isSignExtended(N1, DAG);
 | 
						|
  if (isN0SExt && isN1SExt)
 | 
						|
    NewOpc = AArch64ISD::SMULL;
 | 
						|
  else {
 | 
						|
    bool isN0ZExt = isZeroExtended(N0, DAG);
 | 
						|
    bool isN1ZExt = isZeroExtended(N1, DAG);
 | 
						|
    if (isN0ZExt && isN1ZExt)
 | 
						|
      NewOpc = AArch64ISD::UMULL;
 | 
						|
    else if (isN1SExt || isN1ZExt) {
 | 
						|
      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
 | 
						|
      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
 | 
						|
      if (isN1SExt && isAddSubSExt(N0, DAG)) {
 | 
						|
        NewOpc = AArch64ISD::SMULL;
 | 
						|
        isMLA = true;
 | 
						|
      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
 | 
						|
        NewOpc =  AArch64ISD::UMULL;
 | 
						|
        isMLA = true;
 | 
						|
      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
 | 
						|
        std::swap(N0, N1);
 | 
						|
        NewOpc =  AArch64ISD::UMULL;
 | 
						|
        isMLA = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!NewOpc) {
 | 
						|
      if (VT == MVT::v2i64)
 | 
						|
        // Fall through to expand this.  It is not legal.
 | 
						|
        return SDValue();
 | 
						|
      else
 | 
						|
        // Other vector multiplications are legal.
 | 
						|
        return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize to a S/UMULL instruction
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Op0;
 | 
						|
  SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
 | 
						|
  if (!isMLA) {
 | 
						|
    Op0 = skipExtensionForVectorMULL(N0, DAG);
 | 
						|
    assert(Op0.getValueType().is64BitVector() &&
 | 
						|
           Op1.getValueType().is64BitVector() &&
 | 
						|
           "unexpected types for extended operands to VMULL");
 | 
						|
    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
 | 
						|
  }
 | 
						|
  // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
 | 
						|
  // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
 | 
						|
  // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
 | 
						|
  SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
 | 
						|
  SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
 | 
						|
  EVT Op1VT = Op1.getValueType();
 | 
						|
  return DAG.getNode(N0->getOpcode(), DL, VT,
 | 
						|
                     DAG.getNode(NewOpc, DL, VT,
 | 
						|
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
 | 
						|
                     DAG.getNode(NewOpc, DL, VT,
 | 
						|
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  switch (IntNo) {
 | 
						|
  default: return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
  case Intrinsic::thread_pointer: {
 | 
						|
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
    return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
 | 
						|
  }
 | 
						|
  case Intrinsic::aarch64_neon_abs:
 | 
						|
    return DAG.getNode(ISD::ABS, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(1));
 | 
						|
  case Intrinsic::aarch64_neon_smax:
 | 
						|
    return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(1), Op.getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_umax:
 | 
						|
    return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(1), Op.getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_smin:
 | 
						|
    return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(1), Op.getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_umin:
 | 
						|
    return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
 | 
						|
                       Op.getOperand(1), Op.getOperand(2));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  DEBUG(dbgs() << "Custom lowering: ");
 | 
						|
  DEBUG(Op.dump());
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unimplemented operand");
 | 
						|
    return SDValue();
 | 
						|
  case ISD::BITCAST:
 | 
						|
    return LowerBITCAST(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:
 | 
						|
    return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress:
 | 
						|
    return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::SETCC:
 | 
						|
    return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::BR_CC:
 | 
						|
    return LowerBR_CC(Op, DAG);
 | 
						|
  case ISD::SELECT:
 | 
						|
    return LowerSELECT(Op, DAG);
 | 
						|
  case ISD::SELECT_CC:
 | 
						|
    return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::JumpTable:
 | 
						|
    return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::ConstantPool:
 | 
						|
    return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::BlockAddress:
 | 
						|
    return LowerBlockAddress(Op, DAG);
 | 
						|
  case ISD::VASTART:
 | 
						|
    return LowerVASTART(Op, DAG);
 | 
						|
  case ISD::VACOPY:
 | 
						|
    return LowerVACOPY(Op, DAG);
 | 
						|
  case ISD::VAARG:
 | 
						|
    return LowerVAARG(Op, DAG);
 | 
						|
  case ISD::ADDC:
 | 
						|
  case ISD::ADDE:
 | 
						|
  case ISD::SUBC:
 | 
						|
  case ISD::SUBE:
 | 
						|
    return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
 | 
						|
  case ISD::SADDO:
 | 
						|
  case ISD::UADDO:
 | 
						|
  case ISD::SSUBO:
 | 
						|
  case ISD::USUBO:
 | 
						|
  case ISD::SMULO:
 | 
						|
  case ISD::UMULO:
 | 
						|
    return LowerXALUO(Op, DAG);
 | 
						|
  case ISD::FADD:
 | 
						|
    return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
 | 
						|
  case ISD::FSUB:
 | 
						|
    return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
 | 
						|
  case ISD::FMUL:
 | 
						|
    return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
 | 
						|
  case ISD::FDIV:
 | 
						|
    return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
 | 
						|
  case ISD::FP_ROUND:
 | 
						|
    return LowerFP_ROUND(Op, DAG);
 | 
						|
  case ISD::FP_EXTEND:
 | 
						|
    return LowerFP_EXTEND(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:
 | 
						|
    return LowerFRAMEADDR(Op, DAG);
 | 
						|
  case ISD::RETURNADDR:
 | 
						|
    return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::INSERT_VECTOR_ELT:
 | 
						|
    return LowerINSERT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::EXTRACT_VECTOR_ELT:
 | 
						|
    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::BUILD_VECTOR:
 | 
						|
    return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:
 | 
						|
    return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::EXTRACT_SUBVECTOR:
 | 
						|
    return LowerEXTRACT_SUBVECTOR(Op, DAG);
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::SHL:
 | 
						|
    return LowerVectorSRA_SRL_SHL(Op, DAG);
 | 
						|
  case ISD::SHL_PARTS:
 | 
						|
    return LowerShiftLeftParts(Op, DAG);
 | 
						|
  case ISD::SRL_PARTS:
 | 
						|
  case ISD::SRA_PARTS:
 | 
						|
    return LowerShiftRightParts(Op, DAG);
 | 
						|
  case ISD::CTPOP:
 | 
						|
    return LowerCTPOP(Op, DAG);
 | 
						|
  case ISD::FCOPYSIGN:
 | 
						|
    return LowerFCOPYSIGN(Op, DAG);
 | 
						|
  case ISD::AND:
 | 
						|
    return LowerVectorAND(Op, DAG);
 | 
						|
  case ISD::OR:
 | 
						|
    return LowerVectorOR(Op, DAG);
 | 
						|
  case ISD::XOR:
 | 
						|
    return LowerXOR(Op, DAG);
 | 
						|
  case ISD::PREFETCH:
 | 
						|
    return LowerPREFETCH(Op, DAG);
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    return LowerINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    return LowerFP_TO_INT(Op, DAG);
 | 
						|
  case ISD::FSINCOS:
 | 
						|
    return LowerFSINCOS(Op, DAG);
 | 
						|
  case ISD::MUL:
 | 
						|
    return LowerMUL(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN:
 | 
						|
    return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::VECREDUCE_ADD:
 | 
						|
  case ISD::VECREDUCE_SMAX:
 | 
						|
  case ISD::VECREDUCE_SMIN:
 | 
						|
  case ISD::VECREDUCE_UMAX:
 | 
						|
  case ISD::VECREDUCE_UMIN:
 | 
						|
  case ISD::VECREDUCE_FMAX:
 | 
						|
  case ISD::VECREDUCE_FMIN:
 | 
						|
    return LowerVECREDUCE(Op, DAG);
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
    return LowerATOMIC_LOAD_SUB(Op, DAG);
 | 
						|
  case ISD::ATOMIC_LOAD_AND:
 | 
						|
    return LowerATOMIC_LOAD_AND(Op, DAG);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC:
 | 
						|
    return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Calling Convention Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AArch64GenCallingConv.inc"
 | 
						|
 | 
						|
/// Selects the correct CCAssignFn for a given CallingConvention value.
 | 
						|
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
 | 
						|
                                                     bool IsVarArg) const {
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    report_fatal_error("Unsupported calling convention.");
 | 
						|
  case CallingConv::WebKit_JS:
 | 
						|
    return CC_AArch64_WebKit_JS;
 | 
						|
  case CallingConv::GHC:
 | 
						|
    return CC_AArch64_GHC;
 | 
						|
  case CallingConv::C:
 | 
						|
  case CallingConv::Fast:
 | 
						|
  case CallingConv::PreserveMost:
 | 
						|
  case CallingConv::CXX_FAST_TLS:
 | 
						|
  case CallingConv::Swift:
 | 
						|
    if (Subtarget->isTargetWindows() && IsVarArg)
 | 
						|
      return CC_AArch64_Win64_VarArg;
 | 
						|
    if (!Subtarget->isTargetDarwin())
 | 
						|
      return CC_AArch64_AAPCS;
 | 
						|
    return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
 | 
						|
  case CallingConv::Win64:
 | 
						|
    return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CCAssignFn *
 | 
						|
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
 | 
						|
  return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
 | 
						|
                                      : RetCC_AArch64_AAPCS;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // At this point, Ins[].VT may already be promoted to i32. To correctly
 | 
						|
  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
 | 
						|
  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
 | 
						|
  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
 | 
						|
  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
 | 
						|
  // LocVT.
 | 
						|
  unsigned NumArgs = Ins.size();
 | 
						|
  Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
 | 
						|
  unsigned CurArgIdx = 0;
 | 
						|
  for (unsigned i = 0; i != NumArgs; ++i) {
 | 
						|
    MVT ValVT = Ins[i].VT;
 | 
						|
    if (Ins[i].isOrigArg()) {
 | 
						|
      std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
 | 
						|
      CurArgIdx = Ins[i].getOrigArgIndex();
 | 
						|
 | 
						|
      // Get type of the original argument.
 | 
						|
      EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
 | 
						|
                                  /*AllowUnknown*/ true);
 | 
						|
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
 | 
						|
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
 | 
						|
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
 | 
						|
        ValVT = MVT::i8;
 | 
						|
      else if (ActualMVT == MVT::i16)
 | 
						|
        ValVT = MVT::i16;
 | 
						|
    }
 | 
						|
    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
 | 
						|
    bool Res =
 | 
						|
        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
 | 
						|
    assert(!Res && "Call operand has unhandled type");
 | 
						|
    (void)Res;
 | 
						|
  }
 | 
						|
  assert(ArgLocs.size() == Ins.size());
 | 
						|
  SmallVector<SDValue, 16> ArgValues;
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
 | 
						|
    if (Ins[i].Flags.isByVal()) {
 | 
						|
      // Byval is used for HFAs in the PCS, but the system should work in a
 | 
						|
      // non-compliant manner for larger structs.
 | 
						|
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
      int Size = Ins[i].Flags.getByValSize();
 | 
						|
      unsigned NumRegs = (Size + 7) / 8;
 | 
						|
 | 
						|
      // FIXME: This works on big-endian for composite byvals, which are the common
 | 
						|
      // case. It should also work for fundamental types too.
 | 
						|
      unsigned FrameIdx =
 | 
						|
        MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
 | 
						|
      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
      InVals.push_back(FrameIdxN);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      // Arguments stored in registers.
 | 
						|
      EVT RegVT = VA.getLocVT();
 | 
						|
 | 
						|
      SDValue ArgValue;
 | 
						|
      const TargetRegisterClass *RC;
 | 
						|
 | 
						|
      if (RegVT == MVT::i32)
 | 
						|
        RC = &AArch64::GPR32RegClass;
 | 
						|
      else if (RegVT == MVT::i64)
 | 
						|
        RC = &AArch64::GPR64RegClass;
 | 
						|
      else if (RegVT == MVT::f16)
 | 
						|
        RC = &AArch64::FPR16RegClass;
 | 
						|
      else if (RegVT == MVT::f32)
 | 
						|
        RC = &AArch64::FPR32RegClass;
 | 
						|
      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
 | 
						|
        RC = &AArch64::FPR64RegClass;
 | 
						|
      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
 | 
						|
        RC = &AArch64::FPR128RegClass;
 | 
						|
      else
 | 
						|
        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | 
						|
 | 
						|
      // Transform the arguments in physical registers into virtual ones.
 | 
						|
      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
 | 
						|
 | 
						|
      // If this is an 8, 16 or 32-bit value, it is really passed promoted
 | 
						|
      // to 64 bits.  Insert an assert[sz]ext to capture this, then
 | 
						|
      // truncate to the right size.
 | 
						|
      switch (VA.getLocInfo()) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown loc info!");
 | 
						|
      case CCValAssign::Full:
 | 
						|
        break;
 | 
						|
      case CCValAssign::BCvt:
 | 
						|
        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
 | 
						|
        break;
 | 
						|
      case CCValAssign::AExt:
 | 
						|
      case CCValAssign::SExt:
 | 
						|
      case CCValAssign::ZExt:
 | 
						|
        // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
 | 
						|
        // nodes after our lowering.
 | 
						|
        assert(RegVT == Ins[i].VT && "incorrect register location selected");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
 | 
						|
    } else { // VA.isRegLoc()
 | 
						|
      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
 | 
						|
      unsigned ArgOffset = VA.getLocMemOffset();
 | 
						|
      unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
 | 
						|
 | 
						|
      uint32_t BEAlign = 0;
 | 
						|
      if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
 | 
						|
          !Ins[i].Flags.isInConsecutiveRegs())
 | 
						|
        BEAlign = 8 - ArgSize;
 | 
						|
 | 
						|
      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
 | 
						|
 | 
						|
      // Create load nodes to retrieve arguments from the stack.
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | 
						|
      SDValue ArgValue;
 | 
						|
 | 
						|
      // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
 | 
						|
      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
 | 
						|
      MVT MemVT = VA.getValVT();
 | 
						|
 | 
						|
      switch (VA.getLocInfo()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case CCValAssign::BCvt:
 | 
						|
        MemVT = VA.getLocVT();
 | 
						|
        break;
 | 
						|
      case CCValAssign::SExt:
 | 
						|
        ExtType = ISD::SEXTLOAD;
 | 
						|
        break;
 | 
						|
      case CCValAssign::ZExt:
 | 
						|
        ExtType = ISD::ZEXTLOAD;
 | 
						|
        break;
 | 
						|
      case CCValAssign::AExt:
 | 
						|
        ExtType = ISD::EXTLOAD;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      ArgValue = DAG.getExtLoad(
 | 
						|
          ExtType, DL, VA.getLocVT(), Chain, FIN,
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
 | 
						|
          MemVT);
 | 
						|
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // varargs
 | 
						|
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
  if (isVarArg) {
 | 
						|
    if (!Subtarget->isTargetDarwin() || IsWin64) {
 | 
						|
      // The AAPCS variadic function ABI is identical to the non-variadic
 | 
						|
      // one. As a result there may be more arguments in registers and we should
 | 
						|
      // save them for future reference.
 | 
						|
      // Win64 variadic functions also pass arguments in registers, but all float
 | 
						|
      // arguments are passed in integer registers.
 | 
						|
      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
 | 
						|
    }
 | 
						|
 | 
						|
    // This will point to the next argument passed via stack.
 | 
						|
    unsigned StackOffset = CCInfo.getNextStackOffset();
 | 
						|
    // We currently pass all varargs at 8-byte alignment.
 | 
						|
    StackOffset = ((StackOffset + 7) & ~7);
 | 
						|
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned StackArgSize = CCInfo.getNextStackOffset();
 | 
						|
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
 | 
						|
  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
 | 
						|
    // This is a non-standard ABI so by fiat I say we're allowed to make full
 | 
						|
    // use of the stack area to be popped, which must be aligned to 16 bytes in
 | 
						|
    // any case:
 | 
						|
    StackArgSize = alignTo(StackArgSize, 16);
 | 
						|
 | 
						|
    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
 | 
						|
    // a multiple of 16.
 | 
						|
    FuncInfo->setArgumentStackToRestore(StackArgSize);
 | 
						|
 | 
						|
    // This realignment carries over to the available bytes below. Our own
 | 
						|
    // callers will guarantee the space is free by giving an aligned value to
 | 
						|
    // CALLSEQ_START.
 | 
						|
  }
 | 
						|
  // Even if we're not expected to free up the space, it's useful to know how
 | 
						|
  // much is there while considering tail calls (because we can reuse it).
 | 
						|
  FuncInfo->setBytesInStackArgArea(StackArgSize);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
 | 
						|
                                                SelectionDAG &DAG,
 | 
						|
                                                const SDLoc &DL,
 | 
						|
                                                SDValue &Chain) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
 | 
						|
  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
 | 
						|
                                          AArch64::X3, AArch64::X4, AArch64::X5,
 | 
						|
                                          AArch64::X6, AArch64::X7 };
 | 
						|
  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
 | 
						|
  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
 | 
						|
 | 
						|
  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
 | 
						|
  int GPRIdx = 0;
 | 
						|
  if (GPRSaveSize != 0) {
 | 
						|
    if (IsWin64) {
 | 
						|
      GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
 | 
						|
      if (GPRSaveSize & 15)
 | 
						|
        // The extra size here, if triggered, will always be 8.
 | 
						|
        MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
 | 
						|
    } else
 | 
						|
      GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
 | 
						|
 | 
						|
    SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
 | 
						|
 | 
						|
    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
 | 
						|
      unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
 | 
						|
      SDValue Store = DAG.getStore(
 | 
						|
          Val.getValue(1), DL, Val, FIN,
 | 
						|
          IsWin64
 | 
						|
              ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
 | 
						|
                                                  GPRIdx,
 | 
						|
                                                  (i - FirstVariadicGPR) * 8)
 | 
						|
              : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      FIN =
 | 
						|
          DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  FuncInfo->setVarArgsGPRIndex(GPRIdx);
 | 
						|
  FuncInfo->setVarArgsGPRSize(GPRSaveSize);
 | 
						|
 | 
						|
  if (Subtarget->hasFPARMv8() && !IsWin64) {
 | 
						|
    static const MCPhysReg FPRArgRegs[] = {
 | 
						|
        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
 | 
						|
        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
 | 
						|
    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
 | 
						|
    unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
 | 
						|
 | 
						|
    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
 | 
						|
    int FPRIdx = 0;
 | 
						|
    if (FPRSaveSize != 0) {
 | 
						|
      FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
 | 
						|
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
 | 
						|
 | 
						|
      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
 | 
						|
        unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
 | 
						|
        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
 | 
						|
 | 
						|
        SDValue Store = DAG.getStore(
 | 
						|
            Val.getValue(1), DL, Val, FIN,
 | 
						|
            MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
 | 
						|
                          DAG.getConstant(16, DL, PtrVT));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    FuncInfo->setVarArgsFPRIndex(FPRIdx);
 | 
						|
    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty()) {
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCallResult - Lower the result values of a call into the
 | 
						|
/// appropriate copies out of appropriate physical registers.
 | 
						|
SDValue AArch64TargetLowering::LowerCallResult(
 | 
						|
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
 | 
						|
    SDValue ThisVal) const {
 | 
						|
  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | 
						|
                          ? RetCC_AArch64_WebKit_JS
 | 
						|
                          : RetCC_AArch64_AAPCS;
 | 
						|
  // Assign locations to each value returned by this call.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeCallResult(Ins, RetCC);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign VA = RVLocs[i];
 | 
						|
 | 
						|
    // Pass 'this' value directly from the argument to return value, to avoid
 | 
						|
    // reg unit interference
 | 
						|
    if (i == 0 && isThisReturn) {
 | 
						|
      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
 | 
						|
             "unexpected return calling convention register assignment");
 | 
						|
      InVals.push_back(ThisVal);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue Val =
 | 
						|
        DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
 | 
						|
    Chain = Val.getValue(1);
 | 
						|
    InFlag = Val.getValue(2);
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full:
 | 
						|
      break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the calling convention is one that we can guarantee TCO for.
 | 
						|
static bool canGuaranteeTCO(CallingConv::ID CC) {
 | 
						|
  return CC == CallingConv::Fast;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we might ever do TCO for calls with this calling convention.
 | 
						|
static bool mayTailCallThisCC(CallingConv::ID CC) {
 | 
						|
  switch (CC) {
 | 
						|
  case CallingConv::C:
 | 
						|
  case CallingConv::PreserveMost:
 | 
						|
  case CallingConv::Swift:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return canGuaranteeTCO(CC);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isEligibleForTailCallOptimization(
 | 
						|
    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
 | 
						|
  if (!mayTailCallThisCC(CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const Function &CallerF = MF.getFunction();
 | 
						|
  CallingConv::ID CallerCC = CallerF.getCallingConv();
 | 
						|
  bool CCMatch = CallerCC == CalleeCC;
 | 
						|
 | 
						|
  // Byval parameters hand the function a pointer directly into the stack area
 | 
						|
  // we want to reuse during a tail call. Working around this *is* possible (see
 | 
						|
  // X86) but less efficient and uglier in LowerCall.
 | 
						|
  for (Function::const_arg_iterator i = CallerF.arg_begin(),
 | 
						|
                                    e = CallerF.arg_end();
 | 
						|
       i != e; ++i)
 | 
						|
    if (i->hasByValAttr())
 | 
						|
      return false;
 | 
						|
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    return canGuaranteeTCO(CalleeCC) && CCMatch;
 | 
						|
 | 
						|
  // Externally-defined functions with weak linkage should not be
 | 
						|
  // tail-called on AArch64 when the OS does not support dynamic
 | 
						|
  // pre-emption of symbols, as the AAELF spec requires normal calls
 | 
						|
  // to undefined weak functions to be replaced with a NOP or jump to the
 | 
						|
  // next instruction. The behaviour of branch instructions in this
 | 
						|
  // situation (as used for tail calls) is implementation-defined, so we
 | 
						|
  // cannot rely on the linker replacing the tail call with a return.
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    const GlobalValue *GV = G->getGlobal();
 | 
						|
    const Triple &TT = getTargetMachine().getTargetTriple();
 | 
						|
    if (GV->hasExternalWeakLinkage() &&
 | 
						|
        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we search for cases where we can use a tail call without changing the
 | 
						|
  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
 | 
						|
  // concept.
 | 
						|
 | 
						|
  // I want anyone implementing a new calling convention to think long and hard
 | 
						|
  // about this assert.
 | 
						|
  assert((!isVarArg || CalleeCC == CallingConv::C) &&
 | 
						|
         "Unexpected variadic calling convention");
 | 
						|
 | 
						|
  LLVMContext &C = *DAG.getContext();
 | 
						|
  if (isVarArg && !Outs.empty()) {
 | 
						|
    // At least two cases here: if caller is fastcc then we can't have any
 | 
						|
    // memory arguments (we'd be expected to clean up the stack afterwards). If
 | 
						|
    // caller is C then we could potentially use its argument area.
 | 
						|
 | 
						|
    // FIXME: for now we take the most conservative of these in both cases:
 | 
						|
    // disallow all variadic memory operands.
 | 
						|
    SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
 | 
						|
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
 | 
						|
    for (const CCValAssign &ArgLoc : ArgLocs)
 | 
						|
      if (!ArgLoc.isRegLoc())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the call results are passed in the same way.
 | 
						|
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
 | 
						|
                                  CCAssignFnForCall(CalleeCC, isVarArg),
 | 
						|
                                  CCAssignFnForCall(CallerCC, isVarArg)))
 | 
						|
    return false;
 | 
						|
  // The callee has to preserve all registers the caller needs to preserve.
 | 
						|
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
 | 
						|
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
 | 
						|
  if (!CCMatch) {
 | 
						|
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
 | 
						|
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Nothing more to check if the callee is taking no arguments
 | 
						|
  if (Outs.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
 | 
						|
 | 
						|
  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
 | 
						|
 | 
						|
  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
 | 
						|
  // If the stack arguments for this call do not fit into our own save area then
 | 
						|
  // the call cannot be made tail.
 | 
						|
  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
 | 
						|
                                                   SelectionDAG &DAG,
 | 
						|
                                                   MachineFrameInfo &MFI,
 | 
						|
                                                   int ClobberedFI) const {
 | 
						|
  SmallVector<SDValue, 8> ArgChains;
 | 
						|
  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
 | 
						|
  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
 | 
						|
 | 
						|
  // Include the original chain at the beginning of the list. When this is
 | 
						|
  // used by target LowerCall hooks, this helps legalize find the
 | 
						|
  // CALLSEQ_BEGIN node.
 | 
						|
  ArgChains.push_back(Chain);
 | 
						|
 | 
						|
  // Add a chain value for each stack argument corresponding
 | 
						|
  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
 | 
						|
                            UE = DAG.getEntryNode().getNode()->use_end();
 | 
						|
       U != UE; ++U)
 | 
						|
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
 | 
						|
        if (FI->getIndex() < 0) {
 | 
						|
          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
 | 
						|
          int64_t InLastByte = InFirstByte;
 | 
						|
          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
 | 
						|
 | 
						|
          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
 | 
						|
              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
 | 
						|
            ArgChains.push_back(SDValue(L, 1));
 | 
						|
        }
 | 
						|
 | 
						|
  // Build a tokenfactor for all the chains.
 | 
						|
  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
 | 
						|
                                                   bool TailCallOpt) const {
 | 
						|
  return CallCC == CallingConv::Fast && TailCallOpt;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
 | 
						|
/// and add input and output parameter nodes.
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
 | 
						|
                                 SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG = CLI.DAG;
 | 
						|
  SDLoc &DL = CLI.DL;
 | 
						|
  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
 | 
						|
  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
 | 
						|
  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
 | 
						|
  SDValue Chain = CLI.Chain;
 | 
						|
  SDValue Callee = CLI.Callee;
 | 
						|
  bool &IsTailCall = CLI.IsTailCall;
 | 
						|
  CallingConv::ID CallConv = CLI.CallConv;
 | 
						|
  bool IsVarArg = CLI.IsVarArg;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool IsThisReturn = false;
 | 
						|
 | 
						|
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
 | 
						|
  bool IsSibCall = false;
 | 
						|
 | 
						|
  if (IsTailCall) {
 | 
						|
    // Check if it's really possible to do a tail call.
 | 
						|
    IsTailCall = isEligibleForTailCallOptimization(
 | 
						|
        Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
 | 
						|
    if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
 | 
						|
      report_fatal_error("failed to perform tail call elimination on a call "
 | 
						|
                         "site marked musttail");
 | 
						|
 | 
						|
    // A sibling call is one where we're under the usual C ABI and not planning
 | 
						|
    // to change that but can still do a tail call:
 | 
						|
    if (!TailCallOpt && IsTailCall)
 | 
						|
      IsSibCall = true;
 | 
						|
 | 
						|
    if (IsTailCall)
 | 
						|
      ++NumTailCalls;
 | 
						|
  }
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  if (IsVarArg) {
 | 
						|
    // Handle fixed and variable vector arguments differently.
 | 
						|
    // Variable vector arguments always go into memory.
 | 
						|
    unsigned NumArgs = Outs.size();
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i) {
 | 
						|
      MVT ArgVT = Outs[i].VT;
 | 
						|
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | 
						|
      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
 | 
						|
                                               /*IsVarArg=*/ !Outs[i].IsFixed);
 | 
						|
      bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
 | 
						|
      assert(!Res && "Call operand has unhandled type");
 | 
						|
      (void)Res;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // At this point, Outs[].VT may already be promoted to i32. To correctly
 | 
						|
    // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
 | 
						|
    // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
 | 
						|
    // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
 | 
						|
    // we use a special version of AnalyzeCallOperands to pass in ValVT and
 | 
						|
    // LocVT.
 | 
						|
    unsigned NumArgs = Outs.size();
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i) {
 | 
						|
      MVT ValVT = Outs[i].VT;
 | 
						|
      // Get type of the original argument.
 | 
						|
      EVT ActualVT = getValueType(DAG.getDataLayout(),
 | 
						|
                                  CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
 | 
						|
                                  /*AllowUnknown*/ true);
 | 
						|
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
 | 
						|
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | 
						|
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
 | 
						|
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
 | 
						|
        ValVT = MVT::i8;
 | 
						|
      else if (ActualMVT == MVT::i16)
 | 
						|
        ValVT = MVT::i16;
 | 
						|
 | 
						|
      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
 | 
						|
      bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
 | 
						|
      assert(!Res && "Call operand has unhandled type");
 | 
						|
      (void)Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
 | 
						|
  if (IsSibCall) {
 | 
						|
    // Since we're not changing the ABI to make this a tail call, the memory
 | 
						|
    // operands are already available in the caller's incoming argument space.
 | 
						|
    NumBytes = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // FPDiff is the byte offset of the call's argument area from the callee's.
 | 
						|
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
 | 
						|
  // by this amount for a tail call. In a sibling call it must be 0 because the
 | 
						|
  // caller will deallocate the entire stack and the callee still expects its
 | 
						|
  // arguments to begin at SP+0. Completely unused for non-tail calls.
 | 
						|
  int FPDiff = 0;
 | 
						|
 | 
						|
  if (IsTailCall && !IsSibCall) {
 | 
						|
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
 | 
						|
 | 
						|
    // Since callee will pop argument stack as a tail call, we must keep the
 | 
						|
    // popped size 16-byte aligned.
 | 
						|
    NumBytes = alignTo(NumBytes, 16);
 | 
						|
 | 
						|
    // FPDiff will be negative if this tail call requires more space than we
 | 
						|
    // would automatically have in our incoming argument space. Positive if we
 | 
						|
    // can actually shrink the stack.
 | 
						|
    FPDiff = NumReusableBytes - NumBytes;
 | 
						|
 | 
						|
    // The stack pointer must be 16-byte aligned at all times it's used for a
 | 
						|
    // memory operation, which in practice means at *all* times and in
 | 
						|
    // particular across call boundaries. Therefore our own arguments started at
 | 
						|
    // a 16-byte aligned SP and the delta applied for the tail call should
 | 
						|
    // satisfy the same constraint.
 | 
						|
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  if (!IsSibCall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
 | 
						|
 | 
						|
  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
 | 
						|
                                        getPointerTy(DAG.getDataLayout()));
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.
 | 
						|
  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
 | 
						|
       ++i, ++realArgIdx) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[realArgIdx];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | 
						|
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full:
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      if (Outs[realArgIdx].ArgVT == MVT::i1) {
 | 
						|
        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
 | 
						|
        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
 | 
						|
        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
 | 
						|
      }
 | 
						|
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::FPExt:
 | 
						|
      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
 | 
						|
          Outs[0].VT == MVT::i64) {
 | 
						|
        assert(VA.getLocVT() == MVT::i64 &&
 | 
						|
               "unexpected calling convention register assignment");
 | 
						|
        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
 | 
						|
               "unexpected use of 'returned'");
 | 
						|
        IsThisReturn = true;
 | 
						|
      }
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
    } else {
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
 | 
						|
      SDValue DstAddr;
 | 
						|
      MachinePointerInfo DstInfo;
 | 
						|
 | 
						|
      // FIXME: This works on big-endian for composite byvals, which are the
 | 
						|
      // common case. It should also work for fundamental types too.
 | 
						|
      uint32_t BEAlign = 0;
 | 
						|
      unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
 | 
						|
                                        : VA.getValVT().getSizeInBits();
 | 
						|
      OpSize = (OpSize + 7) / 8;
 | 
						|
      if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
 | 
						|
          !Flags.isInConsecutiveRegs()) {
 | 
						|
        if (OpSize < 8)
 | 
						|
          BEAlign = 8 - OpSize;
 | 
						|
      }
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
      int32_t Offset = LocMemOffset + BEAlign;
 | 
						|
      SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
 | 
						|
 | 
						|
      if (IsTailCall) {
 | 
						|
        Offset = Offset + FPDiff;
 | 
						|
        int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
 | 
						|
 | 
						|
        DstAddr = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
        DstInfo =
 | 
						|
            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
 | 
						|
 | 
						|
        // Make sure any stack arguments overlapping with where we're storing
 | 
						|
        // are loaded before this eventual operation. Otherwise they'll be
 | 
						|
        // clobbered.
 | 
						|
        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
 | 
						|
      } else {
 | 
						|
        SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
 | 
						|
 | 
						|
        DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
 | 
						|
        DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
 | 
						|
                                               LocMemOffset);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Outs[i].Flags.isByVal()) {
 | 
						|
        SDValue SizeNode =
 | 
						|
            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
 | 
						|
        SDValue Cpy = DAG.getMemcpy(
 | 
						|
            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
 | 
						|
            /*isVol = */ false, /*AlwaysInline = */ false,
 | 
						|
            /*isTailCall = */ false,
 | 
						|
            DstInfo, MachinePointerInfo());
 | 
						|
 | 
						|
        MemOpChains.push_back(Cpy);
 | 
						|
      } else {
 | 
						|
        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
 | 
						|
        // promoted to a legal register type i32, we should truncate Arg back to
 | 
						|
        // i1/i8/i16.
 | 
						|
        if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
 | 
						|
            VA.getValVT() == MVT::i16)
 | 
						|
          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
 | 
						|
 | 
						|
        SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (auto &RegToPass : RegsToPass) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
 | 
						|
                             RegToPass.second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | 
						|
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | 
						|
  // node so that legalize doesn't hack it.
 | 
						|
  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    auto GV = G->getGlobal();
 | 
						|
    if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
 | 
						|
        AArch64II::MO_GOT) {
 | 
						|
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
 | 
						|
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
 | 
						|
    } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
 | 
						|
      assert(Subtarget->isTargetWindows() &&
 | 
						|
             "Windows is the only supported COFF target");
 | 
						|
      Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
 | 
						|
    } else {
 | 
						|
      const GlobalValue *GV = G->getGlobal();
 | 
						|
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
 | 
						|
    }
 | 
						|
  } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | 
						|
        Subtarget->isTargetMachO()) {
 | 
						|
      const char *Sym = S->getSymbol();
 | 
						|
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
 | 
						|
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
 | 
						|
    } else {
 | 
						|
      const char *Sym = S->getSymbol();
 | 
						|
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't usually want to end the call-sequence here because we would tidy
 | 
						|
  // the frame up *after* the call, however in the ABI-changing tail-call case
 | 
						|
  // we've carefully laid out the parameters so that when sp is reset they'll be
 | 
						|
  // in the correct location.
 | 
						|
  if (IsTailCall && !IsSibCall) {
 | 
						|
    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
 | 
						|
                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<SDValue> Ops;
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
 | 
						|
  if (IsTailCall) {
 | 
						|
    // Each tail call may have to adjust the stack by a different amount, so
 | 
						|
    // this information must travel along with the operation for eventual
 | 
						|
    // consumption by emitEpilogue.
 | 
						|
    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (auto &RegToPass : RegsToPass)
 | 
						|
    Ops.push_back(DAG.getRegister(RegToPass.first,
 | 
						|
                                  RegToPass.second.getValueType()));
 | 
						|
 | 
						|
  // Add a register mask operand representing the call-preserved registers.
 | 
						|
  const uint32_t *Mask;
 | 
						|
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
 | 
						|
  if (IsThisReturn) {
 | 
						|
    // For 'this' returns, use the X0-preserving mask if applicable
 | 
						|
    Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
 | 
						|
    if (!Mask) {
 | 
						|
      IsThisReturn = false;
 | 
						|
      Mask = TRI->getCallPreservedMask(MF, CallConv);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    Mask = TRI->getCallPreservedMask(MF, CallConv);
 | 
						|
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
  Ops.push_back(DAG.getRegisterMask(Mask));
 | 
						|
 | 
						|
  if (InFlag.getNode())
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
  // If we're doing a tall call, use a TC_RETURN here rather than an
 | 
						|
  // actual call instruction.
 | 
						|
  if (IsTailCall) {
 | 
						|
    MF.getFrameInfo().setHasTailCall();
 | 
						|
    return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a chain and a flag for retval copy to use.
 | 
						|
  Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  uint64_t CalleePopBytes =
 | 
						|
      DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
 | 
						|
                             DAG.getIntPtrConstant(CalleePopBytes, DL, true),
 | 
						|
                             InFlag, DL);
 | 
						|
  if (!Ins.empty())
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  // Handle result values, copying them out of physregs into vregs that we
 | 
						|
  // return.
 | 
						|
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
 | 
						|
                         InVals, IsThisReturn,
 | 
						|
                         IsThisReturn ? OutVals[0] : SDValue());
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::CanLowerReturn(
 | 
						|
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
 | 
						|
  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | 
						|
                          ? RetCC_AArch64_WebKit_JS
 | 
						|
                          : RetCC_AArch64_AAPCS;
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | 
						|
  return CCInfo.CheckReturn(Outs, RetCC);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                                   bool isVarArg,
 | 
						|
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                   const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                   const SDLoc &DL, SelectionDAG &DAG) const {
 | 
						|
  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
 | 
						|
                          ? RetCC_AArch64_WebKit_JS
 | 
						|
                          : RetCC_AArch64_AAPCS;
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeReturn(Outs, RetCC);
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 4> RetOps(1, Chain);
 | 
						|
  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
 | 
						|
       ++i, ++realRVLocIdx) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
    SDValue Arg = OutVals[realRVLocIdx];
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full:
 | 
						|
      if (Outs[i].ArgVT == MVT::i1) {
 | 
						|
        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
 | 
						|
        // value. This is strictly redundant on Darwin (which uses "zeroext
 | 
						|
        // i1"), but will be optimised out before ISel.
 | 
						|
        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
 | 
						|
        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
  }
 | 
						|
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
 | 
						|
  const MCPhysReg *I =
 | 
						|
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
 | 
						|
  if (I) {
 | 
						|
    for (; *I; ++I) {
 | 
						|
      if (AArch64::GPR64RegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
 | 
						|
      else if (AArch64::FPR64RegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
 | 
						|
      else
 | 
						|
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain; // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Other Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
 | 
						|
                                             SelectionDAG &DAG,
 | 
						|
                                             unsigned Flag) const {
 | 
						|
  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
 | 
						|
                                             SelectionDAG &DAG,
 | 
						|
                                             unsigned Flag) const {
 | 
						|
  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
 | 
						|
                                             SelectionDAG &DAG,
 | 
						|
                                             unsigned Flag) const {
 | 
						|
  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
 | 
						|
                                   N->getOffset(), Flag);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
 | 
						|
                                             SelectionDAG &DAG,
 | 
						|
                                             unsigned Flag) const {
 | 
						|
  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
 | 
						|
}
 | 
						|
 | 
						|
// (loadGOT sym)
 | 
						|
template <class NodeTy>
 | 
						|
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
 | 
						|
                                      unsigned Flags) const {
 | 
						|
  DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
 | 
						|
  // FIXME: Once remat is capable of dealing with instructions with register
 | 
						|
  // operands, expand this into two nodes instead of using a wrapper node.
 | 
						|
  return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
 | 
						|
}
 | 
						|
 | 
						|
// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
 | 
						|
template <class NodeTy>
 | 
						|
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
 | 
						|
                                            unsigned Flags) const {
 | 
						|
  DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
  const unsigned char MO_NC = AArch64II::MO_NC;
 | 
						|
  return DAG.getNode(
 | 
						|
      AArch64ISD::WrapperLarge, DL, Ty,
 | 
						|
      getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
 | 
						|
      getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
 | 
						|
      getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
 | 
						|
      getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
 | 
						|
}
 | 
						|
 | 
						|
// (addlow (adrp %hi(sym)) %lo(sym))
 | 
						|
template <class NodeTy>
 | 
						|
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
 | 
						|
                                       unsigned Flags) const {
 | 
						|
  DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT Ty = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
 | 
						|
  SDValue Lo = getTargetNode(N, Ty, DAG,
 | 
						|
                             AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
 | 
						|
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
 | 
						|
  return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  const GlobalValue *GV = GN->getGlobal();
 | 
						|
  const AArch64II::TOF TargetFlags =
 | 
						|
      (GV->hasDLLImportStorageClass() ? AArch64II::MO_DLLIMPORT
 | 
						|
                                      : AArch64II::MO_NO_FLAG);
 | 
						|
  unsigned char OpFlags =
 | 
						|
      Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
 | 
						|
 | 
						|
  assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
 | 
						|
         "unexpected offset in global node");
 | 
						|
 | 
						|
  // This also catches the large code model case for Darwin.
 | 
						|
  if ((OpFlags & AArch64II::MO_GOT) != 0) {
 | 
						|
    return getGOT(GN, DAG, TargetFlags);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Result;
 | 
						|
  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
 | 
						|
    Result = getAddrLarge(GN, DAG, TargetFlags);
 | 
						|
  } else {
 | 
						|
    Result = getAddr(GN, DAG, TargetFlags);
 | 
						|
  }
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDLoc DL(GN);
 | 
						|
  if (GV->hasDLLImportStorageClass())
 | 
						|
    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
 | 
						|
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Convert a TLS address reference into the correct sequence of loads
 | 
						|
/// and calls to compute the variable's address (for Darwin, currently) and
 | 
						|
/// return an SDValue containing the final node.
 | 
						|
 | 
						|
/// Darwin only has one TLS scheme which must be capable of dealing with the
 | 
						|
/// fully general situation, in the worst case. This means:
 | 
						|
///     + "extern __thread" declaration.
 | 
						|
///     + Defined in a possibly unknown dynamic library.
 | 
						|
///
 | 
						|
/// The general system is that each __thread variable has a [3 x i64] descriptor
 | 
						|
/// which contains information used by the runtime to calculate the address. The
 | 
						|
/// only part of this the compiler needs to know about is the first xword, which
 | 
						|
/// contains a function pointer that must be called with the address of the
 | 
						|
/// entire descriptor in "x0".
 | 
						|
///
 | 
						|
/// Since this descriptor may be in a different unit, in general even the
 | 
						|
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
 | 
						|
/// is:
 | 
						|
///     adrp x0, _var@TLVPPAGE
 | 
						|
///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
 | 
						|
///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
 | 
						|
///                                      ; the function pointer
 | 
						|
///     blr x1                           ; Uses descriptor address in x0
 | 
						|
///     ; Address of _var is now in x0.
 | 
						|
///
 | 
						|
/// If the address of _var's descriptor *is* known to the linker, then it can
 | 
						|
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
 | 
						|
/// a slight efficiency gain.
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetDarwin() &&
 | 
						|
         "This function expects a Darwin target");
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  MVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | 
						|
 | 
						|
  SDValue TLVPAddr =
 | 
						|
      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | 
						|
  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
 | 
						|
 | 
						|
  // The first entry in the descriptor is a function pointer that we must call
 | 
						|
  // to obtain the address of the variable.
 | 
						|
  SDValue Chain = DAG.getEntryNode();
 | 
						|
  SDValue FuncTLVGet = DAG.getLoad(
 | 
						|
      MVT::i64, DL, Chain, DescAddr,
 | 
						|
      MachinePointerInfo::getGOT(DAG.getMachineFunction()),
 | 
						|
      /* Alignment = */ 8,
 | 
						|
      MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
 | 
						|
          MachineMemOperand::MODereferenceable);
 | 
						|
  Chain = FuncTLVGet.getValue(1);
 | 
						|
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI.setAdjustsStack(true);
 | 
						|
 | 
						|
  // TLS calls preserve all registers except those that absolutely must be
 | 
						|
  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
 | 
						|
  // silly).
 | 
						|
  const uint32_t *Mask =
 | 
						|
      Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
 | 
						|
 | 
						|
  // Finally, we can make the call. This is just a degenerate version of a
 | 
						|
  // normal AArch64 call node: x0 takes the address of the descriptor, and
 | 
						|
  // returns the address of the variable in this thread.
 | 
						|
  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
 | 
						|
  Chain =
 | 
						|
      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
 | 
						|
                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
 | 
						|
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
 | 
						|
  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
/// When accessing thread-local variables under either the general-dynamic or
 | 
						|
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
 | 
						|
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
 | 
						|
/// is a function pointer to carry out the resolution.
 | 
						|
///
 | 
						|
/// The sequence is:
 | 
						|
///    adrp  x0, :tlsdesc:var
 | 
						|
///    ldr   x1, [x0, #:tlsdesc_lo12:var]
 | 
						|
///    add   x0, x0, #:tlsdesc_lo12:var
 | 
						|
///    .tlsdesccall var
 | 
						|
///    blr   x1
 | 
						|
///    (TPIDR_EL0 offset now in x0)
 | 
						|
///
 | 
						|
///  The above sequence must be produced unscheduled, to enable the linker to
 | 
						|
///  optimize/relax this sequence.
 | 
						|
///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
 | 
						|
///  above sequence, and expanded really late in the compilation flow, to ensure
 | 
						|
///  the sequence is produced as per above.
 | 
						|
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
 | 
						|
                                                      const SDLoc &DL,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  SDValue Chain = DAG.getEntryNode();
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
  Chain =
 | 
						|
      DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
 | 
						|
  SDValue Glue = Chain.getValue(1);
 | 
						|
 | 
						|
  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetELF() && "This function expects an ELF target");
 | 
						|
  assert(Subtarget->useSmallAddressing() &&
 | 
						|
         "ELF TLS only supported in small memory model");
 | 
						|
  // Different choices can be made for the maximum size of the TLS area for a
 | 
						|
  // module. For the small address model, the default TLS size is 16MiB and the
 | 
						|
  // maximum TLS size is 4GiB.
 | 
						|
  // FIXME: add -mtls-size command line option and make it control the 16MiB
 | 
						|
  // vs. 4GiB code sequence generation.
 | 
						|
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
 | 
						|
  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
 | 
						|
 | 
						|
  if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
 | 
						|
    if (Model == TLSModel::LocalDynamic)
 | 
						|
      Model = TLSModel::GeneralDynamic;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue TPOff;
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDLoc DL(Op);
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
 | 
						|
  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
 | 
						|
 | 
						|
  if (Model == TLSModel::LocalExec) {
 | 
						|
    SDValue HiVar = DAG.getTargetGlobalAddress(
 | 
						|
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
 | 
						|
    SDValue LoVar = DAG.getTargetGlobalAddress(
 | 
						|
        GV, DL, PtrVT, 0,
 | 
						|
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | 
						|
 | 
						|
    SDValue TPWithOff_lo =
 | 
						|
        SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
 | 
						|
                                   HiVar,
 | 
						|
                                   DAG.getTargetConstant(0, DL, MVT::i32)),
 | 
						|
                0);
 | 
						|
    SDValue TPWithOff =
 | 
						|
        SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
 | 
						|
                                   LoVar,
 | 
						|
                                   DAG.getTargetConstant(0, DL, MVT::i32)),
 | 
						|
                0);
 | 
						|
    return TPWithOff;
 | 
						|
  } else if (Model == TLSModel::InitialExec) {
 | 
						|
    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | 
						|
    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
 | 
						|
  } else if (Model == TLSModel::LocalDynamic) {
 | 
						|
    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
 | 
						|
    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
 | 
						|
    // the beginning of the module's TLS region, followed by a DTPREL offset
 | 
						|
    // calculation.
 | 
						|
 | 
						|
    // These accesses will need deduplicating if there's more than one.
 | 
						|
    AArch64FunctionInfo *MFI =
 | 
						|
        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
 | 
						|
    MFI->incNumLocalDynamicTLSAccesses();
 | 
						|
 | 
						|
    // The call needs a relocation too for linker relaxation. It doesn't make
 | 
						|
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
 | 
						|
    // the address.
 | 
						|
    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
 | 
						|
                                                  AArch64II::MO_TLS);
 | 
						|
 | 
						|
    // Now we can calculate the offset from TPIDR_EL0 to this module's
 | 
						|
    // thread-local area.
 | 
						|
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
 | 
						|
 | 
						|
    // Now use :dtprel_whatever: operations to calculate this variable's offset
 | 
						|
    // in its thread-storage area.
 | 
						|
    SDValue HiVar = DAG.getTargetGlobalAddress(
 | 
						|
        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
 | 
						|
    SDValue LoVar = DAG.getTargetGlobalAddress(
 | 
						|
        GV, DL, MVT::i64, 0,
 | 
						|
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | 
						|
 | 
						|
    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
 | 
						|
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
 | 
						|
                    0);
 | 
						|
    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
 | 
						|
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
 | 
						|
                    0);
 | 
						|
  } else if (Model == TLSModel::GeneralDynamic) {
 | 
						|
    // The call needs a relocation too for linker relaxation. It doesn't make
 | 
						|
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
 | 
						|
    // the address.
 | 
						|
    SDValue SymAddr =
 | 
						|
        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
 | 
						|
 | 
						|
    // Finally we can make a call to calculate the offset from tpidr_el0.
 | 
						|
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Unsupported ELF TLS access model");
 | 
						|
 | 
						|
  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
 | 
						|
 | 
						|
  SDValue Chain = DAG.getEntryNode();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
 | 
						|
 | 
						|
  // Load the ThreadLocalStoragePointer from the TEB
 | 
						|
  // A pointer to the TLS array is located at offset 0x58 from the TEB.
 | 
						|
  SDValue TLSArray =
 | 
						|
      DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
 | 
						|
  TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
 | 
						|
  Chain = TLSArray.getValue(1);
 | 
						|
 | 
						|
  // Load the TLS index from the C runtime;
 | 
						|
  // This does the same as getAddr(), but without having a GlobalAddressSDNode.
 | 
						|
  // This also does the same as LOADgot, but using a generic i32 load,
 | 
						|
  // while LOADgot only loads i64.
 | 
						|
  SDValue TLSIndexHi =
 | 
						|
      DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
 | 
						|
  SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
 | 
						|
      "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | 
						|
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
 | 
						|
  SDValue TLSIndex =
 | 
						|
      DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
 | 
						|
  TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
 | 
						|
  Chain = TLSIndex.getValue(1);
 | 
						|
 | 
						|
  // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
 | 
						|
  // offset into the TLSArray.
 | 
						|
  TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
 | 
						|
  SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
 | 
						|
                             DAG.getConstant(3, DL, PtrVT));
 | 
						|
  SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
 | 
						|
                            DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
 | 
						|
                            MachinePointerInfo());
 | 
						|
  Chain = TLS.getValue(1);
 | 
						|
 | 
						|
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  SDValue TGAHi = DAG.getTargetGlobalAddress(
 | 
						|
      GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
 | 
						|
  SDValue TGALo = DAG.getTargetGlobalAddress(
 | 
						|
      GV, DL, PtrVT, 0,
 | 
						|
      AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | 
						|
 | 
						|
  // Add the offset from the start of the .tls section (section base).
 | 
						|
  SDValue Addr =
 | 
						|
      SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
 | 
						|
                                 DAG.getTargetConstant(0, DL, MVT::i32)),
 | 
						|
              0);
 | 
						|
  Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
  if (DAG.getTarget().useEmulatedTLS())
 | 
						|
    return LowerToTLSEmulatedModel(GA, DAG);
 | 
						|
 | 
						|
  if (Subtarget->isTargetDarwin())
 | 
						|
    return LowerDarwinGlobalTLSAddress(Op, DAG);
 | 
						|
  if (Subtarget->isTargetELF())
 | 
						|
    return LowerELFGlobalTLSAddress(Op, DAG);
 | 
						|
  if (Subtarget->isTargetWindows())
 | 
						|
    return LowerWindowsGlobalTLSAddress(Op, DAG);
 | 
						|
 | 
						|
  llvm_unreachable("Unexpected platform trying to use TLS");
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | 
						|
  SDValue LHS = Op.getOperand(2);
 | 
						|
  SDValue RHS = Op.getOperand(3);
 | 
						|
  SDValue Dest = Op.getOperand(4);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Handle f128 first, since lowering it will result in comparing the return
 | 
						|
  // value of a libcall against zero, which is just what the rest of LowerBR_CC
 | 
						|
  // is expecting to deal with.
 | 
						|
  if (LHS.getValueType() == MVT::f128) {
 | 
						|
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | 
						|
 | 
						|
    // If softenSetCCOperands returned a scalar, we need to compare the result
 | 
						|
    // against zero to select between true and false values.
 | 
						|
    if (!RHS.getNode()) {
 | 
						|
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
 | 
						|
      CC = ISD::SETNE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
 | 
						|
  // instruction.
 | 
						|
  if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
 | 
						|
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    // Only lower legal XALUO ops.
 | 
						|
    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // The actual operation with overflow check.
 | 
						|
    AArch64CC::CondCode OFCC;
 | 
						|
    SDValue Value, Overflow;
 | 
						|
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
 | 
						|
 | 
						|
    if (CC == ISD::SETNE)
 | 
						|
      OFCC = getInvertedCondCode(OFCC);
 | 
						|
    SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
 | 
						|
 | 
						|
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
 | 
						|
                       Overflow);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHS.getValueType().isInteger()) {
 | 
						|
    assert((LHS.getValueType() == RHS.getValueType()) &&
 | 
						|
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
 | 
						|
 | 
						|
    // If the RHS of the comparison is zero, we can potentially fold this
 | 
						|
    // to a specialized branch.
 | 
						|
    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
    if (RHSC && RHSC->getZExtValue() == 0) {
 | 
						|
      if (CC == ISD::SETEQ) {
 | 
						|
        // See if we can use a TBZ to fold in an AND as well.
 | 
						|
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
 | 
						|
        // out of bounds, a late MI-layer pass rewrites branches.
 | 
						|
        // 403.gcc is an example that hits this case.
 | 
						|
        if (LHS.getOpcode() == ISD::AND &&
 | 
						|
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | 
						|
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
 | 
						|
          SDValue Test = LHS.getOperand(0);
 | 
						|
          uint64_t Mask = LHS.getConstantOperandVal(1);
 | 
						|
          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
 | 
						|
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
 | 
						|
                             Dest);
 | 
						|
        }
 | 
						|
 | 
						|
        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
 | 
						|
      } else if (CC == ISD::SETNE) {
 | 
						|
        // See if we can use a TBZ to fold in an AND as well.
 | 
						|
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
 | 
						|
        // out of bounds, a late MI-layer pass rewrites branches.
 | 
						|
        // 403.gcc is an example that hits this case.
 | 
						|
        if (LHS.getOpcode() == ISD::AND &&
 | 
						|
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | 
						|
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
 | 
						|
          SDValue Test = LHS.getOperand(0);
 | 
						|
          uint64_t Mask = LHS.getConstantOperandVal(1);
 | 
						|
          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
 | 
						|
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
 | 
						|
                             Dest);
 | 
						|
        }
 | 
						|
 | 
						|
        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
 | 
						|
      } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
 | 
						|
        // Don't combine AND since emitComparison converts the AND to an ANDS
 | 
						|
        // (a.k.a. TST) and the test in the test bit and branch instruction
 | 
						|
        // becomes redundant.  This would also increase register pressure.
 | 
						|
        uint64_t Mask = LHS.getValueSizeInBits() - 1;
 | 
						|
        return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
 | 
						|
                           DAG.getConstant(Mask, dl, MVT::i64), Dest);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
 | 
						|
        LHS.getOpcode() != ISD::AND) {
 | 
						|
      // Don't combine AND since emitComparison converts the AND to an ANDS
 | 
						|
      // (a.k.a. TST) and the test in the test bit and branch instruction
 | 
						|
      // becomes redundant.  This would also increase register pressure.
 | 
						|
      uint64_t Mask = LHS.getValueSizeInBits() - 1;
 | 
						|
      return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
 | 
						|
                         DAG.getConstant(Mask, dl, MVT::i64), Dest);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue CCVal;
 | 
						|
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | 
						|
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
 | 
						|
                       Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
 | 
						|
         LHS.getValueType() == MVT::f64);
 | 
						|
 | 
						|
  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | 
						|
  // clean.  Some of them require two branches to implement.
 | 
						|
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | 
						|
  AArch64CC::CondCode CC1, CC2;
 | 
						|
  changeFPCCToAArch64CC(CC, CC1, CC2);
 | 
						|
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
 | 
						|
  SDValue BR1 =
 | 
						|
      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
 | 
						|
  if (CC2 != AArch64CC::AL) {
 | 
						|
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
 | 
						|
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
 | 
						|
                       Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  return BR1;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  SDValue In1 = Op.getOperand(0);
 | 
						|
  SDValue In2 = Op.getOperand(1);
 | 
						|
  EVT SrcVT = In2.getValueType();
 | 
						|
 | 
						|
  if (SrcVT.bitsLT(VT))
 | 
						|
    In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
 | 
						|
  else if (SrcVT.bitsGT(VT))
 | 
						|
    In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
 | 
						|
 | 
						|
  EVT VecVT;
 | 
						|
  uint64_t EltMask;
 | 
						|
  SDValue VecVal1, VecVal2;
 | 
						|
 | 
						|
  auto setVecVal = [&] (int Idx) {
 | 
						|
    if (!VT.isVector()) {
 | 
						|
      VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
 | 
						|
                                          DAG.getUNDEF(VecVT), In1);
 | 
						|
      VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
 | 
						|
                                          DAG.getUNDEF(VecVT), In2);
 | 
						|
    } else {
 | 
						|
      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
 | 
						|
      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
 | 
						|
    VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
 | 
						|
    EltMask = 0x80000000ULL;
 | 
						|
    setVecVal(AArch64::ssub);
 | 
						|
  } else if (VT == MVT::f64 || VT == MVT::v2f64) {
 | 
						|
    VecVT = MVT::v2i64;
 | 
						|
 | 
						|
    // We want to materialize a mask with the high bit set, but the AdvSIMD
 | 
						|
    // immediate moves cannot materialize that in a single instruction for
 | 
						|
    // 64-bit elements. Instead, materialize zero and then negate it.
 | 
						|
    EltMask = 0;
 | 
						|
 | 
						|
    setVecVal(AArch64::dsub);
 | 
						|
  } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
 | 
						|
    VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
 | 
						|
    EltMask = 0x8000ULL;
 | 
						|
    setVecVal(AArch64::hsub);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Invalid type for copysign!");
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
 | 
						|
 | 
						|
  // If we couldn't materialize the mask above, then the mask vector will be
 | 
						|
  // the zero vector, and we need to negate it here.
 | 
						|
  if (VT == MVT::f64 || VT == MVT::v2f64) {
 | 
						|
    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
 | 
						|
    BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
 | 
						|
    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Sel =
 | 
						|
      DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
 | 
						|
 | 
						|
  if (VT == MVT::f16)
 | 
						|
    return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
 | 
						|
  if (VT == MVT::f32)
 | 
						|
    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
 | 
						|
  else if (VT == MVT::f64)
 | 
						|
    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
 | 
						|
  else
 | 
						|
    return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
 | 
						|
          Attribute::NoImplicitFloat))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!Subtarget->hasNEON())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // While there is no integer popcount instruction, it can
 | 
						|
  // be more efficiently lowered to the following sequence that uses
 | 
						|
  // AdvSIMD registers/instructions as long as the copies to/from
 | 
						|
  // the AdvSIMD registers are cheap.
 | 
						|
  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
 | 
						|
  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
 | 
						|
  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
 | 
						|
  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
 | 
						|
  SDValue Val = Op.getOperand(0);
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  if (VT == MVT::i32)
 | 
						|
    Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
 | 
						|
  Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
 | 
						|
 | 
						|
  SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
 | 
						|
  SDValue UaddLV = DAG.getNode(
 | 
						|
      ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
 | 
						|
      DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
 | 
						|
 | 
						|
  if (VT == MVT::i64)
 | 
						|
    UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
 | 
						|
  return UaddLV;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  if (Op.getValueType().isVector())
 | 
						|
    return LowerVSETCC(Op, DAG);
 | 
						|
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // We chose ZeroOrOneBooleanContents, so use zero and one.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue TVal = DAG.getConstant(1, dl, VT);
 | 
						|
  SDValue FVal = DAG.getConstant(0, dl, VT);
 | 
						|
 | 
						|
  // Handle f128 first, since one possible outcome is a normal integer
 | 
						|
  // comparison which gets picked up by the next if statement.
 | 
						|
  if (LHS.getValueType() == MVT::f128) {
 | 
						|
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | 
						|
 | 
						|
    // If softenSetCCOperands returned a scalar, use it.
 | 
						|
    if (!RHS.getNode()) {
 | 
						|
      assert(LHS.getValueType() == Op.getValueType() &&
 | 
						|
             "Unexpected setcc expansion!");
 | 
						|
      return LHS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHS.getValueType().isInteger()) {
 | 
						|
    SDValue CCVal;
 | 
						|
    SDValue Cmp =
 | 
						|
        getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
 | 
						|
 | 
						|
    // Note that we inverted the condition above, so we reverse the order of
 | 
						|
    // the true and false operands here.  This will allow the setcc to be
 | 
						|
    // matched to a single CSINC instruction.
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know we're dealing with FP values.
 | 
						|
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
 | 
						|
         LHS.getValueType() == MVT::f64);
 | 
						|
 | 
						|
  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
 | 
						|
  // and do the comparison.
 | 
						|
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | 
						|
 | 
						|
  AArch64CC::CondCode CC1, CC2;
 | 
						|
  changeFPCCToAArch64CC(CC, CC1, CC2);
 | 
						|
  if (CC2 == AArch64CC::AL) {
 | 
						|
    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
 | 
						|
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
 | 
						|
 | 
						|
    // Note that we inverted the condition above, so we reverse the order of
 | 
						|
    // the true and false operands here.  This will allow the setcc to be
 | 
						|
    // matched to a single CSINC instruction.
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
 | 
						|
  } else {
 | 
						|
    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
 | 
						|
    // totally clean.  Some of them require two CSELs to implement.  As is in
 | 
						|
    // this case, we emit the first CSEL and then emit a second using the output
 | 
						|
    // of the first as the RHS.  We're effectively OR'ing the two CC's together.
 | 
						|
 | 
						|
    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
 | 
						|
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
 | 
						|
    SDValue CS1 =
 | 
						|
        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
 | 
						|
 | 
						|
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
 | 
						|
                                              SDValue RHS, SDValue TVal,
 | 
						|
                                              SDValue FVal, const SDLoc &dl,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // Handle f128 first, because it will result in a comparison of some RTLIB
 | 
						|
  // call result against zero.
 | 
						|
  if (LHS.getValueType() == MVT::f128) {
 | 
						|
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
 | 
						|
 | 
						|
    // If softenSetCCOperands returned a scalar, we need to compare the result
 | 
						|
    // against zero to select between true and false values.
 | 
						|
    if (!RHS.getNode()) {
 | 
						|
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
 | 
						|
      CC = ISD::SETNE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Also handle f16, for which we need to do a f32 comparison.
 | 
						|
  if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
 | 
						|
    LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
 | 
						|
    RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, handle integers.
 | 
						|
  if (LHS.getValueType().isInteger()) {
 | 
						|
    assert((LHS.getValueType() == RHS.getValueType()) &&
 | 
						|
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
 | 
						|
 | 
						|
    unsigned Opcode = AArch64ISD::CSEL;
 | 
						|
 | 
						|
    // If both the TVal and the FVal are constants, see if we can swap them in
 | 
						|
    // order to for a CSINV or CSINC out of them.
 | 
						|
    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
 | 
						|
    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
 | 
						|
 | 
						|
    if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
 | 
						|
      std::swap(TVal, FVal);
 | 
						|
      std::swap(CTVal, CFVal);
 | 
						|
      CC = ISD::getSetCCInverse(CC, true);
 | 
						|
    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
 | 
						|
      std::swap(TVal, FVal);
 | 
						|
      std::swap(CTVal, CFVal);
 | 
						|
      CC = ISD::getSetCCInverse(CC, true);
 | 
						|
    } else if (TVal.getOpcode() == ISD::XOR) {
 | 
						|
      // If TVal is a NOT we want to swap TVal and FVal so that we can match
 | 
						|
      // with a CSINV rather than a CSEL.
 | 
						|
      if (isAllOnesConstant(TVal.getOperand(1))) {
 | 
						|
        std::swap(TVal, FVal);
 | 
						|
        std::swap(CTVal, CFVal);
 | 
						|
        CC = ISD::getSetCCInverse(CC, true);
 | 
						|
      }
 | 
						|
    } else if (TVal.getOpcode() == ISD::SUB) {
 | 
						|
      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
 | 
						|
      // that we can match with a CSNEG rather than a CSEL.
 | 
						|
      if (isNullConstant(TVal.getOperand(0))) {
 | 
						|
        std::swap(TVal, FVal);
 | 
						|
        std::swap(CTVal, CFVal);
 | 
						|
        CC = ISD::getSetCCInverse(CC, true);
 | 
						|
      }
 | 
						|
    } else if (CTVal && CFVal) {
 | 
						|
      const int64_t TrueVal = CTVal->getSExtValue();
 | 
						|
      const int64_t FalseVal = CFVal->getSExtValue();
 | 
						|
      bool Swap = false;
 | 
						|
 | 
						|
      // If both TVal and FVal are constants, see if FVal is the
 | 
						|
      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
 | 
						|
      // instead of a CSEL in that case.
 | 
						|
      if (TrueVal == ~FalseVal) {
 | 
						|
        Opcode = AArch64ISD::CSINV;
 | 
						|
      } else if (TrueVal == -FalseVal) {
 | 
						|
        Opcode = AArch64ISD::CSNEG;
 | 
						|
      } else if (TVal.getValueType() == MVT::i32) {
 | 
						|
        // If our operands are only 32-bit wide, make sure we use 32-bit
 | 
						|
        // arithmetic for the check whether we can use CSINC. This ensures that
 | 
						|
        // the addition in the check will wrap around properly in case there is
 | 
						|
        // an overflow (which would not be the case if we do the check with
 | 
						|
        // 64-bit arithmetic).
 | 
						|
        const uint32_t TrueVal32 = CTVal->getZExtValue();
 | 
						|
        const uint32_t FalseVal32 = CFVal->getZExtValue();
 | 
						|
 | 
						|
        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
 | 
						|
          Opcode = AArch64ISD::CSINC;
 | 
						|
 | 
						|
          if (TrueVal32 > FalseVal32) {
 | 
						|
            Swap = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // 64-bit check whether we can use CSINC.
 | 
						|
      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
 | 
						|
        Opcode = AArch64ISD::CSINC;
 | 
						|
 | 
						|
        if (TrueVal > FalseVal) {
 | 
						|
          Swap = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Swap TVal and FVal if necessary.
 | 
						|
      if (Swap) {
 | 
						|
        std::swap(TVal, FVal);
 | 
						|
        std::swap(CTVal, CFVal);
 | 
						|
        CC = ISD::getSetCCInverse(CC, true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Opcode != AArch64ISD::CSEL) {
 | 
						|
        // Drop FVal since we can get its value by simply inverting/negating
 | 
						|
        // TVal.
 | 
						|
        FVal = TVal;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Avoid materializing a constant when possible by reusing a known value in
 | 
						|
    // a register.  However, don't perform this optimization if the known value
 | 
						|
    // is one, zero or negative one in the case of a CSEL.  We can always
 | 
						|
    // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
 | 
						|
    // FVal, respectively.
 | 
						|
    ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
    if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
 | 
						|
        !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
 | 
						|
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
 | 
						|
      // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
 | 
						|
      // "a != C ? x : a" to avoid materializing C.
 | 
						|
      if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
 | 
						|
        TVal = LHS;
 | 
						|
      else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
 | 
						|
        FVal = LHS;
 | 
						|
    } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
 | 
						|
      assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
 | 
						|
      // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
 | 
						|
      // avoid materializing C.
 | 
						|
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
 | 
						|
      if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
 | 
						|
        Opcode = AArch64ISD::CSINV;
 | 
						|
        TVal = LHS;
 | 
						|
        FVal = DAG.getConstant(0, dl, FVal.getValueType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue CCVal;
 | 
						|
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
 | 
						|
    EVT VT = TVal.getValueType();
 | 
						|
    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know we're dealing with FP values.
 | 
						|
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
 | 
						|
         LHS.getValueType() == MVT::f64);
 | 
						|
  assert(LHS.getValueType() == RHS.getValueType());
 | 
						|
  EVT VT = TVal.getValueType();
 | 
						|
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
 | 
						|
 | 
						|
  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | 
						|
  // clean.  Some of them require two CSELs to implement.
 | 
						|
  AArch64CC::CondCode CC1, CC2;
 | 
						|
  changeFPCCToAArch64CC(CC, CC1, CC2);
 | 
						|
 | 
						|
  if (DAG.getTarget().Options.UnsafeFPMath) {
 | 
						|
    // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
 | 
						|
    // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
 | 
						|
    ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
 | 
						|
    if (RHSVal && RHSVal->isZero()) {
 | 
						|
      ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
 | 
						|
      ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
 | 
						|
 | 
						|
      if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
 | 
						|
          CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
 | 
						|
        TVal = LHS;
 | 
						|
      else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
 | 
						|
               CFVal && CFVal->isZero() &&
 | 
						|
               FVal.getValueType() == LHS.getValueType())
 | 
						|
        FVal = LHS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit first, and possibly only, CSEL.
 | 
						|
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
 | 
						|
  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
 | 
						|
 | 
						|
  // If we need a second CSEL, emit it, using the output of the first as the
 | 
						|
  // RHS.  We're effectively OR'ing the two CC's together.
 | 
						|
  if (CC2 != AArch64CC::AL) {
 | 
						|
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, return the output of the first CSEL.
 | 
						|
  return CS1;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue TVal = Op.getOperand(2);
 | 
						|
  SDValue FVal = Op.getOperand(3);
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDValue CCVal = Op->getOperand(0);
 | 
						|
  SDValue TVal = Op->getOperand(1);
 | 
						|
  SDValue FVal = Op->getOperand(2);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
 | 
						|
  // instruction.
 | 
						|
  if (isOverflowIntrOpRes(CCVal)) {
 | 
						|
    // Only lower legal XALUO ops.
 | 
						|
    if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    AArch64CC::CondCode OFCC;
 | 
						|
    SDValue Value, Overflow;
 | 
						|
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
 | 
						|
    SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
 | 
						|
 | 
						|
    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
 | 
						|
                       CCVal, Overflow);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower it the same way as we would lower a SELECT_CC node.
 | 
						|
  ISD::CondCode CC;
 | 
						|
  SDValue LHS, RHS;
 | 
						|
  if (CCVal.getOpcode() == ISD::SETCC) {
 | 
						|
    LHS = CCVal.getOperand(0);
 | 
						|
    RHS = CCVal.getOperand(1);
 | 
						|
    CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
 | 
						|
  } else {
 | 
						|
    LHS = CCVal;
 | 
						|
    RHS = DAG.getConstant(0, DL, CCVal.getValueType());
 | 
						|
    CC = ISD::SETNE;
 | 
						|
  }
 | 
						|
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // Jump table entries as PC relative offsets. No additional tweaking
 | 
						|
  // is necessary here. Just get the address of the jump table.
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
 | 
						|
  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | 
						|
      !Subtarget->isTargetMachO()) {
 | 
						|
    return getAddrLarge(JT, DAG);
 | 
						|
  }
 | 
						|
  return getAddr(JT, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
 | 
						|
  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
 | 
						|
    // Use the GOT for the large code model on iOS.
 | 
						|
    if (Subtarget->isTargetMachO()) {
 | 
						|
      return getGOT(CP, DAG);
 | 
						|
    }
 | 
						|
    return getAddrLarge(CP, DAG);
 | 
						|
  } else {
 | 
						|
    return getAddr(CP, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
 | 
						|
  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
 | 
						|
      !Subtarget->isTargetMachO()) {
 | 
						|
    return getAddrLarge(BA, DAG);
 | 
						|
  } else {
 | 
						|
    return getAddr(BA, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  AArch64FunctionInfo *FuncInfo =
 | 
						|
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
 | 
						|
                                 getPointerTy(DAG.getDataLayout()));
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
 | 
						|
                      MachinePointerInfo(SV));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  AArch64FunctionInfo *FuncInfo =
 | 
						|
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
 | 
						|
                                     ? FuncInfo->getVarArgsGPRIndex()
 | 
						|
                                     : FuncInfo->getVarArgsStackIndex(),
 | 
						|
                                 getPointerTy(DAG.getDataLayout()));
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
 | 
						|
                      MachinePointerInfo(SV));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  // The layout of the va_list struct is specified in the AArch64 Procedure Call
 | 
						|
  // Standard, section B.3.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue VAList = Op.getOperand(1);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  SmallVector<SDValue, 4> MemOps;
 | 
						|
 | 
						|
  // void *__stack at offset 0
 | 
						|
  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
 | 
						|
  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
 | 
						|
                                MachinePointerInfo(SV), /* Alignment = */ 8));
 | 
						|
 | 
						|
  // void *__gr_top at offset 8
 | 
						|
  int GPRSize = FuncInfo->getVarArgsGPRSize();
 | 
						|
  if (GPRSize > 0) {
 | 
						|
    SDValue GRTop, GRTopAddr;
 | 
						|
 | 
						|
    GRTopAddr =
 | 
						|
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
 | 
						|
 | 
						|
    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
 | 
						|
    GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
 | 
						|
                        DAG.getConstant(GPRSize, DL, PtrVT));
 | 
						|
 | 
						|
    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
 | 
						|
                                  MachinePointerInfo(SV, 8),
 | 
						|
                                  /* Alignment = */ 8));
 | 
						|
  }
 | 
						|
 | 
						|
  // void *__vr_top at offset 16
 | 
						|
  int FPRSize = FuncInfo->getVarArgsFPRSize();
 | 
						|
  if (FPRSize > 0) {
 | 
						|
    SDValue VRTop, VRTopAddr;
 | 
						|
    VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
 | 
						|
                            DAG.getConstant(16, DL, PtrVT));
 | 
						|
 | 
						|
    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
 | 
						|
    VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
 | 
						|
                        DAG.getConstant(FPRSize, DL, PtrVT));
 | 
						|
 | 
						|
    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
 | 
						|
                                  MachinePointerInfo(SV, 16),
 | 
						|
                                  /* Alignment = */ 8));
 | 
						|
  }
 | 
						|
 | 
						|
  // int __gr_offs at offset 24
 | 
						|
  SDValue GROffsAddr =
 | 
						|
      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
 | 
						|
  MemOps.push_back(DAG.getStore(
 | 
						|
      Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
 | 
						|
      MachinePointerInfo(SV, 24), /* Alignment = */ 4));
 | 
						|
 | 
						|
  // int __vr_offs at offset 28
 | 
						|
  SDValue VROffsAddr =
 | 
						|
      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
 | 
						|
  MemOps.push_back(DAG.getStore(
 | 
						|
      Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
 | 
						|
      MachinePointerInfo(SV, 28), /* Alignment = */ 4));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
 | 
						|
    return LowerWin64_VASTART(Op, DAG);
 | 
						|
  else if (Subtarget->isTargetDarwin())
 | 
						|
    return LowerDarwin_VASTART(Op, DAG);
 | 
						|
  else
 | 
						|
    return LowerAAPCS_VASTART(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
 | 
						|
  // pointer.
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned VaListSize =
 | 
						|
      Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
 | 
						|
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | 
						|
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | 
						|
 | 
						|
  return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
 | 
						|
                       Op.getOperand(2),
 | 
						|
                       DAG.getConstant(VaListSize, DL, MVT::i32),
 | 
						|
                       8, false, false, false, MachinePointerInfo(DestSV),
 | 
						|
                       MachinePointerInfo(SrcSV));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetDarwin() &&
 | 
						|
         "automatic va_arg instruction only works on Darwin");
 | 
						|
 | 
						|
  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Addr = Op.getOperand(1);
 | 
						|
  unsigned Align = Op.getConstantOperandVal(3);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
 | 
						|
  Chain = VAList.getValue(1);
 | 
						|
 | 
						|
  if (Align > 8) {
 | 
						|
    assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
 | 
						|
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
 | 
						|
                         DAG.getConstant(Align - 1, DL, PtrVT));
 | 
						|
    VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
 | 
						|
                         DAG.getConstant(-(int64_t)Align, DL, PtrVT));
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
 | 
						|
  uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
 | 
						|
 | 
						|
  // Scalar integer and FP values smaller than 64 bits are implicitly extended
 | 
						|
  // up to 64 bits.  At the very least, we have to increase the striding of the
 | 
						|
  // vaargs list to match this, and for FP values we need to introduce
 | 
						|
  // FP_ROUND nodes as well.
 | 
						|
  if (VT.isInteger() && !VT.isVector())
 | 
						|
    ArgSize = 8;
 | 
						|
  bool NeedFPTrunc = false;
 | 
						|
  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
 | 
						|
    ArgSize = 8;
 | 
						|
    NeedFPTrunc = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Increment the pointer, VAList, to the next vaarg
 | 
						|
  SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
 | 
						|
                               DAG.getConstant(ArgSize, DL, PtrVT));
 | 
						|
  // Store the incremented VAList to the legalized pointer
 | 
						|
  SDValue APStore =
 | 
						|
      DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
 | 
						|
 | 
						|
  // Load the actual argument out of the pointer VAList
 | 
						|
  if (NeedFPTrunc) {
 | 
						|
    // Load the value as an f64.
 | 
						|
    SDValue WideFP =
 | 
						|
        DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
 | 
						|
    // Round the value down to an f32.
 | 
						|
    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
 | 
						|
                                   DAG.getIntPtrConstant(1, DL));
 | 
						|
    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
 | 
						|
    // Merge the rounded value with the chain output of the load.
 | 
						|
    return DAG.getMergeValues(Ops, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI.setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  SDValue FrameAddr =
 | 
						|
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
 | 
						|
                            MachinePointerInfo());
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME? Maybe this could be a TableGen attribute on some registers and
 | 
						|
// this table could be generated automatically from RegInfo.
 | 
						|
unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  unsigned Reg = StringSwitch<unsigned>(RegName)
 | 
						|
                       .Case("sp", AArch64::SP)
 | 
						|
                       .Case("x18", AArch64::X18)
 | 
						|
                       .Case("w18", AArch64::W18)
 | 
						|
                       .Default(0);
 | 
						|
  if ((Reg == AArch64::X18 || Reg == AArch64::W18) &&
 | 
						|
      !Subtarget->isX18Reserved())
 | 
						|
    Reg = 0;
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
  report_fatal_error(Twine("Invalid register name \""
 | 
						|
                              + StringRef(RegName)  + "\"."));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  if (Depth) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
 | 
						|
    return DAG.getLoad(VT, DL, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return LR, which contains the return address. Mark it an implicit live-in.
 | 
						|
  unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | 
						|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
 | 
						|
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned VTBits = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue ShOpLo = Op.getOperand(0);
 | 
						|
  SDValue ShOpHi = Op.getOperand(1);
 | 
						|
  SDValue ShAmt = Op.getOperand(2);
 | 
						|
  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | 
						|
 | 
						|
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
 | 
						|
                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
 | 
						|
  SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | 
						|
 | 
						|
  // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
 | 
						|
  // is "undef". We wanted 0, so CSEL it directly.
 | 
						|
  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
 | 
						|
                               ISD::SETEQ, dl, DAG);
 | 
						|
  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
 | 
						|
  HiBitsForLo =
 | 
						|
      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
 | 
						|
                  HiBitsForLo, CCVal, Cmp);
 | 
						|
 | 
						|
  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
 | 
						|
                                   DAG.getConstant(VTBits, dl, MVT::i64));
 | 
						|
 | 
						|
  SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | 
						|
  SDValue LoForNormalShift =
 | 
						|
      DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
 | 
						|
 | 
						|
  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
 | 
						|
                       dl, DAG);
 | 
						|
  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
 | 
						|
  SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | 
						|
  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
 | 
						|
                           LoForNormalShift, CCVal, Cmp);
 | 
						|
 | 
						|
  // AArch64 shifts larger than the register width are wrapped rather than
 | 
						|
  // clamped, so we can't just emit "hi >> x".
 | 
						|
  SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | 
						|
  SDValue HiForBigShift =
 | 
						|
      Opc == ISD::SRA
 | 
						|
          ? DAG.getNode(Opc, dl, VT, ShOpHi,
 | 
						|
                        DAG.getConstant(VTBits - 1, dl, MVT::i64))
 | 
						|
          : DAG.getConstant(0, dl, VT);
 | 
						|
  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
 | 
						|
                           HiForNormalShift, CCVal, Cmp);
 | 
						|
 | 
						|
  SDValue Ops[2] = { Lo, Hi };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | 
						|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
 | 
						|
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned VTBits = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue ShOpLo = Op.getOperand(0);
 | 
						|
  SDValue ShOpHi = Op.getOperand(1);
 | 
						|
  SDValue ShAmt = Op.getOperand(2);
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::SHL_PARTS);
 | 
						|
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
 | 
						|
                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
 | 
						|
  SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | 
						|
 | 
						|
  // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
 | 
						|
  // is "undef". We wanted 0, so CSEL it directly.
 | 
						|
  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
 | 
						|
                               ISD::SETEQ, dl, DAG);
 | 
						|
  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
 | 
						|
  LoBitsForHi =
 | 
						|
      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
 | 
						|
                  LoBitsForHi, CCVal, Cmp);
 | 
						|
 | 
						|
  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
 | 
						|
                                   DAG.getConstant(VTBits, dl, MVT::i64));
 | 
						|
  SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | 
						|
  SDValue HiForNormalShift =
 | 
						|
      DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
 | 
						|
 | 
						|
  SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | 
						|
 | 
						|
  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
 | 
						|
                       dl, DAG);
 | 
						|
  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
 | 
						|
  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
 | 
						|
                           HiForNormalShift, CCVal, Cmp);
 | 
						|
 | 
						|
  // AArch64 shifts of larger than register sizes are wrapped rather than
 | 
						|
  // clamped, so we can't just emit "lo << a" if a is too big.
 | 
						|
  SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
 | 
						|
  SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | 
						|
  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
 | 
						|
                           LoForNormalShift, CCVal, Cmp);
 | 
						|
 | 
						|
  SDValue Ops[2] = { Lo, Hi };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isOffsetFoldingLegal(
 | 
						|
    const GlobalAddressSDNode *GA) const {
 | 
						|
  DEBUG(dbgs() << "Skipping offset folding global address: ");
 | 
						|
  DEBUG(GA->dump());
 | 
						|
  DEBUG(dbgs() << "AArch64 doesn't support folding offsets into global "
 | 
						|
        "addresses\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | 
						|
  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
 | 
						|
  // FIXME: We should be able to handle f128 as well with a clever lowering.
 | 
						|
  if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 ||
 | 
						|
                          (VT == MVT::f16 && Subtarget->hasFullFP16()))) {
 | 
						|
    DEBUG(dbgs() << "Legal fp imm: materialize 0 using the zero register\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef FPType;
 | 
						|
  bool IsLegal = false;
 | 
						|
  SmallString<128> ImmStrVal;
 | 
						|
  Imm.toString(ImmStrVal);
 | 
						|
 | 
						|
  if (VT == MVT::f64) {
 | 
						|
    FPType = "f64";
 | 
						|
    IsLegal = AArch64_AM::getFP64Imm(Imm) != -1;
 | 
						|
  } else if (VT == MVT::f32) {
 | 
						|
    FPType = "f32";
 | 
						|
    IsLegal = AArch64_AM::getFP32Imm(Imm) != -1;
 | 
						|
  } else if (VT == MVT::f16 && Subtarget->hasFullFP16()) {
 | 
						|
    FPType = "f16";
 | 
						|
    IsLegal = AArch64_AM::getFP16Imm(Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsLegal) {
 | 
						|
    DEBUG(dbgs() << "Legal " << FPType << " imm value: " << ImmStrVal << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FPType.empty())
 | 
						|
    DEBUG(dbgs() << "Illegal " << FPType << " imm value: " << ImmStrVal << "\n");
 | 
						|
  else
 | 
						|
    DEBUG(dbgs() << "Illegal fp imm " << ImmStrVal << ": unsupported fp type\n");
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          AArch64 Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
 | 
						|
                           SDValue Operand, SelectionDAG &DAG,
 | 
						|
                           int &ExtraSteps) {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
  if (ST->hasNEON() &&
 | 
						|
      (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
 | 
						|
       VT == MVT::f32 || VT == MVT::v1f32 ||
 | 
						|
       VT == MVT::v2f32 || VT == MVT::v4f32)) {
 | 
						|
    if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
 | 
						|
      // For the reciprocal estimates, convergence is quadratic, so the number
 | 
						|
      // of digits is doubled after each iteration.  In ARMv8, the accuracy of
 | 
						|
      // the initial estimate is 2^-8.  Thus the number of extra steps to refine
 | 
						|
      // the result for float (23 mantissa bits) is 2 and for double (52
 | 
						|
      // mantissa bits) is 3.
 | 
						|
      ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
 | 
						|
 | 
						|
    return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
 | 
						|
                                               SelectionDAG &DAG, int Enabled,
 | 
						|
                                               int &ExtraSteps,
 | 
						|
                                               bool &UseOneConst,
 | 
						|
                                               bool Reciprocal) const {
 | 
						|
  if (Enabled == ReciprocalEstimate::Enabled ||
 | 
						|
      (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
 | 
						|
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
 | 
						|
                                       DAG, ExtraSteps)) {
 | 
						|
      SDLoc DL(Operand);
 | 
						|
      EVT VT = Operand.getValueType();
 | 
						|
 | 
						|
      SDNodeFlags Flags;
 | 
						|
      Flags.setUnsafeAlgebra(true);
 | 
						|
 | 
						|
      // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
 | 
						|
      // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
 | 
						|
      for (int i = ExtraSteps; i > 0; --i) {
 | 
						|
        SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
 | 
						|
                                   Flags);
 | 
						|
        Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
 | 
						|
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
 | 
						|
      }
 | 
						|
      if (!Reciprocal) {
 | 
						|
        EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | 
						|
                                      VT);
 | 
						|
        SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
 | 
						|
        SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
 | 
						|
 | 
						|
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
 | 
						|
        // Correct the result if the operand is 0.0.
 | 
						|
        Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
 | 
						|
                               VT, Eq, Operand, Estimate);
 | 
						|
      }
 | 
						|
 | 
						|
      ExtraSteps = 0;
 | 
						|
      return Estimate;
 | 
						|
    }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
 | 
						|
                                                SelectionDAG &DAG, int Enabled,
 | 
						|
                                                int &ExtraSteps) const {
 | 
						|
  if (Enabled == ReciprocalEstimate::Enabled)
 | 
						|
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
 | 
						|
                                       DAG, ExtraSteps)) {
 | 
						|
      SDLoc DL(Operand);
 | 
						|
      EVT VT = Operand.getValueType();
 | 
						|
 | 
						|
      SDNodeFlags Flags;
 | 
						|
      Flags.setUnsafeAlgebra(true);
 | 
						|
 | 
						|
      // Newton reciprocal iteration: E * (2 - X * E)
 | 
						|
      // AArch64 reciprocal iteration instruction: (2 - M * N)
 | 
						|
      for (int i = ExtraSteps; i > 0; --i) {
 | 
						|
        SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
 | 
						|
                                   Estimate, Flags);
 | 
						|
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
 | 
						|
      }
 | 
						|
 | 
						|
      ExtraSteps = 0;
 | 
						|
      return Estimate;
 | 
						|
    }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          AArch64 Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Table of Constraints
 | 
						|
// TODO: This is the current set of constraints supported by ARM for the
 | 
						|
// compiler, not all of them may make sense, e.g. S may be difficult to support.
 | 
						|
//
 | 
						|
// r - A general register
 | 
						|
// w - An FP/SIMD register of some size in the range v0-v31
 | 
						|
// x - An FP/SIMD register of some size in the range v0-v15
 | 
						|
// I - Constant that can be used with an ADD instruction
 | 
						|
// J - Constant that can be used with a SUB instruction
 | 
						|
// K - Constant that can be used with a 32-bit logical instruction
 | 
						|
// L - Constant that can be used with a 64-bit logical instruction
 | 
						|
// M - Constant that can be used as a 32-bit MOV immediate
 | 
						|
// N - Constant that can be used as a 64-bit MOV immediate
 | 
						|
// Q - A memory reference with base register and no offset
 | 
						|
// S - A symbolic address
 | 
						|
// Y - Floating point constant zero
 | 
						|
// Z - Integer constant zero
 | 
						|
//
 | 
						|
//   Note that general register operands will be output using their 64-bit x
 | 
						|
// register name, whatever the size of the variable, unless the asm operand
 | 
						|
// is prefixed by the %w modifier. Floating-point and SIMD register operands
 | 
						|
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
 | 
						|
// %q modifier.
 | 
						|
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
 | 
						|
  // At this point, we have to lower this constraint to something else, so we
 | 
						|
  // lower it to an "r" or "w". However, by doing this we will force the result
 | 
						|
  // to be in register, while the X constraint is much more permissive.
 | 
						|
  //
 | 
						|
  // Although we are correct (we are free to emit anything, without
 | 
						|
  // constraints), we might break use cases that would expect us to be more
 | 
						|
  // efficient and emit something else.
 | 
						|
  if (!Subtarget->hasFPARMv8())
 | 
						|
    return "r";
 | 
						|
 | 
						|
  if (ConstraintVT.isFloatingPoint())
 | 
						|
    return "w";
 | 
						|
 | 
						|
  if (ConstraintVT.isVector() &&
 | 
						|
     (ConstraintVT.getSizeInBits() == 64 ||
 | 
						|
      ConstraintVT.getSizeInBits() == 128))
 | 
						|
    return "w";
 | 
						|
 | 
						|
  return "r";
 | 
						|
}
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint letter, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
AArch64TargetLowering::ConstraintType
 | 
						|
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case 'z':
 | 
						|
      return C_Other;
 | 
						|
    case 'x':
 | 
						|
    case 'w':
 | 
						|
      return C_RegisterClass;
 | 
						|
    // An address with a single base register. Due to the way we
 | 
						|
    // currently handle addresses it is the same as 'r'.
 | 
						|
    case 'Q':
 | 
						|
      return C_Memory;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
/// Examine constraint type and operand type and determine a weight value.
 | 
						|
/// This object must already have been set up with the operand type
 | 
						|
/// and the current alternative constraint selected.
 | 
						|
TargetLowering::ConstraintWeight
 | 
						|
AArch64TargetLowering::getSingleConstraintMatchWeight(
 | 
						|
    AsmOperandInfo &info, const char *constraint) const {
 | 
						|
  ConstraintWeight weight = CW_Invalid;
 | 
						|
  Value *CallOperandVal = info.CallOperandVal;
 | 
						|
  // If we don't have a value, we can't do a match,
 | 
						|
  // but allow it at the lowest weight.
 | 
						|
  if (!CallOperandVal)
 | 
						|
    return CW_Default;
 | 
						|
  Type *type = CallOperandVal->getType();
 | 
						|
  // Look at the constraint type.
 | 
						|
  switch (*constraint) {
 | 
						|
  default:
 | 
						|
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | 
						|
    break;
 | 
						|
  case 'x':
 | 
						|
  case 'w':
 | 
						|
    if (type->isFloatingPointTy() || type->isVectorTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'z':
 | 
						|
    weight = CW_Constant;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return weight;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass *>
 | 
						|
AArch64TargetLowering::getRegForInlineAsmConstraint(
 | 
						|
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'r':
 | 
						|
      if (VT.getSizeInBits() == 64)
 | 
						|
        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
 | 
						|
      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
 | 
						|
    case 'w':
 | 
						|
      if (VT.getSizeInBits() == 16)
 | 
						|
        return std::make_pair(0U, &AArch64::FPR16RegClass);
 | 
						|
      if (VT.getSizeInBits() == 32)
 | 
						|
        return std::make_pair(0U, &AArch64::FPR32RegClass);
 | 
						|
      if (VT.getSizeInBits() == 64)
 | 
						|
        return std::make_pair(0U, &AArch64::FPR64RegClass);
 | 
						|
      if (VT.getSizeInBits() == 128)
 | 
						|
        return std::make_pair(0U, &AArch64::FPR128RegClass);
 | 
						|
      break;
 | 
						|
    // The instructions that this constraint is designed for can
 | 
						|
    // only take 128-bit registers so just use that regclass.
 | 
						|
    case 'x':
 | 
						|
      if (VT.getSizeInBits() == 128)
 | 
						|
        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (StringRef("{cc}").equals_lower(Constraint))
 | 
						|
    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
 | 
						|
 | 
						|
  // Use the default implementation in TargetLowering to convert the register
 | 
						|
  // constraint into a member of a register class.
 | 
						|
  std::pair<unsigned, const TargetRegisterClass *> Res;
 | 
						|
  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
 | 
						|
  // Not found as a standard register?
 | 
						|
  if (!Res.second) {
 | 
						|
    unsigned Size = Constraint.size();
 | 
						|
    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
 | 
						|
        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
 | 
						|
      int RegNo;
 | 
						|
      bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
 | 
						|
      if (!Failed && RegNo >= 0 && RegNo <= 31) {
 | 
						|
        // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
 | 
						|
        // By default we'll emit v0-v31 for this unless there's a modifier where
 | 
						|
        // we'll emit the correct register as well.
 | 
						|
        if (VT != MVT::Other && VT.getSizeInBits() == 64) {
 | 
						|
          Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
 | 
						|
          Res.second = &AArch64::FPR64RegClass;
 | 
						|
        } else {
 | 
						|
          Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
 | 
						|
          Res.second = &AArch64::FPR128RegClass;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | 
						|
/// vector.  If it is invalid, don't add anything to Ops.
 | 
						|
void AArch64TargetLowering::LowerAsmOperandForConstraint(
 | 
						|
    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
 | 
						|
    SelectionDAG &DAG) const {
 | 
						|
  SDValue Result;
 | 
						|
 | 
						|
  // Currently only support length 1 constraints.
 | 
						|
  if (Constraint.length() != 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  char ConstraintLetter = Constraint[0];
 | 
						|
  switch (ConstraintLetter) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
 | 
						|
  // This set of constraints deal with valid constants for various instructions.
 | 
						|
  // Validate and return a target constant for them if we can.
 | 
						|
  case 'z': {
 | 
						|
    // 'z' maps to xzr or wzr so it needs an input of 0.
 | 
						|
    if (!isNullConstant(Op))
 | 
						|
      return;
 | 
						|
 | 
						|
    if (Op.getValueType() == MVT::i64)
 | 
						|
      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
 | 
						|
    else
 | 
						|
      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case 'I':
 | 
						|
  case 'J':
 | 
						|
  case 'K':
 | 
						|
  case 'L':
 | 
						|
  case 'M':
 | 
						|
  case 'N':
 | 
						|
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!C)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Grab the value and do some validation.
 | 
						|
    uint64_t CVal = C->getZExtValue();
 | 
						|
    switch (ConstraintLetter) {
 | 
						|
    // The I constraint applies only to simple ADD or SUB immediate operands:
 | 
						|
    // i.e. 0 to 4095 with optional shift by 12
 | 
						|
    // The J constraint applies only to ADD or SUB immediates that would be
 | 
						|
    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
 | 
						|
    // instruction [or vice versa], in other words -1 to -4095 with optional
 | 
						|
    // left shift by 12.
 | 
						|
    case 'I':
 | 
						|
      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
 | 
						|
        break;
 | 
						|
      return;
 | 
						|
    case 'J': {
 | 
						|
      uint64_t NVal = -C->getSExtValue();
 | 
						|
      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
 | 
						|
        CVal = C->getSExtValue();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // The K and L constraints apply *only* to logical immediates, including
 | 
						|
    // what used to be the MOVI alias for ORR (though the MOVI alias has now
 | 
						|
    // been removed and MOV should be used). So these constraints have to
 | 
						|
    // distinguish between bit patterns that are valid 32-bit or 64-bit
 | 
						|
    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
 | 
						|
    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
 | 
						|
    // versa.
 | 
						|
    case 'K':
 | 
						|
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
 | 
						|
        break;
 | 
						|
      return;
 | 
						|
    case 'L':
 | 
						|
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
 | 
						|
        break;
 | 
						|
      return;
 | 
						|
    // The M and N constraints are a superset of K and L respectively, for use
 | 
						|
    // with the MOV (immediate) alias. As well as the logical immediates they
 | 
						|
    // also match 32 or 64-bit immediates that can be loaded either using a
 | 
						|
    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
 | 
						|
    // (M) or 64-bit 0x1234000000000000 (N) etc.
 | 
						|
    // As a note some of this code is liberally stolen from the asm parser.
 | 
						|
    case 'M': {
 | 
						|
      if (!isUInt<32>(CVal))
 | 
						|
        return;
 | 
						|
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFF) == CVal)
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFF0000ULL) == CVal)
 | 
						|
        break;
 | 
						|
      uint64_t NCVal = ~(uint32_t)CVal;
 | 
						|
      if ((NCVal & 0xFFFFULL) == NCVal)
 | 
						|
        break;
 | 
						|
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
 | 
						|
        break;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case 'N': {
 | 
						|
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFFULL) == CVal)
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFF0000ULL) == CVal)
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFF00000000ULL) == CVal)
 | 
						|
        break;
 | 
						|
      if ((CVal & 0xFFFF000000000000ULL) == CVal)
 | 
						|
        break;
 | 
						|
      uint64_t NCVal = ~CVal;
 | 
						|
      if ((NCVal & 0xFFFFULL) == NCVal)
 | 
						|
        break;
 | 
						|
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
 | 
						|
        break;
 | 
						|
      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
 | 
						|
        break;
 | 
						|
      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
 | 
						|
        break;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // All assembler immediates are 64-bit integers.
 | 
						|
    Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     AArch64 Advanced SIMD Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// WidenVector - Given a value in the V64 register class, produce the
 | 
						|
/// equivalent value in the V128 register class.
 | 
						|
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
 | 
						|
  EVT VT = V64Reg.getValueType();
 | 
						|
  unsigned NarrowSize = VT.getVectorNumElements();
 | 
						|
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | 
						|
  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
 | 
						|
  SDLoc DL(V64Reg);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
 | 
						|
                     V64Reg, DAG.getConstant(0, DL, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
/// getExtFactor - Determine the adjustment factor for the position when
 | 
						|
/// generating an "extract from vector registers" instruction.
 | 
						|
static unsigned getExtFactor(SDValue &V) {
 | 
						|
  EVT EltType = V.getValueType().getVectorElementType();
 | 
						|
  return EltType.getSizeInBits() / 8;
 | 
						|
}
 | 
						|
 | 
						|
/// NarrowVector - Given a value in the V128 register class, produce the
 | 
						|
/// equivalent value in the V64 register class.
 | 
						|
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
 | 
						|
  EVT VT = V128Reg.getValueType();
 | 
						|
  unsigned WideSize = VT.getVectorNumElements();
 | 
						|
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | 
						|
  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
 | 
						|
  SDLoc DL(V128Reg);
 | 
						|
 | 
						|
  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
 | 
						|
}
 | 
						|
 | 
						|
// Gather data to see if the operation can be modelled as a
 | 
						|
// shuffle in combination with VEXTs.
 | 
						|
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
 | 
						|
  DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  struct ShuffleSourceInfo {
 | 
						|
    SDValue Vec;
 | 
						|
    unsigned MinElt;
 | 
						|
    unsigned MaxElt;
 | 
						|
 | 
						|
    // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
 | 
						|
    // be compatible with the shuffle we intend to construct. As a result
 | 
						|
    // ShuffleVec will be some sliding window into the original Vec.
 | 
						|
    SDValue ShuffleVec;
 | 
						|
 | 
						|
    // Code should guarantee that element i in Vec starts at element "WindowBase
 | 
						|
    // + i * WindowScale in ShuffleVec".
 | 
						|
    int WindowBase;
 | 
						|
    int WindowScale;
 | 
						|
 | 
						|
    ShuffleSourceInfo(SDValue Vec)
 | 
						|
      : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
 | 
						|
          ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
 | 
						|
 | 
						|
    bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
 | 
						|
  };
 | 
						|
 | 
						|
  // First gather all vectors used as an immediate source for this BUILD_VECTOR
 | 
						|
  // node.
 | 
						|
  SmallVector<ShuffleSourceInfo, 2> Sources;
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue V = Op.getOperand(i);
 | 
						|
    if (V.isUndef())
 | 
						|
      continue;
 | 
						|
    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
             !isa<ConstantSDNode>(V.getOperand(1))) {
 | 
						|
      DEBUG(dbgs() << "Reshuffle failed: "
 | 
						|
                      "a shuffle can only come from building a vector from "
 | 
						|
                      "various elements of other vectors, provided their "
 | 
						|
                      "indices are constant\n");
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // Add this element source to the list if it's not already there.
 | 
						|
    SDValue SourceVec = V.getOperand(0);
 | 
						|
    auto Source = find(Sources, SourceVec);
 | 
						|
    if (Source == Sources.end())
 | 
						|
      Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
 | 
						|
 | 
						|
    // Update the minimum and maximum lane number seen.
 | 
						|
    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
 | 
						|
    Source->MinElt = std::min(Source->MinElt, EltNo);
 | 
						|
    Source->MaxElt = std::max(Source->MaxElt, EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Sources.size() > 2) {
 | 
						|
    DEBUG(dbgs() << "Reshuffle failed: currently only do something sane when at "
 | 
						|
                    "most two source vectors are involved\n");
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Find out the smallest element size among result and two sources, and use
 | 
						|
  // it as element size to build the shuffle_vector.
 | 
						|
  EVT SmallestEltTy = VT.getVectorElementType();
 | 
						|
  for (auto &Source : Sources) {
 | 
						|
    EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
 | 
						|
    if (SrcEltTy.bitsLT(SmallestEltTy)) {
 | 
						|
      SmallestEltTy = SrcEltTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  unsigned ResMultiplier =
 | 
						|
      VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
 | 
						|
  NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
 | 
						|
  EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
 | 
						|
 | 
						|
  // If the source vector is too wide or too narrow, we may nevertheless be able
 | 
						|
  // to construct a compatible shuffle either by concatenating it with UNDEF or
 | 
						|
  // extracting a suitable range of elements.
 | 
						|
  for (auto &Src : Sources) {
 | 
						|
    EVT SrcVT = Src.ShuffleVec.getValueType();
 | 
						|
 | 
						|
    if (SrcVT.getSizeInBits() == VT.getSizeInBits())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This stage of the search produces a source with the same element type as
 | 
						|
    // the original, but with a total width matching the BUILD_VECTOR output.
 | 
						|
    EVT EltVT = SrcVT.getVectorElementType();
 | 
						|
    unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
 | 
						|
    EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
 | 
						|
 | 
						|
    if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
 | 
						|
      assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
 | 
						|
      // We can pad out the smaller vector for free, so if it's part of a
 | 
						|
      // shuffle...
 | 
						|
      Src.ShuffleVec =
 | 
						|
          DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
 | 
						|
                      DAG.getUNDEF(Src.ShuffleVec.getValueType()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
 | 
						|
 | 
						|
    if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
 | 
						|
      DEBUG(dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Src.MinElt >= NumSrcElts) {
 | 
						|
      // The extraction can just take the second half
 | 
						|
      Src.ShuffleVec =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | 
						|
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
 | 
						|
      Src.WindowBase = -NumSrcElts;
 | 
						|
    } else if (Src.MaxElt < NumSrcElts) {
 | 
						|
      // The extraction can just take the first half
 | 
						|
      Src.ShuffleVec =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | 
						|
                      DAG.getConstant(0, dl, MVT::i64));
 | 
						|
    } else {
 | 
						|
      // An actual VEXT is needed
 | 
						|
      SDValue VEXTSrc1 =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | 
						|
                      DAG.getConstant(0, dl, MVT::i64));
 | 
						|
      SDValue VEXTSrc2 =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | 
						|
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
 | 
						|
      unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
 | 
						|
 | 
						|
      Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
 | 
						|
                                   VEXTSrc2,
 | 
						|
                                   DAG.getConstant(Imm, dl, MVT::i32));
 | 
						|
      Src.WindowBase = -Src.MinElt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Another possible incompatibility occurs from the vector element types. We
 | 
						|
  // can fix this by bitcasting the source vectors to the same type we intend
 | 
						|
  // for the shuffle.
 | 
						|
  for (auto &Src : Sources) {
 | 
						|
    EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
 | 
						|
    if (SrcEltTy == SmallestEltTy)
 | 
						|
      continue;
 | 
						|
    assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
 | 
						|
    Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
 | 
						|
    Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
 | 
						|
    Src.WindowBase *= Src.WindowScale;
 | 
						|
  }
 | 
						|
 | 
						|
  // Final sanity check before we try to actually produce a shuffle.
 | 
						|
  DEBUG(
 | 
						|
    for (auto Src : Sources)
 | 
						|
      assert(Src.ShuffleVec.getValueType() == ShuffleVT);
 | 
						|
  );
 | 
						|
 | 
						|
  // The stars all align, our next step is to produce the mask for the shuffle.
 | 
						|
  SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
 | 
						|
  int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
 | 
						|
  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
 | 
						|
    SDValue Entry = Op.getOperand(i);
 | 
						|
    if (Entry.isUndef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto Src = find(Sources, Entry.getOperand(0));
 | 
						|
    int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
 | 
						|
 | 
						|
    // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
 | 
						|
    // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
 | 
						|
    // segment.
 | 
						|
    EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
 | 
						|
    int BitsDefined =
 | 
						|
        std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
 | 
						|
    int LanesDefined = BitsDefined / BitsPerShuffleLane;
 | 
						|
 | 
						|
    // This source is expected to fill ResMultiplier lanes of the final shuffle,
 | 
						|
    // starting at the appropriate offset.
 | 
						|
    int *LaneMask = &Mask[i * ResMultiplier];
 | 
						|
 | 
						|
    int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
 | 
						|
    ExtractBase += NumElts * (Src - Sources.begin());
 | 
						|
    for (int j = 0; j < LanesDefined; ++j)
 | 
						|
      LaneMask[j] = ExtractBase + j;
 | 
						|
  }
 | 
						|
 | 
						|
  // Final check before we try to produce nonsense...
 | 
						|
  if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
 | 
						|
    DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
 | 
						|
  for (unsigned i = 0; i < Sources.size(); ++i)
 | 
						|
    ShuffleOps[i] = Sources[i].ShuffleVec;
 | 
						|
 | 
						|
  SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
 | 
						|
                                         ShuffleOps[1], Mask);
 | 
						|
  SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
 | 
						|
 | 
						|
  DEBUG(
 | 
						|
    dbgs() << "Reshuffle, creating node: ";
 | 
						|
    Shuffle.dump();
 | 
						|
    dbgs() << "Reshuffle, creating node: ";
 | 
						|
    V.dump();
 | 
						|
  );
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
// check if an EXT instruction can handle the shuffle mask when the
 | 
						|
// vector sources of the shuffle are the same.
 | 
						|
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | 
						|
  if (M[0] < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = M[0];
 | 
						|
 | 
						|
  // If this is a VEXT shuffle, the immediate value is the index of the first
 | 
						|
  // element.  The other shuffle indices must be the successive elements after
 | 
						|
  // the first one.
 | 
						|
  unsigned ExpectedElt = Imm;
 | 
						|
  for (unsigned i = 1; i < NumElts; ++i) {
 | 
						|
    // Increment the expected index.  If it wraps around, just follow it
 | 
						|
    // back to index zero and keep going.
 | 
						|
    ++ExpectedElt;
 | 
						|
    if (ExpectedElt == NumElts)
 | 
						|
      ExpectedElt = 0;
 | 
						|
 | 
						|
    if (M[i] < 0)
 | 
						|
      continue; // ignore UNDEF indices
 | 
						|
    if (ExpectedElt != static_cast<unsigned>(M[i]))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// check if an EXT instruction can handle the shuffle mask when the
 | 
						|
// vector sources of the shuffle are different.
 | 
						|
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
 | 
						|
                      unsigned &Imm) {
 | 
						|
  // Look for the first non-undef element.
 | 
						|
  const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
 | 
						|
 | 
						|
  // Benefit form APInt to handle overflow when calculating expected element.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
 | 
						|
  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
 | 
						|
  // The following shuffle indices must be the successive elements after the
 | 
						|
  // first real element.
 | 
						|
  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
 | 
						|
      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
 | 
						|
  if (FirstWrongElt != M.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The index of an EXT is the first element if it is not UNDEF.
 | 
						|
  // Watch out for the beginning UNDEFs. The EXT index should be the expected
 | 
						|
  // value of the first element.  E.g.
 | 
						|
  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
 | 
						|
  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
 | 
						|
  // ExpectedElt is the last mask index plus 1.
 | 
						|
  Imm = ExpectedElt.getZExtValue();
 | 
						|
 | 
						|
  // There are two difference cases requiring to reverse input vectors.
 | 
						|
  // For example, for vector <4 x i32> we have the following cases,
 | 
						|
  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
 | 
						|
  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
 | 
						|
  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
 | 
						|
  // to reverse two input vectors.
 | 
						|
  if (Imm < NumElts)
 | 
						|
    ReverseEXT = true;
 | 
						|
  else
 | 
						|
    Imm -= NumElts;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isREVMask - Check if a vector shuffle corresponds to a REV
 | 
						|
/// instruction with the specified blocksize.  (The order of the elements
 | 
						|
/// within each block of the vector is reversed.)
 | 
						|
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
 | 
						|
  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
 | 
						|
         "Only possible block sizes for REV are: 16, 32, 64");
 | 
						|
 | 
						|
  unsigned EltSz = VT.getScalarSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned BlockElts = M[0] + 1;
 | 
						|
  // If the first shuffle index is UNDEF, be optimistic.
 | 
						|
  if (M[0] < 0)
 | 
						|
    BlockElts = BlockSize / EltSz;
 | 
						|
 | 
						|
  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    if (M[i] < 0)
 | 
						|
      continue; // ignore UNDEF indices
 | 
						|
    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  unsigned Idx = WhichResult * NumElts / 2;
 | 
						|
  for (unsigned i = 0; i != NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
 | 
						|
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
 | 
						|
      return false;
 | 
						|
    Idx += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    if (M[i] < 0)
 | 
						|
      continue; // ignore UNDEF indices
 | 
						|
    if ((unsigned)M[i] != 2 * i + WhichResult)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i < NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
 | 
						|
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | 
						|
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  unsigned Idx = WhichResult * NumElts / 2;
 | 
						|
  for (unsigned i = 0; i != NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
 | 
						|
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
 | 
						|
      return false;
 | 
						|
    Idx += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | 
						|
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned Half = VT.getVectorNumElements() / 2;
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned j = 0; j != 2; ++j) {
 | 
						|
    unsigned Idx = WhichResult;
 | 
						|
    for (unsigned i = 0; i != Half; ++i) {
 | 
						|
      int MIdx = M[i + j * Half];
 | 
						|
      if (MIdx >= 0 && (unsigned)MIdx != Idx)
 | 
						|
        return false;
 | 
						|
      Idx += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | 
						|
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i < NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
 | 
						|
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isINSMask(ArrayRef<int> M, int NumInputElements,
 | 
						|
                      bool &DstIsLeft, int &Anomaly) {
 | 
						|
  if (M.size() != static_cast<size_t>(NumInputElements))
 | 
						|
    return false;
 | 
						|
 | 
						|
  int NumLHSMatch = 0, NumRHSMatch = 0;
 | 
						|
  int LastLHSMismatch = -1, LastRHSMismatch = -1;
 | 
						|
 | 
						|
  for (int i = 0; i < NumInputElements; ++i) {
 | 
						|
    if (M[i] == -1) {
 | 
						|
      ++NumLHSMatch;
 | 
						|
      ++NumRHSMatch;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (M[i] == i)
 | 
						|
      ++NumLHSMatch;
 | 
						|
    else
 | 
						|
      LastLHSMismatch = i;
 | 
						|
 | 
						|
    if (M[i] == i + NumInputElements)
 | 
						|
      ++NumRHSMatch;
 | 
						|
    else
 | 
						|
      LastRHSMismatch = i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumLHSMatch == NumInputElements - 1) {
 | 
						|
    DstIsLeft = true;
 | 
						|
    Anomaly = LastLHSMismatch;
 | 
						|
    return true;
 | 
						|
  } else if (NumRHSMatch == NumInputElements - 1) {
 | 
						|
    DstIsLeft = false;
 | 
						|
    Anomaly = LastRHSMismatch;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
 | 
						|
  if (VT.getSizeInBits() != 128)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  for (int I = 0, E = NumElts / 2; I != E; I++) {
 | 
						|
    if (Mask[I] != I)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  int Offset = NumElts / 2;
 | 
						|
  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
 | 
						|
    if (Mask[I] != I + SplitLHS * Offset)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue V0 = Op.getOperand(0);
 | 
						|
  SDValue V1 = Op.getOperand(1);
 | 
						|
  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | 
						|
 | 
						|
  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
 | 
						|
      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool SplitV0 = V0.getValueSizeInBits() == 128;
 | 
						|
 | 
						|
  if (!isConcatMask(Mask, VT, SplitV0))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
 | 
						|
                                VT.getVectorNumElements() / 2);
 | 
						|
  if (SplitV0) {
 | 
						|
    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
 | 
						|
                     DAG.getConstant(0, DL, MVT::i64));
 | 
						|
  }
 | 
						|
  if (V1.getValueSizeInBits() == 128) {
 | 
						|
    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
 | 
						|
                     DAG.getConstant(0, DL, MVT::i64));
 | 
						|
  }
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | 
						|
                                      SDValue RHS, SelectionDAG &DAG,
 | 
						|
                                      const SDLoc &dl) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
 | 
						|
  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
 | 
						|
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VREV,
 | 
						|
    OP_VDUP0,
 | 
						|
    OP_VDUP1,
 | 
						|
    OP_VDUP2,
 | 
						|
    OP_VDUP3,
 | 
						|
    OP_VEXT1,
 | 
						|
    OP_VEXT2,
 | 
						|
    OP_VEXT3,
 | 
						|
    OP_VUZPL, // VUZP, left result
 | 
						|
    OP_VUZPR, // VUZP, right result
 | 
						|
    OP_VZIPL, // VZIP, left result
 | 
						|
    OP_VZIPR, // VZIP, right result
 | 
						|
    OP_VTRNL, // VTRN, left result
 | 
						|
    OP_VTRNR  // VTRN, right result
 | 
						|
  };
 | 
						|
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1 * 9 + 2) * 9 + 3)
 | 
						|
      return LHS;
 | 
						|
    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | 
						|
  EVT VT = OpLHS.getValueType();
 | 
						|
 | 
						|
  switch (OpNum) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown shuffle opcode!");
 | 
						|
  case OP_VREV:
 | 
						|
    // VREV divides the vector in half and swaps within the half.
 | 
						|
    if (VT.getVectorElementType() == MVT::i32 ||
 | 
						|
        VT.getVectorElementType() == MVT::f32)
 | 
						|
      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
 | 
						|
    // vrev <4 x i16> -> REV32
 | 
						|
    if (VT.getVectorElementType() == MVT::i16 ||
 | 
						|
        VT.getVectorElementType() == MVT::f16)
 | 
						|
      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
 | 
						|
    // vrev <4 x i8> -> REV16
 | 
						|
    assert(VT.getVectorElementType() == MVT::i8);
 | 
						|
    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
 | 
						|
  case OP_VDUP0:
 | 
						|
  case OP_VDUP1:
 | 
						|
  case OP_VDUP2:
 | 
						|
  case OP_VDUP3: {
 | 
						|
    EVT EltTy = VT.getVectorElementType();
 | 
						|
    unsigned Opcode;
 | 
						|
    if (EltTy == MVT::i8)
 | 
						|
      Opcode = AArch64ISD::DUPLANE8;
 | 
						|
    else if (EltTy == MVT::i16 || EltTy == MVT::f16)
 | 
						|
      Opcode = AArch64ISD::DUPLANE16;
 | 
						|
    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
 | 
						|
      Opcode = AArch64ISD::DUPLANE32;
 | 
						|
    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
 | 
						|
      Opcode = AArch64ISD::DUPLANE64;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Invalid vector element type?");
 | 
						|
 | 
						|
    if (VT.getSizeInBits() == 64)
 | 
						|
      OpLHS = WidenVector(OpLHS, DAG);
 | 
						|
    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
 | 
						|
    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
 | 
						|
  }
 | 
						|
  case OP_VEXT1:
 | 
						|
  case OP_VEXT2:
 | 
						|
  case OP_VEXT3: {
 | 
						|
    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
 | 
						|
    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
 | 
						|
                       DAG.getConstant(Imm, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  case OP_VUZPL:
 | 
						|
    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  case OP_VUZPR:
 | 
						|
    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  case OP_VZIPL:
 | 
						|
    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  case OP_VZIPR:
 | 
						|
    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  case OP_VTRNL:
 | 
						|
    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  case OP_VTRNR:
 | 
						|
    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
 | 
						|
                       OpRHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
 | 
						|
                           SelectionDAG &DAG) {
 | 
						|
  // Check to see if we can use the TBL instruction.
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  EVT EltVT = Op.getValueType().getVectorElementType();
 | 
						|
  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> TBLMask;
 | 
						|
  for (int Val : ShuffleMask) {
 | 
						|
    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
 | 
						|
      unsigned Offset = Byte + Val * BytesPerElt;
 | 
						|
      TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MVT IndexVT = MVT::v8i8;
 | 
						|
  unsigned IndexLen = 8;
 | 
						|
  if (Op.getValueSizeInBits() == 128) {
 | 
						|
    IndexVT = MVT::v16i8;
 | 
						|
    IndexLen = 16;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
 | 
						|
  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
 | 
						|
 | 
						|
  SDValue Shuffle;
 | 
						|
  if (V2.getNode()->isUndef()) {
 | 
						|
    if (IndexLen == 8)
 | 
						|
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
 | 
						|
    Shuffle = DAG.getNode(
 | 
						|
        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | 
						|
        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
 | 
						|
        DAG.getBuildVector(IndexVT, DL,
 | 
						|
                           makeArrayRef(TBLMask.data(), IndexLen)));
 | 
						|
  } else {
 | 
						|
    if (IndexLen == 8) {
 | 
						|
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
 | 
						|
      Shuffle = DAG.getNode(
 | 
						|
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | 
						|
          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
 | 
						|
          DAG.getBuildVector(IndexVT, DL,
 | 
						|
                             makeArrayRef(TBLMask.data(), IndexLen)));
 | 
						|
    } else {
 | 
						|
      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
 | 
						|
      // cannot currently represent the register constraints on the input
 | 
						|
      // table registers.
 | 
						|
      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
 | 
						|
      //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
 | 
						|
      //                   IndexLen));
 | 
						|
      Shuffle = DAG.getNode(
 | 
						|
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
 | 
						|
          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
 | 
						|
          V2Cst, DAG.getBuildVector(IndexVT, DL,
 | 
						|
                                    makeArrayRef(TBLMask.data(), IndexLen)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getDUPLANEOp(EVT EltType) {
 | 
						|
  if (EltType == MVT::i8)
 | 
						|
    return AArch64ISD::DUPLANE8;
 | 
						|
  if (EltType == MVT::i16 || EltType == MVT::f16)
 | 
						|
    return AArch64ISD::DUPLANE16;
 | 
						|
  if (EltType == MVT::i32 || EltType == MVT::f32)
 | 
						|
    return AArch64ISD::DUPLANE32;
 | 
						|
  if (EltType == MVT::i64 || EltType == MVT::f64)
 | 
						|
    return AArch64ISD::DUPLANE64;
 | 
						|
 | 
						|
  llvm_unreachable("Invalid vector element type?");
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | 
						|
 | 
						|
  // Convert shuffles that are directly supported on NEON to target-specific
 | 
						|
  // DAG nodes, instead of keeping them as shuffles and matching them again
 | 
						|
  // during code selection.  This is more efficient and avoids the possibility
 | 
						|
  // of inconsistencies between legalization and selection.
 | 
						|
  ArrayRef<int> ShuffleMask = SVN->getMask();
 | 
						|
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
 | 
						|
  if (SVN->isSplat()) {
 | 
						|
    int Lane = SVN->getSplatIndex();
 | 
						|
    // If this is undef splat, generate it via "just" vdup, if possible.
 | 
						|
    if (Lane == -1)
 | 
						|
      Lane = 0;
 | 
						|
 | 
						|
    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | 
						|
      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
 | 
						|
                         V1.getOperand(0));
 | 
						|
    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
 | 
						|
    // constant. If so, we can just reference the lane's definition directly.
 | 
						|
    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
        !isa<ConstantSDNode>(V1.getOperand(Lane)))
 | 
						|
      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
 | 
						|
 | 
						|
    // Otherwise, duplicate from the lane of the input vector.
 | 
						|
    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
 | 
						|
 | 
						|
    // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
 | 
						|
    // to make a vector of the same size as this SHUFFLE. We can ignore the
 | 
						|
    // extract entirely, and canonicalise the concat using WidenVector.
 | 
						|
    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
 | 
						|
      Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
 | 
						|
      V1 = V1.getOperand(0);
 | 
						|
    } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
 | 
						|
      unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
 | 
						|
      Lane -= Idx * VT.getVectorNumElements() / 2;
 | 
						|
      V1 = WidenVector(V1.getOperand(Idx), DAG);
 | 
						|
    } else if (VT.getSizeInBits() == 64)
 | 
						|
      V1 = WidenVector(V1, DAG);
 | 
						|
 | 
						|
    return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
 | 
						|
  }
 | 
						|
 | 
						|
  if (isREVMask(ShuffleMask, VT, 64))
 | 
						|
    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
 | 
						|
  if (isREVMask(ShuffleMask, VT, 32))
 | 
						|
    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
 | 
						|
  if (isREVMask(ShuffleMask, VT, 16))
 | 
						|
    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
 | 
						|
 | 
						|
  bool ReverseEXT = false;
 | 
						|
  unsigned Imm;
 | 
						|
  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
 | 
						|
    if (ReverseEXT)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    Imm *= getExtFactor(V1);
 | 
						|
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
 | 
						|
                       DAG.getConstant(Imm, dl, MVT::i32));
 | 
						|
  } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
 | 
						|
    Imm *= getExtFactor(V1);
 | 
						|
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
 | 
						|
                       DAG.getConstant(Imm, dl, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned WhichResult;
 | 
						|
  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | 
						|
  }
 | 
						|
  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | 
						|
  }
 | 
						|
  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | 
						|
  }
 | 
						|
  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | 
						|
  }
 | 
						|
  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
 | 
						|
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
 | 
						|
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
 | 
						|
    return Concat;
 | 
						|
 | 
						|
  bool DstIsLeft;
 | 
						|
  int Anomaly;
 | 
						|
  int NumInputElements = V1.getValueType().getVectorNumElements();
 | 
						|
  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
 | 
						|
    SDValue DstVec = DstIsLeft ? V1 : V2;
 | 
						|
    SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
 | 
						|
 | 
						|
    SDValue SrcVec = V1;
 | 
						|
    int SrcLane = ShuffleMask[Anomaly];
 | 
						|
    if (SrcLane >= NumInputElements) {
 | 
						|
      SrcVec = V2;
 | 
						|
      SrcLane -= VT.getVectorNumElements();
 | 
						|
    }
 | 
						|
    SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
 | 
						|
 | 
						|
    EVT ScalarVT = VT.getVectorElementType();
 | 
						|
 | 
						|
    if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
 | 
						|
      ScalarVT = MVT::i32;
 | 
						|
 | 
						|
    return DAG.getNode(
 | 
						|
        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
 | 
						|
        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
 | 
						|
        DstLaneV);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the shuffle is not directly supported and it has 4 elements, use
 | 
						|
  // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  if (NumElts == 4) {
 | 
						|
    unsigned PFIndexes[4];
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      if (ShuffleMask[i] < 0)
 | 
						|
        PFIndexes[i] = 8;
 | 
						|
      else
 | 
						|
        PFIndexes[i] = ShuffleMask[i];
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
 | 
						|
                            PFIndexes[2] * 9 + PFIndexes[3];
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost = (PFEntry >> 30);
 | 
						|
 | 
						|
    if (Cost <= 4)
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  return GenerateTBL(Op, ShuffleMask, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
 | 
						|
                               APInt &UndefBits) {
 | 
						|
  EVT VT = BVN->getValueType(0);
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | 
						|
    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
 | 
						|
 | 
						|
    for (unsigned i = 0; i < NumSplats; ++i) {
 | 
						|
      CnstBits <<= SplatBitSize;
 | 
						|
      UndefBits <<= SplatBitSize;
 | 
						|
      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
 | 
						|
      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Try 64-bit splatted SIMD immediate.
 | 
						|
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                 const APInt &Bits) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
 | 
						|
 | 
						|
    if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
 | 
						|
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                                DAG.getConstant(Value, dl, MVT::i32));
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try 32-bit splatted SIMD immediate.
 | 
						|
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                  const APInt &Bits,
 | 
						|
                                  const SDValue *LHS = nullptr) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | 
						|
    bool isAdvSIMDModImm = false;
 | 
						|
    uint64_t Shift;
 | 
						|
 | 
						|
    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
 | 
						|
      Shift = 0;
 | 
						|
    }
 | 
						|
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
 | 
						|
      Shift = 8;
 | 
						|
    }
 | 
						|
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
 | 
						|
      Shift = 16;
 | 
						|
    }
 | 
						|
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
 | 
						|
      Shift = 24;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isAdvSIMDModImm) {
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov;
 | 
						|
 | 
						|
      if (LHS)
 | 
						|
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
 | 
						|
                          DAG.getConstant(Value, dl, MVT::i32),
 | 
						|
                          DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
      else
 | 
						|
        Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                          DAG.getConstant(Value, dl, MVT::i32),
 | 
						|
                          DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try 16-bit splatted SIMD immediate.
 | 
						|
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                  const APInt &Bits,
 | 
						|
                                  const SDValue *LHS = nullptr) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
 | 
						|
    bool isAdvSIMDModImm = false;
 | 
						|
    uint64_t Shift;
 | 
						|
 | 
						|
    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
 | 
						|
      Shift = 0;
 | 
						|
    }
 | 
						|
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
 | 
						|
      Shift = 8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isAdvSIMDModImm) {
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov;
 | 
						|
 | 
						|
      if (LHS)
 | 
						|
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
 | 
						|
                          DAG.getConstant(Value, dl, MVT::i32),
 | 
						|
                          DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
      else
 | 
						|
        Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                          DAG.getConstant(Value, dl, MVT::i32),
 | 
						|
                          DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try 32-bit splatted SIMD immediate with shifted ones.
 | 
						|
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
 | 
						|
                                    SelectionDAG &DAG, const APInt &Bits) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
 | 
						|
    bool isAdvSIMDModImm = false;
 | 
						|
    uint64_t Shift;
 | 
						|
 | 
						|
    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
 | 
						|
      Shift = 264;
 | 
						|
    }
 | 
						|
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
 | 
						|
      Shift = 272;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isAdvSIMDModImm) {
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                                DAG.getConstant(Value, dl, MVT::i32),
 | 
						|
                                DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try 8-bit splatted SIMD immediate.
 | 
						|
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                 const APInt &Bits) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
 | 
						|
 | 
						|
    if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
 | 
						|
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                                DAG.getConstant(Value, dl, MVT::i32));
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Try FP splatted SIMD immediate.
 | 
						|
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                  const APInt &Bits) {
 | 
						|
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
 | 
						|
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    bool isWide = (VT.getSizeInBits() == 128);
 | 
						|
    MVT MovTy;
 | 
						|
    bool isAdvSIMDModImm = false;
 | 
						|
 | 
						|
    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
 | 
						|
      MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
 | 
						|
    }
 | 
						|
    else if (isWide &&
 | 
						|
             (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
 | 
						|
      Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
 | 
						|
      MovTy = MVT::v2f64;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isAdvSIMDModImm) {
 | 
						|
      SDLoc dl(Op);
 | 
						|
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
 | 
						|
                                DAG.getConstant(Value, dl, MVT::i32));
 | 
						|
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  BuildVectorSDNode *BVN =
 | 
						|
      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
 | 
						|
  if (!BVN) {
 | 
						|
    // AND commutes, so try swapping the operands.
 | 
						|
    LHS = Op.getOperand(1);
 | 
						|
    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
 | 
						|
  }
 | 
						|
  if (!BVN)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  APInt DefBits(VT.getSizeInBits(), 0);
 | 
						|
  APInt UndefBits(VT.getSizeInBits(), 0);
 | 
						|
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
 | 
						|
    SDValue NewOp;
 | 
						|
 | 
						|
    // We only have BIC vector immediate instruction, which is and-not.
 | 
						|
    DefBits = ~DefBits;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
 | 
						|
                                    DefBits, &LHS)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
 | 
						|
                                    DefBits, &LHS)))
 | 
						|
      return NewOp;
 | 
						|
 | 
						|
    UndefBits = ~UndefBits;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
 | 
						|
                                    UndefBits, &LHS)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
 | 
						|
                                    UndefBits, &LHS)))
 | 
						|
      return NewOp;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can always fall back to a non-immediate AND.
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Specialized code to quickly find if PotentialBVec is a BuildVector that
 | 
						|
// consists of only the same constant int value, returned in reference arg
 | 
						|
// ConstVal
 | 
						|
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
 | 
						|
                                     uint64_t &ConstVal) {
 | 
						|
  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
 | 
						|
  if (!Bvec)
 | 
						|
    return false;
 | 
						|
  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
 | 
						|
  if (!FirstElt)
 | 
						|
    return false;
 | 
						|
  EVT VT = Bvec->getValueType(0);
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  for (unsigned i = 1; i < NumElts; ++i)
 | 
						|
    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
 | 
						|
      return false;
 | 
						|
  ConstVal = FirstElt->getZExtValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getIntrinsicID(const SDNode *N) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
    if (IID < Intrinsic::num_intrinsics)
 | 
						|
      return IID;
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
 | 
						|
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
 | 
						|
// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
 | 
						|
// Also, logical shift right -> sri, with the same structure.
 | 
						|
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Is the first op an AND?
 | 
						|
  const SDValue And = N->getOperand(0);
 | 
						|
  if (And.getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Is the second op an shl or lshr?
 | 
						|
  SDValue Shift = N->getOperand(1);
 | 
						|
  // This will have been turned into: AArch64ISD::VSHL vector, #shift
 | 
						|
  // or AArch64ISD::VLSHR vector, #shift
 | 
						|
  unsigned ShiftOpc = Shift.getOpcode();
 | 
						|
  if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
 | 
						|
    return SDValue();
 | 
						|
  bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
 | 
						|
 | 
						|
  // Is the shift amount constant?
 | 
						|
  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | 
						|
  if (!C2node)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Is the and mask vector all constant?
 | 
						|
  uint64_t C1;
 | 
						|
  if (!isAllConstantBuildVector(And.getOperand(1), C1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Is C1 == ~C2, taking into account how much one can shift elements of a
 | 
						|
  // particular size?
 | 
						|
  uint64_t C2 = C2node->getZExtValue();
 | 
						|
  unsigned ElemSizeInBits = VT.getScalarSizeInBits();
 | 
						|
  if (C2 > ElemSizeInBits)
 | 
						|
    return SDValue();
 | 
						|
  unsigned ElemMask = (1 << ElemSizeInBits) - 1;
 | 
						|
  if ((C1 & ElemMask) != (~C2 & ElemMask))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue X = And.getOperand(0);
 | 
						|
  SDValue Y = Shift.getOperand(0);
 | 
						|
 | 
						|
  unsigned Intrin =
 | 
						|
      IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
 | 
						|
  SDValue ResultSLI =
 | 
						|
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | 
						|
                  DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
 | 
						|
                  Shift.getOperand(1));
 | 
						|
 | 
						|
  DEBUG(dbgs() << "aarch64-lower: transformed: \n");
 | 
						|
  DEBUG(N->dump(&DAG));
 | 
						|
  DEBUG(dbgs() << "into: \n");
 | 
						|
  DEBUG(ResultSLI->dump(&DAG));
 | 
						|
 | 
						|
  ++NumShiftInserts;
 | 
						|
  return ResultSLI;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
 | 
						|
  if (EnableAArch64SlrGeneration) {
 | 
						|
    if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
 | 
						|
      return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  BuildVectorSDNode *BVN =
 | 
						|
      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
 | 
						|
  if (!BVN) {
 | 
						|
    // OR commutes, so try swapping the operands.
 | 
						|
    LHS = Op.getOperand(1);
 | 
						|
    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
 | 
						|
  }
 | 
						|
  if (!BVN)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  APInt DefBits(VT.getSizeInBits(), 0);
 | 
						|
  APInt UndefBits(VT.getSizeInBits(), 0);
 | 
						|
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
 | 
						|
    SDValue NewOp;
 | 
						|
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
 | 
						|
                                    DefBits, &LHS)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
 | 
						|
                                    DefBits, &LHS)))
 | 
						|
      return NewOp;
 | 
						|
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
 | 
						|
                                    UndefBits, &LHS)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
 | 
						|
                                    UndefBits, &LHS)))
 | 
						|
      return NewOp;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can always fall back to a non-immediate OR.
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Normalize the operands of BUILD_VECTOR. The value of constant operands will
 | 
						|
// be truncated to fit element width.
 | 
						|
static SDValue NormalizeBuildVector(SDValue Op,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  EVT EltTy= VT.getVectorElementType();
 | 
						|
 | 
						|
  if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> Ops;
 | 
						|
  for (SDValue Lane : Op->ops()) {
 | 
						|
    if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
 | 
						|
      APInt LowBits(EltTy.getSizeInBits(),
 | 
						|
                    CstLane->getZExtValue());
 | 
						|
      Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
 | 
						|
    }
 | 
						|
    Ops.push_back(Lane);
 | 
						|
  }
 | 
						|
  return DAG.getBuildVector(VT, dl, Ops);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  APInt DefBits(VT.getSizeInBits(), 0);
 | 
						|
  APInt UndefBits(VT.getSizeInBits(), 0);
 | 
						|
  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
 | 
						|
    SDValue NewOp;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
 | 
						|
      return NewOp;
 | 
						|
 | 
						|
    DefBits = ~DefBits;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
 | 
						|
      return NewOp;
 | 
						|
 | 
						|
    DefBits = UndefBits;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
 | 
						|
      return NewOp;
 | 
						|
 | 
						|
    DefBits = ~UndefBits;
 | 
						|
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
 | 
						|
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
 | 
						|
      return NewOp;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // Try to build a simple constant vector.
 | 
						|
  Op = NormalizeBuildVector(Op, DAG);
 | 
						|
  if (VT.isInteger()) {
 | 
						|
    // Certain vector constants, used to express things like logical NOT and
 | 
						|
    // arithmetic NEG, are passed through unmodified.  This allows special
 | 
						|
    // patterns for these operations to match, which will lower these constants
 | 
						|
    // to whatever is proven necessary.
 | 
						|
    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
    if (BVN->isConstant())
 | 
						|
      if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
 | 
						|
        unsigned BitSize = VT.getVectorElementType().getSizeInBits();
 | 
						|
        APInt Val(BitSize,
 | 
						|
                  Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
 | 
						|
        if (Val.isNullValue() || Val.isAllOnesValue())
 | 
						|
          return Op;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SDValue V = ConstantBuildVector(Op, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Scan through the operands to find some interesting properties we can
 | 
						|
  // exploit:
 | 
						|
  //   1) If only one value is used, we can use a DUP, or
 | 
						|
  //   2) if only the low element is not undef, we can just insert that, or
 | 
						|
  //   3) if only one constant value is used (w/ some non-constant lanes),
 | 
						|
  //      we can splat the constant value into the whole vector then fill
 | 
						|
  //      in the non-constant lanes.
 | 
						|
  //   4) FIXME: If different constant values are used, but we can intelligently
 | 
						|
  //             select the values we'll be overwriting for the non-constant
 | 
						|
  //             lanes such that we can directly materialize the vector
 | 
						|
  //             some other way (MOVI, e.g.), we can be sneaky.
 | 
						|
  //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  bool isOnlyLowElement = true;
 | 
						|
  bool usesOnlyOneValue = true;
 | 
						|
  bool usesOnlyOneConstantValue = true;
 | 
						|
  bool isConstant = true;
 | 
						|
  bool AllLanesExtractElt = true;
 | 
						|
  unsigned NumConstantLanes = 0;
 | 
						|
  SDValue Value;
 | 
						|
  SDValue ConstantValue;
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue V = Op.getOperand(i);
 | 
						|
    if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
      AllLanesExtractElt = false;
 | 
						|
    if (V.isUndef())
 | 
						|
      continue;
 | 
						|
    if (i > 0)
 | 
						|
      isOnlyLowElement = false;
 | 
						|
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | 
						|
      isConstant = false;
 | 
						|
 | 
						|
    if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
 | 
						|
      ++NumConstantLanes;
 | 
						|
      if (!ConstantValue.getNode())
 | 
						|
        ConstantValue = V;
 | 
						|
      else if (ConstantValue != V)
 | 
						|
        usesOnlyOneConstantValue = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Value.getNode())
 | 
						|
      Value = V;
 | 
						|
    else if (V != Value)
 | 
						|
      usesOnlyOneValue = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Value.getNode()) {
 | 
						|
    DEBUG(dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
 | 
						|
    return DAG.getUNDEF(VT);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isOnlyLowElement) {
 | 
						|
    DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
 | 
						|
                    "SCALAR_TO_VECTOR node\n");
 | 
						|
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AllLanesExtractElt) {
 | 
						|
    SDNode *Vector = nullptr;
 | 
						|
    bool Even = false;
 | 
						|
    bool Odd = false;
 | 
						|
    // Check whether the extract elements match the Even pattern <0,2,4,...> or
 | 
						|
    // the Odd pattern <1,3,5,...>.
 | 
						|
    for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
      SDValue V = Op.getOperand(i);
 | 
						|
      const SDNode *N = V.getNode();
 | 
						|
      if (!isa<ConstantSDNode>(N->getOperand(1)))
 | 
						|
        break;
 | 
						|
      SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
      // All elements are extracted from the same vector.
 | 
						|
      if (!Vector) {
 | 
						|
        Vector = N0.getNode();
 | 
						|
        // Check that the type of EXTRACT_VECTOR_ELT matches the type of
 | 
						|
        // BUILD_VECTOR.
 | 
						|
        if (VT.getVectorElementType() !=
 | 
						|
            N0.getValueType().getVectorElementType())
 | 
						|
          break;
 | 
						|
      } else if (Vector != N0.getNode()) {
 | 
						|
        Odd = false;
 | 
						|
        Even = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Extracted values are either at Even indices <0,2,4,...> or at Odd
 | 
						|
      // indices <1,3,5,...>.
 | 
						|
      uint64_t Val = N->getConstantOperandVal(1);
 | 
						|
      if (Val == 2 * i) {
 | 
						|
        Even = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (Val - 1 == 2 * i) {
 | 
						|
        Odd = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Something does not match: abort.
 | 
						|
      Odd = false;
 | 
						|
      Even = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (Even || Odd) {
 | 
						|
      SDValue LHS =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
 | 
						|
                      DAG.getConstant(0, dl, MVT::i64));
 | 
						|
      SDValue RHS =
 | 
						|
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
 | 
						|
                      DAG.getConstant(NumElts, dl, MVT::i64));
 | 
						|
 | 
						|
      if (Even && !Odd)
 | 
						|
        return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
 | 
						|
                           RHS);
 | 
						|
      if (Odd && !Even)
 | 
						|
        return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
 | 
						|
                           RHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use DUP for non-constant splats. For f32 constant splats, reduce to
 | 
						|
  // i32 and try again.
 | 
						|
  if (usesOnlyOneValue) {
 | 
						|
    if (!isConstant) {
 | 
						|
      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
          Value.getValueType() != VT) {
 | 
						|
        DEBUG(dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
 | 
						|
        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
 | 
						|
      }
 | 
						|
 | 
						|
      // This is actually a DUPLANExx operation, which keeps everything vectory.
 | 
						|
 | 
						|
      SDValue Lane = Value.getOperand(1);
 | 
						|
      Value = Value.getOperand(0);
 | 
						|
      if (Value.getValueSizeInBits() == 64) {
 | 
						|
        DEBUG(dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
 | 
						|
                        "widening it\n");
 | 
						|
        Value = WidenVector(Value, DAG);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
 | 
						|
      return DAG.getNode(Opcode, dl, VT, Value, Lane);
 | 
						|
    }
 | 
						|
 | 
						|
    if (VT.getVectorElementType().isFloatingPoint()) {
 | 
						|
      SmallVector<SDValue, 8> Ops;
 | 
						|
      EVT EltTy = VT.getVectorElementType();
 | 
						|
      assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
 | 
						|
              "Unsupported floating-point vector type");
 | 
						|
      DEBUG(dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
 | 
						|
                      "BITCASTS, and try again\n");
 | 
						|
      MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
 | 
						|
      for (unsigned i = 0; i < NumElts; ++i)
 | 
						|
        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
 | 
						|
      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
 | 
						|
      SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
 | 
						|
      DEBUG(
 | 
						|
        dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
 | 
						|
        Val.dump();
 | 
						|
      );
 | 
						|
      Val = LowerBUILD_VECTOR(Val, DAG);
 | 
						|
      if (Val.getNode())
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there was only one constant value used and for more than one lane,
 | 
						|
  // start by splatting that value, then replace the non-constant lanes. This
 | 
						|
  // is better than the default, which will perform a separate initialization
 | 
						|
  // for each lane.
 | 
						|
  if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
 | 
						|
    // Firstly, try to materialize the splat constant.
 | 
						|
    SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
 | 
						|
            Val = ConstantBuildVector(Vec, DAG);
 | 
						|
    if (!Val) {
 | 
						|
      // Otherwise, materialize the constant and splat it.
 | 
						|
      Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
 | 
						|
      DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now insert the non-constant lanes.
 | 
						|
    for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
      SDValue V = Op.getOperand(i);
 | 
						|
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
 | 
						|
      if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
 | 
						|
        // Note that type legalization likely mucked about with the VT of the
 | 
						|
        // source operand, so we may have to convert it here before inserting.
 | 
						|
        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
 | 
						|
    }
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  // This will generate a load from the constant pool.
 | 
						|
  if (isConstant) {
 | 
						|
    DEBUG(dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
 | 
						|
                    "expansion\n");
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
 | 
						|
  if (NumElts >= 4) {
 | 
						|
    if (SDValue shuffle = ReconstructShuffle(Op, DAG))
 | 
						|
      return shuffle;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
 | 
						|
  // know the default expansion would otherwise fall back on something even
 | 
						|
  // worse. For a vector with one or two non-undef values, that's
 | 
						|
  // scalar_to_vector for the elements followed by a shuffle (provided the
 | 
						|
  // shuffle is valid for the target) and materialization element by element
 | 
						|
  // on the stack followed by a load for everything else.
 | 
						|
  if (!isConstant && !usesOnlyOneValue) {
 | 
						|
    DEBUG(dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
 | 
						|
                    "of INSERT_VECTOR_ELT\n");
 | 
						|
 | 
						|
    SDValue Vec = DAG.getUNDEF(VT);
 | 
						|
    SDValue Op0 = Op.getOperand(0);
 | 
						|
    unsigned i = 0;
 | 
						|
 | 
						|
    // Use SCALAR_TO_VECTOR for lane zero to
 | 
						|
    // a) Avoid a RMW dependency on the full vector register, and
 | 
						|
    // b) Allow the register coalescer to fold away the copy if the
 | 
						|
    //    value is already in an S or D register, and we're forced to emit an
 | 
						|
    //    INSERT_SUBREG that we can't fold anywhere.
 | 
						|
    //
 | 
						|
    // We also allow types like i8 and i16 which are illegal scalar but legal
 | 
						|
    // vector element types. After type-legalization the inserted value is
 | 
						|
    // extended (i32) and it is safe to cast them to the vector type by ignoring
 | 
						|
    // the upper bits of the lowest lane (e.g. v8i8, v4i16).
 | 
						|
    if (!Op0.isUndef()) {
 | 
						|
      DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
 | 
						|
      Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
 | 
						|
      ++i;
 | 
						|
    }
 | 
						|
    DEBUG(
 | 
						|
      if (i < NumElts)
 | 
						|
        dbgs() << "Creating nodes for the other vector elements:\n";
 | 
						|
    );
 | 
						|
    for (; i < NumElts; ++i) {
 | 
						|
      SDValue V = Op.getOperand(i);
 | 
						|
      if (V.isUndef())
 | 
						|
        continue;
 | 
						|
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
 | 
						|
      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
 | 
						|
    }
 | 
						|
    return Vec;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
 | 
						|
                  "better alternative\n");
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
 | 
						|
 | 
						|
  // Check for non-constant or out of range lane.
 | 
						|
  EVT VT = Op.getOperand(0).getValueType();
 | 
						|
  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
 | 
						|
  // Insertion/extraction are legal for V128 types.
 | 
						|
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | 
						|
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
 | 
						|
      VT == MVT::v8f16)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
 | 
						|
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // For V64 types, we perform insertion by expanding the value
 | 
						|
  // to a V128 type and perform the insertion on that.
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
 | 
						|
  EVT WideTy = WideVec.getValueType();
 | 
						|
 | 
						|
  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
 | 
						|
                             Op.getOperand(1), Op.getOperand(2));
 | 
						|
  // Re-narrow the resultant vector.
 | 
						|
  return NarrowVector(Node, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
 | 
						|
 | 
						|
  // Check for non-constant or out of range lane.
 | 
						|
  EVT VT = Op.getOperand(0).getValueType();
 | 
						|
  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | 
						|
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
 | 
						|
  // Insertion/extraction are legal for V128 types.
 | 
						|
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
 | 
						|
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
 | 
						|
      VT == MVT::v8f16)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
 | 
						|
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // For V64 types, we perform extraction by expanding the value
 | 
						|
  // to a V128 type and perform the extraction on that.
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
 | 
						|
  EVT WideTy = WideVec.getValueType();
 | 
						|
 | 
						|
  EVT ExtrTy = WideTy.getVectorElementType();
 | 
						|
  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
 | 
						|
    ExtrTy = MVT::i32;
 | 
						|
 | 
						|
  // For extractions, we just return the result directly.
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
 | 
						|
                     Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getOperand(0).getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // Just in case...
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | 
						|
  if (!Cst)
 | 
						|
    return SDValue();
 | 
						|
  unsigned Val = Cst->getZExtValue();
 | 
						|
 | 
						|
  unsigned Size = Op.getValueSizeInBits();
 | 
						|
 | 
						|
  // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
 | 
						|
  if (Val == 0)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // If this is extracting the upper 64-bits of a 128-bit vector, we match
 | 
						|
  // that directly.
 | 
						|
  if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
 | 
						|
  if (VT.getVectorNumElements() == 4 &&
 | 
						|
      (VT.is128BitVector() || VT.is64BitVector())) {
 | 
						|
    unsigned PFIndexes[4];
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      if (M[i] < 0)
 | 
						|
        PFIndexes[i] = 8;
 | 
						|
      else
 | 
						|
        PFIndexes[i] = M[i];
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
 | 
						|
                            PFIndexes[2] * 9 + PFIndexes[3];
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost = (PFEntry >> 30);
 | 
						|
 | 
						|
    if (Cost <= 4)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool DummyBool;
 | 
						|
  int DummyInt;
 | 
						|
  unsigned DummyUnsigned;
 | 
						|
 | 
						|
  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
 | 
						|
          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
 | 
						|
          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
 | 
						|
          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
 | 
						|
          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
 | 
						|
          isZIPMask(M, VT, DummyUnsigned) ||
 | 
						|
          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
 | 
						|
          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
 | 
						|
          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
 | 
						|
          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
 | 
						|
          isConcatMask(M, VT, VT.getSizeInBits() == 128));
 | 
						|
}
 | 
						|
 | 
						|
/// getVShiftImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift operation, where all the elements of the
 | 
						|
/// build_vector must have the same constant integer value.
 | 
						|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | 
						|
  // Ignore bit_converts.
 | 
						|
  while (Op.getOpcode() == ISD::BITCAST)
 | 
						|
    Op = Op.getOperand(0);
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | 
						|
                                    HasAnyUndefs, ElementBits) ||
 | 
						|
      SplatBitSize > ElementBits)
 | 
						|
    return false;
 | 
						|
  Cnt = SplatBits.getSExtValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift left operation.  That value must be in the range:
 | 
						|
///   0 <= Value < ElementBits for a left shift; or
 | 
						|
///   0 <= Value <= ElementBits for a long left shift.
 | 
						|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | 
						|
  assert(VT.isVector() && "vector shift count is not a vector type");
 | 
						|
  int64_t ElementBits = VT.getScalarSizeInBits();
 | 
						|
  if (!getVShiftImm(Op, ElementBits, Cnt))
 | 
						|
    return false;
 | 
						|
  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
 | 
						|
}
 | 
						|
 | 
						|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift right operation. The value must be in the range:
 | 
						|
///   1 <= Value <= ElementBits for a right shift; or
 | 
						|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
 | 
						|
  assert(VT.isVector() && "vector shift count is not a vector type");
 | 
						|
  int64_t ElementBits = VT.getScalarSizeInBits();
 | 
						|
  if (!getVShiftImm(Op, ElementBits, Cnt))
 | 
						|
    return false;
 | 
						|
  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  int64_t Cnt;
 | 
						|
 | 
						|
  if (!Op.getOperand(1).getValueType().isVector())
 | 
						|
    return Op;
 | 
						|
  unsigned EltSize = VT.getScalarSizeInBits();
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected shift opcode");
 | 
						|
 | 
						|
  case ISD::SHL:
 | 
						|
    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
 | 
						|
      return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
 | 
						|
                         DAG.getConstant(Cnt, DL, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | 
						|
                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
 | 
						|
                                       MVT::i32),
 | 
						|
                       Op.getOperand(0), Op.getOperand(1));
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:
 | 
						|
    // Right shift immediate
 | 
						|
    if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
 | 
						|
      unsigned Opc =
 | 
						|
          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
 | 
						|
      return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
 | 
						|
                         DAG.getConstant(Cnt, DL, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    // Right shift register.  Note, there is not a shift right register
 | 
						|
    // instruction, but the shift left register instruction takes a signed
 | 
						|
    // value, where negative numbers specify a right shift.
 | 
						|
    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
 | 
						|
                                                : Intrinsic::aarch64_neon_ushl;
 | 
						|
    // negate the shift amount
 | 
						|
    SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
 | 
						|
    SDValue NegShiftLeft =
 | 
						|
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | 
						|
                    DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
 | 
						|
                    NegShift);
 | 
						|
    return NegShiftLeft;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
 | 
						|
                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
 | 
						|
                                    const SDLoc &dl, SelectionDAG &DAG) {
 | 
						|
  EVT SrcVT = LHS.getValueType();
 | 
						|
  assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
 | 
						|
         "function only supposed to emit natural comparisons");
 | 
						|
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
 | 
						|
  APInt CnstBits(VT.getSizeInBits(), 0);
 | 
						|
  APInt UndefBits(VT.getSizeInBits(), 0);
 | 
						|
  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
 | 
						|
  bool IsZero = IsCnst && (CnstBits == 0);
 | 
						|
 | 
						|
  if (SrcVT.getVectorElementType().isFloatingPoint()) {
 | 
						|
    switch (CC) {
 | 
						|
    default:
 | 
						|
      return SDValue();
 | 
						|
    case AArch64CC::NE: {
 | 
						|
      SDValue Fcmeq;
 | 
						|
      if (IsZero)
 | 
						|
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
 | 
						|
      else
 | 
						|
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
 | 
						|
      return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
 | 
						|
    }
 | 
						|
    case AArch64CC::EQ:
 | 
						|
      if (IsZero)
 | 
						|
        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
 | 
						|
      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
 | 
						|
    case AArch64CC::GE:
 | 
						|
      if (IsZero)
 | 
						|
        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
 | 
						|
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
 | 
						|
    case AArch64CC::GT:
 | 
						|
      if (IsZero)
 | 
						|
        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
 | 
						|
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
 | 
						|
    case AArch64CC::LS:
 | 
						|
      if (IsZero)
 | 
						|
        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
 | 
						|
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
 | 
						|
    case AArch64CC::LT:
 | 
						|
      if (!NoNans)
 | 
						|
        return SDValue();
 | 
						|
      // If we ignore NaNs then we can use to the MI implementation.
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case AArch64CC::MI:
 | 
						|
      if (IsZero)
 | 
						|
        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
 | 
						|
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case AArch64CC::NE: {
 | 
						|
    SDValue Cmeq;
 | 
						|
    if (IsZero)
 | 
						|
      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
 | 
						|
    else
 | 
						|
      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
 | 
						|
    return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
 | 
						|
  }
 | 
						|
  case AArch64CC::EQ:
 | 
						|
    if (IsZero)
 | 
						|
      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
 | 
						|
    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
 | 
						|
  case AArch64CC::GE:
 | 
						|
    if (IsZero)
 | 
						|
      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
 | 
						|
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
 | 
						|
  case AArch64CC::GT:
 | 
						|
    if (IsZero)
 | 
						|
      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
 | 
						|
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
 | 
						|
  case AArch64CC::LE:
 | 
						|
    if (IsZero)
 | 
						|
      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
 | 
						|
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
 | 
						|
  case AArch64CC::LS:
 | 
						|
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
 | 
						|
  case AArch64CC::LO:
 | 
						|
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
 | 
						|
  case AArch64CC::LT:
 | 
						|
    if (IsZero)
 | 
						|
      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
 | 
						|
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
 | 
						|
  case AArch64CC::HI:
 | 
						|
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
 | 
						|
  case AArch64CC::HS:
 | 
						|
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (LHS.getValueType().getVectorElementType().isInteger()) {
 | 
						|
    assert(LHS.getValueType() == RHS.getValueType());
 | 
						|
    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
 | 
						|
    SDValue Cmp =
 | 
						|
        EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
 | 
						|
    return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
 | 
						|
  }
 | 
						|
 | 
						|
  const bool FullFP16 =
 | 
						|
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
 | 
						|
 | 
						|
  // Make v4f16 (only) fcmp operations utilise vector instructions
 | 
						|
  // v8f16 support will be a litle more complicated
 | 
						|
  if (LHS.getValueType().getVectorElementType() == MVT::f16) {
 | 
						|
    if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) {
 | 
						|
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
 | 
						|
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
 | 
						|
      SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
 | 
						|
      DAG.ReplaceAllUsesWith(Op, NewSetcc);
 | 
						|
      CmpVT = MVT::v4i32;
 | 
						|
    } else
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
 | 
						|
         LHS.getValueType().getVectorElementType() == MVT::f64);
 | 
						|
 | 
						|
  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
 | 
						|
  // clean.  Some of them require two branches to implement.
 | 
						|
  AArch64CC::CondCode CC1, CC2;
 | 
						|
  bool ShouldInvert;
 | 
						|
  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
 | 
						|
 | 
						|
  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
 | 
						|
  SDValue Cmp =
 | 
						|
      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
 | 
						|
  if (!Cmp.getNode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (CC2 != AArch64CC::AL) {
 | 
						|
    SDValue Cmp2 =
 | 
						|
        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
 | 
						|
    if (!Cmp2.getNode())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
 | 
						|
  }
 | 
						|
 | 
						|
  Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
 | 
						|
 | 
						|
  if (ShouldInvert)
 | 
						|
    return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
 | 
						|
 | 
						|
  return Cmp;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  SDValue VecOp = ScalarOp.getOperand(0);
 | 
						|
  auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
 | 
						|
                     DAG.getConstant(0, DL, MVT::i64));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case ISD::VECREDUCE_ADD:
 | 
						|
    return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
 | 
						|
  case ISD::VECREDUCE_SMAX:
 | 
						|
    return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
 | 
						|
  case ISD::VECREDUCE_SMIN:
 | 
						|
    return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
 | 
						|
  case ISD::VECREDUCE_UMAX:
 | 
						|
    return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
 | 
						|
  case ISD::VECREDUCE_UMIN:
 | 
						|
    return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
 | 
						|
  case ISD::VECREDUCE_FMAX: {
 | 
						|
    assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
 | 
						|
    return DAG.getNode(
 | 
						|
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
 | 
						|
        DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
 | 
						|
        Op.getOperand(0));
 | 
						|
  }
 | 
						|
  case ISD::VECREDUCE_FMIN: {
 | 
						|
    assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
 | 
						|
    return DAG.getNode(
 | 
						|
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
 | 
						|
        DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
 | 
						|
        Op.getOperand(0));
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled reduction");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
 | 
						|
  if (!Subtarget.hasLSE())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // LSE has an atomic load-add instruction, but not a load-sub.
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue RHS = Op.getOperand(2);
 | 
						|
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
 | 
						|
  RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
 | 
						|
  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
 | 
						|
                       Op.getOperand(0), Op.getOperand(1), RHS,
 | 
						|
                       AN->getMemOperand());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
 | 
						|
  if (!Subtarget.hasLSE())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // LSE has an atomic load-clear instruction, but not a load-and.
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  SDValue RHS = Op.getOperand(2);
 | 
						|
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
 | 
						|
  RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
 | 
						|
  return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
 | 
						|
                       Op.getOperand(0), Op.getOperand(1), RHS,
 | 
						|
                       AN->getMemOperand());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
 | 
						|
    SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
 | 
						|
 | 
						|
  const uint32_t *Mask =
 | 
						|
      Subtarget->getRegisterInfo()->getWindowsStackProbePreservedMask();
 | 
						|
 | 
						|
  Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
 | 
						|
                     DAG.getConstant(4, dl, MVT::i64));
 | 
						|
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
 | 
						|
  Chain =
 | 
						|
      DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
 | 
						|
                  Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
 | 
						|
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
 | 
						|
  // To match the actual intent better, we should read the output from X15 here
 | 
						|
  // again (instead of potentially spilling it to the stack), but rereading Size
 | 
						|
  // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
 | 
						|
  // here.
 | 
						|
 | 
						|
  Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
 | 
						|
                     DAG.getConstant(4, dl, MVT::i64));
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetWindows() &&
 | 
						|
         "Only Windows alloca probing supported");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // Get the inputs.
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size = Op.getOperand(1);
 | 
						|
  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
 | 
						|
  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
 | 
						|
          "no-stack-arg-probe")) {
 | 
						|
    SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
 | 
						|
    Chain = SP.getValue(1);
 | 
						|
    SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
 | 
						|
    if (Align)
 | 
						|
      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
 | 
						|
                       DAG.getConstant(-(uint64_t)Align, dl, VT));
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
 | 
						|
    SDValue Ops[2] = {SP, Chain};
 | 
						|
    return DAG.getMergeValues(Ops, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
 | 
						|
 | 
						|
  Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
 | 
						|
 | 
						|
  SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
 | 
						|
  Chain = SP.getValue(1);
 | 
						|
  SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
 | 
						|
  if (Align)
 | 
						|
    SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
 | 
						|
                     DAG.getConstant(-(uint64_t)Align, dl, VT));
 | 
						|
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
 | 
						|
 | 
						|
  SDValue Ops[2] = {SP, Chain};
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
 | 
						|
/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
 | 
						|
/// specified in the intrinsic calls.
 | 
						|
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                               const CallInst &I,
 | 
						|
                                               MachineFunction &MF,
 | 
						|
                                               unsigned Intrinsic) const {
 | 
						|
  auto &DL = I.getModule()->getDataLayout();
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::aarch64_neon_ld2:
 | 
						|
  case Intrinsic::aarch64_neon_ld3:
 | 
						|
  case Intrinsic::aarch64_neon_ld4:
 | 
						|
  case Intrinsic::aarch64_neon_ld1x2:
 | 
						|
  case Intrinsic::aarch64_neon_ld1x3:
 | 
						|
  case Intrinsic::aarch64_neon_ld1x4:
 | 
						|
  case Intrinsic::aarch64_neon_ld2lane:
 | 
						|
  case Intrinsic::aarch64_neon_ld3lane:
 | 
						|
  case Intrinsic::aarch64_neon_ld4lane:
 | 
						|
  case Intrinsic::aarch64_neon_ld2r:
 | 
						|
  case Intrinsic::aarch64_neon_ld3r:
 | 
						|
  case Intrinsic::aarch64_neon_ld4r: {
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    // Conservatively set memVT to the entire set of vectors loaded.
 | 
						|
    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
 | 
						|
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | 
						|
    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = 0;
 | 
						|
    // volatile loads with NEON intrinsics not supported
 | 
						|
    Info.flags = MachineMemOperand::MOLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::aarch64_neon_st2:
 | 
						|
  case Intrinsic::aarch64_neon_st3:
 | 
						|
  case Intrinsic::aarch64_neon_st4:
 | 
						|
  case Intrinsic::aarch64_neon_st1x2:
 | 
						|
  case Intrinsic::aarch64_neon_st1x3:
 | 
						|
  case Intrinsic::aarch64_neon_st1x4:
 | 
						|
  case Intrinsic::aarch64_neon_st2lane:
 | 
						|
  case Intrinsic::aarch64_neon_st3lane:
 | 
						|
  case Intrinsic::aarch64_neon_st4lane: {
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    // Conservatively set memVT to the entire set of vectors stored.
 | 
						|
    unsigned NumElts = 0;
 | 
						|
    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | 
						|
      Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | 
						|
      if (!ArgTy->isVectorTy())
 | 
						|
        break;
 | 
						|
      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
 | 
						|
    }
 | 
						|
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | 
						|
    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = 0;
 | 
						|
    // volatile stores with NEON intrinsics not supported
 | 
						|
    Info.flags = MachineMemOperand::MOStore;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::aarch64_ldaxr:
 | 
						|
  case Intrinsic::aarch64_ldxr: {
 | 
						|
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::getVT(PtrTy->getElementType());
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
 | 
						|
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::aarch64_stlxr:
 | 
						|
  case Intrinsic::aarch64_stxr: {
 | 
						|
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::getVT(PtrTy->getElementType());
 | 
						|
    Info.ptrVal = I.getArgOperand(1);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
 | 
						|
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::aarch64_ldaxp:
 | 
						|
  case Intrinsic::aarch64_ldxp:
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::i128;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = 16;
 | 
						|
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  case Intrinsic::aarch64_stlxp:
 | 
						|
  case Intrinsic::aarch64_stxp:
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = MVT::i128;
 | 
						|
    Info.ptrVal = I.getArgOperand(2);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align = 16;
 | 
						|
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
 | 
						|
                                                  ISD::LoadExtType ExtTy,
 | 
						|
                                                  EVT NewVT) const {
 | 
						|
  // If we're reducing the load width in order to avoid having to use an extra
 | 
						|
  // instruction to do extension then it's probably a good idea.
 | 
						|
  if (ExtTy != ISD::NON_EXTLOAD)
 | 
						|
    return true;
 | 
						|
  // Don't reduce load width if it would prevent us from combining a shift into
 | 
						|
  // the offset.
 | 
						|
  MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
 | 
						|
  assert(Mem);
 | 
						|
  const SDValue &Base = Mem->getBasePtr();
 | 
						|
  if (Base.getOpcode() == ISD::ADD &&
 | 
						|
      Base.getOperand(1).getOpcode() == ISD::SHL &&
 | 
						|
      Base.getOperand(1).hasOneUse() &&
 | 
						|
      Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
 | 
						|
    // The shift can be combined if it matches the size of the value being
 | 
						|
    // loaded (and so reducing the width would make it not match).
 | 
						|
    uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
 | 
						|
    uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
 | 
						|
    if (ShiftAmount == Log2_32(LoadBytes))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // We have no reason to disallow reducing the load width, so allow it.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Truncations from 64-bit GPR to 32-bit GPR is free.
 | 
						|
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | 
						|
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | 
						|
  return NumBits1 > NumBits2;
 | 
						|
}
 | 
						|
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = VT1.getSizeInBits();
 | 
						|
  unsigned NumBits2 = VT2.getSizeInBits();
 | 
						|
  return NumBits1 > NumBits2;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if it is profitable to hoist instruction in then/else to if.
 | 
						|
/// Not profitable if I and it's user can form a FMA instruction
 | 
						|
/// because we prefer FMSUB/FMADD.
 | 
						|
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
 | 
						|
  if (I->getOpcode() != Instruction::FMul)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!I->hasOneUse())
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *User = I->user_back();
 | 
						|
 | 
						|
  if (User &&
 | 
						|
      !(User->getOpcode() == Instruction::FSub ||
 | 
						|
        User->getOpcode() == Instruction::FAdd))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const TargetOptions &Options = getTargetMachine().Options;
 | 
						|
  const DataLayout &DL = I->getModule()->getDataLayout();
 | 
						|
  EVT VT = getValueType(DL, User->getOperand(0)->getType());
 | 
						|
 | 
						|
  return !(isFMAFasterThanFMulAndFAdd(VT) &&
 | 
						|
           isOperationLegalOrCustom(ISD::FMA, VT) &&
 | 
						|
           (Options.AllowFPOpFusion == FPOpFusion::Fast ||
 | 
						|
            Options.UnsafeFPMath));
 | 
						|
}
 | 
						|
 | 
						|
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
 | 
						|
// 64-bit GPR.
 | 
						|
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | 
						|
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | 
						|
  return NumBits1 == 32 && NumBits2 == 64;
 | 
						|
}
 | 
						|
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = VT1.getSizeInBits();
 | 
						|
  unsigned NumBits2 = VT2.getSizeInBits();
 | 
						|
  return NumBits1 == 32 && NumBits2 == 64;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | 
						|
  EVT VT1 = Val.getValueType();
 | 
						|
  if (isZExtFree(VT1, VT2)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Val.getOpcode() != ISD::LOAD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
 | 
						|
  return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
 | 
						|
          VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
 | 
						|
          VT1.getSizeInBits() <= 32);
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
 | 
						|
  if (isa<FPExtInst>(Ext))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Vector types are not free.
 | 
						|
  if (Ext->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const Use &U : Ext->uses()) {
 | 
						|
    // The extension is free if we can fold it with a left shift in an
 | 
						|
    // addressing mode or an arithmetic operation: add, sub, and cmp.
 | 
						|
 | 
						|
    // Is there a shift?
 | 
						|
    const Instruction *Instr = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
    // Is this a constant shift?
 | 
						|
    switch (Instr->getOpcode()) {
 | 
						|
    case Instruction::Shl:
 | 
						|
      if (!isa<ConstantInt>(Instr->getOperand(1)))
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      gep_type_iterator GTI = gep_type_begin(Instr);
 | 
						|
      auto &DL = Ext->getModule()->getDataLayout();
 | 
						|
      std::advance(GTI, U.getOperandNo()-1);
 | 
						|
      Type *IdxTy = GTI.getIndexedType();
 | 
						|
      // This extension will end up with a shift because of the scaling factor.
 | 
						|
      // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
 | 
						|
      // Get the shift amount based on the scaling factor:
 | 
						|
      // log2(sizeof(IdxTy)) - log2(8).
 | 
						|
      uint64_t ShiftAmt =
 | 
						|
          countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
 | 
						|
      // Is the constant foldable in the shift of the addressing mode?
 | 
						|
      // I.e., shift amount is between 1 and 4 inclusive.
 | 
						|
      if (ShiftAmt == 0 || ShiftAmt > 4)
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Trunc:
 | 
						|
      // Check if this is a noop.
 | 
						|
      // trunc(sext ty1 to ty2) to ty1.
 | 
						|
      if (Instr->getType() == Ext->getOperand(0)->getType())
 | 
						|
        continue;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point we can use the bfm family, so this extension is free
 | 
						|
    // for that use.
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
 | 
						|
                                          unsigned &RequiredAligment) const {
 | 
						|
  if (!LoadedType.isSimple() ||
 | 
						|
      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
 | 
						|
    return false;
 | 
						|
  // Cyclone supports unaligned accesses.
 | 
						|
  RequiredAligment = 0;
 | 
						|
  unsigned NumBits = LoadedType.getSizeInBits();
 | 
						|
  return NumBits == 32 || NumBits == 64;
 | 
						|
}
 | 
						|
 | 
						|
/// A helper function for determining the number of interleaved accesses we
 | 
						|
/// will generate when lowering accesses of the given type.
 | 
						|
unsigned
 | 
						|
AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
 | 
						|
                                                 const DataLayout &DL) const {
 | 
						|
  return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
 | 
						|
}
 | 
						|
 | 
						|
MachineMemOperand::Flags
 | 
						|
AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
 | 
						|
  if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
 | 
						|
      I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
 | 
						|
    return MOStridedAccess;
 | 
						|
  return MachineMemOperand::MONone;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isLegalInterleavedAccessType(
 | 
						|
    VectorType *VecTy, const DataLayout &DL) const {
 | 
						|
 | 
						|
  unsigned VecSize = DL.getTypeSizeInBits(VecTy);
 | 
						|
  unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
 | 
						|
 | 
						|
  // Ensure the number of vector elements is greater than 1.
 | 
						|
  if (VecTy->getNumElements() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the element type is legal.
 | 
						|
  if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the total vector size is 64 or a multiple of 128. Types larger than
 | 
						|
  // 128 will be split into multiple interleaved accesses.
 | 
						|
  return VecSize == 64 || VecSize % 128 == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower an interleaved load into a ldN intrinsic.
 | 
						|
///
 | 
						|
/// E.g. Lower an interleaved load (Factor = 2):
 | 
						|
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
 | 
						|
///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
 | 
						|
///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
 | 
						|
///
 | 
						|
///      Into:
 | 
						|
///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
 | 
						|
///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
 | 
						|
///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
 | 
						|
bool AArch64TargetLowering::lowerInterleavedLoad(
 | 
						|
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
 | 
						|
    ArrayRef<unsigned> Indices, unsigned Factor) const {
 | 
						|
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | 
						|
         "Invalid interleave factor");
 | 
						|
  assert(!Shuffles.empty() && "Empty shufflevector input");
 | 
						|
  assert(Shuffles.size() == Indices.size() &&
 | 
						|
         "Unmatched number of shufflevectors and indices");
 | 
						|
 | 
						|
  const DataLayout &DL = LI->getModule()->getDataLayout();
 | 
						|
 | 
						|
  VectorType *VecTy = Shuffles[0]->getType();
 | 
						|
 | 
						|
  // Skip if we do not have NEON and skip illegal vector types. We can
 | 
						|
  // "legalize" wide vector types into multiple interleaved accesses as long as
 | 
						|
  // the vector types are divisible by 128.
 | 
						|
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
 | 
						|
 | 
						|
  // A pointer vector can not be the return type of the ldN intrinsics. Need to
 | 
						|
  // load integer vectors first and then convert to pointer vectors.
 | 
						|
  Type *EltTy = VecTy->getVectorElementType();
 | 
						|
  if (EltTy->isPointerTy())
 | 
						|
    VecTy =
 | 
						|
        VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
 | 
						|
 | 
						|
  IRBuilder<> Builder(LI);
 | 
						|
 | 
						|
  // The base address of the load.
 | 
						|
  Value *BaseAddr = LI->getPointerOperand();
 | 
						|
 | 
						|
  if (NumLoads > 1) {
 | 
						|
    // If we're going to generate more than one load, reset the sub-vector type
 | 
						|
    // to something legal.
 | 
						|
    VecTy = VectorType::get(VecTy->getVectorElementType(),
 | 
						|
                            VecTy->getVectorNumElements() / NumLoads);
 | 
						|
 | 
						|
    // We will compute the pointer operand of each load from the original base
 | 
						|
    // address using GEPs. Cast the base address to a pointer to the scalar
 | 
						|
    // element type.
 | 
						|
    BaseAddr = Builder.CreateBitCast(
 | 
						|
        BaseAddr, VecTy->getVectorElementType()->getPointerTo(
 | 
						|
                      LI->getPointerAddressSpace()));
 | 
						|
  }
 | 
						|
 | 
						|
  Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
 | 
						|
  Type *Tys[2] = {VecTy, PtrTy};
 | 
						|
  static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
 | 
						|
                                            Intrinsic::aarch64_neon_ld3,
 | 
						|
                                            Intrinsic::aarch64_neon_ld4};
 | 
						|
  Function *LdNFunc =
 | 
						|
      Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
 | 
						|
 | 
						|
  // Holds sub-vectors extracted from the load intrinsic return values. The
 | 
						|
  // sub-vectors are associated with the shufflevector instructions they will
 | 
						|
  // replace.
 | 
						|
  DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
 | 
						|
 | 
						|
  for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
 | 
						|
 | 
						|
    // If we're generating more than one load, compute the base address of
 | 
						|
    // subsequent loads as an offset from the previous.
 | 
						|
    if (LoadCount > 0)
 | 
						|
      BaseAddr = Builder.CreateConstGEP1_32(
 | 
						|
          BaseAddr, VecTy->getVectorNumElements() * Factor);
 | 
						|
 | 
						|
    CallInst *LdN = Builder.CreateCall(
 | 
						|
        LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
 | 
						|
 | 
						|
    // Extract and store the sub-vectors returned by the load intrinsic.
 | 
						|
    for (unsigned i = 0; i < Shuffles.size(); i++) {
 | 
						|
      ShuffleVectorInst *SVI = Shuffles[i];
 | 
						|
      unsigned Index = Indices[i];
 | 
						|
 | 
						|
      Value *SubVec = Builder.CreateExtractValue(LdN, Index);
 | 
						|
 | 
						|
      // Convert the integer vector to pointer vector if the element is pointer.
 | 
						|
      if (EltTy->isPointerTy())
 | 
						|
        SubVec = Builder.CreateIntToPtr(
 | 
						|
            SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
 | 
						|
                                    VecTy->getVectorNumElements()));
 | 
						|
      SubVecs[SVI].push_back(SubVec);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace uses of the shufflevector instructions with the sub-vectors
 | 
						|
  // returned by the load intrinsic. If a shufflevector instruction is
 | 
						|
  // associated with more than one sub-vector, those sub-vectors will be
 | 
						|
  // concatenated into a single wide vector.
 | 
						|
  for (ShuffleVectorInst *SVI : Shuffles) {
 | 
						|
    auto &SubVec = SubVecs[SVI];
 | 
						|
    auto *WideVec =
 | 
						|
        SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
 | 
						|
    SVI->replaceAllUsesWith(WideVec);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lower an interleaved store into a stN intrinsic.
 | 
						|
///
 | 
						|
/// E.g. Lower an interleaved store (Factor = 3):
 | 
						|
///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
 | 
						|
///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
 | 
						|
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
 | 
						|
///
 | 
						|
///      Into:
 | 
						|
///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
 | 
						|
///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
 | 
						|
///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
 | 
						|
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
 | 
						|
///
 | 
						|
/// Note that the new shufflevectors will be removed and we'll only generate one
 | 
						|
/// st3 instruction in CodeGen.
 | 
						|
///
 | 
						|
/// Example for a more general valid mask (Factor 3). Lower:
 | 
						|
///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
 | 
						|
///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
 | 
						|
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
 | 
						|
///
 | 
						|
///      Into:
 | 
						|
///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
 | 
						|
///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
 | 
						|
///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
 | 
						|
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
 | 
						|
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
 | 
						|
                                                  ShuffleVectorInst *SVI,
 | 
						|
                                                  unsigned Factor) const {
 | 
						|
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | 
						|
         "Invalid interleave factor");
 | 
						|
 | 
						|
  VectorType *VecTy = SVI->getType();
 | 
						|
  assert(VecTy->getVectorNumElements() % Factor == 0 &&
 | 
						|
         "Invalid interleaved store");
 | 
						|
 | 
						|
  unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
 | 
						|
  Type *EltTy = VecTy->getVectorElementType();
 | 
						|
  VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
 | 
						|
 | 
						|
  const DataLayout &DL = SI->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Skip if we do not have NEON and skip illegal vector types. We can
 | 
						|
  // "legalize" wide vector types into multiple interleaved accesses as long as
 | 
						|
  // the vector types are divisible by 128.
 | 
						|
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
 | 
						|
 | 
						|
  Value *Op0 = SVI->getOperand(0);
 | 
						|
  Value *Op1 = SVI->getOperand(1);
 | 
						|
  IRBuilder<> Builder(SI);
 | 
						|
 | 
						|
  // StN intrinsics don't support pointer vectors as arguments. Convert pointer
 | 
						|
  // vectors to integer vectors.
 | 
						|
  if (EltTy->isPointerTy()) {
 | 
						|
    Type *IntTy = DL.getIntPtrType(EltTy);
 | 
						|
    unsigned NumOpElts =
 | 
						|
        dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
 | 
						|
 | 
						|
    // Convert to the corresponding integer vector.
 | 
						|
    Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
 | 
						|
    Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
 | 
						|
    Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
 | 
						|
 | 
						|
    SubVecTy = VectorType::get(IntTy, LaneLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // The base address of the store.
 | 
						|
  Value *BaseAddr = SI->getPointerOperand();
 | 
						|
 | 
						|
  if (NumStores > 1) {
 | 
						|
    // If we're going to generate more than one store, reset the lane length
 | 
						|
    // and sub-vector type to something legal.
 | 
						|
    LaneLen /= NumStores;
 | 
						|
    SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
 | 
						|
 | 
						|
    // We will compute the pointer operand of each store from the original base
 | 
						|
    // address using GEPs. Cast the base address to a pointer to the scalar
 | 
						|
    // element type.
 | 
						|
    BaseAddr = Builder.CreateBitCast(
 | 
						|
        BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
 | 
						|
                      SI->getPointerAddressSpace()));
 | 
						|
  }
 | 
						|
 | 
						|
  auto Mask = SVI->getShuffleMask();
 | 
						|
 | 
						|
  Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
 | 
						|
  Type *Tys[2] = {SubVecTy, PtrTy};
 | 
						|
  static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
 | 
						|
                                             Intrinsic::aarch64_neon_st3,
 | 
						|
                                             Intrinsic::aarch64_neon_st4};
 | 
						|
  Function *StNFunc =
 | 
						|
      Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
 | 
						|
 | 
						|
  for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
 | 
						|
 | 
						|
    SmallVector<Value *, 5> Ops;
 | 
						|
 | 
						|
    // Split the shufflevector operands into sub vectors for the new stN call.
 | 
						|
    for (unsigned i = 0; i < Factor; i++) {
 | 
						|
      unsigned IdxI = StoreCount * LaneLen * Factor + i;
 | 
						|
      if (Mask[IdxI] >= 0) {
 | 
						|
        Ops.push_back(Builder.CreateShuffleVector(
 | 
						|
            Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
 | 
						|
      } else {
 | 
						|
        unsigned StartMask = 0;
 | 
						|
        for (unsigned j = 1; j < LaneLen; j++) {
 | 
						|
          unsigned IdxJ = StoreCount * LaneLen * Factor + j;
 | 
						|
          if (Mask[IdxJ * Factor + IdxI] >= 0) {
 | 
						|
            StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Note: Filling undef gaps with random elements is ok, since
 | 
						|
        // those elements were being written anyway (with undefs).
 | 
						|
        // In the case of all undefs we're defaulting to using elems from 0
 | 
						|
        // Note: StartMask cannot be negative, it's checked in
 | 
						|
        // isReInterleaveMask
 | 
						|
        Ops.push_back(Builder.CreateShuffleVector(
 | 
						|
            Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we generating more than one store, we compute the base address of
 | 
						|
    // subsequent stores as an offset from the previous.
 | 
						|
    if (StoreCount > 0)
 | 
						|
      BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
 | 
						|
 | 
						|
    Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
 | 
						|
    Builder.CreateCall(StNFunc, Ops);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
 | 
						|
                       unsigned AlignCheck) {
 | 
						|
  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
 | 
						|
          (DstAlign == 0 || DstAlign % AlignCheck == 0));
 | 
						|
}
 | 
						|
 | 
						|
EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
 | 
						|
                                               unsigned SrcAlign, bool IsMemset,
 | 
						|
                                               bool ZeroMemset,
 | 
						|
                                               bool MemcpyStrSrc,
 | 
						|
                                               MachineFunction &MF) const {
 | 
						|
  // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
 | 
						|
  // instruction to materialize the v2i64 zero and one store (with restrictive
 | 
						|
  // addressing mode). Just do two i64 store of zero-registers.
 | 
						|
  bool Fast;
 | 
						|
  const Function &F = MF.getFunction();
 | 
						|
  if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
 | 
						|
      !F.hasFnAttribute(Attribute::NoImplicitFloat) &&
 | 
						|
      (memOpAlign(SrcAlign, DstAlign, 16) ||
 | 
						|
       (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
 | 
						|
    return MVT::f128;
 | 
						|
 | 
						|
  if (Size >= 8 &&
 | 
						|
      (memOpAlign(SrcAlign, DstAlign, 8) ||
 | 
						|
       (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
 | 
						|
    return MVT::i64;
 | 
						|
 | 
						|
  if (Size >= 4 &&
 | 
						|
      (memOpAlign(SrcAlign, DstAlign, 4) ||
 | 
						|
       (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
 | 
						|
    return MVT::i32;
 | 
						|
 | 
						|
  return MVT::Other;
 | 
						|
}
 | 
						|
 | 
						|
// 12-bit optionally shifted immediates are legal for adds.
 | 
						|
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
 | 
						|
  if (Immed == std::numeric_limits<int64_t>::min()) {
 | 
						|
    DEBUG(dbgs() << "Illegal add imm " << Immed << ": avoid UB for INT64_MIN\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // Same encoding for add/sub, just flip the sign.
 | 
						|
  Immed = std::abs(Immed);
 | 
						|
  bool IsLegal = ((Immed >> 12) == 0 ||
 | 
						|
                  ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
 | 
						|
  DEBUG(dbgs() << "Is " << Immed << " legal add imm: " <<
 | 
						|
        (IsLegal ? "yes" : "no") << "\n");
 | 
						|
  return IsLegal;
 | 
						|
}
 | 
						|
 | 
						|
// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
 | 
						|
// immediates is the same as for an add or a sub.
 | 
						|
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
 | 
						|
  return isLegalAddImmediate(Immed);
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressingMode - Return true if the addressing mode represented
 | 
						|
/// by AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | 
						|
                                                  const AddrMode &AM, Type *Ty,
 | 
						|
                                                  unsigned AS, Instruction *I) const {
 | 
						|
  // AArch64 has five basic addressing modes:
 | 
						|
  //  reg
 | 
						|
  //  reg + 9-bit signed offset
 | 
						|
  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
 | 
						|
  //  reg1 + reg2
 | 
						|
  //  reg + SIZE_IN_BYTES * reg
 | 
						|
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No reg+reg+imm addressing.
 | 
						|
  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // check reg + imm case:
 | 
						|
  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
 | 
						|
  uint64_t NumBytes = 0;
 | 
						|
  if (Ty->isSized()) {
 | 
						|
    uint64_t NumBits = DL.getTypeSizeInBits(Ty);
 | 
						|
    NumBytes = NumBits / 8;
 | 
						|
    if (!isPowerOf2_64(NumBits))
 | 
						|
      NumBytes = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AM.Scale) {
 | 
						|
    int64_t Offset = AM.BaseOffs;
 | 
						|
 | 
						|
    // 9-bit signed offset
 | 
						|
    if (isInt<9>(Offset))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // 12-bit unsigned offset
 | 
						|
    unsigned shift = Log2_64(NumBytes);
 | 
						|
    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
 | 
						|
        // Must be a multiple of NumBytes (NumBytes is a power of 2)
 | 
						|
        (Offset >> shift) << shift == Offset)
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
 | 
						|
 | 
						|
  return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
 | 
						|
}
 | 
						|
 | 
						|
int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
 | 
						|
                                                const AddrMode &AM, Type *Ty,
 | 
						|
                                                unsigned AS) const {
 | 
						|
  // Scaling factors are not free at all.
 | 
						|
  // Operands                     | Rt Latency
 | 
						|
  // -------------------------------------------
 | 
						|
  // Rt, [Xn, Xm]                 | 4
 | 
						|
  // -------------------------------------------
 | 
						|
  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
 | 
						|
  // Rt, [Xn, Wm, <extend> #imm]  |
 | 
						|
  if (isLegalAddressingMode(DL, AM, Ty, AS))
 | 
						|
    // Scale represents reg2 * scale, thus account for 1 if
 | 
						|
    // it is not equal to 0 or 1.
 | 
						|
    return AM.Scale != 0 && AM.Scale != 1;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | 
						|
  VT = VT.getScalarType();
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const MCPhysReg *
 | 
						|
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
 | 
						|
  // LR is a callee-save register, but we must treat it as clobbered by any call
 | 
						|
  // site. Hence we include LR in the scratch registers, which are in turn added
 | 
						|
  // as implicit-defs for stackmaps and patchpoints.
 | 
						|
  static const MCPhysReg ScratchRegs[] = {
 | 
						|
    AArch64::X16, AArch64::X17, AArch64::LR, 0
 | 
						|
  };
 | 
						|
  return ScratchRegs;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
    // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
 | 
						|
    // it with shift to let it be lowered to UBFX.
 | 
						|
  if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
 | 
						|
      isa<ConstantSDNode>(N->getOperand(1))) {
 | 
						|
    uint64_t TruncMask = N->getConstantOperandVal(1);
 | 
						|
    if (isMask_64(TruncMask) &&
 | 
						|
      N->getOperand(0).getOpcode() == ISD::SRL &&
 | 
						|
      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | 
						|
                                                              Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t Val = Imm.getSExtValue();
 | 
						|
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if ((int64_t)Val < 0)
 | 
						|
    Val = ~Val;
 | 
						|
  if (BitSize == 32)
 | 
						|
    Val &= (1LL << 32) - 1;
 | 
						|
 | 
						|
  unsigned LZ = countLeadingZeros((uint64_t)Val);
 | 
						|
  unsigned Shift = (63 - LZ) / 16;
 | 
						|
  // MOVZ is free so return true for one or fewer MOVK.
 | 
						|
  return Shift < 3;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
 | 
						|
                                                    unsigned Index) const {
 | 
						|
  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (Index == 0 || Index == ResVT.getVectorNumElements());
 | 
						|
}
 | 
						|
 | 
						|
/// Turn vector tests of the signbit in the form of:
 | 
						|
///   xor (sra X, elt_size(X)-1), -1
 | 
						|
/// into:
 | 
						|
///   cmge X, X, #0
 | 
						|
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                         const AArch64Subtarget *Subtarget) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!Subtarget->hasNEON() || !VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // There must be a shift right algebraic before the xor, and the xor must be a
 | 
						|
  // 'not' operation.
 | 
						|
  SDValue Shift = N->getOperand(0);
 | 
						|
  SDValue Ones = N->getOperand(1);
 | 
						|
  if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
 | 
						|
      !ISD::isBuildVectorAllOnes(Ones.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The shift should be smearing the sign bit across each vector element.
 | 
						|
  auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | 
						|
  EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
 | 
						|
  if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
// Generate SUBS and CSEL for integer abs.
 | 
						|
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
 | 
						|
  // and change it to SUB and CSEL.
 | 
						|
  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
 | 
						|
      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
 | 
						|
      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
 | 
						|
    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
 | 
						|
      if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
 | 
						|
        SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
 | 
						|
                                  N0.getOperand(0));
 | 
						|
        // Generate SUBS & CSEL.
 | 
						|
        SDValue Cmp =
 | 
						|
            DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
 | 
						|
                        N0.getOperand(0), DAG.getConstant(0, DL, VT));
 | 
						|
        return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
 | 
						|
                           DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
 | 
						|
                           SDValue(Cmp.getNode(), 1));
 | 
						|
      }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 const AArch64Subtarget *Subtarget) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
 | 
						|
    return Cmp;
 | 
						|
 | 
						|
  return performIntegerAbsCombine(N, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | 
						|
                                     SelectionDAG &DAG,
 | 
						|
                                     std::vector<SDNode *> *Created) const {
 | 
						|
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | 
						|
  if (isIntDivCheap(N->getValueType(0), Attr))
 | 
						|
    return SDValue(N,0); // Lower SDIV as SDIV
 | 
						|
 | 
						|
  // fold (sdiv X, pow2)
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if ((VT != MVT::i32 && VT != MVT::i64) ||
 | 
						|
      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  unsigned Lg2 = Divisor.countTrailingZeros();
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, VT);
 | 
						|
  SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
 | 
						|
 | 
						|
  // Add (N0 < 0) ? Pow2 - 1 : 0;
 | 
						|
  SDValue CCVal;
 | 
						|
  SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
 | 
						|
  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
 | 
						|
  SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
 | 
						|
 | 
						|
  if (Created) {
 | 
						|
    Created->push_back(Cmp.getNode());
 | 
						|
    Created->push_back(Add.getNode());
 | 
						|
    Created->push_back(CSel.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  // Divide by pow2.
 | 
						|
  SDValue SRA =
 | 
						|
      DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
 | 
						|
 | 
						|
  // If we're dividing by a positive value, we're done.  Otherwise, we must
 | 
						|
  // negate the result.
 | 
						|
  if (Divisor.isNonNegative())
 | 
						|
    return SRA;
 | 
						|
 | 
						|
  if (Created)
 | 
						|
    Created->push_back(SRA.getNode());
 | 
						|
  return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 const AArch64Subtarget *Subtarget) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The below optimizations require a constant RHS.
 | 
						|
  if (!isa<ConstantSDNode>(N->getOperand(1)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  const APInt &ConstValue = C->getAPIntValue();
 | 
						|
 | 
						|
  // Multiplication of a power of two plus/minus one can be done more
 | 
						|
  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
 | 
						|
  // future CPUs have a cheaper MADD instruction, this may need to be
 | 
						|
  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
 | 
						|
  // 64-bit is 5 cycles, so this is always a win.
 | 
						|
  // More aggressively, some multiplications N0 * C can be lowered to
 | 
						|
  // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
 | 
						|
  // e.g. 6=3*2=(2+1)*2.
 | 
						|
  // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
 | 
						|
  // which equals to (1+2)*16-(1+2).
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  // TrailingZeroes is used to test if the mul can be lowered to
 | 
						|
  // shift+add+shift.
 | 
						|
  unsigned TrailingZeroes = ConstValue.countTrailingZeros();
 | 
						|
  if (TrailingZeroes) {
 | 
						|
    // Conservatively do not lower to shift+add+shift if the mul might be
 | 
						|
    // folded into smul or umul.
 | 
						|
    if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
 | 
						|
                            isZeroExtended(N0.getNode(), DAG)))
 | 
						|
      return SDValue();
 | 
						|
    // Conservatively do not lower to shift+add+shift if the mul might be
 | 
						|
    // folded into madd or msub.
 | 
						|
    if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
 | 
						|
                           N->use_begin()->getOpcode() == ISD::SUB))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
 | 
						|
  // and shift+add+shift.
 | 
						|
  APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
 | 
						|
 | 
						|
  unsigned ShiftAmt, AddSubOpc;
 | 
						|
  // Is the shifted value the LHS operand of the add/sub?
 | 
						|
  bool ShiftValUseIsN0 = true;
 | 
						|
  // Do we need to negate the result?
 | 
						|
  bool NegateResult = false;
 | 
						|
 | 
						|
  if (ConstValue.isNonNegative()) {
 | 
						|
    // (mul x, 2^N + 1) => (add (shl x, N), x)
 | 
						|
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | 
						|
    // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
 | 
						|
    APInt SCVMinus1 = ShiftedConstValue - 1;
 | 
						|
    APInt CVPlus1 = ConstValue + 1;
 | 
						|
    if (SCVMinus1.isPowerOf2()) {
 | 
						|
      ShiftAmt = SCVMinus1.logBase2();
 | 
						|
      AddSubOpc = ISD::ADD;
 | 
						|
    } else if (CVPlus1.isPowerOf2()) {
 | 
						|
      ShiftAmt = CVPlus1.logBase2();
 | 
						|
      AddSubOpc = ISD::SUB;
 | 
						|
    } else
 | 
						|
      return SDValue();
 | 
						|
  } else {
 | 
						|
    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
 | 
						|
    // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
 | 
						|
    APInt CVNegPlus1 = -ConstValue + 1;
 | 
						|
    APInt CVNegMinus1 = -ConstValue - 1;
 | 
						|
    if (CVNegPlus1.isPowerOf2()) {
 | 
						|
      ShiftAmt = CVNegPlus1.logBase2();
 | 
						|
      AddSubOpc = ISD::SUB;
 | 
						|
      ShiftValUseIsN0 = false;
 | 
						|
    } else if (CVNegMinus1.isPowerOf2()) {
 | 
						|
      ShiftAmt = CVNegMinus1.logBase2();
 | 
						|
      AddSubOpc = ISD::ADD;
 | 
						|
      NegateResult = true;
 | 
						|
    } else
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
 | 
						|
                                   DAG.getConstant(ShiftAmt, DL, MVT::i64));
 | 
						|
 | 
						|
  SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
 | 
						|
  SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
 | 
						|
  SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
 | 
						|
  assert(!(NegateResult && TrailingZeroes) &&
 | 
						|
         "NegateResult and TrailingZeroes cannot both be true for now.");
 | 
						|
  // Negate the result.
 | 
						|
  if (NegateResult)
 | 
						|
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
 | 
						|
  // Shift the result.
 | 
						|
  if (TrailingZeroes)
 | 
						|
    return DAG.getNode(ISD::SHL, DL, VT, Res,
 | 
						|
                       DAG.getConstant(TrailingZeroes, DL, MVT::i64));
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
 | 
						|
                                                         SelectionDAG &DAG) {
 | 
						|
  // Take advantage of vector comparisons producing 0 or -1 in each lane to
 | 
						|
  // optimize away operation when it's from a constant.
 | 
						|
  //
 | 
						|
  // The general transformation is:
 | 
						|
  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
 | 
						|
  //       AND(VECTOR_CMP(x,y), constant2)
 | 
						|
  //    constant2 = UNARYOP(constant)
 | 
						|
 | 
						|
  // Early exit if this isn't a vector operation, the operand of the
 | 
						|
  // unary operation isn't a bitwise AND, or if the sizes of the operations
 | 
						|
  // aren't the same.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
 | 
						|
      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
 | 
						|
      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Now check that the other operand of the AND is a constant. We could
 | 
						|
  // make the transformation for non-constant splats as well, but it's unclear
 | 
						|
  // that would be a benefit as it would not eliminate any operations, just
 | 
						|
  // perform one more step in scalar code before moving to the vector unit.
 | 
						|
  if (BuildVectorSDNode *BV =
 | 
						|
          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
 | 
						|
    // Bail out if the vector isn't a constant.
 | 
						|
    if (!BV->isConstant())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Everything checks out. Build up the new and improved node.
 | 
						|
    SDLoc DL(N);
 | 
						|
    EVT IntVT = BV->getValueType(0);
 | 
						|
    // Create a new constant of the appropriate type for the transformed
 | 
						|
    // DAG.
 | 
						|
    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
 | 
						|
    // The AND node needs bitcasts to/from an integer vector type around it.
 | 
						|
    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
 | 
						|
    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
 | 
						|
                                 N->getOperand(0)->getOperand(0), MaskConst);
 | 
						|
    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                     const AArch64Subtarget *Subtarget) {
 | 
						|
  // First try to optimize away the conversion when it's conditionally from
 | 
						|
  // a constant. Vectors only.
 | 
						|
  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT != MVT::f32 && VT != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only optimize when the source and destination types have the same width.
 | 
						|
  if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the result of an integer load is only used by an integer-to-float
 | 
						|
  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
 | 
						|
  // This eliminates an "integer-to-vector-move" UOP and improves throughput.
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
 | 
						|
      // Do not change the width of a volatile load.
 | 
						|
      !cast<LoadSDNode>(N0)->isVolatile()) {
 | 
						|
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | 
						|
    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
 | 
						|
                               LN0->getPointerInfo(), LN0->getAlignment(),
 | 
						|
                               LN0->getMemOperand()->getFlags());
 | 
						|
 | 
						|
    // Make sure successors of the original load stay after it by updating them
 | 
						|
    // to use the new Chain.
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
 | 
						|
 | 
						|
    unsigned Opcode =
 | 
						|
        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
 | 
						|
    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Fold a floating-point multiply by power of two into floating-point to
 | 
						|
/// fixed-point conversion.
 | 
						|
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                     TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                     const AArch64Subtarget *Subtarget) {
 | 
						|
  if (!Subtarget->hasNEON())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
 | 
						|
      Op.getOpcode() != ISD::FMUL)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ConstVec = Op->getOperand(1);
 | 
						|
  if (!isa<BuildVectorSDNode>(ConstVec))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
 | 
						|
  uint32_t FloatBits = FloatTy.getSizeInBits();
 | 
						|
  if (FloatBits != 32 && FloatBits != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
 | 
						|
  uint32_t IntBits = IntTy.getSizeInBits();
 | 
						|
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Avoid conversions where iN is larger than the float (e.g., float -> i64).
 | 
						|
  if (IntBits > FloatBits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  BitVector UndefElements;
 | 
						|
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
 | 
						|
  int32_t Bits = IntBits == 64 ? 64 : 32;
 | 
						|
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
 | 
						|
  if (C == -1 || C == 0 || C > Bits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT ResTy;
 | 
						|
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
 | 
						|
  switch (NumLanes) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case 2:
 | 
						|
    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
 | 
						|
         "Illegal vector type after legalization");
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
 | 
						|
  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
 | 
						|
                                      : Intrinsic::aarch64_neon_vcvtfp2fxu;
 | 
						|
  SDValue FixConv =
 | 
						|
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
 | 
						|
                  DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
 | 
						|
                  Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
 | 
						|
  // We can handle smaller integers by generating an extra trunc.
 | 
						|
  if (IntBits < FloatBits)
 | 
						|
    FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
 | 
						|
 | 
						|
  return FixConv;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold a floating-point divide by power of two into fixed-point to
 | 
						|
/// floating-point conversion.
 | 
						|
static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                  TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                  const AArch64Subtarget *Subtarget) {
 | 
						|
  if (!Subtarget->hasNEON())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
  unsigned Opc = Op->getOpcode();
 | 
						|
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
 | 
						|
      !Op.getOperand(0).getValueType().isSimple() ||
 | 
						|
      (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ConstVec = N->getOperand(1);
 | 
						|
  if (!isa<BuildVectorSDNode>(ConstVec))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
 | 
						|
  int32_t IntBits = IntTy.getSizeInBits();
 | 
						|
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
 | 
						|
  int32_t FloatBits = FloatTy.getSizeInBits();
 | 
						|
  if (FloatBits != 32 && FloatBits != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
 | 
						|
  if (IntBits > FloatBits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  BitVector UndefElements;
 | 
						|
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
 | 
						|
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
 | 
						|
  if (C == -1 || C == 0 || C > FloatBits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT ResTy;
 | 
						|
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
 | 
						|
  switch (NumLanes) {
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  case 2:
 | 
						|
    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue ConvInput = Op.getOperand(0);
 | 
						|
  bool IsSigned = Opc == ISD::SINT_TO_FP;
 | 
						|
  if (IntBits < FloatBits)
 | 
						|
    ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
 | 
						|
                            ResTy, ConvInput);
 | 
						|
 | 
						|
  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
 | 
						|
                                      : Intrinsic::aarch64_neon_vcvtfxu2fp;
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
 | 
						|
                     DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
 | 
						|
                     DAG.getConstant(C, DL, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
/// An EXTR instruction is made up of two shifts, ORed together. This helper
 | 
						|
/// searches for and classifies those shifts.
 | 
						|
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
 | 
						|
                         bool &FromHi) {
 | 
						|
  if (N.getOpcode() == ISD::SHL)
 | 
						|
    FromHi = false;
 | 
						|
  else if (N.getOpcode() == ISD::SRL)
 | 
						|
    FromHi = true;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(N.getOperand(1)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ShiftAmount = N->getConstantOperandVal(1);
 | 
						|
  Src = N->getOperand(0);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EXTR instruction extracts a contiguous chunk of bits from two existing
 | 
						|
/// registers viewed as a high/low pair. This function looks for the pattern:
 | 
						|
/// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
 | 
						|
/// with an EXTR. Can't quite be done in TableGen because the two immediates
 | 
						|
/// aren't independent.
 | 
						|
static SDValue tryCombineToEXTR(SDNode *N,
 | 
						|
                                TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  assert(N->getOpcode() == ISD::OR && "Unexpected root");
 | 
						|
 | 
						|
  if (VT != MVT::i32 && VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS;
 | 
						|
  uint32_t ShiftLHS = 0;
 | 
						|
  bool LHSFromHi = false;
 | 
						|
  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue RHS;
 | 
						|
  uint32_t ShiftRHS = 0;
 | 
						|
  bool RHSFromHi = false;
 | 
						|
  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If they're both trying to come from the high part of the register, they're
 | 
						|
  // not really an EXTR.
 | 
						|
  if (LHSFromHi == RHSFromHi)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (LHSFromHi) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    std::swap(ShiftLHS, ShiftRHS);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
 | 
						|
                     DAG.getConstant(ShiftRHS, DL, MVT::i64));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue tryCombineToBSL(SDNode *N,
 | 
						|
                                TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  if (N0.getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  if (N1.getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We only have to look for constant vectors here since the general, variable
 | 
						|
  // case can be handled in TableGen.
 | 
						|
  unsigned Bits = VT.getScalarSizeInBits();
 | 
						|
  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
 | 
						|
  for (int i = 1; i >= 0; --i)
 | 
						|
    for (int j = 1; j >= 0; --j) {
 | 
						|
      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
 | 
						|
      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
 | 
						|
      if (!BVN0 || !BVN1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool FoundMatch = true;
 | 
						|
      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
 | 
						|
        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
 | 
						|
        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
 | 
						|
        if (!CN0 || !CN1 ||
 | 
						|
            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
 | 
						|
          FoundMatch = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (FoundMatch)
 | 
						|
        return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
 | 
						|
                           N0->getOperand(1 - i), N1->getOperand(1 - j));
 | 
						|
    }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                const AArch64Subtarget *Subtarget) {
 | 
						|
  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (SDValue Res = tryCombineToEXTR(N, DCI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (SDValue Res = tryCombineToBSL(N, DCI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performSRLCombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT != MVT::i32 && VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
 | 
						|
  // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
 | 
						|
  // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  if (N0.getOpcode() == ISD::BSWAP) {
 | 
						|
    SDLoc DL(N);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    SDValue N00 = N0.getOperand(0);
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | 
						|
      uint64_t ShiftAmt = C->getZExtValue();
 | 
						|
      if (VT == MVT::i32 && ShiftAmt == 16 &&
 | 
						|
          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
 | 
						|
        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
 | 
						|
      if (VT == MVT::i64 && ShiftAmt == 32 &&
 | 
						|
          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
 | 
						|
        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performBitcastCombine(SDNode *N,
 | 
						|
                                     TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  // Wait 'til after everything is legalized to try this. That way we have
 | 
						|
  // legal vector types and such.
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Remove extraneous bitcasts around an extract_subvector.
 | 
						|
  // For example,
 | 
						|
  //    (v4i16 (bitconvert
 | 
						|
  //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
 | 
						|
  //  becomes
 | 
						|
  //    (extract_subvector ((v8i16 ...), (i64 4)))
 | 
						|
 | 
						|
  // Only interested in 64-bit vectors as the ultimate result.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
  if (VT.getSimpleVT().getSizeInBits() != 64)
 | 
						|
    return SDValue();
 | 
						|
  // Is the operand an extract_subvector starting at the beginning or halfway
 | 
						|
  // point of the vector? A low half may also come through as an
 | 
						|
  // EXTRACT_SUBREG, so look for that, too.
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
 | 
						|
      !(Op0->isMachineOpcode() &&
 | 
						|
        Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
 | 
						|
    return SDValue();
 | 
						|
  uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
 | 
						|
  if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
 | 
						|
    if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
 | 
						|
      return SDValue();
 | 
						|
  } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
 | 
						|
    if (idx != AArch64::dsub)
 | 
						|
      return SDValue();
 | 
						|
    // The dsub reference is equivalent to a lane zero subvector reference.
 | 
						|
    idx = 0;
 | 
						|
  }
 | 
						|
  // Look through the bitcast of the input to the extract.
 | 
						|
  if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
 | 
						|
    return SDValue();
 | 
						|
  SDValue Source = Op0->getOperand(0)->getOperand(0);
 | 
						|
  // If the source type has twice the number of elements as our destination
 | 
						|
  // type, we know this is an extract of the high or low half of the vector.
 | 
						|
  EVT SVT = Source->getValueType(0);
 | 
						|
  if (!SVT.isVector() ||
 | 
						|
      SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
 | 
						|
 | 
						|
  // Create the simplified form to just extract the low or high half of the
 | 
						|
  // vector directly rather than bothering with the bitcasts.
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned NumElements = VT.getVectorNumElements();
 | 
						|
  if (idx) {
 | 
						|
    SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
 | 
						|
  } else {
 | 
						|
    SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
 | 
						|
    return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
 | 
						|
                                      Source, SubReg),
 | 
						|
                   0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performConcatVectorsCombine(SDNode *N,
 | 
						|
                                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // Optimize concat_vectors of truncated vectors, where the intermediate
 | 
						|
  // type is illegal, to avoid said illegality,  e.g.,
 | 
						|
  //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
 | 
						|
  //                          (v2i16 (truncate (v2i64)))))
 | 
						|
  // ->
 | 
						|
  //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
 | 
						|
  //                                    (v4i32 (bitcast (v2i64))),
 | 
						|
  //                                    <0, 2, 4, 6>)))
 | 
						|
  // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
 | 
						|
  // on both input and result type, so we might generate worse code.
 | 
						|
  // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
 | 
						|
  if (N->getNumOperands() == 2 &&
 | 
						|
      N0->getOpcode() == ISD::TRUNCATE &&
 | 
						|
      N1->getOpcode() == ISD::TRUNCATE) {
 | 
						|
    SDValue N00 = N0->getOperand(0);
 | 
						|
    SDValue N10 = N1->getOperand(0);
 | 
						|
    EVT N00VT = N00.getValueType();
 | 
						|
 | 
						|
    if (N00VT == N10.getValueType() &&
 | 
						|
        (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
 | 
						|
        N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
 | 
						|
      MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
 | 
						|
      SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
 | 
						|
      for (size_t i = 0; i < Mask.size(); ++i)
 | 
						|
        Mask[i] = i * 2;
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						|
                         DAG.getVectorShuffle(
 | 
						|
                             MidVT, dl,
 | 
						|
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
 | 
						|
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Wait 'til after everything is legalized to try this. That way we have
 | 
						|
  // legal vector types and such.
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
 | 
						|
  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
 | 
						|
  // canonicalise to that.
 | 
						|
  if (N0 == N1 && VT.getVectorNumElements() == 2) {
 | 
						|
    assert(VT.getScalarSizeInBits() == 64);
 | 
						|
    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
 | 
						|
                       DAG.getConstant(0, dl, MVT::i64));
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalise concat_vectors so that the right-hand vector has as few
 | 
						|
  // bit-casts as possible before its real operation. The primary matching
 | 
						|
  // destination for these operations will be the narrowing "2" instructions,
 | 
						|
  // which depend on the operation being performed on this right-hand vector.
 | 
						|
  // For example,
 | 
						|
  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
 | 
						|
  // becomes
 | 
						|
  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
 | 
						|
 | 
						|
  if (N1->getOpcode() != ISD::BITCAST)
 | 
						|
    return SDValue();
 | 
						|
  SDValue RHS = N1->getOperand(0);
 | 
						|
  MVT RHSTy = RHS.getValueType().getSimpleVT();
 | 
						|
  // If the RHS is not a vector, this is not the pattern we're looking for.
 | 
						|
  if (!RHSTy.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
 | 
						|
 | 
						|
  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
 | 
						|
                                  RHSTy.getVectorNumElements() * 2);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT,
 | 
						|
                     DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
 | 
						|
                                 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
 | 
						|
                                 RHS));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue tryCombineFixedPointConvert(SDNode *N,
 | 
						|
                                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  // Wait until after everything is legalized to try this. That way we have
 | 
						|
  // legal vector types and such.
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
  // Transform a scalar conversion of a value from a lane extract into a
 | 
						|
  // lane extract of a vector conversion. E.g., from foo1 to foo2:
 | 
						|
  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
 | 
						|
  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
 | 
						|
  //
 | 
						|
  // The second form interacts better with instruction selection and the
 | 
						|
  // register allocator to avoid cross-class register copies that aren't
 | 
						|
  // coalescable due to a lane reference.
 | 
						|
 | 
						|
  // Check the operand and see if it originates from a lane extract.
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
    // Yep, no additional predication needed. Perform the transform.
 | 
						|
    SDValue IID = N->getOperand(0);
 | 
						|
    SDValue Shift = N->getOperand(2);
 | 
						|
    SDValue Vec = Op1.getOperand(0);
 | 
						|
    SDValue Lane = Op1.getOperand(1);
 | 
						|
    EVT ResTy = N->getValueType(0);
 | 
						|
    EVT VecResTy;
 | 
						|
    SDLoc DL(N);
 | 
						|
 | 
						|
    // The vector width should be 128 bits by the time we get here, even
 | 
						|
    // if it started as 64 bits (the extract_vector handling will have
 | 
						|
    // done so).
 | 
						|
    assert(Vec.getValueSizeInBits() == 128 &&
 | 
						|
           "unexpected vector size on extract_vector_elt!");
 | 
						|
    if (Vec.getValueType() == MVT::v4i32)
 | 
						|
      VecResTy = MVT::v4f32;
 | 
						|
    else if (Vec.getValueType() == MVT::v2i64)
 | 
						|
      VecResTy = MVT::v2f64;
 | 
						|
    else
 | 
						|
      llvm_unreachable("unexpected vector type!");
 | 
						|
 | 
						|
    SDValue Convert =
 | 
						|
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
 | 
						|
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// AArch64 high-vector "long" operations are formed by performing the non-high
 | 
						|
// version on an extract_subvector of each operand which gets the high half:
 | 
						|
//
 | 
						|
//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
 | 
						|
//
 | 
						|
// However, there are cases which don't have an extract_high explicitly, but
 | 
						|
// have another operation that can be made compatible with one for free. For
 | 
						|
// example:
 | 
						|
//
 | 
						|
//  (dupv64 scalar) --> (extract_high (dup128 scalar))
 | 
						|
//
 | 
						|
// This routine does the actual conversion of such DUPs, once outer routines
 | 
						|
// have determined that everything else is in order.
 | 
						|
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
 | 
						|
// similarly here.
 | 
						|
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  case AArch64ISD::DUP:
 | 
						|
  case AArch64ISD::DUPLANE8:
 | 
						|
  case AArch64ISD::DUPLANE16:
 | 
						|
  case AArch64ISD::DUPLANE32:
 | 
						|
  case AArch64ISD::DUPLANE64:
 | 
						|
  case AArch64ISD::MOVI:
 | 
						|
  case AArch64ISD::MOVIshift:
 | 
						|
  case AArch64ISD::MOVIedit:
 | 
						|
  case AArch64ISD::MOVImsl:
 | 
						|
  case AArch64ISD::MVNIshift:
 | 
						|
  case AArch64ISD::MVNImsl:
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // FMOV could be supported, but isn't very useful, as it would only occur
 | 
						|
    // if you passed a bitcast' floating point immediate to an eligible long
 | 
						|
    // integer op (addl, smull, ...).
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  MVT NarrowTy = N.getSimpleValueType();
 | 
						|
  if (!NarrowTy.is64BitVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT ElementTy = NarrowTy.getVectorElementType();
 | 
						|
  unsigned NumElems = NarrowTy.getVectorNumElements();
 | 
						|
  MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
 | 
						|
                     DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
 | 
						|
                     DAG.getConstant(NumElems, dl, MVT::i64));
 | 
						|
}
 | 
						|
 | 
						|
static bool isEssentiallyExtractSubvector(SDValue N) {
 | 
						|
  if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return N.getOpcode() == ISD::BITCAST &&
 | 
						|
         N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper structure to keep track of ISD::SET_CC operands.
 | 
						|
struct GenericSetCCInfo {
 | 
						|
  const SDValue *Opnd0;
 | 
						|
  const SDValue *Opnd1;
 | 
						|
  ISD::CondCode CC;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
 | 
						|
struct AArch64SetCCInfo {
 | 
						|
  const SDValue *Cmp;
 | 
						|
  AArch64CC::CondCode CC;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Helper structure to keep track of SetCC information.
 | 
						|
union SetCCInfo {
 | 
						|
  GenericSetCCInfo Generic;
 | 
						|
  AArch64SetCCInfo AArch64;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Helper structure to be able to read SetCC information.  If set to
 | 
						|
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
 | 
						|
/// GenericSetCCInfo.
 | 
						|
struct SetCCInfoAndKind {
 | 
						|
  SetCCInfo Info;
 | 
						|
  bool IsAArch64;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
 | 
						|
/// an
 | 
						|
/// AArch64 lowered one.
 | 
						|
/// \p SetCCInfo is filled accordingly.
 | 
						|
/// \post SetCCInfo is meanginfull only when this function returns true.
 | 
						|
/// \return True when Op is a kind of SET_CC operation.
 | 
						|
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
 | 
						|
  // If this is a setcc, this is straight forward.
 | 
						|
  if (Op.getOpcode() == ISD::SETCC) {
 | 
						|
    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
 | 
						|
    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
 | 
						|
    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
    SetCCInfo.IsAArch64 = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Otherwise, check if this is a matching csel instruction.
 | 
						|
  // In other words:
 | 
						|
  // - csel 1, 0, cc
 | 
						|
  // - csel 0, 1, !cc
 | 
						|
  if (Op.getOpcode() != AArch64ISD::CSEL)
 | 
						|
    return false;
 | 
						|
  // Set the information about the operands.
 | 
						|
  // TODO: we want the operands of the Cmp not the csel
 | 
						|
  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
 | 
						|
  SetCCInfo.IsAArch64 = true;
 | 
						|
  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
 | 
						|
      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
 | 
						|
 | 
						|
  // Check that the operands matches the constraints:
 | 
						|
  // (1) Both operands must be constants.
 | 
						|
  // (2) One must be 1 and the other must be 0.
 | 
						|
  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | 
						|
  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | 
						|
 | 
						|
  // Check (1).
 | 
						|
  if (!TValue || !FValue)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check (2).
 | 
						|
  if (!TValue->isOne()) {
 | 
						|
    // Update the comparison when we are interested in !cc.
 | 
						|
    std::swap(TValue, FValue);
 | 
						|
    SetCCInfo.Info.AArch64.CC =
 | 
						|
        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
 | 
						|
  }
 | 
						|
  return TValue->isOne() && FValue->isNullValue();
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if Op is setcc or zext of setcc.
 | 
						|
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
 | 
						|
  if (isSetCC(Op, Info))
 | 
						|
    return true;
 | 
						|
  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
 | 
						|
    isSetCC(Op->getOperand(0), Info));
 | 
						|
}
 | 
						|
 | 
						|
// The folding we want to perform is:
 | 
						|
// (add x, [zext] (setcc cc ...) )
 | 
						|
//   -->
 | 
						|
// (csel x, (add x, 1), !cc ...)
 | 
						|
//
 | 
						|
// The latter will get matched to a CSINC instruction.
 | 
						|
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
 | 
						|
  SDValue LHS = Op->getOperand(0);
 | 
						|
  SDValue RHS = Op->getOperand(1);
 | 
						|
  SetCCInfoAndKind InfoAndKind;
 | 
						|
 | 
						|
  // If neither operand is a SET_CC, give up.
 | 
						|
  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This could be generatized to work for FP comparisons.
 | 
						|
  EVT CmpVT = InfoAndKind.IsAArch64
 | 
						|
                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
 | 
						|
                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
 | 
						|
  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue CCVal;
 | 
						|
  SDValue Cmp;
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (InfoAndKind.IsAArch64) {
 | 
						|
    CCVal = DAG.getConstant(
 | 
						|
        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
 | 
						|
        MVT::i32);
 | 
						|
    Cmp = *InfoAndKind.Info.AArch64.Cmp;
 | 
						|
  } else
 | 
						|
    Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
 | 
						|
                      *InfoAndKind.Info.Generic.Opnd1,
 | 
						|
                      ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
 | 
						|
                      CCVal, DAG, dl);
 | 
						|
 | 
						|
  EVT VT = Op->getValueType(0);
 | 
						|
  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
 | 
						|
  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
 | 
						|
}
 | 
						|
 | 
						|
// The basic add/sub long vector instructions have variants with "2" on the end
 | 
						|
// which act on the high-half of their inputs. They are normally matched by
 | 
						|
// patterns like:
 | 
						|
//
 | 
						|
// (add (zeroext (extract_high LHS)),
 | 
						|
//      (zeroext (extract_high RHS)))
 | 
						|
// -> uaddl2 vD, vN, vM
 | 
						|
//
 | 
						|
// However, if one of the extracts is something like a duplicate, this
 | 
						|
// instruction can still be used profitably. This function puts the DAG into a
 | 
						|
// more appropriate form for those patterns to trigger.
 | 
						|
static SDValue performAddSubLongCombine(SDNode *N,
 | 
						|
                                        TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                        SelectionDAG &DAG) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MVT VT = N->getSimpleValueType(0);
 | 
						|
  if (!VT.is128BitVector()) {
 | 
						|
    if (N->getOpcode() == ISD::ADD)
 | 
						|
      return performSetccAddFolding(N, DAG);
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure both branches are extended in the same way.
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
 | 
						|
      LHS.getOpcode() != RHS.getOpcode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned ExtType = LHS.getOpcode();
 | 
						|
 | 
						|
  // It's not worth doing if at least one of the inputs isn't already an
 | 
						|
  // extract, but we don't know which it'll be so we have to try both.
 | 
						|
  if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
 | 
						|
    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
 | 
						|
    if (!RHS.getNode())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
 | 
						|
  } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
 | 
						|
    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
 | 
						|
    if (!LHS.getNode())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
// Massage DAGs which we can use the high-half "long" operations on into
 | 
						|
// something isel will recognize better. E.g.
 | 
						|
//
 | 
						|
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
 | 
						|
//   (aarch64_neon_umull (extract_high (v2i64 vec)))
 | 
						|
//                     (extract_high (v2i64 (dup128 scalar)))))
 | 
						|
//
 | 
						|
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
 | 
						|
                                       TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(1);
 | 
						|
  SDValue RHS = N->getOperand(2);
 | 
						|
  assert(LHS.getValueType().is64BitVector() &&
 | 
						|
         RHS.getValueType().is64BitVector() &&
 | 
						|
         "unexpected shape for long operation");
 | 
						|
 | 
						|
  // Either node could be a DUP, but it's not worth doing both of them (you'd
 | 
						|
  // just as well use the non-high version) so look for a corresponding extract
 | 
						|
  // operation on the other "wing".
 | 
						|
  if (isEssentiallyExtractSubvector(LHS)) {
 | 
						|
    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
 | 
						|
    if (!RHS.getNode())
 | 
						|
      return SDValue();
 | 
						|
  } else if (isEssentiallyExtractSubvector(RHS)) {
 | 
						|
    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
 | 
						|
    if (!LHS.getNode())
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
 | 
						|
                     N->getOperand(0), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
 | 
						|
  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
 | 
						|
  unsigned ElemBits = ElemTy.getSizeInBits();
 | 
						|
 | 
						|
  int64_t ShiftAmount;
 | 
						|
  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
 | 
						|
    APInt SplatValue, SplatUndef;
 | 
						|
    unsigned SplatBitSize;
 | 
						|
    bool HasAnyUndefs;
 | 
						|
    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
 | 
						|
                              HasAnyUndefs, ElemBits) ||
 | 
						|
        SplatBitSize != ElemBits)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    ShiftAmount = SplatValue.getSExtValue();
 | 
						|
  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
 | 
						|
    ShiftAmount = CVN->getSExtValue();
 | 
						|
  } else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned Opcode;
 | 
						|
  bool IsRightShift;
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown shift intrinsic");
 | 
						|
  case Intrinsic::aarch64_neon_sqshl:
 | 
						|
    Opcode = AArch64ISD::SQSHL_I;
 | 
						|
    IsRightShift = false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::aarch64_neon_uqshl:
 | 
						|
    Opcode = AArch64ISD::UQSHL_I;
 | 
						|
    IsRightShift = false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::aarch64_neon_srshl:
 | 
						|
    Opcode = AArch64ISD::SRSHR_I;
 | 
						|
    IsRightShift = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::aarch64_neon_urshl:
 | 
						|
    Opcode = AArch64ISD::URSHR_I;
 | 
						|
    IsRightShift = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::aarch64_neon_sqshlu:
 | 
						|
    Opcode = AArch64ISD::SQSHLU_I;
 | 
						|
    IsRightShift = false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
 | 
						|
                       DAG.getConstant(-ShiftAmount, dl, MVT::i32));
 | 
						|
  } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
 | 
						|
                       DAG.getConstant(ShiftAmount, dl, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// The CRC32[BH] instructions ignore the high bits of their data operand. Since
 | 
						|
// the intrinsics must be legal and take an i32, this means there's almost
 | 
						|
// certainly going to be a zext in the DAG which we can eliminate.
 | 
						|
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue AndN = N->getOperand(2);
 | 
						|
  if (AndN.getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
 | 
						|
  if (!CMask || CMask->getZExtValue() != Mask)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
 | 
						|
                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
 | 
						|
                                           SelectionDAG &DAG) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
 | 
						|
                     DAG.getNode(Opc, dl,
 | 
						|
                                 N->getOperand(1).getSimpleValueType(),
 | 
						|
                                 N->getOperand(1)),
 | 
						|
                     DAG.getConstant(0, dl, MVT::i64));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performIntrinsicCombine(SDNode *N,
 | 
						|
                                       TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                       const AArch64Subtarget *Subtarget) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  unsigned IID = getIntrinsicID(N);
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case Intrinsic::aarch64_neon_vcvtfxs2fp:
 | 
						|
  case Intrinsic::aarch64_neon_vcvtfxu2fp:
 | 
						|
    return tryCombineFixedPointConvert(N, DCI, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_saddv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_uaddv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_sminv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_uminv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_smaxv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_umaxv:
 | 
						|
    return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_fmax:
 | 
						|
    return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
 | 
						|
                       N->getOperand(1), N->getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_fmin:
 | 
						|
    return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
 | 
						|
                       N->getOperand(1), N->getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_fmaxnm:
 | 
						|
    return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
 | 
						|
                       N->getOperand(1), N->getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_fminnm:
 | 
						|
    return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
 | 
						|
                       N->getOperand(1), N->getOperand(2));
 | 
						|
  case Intrinsic::aarch64_neon_smull:
 | 
						|
  case Intrinsic::aarch64_neon_umull:
 | 
						|
  case Intrinsic::aarch64_neon_pmull:
 | 
						|
  case Intrinsic::aarch64_neon_sqdmull:
 | 
						|
    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
 | 
						|
  case Intrinsic::aarch64_neon_sqshl:
 | 
						|
  case Intrinsic::aarch64_neon_uqshl:
 | 
						|
  case Intrinsic::aarch64_neon_sqshlu:
 | 
						|
  case Intrinsic::aarch64_neon_srshl:
 | 
						|
  case Intrinsic::aarch64_neon_urshl:
 | 
						|
    return tryCombineShiftImm(IID, N, DAG);
 | 
						|
  case Intrinsic::aarch64_crc32b:
 | 
						|
  case Intrinsic::aarch64_crc32cb:
 | 
						|
    return tryCombineCRC32(0xff, N, DAG);
 | 
						|
  case Intrinsic::aarch64_crc32h:
 | 
						|
  case Intrinsic::aarch64_crc32ch:
 | 
						|
    return tryCombineCRC32(0xffff, N, DAG);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performExtendCombine(SDNode *N,
 | 
						|
                                    TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
 | 
						|
  // we can convert that DUP into another extract_high (of a bigger DUP), which
 | 
						|
  // helps the backend to decide that an sabdl2 would be useful, saving a real
 | 
						|
  // extract_high operation.
 | 
						|
  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
 | 
						|
      N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
 | 
						|
    SDNode *ABDNode = N->getOperand(0).getNode();
 | 
						|
    unsigned IID = getIntrinsicID(ABDNode);
 | 
						|
    if (IID == Intrinsic::aarch64_neon_sabd ||
 | 
						|
        IID == Intrinsic::aarch64_neon_uabd) {
 | 
						|
      SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
 | 
						|
      if (!NewABD.getNode())
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
 | 
						|
                         NewABD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is effectively a custom type legalization for AArch64.
 | 
						|
  //
 | 
						|
  // Type legalization will split an extend of a small, legal, type to a larger
 | 
						|
  // illegal type by first splitting the destination type, often creating
 | 
						|
  // illegal source types, which then get legalized in isel-confusing ways,
 | 
						|
  // leading to really terrible codegen. E.g.,
 | 
						|
  //   %result = v8i32 sext v8i8 %value
 | 
						|
  // becomes
 | 
						|
  //   %losrc = extract_subreg %value, ...
 | 
						|
  //   %hisrc = extract_subreg %value, ...
 | 
						|
  //   %lo = v4i32 sext v4i8 %losrc
 | 
						|
  //   %hi = v4i32 sext v4i8 %hisrc
 | 
						|
  // Things go rapidly downhill from there.
 | 
						|
  //
 | 
						|
  // For AArch64, the [sz]ext vector instructions can only go up one element
 | 
						|
  // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
 | 
						|
  // take two instructions.
 | 
						|
  //
 | 
						|
  // This implies that the most efficient way to do the extend from v8i8
 | 
						|
  // to two v4i32 values is to first extend the v8i8 to v8i16, then do
 | 
						|
  // the normal splitting to happen for the v8i16->v8i32.
 | 
						|
 | 
						|
  // This is pre-legalization to catch some cases where the default
 | 
						|
  // type legalization will create ill-tempered code.
 | 
						|
  if (!DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We're only interested in cleaning things up for non-legal vector types
 | 
						|
  // here. If both the source and destination are legal, things will just
 | 
						|
  // work naturally without any fiddling.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  EVT ResVT = N->getValueType(0);
 | 
						|
  if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
 | 
						|
    return SDValue();
 | 
						|
  // If the vector type isn't a simple VT, it's beyond the scope of what
 | 
						|
  // we're  worried about here. Let legalization do its thing and hope for
 | 
						|
  // the best.
 | 
						|
  SDValue Src = N->getOperand(0);
 | 
						|
  EVT SrcVT = Src->getValueType(0);
 | 
						|
  if (!ResVT.isSimple() || !SrcVT.isSimple())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the source VT is a 64-bit vector, we can play games and get the
 | 
						|
  // better results we want.
 | 
						|
  if (SrcVT.getSizeInBits() != 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
 | 
						|
  unsigned ElementCount = SrcVT.getVectorNumElements();
 | 
						|
  SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
 | 
						|
  SDLoc DL(N);
 | 
						|
  Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
 | 
						|
 | 
						|
  // Now split the rest of the operation into two halves, each with a 64
 | 
						|
  // bit source.
 | 
						|
  EVT LoVT, HiVT;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  unsigned NumElements = ResVT.getVectorNumElements();
 | 
						|
  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
 | 
						|
  LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
 | 
						|
                                 ResVT.getVectorElementType(), NumElements / 2);
 | 
						|
 | 
						|
  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
 | 
						|
                               LoVT.getVectorNumElements());
 | 
						|
  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
 | 
						|
                   DAG.getConstant(0, DL, MVT::i64));
 | 
						|
  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
 | 
						|
                   DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
 | 
						|
  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
 | 
						|
  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
 | 
						|
 | 
						|
  // Now combine the parts back together so we still have a single result
 | 
						|
  // like the combiner expects.
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
 | 
						|
                               SDValue SplatVal, unsigned NumVecElts) {
 | 
						|
  unsigned OrigAlignment = St.getAlignment();
 | 
						|
  unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
 | 
						|
 | 
						|
  // Create scalar stores. This is at least as good as the code sequence for a
 | 
						|
  // split unaligned store which is a dup.s, ext.b, and two stores.
 | 
						|
  // Most of the time the three stores should be replaced by store pair
 | 
						|
  // instructions (stp).
 | 
						|
  SDLoc DL(&St);
 | 
						|
  SDValue BasePtr = St.getBasePtr();
 | 
						|
  uint64_t BaseOffset = 0;
 | 
						|
 | 
						|
  const MachinePointerInfo &PtrInfo = St.getPointerInfo();
 | 
						|
  SDValue NewST1 =
 | 
						|
      DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
 | 
						|
                   OrigAlignment, St.getMemOperand()->getFlags());
 | 
						|
 | 
						|
  // As this in ISel, we will not merge this add which may degrade results.
 | 
						|
  if (BasePtr->getOpcode() == ISD::ADD &&
 | 
						|
      isa<ConstantSDNode>(BasePtr->getOperand(1))) {
 | 
						|
    BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
 | 
						|
    BasePtr = BasePtr->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = EltOffset;
 | 
						|
  while (--NumVecElts) {
 | 
						|
    unsigned Alignment = MinAlign(OrigAlignment, Offset);
 | 
						|
    SDValue OffsetPtr =
 | 
						|
        DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
 | 
						|
                    DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
 | 
						|
    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
 | 
						|
                          PtrInfo.getWithOffset(Offset), Alignment,
 | 
						|
                          St.getMemOperand()->getFlags());
 | 
						|
    Offset += EltOffset;
 | 
						|
  }
 | 
						|
  return NewST1;
 | 
						|
}
 | 
						|
 | 
						|
/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
 | 
						|
/// load store optimizer pass will merge them to store pair stores.  This should
 | 
						|
/// be better than a movi to create the vector zero followed by a vector store
 | 
						|
/// if the zero constant is not re-used, since one instructions and one register
 | 
						|
/// live range will be removed.
 | 
						|
///
 | 
						|
/// For example, the final generated code should be:
 | 
						|
///
 | 
						|
///   stp xzr, xzr, [x0]
 | 
						|
///
 | 
						|
/// instead of:
 | 
						|
///
 | 
						|
///   movi v0.2d, #0
 | 
						|
///   str q0, [x0]
 | 
						|
///
 | 
						|
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
 | 
						|
  SDValue StVal = St.getValue();
 | 
						|
  EVT VT = StVal.getValueType();
 | 
						|
 | 
						|
  // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
 | 
						|
  // 2, 3 or 4 i32 elements.
 | 
						|
  int NumVecElts = VT.getVectorNumElements();
 | 
						|
  if (!(((NumVecElts == 2 || NumVecElts == 3) &&
 | 
						|
         VT.getVectorElementType().getSizeInBits() == 64) ||
 | 
						|
        ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
 | 
						|
         VT.getVectorElementType().getSizeInBits() == 32)))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (StVal.getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the zero constant has more than one use then the vector store could be
 | 
						|
  // better since the constant mov will be amortized and stp q instructions
 | 
						|
  // should be able to be formed.
 | 
						|
  if (!StVal.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the immediate offset of the address operand is too large for the stp
 | 
						|
  // instruction, then bail out.
 | 
						|
  if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
 | 
						|
    int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
 | 
						|
    if (Offset < -512 || Offset > 504)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  for (int I = 0; I < NumVecElts; ++I) {
 | 
						|
    SDValue EltVal = StVal.getOperand(I);
 | 
						|
    if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a CopyFromReg WZR/XZR here to prevent
 | 
						|
  // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
 | 
						|
  SDLoc DL(&St);
 | 
						|
  unsigned ZeroReg;
 | 
						|
  EVT ZeroVT;
 | 
						|
  if (VT.getVectorElementType().getSizeInBits() == 32) {
 | 
						|
    ZeroReg = AArch64::WZR;
 | 
						|
    ZeroVT = MVT::i32;
 | 
						|
  } else {
 | 
						|
    ZeroReg = AArch64::XZR;
 | 
						|
    ZeroVT = MVT::i64;
 | 
						|
  }
 | 
						|
  SDValue SplatVal =
 | 
						|
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
 | 
						|
  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
 | 
						|
}
 | 
						|
 | 
						|
/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
 | 
						|
/// value. The load store optimizer pass will merge them to store pair stores.
 | 
						|
/// This has better performance than a splat of the scalar followed by a split
 | 
						|
/// vector store. Even if the stores are not merged it is four stores vs a dup,
 | 
						|
/// followed by an ext.b and two stores.
 | 
						|
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
 | 
						|
  SDValue StVal = St.getValue();
 | 
						|
  EVT VT = StVal.getValueType();
 | 
						|
 | 
						|
  // Don't replace floating point stores, they possibly won't be transformed to
 | 
						|
  // stp because of the store pair suppress pass.
 | 
						|
  if (VT.isFloatingPoint())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We can express a splat as store pair(s) for 2 or 4 elements.
 | 
						|
  unsigned NumVecElts = VT.getVectorNumElements();
 | 
						|
  if (NumVecElts != 4 && NumVecElts != 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check that this is a splat.
 | 
						|
  // Make sure that each of the relevant vector element locations are inserted
 | 
						|
  // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
 | 
						|
  std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
 | 
						|
  SDValue SplatVal;
 | 
						|
  for (unsigned I = 0; I < NumVecElts; ++I) {
 | 
						|
    // Check for insert vector elements.
 | 
						|
    if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Check that same value is inserted at each vector element.
 | 
						|
    if (I == 0)
 | 
						|
      SplatVal = StVal.getOperand(1);
 | 
						|
    else if (StVal.getOperand(1) != SplatVal)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Check insert element index.
 | 
						|
    ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
 | 
						|
    if (!CIndex)
 | 
						|
      return SDValue();
 | 
						|
    uint64_t IndexVal = CIndex->getZExtValue();
 | 
						|
    if (IndexVal >= NumVecElts)
 | 
						|
      return SDValue();
 | 
						|
    IndexNotInserted.reset(IndexVal);
 | 
						|
 | 
						|
    StVal = StVal.getOperand(0);
 | 
						|
  }
 | 
						|
  // Check that all vector element locations were inserted to.
 | 
						|
  if (IndexNotInserted.any())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           SelectionDAG &DAG,
 | 
						|
                           const AArch64Subtarget *Subtarget) {
 | 
						|
 | 
						|
  StoreSDNode *S = cast<StoreSDNode>(N);
 | 
						|
  if (S->isVolatile() || S->isIndexed())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue StVal = S->getValue();
 | 
						|
  EVT VT = StVal.getValueType();
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we get a splat of zeros, convert this vector store to a store of
 | 
						|
  // scalars. They will be merged into store pairs of xzr thereby removing one
 | 
						|
  // instruction and one register.
 | 
						|
  if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
 | 
						|
    return ReplacedZeroSplat;
 | 
						|
 | 
						|
  // FIXME: The logic for deciding if an unaligned store should be split should
 | 
						|
  // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
 | 
						|
  // a call to that function here.
 | 
						|
 | 
						|
  if (!Subtarget->isMisaligned128StoreSlow())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Don't split at -Oz.
 | 
						|
  if (DAG.getMachineFunction().getFunction().optForMinSize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
 | 
						|
  // those up regresses performance on micro-benchmarks and olden/bh.
 | 
						|
  if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Split unaligned 16B stores. They are terrible for performance.
 | 
						|
  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
 | 
						|
  // extensions can use this to mark that it does not want splitting to happen
 | 
						|
  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
 | 
						|
  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
 | 
						|
  if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
 | 
						|
      S->getAlignment() <= 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we get a splat of a scalar convert this vector store to a store of
 | 
						|
  // scalars. They will be merged into store pairs thereby removing two
 | 
						|
  // instructions.
 | 
						|
  if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
 | 
						|
    return ReplacedSplat;
 | 
						|
 | 
						|
  SDLoc DL(S);
 | 
						|
  unsigned NumElts = VT.getVectorNumElements() / 2;
 | 
						|
  // Split VT into two.
 | 
						|
  EVT HalfVT =
 | 
						|
      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
 | 
						|
  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
 | 
						|
                                   DAG.getConstant(0, DL, MVT::i64));
 | 
						|
  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
 | 
						|
                                   DAG.getConstant(NumElts, DL, MVT::i64));
 | 
						|
  SDValue BasePtr = S->getBasePtr();
 | 
						|
  SDValue NewST1 =
 | 
						|
      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
 | 
						|
                   S->getAlignment(), S->getMemOperand()->getFlags());
 | 
						|
  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
 | 
						|
                                  DAG.getConstant(8, DL, MVT::i64));
 | 
						|
  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
 | 
						|
                      S->getPointerInfo(), S->getAlignment(),
 | 
						|
                      S->getMemOperand()->getFlags());
 | 
						|
}
 | 
						|
 | 
						|
/// Target-specific DAG combine function for post-increment LD1 (lane) and
 | 
						|
/// post-increment LD1R.
 | 
						|
static SDValue performPostLD1Combine(SDNode *N,
 | 
						|
                                     TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                     bool IsLaneOp) {
 | 
						|
  if (DCI.isBeforeLegalizeOps())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  unsigned LoadIdx = IsLaneOp ? 1 : 0;
 | 
						|
  SDNode *LD = N->getOperand(LoadIdx).getNode();
 | 
						|
  // If it is not LOAD, can not do such combine.
 | 
						|
  if (LD->getOpcode() != ISD::LOAD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
 | 
						|
  EVT MemVT = LoadSDN->getMemoryVT();
 | 
						|
  // Check if memory operand is the same type as the vector element.
 | 
						|
  if (MemVT != VT.getVectorElementType())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check if there are other uses. If so, do not combine as it will introduce
 | 
						|
  // an extra load.
 | 
						|
  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
 | 
						|
       ++UI) {
 | 
						|
    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
 | 
						|
      continue;
 | 
						|
    if (*UI != N)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Addr = LD->getOperand(1);
 | 
						|
  SDValue Vector = N->getOperand(0);
 | 
						|
  // Search for a use of the address operand that is an increment.
 | 
						|
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
 | 
						|
       Addr.getNode()->use_end(); UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    if (User->getOpcode() != ISD::ADD
 | 
						|
        || UI.getUse().getResNo() != Addr.getResNo())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that the add is independent of the load.  Otherwise, folding it
 | 
						|
    // would create a cycle.
 | 
						|
    if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
 | 
						|
      continue;
 | 
						|
    // Also check that add is not used in the vector operand.  This would also
 | 
						|
    // create a cycle.
 | 
						|
    if (User->isPredecessorOf(Vector.getNode()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the increment is a constant, it must match the memory ref size.
 | 
						|
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | 
						|
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | 
						|
      uint32_t IncVal = CInc->getZExtValue();
 | 
						|
      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
 | 
						|
      if (IncVal != NumBytes)
 | 
						|
        continue;
 | 
						|
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, check that the vector doesn't depend on the load.
 | 
						|
    // Again, this would create a cycle.
 | 
						|
    // The load depending on the vector is fine, as that's the case for the
 | 
						|
    // LD1*post we'll eventually generate anyway.
 | 
						|
    if (LoadSDN->isPredecessorOf(Vector.getNode()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    Ops.push_back(LD->getOperand(0));  // Chain
 | 
						|
    if (IsLaneOp) {
 | 
						|
      Ops.push_back(Vector);           // The vector to be inserted
 | 
						|
      Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
 | 
						|
    }
 | 
						|
    Ops.push_back(Addr);
 | 
						|
    Ops.push_back(Inc);
 | 
						|
 | 
						|
    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
 | 
						|
    SDVTList SDTys = DAG.getVTList(Tys);
 | 
						|
    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
 | 
						|
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
 | 
						|
                                           MemVT,
 | 
						|
                                           LoadSDN->getMemOperand());
 | 
						|
 | 
						|
    // Update the uses.
 | 
						|
    SDValue NewResults[] = {
 | 
						|
        SDValue(LD, 0),            // The result of load
 | 
						|
        SDValue(UpdN.getNode(), 2) // Chain
 | 
						|
    };
 | 
						|
    DCI.CombineTo(LD, NewResults);
 | 
						|
    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
 | 
						|
    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
 | 
						|
/// address translation.
 | 
						|
static bool performTBISimplification(SDValue Addr,
 | 
						|
                                     TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  APInt DemandedMask = APInt::getLowBitsSet(64, 56);
 | 
						|
  KnownBits Known;
 | 
						|
  TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						|
                                        !DCI.isBeforeLegalizeOps());
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
 | 
						|
    DCI.CommitTargetLoweringOpt(TLO);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue performSTORECombine(SDNode *N,
 | 
						|
                                   TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                   SelectionDAG &DAG,
 | 
						|
                                   const AArch64Subtarget *Subtarget) {
 | 
						|
  if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
 | 
						|
    return Split;
 | 
						|
 | 
						|
  if (Subtarget->supportsAddressTopByteIgnored() &&
 | 
						|
      performTBISimplification(N->getOperand(2), DCI, DAG))
 | 
						|
    return SDValue(N, 0);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Target-specific DAG combine function for NEON load/store intrinsics
 | 
						|
/// to merge base address updates.
 | 
						|
static SDValue performNEONPostLDSTCombine(SDNode *N,
 | 
						|
                                          TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                          SelectionDAG &DAG) {
 | 
						|
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned AddrOpIdx = N->getNumOperands() - 1;
 | 
						|
  SDValue Addr = N->getOperand(AddrOpIdx);
 | 
						|
 | 
						|
  // Search for a use of the address operand that is an increment.
 | 
						|
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
 | 
						|
       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    if (User->getOpcode() != ISD::ADD ||
 | 
						|
        UI.getUse().getResNo() != Addr.getResNo())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that the add is independent of the load/store.  Otherwise, folding
 | 
						|
    // it would create a cycle.
 | 
						|
    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Find the new opcode for the updating load/store.
 | 
						|
    bool IsStore = false;
 | 
						|
    bool IsLaneOp = false;
 | 
						|
    bool IsDupOp = false;
 | 
						|
    unsigned NewOpc = 0;
 | 
						|
    unsigned NumVecs = 0;
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default: llvm_unreachable("unexpected intrinsic for Neon base update");
 | 
						|
    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
 | 
						|
      NumVecs = 2; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
 | 
						|
      NumVecs = 3; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
 | 
						|
      NumVecs = 4; break;
 | 
						|
    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
 | 
						|
      NumVecs = 2; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
 | 
						|
      NumVecs = 3; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
 | 
						|
      NumVecs = 4; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
 | 
						|
      NumVecs = 2; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
 | 
						|
      NumVecs = 3; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
 | 
						|
      NumVecs = 4; break;
 | 
						|
    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
 | 
						|
      NumVecs = 2; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
 | 
						|
      NumVecs = 3; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
 | 
						|
      NumVecs = 4; IsStore = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
 | 
						|
      NumVecs = 2; IsDupOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
 | 
						|
      NumVecs = 3; IsDupOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
 | 
						|
      NumVecs = 4; IsDupOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
 | 
						|
      NumVecs = 2; IsLaneOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
 | 
						|
      NumVecs = 3; IsLaneOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
 | 
						|
      NumVecs = 4; IsLaneOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
 | 
						|
      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
 | 
						|
      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
 | 
						|
    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
 | 
						|
      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
 | 
						|
    }
 | 
						|
 | 
						|
    EVT VecTy;
 | 
						|
    if (IsStore)
 | 
						|
      VecTy = N->getOperand(2).getValueType();
 | 
						|
    else
 | 
						|
      VecTy = N->getValueType(0);
 | 
						|
 | 
						|
    // If the increment is a constant, it must match the memory ref size.
 | 
						|
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | 
						|
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | 
						|
      uint32_t IncVal = CInc->getZExtValue();
 | 
						|
      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
 | 
						|
      if (IsLaneOp || IsDupOp)
 | 
						|
        NumBytes /= VecTy.getVectorNumElements();
 | 
						|
      if (IncVal != NumBytes)
 | 
						|
        continue;
 | 
						|
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
 | 
						|
    }
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    Ops.push_back(N->getOperand(0)); // Incoming chain
 | 
						|
    // Load lane and store have vector list as input.
 | 
						|
    if (IsLaneOp || IsStore)
 | 
						|
      for (unsigned i = 2; i < AddrOpIdx; ++i)
 | 
						|
        Ops.push_back(N->getOperand(i));
 | 
						|
    Ops.push_back(Addr); // Base register
 | 
						|
    Ops.push_back(Inc);
 | 
						|
 | 
						|
    // Return Types.
 | 
						|
    EVT Tys[6];
 | 
						|
    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
 | 
						|
    unsigned n;
 | 
						|
    for (n = 0; n < NumResultVecs; ++n)
 | 
						|
      Tys[n] = VecTy;
 | 
						|
    Tys[n++] = MVT::i64;  // Type of write back register
 | 
						|
    Tys[n] = MVT::Other;  // Type of the chain
 | 
						|
    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
 | 
						|
 | 
						|
    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
 | 
						|
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
 | 
						|
                                           MemInt->getMemoryVT(),
 | 
						|
                                           MemInt->getMemOperand());
 | 
						|
 | 
						|
    // Update the uses.
 | 
						|
    std::vector<SDValue> NewResults;
 | 
						|
    for (unsigned i = 0; i < NumResultVecs; ++i) {
 | 
						|
      NewResults.push_back(SDValue(UpdN.getNode(), i));
 | 
						|
    }
 | 
						|
    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
 | 
						|
    DCI.CombineTo(N, NewResults);
 | 
						|
    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Checks to see if the value is the prescribed width and returns information
 | 
						|
// about its extension mode.
 | 
						|
static
 | 
						|
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
 | 
						|
  ExtType = ISD::NON_EXTLOAD;
 | 
						|
  switch(V.getNode()->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
 | 
						|
    if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
 | 
						|
       || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
 | 
						|
      ExtType = LoadNode->getExtensionType();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case ISD::AssertSext: {
 | 
						|
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
 | 
						|
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
 | 
						|
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
 | 
						|
      ExtType = ISD::SEXTLOAD;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case ISD::AssertZext: {
 | 
						|
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
 | 
						|
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
 | 
						|
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
 | 
						|
      ExtType = ISD::ZEXTLOAD;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case ISD::Constant:
 | 
						|
  case ISD::TargetConstant: {
 | 
						|
    return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
 | 
						|
           1LL << (width - 1);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This function does a whole lot of voodoo to determine if the tests are
 | 
						|
// equivalent without and with a mask. Essentially what happens is that given a
 | 
						|
// DAG resembling:
 | 
						|
//
 | 
						|
//  +-------------+ +-------------+ +-------------+ +-------------+
 | 
						|
//  |    Input    | | AddConstant | | CompConstant| |     CC      |
 | 
						|
//  +-------------+ +-------------+ +-------------+ +-------------+
 | 
						|
//           |           |           |               |
 | 
						|
//           V           V           |    +----------+
 | 
						|
//          +-------------+  +----+  |    |
 | 
						|
//          |     ADD     |  |0xff|  |    |
 | 
						|
//          +-------------+  +----+  |    |
 | 
						|
//                  |           |    |    |
 | 
						|
//                  V           V    |    |
 | 
						|
//                 +-------------+   |    |
 | 
						|
//                 |     AND     |   |    |
 | 
						|
//                 +-------------+   |    |
 | 
						|
//                      |            |    |
 | 
						|
//                      +-----+      |    |
 | 
						|
//                            |      |    |
 | 
						|
//                            V      V    V
 | 
						|
//                           +-------------+
 | 
						|
//                           |     CMP     |
 | 
						|
//                           +-------------+
 | 
						|
//
 | 
						|
// The AND node may be safely removed for some combinations of inputs. In
 | 
						|
// particular we need to take into account the extension type of the Input,
 | 
						|
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
 | 
						|
// width of the input (this can work for any width inputs, the above graph is
 | 
						|
// specific to 8 bits.
 | 
						|
//
 | 
						|
// The specific equations were worked out by generating output tables for each
 | 
						|
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
 | 
						|
// problem was simplified by working with 4 bit inputs, which means we only
 | 
						|
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
 | 
						|
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
 | 
						|
// patterns present in both extensions (0,7). For every distinct set of
 | 
						|
// AddConstant and CompConstants bit patterns we can consider the masked and
 | 
						|
// unmasked versions to be equivalent if the result of this function is true for
 | 
						|
// all 16 distinct bit patterns of for the current extension type of Input (w0).
 | 
						|
//
 | 
						|
//   sub      w8, w0, w1
 | 
						|
//   and      w10, w8, #0x0f
 | 
						|
//   cmp      w8, w2
 | 
						|
//   cset     w9, AArch64CC
 | 
						|
//   cmp      w10, w2
 | 
						|
//   cset     w11, AArch64CC
 | 
						|
//   cmp      w9, w11
 | 
						|
//   cset     w0, eq
 | 
						|
//   ret
 | 
						|
//
 | 
						|
// Since the above function shows when the outputs are equivalent it defines
 | 
						|
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
 | 
						|
// would be expensive to run during compiles. The equations below were written
 | 
						|
// in a test harness that confirmed they gave equivalent outputs to the above
 | 
						|
// for all inputs function, so they can be used determine if the removal is
 | 
						|
// legal instead.
 | 
						|
//
 | 
						|
// isEquivalentMaskless() is the code for testing if the AND can be removed
 | 
						|
// factored out of the DAG recognition as the DAG can take several forms.
 | 
						|
 | 
						|
static bool isEquivalentMaskless(unsigned CC, unsigned width,
 | 
						|
                                 ISD::LoadExtType ExtType, int AddConstant,
 | 
						|
                                 int CompConstant) {
 | 
						|
  // By being careful about our equations and only writing the in term
 | 
						|
  // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
 | 
						|
  // make them generally applicable to all bit widths.
 | 
						|
  int MaxUInt = (1 << width);
 | 
						|
 | 
						|
  // For the purposes of these comparisons sign extending the type is
 | 
						|
  // equivalent to zero extending the add and displacing it by half the integer
 | 
						|
  // width. Provided we are careful and make sure our equations are valid over
 | 
						|
  // the whole range we can just adjust the input and avoid writing equations
 | 
						|
  // for sign extended inputs.
 | 
						|
  if (ExtType == ISD::SEXTLOAD)
 | 
						|
    AddConstant -= (1 << (width-1));
 | 
						|
 | 
						|
  switch(CC) {
 | 
						|
  case AArch64CC::LE:
 | 
						|
  case AArch64CC::GT:
 | 
						|
    if ((AddConstant == 0) ||
 | 
						|
        (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
 | 
						|
        (AddConstant >= 0 && CompConstant < 0) ||
 | 
						|
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case AArch64CC::LT:
 | 
						|
  case AArch64CC::GE:
 | 
						|
    if ((AddConstant == 0) ||
 | 
						|
        (AddConstant >= 0 && CompConstant <= 0) ||
 | 
						|
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case AArch64CC::HI:
 | 
						|
  case AArch64CC::LS:
 | 
						|
    if ((AddConstant >= 0 && CompConstant < 0) ||
 | 
						|
       (AddConstant <= 0 && CompConstant >= -1 &&
 | 
						|
        CompConstant < AddConstant + MaxUInt))
 | 
						|
      return true;
 | 
						|
   break;
 | 
						|
  case AArch64CC::PL:
 | 
						|
  case AArch64CC::MI:
 | 
						|
    if ((AddConstant == 0) ||
 | 
						|
        (AddConstant > 0 && CompConstant <= 0) ||
 | 
						|
        (AddConstant < 0 && CompConstant <= AddConstant))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case AArch64CC::LO:
 | 
						|
  case AArch64CC::HS:
 | 
						|
    if ((AddConstant >= 0 && CompConstant <= 0) ||
 | 
						|
        (AddConstant <= 0 && CompConstant >= 0 &&
 | 
						|
         CompConstant <= AddConstant + MaxUInt))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case AArch64CC::EQ:
 | 
						|
  case AArch64CC::NE:
 | 
						|
    if ((AddConstant > 0 && CompConstant < 0) ||
 | 
						|
        (AddConstant < 0 && CompConstant >= 0 &&
 | 
						|
         CompConstant < AddConstant + MaxUInt) ||
 | 
						|
        (AddConstant >= 0 && CompConstant >= 0 &&
 | 
						|
         CompConstant >= AddConstant) ||
 | 
						|
        (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  case AArch64CC::VS:
 | 
						|
  case AArch64CC::VC:
 | 
						|
  case AArch64CC::AL:
 | 
						|
  case AArch64CC::NV:
 | 
						|
    return true;
 | 
						|
  case AArch64CC::Invalid:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
SDValue performCONDCombine(SDNode *N,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                           SelectionDAG &DAG, unsigned CCIndex,
 | 
						|
                           unsigned CmpIndex) {
 | 
						|
  unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
 | 
						|
  SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
 | 
						|
  unsigned CondOpcode = SubsNode->getOpcode();
 | 
						|
 | 
						|
  if (CondOpcode != AArch64ISD::SUBS)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // There is a SUBS feeding this condition. Is it fed by a mask we can
 | 
						|
  // use?
 | 
						|
 | 
						|
  SDNode *AndNode = SubsNode->getOperand(0).getNode();
 | 
						|
  unsigned MaskBits = 0;
 | 
						|
 | 
						|
  if (AndNode->getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
 | 
						|
    uint32_t CNV = CN->getZExtValue();
 | 
						|
    if (CNV == 255)
 | 
						|
      MaskBits = 8;
 | 
						|
    else if (CNV == 65535)
 | 
						|
      MaskBits = 16;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MaskBits)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue AddValue = AndNode->getOperand(0);
 | 
						|
 | 
						|
  if (AddValue.getOpcode() != ISD::ADD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The basic dag structure is correct, grab the inputs and validate them.
 | 
						|
 | 
						|
  SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
 | 
						|
  SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
 | 
						|
  SDValue SubsInputValue = SubsNode->getOperand(1);
 | 
						|
 | 
						|
  // The mask is present and the provenance of all the values is a smaller type,
 | 
						|
  // lets see if the mask is superfluous.
 | 
						|
 | 
						|
  if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
 | 
						|
      !isa<ConstantSDNode>(SubsInputValue.getNode()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ISD::LoadExtType ExtType;
 | 
						|
 | 
						|
  if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
 | 
						|
      !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
 | 
						|
      !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if(!isEquivalentMaskless(CC, MaskBits, ExtType,
 | 
						|
                cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
 | 
						|
                cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The AND is not necessary, remove it.
 | 
						|
 | 
						|
  SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
 | 
						|
                               SubsNode->getValueType(1));
 | 
						|
  SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
 | 
						|
 | 
						|
  SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
 | 
						|
  DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
 | 
						|
 | 
						|
  return SDValue(N, 0);
 | 
						|
}
 | 
						|
 | 
						|
// Optimize compare with zero and branch.
 | 
						|
static SDValue performBRCONDCombine(SDNode *N,
 | 
						|
                                    TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                    SelectionDAG &DAG) {
 | 
						|
  if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
 | 
						|
    N = NV.getNode();
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  SDValue Dest = N->getOperand(1);
 | 
						|
  SDValue CCVal = N->getOperand(2);
 | 
						|
  SDValue Cmp = N->getOperand(3);
 | 
						|
 | 
						|
  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
 | 
						|
  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
 | 
						|
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned CmpOpc = Cmp.getOpcode();
 | 
						|
  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only attempt folding if there is only one use of the flag and no use of the
 | 
						|
  // value.
 | 
						|
  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS = Cmp.getOperand(0);
 | 
						|
  SDValue RHS = Cmp.getOperand(1);
 | 
						|
 | 
						|
  assert(LHS.getValueType() == RHS.getValueType() &&
 | 
						|
         "Expected the value type to be the same for both operands!");
 | 
						|
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (isNullConstant(LHS))
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
 | 
						|
  if (!isNullConstant(RHS))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
 | 
						|
      LHS.getOpcode() == ISD::SRL)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Fold the compare into the branch instruction.
 | 
						|
  SDValue BR;
 | 
						|
  if (CC == AArch64CC::EQ)
 | 
						|
    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
 | 
						|
  else
 | 
						|
    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
 | 
						|
 | 
						|
  // Do not add new nodes to DAG combiner worklist.
 | 
						|
  DCI.CombineTo(N, BR, false);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
 | 
						|
// as well as whether the test should be inverted.  This code is required to
 | 
						|
// catch these cases (as opposed to standard dag combines) because
 | 
						|
// AArch64ISD::TBZ is matched during legalization.
 | 
						|
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
 | 
						|
                                 SelectionDAG &DAG) {
 | 
						|
 | 
						|
  if (!Op->hasOneUse())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // We don't handle undef/constant-fold cases below, as they should have
 | 
						|
  // already been taken care of (e.g. and of 0, test of undefined shifted bits,
 | 
						|
  // etc.)
 | 
						|
 | 
						|
  // (tbz (trunc x), b) -> (tbz x, b)
 | 
						|
  // This case is just here to enable more of the below cases to be caught.
 | 
						|
  if (Op->getOpcode() == ISD::TRUNCATE &&
 | 
						|
      Bit < Op->getValueType(0).getSizeInBits()) {
 | 
						|
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op->getNumOperands() != 2)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  switch (Op->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // (tbz (and x, m), b) -> (tbz x, b)
 | 
						|
  case ISD::AND:
 | 
						|
    if ((C->getZExtValue() >> Bit) & 1)
 | 
						|
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // (tbz (shl x, c), b) -> (tbz x, b-c)
 | 
						|
  case ISD::SHL:
 | 
						|
    if (C->getZExtValue() <= Bit &&
 | 
						|
        (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
 | 
						|
      Bit = Bit - C->getZExtValue();
 | 
						|
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
    }
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
 | 
						|
  case ISD::SRA:
 | 
						|
    Bit = Bit + C->getZExtValue();
 | 
						|
    if (Bit >= Op->getValueType(0).getSizeInBits())
 | 
						|
      Bit = Op->getValueType(0).getSizeInBits() - 1;
 | 
						|
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
 | 
						|
  // (tbz (srl x, c), b) -> (tbz x, b+c)
 | 
						|
  case ISD::SRL:
 | 
						|
    if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
 | 
						|
      Bit = Bit + C->getZExtValue();
 | 
						|
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
    }
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // (tbz (xor x, -1), b) -> (tbnz x, b)
 | 
						|
  case ISD::XOR:
 | 
						|
    if ((C->getZExtValue() >> Bit) & 1)
 | 
						|
      Invert = !Invert;
 | 
						|
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Optimize test single bit zero/non-zero and branch.
 | 
						|
static SDValue performTBZCombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 SelectionDAG &DAG) {
 | 
						|
  unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
 | 
						|
  bool Invert = false;
 | 
						|
  SDValue TestSrc = N->getOperand(1);
 | 
						|
  SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
 | 
						|
 | 
						|
  if (TestSrc == NewTestSrc)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned NewOpc = N->getOpcode();
 | 
						|
  if (Invert) {
 | 
						|
    if (NewOpc == AArch64ISD::TBZ)
 | 
						|
      NewOpc = AArch64ISD::TBNZ;
 | 
						|
    else {
 | 
						|
      assert(NewOpc == AArch64ISD::TBNZ);
 | 
						|
      NewOpc = AArch64ISD::TBZ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
 | 
						|
                     DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
 | 
						|
}
 | 
						|
 | 
						|
// vselect (v1i1 setcc) ->
 | 
						|
//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
 | 
						|
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
 | 
						|
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
 | 
						|
// such VSELECT.
 | 
						|
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT CCVT = N0.getValueType();
 | 
						|
 | 
						|
  if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
 | 
						|
      CCVT.getVectorElementType() != MVT::i1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT ResVT = N->getValueType(0);
 | 
						|
  EVT CmpVT = N0.getOperand(0).getValueType();
 | 
						|
  // Only combine when the result type is of the same size as the compared
 | 
						|
  // operands.
 | 
						|
  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue IfTrue = N->getOperand(1);
 | 
						|
  SDValue IfFalse = N->getOperand(2);
 | 
						|
  SDValue SetCC =
 | 
						|
      DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
 | 
						|
                   N0.getOperand(0), N0.getOperand(1),
 | 
						|
                   cast<CondCodeSDNode>(N0.getOperand(2))->get());
 | 
						|
  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
 | 
						|
                     IfTrue, IfFalse);
 | 
						|
}
 | 
						|
 | 
						|
/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
 | 
						|
/// the compare-mask instructions rather than going via NZCV, even if LHS and
 | 
						|
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
 | 
						|
/// with a vector one followed by a DUP shuffle on the result.
 | 
						|
static SDValue performSelectCombine(SDNode *N,
 | 
						|
                                    TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT ResVT = N->getValueType(0);
 | 
						|
 | 
						|
  if (N0.getOpcode() != ISD::SETCC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
 | 
						|
  // scalar SetCCResultType. We also don't expect vectors, because we assume
 | 
						|
  // that selects fed by vector SETCCs are canonicalized to VSELECT.
 | 
						|
  assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
 | 
						|
         "Scalar-SETCC feeding SELECT has unexpected result type!");
 | 
						|
 | 
						|
  // If NumMaskElts == 0, the comparison is larger than select result. The
 | 
						|
  // largest real NEON comparison is 64-bits per lane, which means the result is
 | 
						|
  // at most 32-bits and an illegal vector. Just bail out for now.
 | 
						|
  EVT SrcVT = N0.getOperand(0).getValueType();
 | 
						|
 | 
						|
  // Don't try to do this optimization when the setcc itself has i1 operands.
 | 
						|
  // There are no legal vectors of i1, so this would be pointless.
 | 
						|
  if (SrcVT == MVT::i1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
 | 
						|
  if (!ResVT.isVector() || NumMaskElts == 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
 | 
						|
  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
 | 
						|
 | 
						|
  // Also bail out if the vector CCVT isn't the same size as ResVT.
 | 
						|
  // This can happen if the SETCC operand size doesn't divide the ResVT size
 | 
						|
  // (e.g., f64 vs v3f32).
 | 
						|
  if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure we didn't create illegal types, if we're not supposed to.
 | 
						|
  assert(DCI.isBeforeLegalize() ||
 | 
						|
         DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
 | 
						|
 | 
						|
  // First perform a vector comparison, where lane 0 is the one we're interested
 | 
						|
  // in.
 | 
						|
  SDLoc DL(N0);
 | 
						|
  SDValue LHS =
 | 
						|
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
 | 
						|
  SDValue RHS =
 | 
						|
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
 | 
						|
  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
 | 
						|
 | 
						|
  // Now duplicate the comparison mask we want across all other lanes.
 | 
						|
  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
 | 
						|
  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
 | 
						|
  Mask = DAG.getNode(ISD::BITCAST, DL,
 | 
						|
                     ResVT.changeVectorElementTypeToInteger(), Mask);
 | 
						|
 | 
						|
  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
 | 
						|
}
 | 
						|
 | 
						|
/// Get rid of unnecessary NVCASTs (that don't change the type).
 | 
						|
static SDValue performNVCASTCombine(SDNode *N) {
 | 
						|
  if (N->getValueType(0) == N->getOperand(0).getValueType())
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    DEBUG(dbgs() << "Custom combining: skipping\n");
 | 
						|
    break;
 | 
						|
  case ISD::ADD:
 | 
						|
  case ISD::SUB:
 | 
						|
    return performAddSubLongCombine(N, DCI, DAG);
 | 
						|
  case ISD::XOR:
 | 
						|
    return performXorCombine(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::MUL:
 | 
						|
    return performMulCombine(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    return performIntToFpCombine(N, DAG, Subtarget);
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    return performFpToIntCombine(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::FDIV:
 | 
						|
    return performFDivCombine(N, DAG, DCI, Subtarget);
 | 
						|
  case ISD::OR:
 | 
						|
    return performORCombine(N, DCI, Subtarget);
 | 
						|
  case ISD::SRL:
 | 
						|
    return performSRLCombine(N, DCI);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN:
 | 
						|
    return performIntrinsicCombine(N, DCI, Subtarget);
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
    return performExtendCombine(N, DCI, DAG);
 | 
						|
  case ISD::BITCAST:
 | 
						|
    return performBitcastCombine(N, DCI, DAG);
 | 
						|
  case ISD::CONCAT_VECTORS:
 | 
						|
    return performConcatVectorsCombine(N, DCI, DAG);
 | 
						|
  case ISD::SELECT:
 | 
						|
    return performSelectCombine(N, DCI);
 | 
						|
  case ISD::VSELECT:
 | 
						|
    return performVSelectCombine(N, DCI.DAG);
 | 
						|
  case ISD::LOAD:
 | 
						|
    if (performTBISimplification(N->getOperand(1), DCI, DAG))
 | 
						|
      return SDValue(N, 0);
 | 
						|
    break;
 | 
						|
  case ISD::STORE:
 | 
						|
    return performSTORECombine(N, DCI, DAG, Subtarget);
 | 
						|
  case AArch64ISD::BRCOND:
 | 
						|
    return performBRCONDCombine(N, DCI, DAG);
 | 
						|
  case AArch64ISD::TBNZ:
 | 
						|
  case AArch64ISD::TBZ:
 | 
						|
    return performTBZCombine(N, DCI, DAG);
 | 
						|
  case AArch64ISD::CSEL:
 | 
						|
    return performCONDCombine(N, DCI, DAG, 2, 3);
 | 
						|
  case AArch64ISD::DUP:
 | 
						|
    return performPostLD1Combine(N, DCI, false);
 | 
						|
  case AArch64ISD::NVCAST:
 | 
						|
    return performNVCASTCombine(N);
 | 
						|
  case ISD::INSERT_VECTOR_ELT:
 | 
						|
    return performPostLD1Combine(N, DCI, true);
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    case Intrinsic::aarch64_neon_ld2:
 | 
						|
    case Intrinsic::aarch64_neon_ld3:
 | 
						|
    case Intrinsic::aarch64_neon_ld4:
 | 
						|
    case Intrinsic::aarch64_neon_ld1x2:
 | 
						|
    case Intrinsic::aarch64_neon_ld1x3:
 | 
						|
    case Intrinsic::aarch64_neon_ld1x4:
 | 
						|
    case Intrinsic::aarch64_neon_ld2lane:
 | 
						|
    case Intrinsic::aarch64_neon_ld3lane:
 | 
						|
    case Intrinsic::aarch64_neon_ld4lane:
 | 
						|
    case Intrinsic::aarch64_neon_ld2r:
 | 
						|
    case Intrinsic::aarch64_neon_ld3r:
 | 
						|
    case Intrinsic::aarch64_neon_ld4r:
 | 
						|
    case Intrinsic::aarch64_neon_st2:
 | 
						|
    case Intrinsic::aarch64_neon_st3:
 | 
						|
    case Intrinsic::aarch64_neon_st4:
 | 
						|
    case Intrinsic::aarch64_neon_st1x2:
 | 
						|
    case Intrinsic::aarch64_neon_st1x3:
 | 
						|
    case Intrinsic::aarch64_neon_st1x4:
 | 
						|
    case Intrinsic::aarch64_neon_st2lane:
 | 
						|
    case Intrinsic::aarch64_neon_st3lane:
 | 
						|
    case Intrinsic::aarch64_neon_st4lane:
 | 
						|
      return performNEONPostLDSTCombine(N, DCI, DAG);
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Check if the return value is used as only a return value, as otherwise
 | 
						|
// we can't perform a tail-call. In particular, we need to check for
 | 
						|
// target ISD nodes that are returns and any other "odd" constructs
 | 
						|
// that the generic analysis code won't necessarily catch.
 | 
						|
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
 | 
						|
                                               SDValue &Chain) const {
 | 
						|
  if (N->getNumValues() != 1)
 | 
						|
    return false;
 | 
						|
  if (!N->hasNUsesOfValue(1, 0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue TCChain = Chain;
 | 
						|
  SDNode *Copy = *N->use_begin();
 | 
						|
  if (Copy->getOpcode() == ISD::CopyToReg) {
 | 
						|
    // If the copy has a glue operand, we conservatively assume it isn't safe to
 | 
						|
    // perform a tail call.
 | 
						|
    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
 | 
						|
        MVT::Glue)
 | 
						|
      return false;
 | 
						|
    TCChain = Copy->getOperand(0);
 | 
						|
  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool HasRet = false;
 | 
						|
  for (SDNode *Node : Copy->uses()) {
 | 
						|
    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
 | 
						|
      return false;
 | 
						|
    HasRet = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HasRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Chain = TCChain;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return whether the an instruction can potentially be optimized to a tail
 | 
						|
// call. This will cause the optimizers to attempt to move, or duplicate,
 | 
						|
// return instructions to help enable tail call optimizations for this
 | 
						|
// instruction.
 | 
						|
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | 
						|
  return CI->isTailCall();
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
 | 
						|
                                                   SDValue &Offset,
 | 
						|
                                                   ISD::MemIndexedMode &AM,
 | 
						|
                                                   bool &IsInc,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Base = Op->getOperand(0);
 | 
						|
  // All of the indexed addressing mode instructions take a signed
 | 
						|
  // 9 bit immediate offset.
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
 | 
						|
    int64_t RHSC = RHS->getSExtValue();
 | 
						|
    if (Op->getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -(uint64_t)RHSC;
 | 
						|
    if (!isInt<9>(RHSC))
 | 
						|
      return false;
 | 
						|
    IsInc = (Op->getOpcode() == ISD::ADD);
 | 
						|
    Offset = Op->getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | 
						|
                                                      SDValue &Offset,
 | 
						|
                                                      ISD::MemIndexedMode &AM,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  EVT VT;
 | 
						|
  SDValue Ptr;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    VT = LD->getMemoryVT();
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    VT = ST->getMemoryVT();
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsInc;
 | 
						|
  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
 | 
						|
    return false;
 | 
						|
  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::getPostIndexedAddressParts(
 | 
						|
    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
 | 
						|
    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
 | 
						|
  EVT VT;
 | 
						|
  SDValue Ptr;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    VT = LD->getMemoryVT();
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    VT = ST->getMemoryVT();
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsInc;
 | 
						|
  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
 | 
						|
    return false;
 | 
						|
  // Post-indexing updates the base, so it's not a valid transform
 | 
						|
  // if that's not the same as the load's pointer.
 | 
						|
  if (Ptr != Base)
 | 
						|
    return false;
 | 
						|
  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
 | 
						|
    return;
 | 
						|
 | 
						|
  Op = SDValue(
 | 
						|
      DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
 | 
						|
                         DAG.getUNDEF(MVT::i32), Op,
 | 
						|
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
 | 
						|
      0);
 | 
						|
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
 | 
						|
  Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
 | 
						|
}
 | 
						|
 | 
						|
static void ReplaceReductionResults(SDNode *N,
 | 
						|
                                    SmallVectorImpl<SDValue> &Results,
 | 
						|
                                    SelectionDAG &DAG, unsigned InterOp,
 | 
						|
                                    unsigned AcrossOp) {
 | 
						|
  EVT LoVT, HiVT;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  SDLoc dl(N);
 | 
						|
  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
 | 
						|
  std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
 | 
						|
  SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
 | 
						|
  SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
 | 
						|
  Results.push_back(SplitVal);
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
 | 
						|
                           DAG.getNode(ISD::SRL, DL, MVT::i128, N,
 | 
						|
                                       DAG.getConstant(64, DL, MVT::i64)));
 | 
						|
  return std::make_pair(Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
// Create an even/odd pair of X registers holding integer value V.
 | 
						|
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
 | 
						|
  SDLoc dl(V.getNode());
 | 
						|
  SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
 | 
						|
  SDValue VHi = DAG.getAnyExtOrTrunc(
 | 
						|
      DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
 | 
						|
      dl, MVT::i64);
 | 
						|
  if (DAG.getDataLayout().isBigEndian())
 | 
						|
    std::swap (VLo, VHi);
 | 
						|
  SDValue RegClass =
 | 
						|
      DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
 | 
						|
  SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
 | 
						|
  return SDValue(
 | 
						|
      DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
 | 
						|
}
 | 
						|
 | 
						|
static void ReplaceCMP_SWAP_128Results(SDNode *N,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results,
 | 
						|
                                       SelectionDAG &DAG,
 | 
						|
                                       const AArch64Subtarget *Subtarget) {
 | 
						|
  assert(N->getValueType(0) == MVT::i128 &&
 | 
						|
         "AtomicCmpSwap on types less than 128 should be legal");
 | 
						|
 | 
						|
  if (Subtarget->hasLSE()) {
 | 
						|
    // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
 | 
						|
    // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
 | 
						|
    SDValue Ops[] = {
 | 
						|
        createGPRPairNode(DAG, N->getOperand(2)), // Compare value
 | 
						|
        createGPRPairNode(DAG, N->getOperand(3)), // Store value
 | 
						|
        N->getOperand(1), // Ptr
 | 
						|
        N->getOperand(0), // Chain in
 | 
						|
    };
 | 
						|
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
 | 
						|
    MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
    unsigned Opcode;
 | 
						|
    switch (MemOp[0]->getOrdering()) {
 | 
						|
    case AtomicOrdering::Monotonic:
 | 
						|
      Opcode = AArch64::CASPX;
 | 
						|
      break;
 | 
						|
    case AtomicOrdering::Acquire:
 | 
						|
      Opcode = AArch64::CASPAX;
 | 
						|
      break;
 | 
						|
    case AtomicOrdering::Release:
 | 
						|
      Opcode = AArch64::CASPLX;
 | 
						|
      break;
 | 
						|
    case AtomicOrdering::AcquireRelease:
 | 
						|
    case AtomicOrdering::SequentiallyConsistent:
 | 
						|
      Opcode = AArch64::CASPALX;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unexpected ordering!");
 | 
						|
    }
 | 
						|
 | 
						|
    MachineSDNode *CmpSwap = DAG.getMachineNode(
 | 
						|
        Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
 | 
						|
    CmpSwap->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
    unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
 | 
						|
    if (DAG.getDataLayout().isBigEndian())
 | 
						|
      std::swap(SubReg1, SubReg2);
 | 
						|
    Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
 | 
						|
                                                 SDValue(CmpSwap, 0)));
 | 
						|
    Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
 | 
						|
                                                 SDValue(CmpSwap, 0)));
 | 
						|
    Results.push_back(SDValue(CmpSwap, 1)); // Chain out
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto Desired = splitInt128(N->getOperand(2), DAG);
 | 
						|
  auto New = splitInt128(N->getOperand(3), DAG);
 | 
						|
  SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
 | 
						|
                   New.first,        New.second,    N->getOperand(0)};
 | 
						|
  SDNode *CmpSwap = DAG.getMachineNode(
 | 
						|
      AArch64::CMP_SWAP_128, SDLoc(N),
 | 
						|
      DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
 | 
						|
  Results.push_back(SDValue(CmpSwap, 0));
 | 
						|
  Results.push_back(SDValue(CmpSwap, 1));
 | 
						|
  Results.push_back(SDValue(CmpSwap, 3));
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::ReplaceNodeResults(
 | 
						|
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Don't know how to custom expand this");
 | 
						|
  case ISD::BITCAST:
 | 
						|
    ReplaceBITCASTResults(N, Results, DAG);
 | 
						|
    return;
 | 
						|
  case ISD::VECREDUCE_ADD:
 | 
						|
  case ISD::VECREDUCE_SMAX:
 | 
						|
  case ISD::VECREDUCE_SMIN:
 | 
						|
  case ISD::VECREDUCE_UMAX:
 | 
						|
  case ISD::VECREDUCE_UMIN:
 | 
						|
    Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
 | 
						|
    return;
 | 
						|
 | 
						|
  case AArch64ISD::SADDV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
 | 
						|
    return;
 | 
						|
  case AArch64ISD::UADDV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
 | 
						|
    return;
 | 
						|
  case AArch64ISD::SMINV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
 | 
						|
    return;
 | 
						|
  case AArch64ISD::UMINV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
 | 
						|
    return;
 | 
						|
  case AArch64ISD::SMAXV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
 | 
						|
    return;
 | 
						|
  case AArch64ISD::UMAXV:
 | 
						|
    ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
 | 
						|
    return;
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
 | 
						|
    // Let normal code take care of it by not adding anything to Results.
 | 
						|
    return;
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
    ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::useLoadStackGuardNode() const {
 | 
						|
  if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
 | 
						|
    return TargetLowering::useLoadStackGuardNode();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
 | 
						|
  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
 | 
						|
  // reciprocal if there are three or more FDIVs.
 | 
						|
  return 3;
 | 
						|
}
 | 
						|
 | 
						|
TargetLoweringBase::LegalizeTypeAction
 | 
						|
AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
 | 
						|
  MVT SVT = VT.getSimpleVT();
 | 
						|
  // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
 | 
						|
  // v4i16, v2i32 instead of to promote.
 | 
						|
  if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
 | 
						|
      || SVT == MVT::v1f32)
 | 
						|
    return TypeWidenVector;
 | 
						|
 | 
						|
  return TargetLoweringBase::getPreferredVectorAction(VT);
 | 
						|
}
 | 
						|
 | 
						|
// Loads and stores less than 128-bits are already atomic; ones above that
 | 
						|
// are doomed anyway, so defer to the default libcall and blame the OS when
 | 
						|
// things go wrong.
 | 
						|
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
 | 
						|
  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
 | 
						|
  return Size == 128;
 | 
						|
}
 | 
						|
 | 
						|
// Loads and stores less than 128-bits are already atomic; ones above that
 | 
						|
// are doomed anyway, so defer to the default libcall and blame the OS when
 | 
						|
// things go wrong.
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
 | 
						|
  unsigned Size = LI->getType()->getPrimitiveSizeInBits();
 | 
						|
  return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
 | 
						|
}
 | 
						|
 | 
						|
// For the real atomic operations, we have ldxr/stxr up to 128 bits,
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | 
						|
  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
 | 
						|
  if (Size > 128) return AtomicExpansionKind::None;
 | 
						|
  // Nand not supported in LSE.
 | 
						|
  if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
 | 
						|
  // Leave 128 bits to LLSC.
 | 
						|
  return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
 | 
						|
    AtomicCmpXchgInst *AI) const {
 | 
						|
  // If subtarget has LSE, leave cmpxchg intact for codegen.
 | 
						|
  if (Subtarget->hasLSE()) return false;
 | 
						|
  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
 | 
						|
  // implement cmpxchg without spilling. If the address being exchanged is also
 | 
						|
  // on the stack and close enough to the spill slot, this can lead to a
 | 
						|
  // situation where the monitor always gets cleared and the atomic operation
 | 
						|
  // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
 | 
						|
  return getTargetMachine().getOptLevel() != 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
 | 
						|
                                             AtomicOrdering Ord) const {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
 | 
						|
  bool IsAcquire = isAcquireOrStronger(Ord);
 | 
						|
 | 
						|
  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
 | 
						|
  // intrinsic must return {i64, i64} and we have to recombine them into a
 | 
						|
  // single i128 here.
 | 
						|
  if (ValTy->getPrimitiveSizeInBits() == 128) {
 | 
						|
    Intrinsic::ID Int =
 | 
						|
        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
 | 
						|
    Function *Ldxr = Intrinsic::getDeclaration(M, Int);
 | 
						|
 | 
						|
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
 | 
						|
 | 
						|
    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | 
						|
    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | 
						|
    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | 
						|
    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | 
						|
    return Builder.CreateOr(
 | 
						|
        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
 | 
						|
  }
 | 
						|
 | 
						|
  Type *Tys[] = { Addr->getType() };
 | 
						|
  Intrinsic::ID Int =
 | 
						|
      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
 | 
						|
  Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
 | 
						|
 | 
						|
  return Builder.CreateTruncOrBitCast(
 | 
						|
      Builder.CreateCall(Ldxr, Addr),
 | 
						|
      cast<PointerType>(Addr->getType())->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
 | 
						|
    IRBuilder<> &Builder) const {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
 | 
						|
}
 | 
						|
 | 
						|
Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
 | 
						|
                                                   Value *Val, Value *Addr,
 | 
						|
                                                   AtomicOrdering Ord) const {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  bool IsRelease = isReleaseOrStronger(Ord);
 | 
						|
 | 
						|
  // Since the intrinsics must have legal type, the i128 intrinsics take two
 | 
						|
  // parameters: "i64, i64". We must marshal Val into the appropriate form
 | 
						|
  // before the call.
 | 
						|
  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
 | 
						|
    Intrinsic::ID Int =
 | 
						|
        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
 | 
						|
    Function *Stxr = Intrinsic::getDeclaration(M, Int);
 | 
						|
    Type *Int64Ty = Type::getInt64Ty(M->getContext());
 | 
						|
 | 
						|
    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
 | 
						|
    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
 | 
						|
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
    return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
 | 
						|
  }
 | 
						|
 | 
						|
  Intrinsic::ID Int =
 | 
						|
      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
 | 
						|
  Type *Tys[] = { Addr->getType() };
 | 
						|
  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
 | 
						|
 | 
						|
  return Builder.CreateCall(Stxr,
 | 
						|
                            {Builder.CreateZExtOrBitCast(
 | 
						|
                                 Val, Stxr->getFunctionType()->getParamType(0)),
 | 
						|
                             Addr});
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
 | 
						|
    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
 | 
						|
  return Ty->isArrayTy();
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
 | 
						|
                                                            EVT) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
 | 
						|
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Function *ThreadPointerFunc =
 | 
						|
      Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
 | 
						|
  return IRB.CreatePointerCast(
 | 
						|
      IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
 | 
						|
      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
 | 
						|
}
 | 
						|
 | 
						|
Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
 | 
						|
  // Android provides a fixed TLS slot for the stack cookie. See the definition
 | 
						|
  // of TLS_SLOT_STACK_GUARD in
 | 
						|
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
 | 
						|
  if (Subtarget->isTargetAndroid())
 | 
						|
    return UseTlsOffset(IRB, 0x28);
 | 
						|
 | 
						|
  // Fuchsia is similar.
 | 
						|
  // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
 | 
						|
  if (Subtarget->isTargetFuchsia())
 | 
						|
    return UseTlsOffset(IRB, -0x10);
 | 
						|
 | 
						|
  return TargetLowering::getIRStackGuard(IRB);
 | 
						|
}
 | 
						|
 | 
						|
Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
 | 
						|
  // Android provides a fixed TLS slot for the SafeStack pointer. See the
 | 
						|
  // definition of TLS_SLOT_SAFESTACK in
 | 
						|
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
 | 
						|
  if (Subtarget->isTargetAndroid())
 | 
						|
    return UseTlsOffset(IRB, 0x48);
 | 
						|
 | 
						|
  // Fuchsia is similar.
 | 
						|
  // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
 | 
						|
  if (Subtarget->isTargetFuchsia())
 | 
						|
    return UseTlsOffset(IRB, -0x8);
 | 
						|
 | 
						|
  return TargetLowering::getSafeStackPointerLocation(IRB);
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
 | 
						|
    const Instruction &AndI) const {
 | 
						|
  // Only sink 'and' mask to cmp use block if it is masking a single bit, since
 | 
						|
  // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
 | 
						|
  // may be beneficial to sink in other cases, but we would have to check that
 | 
						|
  // the cmp would not get folded into the br to form a cbz for these to be
 | 
						|
  // beneficial.
 | 
						|
  ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
 | 
						|
  if (!Mask)
 | 
						|
    return false;
 | 
						|
  return Mask->getValue().isPowerOf2();
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
 | 
						|
  // Update IsSplitCSR in AArch64unctionInfo.
 | 
						|
  AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
 | 
						|
  AFI->setIsSplitCSR(true);
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::insertCopiesSplitCSR(
 | 
						|
    MachineBasicBlock *Entry,
 | 
						|
    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
 | 
						|
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
 | 
						|
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
 | 
						|
  if (!IStart)
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | 
						|
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
 | 
						|
  MachineBasicBlock::iterator MBBI = Entry->begin();
 | 
						|
  for (const MCPhysReg *I = IStart; *I; ++I) {
 | 
						|
    const TargetRegisterClass *RC = nullptr;
 | 
						|
    if (AArch64::GPR64RegClass.contains(*I))
 | 
						|
      RC = &AArch64::GPR64RegClass;
 | 
						|
    else if (AArch64::FPR64RegClass.contains(*I))
 | 
						|
      RC = &AArch64::FPR64RegClass;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
 | 
						|
    unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
    // Create copy from CSR to a virtual register.
 | 
						|
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
 | 
						|
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
 | 
						|
    // nounwind. If we want to generalize this later, we may need to emit
 | 
						|
    // CFI pseudo-instructions.
 | 
						|
    assert(Entry->getParent()->getFunction().hasFnAttribute(
 | 
						|
               Attribute::NoUnwind) &&
 | 
						|
           "Function should be nounwind in insertCopiesSplitCSR!");
 | 
						|
    Entry->addLiveIn(*I);
 | 
						|
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
 | 
						|
        .addReg(*I);
 | 
						|
 | 
						|
    // Insert the copy-back instructions right before the terminator.
 | 
						|
    for (auto *Exit : Exits)
 | 
						|
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), *I)
 | 
						|
          .addReg(NewVR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
 | 
						|
  // Integer division on AArch64 is expensive. However, when aggressively
 | 
						|
  // optimizing for code size, we prefer to use a div instruction, as it is
 | 
						|
  // usually smaller than the alternative sequence.
 | 
						|
  // The exception to this is vector division. Since AArch64 doesn't have vector
 | 
						|
  // integer division, leaving the division as-is is a loss even in terms of
 | 
						|
  // size, because it will have to be scalarized, while the alternative code
 | 
						|
  // sequence can be performed in vector form.
 | 
						|
  bool OptSize =
 | 
						|
      Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
 | 
						|
  return OptSize && !VT.isVector();
 | 
						|
}
 | 
						|
 | 
						|
bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | 
						|
  return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
 | 
						|
  if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
 | 
						|
    return getPointerTy(DL).getSizeInBits();
 | 
						|
 | 
						|
  return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
 | 
						|
}
 | 
						|
 | 
						|
void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
 | 
						|
  MF.getFrameInfo().computeMaxCallFrameSize(MF);
 | 
						|
  TargetLoweringBase::finalizeLowering(MF);
 | 
						|
}
 |