forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2021 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2021 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// Insert wait instructions for memory reads and writes.
 | |
| ///
 | |
| /// Memory reads and writes are issued asynchronously, so we need to insert
 | |
| /// S_WAITCNT instructions when we want to access any of their results or
 | |
| /// overwrite any register that's used asynchronously.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIDefines.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "SIRegisterInfo.h"
 | |
| #include "Utils/AMDGPUBaseInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/DebugCounter.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "si-insert-waitcnts"
 | |
| 
 | |
| DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
 | |
|               "Force emit s_waitcnt expcnt(0) instrs");
 | |
| DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
 | |
|               "Force emit s_waitcnt lgkmcnt(0) instrs");
 | |
| DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
 | |
|               "Force emit s_waitcnt vmcnt(0) instrs");
 | |
| 
 | |
| static cl::opt<unsigned> ForceEmitZeroFlag(
 | |
|   "amdgpu-waitcnt-forcezero",
 | |
|   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
 | |
|   cl::init(0), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Class of object that encapsulates latest instruction counter score
 | |
| // associated with the operand.  Used for determining whether
 | |
| // s_waitcnt instruction needs to be emited.
 | |
| 
 | |
| #define CNT_MASK(t) (1u << (t))
 | |
| 
 | |
| enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };
 | |
| 
 | |
| using RegInterval = std::pair<signed, signed>;
 | |
| 
 | |
| struct {
 | |
|   int32_t VmcntMax;
 | |
|   int32_t ExpcntMax;
 | |
|   int32_t LgkmcntMax;
 | |
|   int32_t NumVGPRsMax;
 | |
|   int32_t NumSGPRsMax;
 | |
| } HardwareLimits;
 | |
| 
 | |
| struct {
 | |
|   unsigned VGPR0;
 | |
|   unsigned VGPRL;
 | |
|   unsigned SGPR0;
 | |
|   unsigned SGPRL;
 | |
| } RegisterEncoding;
 | |
| 
 | |
| enum WaitEventType {
 | |
|   VMEM_ACCESS,      // vector-memory read & write
 | |
|   LDS_ACCESS,       // lds read & write
 | |
|   GDS_ACCESS,       // gds read & write
 | |
|   SQ_MESSAGE,       // send message
 | |
|   SMEM_ACCESS,      // scalar-memory read & write
 | |
|   EXP_GPR_LOCK,     // export holding on its data src
 | |
|   GDS_GPR_LOCK,     // GDS holding on its data and addr src
 | |
|   EXP_POS_ACCESS,   // write to export position
 | |
|   EXP_PARAM_ACCESS, // write to export parameter
 | |
|   VMW_GPR_LOCK,     // vector-memory write holding on its data src
 | |
|   NUM_WAIT_EVENTS,
 | |
| };
 | |
| 
 | |
| // The mapping is:
 | |
| //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
 | |
| //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
 | |
| //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
 | |
| // We reserve a fixed number of VGPR slots in the scoring tables for
 | |
| // special tokens like SCMEM_LDS (needed for buffer load to LDS).
 | |
| enum RegisterMapping {
 | |
|   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
 | |
|   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
 | |
|   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
 | |
|   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
 | |
|   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
 | |
| };
 | |
| 
 | |
| #define ForAllWaitEventType(w)                                                 \
 | |
|   for (enum WaitEventType w = (enum WaitEventType)0;                           \
 | |
|        (w) < (enum WaitEventType)NUM_WAIT_EVENTS;                              \
 | |
|        (w) = (enum WaitEventType)((w) + 1))
 | |
| 
 | |
| // This is a per-basic-block object that maintains current score brackets
 | |
| // of each wait counter, and a per-register scoreboard for each wait counter.
 | |
| // We also maintain the latest score for every event type that can change the
 | |
| // waitcnt in order to know if there are multiple types of events within
 | |
| // the brackets. When multiple types of event happen in the bracket,
 | |
| // wait count may get decreased out of order, therefore we need to put in
 | |
| // "s_waitcnt 0" before use.
 | |
| class BlockWaitcntBrackets {
 | |
| public:
 | |
|   BlockWaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~BlockWaitcntBrackets() = default;
 | |
| 
 | |
|   static int32_t getWaitCountMax(InstCounterType T) {
 | |
|     switch (T) {
 | |
|     case VM_CNT:
 | |
|       return HardwareLimits.VmcntMax;
 | |
|     case LGKM_CNT:
 | |
|       return HardwareLimits.LgkmcntMax;
 | |
|     case EXP_CNT:
 | |
|       return HardwareLimits.ExpcntMax;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   void setScoreLB(InstCounterType T, int32_t Val) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return;
 | |
|     ScoreLBs[T] = Val;
 | |
|   }
 | |
| 
 | |
|   void setScoreUB(InstCounterType T, int32_t Val) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return;
 | |
|     ScoreUBs[T] = Val;
 | |
|     if (T == EXP_CNT) {
 | |
|       int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
 | |
|       if (ScoreLBs[T] < UB)
 | |
|         ScoreLBs[T] = UB;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int32_t getScoreLB(InstCounterType T) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return 0;
 | |
|     return ScoreLBs[T];
 | |
|   }
 | |
| 
 | |
|   int32_t getScoreUB(InstCounterType T) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return 0;
 | |
|     return ScoreUBs[T];
 | |
|   }
 | |
| 
 | |
|   // Mapping from event to counter.
 | |
|   InstCounterType eventCounter(WaitEventType E) {
 | |
|     switch (E) {
 | |
|     case VMEM_ACCESS:
 | |
|       return VM_CNT;
 | |
|     case LDS_ACCESS:
 | |
|     case GDS_ACCESS:
 | |
|     case SQ_MESSAGE:
 | |
|     case SMEM_ACCESS:
 | |
|       return LGKM_CNT;
 | |
|     case EXP_GPR_LOCK:
 | |
|     case GDS_GPR_LOCK:
 | |
|     case VMW_GPR_LOCK:
 | |
|     case EXP_POS_ACCESS:
 | |
|     case EXP_PARAM_ACCESS:
 | |
|       return EXP_CNT;
 | |
|     default:
 | |
|       llvm_unreachable("unhandled event type");
 | |
|     }
 | |
|     return NUM_INST_CNTS;
 | |
|   }
 | |
| 
 | |
|   void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
 | |
|     if (GprNo < NUM_ALL_VGPRS) {
 | |
|       if (GprNo > VgprUB) {
 | |
|         VgprUB = GprNo;
 | |
|       }
 | |
|       VgprScores[T][GprNo] = Val;
 | |
|     } else {
 | |
|       assert(T == LGKM_CNT);
 | |
|       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
 | |
|         SgprUB = GprNo - NUM_ALL_VGPRS;
 | |
|       }
 | |
|       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int32_t getRegScore(int GprNo, InstCounterType T) {
 | |
|     if (GprNo < NUM_ALL_VGPRS) {
 | |
|       return VgprScores[T][GprNo];
 | |
|     }
 | |
|     return SgprScores[GprNo - NUM_ALL_VGPRS];
 | |
|   }
 | |
| 
 | |
|   void clear() {
 | |
|     memset(ScoreLBs, 0, sizeof(ScoreLBs));
 | |
|     memset(ScoreUBs, 0, sizeof(ScoreUBs));
 | |
|     memset(EventUBs, 0, sizeof(EventUBs));
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
 | |
|     }
 | |
|     memset(SgprScores, 0, sizeof(SgprScores));
 | |
|   }
 | |
| 
 | |
|   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
 | |
|                              const MachineRegisterInfo *MRI,
 | |
|                              const SIRegisterInfo *TRI, unsigned OpNo,
 | |
|                              bool Def) const;
 | |
| 
 | |
|   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
 | |
|                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
 | |
|                    unsigned OpNo, int32_t Val);
 | |
| 
 | |
|   void setWaitAtBeginning() { WaitAtBeginning = true; }
 | |
|   void clearWaitAtBeginning() { WaitAtBeginning = false; }
 | |
|   bool getWaitAtBeginning() const { return WaitAtBeginning; }
 | |
|   void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
 | |
|   int32_t getMaxVGPR() const { return VgprUB; }
 | |
|   int32_t getMaxSGPR() const { return SgprUB; }
 | |
| 
 | |
|   int32_t getEventUB(enum WaitEventType W) const {
 | |
|     assert(W < NUM_WAIT_EVENTS);
 | |
|     return EventUBs[W];
 | |
|   }
 | |
| 
 | |
|   bool counterOutOfOrder(InstCounterType T);
 | |
|   unsigned int updateByWait(InstCounterType T, int ScoreToWait);
 | |
|   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
 | |
|                      const MachineRegisterInfo *MRI, WaitEventType E,
 | |
|                      MachineInstr &MI);
 | |
| 
 | |
|   bool hasPendingSMEM() const {
 | |
|     return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
 | |
|             EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
 | |
|   }
 | |
| 
 | |
|   bool hasPendingFlat() const {
 | |
|     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
 | |
|              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
 | |
|             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
 | |
|              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
 | |
|   }
 | |
| 
 | |
|   void setPendingFlat() {
 | |
|     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
 | |
|     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
 | |
|   }
 | |
| 
 | |
|   int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }
 | |
| 
 | |
|   void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }
 | |
| 
 | |
|   bool getRevisitLoop() const { return RevisitLoop; }
 | |
|   void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }
 | |
| 
 | |
|   void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
 | |
|   int32_t getPostOrder() const { return PostOrder; }
 | |
| 
 | |
|   void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
 | |
|   void clearWaitcnt() { Waitcnt = nullptr; }
 | |
|   MachineInstr *getWaitcnt() const { return Waitcnt; }
 | |
| 
 | |
|   bool mixedExpTypes() const { return MixedExpTypes; }
 | |
|   void setMixedExpTypes(bool MixedExpTypesIn) {
 | |
|     MixedExpTypes = MixedExpTypesIn;
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &);
 | |
|   void dump() { print(dbgs()); }
 | |
| 
 | |
| private:
 | |
|   const GCNSubtarget *ST = nullptr;
 | |
|   bool WaitAtBeginning = false;
 | |
|   bool RevisitLoop = false;
 | |
|   bool MixedExpTypes = false;
 | |
|   int32_t PostOrder = 0;
 | |
|   MachineInstr *Waitcnt = nullptr;
 | |
|   int32_t ScoreLBs[NUM_INST_CNTS] = {0};
 | |
|   int32_t ScoreUBs[NUM_INST_CNTS] = {0};
 | |
|   int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
 | |
|   // Remember the last flat memory operation.
 | |
|   int32_t LastFlat[NUM_INST_CNTS] = {0};
 | |
|   // wait_cnt scores for every vgpr.
 | |
|   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
 | |
|   int32_t VgprUB = 0;
 | |
|   int32_t SgprUB = 0;
 | |
|   int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
 | |
|   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
 | |
|   int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
 | |
| };
 | |
| 
 | |
| // This is a per-loop-region object that records waitcnt status at the end of
 | |
| // loop footer from the previous iteration. We also maintain an iteration
 | |
| // count to track the number of times the loop has been visited. When it
 | |
| // doesn't converge naturally, we force convergence by inserting s_waitcnt 0
 | |
| // at the end of the loop footer.
 | |
| class LoopWaitcntData {
 | |
| public:
 | |
|   LoopWaitcntData() = default;
 | |
|   ~LoopWaitcntData() = default;
 | |
| 
 | |
|   void incIterCnt() { IterCnt++; }
 | |
|   void resetIterCnt() { IterCnt = 0; }
 | |
|   unsigned getIterCnt() { return IterCnt; }
 | |
| 
 | |
|   void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
 | |
|   MachineInstr *getWaitcnt() const { return LfWaitcnt; }
 | |
| 
 | |
|   void print() { LLVM_DEBUG(dbgs() << "  iteration " << IterCnt << '\n';); }
 | |
| 
 | |
| private:
 | |
|   // s_waitcnt added at the end of loop footer to stablize wait scores
 | |
|   // at the end of the loop footer.
 | |
|   MachineInstr *LfWaitcnt = nullptr;
 | |
|   // Number of iterations the loop has been visited, not including the initial
 | |
|   // walk over.
 | |
|   int32_t IterCnt = 0;
 | |
| };
 | |
| 
 | |
| class SIInsertWaitcnts : public MachineFunctionPass {
 | |
| private:
 | |
|   const GCNSubtarget *ST = nullptr;
 | |
|   const SIInstrInfo *TII = nullptr;
 | |
|   const SIRegisterInfo *TRI = nullptr;
 | |
|   const MachineRegisterInfo *MRI = nullptr;
 | |
|   const MachineLoopInfo *MLI = nullptr;
 | |
|   AMDGPU::IsaVersion IV;
 | |
| 
 | |
|   DenseSet<MachineBasicBlock *> BlockVisitedSet;
 | |
|   DenseSet<MachineInstr *> TrackedWaitcntSet;
 | |
|   DenseSet<MachineInstr *> VCCZBugHandledSet;
 | |
| 
 | |
|   DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
 | |
|       BlockWaitcntBracketsMap;
 | |
| 
 | |
|   std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet;
 | |
| 
 | |
|   DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;
 | |
| 
 | |
|   std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;
 | |
| 
 | |
|   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
 | |
|   // because of amdgpu-waitcnt-forcezero flag
 | |
|   bool ForceEmitZeroWaitcnts;
 | |
|   bool ForceEmitWaitcnt[NUM_INST_CNTS];
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   SIInsertWaitcnts() : MachineFunctionPass(ID) {
 | |
|     (void)ForceExpCounter;
 | |
|     (void)ForceLgkmCounter;
 | |
|     (void)ForceVMCounter;
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "SI insert wait instructions";
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<MachineLoopInfo>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
 | |
|     // The waitcnt information is copied because it changes as the block is
 | |
|     // traversed.
 | |
|     KillWaitBrackets.push_back(
 | |
|         llvm::make_unique<BlockWaitcntBrackets>(*Bracket));
 | |
|   }
 | |
| 
 | |
|   bool isForceEmitWaitcnt() const {
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1))
 | |
|       if (ForceEmitWaitcnt[T])
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void setForceEmitWaitcnt() {
 | |
| // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
 | |
| // For debug builds, get the debug counter info and adjust if need be
 | |
| #ifndef NDEBUG
 | |
|     if (DebugCounter::isCounterSet(ForceExpCounter) &&
 | |
|         DebugCounter::shouldExecute(ForceExpCounter)) {
 | |
|       ForceEmitWaitcnt[EXP_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[EXP_CNT] = false;
 | |
|     }
 | |
| 
 | |
|     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
 | |
|          DebugCounter::shouldExecute(ForceLgkmCounter)) {
 | |
|       ForceEmitWaitcnt[LGKM_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[LGKM_CNT] = false;
 | |
|     }
 | |
| 
 | |
|     if (DebugCounter::isCounterSet(ForceVMCounter) &&
 | |
|         DebugCounter::shouldExecute(ForceVMCounter)) {
 | |
|       ForceEmitWaitcnt[VM_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[VM_CNT] = false;
 | |
|     }
 | |
| #endif // NDEBUG
 | |
|   }
 | |
| 
 | |
|   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
 | |
|   void generateWaitcntInstBefore(MachineInstr &MI,
 | |
|                                   BlockWaitcntBrackets *ScoreBrackets);
 | |
|   void updateEventWaitcntAfter(MachineInstr &Inst,
 | |
|                                BlockWaitcntBrackets *ScoreBrackets);
 | |
|   void mergeInputScoreBrackets(MachineBasicBlock &Block);
 | |
|   bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block);
 | |
|   unsigned countNumBottomBlocks(const MachineLoop *Loop);
 | |
|   void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
 | |
|   void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
 | |
|   bool isWaitcntStronger(unsigned LHS, unsigned RHS);
 | |
|   unsigned combineWaitcnt(unsigned LHS, unsigned RHS);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
 | |
|                                                  const SIInstrInfo *TII,
 | |
|                                                  const MachineRegisterInfo *MRI,
 | |
|                                                  const SIRegisterInfo *TRI,
 | |
|                                                  unsigned OpNo,
 | |
|                                                  bool Def) const {
 | |
|   const MachineOperand &Op = MI->getOperand(OpNo);
 | |
|   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
 | |
|       (Def && !Op.isDef()))
 | |
|     return {-1, -1};
 | |
| 
 | |
|   // A use via a PW operand does not need a waitcnt.
 | |
|   // A partial write is not a WAW.
 | |
|   assert(!Op.getSubReg() || !Op.isUndef());
 | |
| 
 | |
|   RegInterval Result;
 | |
|   const MachineRegisterInfo &MRIA = *MRI;
 | |
| 
 | |
|   unsigned Reg = TRI->getEncodingValue(Op.getReg());
 | |
| 
 | |
|   if (TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
 | |
|     Result.first = Reg - RegisterEncoding.VGPR0;
 | |
|     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
 | |
|   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
 | |
|     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
 | |
|     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
 | |
|     assert(Result.first >= NUM_ALL_VGPRS &&
 | |
|            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
 | |
|   }
 | |
|   // TODO: Handle TTMP
 | |
|   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
 | |
|   else
 | |
|     return {-1, -1};
 | |
| 
 | |
|   const MachineInstr &MIA = *MI;
 | |
|   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
 | |
|   unsigned Size = TRI->getRegSizeInBits(*RC);
 | |
|   Result.second = Result.first + (Size / 32);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
 | |
|                                        const SIInstrInfo *TII,
 | |
|                                        const SIRegisterInfo *TRI,
 | |
|                                        const MachineRegisterInfo *MRI,
 | |
|                                        unsigned OpNo, int32_t Val) {
 | |
|   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
 | |
|   LLVM_DEBUG({
 | |
|     const MachineOperand &Opnd = MI->getOperand(OpNo);
 | |
|     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
 | |
|   });
 | |
|   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|     setRegScore(RegNo, EXP_CNT, Val);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
 | |
|                                          const SIRegisterInfo *TRI,
 | |
|                                          const MachineRegisterInfo *MRI,
 | |
|                                          WaitEventType E, MachineInstr &Inst) {
 | |
|   const MachineRegisterInfo &MRIA = *MRI;
 | |
|   InstCounterType T = eventCounter(E);
 | |
|   int32_t CurrScore = getScoreUB(T) + 1;
 | |
|   // EventUB and ScoreUB need to be update regardless if this event changes
 | |
|   // the score of a register or not.
 | |
|   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
 | |
|   EventUBs[E] = CurrScore;
 | |
|   setScoreUB(T, CurrScore);
 | |
| 
 | |
|   if (T == EXP_CNT) {
 | |
|     // Check for mixed export types. If they are mixed, then a waitcnt exp(0)
 | |
|     // is required.
 | |
|     if (!MixedExpTypes) {
 | |
|       MixedExpTypes = counterOutOfOrder(EXP_CNT);
 | |
|     }
 | |
| 
 | |
|     // Put score on the source vgprs. If this is a store, just use those
 | |
|     // specific register(s).
 | |
|     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
 | |
|       // All GDS operations must protect their address register (same as
 | |
|       // export.)
 | |
|       if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
 | |
|           Inst.getOpcode() != AMDGPU::DS_CONSUME) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
 | |
|             CurrScore);
 | |
|       }
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
 | |
|             CurrScore);
 | |
|         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
 | |
|                                        AMDGPU::OpName::data1) != -1) {
 | |
|           setExpScore(&Inst, TII, TRI, MRI,
 | |
|                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
 | |
|                                                  AMDGPU::OpName::data1),
 | |
|                       CurrScore);
 | |
|         }
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
 | |
|         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|           const MachineOperand &Op = Inst.getOperand(I);
 | |
|           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (TII->isFLAT(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMIMG(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMTBUF(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMUBUF(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else {
 | |
|       if (TII->isEXP(Inst)) {
 | |
|         // For export the destination registers are really temps that
 | |
|         // can be used as the actual source after export patching, so
 | |
|         // we need to treat them like sources and set the EXP_CNT
 | |
|         // score.
 | |
|         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|           MachineOperand &DefMO = Inst.getOperand(I);
 | |
|           if (DefMO.isReg() && DefMO.isDef() &&
 | |
|               TRI->isVGPR(MRIA, DefMO.getReg())) {
 | |
|             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
 | |
|                         CurrScore);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|         MachineOperand &MO = Inst.getOperand(I);
 | |
|         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
 | |
|           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #if 0 // TODO: check if this is handled by MUBUF code above.
 | |
|   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
 | |
|        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
 | |
|        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
 | |
|     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
 | |
|     unsigned OpNo;//TODO: find the OpNo for this operand;
 | |
|     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
 | |
|     for (signed RegNo = Interval.first; RegNo < Interval.second;
 | |
|     ++RegNo) {
 | |
|       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
 | |
|     }
 | |
| #endif
 | |
|   } else {
 | |
|     // Match the score to the destination registers.
 | |
|     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
 | |
|       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
 | |
|         continue;
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         setRegScore(RegNo, T, CurrScore);
 | |
|       }
 | |
|     }
 | |
|     if (TII->isDS(Inst) && Inst.mayStore()) {
 | |
|       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BlockWaitcntBrackets::print(raw_ostream &OS) {
 | |
|   OS << '\n';
 | |
|   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|        T = (enum InstCounterType)(T + 1)) {
 | |
|     int LB = getScoreLB(T);
 | |
|     int UB = getScoreUB(T);
 | |
| 
 | |
|     switch (T) {
 | |
|     case VM_CNT:
 | |
|       OS << "    VM_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     case LGKM_CNT:
 | |
|       OS << "    LGKM_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     case EXP_CNT:
 | |
|       OS << "    EXP_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     default:
 | |
|       OS << "    UNKNOWN(" << UB - LB << "): ";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (LB < UB) {
 | |
|       // Print vgpr scores.
 | |
|       for (int J = 0; J <= getMaxVGPR(); J++) {
 | |
|         int RegScore = getRegScore(J, T);
 | |
|         if (RegScore <= LB)
 | |
|           continue;
 | |
|         int RelScore = RegScore - LB - 1;
 | |
|         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
 | |
|           OS << RelScore << ":v" << J << " ";
 | |
|         } else {
 | |
|           OS << RelScore << ":ds ";
 | |
|         }
 | |
|       }
 | |
|       // Also need to print sgpr scores for lgkm_cnt.
 | |
|       if (T == LGKM_CNT) {
 | |
|         for (int J = 0; J <= getMaxSGPR(); J++) {
 | |
|           int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
 | |
|           if (RegScore <= LB)
 | |
|             continue;
 | |
|           int RelScore = RegScore - LB - 1;
 | |
|           OS << RelScore << ":s" << J << " ";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     OS << '\n';
 | |
|   }
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
 | |
|                                                 int ScoreToWait) {
 | |
|   unsigned int NeedWait = 0;
 | |
|   if (ScoreToWait == -1) {
 | |
|     // The score to wait is unknown. This implies that it was not encountered
 | |
|     // during the path of the CFG walk done during the current traversal but
 | |
|     // may be seen on a different path. Emit an s_wait counter with a
 | |
|     // conservative value of 0 for the counter.
 | |
|     NeedWait = CNT_MASK(T);
 | |
|     setScoreLB(T, getScoreUB(T));
 | |
|     return NeedWait;
 | |
|   }
 | |
| 
 | |
|   // If the score of src_operand falls within the bracket, we need an
 | |
|   // s_waitcnt instruction.
 | |
|   const int32_t LB = getScoreLB(T);
 | |
|   const int32_t UB = getScoreUB(T);
 | |
|   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
 | |
|     if ((T == VM_CNT || T == LGKM_CNT) &&
 | |
|         hasPendingFlat() &&
 | |
|         !ST->hasFlatLgkmVMemCountInOrder()) {
 | |
|       // If there is a pending FLAT operation, and this is a VMem or LGKM
 | |
|       // waitcnt and the target can report early completion, then we need
 | |
|       // to force a waitcnt 0.
 | |
|       NeedWait = CNT_MASK(T);
 | |
|       setScoreLB(T, getScoreUB(T));
 | |
|     } else if (counterOutOfOrder(T)) {
 | |
|       // Counter can get decremented out-of-order when there
 | |
|       // are multiple types event in the bracket. Also emit an s_wait counter
 | |
|       // with a conservative value of 0 for the counter.
 | |
|       NeedWait = CNT_MASK(T);
 | |
|       setScoreLB(T, getScoreUB(T));
 | |
|     } else {
 | |
|       NeedWait = CNT_MASK(T);
 | |
|       setScoreLB(T, ScoreToWait);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NeedWait;
 | |
| }
 | |
| 
 | |
| // Where there are multiple types of event in the bracket of a counter,
 | |
| // the decrement may go out of order.
 | |
| bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
 | |
|   switch (T) {
 | |
|   case VM_CNT:
 | |
|     return false;
 | |
|   case LGKM_CNT: {
 | |
|     if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
 | |
|         EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
 | |
|       // Scalar memory read always can go out of order.
 | |
|       return true;
 | |
|     }
 | |
|     int NumEventTypes = 0;
 | |
|     if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
 | |
|         EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
 | |
|         EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
 | |
|         EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (NumEventTypes <= 1) {
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case EXP_CNT: {
 | |
|     // If there has been a mixture of export types, then a waitcnt exp(0) is
 | |
|     // required.
 | |
|     if (MixedExpTypes)
 | |
|       return true;
 | |
|     int NumEventTypes = 0;
 | |
|     if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
 | |
|         EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
 | |
|         EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
 | |
|         EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
|     if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
 | |
|         EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
| 
 | |
|     if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
 | |
|         EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
 | |
|       NumEventTypes++;
 | |
|     }
 | |
| 
 | |
|     if (NumEventTypes <= 1) {
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
 | |
|                     false)
 | |
| 
 | |
| char SIInsertWaitcnts::ID = 0;
 | |
| 
 | |
| char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
 | |
| 
 | |
| FunctionPass *llvm::createSIInsertWaitcntsPass() {
 | |
|   return new SIInsertWaitcnts();
 | |
| }
 | |
| 
 | |
| static bool readsVCCZ(const MachineInstr &MI) {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
 | |
|          !MI.getOperand(1).isUndef();
 | |
| }
 | |
| 
 | |
| /// Given wait count encodings checks if LHS is stronger than RHS.
 | |
| bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) {
 | |
|   if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS))
 | |
|     return false;
 | |
|   if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS))
 | |
|     return false;
 | |
|   if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Given wait count encodings create a new encoding which is stronger
 | |
| /// or equal to both.
 | |
| unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) {
 | |
|   unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS),
 | |
|                             AMDGPU::decodeVmcnt(IV, RHS));
 | |
|   unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS),
 | |
|                               AMDGPU::decodeLgkmcnt(IV, RHS));
 | |
|   unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS),
 | |
|                              AMDGPU::decodeExpcnt(IV, RHS));
 | |
|   return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt);
 | |
| }
 | |
| 
 | |
| ///  Generate s_waitcnt instruction to be placed before cur_Inst.
 | |
| ///  Instructions of a given type are returned in order,
 | |
| ///  but instructions of different types can complete out of order.
 | |
| ///  We rely on this in-order completion
 | |
| ///  and simply assign a score to the memory access instructions.
 | |
| ///  We keep track of the active "score bracket" to determine
 | |
| ///  if an access of a memory read requires an s_waitcnt
 | |
| ///  and if so what the value of each counter is.
 | |
| ///  The "score bracket" is bound by the lower bound and upper bound
 | |
| ///  scores (*_score_LB and *_score_ub respectively).
 | |
| void SIInsertWaitcnts::generateWaitcntInstBefore(
 | |
|     MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
 | |
|   // To emit, or not to emit - that's the question!
 | |
|   // Start with an assumption that there is no need to emit.
 | |
|   unsigned int EmitWaitcnt = 0;
 | |
| 
 | |
|   // No need to wait before phi. If a phi-move exists, then the wait should
 | |
|   // has been inserted before the move. If a phi-move does not exist, then
 | |
|   // wait should be inserted before the real use. The same is true for
 | |
|   // sc-merge. It is not a coincident that all these cases correspond to the
 | |
|   // instructions that are skipped in the assembling loop.
 | |
|   bool NeedLineMapping = false; // TODO: Check on this.
 | |
| 
 | |
|   // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug
 | |
|   bool ForceEmitZeroWaitcnt = false;
 | |
| 
 | |
|   setForceEmitWaitcnt();
 | |
|   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
 | |
| 
 | |
|   if (MI.isDebugInstr() &&
 | |
|       // TODO: any other opcode?
 | |
|       !NeedLineMapping) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // See if an s_waitcnt is forced at block entry, or is needed at
 | |
|   // program end.
 | |
|   if (ScoreBrackets->getWaitAtBeginning()) {
 | |
|     // Note that we have already cleared the state, so we don't need to update
 | |
|     // it.
 | |
|     ScoreBrackets->clearWaitAtBeginning();
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       EmitWaitcnt |= CNT_MASK(T);
 | |
|       ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if this instruction has a forced S_WAITCNT VM.
 | |
|   // TODO: Handle other cases of NeedsWaitcntVmBefore()
 | |
|   else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
 | |
|            MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
 | |
|            MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
 | |
|     EmitWaitcnt |=
 | |
|         ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
 | |
|   }
 | |
| 
 | |
|   // All waits must be resolved at call return.
 | |
|   // NOTE: this could be improved with knowledge of all call sites or
 | |
|   //   with knowledge of the called routines.
 | |
|   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
 | |
|       MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
 | |
|         ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
 | |
|         EmitWaitcnt |= CNT_MASK(T);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Resolve vm waits before gs-done.
 | |
|   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
 | |
|             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
 | |
|            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
 | |
|             AMDGPU::SendMsg::ID_GS_DONE)) {
 | |
|     if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
 | |
|       ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
 | |
|       EmitWaitcnt |= CNT_MASK(VM_CNT);
 | |
|     }
 | |
|   }
 | |
| #if 0 // TODO: the following blocks of logic when we have fence.
 | |
|   else if (MI.getOpcode() == SC_FENCE) {
 | |
|     const unsigned int group_size =
 | |
|       context->shader_info->GetMaxThreadGroupSize();
 | |
|     // group_size == 0 means thread group size is unknown at compile time
 | |
|     const bool group_is_multi_wave =
 | |
|       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
 | |
|     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
 | |
| 
 | |
|     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
 | |
|       SCRegType src_type = Inst->GetSrcType(i);
 | |
|       switch (src_type) {
 | |
|         case SCMEM_LDS:
 | |
|           if (group_is_multi_wave ||
 | |
|             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
 | |
|                                ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|             // LDS may have to wait for VM_CNT after buffer load to LDS
 | |
|             if (target_info->HasBufferLoadToLDS()) {
 | |
|               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
 | |
|                                  ScoreBrackets->getScoreUB(VM_CNT));
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_GDS:
 | |
|           if (group_is_multi_wave || fence_is_global) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
 | |
|               ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
 | |
|               ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_UAV:
 | |
|         case SCMEM_TFBUF:
 | |
|         case SCMEM_RING:
 | |
|         case SCMEM_SCATTER:
 | |
|           if (group_is_multi_wave || fence_is_global) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
 | |
|               ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
 | |
|               ScoreBrackets->getScoreUB(VM_CNT));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_SCRATCH:
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Export & GDS instructions do not read the EXEC mask until after the export
 | |
|   // is granted (which can occur well after the instruction is issued).
 | |
|   // The shader program must flush all EXP operations on the export-count
 | |
|   // before overwriting the EXEC mask.
 | |
|   else {
 | |
|     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
 | |
|       // Export and GDS are tracked individually, either may trigger a waitcnt
 | |
|       // for EXEC.
 | |
|       EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|           EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
 | |
|       EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|           EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
 | |
|       EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|           EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
 | |
|       EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|           EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
 | |
|     }
 | |
| 
 | |
| #if 0 // TODO: the following code to handle CALL.
 | |
|     // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
 | |
|     // However, there is a problem with EXP_CNT, because the call cannot
 | |
|     // easily tell if a register is used in the function, and if it did, then
 | |
|     // the referring instruction would have to have an S_WAITCNT, which is
 | |
|     // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
 | |
|     // before the call.
 | |
|     if (MI.getOpcode() == SC_CALL) {
 | |
|       if (ScoreBrackets->getScoreUB(EXP_CNT) >
 | |
|         ScoreBrackets->getScoreLB(EXP_CNT)) {
 | |
|         ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|         EmitWaitcnt |= CNT_MASK(EXP_CNT);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // FIXME: Should not be relying on memoperands.
 | |
|     // Look at the source operands of every instruction to see if
 | |
|     // any of them results from a previous memory operation that affects
 | |
|     // its current usage. If so, an s_waitcnt instruction needs to be
 | |
|     // emitted.
 | |
|     // If the source operand was defined by a load, add the s_waitcnt
 | |
|     // instruction.
 | |
|     for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|       unsigned AS = Memop->getAddrSpace();
 | |
|       if (AS != AMDGPUAS::LOCAL_ADDRESS)
 | |
|         continue;
 | |
|       unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
 | |
|       // VM_CNT is only relevant to vgpr or LDS.
 | |
|       EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|           VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
 | |
|     }
 | |
| 
 | |
|     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
 | |
|       const MachineOperand &Op = MI.getOperand(I);
 | |
|       const MachineRegisterInfo &MRIA = *MRI;
 | |
|       RegInterval Interval =
 | |
|           ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         if (TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|           // VM_CNT is only relevant to vgpr or LDS.
 | |
|           EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|               VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
 | |
|         }
 | |
|         EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|             LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
 | |
|       }
 | |
|     }
 | |
|     // End of for loop that looks at all source operands to decide vm_wait_cnt
 | |
|     // and lgk_wait_cnt.
 | |
| 
 | |
|     // Two cases are handled for destination operands:
 | |
|     // 1) If the destination operand was defined by a load, add the s_waitcnt
 | |
|     // instruction to guarantee the right WAW order.
 | |
|     // 2) If a destination operand that was used by a recent export/store ins,
 | |
|     // add s_waitcnt on exp_cnt to guarantee the WAR order.
 | |
|     if (MI.mayStore()) {
 | |
|       // FIXME: Should not be relying on memoperands.
 | |
|       for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|         unsigned AS = Memop->getAddrSpace();
 | |
|         if (AS != AMDGPUAS::LOCAL_ADDRESS)
 | |
|           continue;
 | |
|         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
 | |
|         EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|             VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
 | |
|         EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|             EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
 | |
|       }
 | |
|     }
 | |
|     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
 | |
|       MachineOperand &Def = MI.getOperand(I);
 | |
|       const MachineRegisterInfo &MRIA = *MRI;
 | |
|       RegInterval Interval =
 | |
|           ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         if (TRI->isVGPR(MRIA, Def.getReg())) {
 | |
|           EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|               VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
 | |
|           EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|               EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
 | |
|         }
 | |
|         EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|             LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
 | |
|       }
 | |
|     } // End of for loop that looks at all dest operands.
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
 | |
|   // occurs before the instruction. Doing it here prevents any additional
 | |
|   // S_WAITCNTs from being emitted if the instruction was marked as
 | |
|   // requiring a WAITCNT beforehand.
 | |
|   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
 | |
|       !ST->hasAutoWaitcntBeforeBarrier()) {
 | |
|     EmitWaitcnt |=
 | |
|         ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
 | |
|     EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|         EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|     EmitWaitcnt |= ScoreBrackets->updateByWait(
 | |
|         LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|   }
 | |
| 
 | |
|   // TODO: Remove this work-around, enable the assert for Bug 457939
 | |
|   //       after fixing the scheduler. Also, the Shader Compiler code is
 | |
|   //       independent of target.
 | |
|   if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) {
 | |
|     if (ScoreBrackets->getScoreLB(LGKM_CNT) <
 | |
|             ScoreBrackets->getScoreUB(LGKM_CNT) &&
 | |
|         ScoreBrackets->hasPendingSMEM()) {
 | |
|       // Wait on everything, not just LGKM.  vccz reads usually come from
 | |
|       // terminators, and we always wait on everything at the end of the
 | |
|       // block, so if we only wait on LGKM here, we might end up with
 | |
|       // another s_waitcnt inserted right after this if there are non-LGKM
 | |
|       // instructions still outstanding.
 | |
|       // FIXME: this is too conservative / the comment is wrong.
 | |
|       // We don't wait on everything at the end of the block and we combine
 | |
|       // waitcnts so we should never have back-to-back waitcnts.
 | |
|       ForceEmitZeroWaitcnt = true;
 | |
|       EmitWaitcnt = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Does this operand processing indicate s_wait counter update?
 | |
|   if (EmitWaitcnt || IsForceEmitWaitcnt) {
 | |
|     int CntVal[NUM_INST_CNTS];
 | |
| 
 | |
|     bool UseDefaultWaitcntStrategy = true;
 | |
|     if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) {
 | |
|       // Force all waitcnts to 0.
 | |
|       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|            T = (enum InstCounterType)(T + 1)) {
 | |
|         ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
 | |
|       }
 | |
|       CntVal[VM_CNT] = 0;
 | |
|       CntVal[EXP_CNT] = 0;
 | |
|       CntVal[LGKM_CNT] = 0;
 | |
|       UseDefaultWaitcntStrategy = false;
 | |
|     }
 | |
| 
 | |
|     if (UseDefaultWaitcntStrategy) {
 | |
|       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|            T = (enum InstCounterType)(T + 1)) {
 | |
|         if (EmitWaitcnt & CNT_MASK(T)) {
 | |
|           int Delta =
 | |
|               ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
 | |
|           int MaxDelta = ScoreBrackets->getWaitCountMax(T);
 | |
|           if (Delta >= MaxDelta) {
 | |
|             Delta = -1;
 | |
|             if (T != EXP_CNT) {
 | |
|               ScoreBrackets->setScoreLB(
 | |
|                   T, ScoreBrackets->getScoreUB(T) - MaxDelta);
 | |
|             }
 | |
|             EmitWaitcnt &= ~CNT_MASK(T);
 | |
|           }
 | |
|           CntVal[T] = Delta;
 | |
|         } else {
 | |
|           // If we are not waiting for a particular counter then encode
 | |
|           // it as -1 which means "don't care."
 | |
|           CntVal[T] = -1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we are not waiting on any counter we can skip the wait altogether.
 | |
|     if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) {
 | |
|       MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
 | |
|       int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
 | |
|       if (!OldWaitcnt ||
 | |
|           (AMDGPU::decodeVmcnt(IV, Imm) !=
 | |
|                           (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
 | |
|           (AMDGPU::decodeExpcnt(IV, Imm) !=
 | |
|            (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
 | |
|           (AMDGPU::decodeLgkmcnt(IV, Imm) !=
 | |
|            (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
 | |
|         MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
 | |
|         if (ContainingLoop) {
 | |
|           MachineBasicBlock *TBB = ContainingLoop->getHeader();
 | |
|           BlockWaitcntBrackets *ScoreBracket =
 | |
|               BlockWaitcntBracketsMap[TBB].get();
 | |
|           if (!ScoreBracket) {
 | |
|             assert(!BlockVisitedSet.count(TBB));
 | |
|             BlockWaitcntBracketsMap[TBB] =
 | |
|                 llvm::make_unique<BlockWaitcntBrackets>(ST);
 | |
|             ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
 | |
|           }
 | |
|           ScoreBracket->setRevisitLoop(true);
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                          << "set-revisit2: Block"
 | |
|                          << ContainingLoop->getHeader()->getNumber() << '\n';);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Update an existing waitcount, or make a new one.
 | |
|       unsigned Enc = AMDGPU::encodeWaitcnt(IV,
 | |
|                       ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT],
 | |
|                       ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT],
 | |
|                       ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]);
 | |
|       // We don't remove waitcnts that existed prior to the waitcnt
 | |
|       // pass. Check if the waitcnt to-be-inserted can be avoided
 | |
|       // or if the prev waitcnt can be updated.
 | |
|       bool insertSWaitInst = true;
 | |
|       for (MachineBasicBlock::iterator I = MI.getIterator(),
 | |
|                                        B = MI.getParent()->begin();
 | |
|            insertSWaitInst && I != B; --I) {
 | |
|         if (I == MI.getIterator())
 | |
|           continue;
 | |
| 
 | |
|         switch (I->getOpcode()) {
 | |
|         case AMDGPU::S_WAITCNT:
 | |
|           if (isWaitcntStronger(I->getOperand(0).getImm(), Enc))
 | |
|             insertSWaitInst = false;
 | |
|           else if (!OldWaitcnt) {
 | |
|             OldWaitcnt = &*I;
 | |
|             Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc);
 | |
|           }
 | |
|           break;
 | |
|         // TODO: skip over instructions which never require wait.
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       if (insertSWaitInst) {
 | |
|         if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) {
 | |
|           if (ForceEmitZeroWaitcnts)
 | |
|             LLVM_DEBUG(
 | |
|                 dbgs()
 | |
|                 << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n");
 | |
|           if (IsForceEmitWaitcnt)
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "Force emit a s_waitcnt due to debug counter\n");
 | |
| 
 | |
|           OldWaitcnt->getOperand(0).setImm(Enc);
 | |
|           if (!OldWaitcnt->getParent())
 | |
|             MI.getParent()->insert(MI, OldWaitcnt);
 | |
| 
 | |
|           LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n"
 | |
|                             << "Old Instr: " << MI << '\n'
 | |
|                             << "New Instr: " << *OldWaitcnt << '\n');
 | |
|         } else {
 | |
|             auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
 | |
|                                MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
 | |
|                              .addImm(Enc);
 | |
|             TrackedWaitcntSet.insert(SWaitInst);
 | |
| 
 | |
|             LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
 | |
|                               << "Old Instr: " << MI << '\n'
 | |
|                               << "New Instr: " << *SWaitInst << '\n');
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (CntVal[EXP_CNT] == 0) {
 | |
|         ScoreBrackets->setMixedExpTypes(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
 | |
|                                              MachineInstr *Waitcnt) {
 | |
|   if (MBB.empty()) {
 | |
|     MBB.push_back(Waitcnt);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator It = MBB.end();
 | |
|   MachineInstr *MI = &*(--It);
 | |
|   if (MI->isBranch()) {
 | |
|     MBB.insert(It, Waitcnt);
 | |
|   } else {
 | |
|     MBB.push_back(Waitcnt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This is a flat memory operation. Check to see if it has memory
 | |
| // tokens for both LDS and Memory, and if so mark it as a flat.
 | |
| bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
 | |
|   if (MI.memoperands_empty())
 | |
|     return true;
 | |
| 
 | |
|   for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|     unsigned AS = Memop->getAddrSpace();
 | |
|     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIInsertWaitcnts::updateEventWaitcntAfter(
 | |
|     MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
 | |
|   // Now look at the instruction opcode. If it is a memory access
 | |
|   // instruction, update the upper-bound of the appropriate counter's
 | |
|   // bracket and the destination operand scores.
 | |
|   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
 | |
|   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
 | |
|     if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
 | |
|     } else {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
 | |
|     }
 | |
|   } else if (TII->isFLAT(Inst)) {
 | |
|     assert(Inst.mayLoad() || Inst.mayStore());
 | |
| 
 | |
|     if (TII->usesVM_CNT(Inst))
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
 | |
| 
 | |
|     if (TII->usesLGKM_CNT(Inst)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
 | |
| 
 | |
|       // This is a flat memory operation, so note it - it will require
 | |
|       // that both the VM and LGKM be flushed to zero if it is pending when
 | |
|       // a VM or LGKM dependency occurs.
 | |
|       if (mayAccessLDSThroughFlat(Inst))
 | |
|         ScoreBrackets->setPendingFlat();
 | |
|     }
 | |
|   } else if (SIInstrInfo::isVMEM(Inst) &&
 | |
|              // TODO: get a better carve out.
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
 | |
|     ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
 | |
|     if (ST->vmemWriteNeedsExpWaitcnt() &&
 | |
|         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
 | |
|     }
 | |
|   } else if (TII->isSMRD(Inst)) {
 | |
|     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
 | |
|   } else {
 | |
|     switch (Inst.getOpcode()) {
 | |
|     case AMDGPU::S_SENDMSG:
 | |
|     case AMDGPU::S_SENDMSGHALT:
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
 | |
|       break;
 | |
|     case AMDGPU::EXP:
 | |
|     case AMDGPU::EXP_DONE: {
 | |
|       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
 | |
|       if (Imm >= 32 && Imm <= 63)
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
 | |
|       else if (Imm >= 12 && Imm <= 15)
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
 | |
|       else
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
 | |
|       break;
 | |
|     }
 | |
|     case AMDGPU::S_MEMTIME:
 | |
|     case AMDGPU::S_MEMREALTIME:
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Merge the score brackets of the Block's predecessors;
 | |
| // this merged score bracket is used when adding waitcnts to the Block
 | |
| void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
 | |
|   BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
 | |
|   int32_t MaxPending[NUM_INST_CNTS] = {0};
 | |
|   int32_t MaxFlat[NUM_INST_CNTS] = {0};
 | |
|   bool MixedExpTypes = false;
 | |
| 
 | |
|   // For single basic block loops, we need to retain the Block's
 | |
|   // score bracket to have accurate Pred info. So, make a copy of Block's
 | |
|   // score bracket, clear() it (which retains several important bits of info),
 | |
|   // populate, and then replace en masse. For non-single basic block loops,
 | |
|   // just clear Block's current score bracket and repopulate in-place.
 | |
|   bool IsSelfPred;
 | |
|   std::unique_ptr<BlockWaitcntBrackets> S;
 | |
| 
 | |
|   IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block))
 | |
|     != Block.pred_end();
 | |
|   if (IsSelfPred) {
 | |
|     S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets);
 | |
|     ScoreBrackets = S.get();
 | |
|   }
 | |
| 
 | |
|   ScoreBrackets->clear();
 | |
| 
 | |
|   // See if there are any uninitialized predecessors. If so, emit an
 | |
|   // s_waitcnt 0 at the beginning of the block.
 | |
|   for (MachineBasicBlock *Pred : Block.predecessors()) {
 | |
|     BlockWaitcntBrackets *PredScoreBrackets =
 | |
|         BlockWaitcntBracketsMap[Pred].get();
 | |
|     bool Visited = BlockVisitedSet.count(Pred);
 | |
|     if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
 | |
|       continue;
 | |
|     }
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       int span =
 | |
|           PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
 | |
|       MaxPending[T] = std::max(MaxPending[T], span);
 | |
|       span =
 | |
|           PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
 | |
|       MaxFlat[T] = std::max(MaxFlat[T], span);
 | |
|     }
 | |
| 
 | |
|     MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
 | |
|   }
 | |
| 
 | |
|   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
 | |
|   // Also handle kills for exit block.
 | |
|   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
 | |
|     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
 | |
|       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|            T = (enum InstCounterType)(T + 1)) {
 | |
|         int Span = KillWaitBrackets[I]->getScoreUB(T) -
 | |
|                    KillWaitBrackets[I]->getScoreLB(T);
 | |
|         MaxPending[T] = std::max(MaxPending[T], Span);
 | |
|         Span = KillWaitBrackets[I]->pendingFlat(T) -
 | |
|                KillWaitBrackets[I]->getScoreLB(T);
 | |
|         MaxFlat[T] = std::max(MaxFlat[T], Span);
 | |
|       }
 | |
| 
 | |
|       MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
 | |
|   for (MachineBasicBlock *Pred : Block.predecessors()) {
 | |
|     BlockWaitcntBrackets *PredScoreBrackets =
 | |
|         BlockWaitcntBracketsMap[Pred].get();
 | |
|     bool Visited = BlockVisitedSet.count(Pred);
 | |
|     if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
 | |
|                   PredScoreBrackets->getScoreLB(EXP_CNT);
 | |
|     MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
 | |
|     int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
 | |
|                   PredScoreBrackets->getScoreLB(EXP_CNT);
 | |
|     MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
 | |
|   }
 | |
| 
 | |
|   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
 | |
|   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
 | |
|     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
 | |
|       int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
 | |
|                     KillWaitBrackets[I]->getScoreLB(EXP_CNT);
 | |
|       MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
 | |
|       int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
 | |
|                     KillWaitBrackets[I]->getScoreLB(EXP_CNT);
 | |
|       MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if 0
 | |
|   // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
 | |
|   // TODO: how does LC distinguish between function entry and main entry?
 | |
|   // If this is the entry to a function, force a wait.
 | |
|   MachineBasicBlock &Entry = Block.getParent()->front();
 | |
|   if (Entry.getNumber() == Block.getNumber()) {
 | |
|     ScoreBrackets->setWaitAtBeginning();
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Now set the current Block's brackets to the largest ending bracket.
 | |
|   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|        T = (enum InstCounterType)(T + 1)) {
 | |
|     ScoreBrackets->setScoreUB(T, MaxPending[T]);
 | |
|     ScoreBrackets->setScoreLB(T, 0);
 | |
|     ScoreBrackets->setLastFlat(T, MaxFlat[T]);
 | |
|   }
 | |
| 
 | |
|   ScoreBrackets->setMixedExpTypes(MixedExpTypes);
 | |
| 
 | |
|   // Set the register scoreboard.
 | |
|   for (MachineBasicBlock *Pred : Block.predecessors()) {
 | |
|     if (!BlockVisitedSet.count(Pred)) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BlockWaitcntBrackets *PredScoreBrackets =
 | |
|         BlockWaitcntBracketsMap[Pred].get();
 | |
| 
 | |
|     // Now merge the gpr_reg_score information
 | |
|     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|          T = (enum InstCounterType)(T + 1)) {
 | |
|       int PredLB = PredScoreBrackets->getScoreLB(T);
 | |
|       int PredUB = PredScoreBrackets->getScoreUB(T);
 | |
|       if (PredLB < PredUB) {
 | |
|         int PredScale = MaxPending[T] - PredUB;
 | |
|         // Merge vgpr scores.
 | |
|         for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
 | |
|           int PredRegScore = PredScoreBrackets->getRegScore(J, T);
 | |
|           if (PredRegScore <= PredLB)
 | |
|             continue;
 | |
|           int NewRegScore = PredScale + PredRegScore;
 | |
|           ScoreBrackets->setRegScore(
 | |
|               J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
 | |
|         }
 | |
|         // Also need to merge sgpr scores for lgkm_cnt.
 | |
|         if (T == LGKM_CNT) {
 | |
|           for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
 | |
|             int PredRegScore =
 | |
|                 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
 | |
|             if (PredRegScore <= PredLB)
 | |
|               continue;
 | |
|             int NewRegScore = PredScale + PredRegScore;
 | |
|             ScoreBrackets->setRegScore(
 | |
|                 J + NUM_ALL_VGPRS, LGKM_CNT,
 | |
|                 std::max(
 | |
|                     ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
 | |
|                     NewRegScore));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Also merge the WaitEvent information.
 | |
|     ForAllWaitEventType(W) {
 | |
|       enum InstCounterType T = PredScoreBrackets->eventCounter(W);
 | |
|       int PredEventUB = PredScoreBrackets->getEventUB(W);
 | |
|       if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
 | |
|         int NewEventUB =
 | |
|             MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
 | |
|         if (NewEventUB > 0) {
 | |
|           ScoreBrackets->setEventUB(
 | |
|               W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
 | |
|   // Set the register scoreboard.
 | |
|   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
 | |
|     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
 | |
|       // Now merge the gpr_reg_score information.
 | |
|       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|            T = (enum InstCounterType)(T + 1)) {
 | |
|         int PredLB = KillWaitBrackets[I]->getScoreLB(T);
 | |
|         int PredUB = KillWaitBrackets[I]->getScoreUB(T);
 | |
|         if (PredLB < PredUB) {
 | |
|           int PredScale = MaxPending[T] - PredUB;
 | |
|           // Merge vgpr scores.
 | |
|           for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
 | |
|             int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
 | |
|             if (PredRegScore <= PredLB)
 | |
|               continue;
 | |
|             int NewRegScore = PredScale + PredRegScore;
 | |
|             ScoreBrackets->setRegScore(
 | |
|                 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
 | |
|           }
 | |
|           // Also need to merge sgpr scores for lgkm_cnt.
 | |
|           if (T == LGKM_CNT) {
 | |
|             for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
 | |
|               int PredRegScore =
 | |
|                   KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
 | |
|               if (PredRegScore <= PredLB)
 | |
|                 continue;
 | |
|               int NewRegScore = PredScale + PredRegScore;
 | |
|               ScoreBrackets->setRegScore(
 | |
|                   J + NUM_ALL_VGPRS, LGKM_CNT,
 | |
|                   std::max(
 | |
|                       ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
 | |
|                       NewRegScore));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Also merge the WaitEvent information.
 | |
|       ForAllWaitEventType(W) {
 | |
|         enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
 | |
|         int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
 | |
|         if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
 | |
|           int NewEventUB =
 | |
|               MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
 | |
|           if (NewEventUB > 0) {
 | |
|             ScoreBrackets->setEventUB(
 | |
|                 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
 | |
|   // sequencing predecessors, because changes to EXEC require waitcnts due to
 | |
|   // the delayed nature of these operations.
 | |
|   for (MachineBasicBlock *Pred : Block.predecessors()) {
 | |
|     if (!BlockVisitedSet.count(Pred)) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BlockWaitcntBrackets *PredScoreBrackets =
 | |
|         BlockWaitcntBracketsMap[Pred].get();
 | |
| 
 | |
|     int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
 | |
|     if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
 | |
|       int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
 | |
|                        PredScoreBrackets->getScoreUB(EXP_CNT);
 | |
|       if (new_gds_ub > 0) {
 | |
|         ScoreBrackets->setEventUB(
 | |
|             GDS_GPR_LOCK,
 | |
|             std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
 | |
|       }
 | |
|     }
 | |
|     int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
 | |
|     if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
 | |
|       int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
 | |
|                        PredScoreBrackets->getScoreUB(EXP_CNT);
 | |
|       if (new_exp_ub > 0) {
 | |
|         ScoreBrackets->setEventUB(
 | |
|             EXP_GPR_LOCK,
 | |
|             std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // if a single block loop, update the score brackets. Not needed for other
 | |
|   // blocks, as we did this in-place
 | |
|   if (IsSelfPred) {
 | |
|     BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if the given basic block is a "bottom" block of a loop.
 | |
| /// This works even if the loop is discontiguous. This also handles
 | |
| /// multiple back-edges for the same "header" block of a loop.
 | |
| bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop,
 | |
|                                     const MachineBasicBlock *Block) {
 | |
|   for (MachineBasicBlock *MBB : Loop->blocks()) {
 | |
|     if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Count the number of "bottom" basic blocks of a loop.
 | |
| unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) {
 | |
|   unsigned Count = 0;
 | |
|   for (MachineBasicBlock *MBB : Loop->blocks()) {
 | |
|     if (MBB->isSuccessor(Loop->getHeader())) {
 | |
|       Count++;
 | |
|     }
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| // Generate s_waitcnt instructions where needed.
 | |
| void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
 | |
|                                             MachineBasicBlock &Block) {
 | |
|   // Initialize the state information.
 | |
|   mergeInputScoreBrackets(Block);
 | |
| 
 | |
|   BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "*** Block" << Block.getNumber() << " ***";
 | |
|     ScoreBrackets->dump();
 | |
|   });
 | |
| 
 | |
|   // Walk over the instructions.
 | |
|   for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
 | |
|        Iter != E;) {
 | |
|     MachineInstr &Inst = *Iter;
 | |
|     // Remove any previously existing waitcnts.
 | |
|     if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
 | |
|       // Leave pre-existing waitcnts, but note their existence via setWaitcnt.
 | |
|       // Remove the waitcnt-pass-generated waitcnts; the pass will add them back
 | |
|       // as needed.
 | |
|       if (!TrackedWaitcntSet.count(&Inst))
 | |
|         ++Iter;
 | |
|       else {
 | |
|         ++Iter;
 | |
|         Inst.removeFromParent();
 | |
|       }
 | |
|       ScoreBrackets->setWaitcnt(&Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Kill instructions generate a conditional branch to the endmain block.
 | |
|     // Merge the current waitcnt state into the endmain block information.
 | |
|     // TODO: Are there other flavors of KILL instruction?
 | |
|     if (Inst.getOpcode() == AMDGPU::KILL) {
 | |
|       addKillWaitBracket(ScoreBrackets);
 | |
|     }
 | |
| 
 | |
|     bool VCCZBugWorkAround = false;
 | |
|     if (readsVCCZ(Inst) &&
 | |
|         (!VCCZBugHandledSet.count(&Inst))) {
 | |
|       if (ScoreBrackets->getScoreLB(LGKM_CNT) <
 | |
|               ScoreBrackets->getScoreUB(LGKM_CNT) &&
 | |
|           ScoreBrackets->hasPendingSMEM()) {
 | |
|         if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
 | |
|           VCCZBugWorkAround = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Generate an s_waitcnt instruction to be placed before
 | |
|     // cur_Inst, if needed.
 | |
|     generateWaitcntInstBefore(Inst, ScoreBrackets);
 | |
| 
 | |
|     updateEventWaitcntAfter(Inst, ScoreBrackets);
 | |
| 
 | |
| #if 0 // TODO: implement resource type check controlled by options with ub = LB.
 | |
|     // If this instruction generates a S_SETVSKIP because it is an
 | |
|     // indexed resource, and we are on Tahiti, then it will also force
 | |
|     // an S_WAITCNT vmcnt(0)
 | |
|     if (RequireCheckResourceType(Inst, context)) {
 | |
|       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
 | |
|       ScoreBrackets->setScoreLB(VM_CNT,
 | |
|       ScoreBrackets->getScoreUB(VM_CNT));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ScoreBrackets->clearWaitcnt();
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       Inst.print(dbgs());
 | |
|       ScoreBrackets->dump();
 | |
|     });
 | |
| 
 | |
|     // Check to see if this is a GWS instruction. If so, and if this is CI or
 | |
|     // VI, then the generated code sequence will include an S_WAITCNT 0.
 | |
|     // TODO: Are these the only GWS instructions?
 | |
|     if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
 | |
|       // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
 | |
|       ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
 | |
|       ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|       ScoreBrackets->updateByWait(LGKM_CNT,
 | |
|                                   ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|     }
 | |
| 
 | |
|     // TODO: Remove this work-around after fixing the scheduler and enable the
 | |
|     // assert above.
 | |
|     if (VCCZBugWorkAround) {
 | |
|       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
 | |
|       // bit is updated, so we can restore the bit by reading the value of
 | |
|       // vcc and then writing it back to the register.
 | |
|       BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
 | |
|               AMDGPU::VCC)
 | |
|           .addReg(AMDGPU::VCC);
 | |
|       VCCZBugHandledSet.insert(&Inst);
 | |
|     }
 | |
| 
 | |
|     ++Iter;
 | |
|   }
 | |
| 
 | |
|   // Check if we need to force convergence at loop footer.
 | |
|   MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
 | |
|   if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) {
 | |
|     LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
 | |
|     WaitcntData->print();
 | |
|     LLVM_DEBUG(dbgs() << '\n';);
 | |
| 
 | |
|     // The iterative waitcnt insertion algorithm aims for optimal waitcnt
 | |
|     // placement, but doesn't guarantee convergence for a loop. Each
 | |
|     // loop should take at most (n+1) iterations for it to converge naturally,
 | |
|     // where n is the number of bottom blocks. If this threshold is reached and
 | |
|     // the result hasn't converged, then we force convergence by inserting
 | |
|     // a s_waitcnt at the end of loop footer.
 | |
|     if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) {
 | |
|       // To ensure convergence, need to make wait events at loop footer be no
 | |
|       // more than those from the previous iteration.
 | |
|       // As a simplification, instead of tracking individual scores and
 | |
|       // generating the precise wait count, just wait on 0.
 | |
|       bool HasPending = false;
 | |
|       MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
 | |
|       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|            T = (enum InstCounterType)(T + 1)) {
 | |
|         if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
 | |
|           ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
 | |
|           HasPending = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (HasPending) {
 | |
|         if (!SWaitInst) {
 | |
|           SWaitInst = BuildMI(Block, Block.getFirstNonPHI(),
 | |
|                               DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
 | |
|                               .addImm(0);
 | |
|           TrackedWaitcntSet.insert(SWaitInst);
 | |
| #if 0 // TODO: Format the debug output
 | |
|           OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
 | |
|           OutputTransformAdd(SWaitInst, context);
 | |
| #endif
 | |
|         }
 | |
| #if 0 // TODO: ??
 | |
|         _DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
 | |
| #endif
 | |
|       }
 | |
| 
 | |
|       if (SWaitInst) {
 | |
|         LLVM_DEBUG({
 | |
|           SWaitInst->print(dbgs());
 | |
|           dbgs() << "\nAdjusted score board:";
 | |
|           ScoreBrackets->dump();
 | |
|         });
 | |
| 
 | |
|         // Add this waitcnt to the block. It is either newly created or
 | |
|         // created in previous iterations and added back since block traversal
 | |
|         // always removes waitcnts.
 | |
|         insertWaitcntBeforeCF(Block, SWaitInst);
 | |
|         WaitcntData->setWaitcnt(SWaitInst);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
 | |
|   ST = &MF.getSubtarget<GCNSubtarget>();
 | |
|   TII = ST->getInstrInfo();
 | |
|   TRI = &TII->getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   IV = AMDGPU::getIsaVersion(ST->getCPU());
 | |
|   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
| 
 | |
|   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
 | |
|   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
 | |
|        T = (enum InstCounterType)(T + 1))
 | |
|     ForceEmitWaitcnt[T] = false;
 | |
| 
 | |
|   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
 | |
|   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
 | |
|   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
 | |
| 
 | |
|   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
 | |
|   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
 | |
|   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
 | |
|   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
 | |
| 
 | |
|   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
 | |
|   RegisterEncoding.VGPRL =
 | |
|       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
 | |
|   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
 | |
|   RegisterEncoding.SGPRL =
 | |
|       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
 | |
| 
 | |
|   TrackedWaitcntSet.clear();
 | |
|   BlockVisitedSet.clear();
 | |
|   VCCZBugHandledSet.clear();
 | |
|   LoopWaitcntDataMap.clear();
 | |
|   BlockWaitcntProcessedSet.clear();
 | |
| 
 | |
|   // Walk over the blocks in reverse post-dominator order, inserting
 | |
|   // s_waitcnt where needed.
 | |
|   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
 | |
|   bool Modified = false;
 | |
|   for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
 | |
|            I = RPOT.begin(),
 | |
|            E = RPOT.end(), J = RPOT.begin();
 | |
|        I != E;) {
 | |
|     MachineBasicBlock &MBB = **I;
 | |
| 
 | |
|     BlockVisitedSet.insert(&MBB);
 | |
| 
 | |
|     BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
 | |
|     if (!ScoreBrackets) {
 | |
|       BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(ST);
 | |
|       ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
 | |
|     }
 | |
|     ScoreBrackets->setPostOrder(MBB.getNumber());
 | |
|     MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
 | |
|     if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
 | |
|       LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>();
 | |
| 
 | |
|     // If we are walking into the block from before the loop, then guarantee
 | |
|     // at least 1 re-walk over the loop to propagate the information, even if
 | |
|     // no S_WAITCNT instructions were generated.
 | |
|     if (ContainingLoop && ContainingLoop->getHeader() == &MBB) {
 | |
|       unsigned Count = countNumBottomBlocks(ContainingLoop);
 | |
| 
 | |
|       // If the loop has multiple back-edges, and so more than one "bottom"
 | |
|       // basic block, we have to guarantee a re-walk over every blocks.
 | |
|       if ((std::count(BlockWaitcntProcessedSet.begin(),
 | |
|                       BlockWaitcntProcessedSet.end(), &MBB) < (int)Count)) {
 | |
|         BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
 | |
|         LLVM_DEBUG(dbgs() << "set-revisit1: Block"
 | |
|                           << ContainingLoop->getHeader()->getNumber() << '\n';);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Walk over the instructions.
 | |
|     insertWaitcntInBlock(MF, MBB);
 | |
| 
 | |
|     // Record that waitcnts have been processed at least once for this block.
 | |
|     BlockWaitcntProcessedSet.push_back(&MBB);
 | |
| 
 | |
|     // See if we want to revisit the loop. If a loop has multiple back-edges,
 | |
|     // we shouldn't revisit the same "bottom" basic block.
 | |
|     if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) &&
 | |
|         std::count(BlockWaitcntProcessedSet.begin(),
 | |
|                    BlockWaitcntProcessedSet.end(), &MBB) == 1) {
 | |
|       MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
 | |
|       BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
 | |
|       if (EntrySB && EntrySB->getRevisitLoop()) {
 | |
|         EntrySB->setRevisitLoop(false);
 | |
|         J = I;
 | |
|         int32_t PostOrder = EntrySB->getPostOrder();
 | |
|         // TODO: Avoid this loop. Find another way to set I.
 | |
|         for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
 | |
|                  X = RPOT.begin(),
 | |
|                  Y = RPOT.end();
 | |
|              X != Y; ++X) {
 | |
|           MachineBasicBlock &MBBX = **X;
 | |
|           if (MBBX.getNumber() == PostOrder) {
 | |
|             I = X;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
 | |
|         WaitcntData->incIterCnt();
 | |
|         LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';);
 | |
|         continue;
 | |
|       } else {
 | |
|         LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
 | |
|         // Loop converged, reset iteration count. If this loop gets revisited,
 | |
|         // it must be from an outer loop, the counter will restart, this will
 | |
|         // ensure we don't force convergence on such revisits.
 | |
|         WaitcntData->resetIterCnt();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     J = I;
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
 | |
| 
 | |
|   bool HaveScalarStores = false;
 | |
| 
 | |
|   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
 | |
|        ++BI) {
 | |
|     MachineBasicBlock &MBB = *BI;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
 | |
|          ++I) {
 | |
|       if (!HaveScalarStores && TII->isScalarStore(*I))
 | |
|         HaveScalarStores = true;
 | |
| 
 | |
|       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
 | |
|           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
 | |
|         EndPgmBlocks.push_back(&MBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HaveScalarStores) {
 | |
|     // If scalar writes are used, the cache must be flushed or else the next
 | |
|     // wave to reuse the same scratch memory can be clobbered.
 | |
|     //
 | |
|     // Insert s_dcache_wb at wave termination points if there were any scalar
 | |
|     // stores, and only if the cache hasn't already been flushed. This could be
 | |
|     // improved by looking across blocks for flushes in postdominating blocks
 | |
|     // from the stores but an explicitly requested flush is probably very rare.
 | |
|     for (MachineBasicBlock *MBB : EndPgmBlocks) {
 | |
|       bool SeenDCacheWB = false;
 | |
| 
 | |
|       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
 | |
|            ++I) {
 | |
|         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
 | |
|           SeenDCacheWB = true;
 | |
|         else if (TII->isScalarStore(*I))
 | |
|           SeenDCacheWB = false;
 | |
| 
 | |
|         // FIXME: It would be better to insert this before a waitcnt if any.
 | |
|         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
 | |
|              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
 | |
|             !SeenDCacheWB) {
 | |
|           Modified = true;
 | |
|           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MFI->isEntryFunction()) {
 | |
|     // Wait for any outstanding memory operations that the input registers may
 | |
|     // depend on. We can't track them and it's better to the wait after the
 | |
|     // costly call sequence.
 | |
| 
 | |
|     // TODO: Could insert earlier and schedule more liberally with operations
 | |
|     // that only use caller preserved registers.
 | |
|     MachineBasicBlock &EntryBB = MF.front();
 | |
|     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
 | |
|       .addImm(0);
 | |
| 
 | |
|     Modified = true;
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 |