forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			14374 lines
		
	
	
		
			558 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			14374 lines
		
	
	
		
			558 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the PPCISelLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCISelLowering.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPC.h"
 | |
| #include "PPCCCState.h"
 | |
| #include "PPCCallingConv.h"
 | |
| #include "PPCFrameLowering.h"
 | |
| #include "PPCInstrInfo.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCPerfectShuffle.h"
 | |
| #include "PPCRegisterInfo.h"
 | |
| #include "PPCSubtarget.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <list>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-lowering"
 | |
| 
 | |
| static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
 | |
| cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
 | |
| cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
 | |
| cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> DisableSCO("disable-ppc-sco",
 | |
| cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
 | |
| cl::desc("enable quad precision float support on ppc"), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| STATISTIC(NumSiblingCalls, "Number of sibling calls");
 | |
| 
 | |
| static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
 | |
| 
 | |
| // FIXME: Remove this once the bug has been fixed!
 | |
| extern cl::opt<bool> ANDIGlueBug;
 | |
| 
 | |
| PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
 | |
|                                      const PPCSubtarget &STI)
 | |
|     : TargetLowering(TM), Subtarget(STI) {
 | |
|   // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|   setUseUnderscoreSetJmp(true);
 | |
|   setUseUnderscoreLongJmp(true);
 | |
| 
 | |
|   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
 | |
|   // arguments are at least 4/8 bytes aligned.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   setMinStackArgumentAlignment(isPPC64 ? 8:4);
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
 | |
|   if (!useSoftFloat()) {
 | |
|     if (hasSPE()) {
 | |
|       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
 | |
|       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
 | |
|     } else {
 | |
|       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
 | |
|       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Match BITREVERSE to customized fast code sequence in the td file.
 | |
|   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
 | |
| 
 | |
|   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
 | |
|   }
 | |
| 
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|   // PowerPC has pre-inc load and store's.
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
|   if (!Subtarget.hasSPE()) {
 | |
|     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
 | |
|     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
 | |
|     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
 | |
|     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
 | |
|   }
 | |
| 
 | |
|   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
 | |
|   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
 | |
|   for (MVT VT : ScalarIntVTs) {
 | |
|     setOperationAction(ISD::ADDC, VT, Legal);
 | |
|     setOperationAction(ISD::ADDE, VT, Legal);
 | |
|     setOperationAction(ISD::SUBC, VT, Legal);
 | |
|     setOperationAction(ISD::SUBE, VT, Legal);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.useCRBits()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|     if (isPPC64 || Subtarget.hasFPCVT()) {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | |
|       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
 | |
|                          isPPC64 ? MVT::i64 : MVT::i32);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | |
|       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
 | |
|                         isPPC64 ? MVT::i64 : MVT::i32);
 | |
|     } else {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
 | |
|     }
 | |
| 
 | |
|     // PowerPC does not support direct load/store of condition registers.
 | |
|     setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | |
|     setOperationAction(ISD::STORE, MVT::i1, Custom);
 | |
| 
 | |
|     // FIXME: Remove this once the ANDI glue bug is fixed:
 | |
|     if (ANDIGlueBug)
 | |
|       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
 | |
| 
 | |
|     for (MVT VT : MVT::integer_valuetypes()) {
 | |
|       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | |
|       setTruncStoreAction(VT, MVT::i1, Expand);
 | |
|     }
 | |
| 
 | |
|     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
 | |
|   }
 | |
| 
 | |
|   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | |
|   // PPC (the libcall is not available).
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
 | |
| 
 | |
|   // We do not currently implement these libm ops for PowerPC.
 | |
|   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
 | |
| 
 | |
|   // PowerPC has no SREM/UREM instructions unless we are on P9
 | |
|   // On P9 we may use a hardware instruction to compute the remainder.
 | |
|   // The instructions are not legalized directly because in the cases where the
 | |
|   // result of both the remainder and the division is required it is more
 | |
|   // efficient to compute the remainder from the result of the division rather
 | |
|   // than use the remainder instruction.
 | |
|   if (Subtarget.isISA3_0()) {
 | |
|     setOperationAction(ISD::SREM, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UREM, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SREM, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UREM, MVT::i64, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasP9Vector()) {
 | |
|     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
 | |
|   }
 | |
| 
 | |
|   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
| 
 | |
|   // We don't support sin/cos/sqrt/fmod/pow
 | |
|   setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | |
|   if (Subtarget.hasSPE()) {
 | |
|     setOperationAction(ISD::FMA  , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMA  , MVT::f32, Expand);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FMA  , MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FMA  , MVT::f32, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | |
| 
 | |
|   // If we're enabling GP optimizations, use hardware square root
 | |
|   if (!Subtarget.hasFSQRT() &&
 | |
|       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
 | |
|         Subtarget.hasFRE()))
 | |
|     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
| 
 | |
|   if (!Subtarget.hasFSQRT() &&
 | |
|       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
 | |
|         Subtarget.hasFRES()))
 | |
|     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
| 
 | |
|   if (Subtarget.hasFCPSGN()) {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasFPRND()) {
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | |
|   }
 | |
| 
 | |
|   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
 | |
|   // to speed up scalar BSWAP64.
 | |
|   // CTPOP or CTTZ were introduced in P8/P9 respectively
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | |
|   if (Subtarget.isISA3_0()) {
 | |
|     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
 | |
|     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | |
|     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
 | |
|     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | |
|   }
 | |
| 
 | |
|   // PowerPC does not have ROTR
 | |
|   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | |
| 
 | |
|   if (!Subtarget.useCRBits()) {
 | |
|     // PowerPC does not have Select
 | |
|     setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   // PowerPC wants to turn select_cc of FP into fsel when possible.
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   // PowerPC wants to optimize integer setcc a bit
 | |
|   if (!Subtarget.useCRBits())
 | |
|     setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have BRCOND which requires SetCC
 | |
|   if (!Subtarget.useCRBits())
 | |
|     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | |
| 
 | |
|   if (Subtarget.hasSPE()) {
 | |
|     // SPE has built-in conversions
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
 | |
|   } else {
 | |
|     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| 
 | |
|     // PowerPC does not have [U|S]INT_TO_FP
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasDirectMove() && isPPC64) {
 | |
|     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   // We cannot sextinreg(i1).  Expand to shifts.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
 | |
|   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
 | |
|   // support continuation, user-level threading, and etc.. As a result, no
 | |
|   // other SjLj exception interfaces are implemented and please don't build
 | |
|   // your own exception handling based on them.
 | |
|   // LLVM/Clang supports zero-cost DWARF exception handling.
 | |
|   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | |
| 
 | |
|   // We want to legalize GlobalAddress and ConstantPool nodes into the
 | |
|   // appropriate instructions to materialize the address.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | |
| 
 | |
|   // TRAP is legal.
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // TRAMPOLINE is custom lowered.
 | |
|   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
| 
 | |
|   if (Subtarget.isSVR4ABI()) {
 | |
|     if (isPPC64) {
 | |
|       // VAARG always uses double-word chunks, so promote anything smaller.
 | |
|       setOperationAction(ISD::VAARG, MVT::i1, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i8, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i16, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i32, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|     } else {
 | |
|       // VAARG is custom lowered with the 32-bit SVR4 ABI.
 | |
|       setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | |
|       setOperationAction(ISD::VAARG, MVT::i64, Custom);
 | |
|     }
 | |
|   } else
 | |
|     setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
| 
 | |
|   if (Subtarget.isSVR4ABI() && !isPPC64)
 | |
|     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
 | |
|     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // To handle counter-based loop conditions.
 | |
|   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | |
| 
 | |
|   // Comparisons that require checking two conditions.
 | |
|   if (Subtarget.hasSPE()) {
 | |
|     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
 | |
|     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
 | |
|     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
 | |
|   }
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
 | |
| 
 | |
|   if (Subtarget.has64BitSupport()) {
 | |
|     // They also have instructions for converting between i64 and fp.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
|     // This is just the low 32 bits of a (signed) fp->i64 conversion.
 | |
|     // We cannot do this with Promote because i64 is not a legal type.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
| 
 | |
|     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|   } else {
 | |
|     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | |
|     if (Subtarget.hasSPE())
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
 | |
|     else
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   // With the instructions enabled under FPCVT, we can do everything.
 | |
|   if (Subtarget.hasFPCVT()) {
 | |
|     if (Subtarget.has64BitSupport()) {
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.use64BitRegs()) {
 | |
|     // 64-bit PowerPC implementations can support i64 types directly
 | |
|     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
 | |
|     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | |
|     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
|     // 64-bit PowerPC wants to expand i128 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | |
|   } else {
 | |
|     // 32-bit PowerPC wants to expand i64 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasAltivec()) {
 | |
|     // First set operation action for all vector types to expand. Then we
 | |
|     // will selectively turn on ones that can be effectively codegen'd.
 | |
|     for (MVT VT : MVT::vector_valuetypes()) {
 | |
|       // add/sub are legal for all supported vector VT's.
 | |
|       setOperationAction(ISD::ADD, VT, Legal);
 | |
|       setOperationAction(ISD::SUB, VT, Legal);
 | |
| 
 | |
|       // Vector instructions introduced in P8
 | |
|       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
 | |
|         setOperationAction(ISD::CTPOP, VT, Legal);
 | |
|         setOperationAction(ISD::CTLZ, VT, Legal);
 | |
|       }
 | |
|       else {
 | |
|         setOperationAction(ISD::CTPOP, VT, Expand);
 | |
|         setOperationAction(ISD::CTLZ, VT, Expand);
 | |
|       }
 | |
| 
 | |
|       // Vector instructions introduced in P9
 | |
|       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
 | |
|         setOperationAction(ISD::CTTZ, VT, Legal);
 | |
|       else
 | |
|         setOperationAction(ISD::CTTZ, VT, Expand);
 | |
| 
 | |
|       // We promote all shuffles to v16i8.
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | |
|       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | |
| 
 | |
|       // We promote all non-typed operations to v4i32.
 | |
|       setOperationAction(ISD::AND   , VT, Promote);
 | |
|       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::OR    , VT, Promote);
 | |
|       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::XOR   , VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::LOAD  , VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::SELECT, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::SELECT_CC, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::STORE, VT, Promote);
 | |
|       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | |
| 
 | |
|       // No other operations are legal.
 | |
|       setOperationAction(ISD::MUL , VT, Expand);
 | |
|       setOperationAction(ISD::SDIV, VT, Expand);
 | |
|       setOperationAction(ISD::SREM, VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, VT, Expand);
 | |
|       setOperationAction(ISD::UREM, VT, Expand);
 | |
|       setOperationAction(ISD::FDIV, VT, Expand);
 | |
|       setOperationAction(ISD::FREM, VT, Expand);
 | |
|       setOperationAction(ISD::FNEG, VT, Expand);
 | |
|       setOperationAction(ISD::FSQRT, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG10, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG2, VT, Expand);
 | |
|       setOperationAction(ISD::FEXP, VT, Expand);
 | |
|       setOperationAction(ISD::FEXP2, VT, Expand);
 | |
|       setOperationAction(ISD::FSIN, VT, Expand);
 | |
|       setOperationAction(ISD::FCOS, VT, Expand);
 | |
|       setOperationAction(ISD::FABS, VT, Expand);
 | |
|       setOperationAction(ISD::FFLOOR, VT, Expand);
 | |
|       setOperationAction(ISD::FCEIL,  VT, Expand);
 | |
|       setOperationAction(ISD::FTRUNC, VT, Expand);
 | |
|       setOperationAction(ISD::FRINT,  VT, Expand);
 | |
|       setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::MULHU, VT, Expand);
 | |
|       setOperationAction(ISD::MULHS, VT, Expand);
 | |
|       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::UDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::FPOW, VT, Expand);
 | |
|       setOperationAction(ISD::BSWAP, VT, Expand);
 | |
|       setOperationAction(ISD::VSELECT, VT, Expand);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
|       setOperationAction(ISD::ROTL, VT, Expand);
 | |
|       setOperationAction(ISD::ROTR, VT, Expand);
 | |
| 
 | |
|       for (MVT InnerVT : MVT::vector_valuetypes()) {
 | |
|         setTruncStoreAction(VT, InnerVT, Expand);
 | |
|         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | |
|         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | |
|         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | |
|     // with merges, splats, etc.
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::v4i32,
 | |
|                        Subtarget.useCRBits() ? Legal : Expand);
 | |
|     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 | |
| 
 | |
|     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
 | |
| 
 | |
|     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | |
|     }
 | |
| 
 | |
|     if (Subtarget.hasP8Altivec())
 | |
|       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
 | |
|     else
 | |
|       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | |
| 
 | |
|     // Altivec does not contain unordered floating-point compare instructions
 | |
|     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
 | |
| 
 | |
|     if (Subtarget.hasVSX()) {
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | |
|       if (Subtarget.hasP8Vector()) {
 | |
|         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | |
|         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
 | |
|       }
 | |
|       if (Subtarget.hasDirectMove() && isPPC64) {
 | |
|         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
 | |
|         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
 | |
|         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
 | |
|         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
 | |
|         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
 | |
|         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
 | |
|         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
 | |
|         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
 | |
|       }
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
 | |
| 
 | |
|       // Share the Altivec comparison restrictions.
 | |
|       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
 | |
| 
 | |
|       if (Subtarget.hasP8Vector())
 | |
|         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
 | |
| 
 | |
|       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
 | |
| 
 | |
|       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
 | |
|       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
 | |
|       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
 | |
| 
 | |
|       if (Subtarget.hasP8Altivec()) {
 | |
|         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
 | |
|         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
 | |
|         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
 | |
| 
 | |
|         // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | |
|         // SRL, but not for SRA because of the instructions available:
 | |
|         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
 | |
|         // doing
 | |
|         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
 | |
|         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
 | |
|         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | |
| 
 | |
|         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
 | |
|       }
 | |
|       else {
 | |
|         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
 | |
|         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
 | |
|         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
 | |
| 
 | |
|         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
 | |
| 
 | |
|         // VSX v2i64 only supports non-arithmetic operations.
 | |
|         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
 | |
|         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
 | |
|       }
 | |
| 
 | |
|       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
 | |
|       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
 | |
|       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
 | |
|       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
 | |
| 
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
 | |
| 
 | |
|       if (Subtarget.hasDirectMove())
 | |
|         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
 | |
|       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
 | |
| 
 | |
|       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
 | |
|     }
 | |
| 
 | |
|     if (Subtarget.hasP8Altivec()) {
 | |
|       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
 | |
|       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
 | |
|     }
 | |
| 
 | |
|     if (Subtarget.hasP9Vector()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
| 
 | |
|       // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | |
|       // SRL, but not for SRA because of the instructions available:
 | |
|       // VS{RL} and VS{RL}O.
 | |
|       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
 | |
|       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
 | |
|       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | |
| 
 | |
|       if (EnableQuadPrecision) {
 | |
|         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
 | |
|         setOperationAction(ISD::FADD, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FSUB, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FDIV, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FMUL, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
 | |
|         // No extending loads to f128 on PPC.
 | |
|         for (MVT FPT : MVT::fp_valuetypes())
 | |
|           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
 | |
|         setOperationAction(ISD::FMA, MVT::f128, Legal);
 | |
|         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
 | |
|         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
 | |
|         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
 | |
|         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
 | |
|         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
 | |
|         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
 | |
| 
 | |
|         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FRINT, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
 | |
|         setOperationAction(ISD::FROUND, MVT::f128, Legal);
 | |
| 
 | |
|         setOperationAction(ISD::SELECT, MVT::f128, Expand);
 | |
|         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
 | |
|         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
 | |
|         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | |
|         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | |
|         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
 | |
|         // No implementation for these ops for PowerPC.
 | |
|         setOperationAction(ISD::FSIN , MVT::f128, Expand);
 | |
|         setOperationAction(ISD::FCOS , MVT::f128, Expand);
 | |
|         setOperationAction(ISD::FPOW, MVT::f128, Expand);
 | |
|         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
 | |
|         setOperationAction(ISD::FREM, MVT::f128, Expand);
 | |
|       }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (Subtarget.hasP9Altivec()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasQPX()) {
 | |
|     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
 | |
| 
 | |
|     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
 | |
|     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
 | |
| 
 | |
|     if (!Subtarget.useCRBits())
 | |
|       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
 | |
| 
 | |
|     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
 | |
|     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
 | |
| 
 | |
|     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
 | |
| 
 | |
|     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
 | |
| 
 | |
|     if (!Subtarget.useCRBits())
 | |
|       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
 | |
| 
 | |
|     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
 | |
|     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
 | |
| 
 | |
|     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
 | |
| 
 | |
|     setOperationAction(ISD::AND , MVT::v4i1, Legal);
 | |
|     setOperationAction(ISD::OR , MVT::v4i1, Legal);
 | |
|     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
 | |
| 
 | |
|     if (!Subtarget.useCRBits())
 | |
|       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
 | |
|     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
 | |
|     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
 | |
| 
 | |
|     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
 | |
| 
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
 | |
| 
 | |
|     // These need to set FE_INEXACT, and so cannot be vectorized here.
 | |
|     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
 | |
| 
 | |
|     if (TM.Options.UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | |
|     } else {
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.has64BitSupport())
 | |
|     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
 | |
| 
 | |
|   if (!isPPC64) {
 | |
|     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
 | |
|   }
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
| 
 | |
|   if (Subtarget.hasAltivec()) {
 | |
|     // Altivec instructions set fields to all zeros or all ones.
 | |
|     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
|   }
 | |
| 
 | |
|   if (!isPPC64) {
 | |
|     // These libcalls are not available in 32-bit.
 | |
|     setLibcallName(RTLIB::SHL_I128, nullptr);
 | |
|     setLibcallName(RTLIB::SRL_I128, nullptr);
 | |
|     setLibcallName(RTLIB::SRA_I128, nullptr);
 | |
|   }
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::SHL);
 | |
|   setTargetDAGCombine(ISD::SRA);
 | |
|   setTargetDAGCombine(ISD::SRL);
 | |
|   setTargetDAGCombine(ISD::SINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::BUILD_VECTOR);
 | |
|   if (Subtarget.hasFPCVT())
 | |
|     setTargetDAGCombine(ISD::UINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::LOAD);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::BR_CC);
 | |
|   if (Subtarget.useCRBits())
 | |
|     setTargetDAGCombine(ISD::BRCOND);
 | |
|   setTargetDAGCombine(ISD::BSWAP);
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::TRUNCATE);
 | |
| 
 | |
|   if (Subtarget.useCRBits()) {
 | |
|     setTargetDAGCombine(ISD::TRUNCATE);
 | |
|     setTargetDAGCombine(ISD::SETCC);
 | |
|     setTargetDAGCombine(ISD::SELECT_CC);
 | |
|   }
 | |
| 
 | |
|   // Use reciprocal estimates.
 | |
|   if (TM.Options.UnsafeFPMath) {
 | |
|     setTargetDAGCombine(ISD::FDIV);
 | |
|     setTargetDAGCombine(ISD::FSQRT);
 | |
|   }
 | |
| 
 | |
|   // Darwin long double math library functions have $LDBL128 appended.
 | |
|   if (Subtarget.isDarwin()) {
 | |
|     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
 | |
|     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
 | |
|     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
 | |
|     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
 | |
|     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
 | |
|   }
 | |
| 
 | |
|   if (EnableQuadPrecision) {
 | |
|     setLibcallName(RTLIB::LOG_F128, "logf128");
 | |
|     setLibcallName(RTLIB::LOG2_F128, "log2f128");
 | |
|     setLibcallName(RTLIB::LOG10_F128, "log10f128");
 | |
|     setLibcallName(RTLIB::EXP_F128, "expf128");
 | |
|     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
 | |
|     setLibcallName(RTLIB::SIN_F128, "sinf128");
 | |
|     setLibcallName(RTLIB::COS_F128, "cosf128");
 | |
|     setLibcallName(RTLIB::POW_F128, "powf128");
 | |
|     setLibcallName(RTLIB::FMIN_F128, "fminf128");
 | |
|     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
 | |
|     setLibcallName(RTLIB::POWI_F128, "__powikf2");
 | |
|     setLibcallName(RTLIB::REM_F128, "fmodf128");
 | |
|   }
 | |
| 
 | |
|   // With 32 condition bits, we don't need to sink (and duplicate) compares
 | |
|   // aggressively in CodeGenPrep.
 | |
|   if (Subtarget.useCRBits()) {
 | |
|     setHasMultipleConditionRegisters();
 | |
|     setJumpIsExpensive();
 | |
|   }
 | |
| 
 | |
|   setMinFunctionAlignment(2);
 | |
|   if (Subtarget.isDarwin())
 | |
|     setPrefFunctionAlignment(4);
 | |
| 
 | |
|   switch (Subtarget.getDarwinDirective()) {
 | |
|   default: break;
 | |
|   case PPC::DIR_970:
 | |
|   case PPC::DIR_A2:
 | |
|   case PPC::DIR_E500:
 | |
|   case PPC::DIR_E500mc:
 | |
|   case PPC::DIR_E5500:
 | |
|   case PPC::DIR_PWR4:
 | |
|   case PPC::DIR_PWR5:
 | |
|   case PPC::DIR_PWR5X:
 | |
|   case PPC::DIR_PWR6:
 | |
|   case PPC::DIR_PWR6X:
 | |
|   case PPC::DIR_PWR7:
 | |
|   case PPC::DIR_PWR8:
 | |
|   case PPC::DIR_PWR9:
 | |
|     setPrefFunctionAlignment(4);
 | |
|     setPrefLoopAlignment(4);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.enableMachineScheduler())
 | |
|     setSchedulingPreference(Sched::Source);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   computeRegisterProperties(STI.getRegisterInfo());
 | |
| 
 | |
|   // The Freescale cores do better with aggressive inlining of memcpy and
 | |
|   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
 | |
|   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
 | |
|       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
 | |
|     MaxStoresPerMemset = 32;
 | |
|     MaxStoresPerMemsetOptSize = 16;
 | |
|     MaxStoresPerMemcpy = 32;
 | |
|     MaxStoresPerMemcpyOptSize = 8;
 | |
|     MaxStoresPerMemmove = 32;
 | |
|     MaxStoresPerMemmoveOptSize = 8;
 | |
|   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
 | |
|     // The A2 also benefits from (very) aggressive inlining of memcpy and
 | |
|     // friends. The overhead of a the function call, even when warm, can be
 | |
|     // over one hundred cycles.
 | |
|     MaxStoresPerMemset = 128;
 | |
|     MaxStoresPerMemcpy = 128;
 | |
|     MaxStoresPerMemmove = 128;
 | |
|     MaxLoadsPerMemcmp = 128;
 | |
|   } else {
 | |
|     MaxLoadsPerMemcmp = 8;
 | |
|     MaxLoadsPerMemcmpOptSize = 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | |
| /// the desired ByVal argument alignment.
 | |
| static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
 | |
|                              unsigned MaxMaxAlign) {
 | |
|   if (MaxAlign == MaxMaxAlign)
 | |
|     return;
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
 | |
|       MaxAlign = 32;
 | |
|     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
 | |
|       MaxAlign = 16;
 | |
|   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     unsigned EltAlign = 0;
 | |
|     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
 | |
|     if (EltAlign > MaxAlign)
 | |
|       MaxAlign = EltAlign;
 | |
|   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (auto *EltTy : STy->elements()) {
 | |
|       unsigned EltAlign = 0;
 | |
|       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
 | |
|       if (EltAlign > MaxAlign)
 | |
|         MaxAlign = EltAlign;
 | |
|       if (MaxAlign == MaxMaxAlign)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.
 | |
| unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
 | |
|                                                   const DataLayout &DL) const {
 | |
|   // Darwin passes everything on 4 byte boundary.
 | |
|   if (Subtarget.isDarwin())
 | |
|     return 4;
 | |
| 
 | |
|   // 16byte and wider vectors are passed on 16byte boundary.
 | |
|   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
 | |
|   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
 | |
|   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
 | |
|     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
 | |
|                                                           CallingConv:: ID CC,
 | |
|                                                           EVT VT) const {
 | |
|   if (Subtarget.hasSPE() && VT == MVT::f64)
 | |
|     return 2;
 | |
|   return PPCTargetLowering::getNumRegisters(Context, VT);
 | |
| }
 | |
| 
 | |
| MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
 | |
|                                                      CallingConv:: ID CC,
 | |
|                                                      EVT VT) const {
 | |
|   if (Subtarget.hasSPE() && VT == MVT::f64)
 | |
|     return MVT::i32;
 | |
|   return PPCTargetLowering::getRegisterType(Context, VT);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::useSoftFloat() const {
 | |
|   return Subtarget.useSoftFloat();
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::hasSPE() const {
 | |
|   return Subtarget.hasSPE();
 | |
| }
 | |
| 
 | |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch ((PPCISD::NodeType)Opcode) {
 | |
|   case PPCISD::FIRST_NUMBER:    break;
 | |
|   case PPCISD::FSEL:            return "PPCISD::FSEL";
 | |
|   case PPCISD::FCFID:           return "PPCISD::FCFID";
 | |
|   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
 | |
|   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
 | |
|   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
 | |
|   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | |
|   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | |
|   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
 | |
|   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
 | |
|   case PPCISD::FP_TO_UINT_IN_VSR:
 | |
|                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
 | |
|   case PPCISD::FP_TO_SINT_IN_VSR:
 | |
|                                 return "PPCISD::FP_TO_SINT_IN_VSR";
 | |
|   case PPCISD::FRE:             return "PPCISD::FRE";
 | |
|   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
 | |
|   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | |
|   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
 | |
|   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
 | |
|   case PPCISD::VPERM:           return "PPCISD::VPERM";
 | |
|   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
 | |
|   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
 | |
|   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
 | |
|   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
 | |
|   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
 | |
|   case PPCISD::CMPB:            return "PPCISD::CMPB";
 | |
|   case PPCISD::Hi:              return "PPCISD::Hi";
 | |
|   case PPCISD::Lo:              return "PPCISD::Lo";
 | |
|   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
 | |
|   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
 | |
|   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
 | |
|   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | |
|   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
 | |
|   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | |
|   case PPCISD::SRL:             return "PPCISD::SRL";
 | |
|   case PPCISD::SRA:             return "PPCISD::SRA";
 | |
|   case PPCISD::SHL:             return "PPCISD::SHL";
 | |
|   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
 | |
|   case PPCISD::CALL:            return "PPCISD::CALL";
 | |
|   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
 | |
|   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | |
|   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
 | |
|   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
 | |
|   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | |
|   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
 | |
|   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
 | |
|   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
 | |
|   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
 | |
|   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
 | |
|   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
 | |
|   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
 | |
|   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
 | |
|   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
 | |
|   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
 | |
|   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
 | |
|   case PPCISD::VCMP:            return "PPCISD::VCMP";
 | |
|   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
 | |
|   case PPCISD::LBRX:            return "PPCISD::LBRX";
 | |
|   case PPCISD::STBRX:           return "PPCISD::STBRX";
 | |
|   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
 | |
|   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
 | |
|   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
 | |
|   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
 | |
|   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
 | |
|   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
 | |
|   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
 | |
|   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
 | |
|   case PPCISD::ST_VSR_SCAL_INT:
 | |
|                                 return "PPCISD::ST_VSR_SCAL_INT";
 | |
|   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | |
|   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
 | |
|   case PPCISD::BDZ:             return "PPCISD::BDZ";
 | |
|   case PPCISD::MFFS:            return "PPCISD::MFFS";
 | |
|   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | |
|   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | |
|   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
 | |
|   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
 | |
|   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
 | |
|   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
 | |
|   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
 | |
|   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
 | |
|   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
 | |
|   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
 | |
|   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
 | |
|   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
 | |
|   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
 | |
|   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
 | |
|   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
 | |
|   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
 | |
|   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
 | |
|   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
 | |
|   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
 | |
|   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
 | |
|   case PPCISD::SC:              return "PPCISD::SC";
 | |
|   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
 | |
|   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
 | |
|   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
 | |
|   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
 | |
|   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
 | |
|   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
 | |
|   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
 | |
|   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
 | |
|   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
 | |
|   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
 | |
|   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
 | |
|   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
 | |
|   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
 | |
|                                           EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
 | |
| 
 | |
|   if (Subtarget.hasQPX())
 | |
|     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
 | |
| 
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | |
|   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node matching predicates, for use by the tblgen matching code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | |
|       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|         return CFP->getValueAPF().isZero();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if it matches the specified value.
 | |
| static bool isConstantOrUndef(int Op, int Val) {
 | |
|   return Op < 0 || Op == Val;
 | |
| }
 | |
| 
 | |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUHUM instruction.
 | |
| /// The ShuffleKind distinguishes between big-endian operations with
 | |
| /// two different inputs (0), either-endian operations with two identical
 | |
| /// inputs (1), and little-endian operations with two different inputs (2).
 | |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | |
| bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | |
|                                SelectionDAG &DAG) {
 | |
|   bool IsLE = DAG.getDataLayout().isLittleEndian();
 | |
|   if (ShuffleKind == 0) {
 | |
|     if (IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 2) {
 | |
|     if (!IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 1) {
 | |
|     unsigned j = IsLE ? 0 : 1;
 | |
|     for (unsigned i = 0; i != 8; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUWUM instruction.
 | |
| /// The ShuffleKind distinguishes between big-endian operations with
 | |
| /// two different inputs (0), either-endian operations with two identical
 | |
| /// inputs (1), and little-endian operations with two different inputs (2).
 | |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | |
| bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | |
|                                SelectionDAG &DAG) {
 | |
|   bool IsLE = DAG.getDataLayout().isLittleEndian();
 | |
|   if (ShuffleKind == 0) {
 | |
|     if (IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 2) {
 | |
|     if (!IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 1) {
 | |
|     unsigned j = IsLE ? 0 : 2;
 | |
|     for (unsigned i = 0; i != 8; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
 | |
| /// current subtarget.
 | |
| ///
 | |
| /// The ShuffleKind distinguishes between big-endian operations with
 | |
| /// two different inputs (0), either-endian operations with two identical
 | |
| /// inputs (1), and little-endian operations with two different inputs (2).
 | |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | |
| bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | |
|                                SelectionDAG &DAG) {
 | |
|   const PPCSubtarget& Subtarget =
 | |
|     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
 | |
|   if (!Subtarget.hasP8Vector())
 | |
|     return false;
 | |
| 
 | |
|   bool IsLE = DAG.getDataLayout().isLittleEndian();
 | |
|   if (ShuffleKind == 0) {
 | |
|     if (IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; i += 4)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 2) {
 | |
|     if (!IsLE)
 | |
|       return false;
 | |
|     for (unsigned i = 0; i != 16; i += 4)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
 | |
|         return false;
 | |
|   } else if (ShuffleKind == 1) {
 | |
|     unsigned j = IsLE ? 0 : 4;
 | |
|     for (unsigned i = 0; i != 8; i += 4)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMerge - Common function, used to match vmrg* shuffles.
 | |
| ///
 | |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                      unsigned LHSStart, unsigned RHSStart) {
 | |
|   if (N->getValueType(0) != MVT::v16i8)
 | |
|     return false;
 | |
|   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | |
|          "Unsupported merge size!");
 | |
| 
 | |
|   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | |
|     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
 | |
|                              LHSStart+j+i*UnitSize) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
 | |
|                              RHSStart+j+i*UnitSize))
 | |
|         return false;
 | |
|     }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| /// The ShuffleKind distinguishes between big-endian merges with two
 | |
| /// different inputs (0), either-endian merges with two identical inputs (1),
 | |
| /// and little-endian merges with two different inputs (2).  For the latter,
 | |
| /// the input operands are swapped (see PPCInstrAltivec.td).
 | |
| bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                              unsigned ShuffleKind, SelectionDAG &DAG) {
 | |
|   if (DAG.getDataLayout().isLittleEndian()) {
 | |
|     if (ShuffleKind == 1) // unary
 | |
|       return isVMerge(N, UnitSize, 0, 0);
 | |
|     else if (ShuffleKind == 2) // swapped
 | |
|       return isVMerge(N, UnitSize, 0, 16);
 | |
|     else
 | |
|       return false;
 | |
|   } else {
 | |
|     if (ShuffleKind == 1) // unary
 | |
|       return isVMerge(N, UnitSize, 8, 8);
 | |
|     else if (ShuffleKind == 0) // normal
 | |
|       return isVMerge(N, UnitSize, 8, 24);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| /// The ShuffleKind distinguishes between big-endian merges with two
 | |
| /// different inputs (0), either-endian merges with two identical inputs (1),
 | |
| /// and little-endian merges with two different inputs (2).  For the latter,
 | |
| /// the input operands are swapped (see PPCInstrAltivec.td).
 | |
| bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                              unsigned ShuffleKind, SelectionDAG &DAG) {
 | |
|   if (DAG.getDataLayout().isLittleEndian()) {
 | |
|     if (ShuffleKind == 1) // unary
 | |
|       return isVMerge(N, UnitSize, 8, 8);
 | |
|     else if (ShuffleKind == 2) // swapped
 | |
|       return isVMerge(N, UnitSize, 8, 24);
 | |
|     else
 | |
|       return false;
 | |
|   } else {
 | |
|     if (ShuffleKind == 1) // unary
 | |
|       return isVMerge(N, UnitSize, 0, 0);
 | |
|     else if (ShuffleKind == 0) // normal
 | |
|       return isVMerge(N, UnitSize, 0, 16);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Common function used to match vmrgew and vmrgow shuffles
 | |
|  *
 | |
|  * The indexOffset determines whether to look for even or odd words in
 | |
|  * the shuffle mask. This is based on the of the endianness of the target
 | |
|  * machine.
 | |
|  *   - Little Endian:
 | |
|  *     - Use offset of 0 to check for odd elements
 | |
|  *     - Use offset of 4 to check for even elements
 | |
|  *   - Big Endian:
 | |
|  *     - Use offset of 0 to check for even elements
 | |
|  *     - Use offset of 4 to check for odd elements
 | |
|  * A detailed description of the vector element ordering for little endian and
 | |
|  * big endian can be found at
 | |
|  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
 | |
|  * Targeting your applications - what little endian and big endian IBM XL C/C++
 | |
|  * compiler differences mean to you
 | |
|  *
 | |
|  * The mask to the shuffle vector instruction specifies the indices of the
 | |
|  * elements from the two input vectors to place in the result. The elements are
 | |
|  * numbered in array-access order, starting with the first vector. These vectors
 | |
|  * are always of type v16i8, thus each vector will contain 16 elements of size
 | |
|  * 8. More info on the shuffle vector can be found in the
 | |
|  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
 | |
|  * Language Reference.
 | |
|  *
 | |
|  * The RHSStartValue indicates whether the same input vectors are used (unary)
 | |
|  * or two different input vectors are used, based on the following:
 | |
|  *   - If the instruction uses the same vector for both inputs, the range of the
 | |
|  *     indices will be 0 to 15. In this case, the RHSStart value passed should
 | |
|  *     be 0.
 | |
|  *   - If the instruction has two different vectors then the range of the
 | |
|  *     indices will be 0 to 31. In this case, the RHSStart value passed should
 | |
|  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
 | |
|  *     to 31 specify elements in the second vector).
 | |
|  *
 | |
|  * \param[in] N The shuffle vector SD Node to analyze
 | |
|  * \param[in] IndexOffset Specifies whether to look for even or odd elements
 | |
|  * \param[in] RHSStartValue Specifies the starting index for the righthand input
 | |
|  * vector to the shuffle_vector instruction
 | |
|  * \return true iff this shuffle vector represents an even or odd word merge
 | |
|  */
 | |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
 | |
|                      unsigned RHSStartValue) {
 | |
|   if (N->getValueType(0) != MVT::v16i8)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < 2; ++i)
 | |
|     for (unsigned j = 0; j < 4; ++j)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
 | |
|                              i*RHSStartValue+j+IndexOffset) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
 | |
|                              i*RHSStartValue+j+IndexOffset+8))
 | |
|         return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determine if the specified shuffle mask is suitable for the vmrgew or
 | |
|  * vmrgow instructions.
 | |
|  *
 | |
|  * \param[in] N The shuffle vector SD Node to analyze
 | |
|  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
 | |
|  * \param[in] ShuffleKind Identify the type of merge:
 | |
|  *   - 0 = big-endian merge with two different inputs;
 | |
|  *   - 1 = either-endian merge with two identical inputs;
 | |
|  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
 | |
|  *     little-endian merges).
 | |
|  * \param[in] DAG The current SelectionDAG
 | |
|  * \return true iff this shuffle mask
 | |
|  */
 | |
| bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
 | |
|                               unsigned ShuffleKind, SelectionDAG &DAG) {
 | |
|   if (DAG.getDataLayout().isLittleEndian()) {
 | |
|     unsigned indexOffset = CheckEven ? 4 : 0;
 | |
|     if (ShuffleKind == 1) // Unary
 | |
|       return isVMerge(N, indexOffset, 0);
 | |
|     else if (ShuffleKind == 2) // swapped
 | |
|       return isVMerge(N, indexOffset, 16);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|   else {
 | |
|     unsigned indexOffset = CheckEven ? 0 : 4;
 | |
|     if (ShuffleKind == 1) // Unary
 | |
|       return isVMerge(N, indexOffset, 0);
 | |
|     else if (ShuffleKind == 0) // Normal
 | |
|       return isVMerge(N, indexOffset, 16);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | |
| /// amount, otherwise return -1.
 | |
| /// The ShuffleKind distinguishes between big-endian operations with two
 | |
| /// different inputs (0), either-endian operations with two identical inputs
 | |
| /// (1), and little-endian operations with two different inputs (2).  For the
 | |
| /// latter, the input operands are swapped (see PPCInstrAltivec.td).
 | |
| int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
 | |
|                              SelectionDAG &DAG) {
 | |
|   if (N->getValueType(0) != MVT::v16i8)
 | |
|     return -1;
 | |
| 
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
| 
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
 | |
|     /*search*/;
 | |
| 
 | |
|   if (i == 16) return -1;  // all undef.
 | |
| 
 | |
|   // Otherwise, check to see if the rest of the elements are consecutively
 | |
|   // numbered from this value.
 | |
|   unsigned ShiftAmt = SVOp->getMaskElt(i);
 | |
|   if (ShiftAmt < i) return -1;
 | |
| 
 | |
|   ShiftAmt -= i;
 | |
|   bool isLE = DAG.getDataLayout().isLittleEndian();
 | |
| 
 | |
|   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | |
|         return -1;
 | |
|   } else if (ShuffleKind == 1) {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
 | |
|         return -1;
 | |
|   } else
 | |
|     return -1;
 | |
| 
 | |
|   if (isLE)
 | |
|     ShiftAmt = 16 - ShiftAmt;
 | |
| 
 | |
|   return ShiftAmt;
 | |
| }
 | |
| 
 | |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a splat of a single element that is suitable for input to
 | |
| /// VSPLTB/VSPLTH/VSPLTW.
 | |
| bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 &&
 | |
|          (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | |
| 
 | |
|   // The consecutive indices need to specify an element, not part of two
 | |
|   // different elements.  So abandon ship early if this isn't the case.
 | |
|   if (N->getMaskElt(0) % EltSize != 0)
 | |
|     return false;
 | |
| 
 | |
|   // This is a splat operation if each element of the permute is the same, and
 | |
|   // if the value doesn't reference the second vector.
 | |
|   unsigned ElementBase = N->getMaskElt(0);
 | |
| 
 | |
|   // FIXME: Handle UNDEF elements too!
 | |
|   if (ElementBase >= 16)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the indices are consecutive, in the case of a multi-byte element
 | |
|   // splatted with a v16i8 mask.
 | |
|   for (unsigned i = 1; i != EltSize; ++i)
 | |
|     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | |
|     if (N->getMaskElt(i) < 0) continue;
 | |
|     for (unsigned j = 0; j != EltSize; ++j)
 | |
|       if (N->getMaskElt(i+j) != N->getMaskElt(j))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check that the mask is shuffling N byte elements. Within each N byte
 | |
| /// element of the mask, the indices could be either in increasing or
 | |
| /// decreasing order as long as they are consecutive.
 | |
| /// \param[in] N the shuffle vector SD Node to analyze
 | |
| /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
 | |
| /// Word/DoubleWord/QuadWord).
 | |
| /// \param[in] StepLen the delta indices number among the N byte element, if
 | |
| /// the mask is in increasing/decreasing order then it is 1/-1.
 | |
| /// \return true iff the mask is shuffling N byte elements.
 | |
| static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
 | |
|                                    int StepLen) {
 | |
|   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
 | |
|          "Unexpected element width.");
 | |
|   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
 | |
| 
 | |
|   unsigned NumOfElem = 16 / Width;
 | |
|   unsigned MaskVal[16]; //  Width is never greater than 16
 | |
|   for (unsigned i = 0; i < NumOfElem; ++i) {
 | |
|     MaskVal[0] = N->getMaskElt(i * Width);
 | |
|     if ((StepLen == 1) && (MaskVal[0] % Width)) {
 | |
|       return false;
 | |
|     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     for (unsigned int j = 1; j < Width; ++j) {
 | |
|       MaskVal[j] = N->getMaskElt(i * Width + j);
 | |
|       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | |
|                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
 | |
|   if (!isNByteElemShuffleMask(N, 4, 1))
 | |
|     return false;
 | |
| 
 | |
|   // Now we look at mask elements 0,4,8,12
 | |
|   unsigned M0 = N->getMaskElt(0) / 4;
 | |
|   unsigned M1 = N->getMaskElt(4) / 4;
 | |
|   unsigned M2 = N->getMaskElt(8) / 4;
 | |
|   unsigned M3 = N->getMaskElt(12) / 4;
 | |
|   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
 | |
|   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
 | |
| 
 | |
|   // Below, let H and L be arbitrary elements of the shuffle mask
 | |
|   // where H is in the range [4,7] and L is in the range [0,3].
 | |
|   // H, 1, 2, 3 or L, 5, 6, 7
 | |
|   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
 | |
|       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
 | |
|     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
 | |
|     InsertAtByte = IsLE ? 12 : 0;
 | |
|     Swap = M0 < 4;
 | |
|     return true;
 | |
|   }
 | |
|   // 0, H, 2, 3 or 4, L, 6, 7
 | |
|   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
 | |
|       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
 | |
|     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
 | |
|     InsertAtByte = IsLE ? 8 : 4;
 | |
|     Swap = M1 < 4;
 | |
|     return true;
 | |
|   }
 | |
|   // 0, 1, H, 3 or 4, 5, L, 7
 | |
|   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
 | |
|       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
 | |
|     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
 | |
|     InsertAtByte = IsLE ? 4 : 8;
 | |
|     Swap = M2 < 4;
 | |
|     return true;
 | |
|   }
 | |
|   // 0, 1, 2, H or 4, 5, 6, L
 | |
|   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
 | |
|       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
 | |
|     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
 | |
|     InsertAtByte = IsLE ? 0 : 12;
 | |
|     Swap = M3 < 4;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If both vector operands for the shuffle are the same vector, the mask will
 | |
|   // contain only elements from the first one and the second one will be undef.
 | |
|   if (N->getOperand(1).isUndef()) {
 | |
|     ShiftElts = 0;
 | |
|     Swap = true;
 | |
|     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
 | |
|     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
 | |
|       InsertAtByte = IsLE ? 12 : 0;
 | |
|       return true;
 | |
|     }
 | |
|     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
 | |
|       InsertAtByte = IsLE ? 8 : 4;
 | |
|       return true;
 | |
|     }
 | |
|     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
 | |
|       InsertAtByte = IsLE ? 4 : 8;
 | |
|       return true;
 | |
|     }
 | |
|     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
 | |
|       InsertAtByte = IsLE ? 0 : 12;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | |
|                                bool &Swap, bool IsLE) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | |
|   // Ensure each byte index of the word is consecutive.
 | |
|   if (!isNByteElemShuffleMask(N, 4, 1))
 | |
|     return false;
 | |
| 
 | |
|   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
 | |
|   unsigned M0 = N->getMaskElt(0) / 4;
 | |
|   unsigned M1 = N->getMaskElt(4) / 4;
 | |
|   unsigned M2 = N->getMaskElt(8) / 4;
 | |
|   unsigned M3 = N->getMaskElt(12) / 4;
 | |
| 
 | |
|   // If both vector operands for the shuffle are the same vector, the mask will
 | |
|   // contain only elements from the first one and the second one will be undef.
 | |
|   if (N->getOperand(1).isUndef()) {
 | |
|     assert(M0 < 4 && "Indexing into an undef vector?");
 | |
|     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
 | |
|       return false;
 | |
| 
 | |
|     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
 | |
|     Swap = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Ensure each word index of the ShuffleVector Mask is consecutive.
 | |
|   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
 | |
|     return false;
 | |
| 
 | |
|   if (IsLE) {
 | |
|     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
 | |
|       // Input vectors don't need to be swapped if the leading element
 | |
|       // of the result is one of the 3 left elements of the second vector
 | |
|       // (or if there is no shift to be done at all).
 | |
|       Swap = false;
 | |
|       ShiftElts = (8 - M0) % 8;
 | |
|     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
 | |
|       // Input vectors need to be swapped if the leading element
 | |
|       // of the result is one of the 3 left elements of the first vector
 | |
|       // (or if we're shifting by 4 - thereby simply swapping the vectors).
 | |
|       Swap = true;
 | |
|       ShiftElts = (4 - M0) % 4;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else {                                          // BE
 | |
|     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
 | |
|       // Input vectors don't need to be swapped if the leading element
 | |
|       // of the result is one of the 4 elements of the first vector.
 | |
|       Swap = false;
 | |
|       ShiftElts = M0;
 | |
|     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
 | |
|       // Input vectors need to be swapped if the leading element
 | |
|       // of the result is one of the 4 elements of the right vector.
 | |
|       Swap = true;
 | |
|       ShiftElts = M0 - 4;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | |
| 
 | |
|   if (!isNByteElemShuffleMask(N, Width, -1))
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 0; i < 16; i += Width)
 | |
|     if (N->getMaskElt(i) != i + Width - 1)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
 | |
|   return isXXBRShuffleMaskHelper(N, 2);
 | |
| }
 | |
| 
 | |
| bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
 | |
|   return isXXBRShuffleMaskHelper(N, 4);
 | |
| }
 | |
| 
 | |
| bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
 | |
|   return isXXBRShuffleMaskHelper(N, 8);
 | |
| }
 | |
| 
 | |
| bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
 | |
|   return isXXBRShuffleMaskHelper(N, 16);
 | |
| }
 | |
| 
 | |
| /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
 | |
| /// if the inputs to the instruction should be swapped and set \p DM to the
 | |
| /// value for the immediate.
 | |
| /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
 | |
| /// AND element 0 of the result comes from the first input (LE) or second input
 | |
| /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
 | |
| /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
 | |
| /// mask.
 | |
| bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
 | |
|                                bool &Swap, bool IsLE) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | |
| 
 | |
|   // Ensure each byte index of the double word is consecutive.
 | |
|   if (!isNByteElemShuffleMask(N, 8, 1))
 | |
|     return false;
 | |
| 
 | |
|   unsigned M0 = N->getMaskElt(0) / 8;
 | |
|   unsigned M1 = N->getMaskElt(8) / 8;
 | |
|   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
 | |
| 
 | |
|   // If both vector operands for the shuffle are the same vector, the mask will
 | |
|   // contain only elements from the first one and the second one will be undef.
 | |
|   if (N->getOperand(1).isUndef()) {
 | |
|     if ((M0 | M1) < 2) {
 | |
|       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
 | |
|       Swap = false;
 | |
|       return true;
 | |
|     } else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (IsLE) {
 | |
|     if (M0 > 1 && M1 < 2) {
 | |
|       Swap = false;
 | |
|     } else if (M0 < 2 && M1 > 1) {
 | |
|       M0 = (M0 + 2) % 4;
 | |
|       M1 = (M1 + 2) % 4;
 | |
|       Swap = true;
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     // Note: if control flow comes here that means Swap is already set above
 | |
|     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
 | |
|     return true;
 | |
|   } else { // BE
 | |
|     if (M0 < 2 && M1 > 1) {
 | |
|       Swap = false;
 | |
|     } else if (M0 > 1 && M1 < 2) {
 | |
|       M0 = (M0 + 2) % 4;
 | |
|       M1 = (M1 + 2) % 4;
 | |
|       Swap = true;
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     // Note: if control flow comes here that means Swap is already set above
 | |
|     DM = (M0 << 1) + (M1 & 1);
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
 | |
|                                 SelectionDAG &DAG) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   assert(isSplatShuffleMask(SVOp, EltSize));
 | |
|   if (DAG.getDataLayout().isLittleEndian())
 | |
|     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
 | |
|   else
 | |
|     return SVOp->getMaskElt(0) / EltSize;
 | |
| }
 | |
| 
 | |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | |
| /// by using a vspltis[bhw] instruction of the specified element size, return
 | |
| /// the constant being splatted.  The ByteSize field indicates the number of
 | |
| /// bytes of each element [124] -> [bhw].
 | |
| SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | |
|   SDValue OpVal(nullptr, 0);
 | |
| 
 | |
|   // If ByteSize of the splat is bigger than the element size of the
 | |
|   // build_vector, then we have a case where we are checking for a splat where
 | |
|   // multiple elements of the buildvector are folded together into a single
 | |
|   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | |
|   unsigned EltSize = 16/N->getNumOperands();
 | |
|   if (EltSize < ByteSize) {
 | |
|     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | |
|     SDValue UniquedVals[4];
 | |
|     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | |
| 
 | |
|     // See if all of the elements in the buildvector agree across.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|       if (N->getOperand(i).isUndef()) continue;
 | |
|       // If the element isn't a constant, bail fully out.
 | |
|       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | |
| 
 | |
|       if (!UniquedVals[i&(Multiple-1)].getNode())
 | |
|         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | |
|       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | |
|         return SDValue();  // no match.
 | |
|     }
 | |
| 
 | |
|     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | |
|     // either constant or undef values that are identical for each chunk.  See
 | |
|     // if these chunks can form into a larger vspltis*.
 | |
| 
 | |
|     // Check to see if all of the leading entries are either 0 or -1.  If
 | |
|     // neither, then this won't fit into the immediate field.
 | |
|     bool LeadingZero = true;
 | |
|     bool LeadingOnes = true;
 | |
|     for (unsigned i = 0; i != Multiple-1; ++i) {
 | |
|       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
 | |
| 
 | |
|       LeadingZero &= isNullConstant(UniquedVals[i]);
 | |
|       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
 | |
|     }
 | |
|     // Finally, check the least significant entry.
 | |
|     if (LeadingZero) {
 | |
|       if (!UniquedVals[Multiple-1].getNode())
 | |
|         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
 | |
|       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
 | |
|       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
 | |
|         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | |
|     }
 | |
|     if (LeadingOnes) {
 | |
|       if (!UniquedVals[Multiple-1].getNode())
 | |
|         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
 | |
|       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
 | |
|       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | |
|         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | |
|     }
 | |
| 
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Check to see if this buildvec has a single non-undef value in its elements.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (N->getOperand(i).isUndef()) continue;
 | |
|     if (!OpVal.getNode())
 | |
|       OpVal = N->getOperand(i);
 | |
|     else if (OpVal != N->getOperand(i))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
 | |
| 
 | |
|   unsigned ValSizeInBytes = EltSize;
 | |
|   uint64_t Value = 0;
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|     Value = CN->getZExtValue();
 | |
|   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | |
|     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | |
|     Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | |
|   }
 | |
| 
 | |
|   // If the splat value is larger than the element value, then we can never do
 | |
|   // this splat.  The only case that we could fit the replicated bits into our
 | |
|   // immediate field for would be zero, and we prefer to use vxor for it.
 | |
|   if (ValSizeInBytes < ByteSize) return SDValue();
 | |
| 
 | |
|   // If the element value is larger than the splat value, check if it consists
 | |
|   // of a repeated bit pattern of size ByteSize.
 | |
|   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Properly sign extend the value.
 | |
|   int MaskVal = SignExtend32(Value, ByteSize * 8);
 | |
| 
 | |
|   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | |
|   if (MaskVal == 0) return SDValue();
 | |
| 
 | |
|   // Finally, if this value fits in a 5 bit sext field, return it
 | |
|   if (SignExtend32<5>(MaskVal) == MaskVal)
 | |
|     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
 | |
| /// amount, otherwise return -1.
 | |
| int PPC::isQVALIGNIShuffleMask(SDNode *N) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
 | |
|     return -1;
 | |
| 
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
| 
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
 | |
|     /*search*/;
 | |
| 
 | |
|   if (i == 4) return -1;  // all undef.
 | |
| 
 | |
|   // Otherwise, check to see if the rest of the elements are consecutively
 | |
|   // numbered from this value.
 | |
|   unsigned ShiftAmt = SVOp->getMaskElt(i);
 | |
|   if (ShiftAmt < i) return -1;
 | |
|   ShiftAmt -= i;
 | |
| 
 | |
|   // Check the rest of the elements to see if they are consecutive.
 | |
|   for (++i; i != 4; ++i)
 | |
|     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | |
|       return -1;
 | |
| 
 | |
|   return ShiftAmt;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Addressing Mode Selection
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
 | |
|   if (!isa<ConstantSDNode>(N))
 | |
|     return false;
 | |
| 
 | |
|   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it
 | |
| /// can be represented as an indexed [r+r] operation.  Returns false if it
 | |
| /// can be more efficiently represented with [r+imm].
 | |
| bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
 | |
|                                             SDValue &Index,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   int16_t imm = 0;
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i
 | |
|     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|       return false;    // r+i
 | |
| 
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i can fold it if we can.
 | |
| 
 | |
|     // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|     // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | |
|     // disjoint.
 | |
|     KnownBits LHSKnown, RHSKnown;
 | |
|     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
 | |
| 
 | |
|     if (LHSKnown.Zero.getBoolValue()) {
 | |
|       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
 | |
|       // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|       // carry.
 | |
|       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
 | |
|         Base = N.getOperand(0);
 | |
|         Index = N.getOperand(1);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If we happen to be doing an i64 load or store into a stack slot that has
 | |
| // less than a 4-byte alignment, then the frame-index elimination may need to
 | |
| // use an indexed load or store instruction (because the offset may not be a
 | |
| // multiple of 4). The extra register needed to hold the offset comes from the
 | |
| // register scavenger, and it is possible that the scavenger will need to use
 | |
| // an emergency spill slot. As a result, we need to make sure that a spill slot
 | |
| // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
 | |
| // stack slot.
 | |
| static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
 | |
|   // FIXME: This does not handle the LWA case.
 | |
|   if (VT != MVT::i64)
 | |
|     return;
 | |
| 
 | |
|   // NOTE: We'll exclude negative FIs here, which come from argument
 | |
|   // lowering, because there are no known test cases triggering this problem
 | |
|   // using packed structures (or similar). We can remove this exclusion if
 | |
|   // we find such a test case. The reason why this is so test-case driven is
 | |
|   // because this entire 'fixup' is only to prevent crashes (from the
 | |
|   // register scavenger) on not-really-valid inputs. For example, if we have:
 | |
|   //   %a = alloca i1
 | |
|   //   %b = bitcast i1* %a to i64*
 | |
|   //   store i64* a, i64 b
 | |
|   // then the store should really be marked as 'align 1', but is not. If it
 | |
|   // were marked as 'align 1' then the indexed form would have been
 | |
|   // instruction-selected initially, and the problem this 'fixup' is preventing
 | |
|   // won't happen regardless.
 | |
|   if (FrameIdx < 0)
 | |
|     return;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   unsigned Align = MFI.getObjectAlignment(FrameIdx);
 | |
|   if (Align >= 4)
 | |
|     return;
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasNonRISpills();
 | |
| }
 | |
| 
 | |
| /// Returns true if the address N can be represented by a base register plus
 | |
| /// a signed 16-bit displacement [r+imm], and if it is not better
 | |
| /// represented as reg+reg.  If \p Alignment is non-zero, only accept
 | |
| /// displacements that are multiples of that value.
 | |
| bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
 | |
|                                             SDValue &Base,
 | |
|                                             SelectionDAG &DAG,
 | |
|                                             unsigned Alignment) const {
 | |
|   // FIXME dl should come from parent load or store, not from address
 | |
|   SDLoc dl(N);
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddressRegReg(N, Disp, Base, DAG))
 | |
|     return false;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     int16_t imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) &&
 | |
|         (!Alignment || (imm % Alignment) == 0)) {
 | |
|       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     int16_t imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) &&
 | |
|         (!Alignment || (imm % Alignment) == 0)) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       KnownBits LHSKnown;
 | |
|       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
 | |
| 
 | |
|       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         if (FrameIndexSDNode *FI =
 | |
|               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | |
|         } else {
 | |
|           Base = N.getOperand(0);
 | |
|         }
 | |
|         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.
 | |
| 
 | |
|     // If this address fits entirely in a 16-bit sext immediate field, codegen
 | |
|     // this as "d, 0"
 | |
|     int16_t Imm;
 | |
|     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
 | |
|       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
 | |
|       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | |
|                              CN->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Handle 32-bit sext immediates with LIS + addr mode.
 | |
|     if ((CN->getValueType(0) == MVT::i32 ||
 | |
|          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
 | |
|         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
 | |
|       int Addr = (int)CN->getZExtValue();
 | |
| 
 | |
|       // Otherwise, break this down into an LIS + disp.
 | |
|       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
 | |
| 
 | |
|       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
 | |
|                                    MVT::i32);
 | |
|       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | |
|       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
 | |
|     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | |
|   } else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | |
| /// represented as an indexed [r+r] operation.
 | |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | |
|                                                 SDValue &Index,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // Check to see if we can easily represent this as an [r+r] address.  This
 | |
|   // will fail if it thinks that the address is more profitably represented as
 | |
|   // reg+imm, e.g. where imm = 0.
 | |
|   if (SelectAddressRegReg(N, Base, Index, DAG))
 | |
|     return true;
 | |
| 
 | |
|   // If the address is the result of an add, we will utilize the fact that the
 | |
|   // address calculation includes an implicit add.  However, we can reduce
 | |
|   // register pressure if we do not materialize a constant just for use as the
 | |
|   // index register.  We only get rid of the add if it is not an add of a
 | |
|   // value and a 16-bit signed constant and both have a single use.
 | |
|   int16_t imm = 0;
 | |
|   if (N.getOpcode() == ISD::ADD &&
 | |
|       (!isIntS16Immediate(N.getOperand(1), imm) ||
 | |
|        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, do it the hard way, using R0 as the base register.
 | |
|   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | |
|                          N.getValueType());
 | |
|   Index = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if we should use a direct load into vector instruction
 | |
| /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
 | |
| static bool usePartialVectorLoads(SDNode *N) {
 | |
|   if (!N->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // If there are any other uses other than scalar to vector, then we should
 | |
|   // keep it as a scalar load -> direct move pattern to prevent multiple
 | |
|   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
 | |
|   // efficiently, but no update equivalent.
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     EVT MemVT = LD->getMemoryVT();
 | |
|     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
 | |
|       SDNode *User = *(LD->use_begin());
 | |
|       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                                   SDValue &Offset,
 | |
|                                                   ISD::MemIndexedMode &AM,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   if (DisablePPCPreinc) return false;
 | |
| 
 | |
|   bool isLoad = true;
 | |
|   SDValue Ptr;
 | |
|   EVT VT;
 | |
|   unsigned Alignment;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT = LD->getMemoryVT();
 | |
|     Alignment = LD->getAlignment();
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|     Alignment = ST->getAlignment();
 | |
|     isLoad = false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
 | |
|   // instructions because we can fold these into a more efficient instruction
 | |
|   // instead, (such as LXSD).
 | |
|   if (isLoad && usePartialVectorLoads(N)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // PowerPC doesn't have preinc load/store instructions for vectors (except
 | |
|   // for QPX, which does have preinc r+r forms).
 | |
|   if (VT.isVector()) {
 | |
|     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
 | |
|       return false;
 | |
|     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
 | |
|       AM = ISD::PRE_INC;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
 | |
|     // Common code will reject creating a pre-inc form if the base pointer
 | |
|     // is a frame index, or if N is a store and the base pointer is either
 | |
|     // the same as or a predecessor of the value being stored.  Check for
 | |
|     // those situations here, and try with swapped Base/Offset instead.
 | |
|     bool Swap = false;
 | |
| 
 | |
|     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
 | |
|       Swap = true;
 | |
|     else if (!isLoad) {
 | |
|       SDValue Val = cast<StoreSDNode>(N)->getValue();
 | |
|       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
 | |
|         Swap = true;
 | |
|     }
 | |
| 
 | |
|     if (Swap)
 | |
|       std::swap(Base, Offset);
 | |
| 
 | |
|     AM = ISD::PRE_INC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // LDU/STU can only handle immediates that are a multiple of 4.
 | |
|   if (VT != MVT::i64) {
 | |
|     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
 | |
|       return false;
 | |
|   } else {
 | |
|     // LDU/STU need an address with at least 4-byte alignment.
 | |
|     if (Alignment < 4)
 | |
|       return false;
 | |
| 
 | |
|     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | |
|     // sext i32 to i64 when addr mode is r+i.
 | |
|     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | |
|         LD->getExtensionType() == ISD::SEXTLOAD &&
 | |
|         isa<ConstantSDNode>(Offset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = ISD::PRE_INC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LowerOperation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Return true if we should reference labels using a PICBase, set the HiOpFlags
 | |
| /// and LoOpFlags to the target MO flags.
 | |
| static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
 | |
|                                unsigned &HiOpFlags, unsigned &LoOpFlags,
 | |
|                                const GlobalValue *GV = nullptr) {
 | |
|   HiOpFlags = PPCII::MO_HA;
 | |
|   LoOpFlags = PPCII::MO_LO;
 | |
| 
 | |
|   // Don't use the pic base if not in PIC relocation model.
 | |
|   if (IsPIC) {
 | |
|     HiOpFlags |= PPCII::MO_PIC_FLAG;
 | |
|     LoOpFlags |= PPCII::MO_PIC_FLAG;
 | |
|   }
 | |
| 
 | |
|   // If this is a reference to a global value that requires a non-lazy-ptr, make
 | |
|   // sure that instruction lowering adds it.
 | |
|   if (GV && Subtarget.hasLazyResolverStub(GV)) {
 | |
|     HiOpFlags |= PPCII::MO_NLP_FLAG;
 | |
|     LoOpFlags |= PPCII::MO_NLP_FLAG;
 | |
| 
 | |
|     if (GV->hasHiddenVisibility()) {
 | |
|       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | |
|       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
 | |
|                              SelectionDAG &DAG) {
 | |
|   SDLoc DL(HiPart);
 | |
|   EVT PtrVT = HiPart.getValueType();
 | |
|   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
 | |
| 
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
 | |
| 
 | |
|   // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|   if (isPIC)
 | |
|     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
 | |
| 
 | |
|   // Generate non-pic code that has direct accesses to the constant pool.
 | |
|   // The address of the global is just (hi(&g)+lo(&g)).
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | |
| }
 | |
| 
 | |
| static void setUsesTOCBasePtr(MachineFunction &MF) {
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setUsesTOCBasePtr();
 | |
| }
 | |
| 
 | |
| static void setUsesTOCBasePtr(SelectionDAG &DAG) {
 | |
|   setUsesTOCBasePtr(DAG.getMachineFunction());
 | |
| }
 | |
| 
 | |
| static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
 | |
|                            SDValue GA) {
 | |
|   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
 | |
|   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
 | |
|                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
 | |
| 
 | |
|   SDValue Ops[] = { GA, Reg };
 | |
|   return DAG.getMemIntrinsicNode(
 | |
|       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
 | |
|       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
 | |
|       MachineMemOperand::MOLoad);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   const Constant *C = CP->getConstVal();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | |
|     setUsesTOCBasePtr(DAG);
 | |
|     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
 | |
|     return getTOCEntry(DAG, SDLoc(CP), true, GA);
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool IsPIC = isPositionIndependent();
 | |
|   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | |
| 
 | |
|   if (IsPIC && Subtarget.isSVR4ABI()) {
 | |
|     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
 | |
|                                            PPCII::MO_PIC_FLAG);
 | |
|     return getTOCEntry(DAG, SDLoc(CP), false, GA);
 | |
|   }
 | |
| 
 | |
|   SDValue CPIHi =
 | |
|     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
 | |
|   SDValue CPILo =
 | |
|     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
 | |
|   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
 | |
| }
 | |
| 
 | |
| // For 64-bit PowerPC, prefer the more compact relative encodings.
 | |
| // This trades 32 bits per jump table entry for one or two instructions
 | |
| // on the jump site.
 | |
| unsigned PPCTargetLowering::getJumpTableEncoding() const {
 | |
|   if (isJumpTableRelative())
 | |
|     return MachineJumpTableInfo::EK_LabelDifference32;
 | |
| 
 | |
|   return TargetLowering::getJumpTableEncoding();
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isJumpTableRelative() const {
 | |
|   if (Subtarget.isPPC64())
 | |
|     return true;
 | |
|   return TargetLowering::isJumpTableRelative();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   if (!Subtarget.isPPC64())
 | |
|     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | |
| 
 | |
|   switch (getTargetMachine().getCodeModel()) {
 | |
|   case CodeModel::Small:
 | |
|   case CodeModel::Medium:
 | |
|     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | |
|   default:
 | |
|     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
 | |
|                        getPointerTy(DAG.getDataLayout()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| const MCExpr *
 | |
| PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | |
|                                                 unsigned JTI,
 | |
|                                                 MCContext &Ctx) const {
 | |
|   if (!Subtarget.isPPC64())
 | |
|     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | |
| 
 | |
|   switch (getTargetMachine().getCodeModel()) {
 | |
|   case CodeModel::Small:
 | |
|   case CodeModel::Medium:
 | |
|     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | |
|   default:
 | |
|     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | |
|     setUsesTOCBasePtr(DAG);
 | |
|     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
|     return getTOCEntry(DAG, SDLoc(JT), true, GA);
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool IsPIC = isPositionIndependent();
 | |
|   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | |
| 
 | |
|   if (IsPIC && Subtarget.isSVR4ABI()) {
 | |
|     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
 | |
|                                         PPCII::MO_PIC_FLAG);
 | |
|     return getTOCEntry(DAG, SDLoc(GA), false, GA);
 | |
|   }
 | |
| 
 | |
|   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
 | |
|   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
 | |
|   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
 | |
|   const BlockAddress *BA = BASDN->getBlockAddress();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual BlockAddress is stored in the TOC.
 | |
|   if (Subtarget.isSVR4ABI() &&
 | |
|       (Subtarget.isPPC64() || isPositionIndependent())) {
 | |
|     if (Subtarget.isPPC64())
 | |
|       setUsesTOCBasePtr(DAG);
 | |
|     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
 | |
|     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool IsPIC = isPositionIndependent();
 | |
|   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | |
|   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
 | |
|   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
 | |
|   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   // FIXME: TLS addresses currently use medium model code sequences,
 | |
|   // which is the most useful form.  Eventually support for small and
 | |
|   // large models could be added if users need it, at the cost of
 | |
|   // additional complexity.
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   if (DAG.getTarget().useEmulatedTLS())
 | |
|     return LowerToTLSEmulatedModel(GA, DAG);
 | |
| 
 | |
|   SDLoc dl(GA);
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   bool is64bit = Subtarget.isPPC64();
 | |
|   const Module *M = DAG.getMachineFunction().getFunction().getParent();
 | |
|   PICLevel::Level picLevel = M->getPICLevel();
 | |
| 
 | |
|   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
 | |
| 
 | |
|   if (Model == TLSModel::LocalExec) {
 | |
|     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                PPCII::MO_TPREL_HA);
 | |
|     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                PPCII::MO_TPREL_LO);
 | |
|     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
 | |
|                              : DAG.getRegister(PPC::R2, MVT::i32);
 | |
| 
 | |
|     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
 | |
|     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::InitialExec) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                 PPCII::MO_TLS);
 | |
|     SDValue GOTPtr;
 | |
|     if (is64bit) {
 | |
|       setUsesTOCBasePtr(DAG);
 | |
|       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
 | |
|                            PtrVT, GOTReg, TGA);
 | |
|     } else
 | |
|       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
 | |
|     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
 | |
|                                    PtrVT, TGA, GOTPtr);
 | |
|     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::GeneralDynamic) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue GOTPtr;
 | |
|     if (is64bit) {
 | |
|       setUsesTOCBasePtr(DAG);
 | |
|       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
 | |
|                                    GOTReg, TGA);
 | |
|     } else {
 | |
|       if (picLevel == PICLevel::SmallPIC)
 | |
|         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | |
|       else
 | |
|         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | |
|     }
 | |
|     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
 | |
|                        GOTPtr, TGA, TGA);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::LocalDynamic) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue GOTPtr;
 | |
|     if (is64bit) {
 | |
|       setUsesTOCBasePtr(DAG);
 | |
|       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
 | |
|                            GOTReg, TGA);
 | |
|     } else {
 | |
|       if (picLevel == PICLevel::SmallPIC)
 | |
|         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | |
|       else
 | |
|         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | |
|     }
 | |
|     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
 | |
|                                   PtrVT, GOTPtr, TGA, TGA);
 | |
|     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
 | |
|                                       PtrVT, TLSAddr, TGA);
 | |
|     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown TLS model!");
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | |
|   SDLoc DL(GSDN);
 | |
|   const GlobalValue *GV = GSDN->getGlobal();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | |
|     setUsesTOCBasePtr(DAG);
 | |
|     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
 | |
|     return getTOCEntry(DAG, DL, true, GA);
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool IsPIC = isPositionIndependent();
 | |
|   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
 | |
| 
 | |
|   if (IsPIC && Subtarget.isSVR4ABI()) {
 | |
|     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
 | |
|                                             GSDN->getOffset(),
 | |
|                                             PPCII::MO_PIC_FLAG);
 | |
|     return getTOCEntry(DAG, DL, false, GA);
 | |
|   }
 | |
| 
 | |
|   SDValue GAHi =
 | |
|     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
 | |
|   SDValue GALo =
 | |
|     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
 | |
| 
 | |
|   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
 | |
| 
 | |
|   // If the global reference is actually to a non-lazy-pointer, we have to do an
 | |
|   // extra load to get the address of the global.
 | |
|   if (MOHiFlag & PPCII::MO_NLP_FLAG)
 | |
|     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Op.getValueType() == MVT::v2i64) {
 | |
|     // When the operands themselves are v2i64 values, we need to do something
 | |
|     // special because VSX has no underlying comparison operations for these.
 | |
|     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
 | |
|       // Equality can be handled by casting to the legal type for Altivec
 | |
|       // comparisons, everything else needs to be expanded.
 | |
|       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
 | |
|                  DAG.getSetCC(dl, MVT::v4i32,
 | |
|                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
 | |
|                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
 | |
|                    CC));
 | |
|       }
 | |
| 
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // We handle most of these in the usual way.
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // If we're comparing for equality to zero, expose the fact that this is
 | |
|   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
 | |
|   // fold the new nodes.
 | |
|   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
 | |
|     return V;
 | |
| 
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|     // Leave comparisons against 0 and -1 alone for now, since they're usually
 | |
|     // optimized.  FIXME: revisit this when we can custom lower all setcc
 | |
|     // optimizations.
 | |
|     if (C->isAllOnesValue() || C->isNullValue())
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // If we have an integer seteq/setne, turn it into a compare against zero
 | |
|   // by xor'ing the rhs with the lhs, which is faster than setting a
 | |
|   // condition register, reading it back out, and masking the correct bit.  The
 | |
|   // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | |
|   // the result to other bit-twiddling opportunities.
 | |
|   EVT LHSVT = Op.getOperand(0).getValueType();
 | |
|   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     EVT VT = Op.getValueType();
 | |
|     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
 | |
|                                 Op.getOperand(1));
 | |
|     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   EVT VT = Node->getValueType(0);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue InChain = Node->getOperand(0);
 | |
|   SDValue VAListPtr = Node->getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | |
|   SDLoc dl(Node);
 | |
| 
 | |
|   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
 | |
| 
 | |
|   // gpr_index
 | |
|   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | |
|                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
 | |
|   InChain = GprIndex.getValue(1);
 | |
| 
 | |
|   if (VT == MVT::i64) {
 | |
|     // Check if GprIndex is even
 | |
|     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
 | |
|                                  DAG.getConstant(1, dl, MVT::i32));
 | |
|     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
 | |
|                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
 | |
|     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
 | |
|                                           DAG.getConstant(1, dl, MVT::i32));
 | |
|     // Align GprIndex to be even if it isn't
 | |
|     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
 | |
|                            GprIndex);
 | |
|   }
 | |
| 
 | |
|   // fpr index is 1 byte after gpr
 | |
|   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|   // fpr
 | |
|   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | |
|                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
 | |
|   InChain = FprIndex.getValue(1);
 | |
| 
 | |
|   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                        DAG.getConstant(8, dl, MVT::i32));
 | |
| 
 | |
|   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                         DAG.getConstant(4, dl, MVT::i32));
 | |
| 
 | |
|   // areas
 | |
|   SDValue OverflowArea =
 | |
|       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
 | |
|   InChain = OverflowArea.getValue(1);
 | |
| 
 | |
|   SDValue RegSaveArea =
 | |
|       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
 | |
|   InChain = RegSaveArea.getValue(1);
 | |
| 
 | |
|   // select overflow_area if index > 8
 | |
|   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
 | |
|                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
 | |
| 
 | |
|   // adjustment constant gpr_index * 4/8
 | |
|   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
 | |
|                                     VT.isInteger() ? GprIndex : FprIndex,
 | |
|                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
 | |
|                                                     MVT::i32));
 | |
| 
 | |
|   // OurReg = RegSaveArea + RegConstant
 | |
|   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
 | |
|                                RegConstant);
 | |
| 
 | |
|   // Floating types are 32 bytes into RegSaveArea
 | |
|   if (VT.isFloatingPoint())
 | |
|     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
 | |
|                          DAG.getConstant(32, dl, MVT::i32));
 | |
| 
 | |
|   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
 | |
|   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | |
|                                    VT.isInteger() ? GprIndex : FprIndex,
 | |
|                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
 | |
|                                                    MVT::i32));
 | |
| 
 | |
|   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
 | |
|                               VT.isInteger() ? VAListPtr : FprPtr,
 | |
|                               MachinePointerInfo(SV), MVT::i8);
 | |
| 
 | |
|   // determine if we should load from reg_save_area or overflow_area
 | |
|   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
 | |
| 
 | |
|   // increase overflow_area by 4/8 if gpr/fpr > 8
 | |
|   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
 | |
|                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
 | |
|                                           dl, MVT::i32));
 | |
| 
 | |
|   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
 | |
|                              OverflowAreaPlusN);
 | |
| 
 | |
|   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
 | |
|                               MachinePointerInfo(), MVT::i32);
 | |
| 
 | |
|   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
 | |
| 
 | |
|   // We have to copy the entire va_list struct:
 | |
|   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
 | |
|   return DAG.getMemcpy(Op.getOperand(0), Op,
 | |
|                        Op.getOperand(1), Op.getOperand(2),
 | |
|                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
 | |
|                        false, MachinePointerInfo(), MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   return Op.getOperand(0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Trmp = Op.getOperand(1); // trampoline
 | |
|   SDValue FPtr = Op.getOperand(2); // nested function
 | |
|   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   bool isPPC64 = (PtrVT == MVT::i64);
 | |
|   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
| 
 | |
|   Entry.Ty = IntPtrTy;
 | |
|   Entry.Node = Trmp; Args.push_back(Entry);
 | |
| 
 | |
|   // TrampSize == (isPPC64 ? 48 : 40);
 | |
|   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
 | |
|                                isPPC64 ? MVT::i64 : MVT::i32);
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   Entry.Node = FPtr; Args.push_back(Entry);
 | |
|   Entry.Node = Nest; Args.push_back(Entry);
 | |
| 
 | |
|   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
 | |
|       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
 | |
|       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
 | |
| 
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
|     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | |
|                         MachinePointerInfo(SV));
 | |
|   }
 | |
| 
 | |
|   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
 | |
|   // We suppose the given va_list is already allocated.
 | |
|   //
 | |
|   // typedef struct {
 | |
|   //  char gpr;     /* index into the array of 8 GPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * gpr=0 corresponds to r3,
 | |
|   //                 * gpr=1 to r4, etc.
 | |
|   //                 */
 | |
|   //  char fpr;     /* index into the array of 8 FPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * fpr=0 corresponds to f1,
 | |
|   //                 * fpr=1 to f2, etc.
 | |
|   //                 */
 | |
|   //  char *overflow_arg_area;
 | |
|   //                /* location on stack that holds
 | |
|   //                 * the next overflow argument
 | |
|   //                 */
 | |
|   //  char *reg_save_area;
 | |
|   //               /* where r3:r10 and f1:f8 (if saved)
 | |
|   //                * are stored
 | |
|   //                */
 | |
|   // } va_list[1];
 | |
| 
 | |
|   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
 | |
|   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
 | |
|   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
 | |
|                                             PtrVT);
 | |
|   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | |
|                                  PtrVT);
 | |
| 
 | |
|   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | |
|   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
 | |
| 
 | |
|   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | |
|   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
 | |
| 
 | |
|   uint64_t FPROffset = 1;
 | |
|   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
 | |
| 
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
| 
 | |
|   // Store first byte : number of int regs
 | |
|   SDValue firstStore =
 | |
|       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
 | |
|                         MachinePointerInfo(SV), MVT::i8);
 | |
|   uint64_t nextOffset = FPROffset;
 | |
|   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
 | |
|                                   ConstFPROffset);
 | |
| 
 | |
|   // Store second byte : number of float regs
 | |
|   SDValue secondStore =
 | |
|       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
 | |
|                         MachinePointerInfo(SV, nextOffset), MVT::i8);
 | |
|   nextOffset += StackOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
 | |
| 
 | |
|   // Store second word : arguments given on stack
 | |
|   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
 | |
|                                     MachinePointerInfo(SV, nextOffset));
 | |
|   nextOffset += FrameOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
 | |
| 
 | |
|   // Store third word : arguments given in registers
 | |
|   return DAG.getStore(thirdStore, dl, FR, nextPtr,
 | |
|                       MachinePointerInfo(SV, nextOffset));
 | |
| }
 | |
| 
 | |
| #include "PPCGenCallingConv.inc"
 | |
| 
 | |
| // Function whose sole purpose is to kill compiler warnings
 | |
| // stemming from unused functions included from PPCGenCallingConv.inc.
 | |
| CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
 | |
|   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | |
|                                       CCValAssign::LocInfo &LocInfo,
 | |
|                                       ISD::ArgFlagsTy &ArgFlags,
 | |
|                                       CCState &State) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
 | |
|                                              MVT &LocVT,
 | |
|                                              CCValAssign::LocInfo &LocInfo,
 | |
|                                              ISD::ArgFlagsTy &ArgFlags,
 | |
|                                              CCState &State) {
 | |
|   static const MCPhysReg ArgRegs[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
| 
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | |
| 
 | |
|   // Skip one register if the first unallocated register has an even register
 | |
|   // number and there are still argument registers available which have not been
 | |
|   // allocated yet. RegNum is actually an index into ArgRegs, which means we
 | |
|   // need to skip a register if RegNum is odd.
 | |
|   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
| 
 | |
|   // Always return false here, as this function only makes sure that the first
 | |
|   // unallocated register has an odd register number and does not actually
 | |
|   // allocate a register for the current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
 | |
|                                                   MVT &LocVT,
 | |
|                                                   CCValAssign::LocInfo &LocInfo,
 | |
|                                                   ISD::ArgFlagsTy &ArgFlags,
 | |
|                                                   CCState &State) {
 | |
|   static const MCPhysReg ArgRegs[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
| 
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | |
|   int RegsLeft = NumArgRegs - RegNum;
 | |
| 
 | |
|   // Skip if there is not enough registers left for long double type (4 gpr regs
 | |
|   // in soft float mode) and put long double argument on the stack.
 | |
|   if (RegNum != NumArgRegs && RegsLeft < 4) {
 | |
|     for (int i = 0; i < RegsLeft; i++) {
 | |
|       State.AllocateReg(ArgRegs[RegNum + i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
 | |
|                                                MVT &LocVT,
 | |
|                                                CCValAssign::LocInfo &LocInfo,
 | |
|                                                ISD::ArgFlagsTy &ArgFlags,
 | |
|                                                CCState &State) {
 | |
|   static const MCPhysReg ArgRegs[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8
 | |
|   };
 | |
| 
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
| 
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | |
| 
 | |
|   // If there is only one Floating-point register left we need to put both f64
 | |
|   // values of a split ppc_fp128 value on the stack.
 | |
|   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
| 
 | |
|   // Always return false here, as this function only makes sure that the two f64
 | |
|   // values a ppc_fp128 value is split into are both passed in registers or both
 | |
|   // passed on the stack and does not actually allocate a register for the
 | |
|   // current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FPR - The set of FP registers that should be allocated for arguments,
 | |
| /// on Darwin.
 | |
| static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
 | |
|                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
 | |
|                                 PPC::F11, PPC::F12, PPC::F13};
 | |
| 
 | |
| /// QFPR - The set of QPX registers that should be allocated for arguments.
 | |
| static const MCPhysReg QFPR[] = {
 | |
|     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
 | |
|     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
 | |
| 
 | |
| /// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | |
| /// the stack.
 | |
| static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
 | |
|                                        unsigned PtrByteSize) {
 | |
|   unsigned ArgSize = ArgVT.getStoreSize();
 | |
|   if (Flags.isByVal())
 | |
|     ArgSize = Flags.getByValSize();
 | |
| 
 | |
|   // Round up to multiples of the pointer size, except for array members,
 | |
|   // which are always packed.
 | |
|   if (!Flags.isInConsecutiveRegs())
 | |
|     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
| 
 | |
|   return ArgSize;
 | |
| }
 | |
| 
 | |
| /// CalculateStackSlotAlignment - Calculates the alignment of this argument
 | |
| /// on the stack.
 | |
| static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
 | |
|                                             ISD::ArgFlagsTy Flags,
 | |
|                                             unsigned PtrByteSize) {
 | |
|   unsigned Align = PtrByteSize;
 | |
| 
 | |
|   // Altivec parameters are padded to a 16 byte boundary.
 | |
|   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | |
|       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | |
|       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | |
|       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | |
|     Align = 16;
 | |
|   // QPX vector types stored in double-precision are padded to a 32 byte
 | |
|   // boundary.
 | |
|   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
 | |
|     Align = 32;
 | |
| 
 | |
|   // ByVal parameters are aligned as requested.
 | |
|   if (Flags.isByVal()) {
 | |
|     unsigned BVAlign = Flags.getByValAlign();
 | |
|     if (BVAlign > PtrByteSize) {
 | |
|       if (BVAlign % PtrByteSize != 0)
 | |
|           llvm_unreachable(
 | |
|             "ByVal alignment is not a multiple of the pointer size");
 | |
| 
 | |
|       Align = BVAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Array members are always packed to their original alignment.
 | |
|   if (Flags.isInConsecutiveRegs()) {
 | |
|     // If the array member was split into multiple registers, the first
 | |
|     // needs to be aligned to the size of the full type.  (Except for
 | |
|     // ppcf128, which is only aligned as its f64 components.)
 | |
|     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
 | |
|       Align = OrigVT.getStoreSize();
 | |
|     else
 | |
|       Align = ArgVT.getStoreSize();
 | |
|   }
 | |
| 
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| /// CalculateStackSlotUsed - Return whether this argument will use its
 | |
| /// stack slot (instead of being passed in registers).  ArgOffset,
 | |
| /// AvailableFPRs, and AvailableVRs must hold the current argument
 | |
| /// position, and will be updated to account for this argument.
 | |
| static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
 | |
|                                    ISD::ArgFlagsTy Flags,
 | |
|                                    unsigned PtrByteSize,
 | |
|                                    unsigned LinkageSize,
 | |
|                                    unsigned ParamAreaSize,
 | |
|                                    unsigned &ArgOffset,
 | |
|                                    unsigned &AvailableFPRs,
 | |
|                                    unsigned &AvailableVRs, bool HasQPX) {
 | |
|   bool UseMemory = false;
 | |
| 
 | |
|   // Respect alignment of argument on the stack.
 | |
|   unsigned Align =
 | |
|     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | |
|   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | |
|   // If there's no space left in the argument save area, we must
 | |
|   // use memory (this check also catches zero-sized arguments).
 | |
|   if (ArgOffset >= LinkageSize + ParamAreaSize)
 | |
|     UseMemory = true;
 | |
| 
 | |
|   // Allocate argument on the stack.
 | |
|   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | |
|   if (Flags.isInConsecutiveRegsLast())
 | |
|     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|   // If we overran the argument save area, we must use memory
 | |
|   // (this check catches arguments passed partially in memory)
 | |
|   if (ArgOffset > LinkageSize + ParamAreaSize)
 | |
|     UseMemory = true;
 | |
| 
 | |
|   // However, if the argument is actually passed in an FPR or a VR,
 | |
|   // we don't use memory after all.
 | |
|   if (!Flags.isByVal()) {
 | |
|     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
 | |
|         // QPX registers overlap with the scalar FP registers.
 | |
|         (HasQPX && (ArgVT == MVT::v4f32 ||
 | |
|                     ArgVT == MVT::v4f64 ||
 | |
|                     ArgVT == MVT::v4i1)))
 | |
|       if (AvailableFPRs > 0) {
 | |
|         --AvailableFPRs;
 | |
|         return false;
 | |
|       }
 | |
|     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | |
|         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | |
|         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | |
|         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | |
|       if (AvailableVRs > 0) {
 | |
|         --AvailableVRs;
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return UseMemory;
 | |
| }
 | |
| 
 | |
| /// EnsureStackAlignment - Round stack frame size up from NumBytes to
 | |
| /// ensure minimum alignment required for target.
 | |
| static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
 | |
|                                      unsigned NumBytes) {
 | |
|   unsigned TargetAlign = Lowering->getStackAlignment();
 | |
|   unsigned AlignMask = TargetAlign - 1;
 | |
|   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
 | |
|   return NumBytes;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   if (Subtarget.isSVR4ABI()) {
 | |
|     if (Subtarget.isPPC64())
 | |
|       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
 | |
|                                          dl, DAG, InVals);
 | |
|     else
 | |
|       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
 | |
|                                          dl, DAG, InVals);
 | |
|   } else {
 | |
|     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
 | |
|                                        dl, DAG, InVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // 32-bit SVR4 ABI Stack Frame Layout:
 | |
|   //              +-----------------------------------+
 | |
|   //        +-->  |            Back chain             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     | Floating-point register save area |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |    General register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |          CR save word             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         VRSAVE save word          |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         Alignment padding         |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |     Vector register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |       Local variable space        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |        Parameter list area        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |           LR save word            |
 | |
|   //        |     +-----------------------------------+
 | |
|   // SP-->  +---  |            Back chain             |
 | |
|   //              +-----------------------------------+
 | |
|   //
 | |
|   // Specifications:
 | |
|   //   System V Application Binary Interface PowerPC Processor Supplement
 | |
|   //   AltiVec Technology Programming Interface Manual
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
|   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
 | |
|   if (useSoftFloat() || hasSPE())
 | |
|     CCInfo.PreAnalyzeFormalArguments(Ins);
 | |
| 
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
 | |
|   CCInfo.clearWasPPCF128();
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
| 
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       const TargetRegisterClass *RC;
 | |
|       EVT ValVT = VA.getValVT();
 | |
| 
 | |
|       switch (ValVT.getSimpleVT().SimpleTy) {
 | |
|         default:
 | |
|           llvm_unreachable("ValVT not supported by formal arguments Lowering");
 | |
|         case MVT::i1:
 | |
|         case MVT::i32:
 | |
|           RC = &PPC::GPRCRegClass;
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|           if (Subtarget.hasP8Vector())
 | |
|             RC = &PPC::VSSRCRegClass;
 | |
|           else if (Subtarget.hasSPE())
 | |
|             RC = &PPC::SPE4RCRegClass;
 | |
|           else
 | |
|             RC = &PPC::F4RCRegClass;
 | |
|           break;
 | |
|         case MVT::f64:
 | |
|           if (Subtarget.hasVSX())
 | |
|             RC = &PPC::VSFRCRegClass;
 | |
|           else if (Subtarget.hasSPE())
 | |
|             RC = &PPC::SPERCRegClass;
 | |
|           else
 | |
|             RC = &PPC::F8RCRegClass;
 | |
|           break;
 | |
|         case MVT::v16i8:
 | |
|         case MVT::v8i16:
 | |
|         case MVT::v4i32:
 | |
|           RC = &PPC::VRRCRegClass;
 | |
|           break;
 | |
|         case MVT::v4f32:
 | |
|           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
 | |
|           break;
 | |
|         case MVT::v2f64:
 | |
|         case MVT::v2i64:
 | |
|           RC = &PPC::VRRCRegClass;
 | |
|           break;
 | |
|         case MVT::v4f64:
 | |
|           RC = &PPC::QFRCRegClass;
 | |
|           break;
 | |
|         case MVT::v4i1:
 | |
|           RC = &PPC::QBRCRegClass;
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Transform the arguments stored in physical registers into virtual ones.
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
 | |
|                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
 | |
| 
 | |
|       if (ValVT == MVT::i1)
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     } else {
 | |
|       // Argument stored in memory.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       // Get the extended size of the argument type in stack
 | |
|       unsigned ArgSize = VA.getLocVT().getStoreSize();
 | |
|       // Get the actual size of the argument type
 | |
|       unsigned ObjSize = VA.getValVT().getStoreSize();
 | |
|       unsigned ArgOffset = VA.getLocMemOffset();
 | |
|       // Stack objects in PPC32 are right justified.
 | |
|       ArgOffset += ArgSize - ObjSize;
 | |
|       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
 | |
| 
 | |
|       // Create load nodes to retrieve arguments from the stack.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(
 | |
|           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assign locations to all of the incoming aggregate by value arguments.
 | |
|   // Aggregates passed by value are stored in the local variable space of the
 | |
|   // caller's stack frame, right above the parameter list area.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                       ByValArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
 | |
| 
 | |
|   // Area that is at least reserved in the caller of this function.
 | |
|   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
 | |
|   MinReservedArea = std::max(MinReservedArea, LinkageSize);
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized function's reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   MinReservedArea =
 | |
|       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | |
|   FuncInfo->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     static const MCPhysReg GPArgRegs[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
 | |
| 
 | |
|     static const MCPhysReg FPArgRegs[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|       PPC::F8
 | |
|     };
 | |
|     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
 | |
| 
 | |
|     if (useSoftFloat() || hasSPE())
 | |
|        NumFPArgRegs = 0;
 | |
| 
 | |
|     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
 | |
|     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
 | |
| 
 | |
|     // Make room for NumGPArgRegs and NumFPArgRegs.
 | |
|     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
 | |
|                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
 | |
| 
 | |
|     FuncInfo->setVarArgsStackOffset(
 | |
|       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                             CCInfo.getNextStackOffset(), true));
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // The fixed integer arguments of a variadic function are stored to the
 | |
|     // VarArgsFrameIndex on the stack so that they may be loaded by
 | |
|     // dereferencing the result of va_next.
 | |
|     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
 | |
|       // Get an existing live-in vreg, or add a new one.
 | |
|       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
 | |
|       if (!VReg)
 | |
|         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
| 
 | |
|     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
 | |
|     // is set.
 | |
|     // The double arguments are stored to the VarArgsFrameIndex
 | |
|     // on the stack.
 | |
|     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
 | |
|       // Get an existing live-in vreg, or add a new one.
 | |
|       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
 | |
|       if (!VReg)
 | |
|         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
 | |
|       SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by eight for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
 | |
|                                          PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
| // value to MVT::i64 and then truncate to the correct register size.
 | |
| SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
 | |
|                                              EVT ObjectVT, SelectionDAG &DAG,
 | |
|                                              SDValue ArgVal,
 | |
|                                              const SDLoc &dl) const {
 | |
|   if (Flags.isSExt())
 | |
|     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
 | |
|                          DAG.getValueType(ObjectVT));
 | |
|   else if (Flags.isZExt())
 | |
|     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
 | |
|                          DAG.getValueType(ObjectVT));
 | |
| 
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   // TODO: add description of PPC stack frame format, or at least some docs.
 | |
|   //
 | |
|   bool isELFv2ABI = Subtarget.isELFv2ABI();
 | |
|   bool isLittleEndian = Subtarget.isLittleEndian();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
 | |
|          "fastcc not supported on varargs functions");
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = 8;
 | |
|   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
| 
 | |
|   static const MCPhysReg GPR[] = {
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned Num_GPR_Regs = array_lengthof(GPR);
 | |
|   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
 | |
|   const unsigned Num_VR_Regs  = array_lengthof(VR);
 | |
|   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
 | |
| 
 | |
|   // Do a first pass over the arguments to determine whether the ABI
 | |
|   // guarantees that our caller has allocated the parameter save area
 | |
|   // on its stack frame.  In the ELFv1 ABI, this is always the case;
 | |
|   // in the ELFv2 ABI, it is true if this is a vararg function or if
 | |
|   // any parameter is located in a stack slot.
 | |
| 
 | |
|   bool HasParameterArea = !isELFv2ABI || isVarArg;
 | |
|   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
 | |
|   unsigned NumBytes = LinkageSize;
 | |
|   unsigned AvailableFPRs = Num_FPR_Regs;
 | |
|   unsigned AvailableVRs = Num_VR_Regs;
 | |
|   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|     if (Ins[i].Flags.isNest())
 | |
|       continue;
 | |
| 
 | |
|     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
 | |
|                                PtrByteSize, LinkageSize, ParamAreaSize,
 | |
|                                NumBytes, AvailableFPRs, AvailableVRs,
 | |
|                                Subtarget.hasQPX()))
 | |
|       HasParameterArea = true;
 | |
|   }
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.  On
 | |
|   // entry to a function on PPC, the arguments start after the linkage area,
 | |
|   // although the first ones are often in registers.
 | |
| 
 | |
|   unsigned ArgOffset = LinkageSize;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
|   unsigned &QFPR_idx = FPR_idx;
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     SDValue ArgVal;
 | |
|     bool needsLoad = false;
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     EVT OrigVT = Ins[ArgNo].ArgVT;
 | |
|     unsigned ObjSize = ObjectVT.getStoreSize();
 | |
|     unsigned ArgSize = ObjSize;
 | |
|     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
|     if (Ins[ArgNo].isOrigArg()) {
 | |
|       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
 | |
|       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
 | |
|     }
 | |
|     // We re-align the argument offset for each argument, except when using the
 | |
|     // fast calling convention, when we need to make sure we do that only when
 | |
|     // we'll actually use a stack slot.
 | |
|     unsigned CurArgOffset, Align;
 | |
|     auto ComputeArgOffset = [&]() {
 | |
|       /* Respect alignment of argument on the stack.  */
 | |
|       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
 | |
|       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | |
|       CurArgOffset = ArgOffset;
 | |
|     };
 | |
| 
 | |
|     if (CallConv != CallingConv::Fast) {
 | |
|       ComputeArgOffset();
 | |
| 
 | |
|       /* Compute GPR index associated with argument offset.  */
 | |
|       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | |
|       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
 | |
|     }
 | |
| 
 | |
|     // FIXME the codegen can be much improved in some cases.
 | |
|     // We do not have to keep everything in memory.
 | |
|     if (Flags.isByVal()) {
 | |
|       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
 | |
| 
 | |
|       if (CallConv == CallingConv::Fast)
 | |
|         ComputeArgOffset();
 | |
| 
 | |
|       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | |
|       ObjSize = Flags.getByValSize();
 | |
|       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       // Empty aggregate parameters do not take up registers.  Examples:
 | |
|       //   struct { } a;
 | |
|       //   union  { } b;
 | |
|       //   int c[0];
 | |
|       // etc.  However, we have to provide a place-holder in InVals, so
 | |
|       // pretend we have an 8-byte item at the current address for that
 | |
|       // purpose.
 | |
|       if (!ObjSize) {
 | |
|         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|         InVals.push_back(FIN);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Create a stack object covering all stack doublewords occupied
 | |
|       // by the argument.  If the argument is (fully or partially) on
 | |
|       // the stack, or if the argument is fully in registers but the
 | |
|       // caller has allocated the parameter save anyway, we can refer
 | |
|       // directly to the caller's stack frame.  Otherwise, create a
 | |
|       // local copy in our own frame.
 | |
|       int FI;
 | |
|       if (HasParameterArea ||
 | |
|           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
 | |
|         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
 | |
|       else
 | |
|         FI = MFI.CreateStackObject(ArgSize, Align, false);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
| 
 | |
|       // Handle aggregates smaller than 8 bytes.
 | |
|       if (ObjSize < PtrByteSize) {
 | |
|         // The value of the object is its address, which differs from the
 | |
|         // address of the enclosing doubleword on big-endian systems.
 | |
|         SDValue Arg = FIN;
 | |
|         if (!isLittleEndian) {
 | |
|           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
 | |
|           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
 | |
|         }
 | |
|         InVals.push_back(Arg);
 | |
| 
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | |
|           FuncInfo->addLiveInAttr(VReg, Flags);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store;
 | |
| 
 | |
|           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
 | |
|             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
 | |
|                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
 | |
|             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
 | |
|                                       MachinePointerInfo(&*FuncArg), ObjType);
 | |
|           } else {
 | |
|             // For sizes that don't fit a truncating store (3, 5, 6, 7),
 | |
|             // store the whole register as-is to the parameter save area
 | |
|             // slot.
 | |
|             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                  MachinePointerInfo(&*FuncArg));
 | |
|           }
 | |
| 
 | |
|           MemOps.push_back(Store);
 | |
|         }
 | |
|         // Whether we copied from a register or not, advance the offset
 | |
|         // into the parameter save area by a full doubleword.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // The value of the object is its address, which is the address of
 | |
|       // its first stack doubleword.
 | |
|       InVals.push_back(FIN);
 | |
| 
 | |
|       // Store whatever pieces of the object are in registers to memory.
 | |
|       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | |
|         if (GPR_idx == Num_GPR_Regs)
 | |
|           break;
 | |
| 
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|         FuncInfo->addLiveInAttr(VReg, Flags);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|         SDValue Addr = FIN;
 | |
|         if (j) {
 | |
|           SDValue Off = DAG.getConstant(j, dl, PtrVT);
 | |
|           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
 | |
|         }
 | |
|         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
 | |
|                                      MachinePointerInfo(&*FuncArg, j));
 | |
|         MemOps.push_back(Store);
 | |
|         ++GPR_idx;
 | |
|       }
 | |
|       ArgOffset += ArgSize;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (Flags.isNest()) {
 | |
|         // The 'nest' parameter, if any, is passed in R11.
 | |
|         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | |
|           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | |
| 
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // These can be scalar arguments or elements of an integer array type
 | |
|       // passed directly.  Clang may use those instead of "byval" aggregate
 | |
|       // types to avoid forcing arguments to memory unnecessarily.
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | |
|         FuncInfo->addLiveInAttr(VReg, Flags);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | |
|           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
|           // value to MVT::i64 and then truncate to the correct register size.
 | |
|           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputeArgOffset();
 | |
| 
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
|       if (CallConv != CallingConv::Fast || needsLoad)
 | |
|         ArgOffset += 8;
 | |
|       break;
 | |
| 
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // These can be scalar arguments or elements of a float array type
 | |
|       // passed directly.  The latter are used to implement ELFv2 homogenous
 | |
|       // float aggregates.
 | |
|       if (FPR_idx != Num_FPR_Regs) {
 | |
|         unsigned VReg;
 | |
| 
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx],
 | |
|                               Subtarget.hasP8Vector()
 | |
|                                   ? &PPC::VSSRCRegClass
 | |
|                                   : &PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
 | |
|                                                 ? &PPC::VSFRCRegClass
 | |
|                                                 : &PPC::F8RCRegClass);
 | |
| 
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++FPR_idx;
 | |
|       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
 | |
|         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | |
|         // once we support fp <-> gpr moves.
 | |
| 
 | |
|         // This can only ever happen in the presence of f32 array types,
 | |
|         // since otherwise we never run out of FPRs before running out
 | |
|         // of GPRs.
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | |
|         FuncInfo->addLiveInAttr(VReg, Flags);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::f32) {
 | |
|           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
 | |
|             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
 | |
|                                  DAG.getConstant(32, dl, MVT::i32));
 | |
|           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
 | |
|         }
 | |
| 
 | |
|         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputeArgOffset();
 | |
| 
 | |
|         needsLoad = true;
 | |
|       }
 | |
| 
 | |
|       // When passing an array of floats, the array occupies consecutive
 | |
|       // space in the argument area; only round up to the next doubleword
 | |
|       // at the end of the array.  Otherwise, each float takes 8 bytes.
 | |
|       if (CallConv != CallingConv::Fast || needsLoad) {
 | |
|         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
 | |
|         ArgOffset += ArgSize;
 | |
|         if (Flags.isInConsecutiveRegsLast())
 | |
|           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|     case MVT::v2f64:
 | |
|     case MVT::v2i64:
 | |
|     case MVT::v1i128:
 | |
|     case MVT::f128:
 | |
|       if (!Subtarget.hasQPX()) {
 | |
|         // These can be scalar arguments or elements of a vector array type
 | |
|         // passed directly.  The latter are used to implement ELFv2 homogenous
 | |
|         // vector aggregates.
 | |
|         if (VR_idx != Num_VR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | |
|           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|           ++VR_idx;
 | |
|         } else {
 | |
|           if (CallConv == CallingConv::Fast)
 | |
|             ComputeArgOffset();
 | |
|           needsLoad = true;
 | |
|         }
 | |
|         if (CallConv != CallingConv::Fast || needsLoad)
 | |
|           ArgOffset += 16;
 | |
|         break;
 | |
|       } // not QPX
 | |
| 
 | |
|       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
 | |
|              "Invalid QPX parameter type");
 | |
|       /* fall through */
 | |
| 
 | |
|     case MVT::v4f64:
 | |
|     case MVT::v4i1:
 | |
|       // QPX vectors are treated like their scalar floating-point subregisters
 | |
|       // (except that they're larger).
 | |
|       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
 | |
|       if (QFPR_idx != Num_QFPR_Regs) {
 | |
|         const TargetRegisterClass *RC;
 | |
|         switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
 | |
|         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
 | |
|         default:         RC = &PPC::QBRCRegClass; break;
 | |
|         }
 | |
| 
 | |
|         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++QFPR_idx;
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputeArgOffset();
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       if (CallConv != CallingConv::Fast || needsLoad)
 | |
|         ArgOffset += Sz;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined
 | |
|     // above that we ran out of physical registers of the appropriate type.
 | |
|     if (needsLoad) {
 | |
|       if (ObjSize < ArgSize && !isLittleEndian)
 | |
|         CurArgOffset += ArgSize - ObjSize;
 | |
|       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|   }
 | |
| 
 | |
|   // Area that is at least reserved in the caller of this function.
 | |
|   unsigned MinReservedArea;
 | |
|   if (HasParameterArea)
 | |
|     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
 | |
|   else
 | |
|     MinReservedArea = LinkageSize;
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized functions' reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   MinReservedArea =
 | |
|       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | |
|   FuncInfo->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     int Depth = ArgOffset;
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(
 | |
|       MFI.CreateFixedObject(PtrByteSize, Depth, true));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by dereferencing
 | |
|     // the result of va_next.
 | |
|     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | |
|          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
 | |
|       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   // TODO: add description of PPC stack frame format, or at least some docs.
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
|   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
|   unsigned ArgOffset = LinkageSize;
 | |
|   // Area that is at least reserved in caller of this function.
 | |
|   unsigned MinReservedArea = ArgOffset;
 | |
| 
 | |
|   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
 | |
|   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
 | |
|   const unsigned Num_VR_Regs  = array_lengthof( VR);
 | |
| 
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   // In 32-bit non-varargs functions, the stack space for vectors is after the
 | |
|   // stack space for non-vectors.  We do not use this space unless we have
 | |
|   // too many vectors to fit in registers, something that only occurs in
 | |
|   // constructed examples:), but we have to walk the arglist to figure
 | |
|   // that out...for the pathological case, compute VecArgOffset as the
 | |
|   // start of the vector parameter area.  Computing VecArgOffset is the
 | |
|   // entire point of the following loop.
 | |
|   unsigned VecArgOffset = ArgOffset;
 | |
|   if (!isVarArg && !isPPC64) {
 | |
|     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
 | |
|          ++ArgNo) {
 | |
|       EVT ObjectVT = Ins[ArgNo].VT;
 | |
|       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
 | |
|         unsigned ObjSize = Flags.getByValSize();
 | |
|         unsigned ArgSize =
 | |
|                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|         VecArgOffset += ArgSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       switch(ObjectVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unhandled argument type!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i32:
 | |
|       case MVT::f32:
 | |
|         VecArgOffset += 4;
 | |
|         break;
 | |
|       case MVT::i64:  // PPC64
 | |
|       case MVT::f64:
 | |
|         // FIXME: We are guaranteed to be !isPPC64 at this point.
 | |
|         // Does MVT::i64 apply?
 | |
|         VecArgOffset += 8;
 | |
|         break;
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v16i8:
 | |
|         // Nothing to do, we're only looking at Nonvector args here.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // We've found where the vector parameter area in memory is.  Skip the
 | |
|   // first 12 parameters; these don't use that memory.
 | |
|   VecArgOffset = ((VecArgOffset+15)/16)*16;
 | |
|   VecArgOffset += 12*16;
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.  On
 | |
|   // entry to a function on PPC, the arguments start after the linkage area,
 | |
|   // although the first ones are often in registers.
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
|   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     SDValue ArgVal;
 | |
|     bool needsLoad = false;
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | |
|     unsigned ArgSize = ObjSize;
 | |
|     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
|     if (Ins[ArgNo].isOrigArg()) {
 | |
|       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
 | |
|       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
 | |
|     }
 | |
|     unsigned CurArgOffset = ArgOffset;
 | |
| 
 | |
|     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | |
|         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
 | |
|       if (isVarArg || isPPC64) {
 | |
|         MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|         MinReservedArea += CalculateStackSlotSize(ObjectVT,
 | |
|                                                   Flags,
 | |
|                                                   PtrByteSize);
 | |
|       } else  nAltivecParamsAtEnd++;
 | |
|     } else
 | |
|       // Calculate min reserved area.
 | |
|       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
 | |
|                                                 Flags,
 | |
|                                                 PtrByteSize);
 | |
| 
 | |
|     // FIXME the codegen can be much improved in some cases.
 | |
|     // We do not have to keep everything in memory.
 | |
|     if (Flags.isByVal()) {
 | |
|       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
 | |
| 
 | |
|       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | |
|       ObjSize = Flags.getByValSize();
 | |
|       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       // Objects of size 1 and 2 are right justified, everything else is
 | |
|       // left justified.  This means the memory address is adjusted forwards.
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         CurArgOffset = CurArgOffset + (4 - ObjSize);
 | |
|       }
 | |
|       // The value of the object is its address.
 | |
|       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(FIN);
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg;
 | |
|           if (isPPC64)
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           else
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
 | |
|           SDValue Store =
 | |
|               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                 MachinePointerInfo(&*FuncArg), ObjType);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|         }
 | |
| 
 | |
|         ArgOffset += PtrByteSize;
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
|       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | |
|         // Store whatever pieces of the object are in registers
 | |
|         // to memory.  ArgOffset will be the address of the beginning
 | |
|         // of the object.
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg;
 | |
|           if (isPPC64)
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           else
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                        MachinePointerInfo(&*FuncArg, j));
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|       if (!isPPC64) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
| 
 | |
|           if (ObjectVT == MVT::i1)
 | |
|             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
 | |
| 
 | |
|           ++GPR_idx;
 | |
|         } else {
 | |
|           needsLoad = true;
 | |
|           ArgSize = PtrByteSize;
 | |
|         }
 | |
|         // All int arguments reserve stack space in the Darwin ABI.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case MVT::i64:  // PPC64
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | |
|           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
|           // value to MVT::i64 and then truncate to the correct register size.
 | |
|           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | |
| 
 | |
|         ++GPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
|       // All int arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
| 
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // Every 4 bytes of argument space consumes one of the GPRs available for
 | |
|       // argument passing.
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         ++GPR_idx;
 | |
|         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
 | |
|           ++GPR_idx;
 | |
|       }
 | |
|       if (FPR_idx != Num_FPR_Regs) {
 | |
|         unsigned VReg;
 | |
| 
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
 | |
| 
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
| 
 | |
|       // All FP arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += isPPC64 ? 8 : ObjSize;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       // Note that vector arguments in registers don't reserve stack space,
 | |
|       // except in varargs functions.
 | |
|       if (VR_idx != Num_VR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         if (isVarArg) {
 | |
|           while ((ArgOffset % 16) != 0) {
 | |
|             ArgOffset += PtrByteSize;
 | |
|             if (GPR_idx != Num_GPR_Regs)
 | |
|               GPR_idx++;
 | |
|           }
 | |
|           ArgOffset += 16;
 | |
|           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
 | |
|         }
 | |
|         ++VR_idx;
 | |
|       } else {
 | |
|         if (!isVarArg && !isPPC64) {
 | |
|           // Vectors go after all the nonvectors.
 | |
|           CurArgOffset = VecArgOffset;
 | |
|           VecArgOffset += 16;
 | |
|         } else {
 | |
|           // Vectors are aligned.
 | |
|           ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|           CurArgOffset = ArgOffset;
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined above
 | |
|     // that we ran out of physical registers of the appropriate type.
 | |
|     if (needsLoad) {
 | |
|       int FI = MFI.CreateFixedObject(ObjSize,
 | |
|                                      CurArgOffset + (ArgSize - ObjSize),
 | |
|                                      isImmutable);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|   }
 | |
| 
 | |
|   // Allow for Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|     MinReservedArea += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
| 
 | |
|   // Area that is at least reserved in the caller of this function.
 | |
|   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized functions' reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   MinReservedArea =
 | |
|       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | |
|   FuncInfo->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     int Depth = ArgOffset;
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(
 | |
|       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                             Depth, true));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by dereferencing
 | |
|     // the result of va_next.
 | |
|     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | |
|       unsigned VReg;
 | |
| 
 | |
|       if (isPPC64)
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|       else
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | |
| /// adjusted to accommodate the arguments for the tailcall.
 | |
| static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
 | |
|                                    unsigned ParamSize) {
 | |
| 
 | |
|   if (!isTailCall) return 0;
 | |
| 
 | |
|   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | |
|   unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | |
|   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | |
|   // Remember only if the new adjustment is bigger.
 | |
|   if (SPDiff < FI->getTailCallSPDelta())
 | |
|     FI->setTailCallSPDelta(SPDiff);
 | |
| 
 | |
|   return SPDiff;
 | |
| }
 | |
| 
 | |
| static bool isFunctionGlobalAddress(SDValue Callee);
 | |
| 
 | |
| static bool
 | |
| callsShareTOCBase(const Function *Caller, SDValue Callee,
 | |
|                     const TargetMachine &TM) {
 | |
|   // If !G, Callee can be an external symbol.
 | |
|   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | |
|   if (!G)
 | |
|     return false;
 | |
| 
 | |
|   // The medium and large code models are expected to provide a sufficiently
 | |
|   // large TOC to provide all data addressing needs of a module with a
 | |
|   // single TOC. Since each module will be addressed with a single TOC then we
 | |
|   // only need to check that caller and callee don't cross dso boundaries.
 | |
|   if (CodeModel::Medium == TM.getCodeModel() ||
 | |
|       CodeModel::Large == TM.getCodeModel())
 | |
|     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
 | |
| 
 | |
|   // Otherwise we need to ensure callee and caller are in the same section,
 | |
|   // since the linker may allocate multiple TOCs, and we don't know which
 | |
|   // sections will belong to the same TOC base.
 | |
| 
 | |
|   const GlobalValue *GV = G->getGlobal();
 | |
|   if (!GV->isStrongDefinitionForLinker())
 | |
|     return false;
 | |
| 
 | |
|   // Any explicitly-specified sections and section prefixes must also match.
 | |
|   // Also, if we're using -ffunction-sections, then each function is always in
 | |
|   // a different section (the same is true for COMDAT functions).
 | |
|   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
 | |
|       GV->getSection() != Caller->getSection())
 | |
|     return false;
 | |
|   if (const auto *F = dyn_cast<Function>(GV)) {
 | |
|     if (F->getSectionPrefix() != Caller->getSectionPrefix())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If the callee might be interposed, then we can't assume the ultimate call
 | |
|   // target will be in the same section. Even in cases where we can assume that
 | |
|   // interposition won't happen, in any case where the linker might insert a
 | |
|   // stub to allow for interposition, we must generate code as though
 | |
|   // interposition might occur. To understand why this matters, consider a
 | |
|   // situation where: a -> b -> c where the arrows indicate calls. b and c are
 | |
|   // in the same section, but a is in a different module (i.e. has a different
 | |
|   // TOC base pointer). If the linker allows for interposition between b and c,
 | |
|   // then it will generate a stub for the call edge between b and c which will
 | |
|   // save the TOC pointer into the designated stack slot allocated by b. If we
 | |
|   // return true here, and therefore allow a tail call between b and c, that
 | |
|   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
 | |
|   // pointer into the stack slot allocated by a (where the a -> b stub saved
 | |
|   // a's TOC base pointer). If we're not considering a tail call, but rather,
 | |
|   // whether a nop is needed after the call instruction in b, because the linker
 | |
|   // will insert a stub, it might complain about a missing nop if we omit it
 | |
|   // (although many don't complain in this case).
 | |
|   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| needStackSlotPassParameters(const PPCSubtarget &Subtarget,
 | |
|                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | |
|   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
 | |
| 
 | |
|   const unsigned PtrByteSize = 8;
 | |
|   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
| 
 | |
|   static const MCPhysReg GPR[] = {
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned NumGPRs = array_lengthof(GPR);
 | |
|   const unsigned NumFPRs = 13;
 | |
|   const unsigned NumVRs = array_lengthof(VR);
 | |
|   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | |
| 
 | |
|   unsigned NumBytes = LinkageSize;
 | |
|   unsigned AvailableFPRs = NumFPRs;
 | |
|   unsigned AvailableVRs = NumVRs;
 | |
| 
 | |
|   for (const ISD::OutputArg& Param : Outs) {
 | |
|     if (Param.Flags.isNest()) continue;
 | |
| 
 | |
|     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
 | |
|                                PtrByteSize, LinkageSize, ParamAreaSize,
 | |
|                                NumBytes, AvailableFPRs, AvailableVRs,
 | |
|                                Subtarget.hasQPX()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
 | |
|   if (CS.arg_size() != CallerFn->arg_size())
 | |
|     return false;
 | |
| 
 | |
|   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
 | |
|   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
 | |
|   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
 | |
| 
 | |
|   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
 | |
|     const Value* CalleeArg = *CalleeArgIter;
 | |
|     const Value* CallerArg = &(*CallerArgIter);
 | |
|     if (CalleeArg == CallerArg)
 | |
|       continue;
 | |
| 
 | |
|     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
 | |
|     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
 | |
|     //      }
 | |
|     // 1st argument of callee is undef and has the same type as caller.
 | |
|     if (CalleeArg->getType() == CallerArg->getType() &&
 | |
|         isa<UndefValue>(CalleeArg))
 | |
|       continue;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Returns true if TCO is possible between the callers and callees
 | |
| // calling conventions.
 | |
| static bool
 | |
| areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
 | |
|                                     CallingConv::ID CalleeCC) {
 | |
|   // Tail calls are possible with fastcc and ccc.
 | |
|   auto isTailCallableCC  = [] (CallingConv::ID CC){
 | |
|       return  CC == CallingConv::C || CC == CallingConv::Fast;
 | |
|   };
 | |
|   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
 | |
|     return false;
 | |
| 
 | |
|   // We can safely tail call both fastcc and ccc callees from a c calling
 | |
|   // convention caller. If the caller is fastcc, we may have less stack space
 | |
|   // than a non-fastcc caller with the same signature so disable tail-calls in
 | |
|   // that case.
 | |
|   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
 | |
|                                     SDValue Callee,
 | |
|                                     CallingConv::ID CalleeCC,
 | |
|                                     ImmutableCallSite CS,
 | |
|                                     bool isVarArg,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     SelectionDAG& DAG) const {
 | |
|   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
 | |
| 
 | |
|   if (DisableSCO && !TailCallOpt) return false;
 | |
| 
 | |
|   // Variadic argument functions are not supported.
 | |
|   if (isVarArg) return false;
 | |
| 
 | |
|   auto &Caller = DAG.getMachineFunction().getFunction();
 | |
|   // Check that the calling conventions are compatible for tco.
 | |
|   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
 | |
|     return false;
 | |
| 
 | |
|   // Caller contains any byval parameter is not supported.
 | |
|   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
 | |
|     return false;
 | |
| 
 | |
|   // Callee contains any byval parameter is not supported, too.
 | |
|   // Note: This is a quick work around, because in some cases, e.g.
 | |
|   // caller's stack size > callee's stack size, we are still able to apply
 | |
|   // sibling call optimization. For example, gcc is able to do SCO for caller1
 | |
|   // in the following example, but not for caller2.
 | |
|   //   struct test {
 | |
|   //     long int a;
 | |
|   //     char ary[56];
 | |
|   //   } gTest;
 | |
|   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
 | |
|   //     b->a = v.a;
 | |
|   //     return 0;
 | |
|   //   }
 | |
|   //   void caller1(struct test a, struct test c, struct test *b) {
 | |
|   //     callee(gTest, b); }
 | |
|   //   void caller2(struct test *b) { callee(gTest, b); }
 | |
|   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
 | |
|     return false;
 | |
| 
 | |
|   // If callee and caller use different calling conventions, we cannot pass
 | |
|   // parameters on stack since offsets for the parameter area may be different.
 | |
|   if (Caller.getCallingConv() != CalleeCC &&
 | |
|       needStackSlotPassParameters(Subtarget, Outs))
 | |
|     return false;
 | |
| 
 | |
|   // No TCO/SCO on indirect call because Caller have to restore its TOC
 | |
|   if (!isFunctionGlobalAddress(Callee) &&
 | |
|       !isa<ExternalSymbolSDNode>(Callee))
 | |
|     return false;
 | |
| 
 | |
|   // If the caller and callee potentially have different TOC bases then we
 | |
|   // cannot tail call since we need to restore the TOC pointer after the call.
 | |
|   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
 | |
|   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
 | |
|     return false;
 | |
| 
 | |
|   // TCO allows altering callee ABI, so we don't have to check further.
 | |
|   if (CalleeCC == CallingConv::Fast && TailCallOpt)
 | |
|     return true;
 | |
| 
 | |
|   if (DisableSCO) return false;
 | |
| 
 | |
|   // If callee use the same argument list that caller is using, then we can
 | |
|   // apply SCO on this case. If it is not, then we need to check if callee needs
 | |
|   // stack for passing arguments.
 | |
|   if (!hasSameArgumentList(&Caller, CS) &&
 | |
|       needStackSlotPassParameters(Subtarget, Outs)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Variable argument functions are not supported.
 | |
|   if (isVarArg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
 | |
|   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | |
|     // Functions containing by val parameters are not supported.
 | |
|     for (unsigned i = 0; i != Ins.size(); i++) {
 | |
|        ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|        if (Flags.isByVal()) return false;
 | |
|     }
 | |
| 
 | |
|     // Non-PIC/GOT tail calls are supported.
 | |
|     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | |
|       return true;
 | |
| 
 | |
|     // At the moment we can only do local tail calls (in same module, hidden
 | |
|     // or protected) if we are generating PIC.
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|       return G->getGlobal()->hasHiddenVisibility()
 | |
|           || G->getGlobal()->hasProtectedVisibility();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCallCompatibleAddress - Return the immediate to use if the specified
 | |
| /// 32-bit value is representable in the immediate field of a BxA instruction.
 | |
| static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|   if (!C) return nullptr;
 | |
| 
 | |
|   int Addr = C->getZExtValue();
 | |
|   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | |
|       SignExtend32<26>(Addr) != Addr)
 | |
|     return nullptr;  // Top 6 bits have to be sext of immediate.
 | |
| 
 | |
|   return DAG
 | |
|       .getConstant(
 | |
|           (int)C->getZExtValue() >> 2, SDLoc(Op),
 | |
|           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
 | |
|       .getNode();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct TailCallArgumentInfo {
 | |
|   SDValue Arg;
 | |
|   SDValue FrameIdxOp;
 | |
|   int FrameIdx = 0;
 | |
| 
 | |
|   TailCallArgumentInfo() = default;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | |
| static void StoreTailCallArgumentsToStackSlot(
 | |
|     SelectionDAG &DAG, SDValue Chain,
 | |
|     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
 | |
|     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
 | |
|   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | |
|     SDValue Arg = TailCallArgs[i].Arg;
 | |
|     SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | |
|     int FI = TailCallArgs[i].FrameIdx;
 | |
|     // Store relative to framepointer.
 | |
|     MemOpChains.push_back(DAG.getStore(
 | |
|         Chain, dl, Arg, FIN,
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | |
| /// the appropriate stack slot for the tail call optimized function call.
 | |
| static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
 | |
|                                              SDValue OldRetAddr, SDValue OldFP,
 | |
|                                              int SPDiff, const SDLoc &dl) {
 | |
|   if (SPDiff) {
 | |
|     // Calculate the new stack slot for the return address.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
 | |
|     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
|     int SlotSize = isPPC64 ? 8 : 4;
 | |
|     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
 | |
|     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
 | |
|                                                          NewRetAddrLoc, true);
 | |
|     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | |
|     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
 | |
|                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
 | |
| 
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (Subtarget.isDarwinABI()) {
 | |
|       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
 | |
|       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
 | |
|                                                          true);
 | |
|       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
 | |
|       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
 | |
|                            MachinePointerInfo::getFixedStack(
 | |
|                                DAG.getMachineFunction(), NewFPIdx));
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | |
| /// the position of the argument.
 | |
| static void
 | |
| CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | |
|                          SDValue Arg, int SPDiff, unsigned ArgOffset,
 | |
|                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
 | |
|   int Offset = ArgOffset + SPDiff;
 | |
|   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
 | |
|   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
 | |
|   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|   SDValue FIN = DAG.getFrameIndex(FI, VT);
 | |
|   TailCallArgumentInfo Info;
 | |
|   Info.Arg = Arg;
 | |
|   Info.FrameIdxOp = FIN;
 | |
|   Info.FrameIdx = FI;
 | |
|   TailCallArguments.push_back(Info);
 | |
| }
 | |
| 
 | |
| /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | |
| /// stack slot. Returns the chain as result and the loaded frame pointers in
 | |
| /// LROpOut/FPOpout. Used when tail calling.
 | |
| SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
 | |
|     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
 | |
|     SDValue &FPOpOut, const SDLoc &dl) const {
 | |
|   if (SPDiff) {
 | |
|     // Load the LR and FP stack slot for later adjusting.
 | |
|     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
 | |
|     LROpOut = getReturnAddrFrameIndex(DAG);
 | |
|     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
 | |
|     Chain = SDValue(LROpOut.getNode(), 1);
 | |
| 
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (Subtarget.isDarwinABI()) {
 | |
|       FPOpOut = getFramePointerFrameIndex(DAG);
 | |
|       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
 | |
|       Chain = SDValue(FPOpOut.getNode(), 1);
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute. The copy will be passed as
 | |
| /// a byval function parameter.
 | |
| /// Sometimes what we are copying is the end of a larger object, the part that
 | |
| /// does not fit in registers.
 | |
| static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
 | |
|                                          SDValue Chain, ISD::ArgFlagsTy Flags,
 | |
|                                          SelectionDAG &DAG, const SDLoc &dl) {
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        false, false, false, MachinePointerInfo(),
 | |
|                        MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | |
| /// tail calls.
 | |
| static void LowerMemOpCallTo(
 | |
|     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
 | |
|     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
 | |
|     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
 | |
|     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | |
|   if (!isTailCall) {
 | |
|     if (isVector) {
 | |
|       SDValue StackPtr;
 | |
|       if (isPPC64)
 | |
|         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|       else
 | |
|         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                            DAG.getConstant(ArgOffset, dl, PtrVT));
 | |
|     }
 | |
|     MemOpChains.push_back(
 | |
|         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | |
|     // Calculate and remember argument location.
 | |
|   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | |
|                                   TailCallArguments);
 | |
| }
 | |
| 
 | |
| static void
 | |
| PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
 | |
|                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
 | |
|                 SDValue FPOp,
 | |
|                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
 | |
|   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | |
|   // might overwrite each other in case of tail call optimization.
 | |
|   SmallVector<SDValue, 8> MemOpChains2;
 | |
|   // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|   InFlag = SDValue();
 | |
|   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | |
|                                     MemOpChains2, dl);
 | |
|   if (!MemOpChains2.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
 | |
| 
 | |
|   // Store the return address to the appropriate stack slot.
 | |
|   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
 | |
| 
 | |
|   // Emit callseq_end just before tailcall node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | |
|                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | |
|   InFlag = Chain.getValue(1);
 | |
| }
 | |
| 
 | |
| // Is this global address that of a function that can be called by name? (as
 | |
| // opposed to something that must hold a descriptor for an indirect call).
 | |
| static bool isFunctionGlobalAddress(SDValue Callee) {
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
 | |
|         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
 | |
|       return false;
 | |
| 
 | |
|     return G->getGlobal()->getValueType()->isFunctionTy();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
 | |
|             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
 | |
|             bool isPatchPoint, bool hasNest,
 | |
|             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
 | |
|             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
 | |
|             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   bool isSVR4ABI = Subtarget.isSVR4ABI();
 | |
|   bool isELFv2ABI = Subtarget.isELFv2ABI();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | |
|   NodeTys.push_back(MVT::Other);   // Returns a chain
 | |
|   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
 | |
| 
 | |
|   unsigned CallOpc = PPCISD::CALL;
 | |
| 
 | |
|   bool needIndirectCall = true;
 | |
|   if (!isSVR4ABI || !isPPC64)
 | |
|     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
 | |
|       // If this is an absolute destination address, use the munged value.
 | |
|       Callee = SDValue(Dest, 0);
 | |
|       needIndirectCall = false;
 | |
|     }
 | |
| 
 | |
|   // PC-relative references to external symbols should go through $stub, unless
 | |
|   // we're building with the leopard linker or later, which automatically
 | |
|   // synthesizes these stubs.
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
 | |
|   const GlobalValue *GV = nullptr;
 | |
|   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     GV = G->getGlobal();
 | |
|   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
 | |
|   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
 | |
| 
 | |
|   if (isFunctionGlobalAddress(Callee)) {
 | |
|     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
 | |
|     // A call to a TLS address is actually an indirect call to a
 | |
|     // thread-specific pointer.
 | |
|     unsigned OpFlags = 0;
 | |
|     if (UsePlt)
 | |
|       OpFlags = PPCII::MO_PLT;
 | |
| 
 | |
|     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
 | |
|     // every direct call is) turn it into a TargetGlobalAddress /
 | |
|     // TargetExternalSymbol node so that legalize doesn't hack it.
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
 | |
|                                         Callee.getValueType(), 0, OpFlags);
 | |
|     needIndirectCall = false;
 | |
|   }
 | |
| 
 | |
|   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     unsigned char OpFlags = 0;
 | |
| 
 | |
|     if (UsePlt)
 | |
|       OpFlags = PPCII::MO_PLT;
 | |
| 
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
 | |
|                                          OpFlags);
 | |
|     needIndirectCall = false;
 | |
|   }
 | |
| 
 | |
|   if (isPatchPoint) {
 | |
|     // We'll form an invalid direct call when lowering a patchpoint; the full
 | |
|     // sequence for an indirect call is complicated, and many of the
 | |
|     // instructions introduced might have side effects (and, thus, can't be
 | |
|     // removed later). The call itself will be removed as soon as the
 | |
|     // argument/return lowering is complete, so the fact that it has the wrong
 | |
|     // kind of operands should not really matter.
 | |
|     needIndirectCall = false;
 | |
|   }
 | |
| 
 | |
|   if (needIndirectCall) {
 | |
|     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
 | |
|     // to do the call, we can't use PPCISD::CALL.
 | |
|     SDValue MTCTROps[] = {Chain, Callee, InFlag};
 | |
| 
 | |
|     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
 | |
|       // Function pointers in the 64-bit SVR4 ABI do not point to the function
 | |
|       // entry point, but to the function descriptor (the function entry point
 | |
|       // address is part of the function descriptor though).
 | |
|       // The function descriptor is a three doubleword structure with the
 | |
|       // following fields: function entry point, TOC base address and
 | |
|       // environment pointer.
 | |
|       // Thus for a call through a function pointer, the following actions need
 | |
|       // to be performed:
 | |
|       //   1. Save the TOC of the caller in the TOC save area of its stack
 | |
|       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
 | |
|       //   2. Load the address of the function entry point from the function
 | |
|       //      descriptor.
 | |
|       //   3. Load the TOC of the callee from the function descriptor into r2.
 | |
|       //   4. Load the environment pointer from the function descriptor into
 | |
|       //      r11.
 | |
|       //   5. Branch to the function entry point address.
 | |
|       //   6. On return of the callee, the TOC of the caller needs to be
 | |
|       //      restored (this is done in FinishCall()).
 | |
|       //
 | |
|       // The loads are scheduled at the beginning of the call sequence, and the
 | |
|       // register copies are flagged together to ensure that no other
 | |
|       // operations can be scheduled in between. E.g. without flagging the
 | |
|       // copies together, a TOC access in the caller could be scheduled between
 | |
|       // the assignment of the callee TOC and the branch to the callee, which
 | |
|       // results in the TOC access going through the TOC of the callee instead
 | |
|       // of going through the TOC of the caller, which leads to incorrect code.
 | |
| 
 | |
|       // Load the address of the function entry point from the function
 | |
|       // descriptor.
 | |
|       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
 | |
|       if (LDChain.getValueType() == MVT::Glue)
 | |
|         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
 | |
| 
 | |
|       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
 | |
|                           ? (MachineMemOperand::MODereferenceable |
 | |
|                              MachineMemOperand::MOInvariant)
 | |
|                           : MachineMemOperand::MONone;
 | |
| 
 | |
|       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
 | |
|       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
 | |
|                                         /* Alignment = */ 8, MMOFlags);
 | |
| 
 | |
|       // Load environment pointer into r11.
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
 | |
|       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
 | |
|       SDValue LoadEnvPtr =
 | |
|           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
 | |
|                       /* Alignment = */ 8, MMOFlags);
 | |
| 
 | |
|       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
 | |
|       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
 | |
|       SDValue TOCPtr =
 | |
|           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
 | |
|                       /* Alignment = */ 8, MMOFlags);
 | |
| 
 | |
|       setUsesTOCBasePtr(DAG);
 | |
|       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
 | |
|                                         InFlag);
 | |
|       Chain = TOCVal.getValue(0);
 | |
|       InFlag = TOCVal.getValue(1);
 | |
| 
 | |
|       // If the function call has an explicit 'nest' parameter, it takes the
 | |
|       // place of the environment pointer.
 | |
|       if (!hasNest) {
 | |
|         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
 | |
|                                           InFlag);
 | |
| 
 | |
|         Chain = EnvVal.getValue(0);
 | |
|         InFlag = EnvVal.getValue(1);
 | |
|       }
 | |
| 
 | |
|       MTCTROps[0] = Chain;
 | |
|       MTCTROps[1] = LoadFuncPtr;
 | |
|       MTCTROps[2] = InFlag;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
 | |
|                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::Other);
 | |
|     NodeTys.push_back(MVT::Glue);
 | |
|     Ops.push_back(Chain);
 | |
|     CallOpc = PPCISD::BCTRL;
 | |
|     Callee.setNode(nullptr);
 | |
|     // Add use of X11 (holding environment pointer)
 | |
|     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
 | |
|       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
 | |
|     // Add CTR register as callee so a bctr can be emitted later.
 | |
|     if (isTailCall)
 | |
|       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
 | |
|   }
 | |
| 
 | |
|   // If this is a direct call, pass the chain and the callee.
 | |
|   if (Callee.getNode()) {
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(Callee);
 | |
|   }
 | |
|   // If this is a tail call add stack pointer delta.
 | |
|   if (isTailCall)
 | |
|     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
 | |
|   // into the call.
 | |
|   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
 | |
|     setUsesTOCBasePtr(DAG);
 | |
|     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
 | |
|   }
 | |
| 
 | |
|   return CallOpc;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerCallResult(
 | |
|     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                     *DAG.getContext());
 | |
| 
 | |
|   CCRetInfo.AnalyzeCallResult(
 | |
|       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | |
|                ? RetCC_PPC_Cold
 | |
|                : RetCC_PPC);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl,
 | |
|                                      VA.getLocReg(), VA.getLocVT(), InFlag);
 | |
|     Chain = Val.getValue(1);
 | |
|     InFlag = Val.getValue(2);
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::AExt:
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::FinishCall(
 | |
|     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
 | |
|     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
 | |
|     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
 | |
|     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
 | |
|     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
 | |
|   std::vector<EVT> NodeTys;
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
 | |
|                                  SPDiff, isTailCall, isPatchPoint, hasNest,
 | |
|                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
 | |
| 
 | |
|   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
 | |
|   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
 | |
|     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
 | |
| 
 | |
|   // When performing tail call optimization the callee pops its arguments off
 | |
|   // the stack. Account for this here so these bytes can be pushed back on in
 | |
|   // PPCFrameLowering::eliminateCallFramePseudoInstr.
 | |
|   int BytesCalleePops =
 | |
|     (CallConv == CallingConv::Fast &&
 | |
|      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const uint32_t *Mask =
 | |
|       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   // Emit tail call.
 | |
|   if (isTailCall) {
 | |
|     assert(((Callee.getOpcode() == ISD::Register &&
 | |
|              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
 | |
|             Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | |
|             Callee.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|             isa<ConstantSDNode>(Callee)) &&
 | |
|     "Expecting an global address, external symbol, absolute value or register");
 | |
| 
 | |
|     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
 | |
|     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
 | |
|   }
 | |
| 
 | |
|   // Add a NOP immediately after the branch instruction when using the 64-bit
 | |
|   // SVR4 ABI. At link time, if caller and callee are in a different module and
 | |
|   // thus have a different TOC, the call will be replaced with a call to a stub
 | |
|   // function which saves the current TOC, loads the TOC of the callee and
 | |
|   // branches to the callee. The NOP will be replaced with a load instruction
 | |
|   // which restores the TOC of the caller from the TOC save slot of the current
 | |
|   // stack frame. If caller and callee belong to the same module (and have the
 | |
|   // same TOC), the NOP will remain unchanged.
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
 | |
|       !isPatchPoint) {
 | |
|     if (CallOpc == PPCISD::BCTRL) {
 | |
|       // This is a call through a function pointer.
 | |
|       // Restore the caller TOC from the save area into R2.
 | |
|       // See PrepareCall() for more information about calls through function
 | |
|       // pointers in the 64-bit SVR4 ABI.
 | |
|       // We are using a target-specific load with r2 hard coded, because the
 | |
|       // result of a target-independent load would never go directly into r2,
 | |
|       // since r2 is a reserved register (which prevents the register allocator
 | |
|       // from allocating it), resulting in an additional register being
 | |
|       // allocated and an unnecessary move instruction being generated.
 | |
|       CallOpc = PPCISD::BCTRL_LOAD_TOC;
 | |
| 
 | |
|       EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
 | |
|       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | |
|       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | |
|       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
 | |
| 
 | |
|       // The address needs to go after the chain input but before the flag (or
 | |
|       // any other variadic arguments).
 | |
|       Ops.insert(std::next(Ops.begin()), AddTOC);
 | |
|     } else if (CallOpc == PPCISD::CALL &&
 | |
|       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
 | |
|       // Otherwise insert NOP for non-local calls.
 | |
|       CallOpc = PPCISD::CALL_NOP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | |
|                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
 | |
|                              InFlag, dl);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | |
|                          Ins, dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   SDLoc &dl                             = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
|   bool isPatchPoint                     = CLI.IsPatchPoint;
 | |
|   ImmutableCallSite CS                  = CLI.CS;
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
 | |
|       isTailCall = false;
 | |
|     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
 | |
|       isTailCall =
 | |
|         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
 | |
|                                                  isVarArg, Outs, Ins, DAG);
 | |
|     else
 | |
|       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
 | |
|                                                      Ins, DAG);
 | |
|     if (isTailCall) {
 | |
|       ++NumTailCalls;
 | |
|       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | |
|         ++NumSiblingCalls;
 | |
| 
 | |
|       assert(isa<GlobalAddressSDNode>(Callee) &&
 | |
|              "Callee should be an llvm::Function object.");
 | |
|       LLVM_DEBUG(
 | |
|           const GlobalValue *GV =
 | |
|               cast<GlobalAddressSDNode>(Callee)->getGlobal();
 | |
|           const unsigned Width =
 | |
|               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
 | |
|           dbgs() << "TCO caller: "
 | |
|                  << left_justify(DAG.getMachineFunction().getName(), Width)
 | |
|                  << ", callee linkage: " << GV->getVisibility() << ", "
 | |
|                  << GV->getLinkage() << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!isTailCall && CS && CS.isMustTailCall())
 | |
|     report_fatal_error("failed to perform tail call elimination on a call "
 | |
|                        "site marked musttail");
 | |
| 
 | |
|   // When long calls (i.e. indirect calls) are always used, calls are always
 | |
|   // made via function pointer. If we have a function name, first translate it
 | |
|   // into a pointer.
 | |
|   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
 | |
|       !isTailCall)
 | |
|     Callee = LowerGlobalAddress(Callee, DAG);
 | |
| 
 | |
|   if (Subtarget.isSVR4ABI()) {
 | |
|     if (Subtarget.isPPC64())
 | |
|       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
 | |
|                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | |
|                               dl, DAG, InVals, CS);
 | |
|     else
 | |
|       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
 | |
|                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | |
|                               dl, DAG, InVals, CS);
 | |
|   }
 | |
| 
 | |
|   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
 | |
|                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | |
|                           dl, DAG, InVals, CS);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerCall_32SVR4(
 | |
|     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | |
|     bool isTailCall, bool isPatchPoint,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | |
|     ImmutableCallSite CS) const {
 | |
|   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
 | |
|   // of the 32-bit SVR4 ABI stack frame layout.
 | |
| 
 | |
|   assert((CallConv == CallingConv::C ||
 | |
|           CallConv == CallingConv::Cold ||
 | |
|           CallConv == CallingConv::Fast) && "Unknown calling convention!");
 | |
| 
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, parameter list area and the part of the local variable space which
 | |
|   // contains copies of aggregates which are passed by value.
 | |
| 
 | |
|   // Assign locations to all of the outgoing arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
 | |
|                        PtrByteSize);
 | |
|   if (useSoftFloat())
 | |
|     CCInfo.PreAnalyzeCallOperands(Outs);
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // Handle fixed and variable vector arguments differently.
 | |
|     // Fixed vector arguments go into registers as long as registers are
 | |
|     // available. Variable vector arguments always go into memory.
 | |
|     unsigned NumArgs = Outs.size();
 | |
| 
 | |
|     for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|       MVT ArgVT = Outs[i].VT;
 | |
|       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|       bool Result;
 | |
| 
 | |
|       if (Outs[i].IsFixed) {
 | |
|         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
 | |
|                                CCInfo);
 | |
|       } else {
 | |
|         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
 | |
|                                       ArgFlags, CCInfo);
 | |
|       }
 | |
| 
 | |
|       if (Result) {
 | |
| #ifndef NDEBUG
 | |
|         errs() << "Call operand #" << i << " has unhandled type "
 | |
|              << EVT(ArgVT).getEVTString() << "\n";
 | |
| #endif
 | |
|         llvm_unreachable(nullptr);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // All arguments are treated the same.
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
 | |
|   }
 | |
|   CCInfo.clearWasPPCF128();
 | |
| 
 | |
|   // Assign locations to all of the outgoing aggregate by value arguments.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
 | |
| 
 | |
|   // Size of the linkage area, parameter list area and the part of the local
 | |
|   // space variable where copies of aggregates which are passed by value are
 | |
|   // stored.
 | |
|   unsigned NumBytes = CCByValInfo.getNextStackOffset();
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be moved somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   bool seenFloatArg = false;
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, j = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     if (Flags.isByVal()) {
 | |
|       // Argument is an aggregate which is passed by value, thus we need to
 | |
|       // create a copy of it in the local variable space of the current stack
 | |
|       // frame (which is the stack frame of the caller) and pass the address of
 | |
|       // this copy to the callee.
 | |
|       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
 | |
|       CCValAssign &ByValVA = ByValArgLocs[j++];
 | |
|       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 | |
| 
 | |
|       // Memory reserved in the local variable space of the callers stack frame.
 | |
|       unsigned LocMemOffset = ByValVA.getLocMemOffset();
 | |
| 
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | |
|                            StackPtr, PtrOff);
 | |
| 
 | |
|       // Create a copy of the argument in the local area of the current
 | |
|       // stack frame.
 | |
|       SDValue MemcpyCall =
 | |
|         CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                                   CallSeqStart.getNode()->getOperand(0),
 | |
|                                   Flags, DAG, dl);
 | |
| 
 | |
|       // This must go outside the CALLSEQ_START..END.
 | |
|       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
 | |
|                                                      SDLoc(MemcpyCall));
 | |
|       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                              NewCallSeqStart.getNode());
 | |
|       Chain = CallSeqStart = NewCallSeqStart;
 | |
| 
 | |
|       // Pass the address of the aggregate copy on the stack either in a
 | |
|       // physical register or in the parameter list area of the current stack
 | |
|       // frame to the callee.
 | |
|       Arg = PtrOff;
 | |
|     }
 | |
| 
 | |
|     // When useCRBits() is true, there can be i1 arguments.
 | |
|     // It is because getRegisterType(MVT::i1) => MVT::i1,
 | |
|     // and for other integer types getRegisterType() => MVT::i32.
 | |
|     // Extend i1 and ensure callee will get i32.
 | |
|     if (Arg.getValueType() == MVT::i1)
 | |
|       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
 | |
|                         dl, MVT::i32, Arg);
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       seenFloatArg |= VA.getLocVT().isFloatingPoint();
 | |
|       // Put argument in a physical register.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       // Put argument in the parameter list area of the current stack frame.
 | |
|       assert(VA.isMemLoc());
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
| 
 | |
|       if (!isTailCall) {
 | |
|         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | |
|                              StackPtr, PtrOff);
 | |
| 
 | |
|         MemOpChains.push_back(
 | |
|             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | |
|       } else {
 | |
|         // Calculate and remember argument location.
 | |
|         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
 | |
|                                  TailCallArguments);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Set CR bit 6 to true if this is a vararg call with floating args passed in
 | |
|   // registers.
 | |
|   if (isVarArg) {
 | |
|     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Ops[] = { Chain, InFlag };
 | |
| 
 | |
|     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
 | |
|                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
 | |
| 
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | |
|                     TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
 | |
|                     /* unused except on PPC64 ELFv1 */ false, DAG,
 | |
|                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
 | |
|                     NumBytes, Ins, InVals, CS);
 | |
| }
 | |
| 
 | |
| // Copy an argument into memory, being careful to do this outside the
 | |
| // call sequence for the call to which the argument belongs.
 | |
| SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
 | |
|     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
 | |
|     SelectionDAG &DAG, const SDLoc &dl) const {
 | |
|   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                         CallSeqStart.getNode()->getOperand(0),
 | |
|                         Flags, DAG, dl);
 | |
|   // The MEMCPY must go outside the CALLSEQ_START..END.
 | |
|   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
 | |
|   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
 | |
|                                                  SDLoc(MemcpyCall));
 | |
|   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                          NewCallSeqStart.getNode());
 | |
|   return NewCallSeqStart;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerCall_64SVR4(
 | |
|     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | |
|     bool isTailCall, bool isPatchPoint,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | |
|     ImmutableCallSite CS) const {
 | |
|   bool isELFv2ABI = Subtarget.isELFv2ABI();
 | |
|   bool isLittleEndian = Subtarget.isLittleEndian();
 | |
|   unsigned NumOps = Outs.size();
 | |
|   bool hasNest = false;
 | |
|   bool IsSibCall = false;
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   unsigned PtrByteSize = 8;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
 | |
|     IsSibCall = true;
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
 | |
|          "fastcc not supported on varargs functions");
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
 | |
|   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
 | |
|   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
 | |
|   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
|   unsigned NumBytes = LinkageSize;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
|   unsigned &QFPR_idx = FPR_idx;
 | |
| 
 | |
|   static const MCPhysReg GPR[] = {
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned NumGPRs = array_lengthof(GPR);
 | |
|   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
 | |
|   const unsigned NumVRs  = array_lengthof(VR);
 | |
|   const unsigned NumQFPRs = NumFPRs;
 | |
| 
 | |
|   // On ELFv2, we can avoid allocating the parameter area if all the arguments
 | |
|   // can be passed to the callee in registers.
 | |
|   // For the fast calling convention, there is another check below.
 | |
|   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
 | |
|   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
 | |
|   if (!HasParameterArea) {
 | |
|     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | |
|     unsigned AvailableFPRs = NumFPRs;
 | |
|     unsigned AvailableVRs = NumVRs;
 | |
|     unsigned NumBytesTmp = NumBytes;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       if (Outs[i].Flags.isNest()) continue;
 | |
|       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
 | |
|                                 PtrByteSize, LinkageSize, ParamAreaSize,
 | |
|                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
 | |
|                                 Subtarget.hasQPX()))
 | |
|         HasParameterArea = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // When using the fast calling convention, we don't provide backing for
 | |
|   // arguments that will be in registers.
 | |
|   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
 | |
| 
 | |
|   // Avoid allocating parameter area for fastcc functions if all the arguments
 | |
|   // can be passed in the registers.
 | |
|   if (CallConv == CallingConv::Fast)
 | |
|     HasParameterArea = false;
 | |
| 
 | |
|   // Add up all the space actually used.
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     EVT ArgVT = Outs[i].VT;
 | |
|     EVT OrigVT = Outs[i].ArgVT;
 | |
| 
 | |
|     if (Flags.isNest())
 | |
|       continue;
 | |
| 
 | |
|     if (CallConv == CallingConv::Fast) {
 | |
|       if (Flags.isByVal()) {
 | |
|         NumGPRsUsed += (Flags.getByValSize()+7)/8;
 | |
|         if (NumGPRsUsed > NumGPRs)
 | |
|           HasParameterArea = true;
 | |
|       } else {
 | |
|         switch (ArgVT.getSimpleVT().SimpleTy) {
 | |
|         default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|         case MVT::i1:
 | |
|         case MVT::i32:
 | |
|         case MVT::i64:
 | |
|           if (++NumGPRsUsed <= NumGPRs)
 | |
|             continue;
 | |
|           break;
 | |
|         case MVT::v4i32:
 | |
|         case MVT::v8i16:
 | |
|         case MVT::v16i8:
 | |
|         case MVT::v2f64:
 | |
|         case MVT::v2i64:
 | |
|         case MVT::v1i128:
 | |
|         case MVT::f128:
 | |
|           if (++NumVRsUsed <= NumVRs)
 | |
|             continue;
 | |
|           break;
 | |
|         case MVT::v4f32:
 | |
|           // When using QPX, this is handled like a FP register, otherwise, it
 | |
|           // is an Altivec register.
 | |
|           if (Subtarget.hasQPX()) {
 | |
|             if (++NumFPRsUsed <= NumFPRs)
 | |
|               continue;
 | |
|           } else {
 | |
|             if (++NumVRsUsed <= NumVRs)
 | |
|               continue;
 | |
|           }
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|         case MVT::f64:
 | |
|         case MVT::v4f64: // QPX
 | |
|         case MVT::v4i1:  // QPX
 | |
|           if (++NumFPRsUsed <= NumFPRs)
 | |
|             continue;
 | |
|           break;
 | |
|         }
 | |
|         HasParameterArea = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Respect alignment of argument on the stack.  */
 | |
|     unsigned Align =
 | |
|       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | |
|     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
 | |
| 
 | |
|     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | |
|     if (Flags.isInConsecutiveRegsLast())
 | |
|       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|   }
 | |
| 
 | |
|   unsigned NumBytesActuallyUsed = NumBytes;
 | |
| 
 | |
|   // In the old ELFv1 ABI,
 | |
|   // the prolog code of the callee may store up to 8 GPR argument registers to
 | |
|   // the stack, allowing va_start to index over them in memory if its varargs.
 | |
|   // Because we cannot tell if this is needed on the caller side, we have to
 | |
|   // conservatively assume that it is needed.  As such, make sure we have at
 | |
|   // least enough stack space for the caller to store the 8 GPRs.
 | |
|   // In the ELFv2 ABI, we allocate the parameter area iff a callee
 | |
|   // really requires memory operands, e.g. a vararg function.
 | |
|   if (HasParameterArea)
 | |
|     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
 | |
|   else
 | |
|     NumBytes = LinkageSize;
 | |
| 
 | |
|   // Tail call needs the stack to be aligned.
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
 | |
| 
 | |
|   int SPDiff = 0;
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   if (!IsSibCall)
 | |
|     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // To protect arguments on the stack from being clobbered in a tail call,
 | |
|   // force all the loads to happen before doing any other lowering.
 | |
|   if (isTailCall)
 | |
|     Chain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   if (!IsSibCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be move somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.  Also, if this is a vararg function, floating point operations
 | |
|   // must be stored to our stack, and loaded into integer regs as well, if
 | |
|   // any integer regs are available for argument passing.
 | |
|   unsigned ArgOffset = LinkageSize;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     EVT ArgVT = Outs[i].VT;
 | |
|     EVT OrigVT = Outs[i].ArgVT;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff;
 | |
| 
 | |
|     // We re-align the argument offset for each argument, except when using the
 | |
|     // fast calling convention, when we need to make sure we do that only when
 | |
|     // we'll actually use a stack slot.
 | |
|     auto ComputePtrOff = [&]() {
 | |
|       /* Respect alignment of argument on the stack.  */
 | |
|       unsigned Align =
 | |
|         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | |
|       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | |
| 
 | |
|       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
 | |
| 
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
|     };
 | |
| 
 | |
|     if (CallConv != CallingConv::Fast) {
 | |
|       ComputePtrOff();
 | |
| 
 | |
|       /* Compute GPR index associated with argument offset.  */
 | |
|       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | |
|       GPR_idx = std::min(GPR_idx, NumGPRs);
 | |
|     }
 | |
| 
 | |
|     // Promote integers to 64-bit values.
 | |
|     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
 | |
|       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | |
|       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | |
|     }
 | |
| 
 | |
|     // FIXME memcpy is used way more than necessary.  Correctness first.
 | |
|     // Note: "by value" is code for passing a structure by value, not
 | |
|     // basic types.
 | |
|     if (Flags.isByVal()) {
 | |
|       // Note: Size includes alignment padding, so
 | |
|       //   struct x { short a; char b; }
 | |
|       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
 | |
|       // These are the proper values we need for right-justifying the
 | |
|       // aggregate in a parameter register.
 | |
|       unsigned Size = Flags.getByValSize();
 | |
| 
 | |
|       // An empty aggregate parameter takes up no storage and no
 | |
|       // registers.
 | |
|       if (Size == 0)
 | |
|         continue;
 | |
| 
 | |
|       if (CallConv == CallingConv::Fast)
 | |
|         ComputePtrOff();
 | |
| 
 | |
|       // All aggregates smaller than 8 bytes must be passed right-justified.
 | |
|       if (Size==1 || Size==2 || Size==4) {
 | |
|         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | |
|                                         MachinePointerInfo(), VT);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|           ArgOffset += PtrByteSize;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (GPR_idx == NumGPRs && Size < 8) {
 | |
|         SDValue AddPtr = PtrOff;
 | |
|         if (!isLittleEndian) {
 | |
|           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
 | |
|                                           PtrOff.getValueType());
 | |
|           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|         }
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
|       // Copy entire object into memory.  There are cases where gcc-generated
 | |
|       // code assumes it is there, even if it could be put entirely into
 | |
|       // registers.  (This is not what the doc says.)
 | |
| 
 | |
|       // FIXME: The above statement is likely due to a misunderstanding of the
 | |
|       // documents.  All arguments must be copied into the parameter area BY
 | |
|       // THE CALLEE in the event that the callee takes the address of any
 | |
|       // formal argument.  That has not yet been implemented.  However, it is
 | |
|       // reasonable to use the stack area as a staging area for the register
 | |
|       // load.
 | |
| 
 | |
|       // Skip this for small aggregates, as we will use the same slot for a
 | |
|       // right-justified copy, below.
 | |
|       if (Size >= 8)
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
| 
 | |
|       // When a register is available, pass a small aggregate right-justified.
 | |
|       if (Size < 8 && GPR_idx != NumGPRs) {
 | |
|         // The easiest way to get this right-justified in a register
 | |
|         // is to copy the structure into the rightmost portion of a
 | |
|         // local variable slot, then load the whole slot into the
 | |
|         // register.
 | |
|         // FIXME: The memcpy seems to produce pretty awful code for
 | |
|         // small aggregates, particularly for packed ones.
 | |
|         // FIXME: It would be preferable to use the slot in the
 | |
|         // parameter save area instead of a new local variable.
 | |
|         SDValue AddPtr = PtrOff;
 | |
|         if (!isLittleEndian) {
 | |
|           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
 | |
|           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|         }
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
| 
 | |
|         // Load the slot into the register.
 | |
|         SDValue Load =
 | |
|             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
 | |
|         MemOpChains.push_back(Load.getValue(1));
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|         // Done with this argument.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For aggregates larger than PtrByteSize, copy the pieces of the
 | |
|       // object that fit into registers from the parameter save area.
 | |
|       for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | |
|         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
 | |
|         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getSimpleValueType().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (Flags.isNest()) {
 | |
|         // The 'nest' parameter, if any, is passed in R11.
 | |
|         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
 | |
|         hasNest = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // These can be scalar arguments or elements of an integer array type
 | |
|       // passed directly.  Clang may use those instead of "byval" aggregate
 | |
|       // types to avoid forcing arguments to memory unnecessarily.
 | |
|       if (GPR_idx != NumGPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputePtrOff();
 | |
| 
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist to pass an argument in memory.");
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ArgOffset += PtrByteSize;
 | |
|       }
 | |
|       if (CallConv != CallingConv::Fast)
 | |
|         ArgOffset += PtrByteSize;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64: {
 | |
|       // These can be scalar arguments or elements of a float array type
 | |
|       // passed directly.  The latter are used to implement ELFv2 homogenous
 | |
|       // float aggregates.
 | |
| 
 | |
|       // Named arguments go into FPRs first, and once they overflow, the
 | |
|       // remaining arguments go into GPRs and then the parameter save area.
 | |
|       // Unnamed arguments for vararg functions always go to GPRs and
 | |
|       // then the parameter save area.  For now, put all arguments to vararg
 | |
|       // routines always in both locations (FPR *and* GPR or stack slot).
 | |
|       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
 | |
|       bool NeededLoad = false;
 | |
| 
 | |
|       // First load the argument into the next available FPR.
 | |
|       if (FPR_idx != NumFPRs)
 | |
|         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | |
| 
 | |
|       // Next, load the argument into GPR or stack slot if needed.
 | |
|       if (!NeedGPROrStack)
 | |
|         ;
 | |
|       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
 | |
|         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | |
|         // once we support fp <-> gpr moves.
 | |
| 
 | |
|         // In the non-vararg case, this can only ever happen in the
 | |
|         // presence of f32 array types, since otherwise we never run
 | |
|         // out of FPRs before running out of GPRs.
 | |
|         SDValue ArgVal;
 | |
| 
 | |
|         // Double values are always passed in a single GPR.
 | |
|         if (Arg.getValueType() != MVT::f32) {
 | |
|           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
 | |
| 
 | |
|         // Non-array float values are extended and passed in a GPR.
 | |
|         } else if (!Flags.isInConsecutiveRegs()) {
 | |
|           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | |
|           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | |
| 
 | |
|         // If we have an array of floats, we collect every odd element
 | |
|         // together with its predecessor into one GPR.
 | |
|         } else if (ArgOffset % PtrByteSize != 0) {
 | |
|           SDValue Lo, Hi;
 | |
|           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
 | |
|           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | |
|           if (!isLittleEndian)
 | |
|             std::swap(Lo, Hi);
 | |
|           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | |
| 
 | |
|         // The final element, if even, goes into the first half of a GPR.
 | |
|         } else if (Flags.isInConsecutiveRegsLast()) {
 | |
|           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | |
|           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | |
|           if (!isLittleEndian)
 | |
|             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
 | |
|                                  DAG.getConstant(32, dl, MVT::i32));
 | |
| 
 | |
|         // Non-final even elements are skipped; they will be handled
 | |
|         // together the with subsequent argument on the next go-around.
 | |
|         } else
 | |
|           ArgVal = SDValue();
 | |
| 
 | |
|         if (ArgVal.getNode())
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputePtrOff();
 | |
| 
 | |
|         // Single-precision floating-point values are mapped to the
 | |
|         // second (rightmost) word of the stack doubleword.
 | |
|         if (Arg.getValueType() == MVT::f32 &&
 | |
|             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
 | |
|           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
 | |
|           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|         }
 | |
| 
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist to pass an argument in memory.");
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
| 
 | |
|         NeededLoad = true;
 | |
|       }
 | |
|       // When passing an array of floats, the array occupies consecutive
 | |
|       // space in the argument area; only round up to the next doubleword
 | |
|       // at the end of the array.  Otherwise, each float takes 8 bytes.
 | |
|       if (CallConv != CallingConv::Fast || NeededLoad) {
 | |
|         ArgOffset += (Arg.getValueType() == MVT::f32 &&
 | |
|                       Flags.isInConsecutiveRegs()) ? 4 : 8;
 | |
|         if (Flags.isInConsecutiveRegsLast())
 | |
|           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|     case MVT::v2f64:
 | |
|     case MVT::v2i64:
 | |
|     case MVT::v1i128:
 | |
|     case MVT::f128:
 | |
|       if (!Subtarget.hasQPX()) {
 | |
|       // These can be scalar arguments or elements of a vector array type
 | |
|       // passed directly.  The latter are used to implement ELFv2 homogenous
 | |
|       // vector aggregates.
 | |
| 
 | |
|       // For a varargs call, named arguments go into VRs or on the stack as
 | |
|       // usual; unnamed arguments always go to the stack or the corresponding
 | |
|       // GPRs when within range.  For now, we always put the value in both
 | |
|       // locations (or even all three).
 | |
|       if (isVarArg) {
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist if we have a varargs call.");
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         SDValue Store =
 | |
|             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (VR_idx != NumVRs) {
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | |
|         }
 | |
|         ArgOffset += 16;
 | |
|         for (unsigned i=0; i<16; i+=PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                    DAG.getConstant(i, dl, PtrVT));
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs Altivec params go into VRs or on the stack.
 | |
|       if (VR_idx != NumVRs) {
 | |
|         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputePtrOff();
 | |
| 
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist to pass an argument in memory.");
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ArgOffset += 16;
 | |
|       }
 | |
| 
 | |
|       if (CallConv != CallingConv::Fast)
 | |
|         ArgOffset += 16;
 | |
|       break;
 | |
|       } // not QPX
 | |
| 
 | |
|       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
 | |
|              "Invalid QPX parameter type");
 | |
| 
 | |
|       /* fall through */
 | |
|     case MVT::v4f64:
 | |
|     case MVT::v4i1: {
 | |
|       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
 | |
|       if (isVarArg) {
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist if we have a varargs call.");
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         SDValue Store =
 | |
|             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (QFPR_idx != NumQFPRs) {
 | |
|           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
 | |
|                                      PtrOff, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
 | |
|         }
 | |
|         ArgOffset += (IsF32 ? 16 : 32);
 | |
|         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                    DAG.getConstant(i, dl, PtrVT));
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs QPX params go into registers or on the stack.
 | |
|       if (QFPR_idx != NumQFPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
 | |
|       } else {
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ComputePtrOff();
 | |
| 
 | |
|         assert(HasParameterArea &&
 | |
|                "Parameter area must exist to pass an argument in memory.");
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         if (CallConv == CallingConv::Fast)
 | |
|           ArgOffset += (IsF32 ? 16 : 32);
 | |
|       }
 | |
| 
 | |
|       if (CallConv != CallingConv::Fast)
 | |
|         ArgOffset += (IsF32 ? 16 : 32);
 | |
|       break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
 | |
|          "mismatch in size of parameter area");
 | |
|   (void)NumBytesActuallyUsed;
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // Check if this is an indirect call (MTCTR/BCTRL).
 | |
|   // See PrepareCall() for more information about calls through function
 | |
|   // pointers in the 64-bit SVR4 ABI.
 | |
|   if (!isTailCall && !isPatchPoint &&
 | |
|       !isFunctionGlobalAddress(Callee) &&
 | |
|       !isa<ExternalSymbolSDNode>(Callee)) {
 | |
|     // Load r2 into a virtual register and store it to the TOC save area.
 | |
|     setUsesTOCBasePtr(DAG);
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
 | |
|     // TOC save area offset.
 | |
|     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | |
|     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | |
|     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
|     Chain = DAG.getStore(
 | |
|         Val.getValue(1), dl, Val, AddPtr,
 | |
|         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
 | |
|     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
 | |
|     // This does not mean the MTCTR instruction must use R12; it's easier
 | |
|     // to model this as an extra parameter, so do that.
 | |
|     if (isELFv2ABI && !isPatchPoint)
 | |
|       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall && !IsSibCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | |
|                     TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
 | |
|                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
 | |
|                     SPDiff, NumBytes, Ins, InVals, CS);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerCall_Darwin(
 | |
|     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | |
|     bool isTailCall, bool isPatchPoint,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | |
|     ImmutableCallSite CS) const {
 | |
|   unsigned NumOps = Outs.size();
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with 24/48 bytes, which is
 | |
|   // prereserved space for [SP][CR][LR][3 x unused].
 | |
|   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | |
|   unsigned NumBytes = LinkageSize;
 | |
| 
 | |
|   // Add up all the space actually used.
 | |
|   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
 | |
|   // they all go in registers, but we must reserve stack space for them for
 | |
|   // possible use by the caller.  In varargs or 64-bit calls, parameters are
 | |
|   // assigned stack space in order, with padding so Altivec parameters are
 | |
|   // 16-byte aligned.
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     EVT ArgVT = Outs[i].VT;
 | |
|     // Varargs Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | |
|         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | |
|         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
 | |
|       if (!isVarArg && !isPPC64) {
 | |
|         // Non-varargs Altivec parameters go after all the non-Altivec
 | |
|         // parameters; handle those later so we know how much padding we need.
 | |
|         nAltivecParamsAtEnd++;
 | |
|         continue;
 | |
|       }
 | |
|       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
 | |
|       NumBytes = ((NumBytes+15)/16)*16;
 | |
|     }
 | |
|     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | |
|   }
 | |
| 
 | |
|   // Allow for Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     NumBytes = ((NumBytes+15)/16)*16;
 | |
|     NumBytes += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
| 
 | |
|   // The prolog code of the callee may store up to 8 GPR argument registers to
 | |
|   // the stack, allowing va_start to index over them in memory if its varargs.
 | |
|   // Because we cannot tell if this is needed on the caller side, we have to
 | |
|   // conservatively assume that it is needed.  As such, make sure we have at
 | |
|   // least enough stack space for the caller to store the 8 GPRs.
 | |
|   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
 | |
| 
 | |
|   // Tail call needs the stack to be aligned.
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // To protect arguments on the stack from being clobbered in a tail call,
 | |
|   // force all the loads to happen before doing any other lowering.
 | |
|   if (isTailCall)
 | |
|     Chain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be move somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr;
 | |
|   if (isPPC64)
 | |
|     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|   else
 | |
|     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.  Also, if this is a vararg function, floating point operations
 | |
|   // must be stored to our stack, and loaded into integer regs as well, if
 | |
|   // any integer regs are available for argument passing.
 | |
|   unsigned ArgOffset = LinkageSize;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
|   const unsigned NumGPRs = array_lengthof(GPR_32);
 | |
|   const unsigned NumFPRs = 13;
 | |
|   const unsigned NumVRs  = array_lengthof(VR);
 | |
| 
 | |
|   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff;
 | |
| 
 | |
|     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
 | |
| 
 | |
|     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
| 
 | |
|     // On PPC64, promote integers to 64-bit values.
 | |
|     if (isPPC64 && Arg.getValueType() == MVT::i32) {
 | |
|       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | |
|       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | |
|     }
 | |
| 
 | |
|     // FIXME memcpy is used way more than necessary.  Correctness first.
 | |
|     // Note: "by value" is code for passing a structure by value, not
 | |
|     // basic types.
 | |
|     if (Flags.isByVal()) {
 | |
|       unsigned Size = Flags.getByValSize();
 | |
|       // Very small objects are passed right-justified.  Everything else is
 | |
|       // passed left-justified.
 | |
|       if (Size==1 || Size==2) {
 | |
|         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | |
|                                         MachinePointerInfo(), VT);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
 | |
|                                           PtrOff.getValueType());
 | |
|           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                             CallSeqStart,
 | |
|                                                             Flags, DAG, dl);
 | |
|           ArgOffset += PtrByteSize;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       // Copy entire object into memory.  There are cases where gcc-generated
 | |
|       // code assumes it is there, even if it could be put entirely into
 | |
|       // registers.  (This is not what the doc says.)
 | |
|       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | |
|                                                         CallSeqStart,
 | |
|                                                         Flags, DAG, dl);
 | |
| 
 | |
|       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
 | |
|       // copy the pieces of the object that fit into registers from the
 | |
|       // parameter save area.
 | |
|       for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | |
|         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
 | |
|         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getSimpleValueType().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (GPR_idx != NumGPRs) {
 | |
|         if (Arg.getValueType() == MVT::i1)
 | |
|           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
 | |
| 
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       ArgOffset += PtrByteSize;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (FPR_idx != NumFPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | |
| 
 | |
|         if (isVarArg) {
 | |
|           SDValue Store =
 | |
|               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Store);
 | |
| 
 | |
|           // Float varargs are always shadowed in available integer registers
 | |
|           if (GPR_idx != NumGPRs) {
 | |
|             SDValue Load =
 | |
|                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
 | |
|             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
 | |
|             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|             SDValue Load =
 | |
|                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|         } else {
 | |
|           // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | |
|           // GPRs.
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             ++GPR_idx;
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
 | |
|               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
 | |
|             ++GPR_idx;
 | |
|         }
 | |
|       } else
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       if (isPPC64)
 | |
|         ArgOffset += 8;
 | |
|       else
 | |
|         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       if (isVarArg) {
 | |
|         // These go aligned on the stack, or in the corresponding R registers
 | |
|         // when within range.  The Darwin PPC ABI doc claims they also go in
 | |
|         // V registers; in fact gcc does this only for arguments that are
 | |
|         // prototyped, not for those that match the ...  We do it for all
 | |
|         // arguments, seems to work.
 | |
|         while (ArgOffset % 16 !=0) {
 | |
|           ArgOffset += PtrByteSize;
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             GPR_idx++;
 | |
|         }
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                              DAG.getConstant(ArgOffset, dl, PtrVT));
 | |
|         SDValue Store =
 | |
|             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (VR_idx != NumVRs) {
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | |
|         }
 | |
|         ArgOffset += 16;
 | |
|         for (unsigned i=0; i<16; i+=PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                    DAG.getConstant(i, dl, PtrVT));
 | |
|           SDValue Load =
 | |
|               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs Altivec params generally go in registers, but have
 | |
|       // stack space allocated at the end.
 | |
|       if (VR_idx != NumVRs) {
 | |
|         // Doesn't have GPR space allocated.
 | |
|         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | |
|       } else if (nAltivecParamsAtEnd==0) {
 | |
|         // We are emitting Altivec params in order.
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         ArgOffset += 16;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // If all Altivec parameters fit in registers, as they usually do,
 | |
|   // they get stack space following the non-Altivec parameters.  We
 | |
|   // don't track this here because nobody below needs it.
 | |
|   // If there are more Altivec parameters than fit in registers emit
 | |
|   // the stores here.
 | |
|   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
 | |
|     unsigned j = 0;
 | |
|     // Offset is aligned; skip 1st 12 params which go in V registers.
 | |
|     ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|     ArgOffset += 12*16;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       SDValue Arg = OutVals[i];
 | |
|       EVT ArgType = Outs[i].VT;
 | |
|       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
 | |
|           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
 | |
|         if (++j > NumVRs) {
 | |
|           SDValue PtrOff;
 | |
|           // We are emitting Altivec params in order.
 | |
|           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                            isPPC64, isTailCall, true, MemOpChains,
 | |
|                            TailCallArguments, dl);
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // On Darwin, R12 must contain the address of an indirect callee.  This does
 | |
|   // not mean the MTCTR instruction must use R12; it's easier to model this as
 | |
|   // an extra parameter, so do that.
 | |
|   if (!isTailCall &&
 | |
|       !isFunctionGlobalAddress(Callee) &&
 | |
|       !isa<ExternalSymbolSDNode>(Callee) &&
 | |
|       !isBLACompatibleAddress(Callee, DAG))
 | |
|     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
 | |
|                                                    PPC::R12), Callee));
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | |
|                     TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
 | |
|                     /* unused except on PPC64 ELFv1 */ false, DAG,
 | |
|                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
 | |
|                     NumBytes, Ins, InVals, CS);
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | |
|                                   MachineFunction &MF, bool isVarArg,
 | |
|                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                   LLVMContext &Context) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | |
|   return CCInfo.CheckReturn(
 | |
|       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | |
|                 ? RetCC_PPC_Cold
 | |
|                 : RetCC_PPC);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                const SDLoc &dl, SelectionDAG &DAG) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs,
 | |
|                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | |
|                            ? RetCC_PPC_Cold
 | |
|                            : RetCC_PPC);
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Arg = OutVals[i];
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const MCPhysReg *I =
 | |
|     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
 | |
|   if (I) {
 | |
|     for (; *I; ++I) {
 | |
| 
 | |
|       if (PPC::G8RCRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
 | |
|       else if (PPC::F8RCRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
 | |
|       else if (PPC::CRRCRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
 | |
|       else if (PPC::VRRCRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
 | |
|       else
 | |
|         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Get the correct type for integers.
 | |
|   EVT IntVT = Op.getValueType();
 | |
| 
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | |
|   // Build a DYNAREAOFFSET node.
 | |
|   SDValue Ops[2] = {Chain, FPSIdx};
 | |
|   SDVTList VTs = DAG.getVTList(IntVT);
 | |
|   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   // When we pop the dynamic allocation we need to restore the SP link.
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Get the correct type for pointers.
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   // Construct the stack pointer operand.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
 | |
|   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | |
| 
 | |
|   // Get the operands for the STACKRESTORE.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue SaveSP = Op.getOperand(1);
 | |
| 
 | |
|   // Load the old link SP.
 | |
|   SDValue LoadLinkSP =
 | |
|       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
 | |
| 
 | |
|   // Restore the stack pointer.
 | |
|   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
 | |
| 
 | |
|   // Store the old link SP.
 | |
|   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int RASI = FI->getReturnAddrSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!RASI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
 | |
|     // Save the result.
 | |
|     FI->setReturnAddrSaveIndex(RASI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(RASI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int FPSI = FI->getFramePointerSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!FPSI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
 | |
|     // Save the result.
 | |
|     FI->setFramePointerSaveIndex(FPSI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(FPSI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Get the correct type for pointers.
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   // Negate the size.
 | |
|   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
 | |
|                                 DAG.getConstant(0, dl, PtrVT), Size);
 | |
|   // Construct a node for the frame pointer save index.
 | |
|   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | |
|   // Build a DYNALLOC node.
 | |
|   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | |
|   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | |
|   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
 | |
|   return DAG.getFrameIndex(FI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
 | |
|                      DAG.getVTList(MVT::i32, MVT::Other),
 | |
|                      Op.getOperand(0), Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
 | |
|                      Op.getOperand(0), Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (Op.getValueType().isVector())
 | |
|     return LowerVectorLoad(Op, DAG);
 | |
| 
 | |
|   assert(Op.getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 loads");
 | |
| 
 | |
|   // First, load 8 bits into 32 bits, then truncate to 1 bit.
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
| 
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue BasePtr = LD->getBasePtr();
 | |
|   MachineMemOperand *MMO = LD->getMemOperand();
 | |
| 
 | |
|   SDValue NewLD =
 | |
|       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
 | |
|                      BasePtr, MVT::i8, MMO);
 | |
|   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
 | |
| 
 | |
|   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (Op.getOperand(1).getValueType().isVector())
 | |
|     return LowerVectorStore(Op, DAG);
 | |
| 
 | |
|   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 stores");
 | |
| 
 | |
|   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(Op);
 | |
| 
 | |
|   SDValue Chain = ST->getChain();
 | |
|   SDValue BasePtr = ST->getBasePtr();
 | |
|   SDValue Value = ST->getValue();
 | |
|   MachineMemOperand *MMO = ST->getMemOperand();
 | |
| 
 | |
|   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
 | |
|                       Value);
 | |
|   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
 | |
| }
 | |
| 
 | |
| // FIXME: Remove this once the ANDI glue bug is fixed:
 | |
| SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 results");
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
 | |
|                      Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | |
| /// possible.
 | |
| SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Not FP? Not a fsel.
 | |
|   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
 | |
|       !Op.getOperand(2).getValueType().isFloatingPoint())
 | |
|     return Op;
 | |
| 
 | |
|   // We might be able to do better than this under some circumstances, but in
 | |
|   // general, fsel-based lowering of select is a finite-math-only optimization.
 | |
|   // For more information, see section F.3 of the 2.06 ISA specification.
 | |
|   if (!DAG.getTarget().Options.NoInfsFPMath ||
 | |
|       !DAG.getTarget().Options.NoNaNsFPMath)
 | |
|     return Op;
 | |
|   // TODO: Propagate flags from the select rather than global settings.
 | |
|   SDNodeFlags Flags;
 | |
|   Flags.setNoInfs(true);
 | |
|   Flags.setNoNaNs(true);
 | |
| 
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
| 
 | |
|   EVT ResVT = Op.getValueType();
 | |
|   EVT CmpVT = Op.getOperand(0).getValueType();
 | |
|   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // If the RHS of the comparison is a 0.0, we don't need to do the
 | |
|   // subtraction at all.
 | |
|   SDValue Sel1;
 | |
|   if (isFloatingPointZero(RHS))
 | |
|     switch (CC) {
 | |
|     default: break;       // SETUO etc aren't handled by fsel.
 | |
|     case ISD::SETNE:
 | |
|       std::swap(TV, FV);
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ISD::SETEQ:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | |
|       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETLT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | |
|     case ISD::SETUGT:
 | |
|     case ISD::SETGT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
 | |
|     }
 | |
| 
 | |
|   SDValue Cmp;
 | |
|   switch (CC) {
 | |
|   default: break;       // SETUO etc aren't handled by fsel.
 | |
|   case ISD::SETNE:
 | |
|     std::swap(TV, FV);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::SETEQ:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETLE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
 | |
|                                                SelectionDAG &DAG,
 | |
|                                                const SDLoc &dl) const {
 | |
|   assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | |
|   SDValue Src = Op.getOperand(0);
 | |
|   if (Src.getValueType() == MVT::f32)
 | |
|     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | |
| 
 | |
|   SDValue Tmp;
 | |
|   switch (Op.getSimpleValueType().SimpleTy) {
 | |
|   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | |
|   case MVT::i32:
 | |
|     Tmp = DAG.getNode(
 | |
|         Op.getOpcode() == ISD::FP_TO_SINT
 | |
|             ? PPCISD::FCTIWZ
 | |
|             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
 | |
|         dl, MVT::f64, Src);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
 | |
|            "i64 FP_TO_UINT is supported only with FPCVT");
 | |
|     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | |
|                                                         PPCISD::FCTIDUZ,
 | |
|                       dl, MVT::f64, Src);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Convert the FP value to an int value through memory.
 | |
|   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
 | |
|     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
 | |
|   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
 | |
|   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
 | |
|   MachinePointerInfo MPI =
 | |
|       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
 | |
| 
 | |
|   // Emit a store to the stack slot.
 | |
|   SDValue Chain;
 | |
|   if (i32Stack) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
 | |
|     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
 | |
|     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
 | |
|               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
 | |
|   } else
 | |
|     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
 | |
| 
 | |
|   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | |
|   // add in a bias on big endian.
 | |
|   if (Op.getValueType() == MVT::i32 && !i32Stack) {
 | |
|     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
 | |
|                         DAG.getConstant(4, dl, FIPtr.getValueType()));
 | |
|     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
 | |
|   }
 | |
| 
 | |
|   RLI.Chain = Chain;
 | |
|   RLI.Ptr = FIPtr;
 | |
|   RLI.MPI = MPI;
 | |
| }
 | |
| 
 | |
| /// Custom lowers floating point to integer conversions to use
 | |
| /// the direct move instructions available in ISA 2.07 to avoid the
 | |
| /// need for load/store combinations.
 | |
| SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
 | |
|                                                     SelectionDAG &DAG,
 | |
|                                                     const SDLoc &dl) const {
 | |
|   assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | |
|   SDValue Src = Op.getOperand(0);
 | |
| 
 | |
|   if (Src.getValueType() == MVT::f32)
 | |
|     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | |
| 
 | |
|   SDValue Tmp;
 | |
|   switch (Op.getSimpleValueType().SimpleTy) {
 | |
|   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | |
|   case MVT::i32:
 | |
|     Tmp = DAG.getNode(
 | |
|         Op.getOpcode() == ISD::FP_TO_SINT
 | |
|             ? PPCISD::FCTIWZ
 | |
|             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
 | |
|         dl, MVT::f64, Src);
 | |
|     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
 | |
|            "i64 FP_TO_UINT is supported only with FPCVT");
 | |
|     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | |
|                                                         PPCISD::FCTIDUZ,
 | |
|                       dl, MVT::f64, Src);
 | |
|     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
 | |
|     break;
 | |
|   }
 | |
|   return Tmp;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | |
|                                           const SDLoc &dl) const {
 | |
| 
 | |
|   // FP to INT conversions are legal for f128.
 | |
|   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
 | |
|     return Op;
 | |
| 
 | |
|   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | |
|   // PPC (the libcall is not available).
 | |
|   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
 | |
|     if (Op.getValueType() == MVT::i32) {
 | |
|       if (Op.getOpcode() == ISD::FP_TO_SINT) {
 | |
|         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                                  MVT::f64, Op.getOperand(0),
 | |
|                                  DAG.getIntPtrConstant(0, dl));
 | |
|         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                                  MVT::f64, Op.getOperand(0),
 | |
|                                  DAG.getIntPtrConstant(1, dl));
 | |
| 
 | |
|         // Add the two halves of the long double in round-to-zero mode.
 | |
|         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
 | |
| 
 | |
|         // Now use a smaller FP_TO_SINT.
 | |
|         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
 | |
|       }
 | |
|       if (Op.getOpcode() == ISD::FP_TO_UINT) {
 | |
|         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
 | |
|         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
 | |
|         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
 | |
|         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
 | |
|         // FIXME: generated code sucks.
 | |
|         // TODO: Are there fast-math-flags to propagate to this FSUB?
 | |
|         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
 | |
|                                    Op.getOperand(0), Tmp);
 | |
|         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
 | |
|         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
 | |
|                            DAG.getConstant(0x80000000, dl, MVT::i32));
 | |
|         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
 | |
|                                     Op.getOperand(0));
 | |
|         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
 | |
|                                ISD::SETGE);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
 | |
|     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
 | |
| 
 | |
|   ReuseLoadInfo RLI;
 | |
|   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | |
| 
 | |
|   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | |
|                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | |
| }
 | |
| 
 | |
| // We're trying to insert a regular store, S, and then a load, L. If the
 | |
| // incoming value, O, is a load, we might just be able to have our load use the
 | |
| // address used by O. However, we don't know if anything else will store to
 | |
| // that address before we can load from it. To prevent this situation, we need
 | |
| // to insert our load, L, into the chain as a peer of O. To do this, we give L
 | |
| // the same chain operand as O, we create a token factor from the chain results
 | |
| // of O and L, and we replace all uses of O's chain result with that token
 | |
| // factor (see spliceIntoChain below for this last part).
 | |
| bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
 | |
|                                             ReuseLoadInfo &RLI,
 | |
|                                             SelectionDAG &DAG,
 | |
|                                             ISD::LoadExtType ET) const {
 | |
|   SDLoc dl(Op);
 | |
|   if (ET == ISD::NON_EXTLOAD &&
 | |
|       (Op.getOpcode() == ISD::FP_TO_UINT ||
 | |
|        Op.getOpcode() == ISD::FP_TO_SINT) &&
 | |
|       isOperationLegalOrCustom(Op.getOpcode(),
 | |
|                                Op.getOperand(0).getValueType())) {
 | |
| 
 | |
|     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
 | |
|   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
 | |
|       LD->isNonTemporal())
 | |
|     return false;
 | |
|   if (LD->getMemoryVT() != MemVT)
 | |
|     return false;
 | |
| 
 | |
|   RLI.Ptr = LD->getBasePtr();
 | |
|   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
 | |
|     assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | |
|            "Non-pre-inc AM on PPC?");
 | |
|     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
 | |
|                           LD->getOffset());
 | |
|   }
 | |
| 
 | |
|   RLI.Chain = LD->getChain();
 | |
|   RLI.MPI = LD->getPointerInfo();
 | |
|   RLI.IsDereferenceable = LD->isDereferenceable();
 | |
|   RLI.IsInvariant = LD->isInvariant();
 | |
|   RLI.Alignment = LD->getAlignment();
 | |
|   RLI.AAInfo = LD->getAAInfo();
 | |
|   RLI.Ranges = LD->getRanges();
 | |
| 
 | |
|   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Given the head of the old chain, ResChain, insert a token factor containing
 | |
| // it and NewResChain, and make users of ResChain now be users of that token
 | |
| // factor.
 | |
| // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
 | |
| void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
 | |
|                                         SDValue NewResChain,
 | |
|                                         SelectionDAG &DAG) const {
 | |
|   if (!ResChain)
 | |
|     return;
 | |
| 
 | |
|   SDLoc dl(NewResChain);
 | |
| 
 | |
|   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                            NewResChain, DAG.getUNDEF(MVT::Other));
 | |
|   assert(TF.getNode() != NewResChain.getNode() &&
 | |
|          "A new TF really is required here");
 | |
| 
 | |
|   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
 | |
|   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
 | |
| }
 | |
| 
 | |
| /// Analyze profitability of direct move
 | |
| /// prefer float load to int load plus direct move
 | |
| /// when there is no integer use of int load
 | |
| bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
 | |
|   SDNode *Origin = Op.getOperand(0).getNode();
 | |
|   if (Origin->getOpcode() != ISD::LOAD)
 | |
|     return true;
 | |
| 
 | |
|   // If there is no LXSIBZX/LXSIHZX, like Power8,
 | |
|   // prefer direct move if the memory size is 1 or 2 bytes.
 | |
|   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
 | |
|   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
 | |
|     return true;
 | |
| 
 | |
|   for (SDNode::use_iterator UI = Origin->use_begin(),
 | |
|                             UE = Origin->use_end();
 | |
|        UI != UE; ++UI) {
 | |
| 
 | |
|     // Only look at the users of the loaded value.
 | |
|     if (UI.getUse().get().getResNo() != 0)
 | |
|       continue;
 | |
| 
 | |
|     if (UI->getOpcode() != ISD::SINT_TO_FP &&
 | |
|         UI->getOpcode() != ISD::UINT_TO_FP)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Custom lowers integer to floating point conversions to use
 | |
| /// the direct move instructions available in ISA 2.07 to avoid the
 | |
| /// need for load/store combinations.
 | |
| SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
 | |
|                                                     SelectionDAG &DAG,
 | |
|                                                     const SDLoc &dl) const {
 | |
|   assert((Op.getValueType() == MVT::f32 ||
 | |
|           Op.getValueType() == MVT::f64) &&
 | |
|          "Invalid floating point type as target of conversion");
 | |
|   assert(Subtarget.hasFPCVT() &&
 | |
|          "Int to FP conversions with direct moves require FPCVT");
 | |
|   SDValue FP;
 | |
|   SDValue Src = Op.getOperand(0);
 | |
|   bool SinglePrec = Op.getValueType() == MVT::f32;
 | |
|   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
 | |
|   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
 | |
|   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
 | |
|                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
 | |
| 
 | |
|   if (WordInt) {
 | |
|     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
 | |
|                      dl, MVT::f64, Src);
 | |
|     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
 | |
|   }
 | |
|   else {
 | |
|     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
 | |
|     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
 | |
|   }
 | |
| 
 | |
|   return FP;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Conversions to f128 are legal.
 | |
|   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
 | |
|     return Op;
 | |
| 
 | |
|   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
 | |
|     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
 | |
|       return SDValue();
 | |
| 
 | |
|     SDValue Value = Op.getOperand(0);
 | |
|     // The values are now known to be -1 (false) or 1 (true). To convert this
 | |
|     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | |
|     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | |
|     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | |
| 
 | |
|     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | |
| 
 | |
|     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | |
| 
 | |
|     if (Op.getValueType() != MVT::v4f64)
 | |
|       Value = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                           Op.getValueType(), Value,
 | |
|                           DAG.getIntPtrConstant(1, dl));
 | |
|     return Value;
 | |
|   }
 | |
| 
 | |
|   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | |
|   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i1)
 | |
|     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
 | |
|                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
 | |
|                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
 | |
| 
 | |
|   // If we have direct moves, we can do all the conversion, skip the store/load
 | |
|   // however, without FPCVT we can't do most conversions.
 | |
|   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
 | |
|       Subtarget.isPPC64() && Subtarget.hasFPCVT())
 | |
|     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
 | |
| 
 | |
|   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
 | |
|          "UINT_TO_FP is supported only with FPCVT");
 | |
| 
 | |
|   // If we have FCFIDS, then use it when converting to single-precision.
 | |
|   // Otherwise, convert to double-precision and then round.
 | |
|   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | |
|                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
 | |
|                                                             : PPCISD::FCFIDS)
 | |
|                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
 | |
|                                                             : PPCISD::FCFID);
 | |
|   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | |
|                   ? MVT::f32
 | |
|                   : MVT::f64;
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i64) {
 | |
|     SDValue SINT = Op.getOperand(0);
 | |
|     // When converting to single-precision, we actually need to convert
 | |
|     // to double-precision first and then round to single-precision.
 | |
|     // To avoid double-rounding effects during that operation, we have
 | |
|     // to prepare the input operand.  Bits that might be truncated when
 | |
|     // converting to double-precision are replaced by a bit that won't
 | |
|     // be lost at this stage, but is below the single-precision rounding
 | |
|     // position.
 | |
|     //
 | |
|     // However, if -enable-unsafe-fp-math is in effect, accept double
 | |
|     // rounding to avoid the extra overhead.
 | |
|     if (Op.getValueType() == MVT::f32 &&
 | |
|         !Subtarget.hasFPCVT() &&
 | |
|         !DAG.getTarget().Options.UnsafeFPMath) {
 | |
| 
 | |
|       // Twiddle input to make sure the low 11 bits are zero.  (If this
 | |
|       // is the case, we are guaranteed the value will fit into the 53 bit
 | |
|       // mantissa of an IEEE double-precision value without rounding.)
 | |
|       // If any of those low 11 bits were not zero originally, make sure
 | |
|       // bit 12 (value 2048) is set instead, so that the final rounding
 | |
|       // to single-precision gets the correct result.
 | |
|       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | |
|                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
 | |
|       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | |
|                           Round, DAG.getConstant(2047, dl, MVT::i64));
 | |
|       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
 | |
|       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | |
|                           Round, DAG.getConstant(-2048, dl, MVT::i64));
 | |
| 
 | |
|       // However, we cannot use that value unconditionally: if the magnitude
 | |
|       // of the input value is small, the bit-twiddling we did above might
 | |
|       // end up visibly changing the output.  Fortunately, in that case, we
 | |
|       // don't need to twiddle bits since the original input will convert
 | |
|       // exactly to double-precision floating-point already.  Therefore,
 | |
|       // construct a conditional to use the original value if the top 11
 | |
|       // bits are all sign-bit copies, and use the rounded value computed
 | |
|       // above otherwise.
 | |
|       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
 | |
|                                  SINT, DAG.getConstant(53, dl, MVT::i32));
 | |
|       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | |
|                          Cond, DAG.getConstant(1, dl, MVT::i64));
 | |
|       Cond = DAG.getSetCC(dl, MVT::i32,
 | |
|                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
 | |
| 
 | |
|       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
 | |
|     }
 | |
| 
 | |
|     ReuseLoadInfo RLI;
 | |
|     SDValue Bits;
 | |
| 
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
 | |
|       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | |
|                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | |
|       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | |
|     } else if (Subtarget.hasLFIWAX() &&
 | |
|                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
 | |
|       MachineMemOperand *MMO =
 | |
|         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | |
|                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | |
|       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | |
|       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
 | |
|                                      DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                      Ops, MVT::i32, MMO);
 | |
|       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | |
|     } else if (Subtarget.hasFPCVT() &&
 | |
|                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
 | |
|       MachineMemOperand *MMO =
 | |
|         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | |
|                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | |
|       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | |
|       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
 | |
|                                      DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                      Ops, MVT::i32, MMO);
 | |
|       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | |
|     } else if (((Subtarget.hasLFIWAX() &&
 | |
|                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
 | |
|                 (Subtarget.hasFPCVT() &&
 | |
|                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
 | |
|                SINT.getOperand(0).getValueType() == MVT::i32) {
 | |
|       MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|       EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|       int FrameIdx = MFI.CreateStackObject(4, 4, false);
 | |
|       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|       SDValue Store =
 | |
|           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
 | |
|                        MachinePointerInfo::getFixedStack(
 | |
|                            DAG.getMachineFunction(), FrameIdx));
 | |
| 
 | |
|       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | |
|              "Expected an i32 store");
 | |
| 
 | |
|       RLI.Ptr = FIdx;
 | |
|       RLI.Chain = Store;
 | |
|       RLI.MPI =
 | |
|           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | |
|       RLI.Alignment = 4;
 | |
| 
 | |
|       MachineMemOperand *MMO =
 | |
|         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | |
|                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | |
|       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | |
|       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
 | |
|                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
 | |
|                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                      Ops, MVT::i32, MMO);
 | |
|     } else
 | |
|       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
 | |
| 
 | |
|     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
 | |
| 
 | |
|     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
 | |
|       FP = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
 | |
|     return FP;
 | |
|   }
 | |
| 
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | |
|          "Unhandled INT_TO_FP type in custom expander!");
 | |
|   // Since we only generate this in 64-bit mode, we can take advantage of
 | |
|   // 64-bit registers.  In particular, sign extend the input value into the
 | |
|   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | |
|   // then lfd it and fcfid it.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   SDValue Ld;
 | |
|   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
 | |
|     ReuseLoadInfo RLI;
 | |
|     bool ReusingLoad;
 | |
|     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
 | |
|                                             DAG))) {
 | |
|       int FrameIdx = MFI.CreateStackObject(4, 4, false);
 | |
|       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|       SDValue Store =
 | |
|           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | |
|                        MachinePointerInfo::getFixedStack(
 | |
|                            DAG.getMachineFunction(), FrameIdx));
 | |
| 
 | |
|       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | |
|              "Expected an i32 store");
 | |
| 
 | |
|       RLI.Ptr = FIdx;
 | |
|       RLI.Chain = Store;
 | |
|       RLI.MPI =
 | |
|           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | |
|       RLI.Alignment = 4;
 | |
|     }
 | |
| 
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | |
|                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | |
|     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | |
|     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
 | |
|                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
 | |
|                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                  Ops, MVT::i32, MMO);
 | |
|     if (ReusingLoad)
 | |
|       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
 | |
|   } else {
 | |
|     assert(Subtarget.isPPC64() &&
 | |
|            "i32->FP without LFIWAX supported only on PPC64");
 | |
| 
 | |
|     int FrameIdx = MFI.CreateStackObject(8, 8, false);
 | |
|     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
 | |
|                                 Op.getOperand(0));
 | |
| 
 | |
|     // STD the extended value into the stack slot.
 | |
|     SDValue Store = DAG.getStore(
 | |
|         DAG.getEntryNode(), dl, Ext64, FIdx,
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | |
| 
 | |
|     // Load the value as a double.
 | |
|     Ld = DAG.getLoad(
 | |
|         MVT::f64, dl, Store, FIdx,
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | |
|   }
 | |
| 
 | |
|   // FCFID it and return it.
 | |
|   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
 | |
|   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
 | |
|     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
 | |
|                      DAG.getIntPtrConstant(0, dl));
 | |
|   return FP;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   /*
 | |
|    The rounding mode is in bits 30:31 of FPSR, and has the following
 | |
|    settings:
 | |
|      00 Round to nearest
 | |
|      01 Round to 0
 | |
|      10 Round to +inf
 | |
|      11 Round to -inf
 | |
| 
 | |
|   FLT_ROUNDS, on the other hand, expects the following:
 | |
|     -1 Undefined
 | |
|      0 Round to 0
 | |
|      1 Round to nearest
 | |
|      2 Round to +inf
 | |
|      3 Round to -inf
 | |
| 
 | |
|   To perform the conversion, we do:
 | |
|     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | |
|   */
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   // Save FP Control Word to register
 | |
|   EVT NodeTys[] = {
 | |
|     MVT::f64,    // return register
 | |
|     MVT::Glue    // unused in this context
 | |
|   };
 | |
|   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
 | |
| 
 | |
|   // Save FP register to stack slot
 | |
|   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
 | |
|                                MachinePointerInfo());
 | |
| 
 | |
|   // Load FP Control Word from low 32 bits of stack slot.
 | |
|   SDValue Four = DAG.getConstant(4, dl, PtrVT);
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
 | |
|   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
 | |
| 
 | |
|   // Transform as necessary
 | |
|   SDValue CWD1 =
 | |
|     DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                 CWD, DAG.getConstant(3, dl, MVT::i32));
 | |
|   SDValue CWD2 =
 | |
|     DAG.getNode(ISD::SRL, dl, MVT::i32,
 | |
|                 DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                             DAG.getNode(ISD::XOR, dl, MVT::i32,
 | |
|                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
 | |
|                             DAG.getConstant(3, dl, MVT::i32)),
 | |
|                 DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|   SDValue RetVal =
 | |
|     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
 | |
| 
 | |
|   return DAG.getNode((VT.getSizeInBits() < 16 ?
 | |
|                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SHL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, dl, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, dl, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRA!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops, followed by a select_cc.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, dl, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
 | |
|   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
 | |
|                                   Tmp4, Tmp6, ISD::SETLE);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, dl);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector related lowering.
 | |
| //
 | |
| 
 | |
| /// BuildSplatI - Build a canonical splati of Val with an element size of
 | |
| /// SplatSize.  Cast the result to VT.
 | |
| static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
 | |
|                            SelectionDAG &DAG, const SDLoc &dl) {
 | |
|   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | |
| 
 | |
|   static const MVT VTys[] = { // canonical VT to use for each size.
 | |
|     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | |
|   };
 | |
| 
 | |
|   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | |
| 
 | |
|   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
 | |
|   if (Val == -1)
 | |
|     SplatSize = 1;
 | |
| 
 | |
|   EVT CanonicalVT = VTys[SplatSize-1];
 | |
| 
 | |
|   // Build a canonical splat for this value.
 | |
|   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
 | |
|                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, dl, MVT::i32), Op);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | |
|                                 SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                 EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | |
|                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                 EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
 | |
| }
 | |
| 
 | |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | |
| /// amount.  The result has the specified value type.
 | |
| static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
 | |
|                            SelectionDAG &DAG, const SDLoc &dl) {
 | |
|   // Force LHS/RHS to be the right type.
 | |
|   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
 | |
|   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
 | |
| 
 | |
|   int Ops[16];
 | |
|   for (unsigned i = 0; i != 16; ++i)
 | |
|     Ops[i] = i + Amt;
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | |
| }
 | |
| 
 | |
| /// Do we have an efficient pattern in a .td file for this node?
 | |
| ///
 | |
| /// \param V - pointer to the BuildVectorSDNode being matched
 | |
| /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
 | |
| ///
 | |
| /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
 | |
| /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
 | |
| /// the opposite is true (expansion is beneficial) are:
 | |
| /// - The node builds a vector out of integers that are not 32 or 64-bits
 | |
| /// - The node builds a vector out of constants
 | |
| /// - The node is a "load-and-splat"
 | |
| /// In all other cases, we will choose to keep the BUILD_VECTOR.
 | |
| static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
 | |
|                                             bool HasDirectMove,
 | |
|                                             bool HasP8Vector) {
 | |
|   EVT VecVT = V->getValueType(0);
 | |
|   bool RightType = VecVT == MVT::v2f64 ||
 | |
|     (HasP8Vector && VecVT == MVT::v4f32) ||
 | |
|     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
 | |
|   if (!RightType)
 | |
|     return false;
 | |
| 
 | |
|   bool IsSplat = true;
 | |
|   bool IsLoad = false;
 | |
|   SDValue Op0 = V->getOperand(0);
 | |
| 
 | |
|   // This function is called in a block that confirms the node is not a constant
 | |
|   // splat. So a constant BUILD_VECTOR here means the vector is built out of
 | |
|   // different constants.
 | |
|   if (V->isConstant())
 | |
|     return false;
 | |
|   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
 | |
|     if (V->getOperand(i).isUndef())
 | |
|       return false;
 | |
|     // We want to expand nodes that represent load-and-splat even if the
 | |
|     // loaded value is a floating point truncation or conversion to int.
 | |
|     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
 | |
|         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
 | |
|          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | |
|         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
 | |
|          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | |
|         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
 | |
|          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
 | |
|       IsLoad = true;
 | |
|     // If the operands are different or the input is not a load and has more
 | |
|     // uses than just this BV node, then it isn't a splat.
 | |
|     if (V->getOperand(i) != Op0 ||
 | |
|         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
 | |
|       IsSplat = false;
 | |
|   }
 | |
|   return !(IsSplat && IsLoad);
 | |
| }
 | |
| 
 | |
| // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
 | |
| SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Op0 = Op->getOperand(0);
 | |
| 
 | |
|   if (!EnableQuadPrecision ||
 | |
|       (Op.getValueType() != MVT::f128 ) ||
 | |
|       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
 | |
|       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
 | |
|       (Op0.getOperand(1).getValueType() != MVT::i64))
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
 | |
|                      Op0.getOperand(1));
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.  If we CAN select this case, and if it
 | |
| // selects to a single instruction, return Op.  Otherwise, if we can codegen
 | |
| // this case more efficiently than a constant pool load, lower it to the
 | |
| // sequence of ops that should be used.
 | |
| SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
 | |
| 
 | |
|   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
 | |
|     // We first build an i32 vector, load it into a QPX register,
 | |
|     // then convert it to a floating-point vector and compare it
 | |
|     // to a zero vector to get the boolean result.
 | |
|     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | |
|     MachinePointerInfo PtrInfo =
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | |
|     EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|     assert(BVN->getNumOperands() == 4 &&
 | |
|       "BUILD_VECTOR for v4i1 does not have 4 operands");
 | |
| 
 | |
|     bool IsConst = true;
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       if (BVN->getOperand(i).isUndef()) continue;
 | |
|       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
 | |
|         IsConst = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (IsConst) {
 | |
|       Constant *One =
 | |
|         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
 | |
|       Constant *NegOne =
 | |
|         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
 | |
| 
 | |
|       Constant *CV[4];
 | |
|       for (unsigned i = 0; i < 4; ++i) {
 | |
|         if (BVN->getOperand(i).isUndef())
 | |
|           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
 | |
|         else if (isNullConstant(BVN->getOperand(i)))
 | |
|           CV[i] = NegOne;
 | |
|         else
 | |
|           CV[i] = One;
 | |
|       }
 | |
| 
 | |
|       Constant *CP = ConstantVector::get(CV);
 | |
|       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
 | |
|                                           16 /* alignment */);
 | |
| 
 | |
|       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
 | |
|       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
 | |
|       return DAG.getMemIntrinsicNode(
 | |
|           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 4> Stores;
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       if (BVN->getOperand(i).isUndef()) continue;
 | |
| 
 | |
|       unsigned Offset = 4*i;
 | |
|       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | |
|       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | |
| 
 | |
|       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
 | |
|       if (StoreSize > 4) {
 | |
|         Stores.push_back(
 | |
|             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
 | |
|                               PtrInfo.getWithOffset(Offset), MVT::i32));
 | |
|       } else {
 | |
|         SDValue StoreValue = BVN->getOperand(i);
 | |
|         if (StoreSize < 4)
 | |
|           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
 | |
| 
 | |
|         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
 | |
|                                       PtrInfo.getWithOffset(Offset)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue StoreChain;
 | |
|     if (!Stores.empty())
 | |
|       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | |
|     else
 | |
|       StoreChain = DAG.getEntryNode();
 | |
| 
 | |
|     // Now load from v4i32 into the QPX register; this will extend it to
 | |
|     // v4i64 but not yet convert it to a floating point. Nevertheless, this
 | |
|     // is typed as v4f64 because the QPX register integer states are not
 | |
|     // explicitly represented.
 | |
| 
 | |
|     SDValue Ops[] = {StoreChain,
 | |
|                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
 | |
|                      FIdx};
 | |
|     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
 | |
| 
 | |
|     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
 | |
|       dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | |
|     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | |
|       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
 | |
|       LoadedVect);
 | |
| 
 | |
|     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
 | |
| 
 | |
|     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
 | |
|   }
 | |
| 
 | |
|   // All other QPX vectors are handled by generic code.
 | |
|   if (Subtarget.hasQPX())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check if this is a splat of a constant value.
 | |
|   APInt APSplatBits, APSplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
 | |
|       SplatBitSize > 32) {
 | |
|     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
 | |
|     // lowered to VSX instructions under certain conditions.
 | |
|     // Without VSX, there is no pattern more efficient than expanding the node.
 | |
|     if (Subtarget.hasVSX() &&
 | |
|         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
 | |
|                                         Subtarget.hasP8Vector()))
 | |
|       return Op;
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   unsigned SplatBits = APSplatBits.getZExtValue();
 | |
|   unsigned SplatUndef = APSplatUndef.getZExtValue();
 | |
|   unsigned SplatSize = SplatBitSize / 8;
 | |
| 
 | |
|   // First, handle single instruction cases.
 | |
| 
 | |
|   // All zeros?
 | |
|   if (SplatBits == 0) {
 | |
|     // Canonicalize all zero vectors to be v4i32.
 | |
|     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | |
|       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
 | |
|       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // We have XXSPLTIB for constant splats one byte wide
 | |
|   if (Subtarget.hasP9Vector() && SplatSize == 1) {
 | |
|     // This is a splat of 1-byte elements with some elements potentially undef.
 | |
|     // Rather than trying to match undef in the SDAG patterns, ensure that all
 | |
|     // elements are the same constant.
 | |
|     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
 | |
|       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
 | |
|                                                        dl, MVT::i32));
 | |
|       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
 | |
|       if (Op.getValueType() != MVT::v16i8)
 | |
|         return DAG.getBitcast(Op.getValueType(), NewBV);
 | |
|       return NewBV;
 | |
|     }
 | |
| 
 | |
|     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
 | |
|     // detect that constant splats like v8i16: 0xABAB are really just splats
 | |
|     // of a 1-byte constant. In this case, we need to convert the node to a
 | |
|     // splat of v16i8 and a bitcast.
 | |
|     if (Op.getValueType() != MVT::v16i8)
 | |
|       return DAG.getBitcast(Op.getValueType(),
 | |
|                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
 | |
| 
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | |
|   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
 | |
|                     (32-SplatBitSize));
 | |
|   if (SextVal >= -16 && SextVal <= 15)
 | |
|     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
 | |
| 
 | |
|   // Two instruction sequences.
 | |
| 
 | |
|   // If this value is in the range [-32,30] and is even, use:
 | |
|   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
 | |
|   // If this value is in the range [17,31] and is odd, use:
 | |
|   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
 | |
|   // If this value is in the range [-31,-17] and is odd, use:
 | |
|   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
 | |
|   // Note the last two are three-instruction sequences.
 | |
|   if (SextVal >= -32 && SextVal <= 31) {
 | |
|     // To avoid having these optimizations undone by constant folding,
 | |
|     // we convert to a pseudo that will be expanded later into one of
 | |
|     // the above forms.
 | |
|     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
 | |
|     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
 | |
|               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
 | |
|     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
 | |
|     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
 | |
|     if (VT == Op.getValueType())
 | |
|       return RetVal;
 | |
|     else
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
 | |
|   }
 | |
| 
 | |
|   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
 | |
|   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | |
|   // for fneg/fabs.
 | |
|   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | |
|     // Make -1 and vspltisw -1:
 | |
|     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
 | |
| 
 | |
|     // Make the VSLW intrinsic, computing 0x8000_0000.
 | |
|     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
 | |
|                                    OnesV, DAG, dl);
 | |
| 
 | |
|     // xor by OnesV to invert it.
 | |
|     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a wide variety of vsplti*, binop self cases.
 | |
|   static const signed char SplatCsts[] = {
 | |
|     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | |
|     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | |
|   };
 | |
| 
 | |
|   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | |
|     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | |
|     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | |
|     int i = SplatCsts[idx];
 | |
| 
 | |
|     // Figure out what shift amount will be used by altivec if shifted by i in
 | |
|     // this splat size.
 | |
|     unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | |
| 
 | |
|     // vsplti + shl self.
 | |
|     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | |
|         Intrinsic::ppc_altivec_vslw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + srl self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | |
|         Intrinsic::ppc_altivec_vsrw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + sra self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | |
|         Intrinsic::ppc_altivec_vsraw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + rol self.
 | |
|     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | |
|                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | |
|         Intrinsic::ppc_altivec_vrlw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // t = vsplti c, result = vsldoi t, t, 1
 | |
|     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
 | |
|       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 2
 | |
|     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
 | |
|       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 3
 | |
|     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
 | |
|       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       const SDLoc &dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VMRGHW,
 | |
|     OP_VMRGLW,
 | |
|     OP_VSPLTISW0,
 | |
|     OP_VSPLTISW1,
 | |
|     OP_VSPLTISW2,
 | |
|     OP_VSPLTISW3,
 | |
|     OP_VSLDOI4,
 | |
|     OP_VSLDOI8,
 | |
|     OP_VSLDOI12
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
| 
 | |
|   int ShufIdxs[16];
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown i32 permute!");
 | |
|   case OP_VMRGHW:
 | |
|     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | |
|     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | |
|     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | |
|     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | |
|     break;
 | |
|   case OP_VMRGLW:
 | |
|     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | |
|     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | |
|     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | |
|     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | |
|     break;
 | |
|   case OP_VSPLTISW0:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+0;
 | |
|     break;
 | |
|   case OP_VSPLTISW1:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+4;
 | |
|     break;
 | |
|   case OP_VSPLTISW2:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+8;
 | |
|     break;
 | |
|   case OP_VSPLTISW3:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+12;
 | |
|     break;
 | |
|   case OP_VSLDOI4:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI8:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI12:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
 | |
|   }
 | |
|   EVT VT = OpLHS.getValueType();
 | |
|   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
 | |
|   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | |
| }
 | |
| 
 | |
| /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | |
| /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
 | |
| /// SDValue.
 | |
| SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   const unsigned BytesInVector = 16;
 | |
|   bool IsLE = Subtarget.isLittleEndian();
 | |
|   SDLoc dl(N);
 | |
|   SDValue V1 = N->getOperand(0);
 | |
|   SDValue V2 = N->getOperand(1);
 | |
|   unsigned ShiftElts = 0, InsertAtByte = 0;
 | |
|   bool Swap = false;
 | |
| 
 | |
|   // Shifts required to get the byte we want at element 7.
 | |
|   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
 | |
|                                    0, 15, 14, 13, 12, 11, 10, 9};
 | |
|   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
 | |
|                                 1, 2,  3,  4,  5,  6,  7,  8};
 | |
| 
 | |
|   ArrayRef<int> Mask = N->getMask();
 | |
|   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
 | |
| 
 | |
|   // For each mask element, find out if we're just inserting something
 | |
|   // from V2 into V1 or vice versa.
 | |
|   // Possible permutations inserting an element from V2 into V1:
 | |
|   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | |
|   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | |
|   //   ...
 | |
|   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
 | |
|   // Inserting from V1 into V2 will be similar, except mask range will be
 | |
|   // [16,31].
 | |
| 
 | |
|   bool FoundCandidate = false;
 | |
|   // If both vector operands for the shuffle are the same vector, the mask
 | |
|   // will contain only elements from the first one and the second one will be
 | |
|   // undef.
 | |
|   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
 | |
|   // Go through the mask of half-words to find an element that's being moved
 | |
|   // from one vector to the other.
 | |
|   for (unsigned i = 0; i < BytesInVector; ++i) {
 | |
|     unsigned CurrentElement = Mask[i];
 | |
|     // If 2nd operand is undefined, we should only look for element 7 in the
 | |
|     // Mask.
 | |
|     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
 | |
|       continue;
 | |
| 
 | |
|     bool OtherElementsInOrder = true;
 | |
|     // Examine the other elements in the Mask to see if they're in original
 | |
|     // order.
 | |
|     for (unsigned j = 0; j < BytesInVector; ++j) {
 | |
|       if (j == i)
 | |
|         continue;
 | |
|       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
 | |
|       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
 | |
|       // in which we always assume we're always picking from the 1st operand.
 | |
|       int MaskOffset =
 | |
|           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
 | |
|       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
 | |
|         OtherElementsInOrder = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If other elements are in original order, we record the number of shifts
 | |
|     // we need to get the element we want into element 7. Also record which byte
 | |
|     // in the vector we should insert into.
 | |
|     if (OtherElementsInOrder) {
 | |
|       // If 2nd operand is undefined, we assume no shifts and no swapping.
 | |
|       if (V2.isUndef()) {
 | |
|         ShiftElts = 0;
 | |
|         Swap = false;
 | |
|       } else {
 | |
|         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
 | |
|         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
 | |
|                          : BigEndianShifts[CurrentElement & 0xF];
 | |
|         Swap = CurrentElement < BytesInVector;
 | |
|       }
 | |
|       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
 | |
|       FoundCandidate = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundCandidate)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Candidate found, construct the proper SDAG sequence with VINSERTB,
 | |
|   // optionally with VECSHL if shift is required.
 | |
|   if (Swap)
 | |
|     std::swap(V1, V2);
 | |
|   if (V2.isUndef())
 | |
|     V2 = V1;
 | |
|   if (ShiftElts) {
 | |
|     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | |
|                               DAG.getConstant(ShiftElts, dl, MVT::i32));
 | |
|     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
 | |
|                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|   }
 | |
|   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
 | |
|                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | |
| /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
 | |
| /// SDValue.
 | |
| SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   const unsigned NumHalfWords = 8;
 | |
|   const unsigned BytesInVector = NumHalfWords * 2;
 | |
|   // Check that the shuffle is on half-words.
 | |
|   if (!isNByteElemShuffleMask(N, 2, 1))
 | |
|     return SDValue();
 | |
| 
 | |
|   bool IsLE = Subtarget.isLittleEndian();
 | |
|   SDLoc dl(N);
 | |
|   SDValue V1 = N->getOperand(0);
 | |
|   SDValue V2 = N->getOperand(1);
 | |
|   unsigned ShiftElts = 0, InsertAtByte = 0;
 | |
|   bool Swap = false;
 | |
| 
 | |
|   // Shifts required to get the half-word we want at element 3.
 | |
|   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
 | |
|   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
 | |
| 
 | |
|   uint32_t Mask = 0;
 | |
|   uint32_t OriginalOrderLow = 0x1234567;
 | |
|   uint32_t OriginalOrderHigh = 0x89ABCDEF;
 | |
|   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
 | |
|   // 32-bit space, only need 4-bit nibbles per element.
 | |
|   for (unsigned i = 0; i < NumHalfWords; ++i) {
 | |
|     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | |
|     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
 | |
|   }
 | |
| 
 | |
|   // For each mask element, find out if we're just inserting something
 | |
|   // from V2 into V1 or vice versa.  Possible permutations inserting an element
 | |
|   // from V2 into V1:
 | |
|   //   X, 1, 2, 3, 4, 5, 6, 7
 | |
|   //   0, X, 2, 3, 4, 5, 6, 7
 | |
|   //   0, 1, X, 3, 4, 5, 6, 7
 | |
|   //   0, 1, 2, X, 4, 5, 6, 7
 | |
|   //   0, 1, 2, 3, X, 5, 6, 7
 | |
|   //   0, 1, 2, 3, 4, X, 6, 7
 | |
|   //   0, 1, 2, 3, 4, 5, X, 7
 | |
|   //   0, 1, 2, 3, 4, 5, 6, X
 | |
|   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
 | |
| 
 | |
|   bool FoundCandidate = false;
 | |
|   // Go through the mask of half-words to find an element that's being moved
 | |
|   // from one vector to the other.
 | |
|   for (unsigned i = 0; i < NumHalfWords; ++i) {
 | |
|     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | |
|     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
 | |
|     uint32_t MaskOtherElts = ~(0xF << MaskShift);
 | |
|     uint32_t TargetOrder = 0x0;
 | |
| 
 | |
|     // If both vector operands for the shuffle are the same vector, the mask
 | |
|     // will contain only elements from the first one and the second one will be
 | |
|     // undef.
 | |
|     if (V2.isUndef()) {
 | |
|       ShiftElts = 0;
 | |
|       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
 | |
|       TargetOrder = OriginalOrderLow;
 | |
|       Swap = false;
 | |
|       // Skip if not the correct element or mask of other elements don't equal
 | |
|       // to our expected order.
 | |
|       if (MaskOneElt == VINSERTHSrcElem &&
 | |
|           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | |
|         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | |
|         FoundCandidate = true;
 | |
|         break;
 | |
|       }
 | |
|     } else { // If both operands are defined.
 | |
|       // Target order is [8,15] if the current mask is between [0,7].
 | |
|       TargetOrder =
 | |
|           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
 | |
|       // Skip if mask of other elements don't equal our expected order.
 | |
|       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | |
|         // We only need the last 3 bits for the number of shifts.
 | |
|         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
 | |
|                          : BigEndianShifts[MaskOneElt & 0x7];
 | |
|         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | |
|         Swap = MaskOneElt < NumHalfWords;
 | |
|         FoundCandidate = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundCandidate)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Candidate found, construct the proper SDAG sequence with VINSERTH,
 | |
|   // optionally with VECSHL if shift is required.
 | |
|   if (Swap)
 | |
|     std::swap(V1, V2);
 | |
|   if (V2.isUndef())
 | |
|     V2 = V1;
 | |
|   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | |
|   if (ShiftElts) {
 | |
|     // Double ShiftElts because we're left shifting on v16i8 type.
 | |
|     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | |
|                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
 | |
|     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
 | |
|     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | |
|                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | |
|   }
 | |
|   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
 | |
|   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | |
|                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | |
| /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | |
| /// return the code it can be lowered into.  Worst case, it can always be
 | |
| /// lowered into a vperm.
 | |
| SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   bool isLittleEndian = Subtarget.isLittleEndian();
 | |
| 
 | |
|   unsigned ShiftElts, InsertAtByte;
 | |
|   bool Swap = false;
 | |
|   if (Subtarget.hasP9Vector() &&
 | |
|       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
 | |
|                            isLittleEndian)) {
 | |
|     if (Swap)
 | |
|       std::swap(V1, V2);
 | |
|     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | |
|     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
 | |
|     if (ShiftElts) {
 | |
|       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
 | |
|                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
 | |
|       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
 | |
|                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | |
|     }
 | |
|     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
 | |
|                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasP9Altivec()) {
 | |
|     SDValue NewISDNode;
 | |
|     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
 | |
|       return NewISDNode;
 | |
| 
 | |
|     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
 | |
|       return NewISDNode;
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasVSX() &&
 | |
|       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | |
|     if (Swap)
 | |
|       std::swap(V1, V2);
 | |
|     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | |
|     SDValue Conv2 =
 | |
|         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
 | |
| 
 | |
|     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
 | |
|                               DAG.getConstant(ShiftElts, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasVSX() &&
 | |
|     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | |
|     if (Swap)
 | |
|       std::swap(V1, V2);
 | |
|     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | |
|     SDValue Conv2 =
 | |
|         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
 | |
| 
 | |
|     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
 | |
|                               DAG.getConstant(ShiftElts, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasP9Vector()) {
 | |
|      if (PPC::isXXBRHShuffleMask(SVOp)) {
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | |
|       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
 | |
|     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | |
|       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
 | |
|     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | |
|       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
 | |
|     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
 | |
|       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasVSX()) {
 | |
|     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
 | |
|       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
 | |
| 
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | |
|       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
 | |
|                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
 | |
|     }
 | |
| 
 | |
|     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
 | |
|     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
 | |
|       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
 | |
|       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasQPX()) {
 | |
|     if (VT.getVectorNumElements() != 4)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (V2.isUndef()) V2 = V1;
 | |
| 
 | |
|     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
 | |
|     if (AlignIdx != -1) {
 | |
|       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
 | |
|                          DAG.getConstant(AlignIdx, dl, MVT::i32));
 | |
|     } else if (SVOp->isSplat()) {
 | |
|       int SplatIdx = SVOp->getSplatIndex();
 | |
|       if (SplatIdx >= 4) {
 | |
|         std::swap(V1, V2);
 | |
|         SplatIdx -= 4;
 | |
|       }
 | |
| 
 | |
|       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
 | |
|                          DAG.getConstant(SplatIdx, dl, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     // Lower this into a qvgpci/qvfperm pair.
 | |
| 
 | |
|     // Compute the qvgpci literal
 | |
|     unsigned idx = 0;
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       int m = SVOp->getMaskElt(i);
 | |
|       unsigned mm = m >= 0 ? (unsigned) m : i;
 | |
|       idx |= mm << (3-i)*3;
 | |
|     }
 | |
| 
 | |
|     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
 | |
|                              DAG.getConstant(idx, dl, MVT::i32));
 | |
|     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
 | |
|   }
 | |
| 
 | |
|   // Cases that are handled by instructions that take permute immediates
 | |
|   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | |
|   // selected by the instruction selector.
 | |
|   if (V2.isUndef()) {
 | |
|     if (PPC::isSplatShuffleMask(SVOp, 1) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 2) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 4) ||
 | |
|         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
 | |
|         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
 | |
|         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
 | |
|         (Subtarget.hasP8Altivec() && (
 | |
|          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
 | |
|          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
 | |
|          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
 | |
|       return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | |
|   // and produce a fixed permutation.  If any of these match, do not lower to
 | |
|   // VPERM.
 | |
|   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
 | |
|   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | |
|       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | |
|       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | |
|       (Subtarget.hasP8Altivec() && (
 | |
|        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | |
|        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
 | |
|        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
 | |
|     return Op;
 | |
| 
 | |
|   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | |
|   // perfect shuffle table to emit an optimal matching sequence.
 | |
|   ArrayRef<int> PermMask = SVOp->getMask();
 | |
| 
 | |
|   unsigned PFIndexes[4];
 | |
|   bool isFourElementShuffle = true;
 | |
|   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | |
|     unsigned EltNo = 8;   // Start out undef.
 | |
|     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | |
|       if (PermMask[i*4+j] < 0)
 | |
|         continue;   // Undef, ignore it.
 | |
| 
 | |
|       unsigned ByteSource = PermMask[i*4+j];
 | |
|       if ((ByteSource & 3) != j) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (EltNo == 8) {
 | |
|         EltNo = ByteSource/4;
 | |
|       } else if (EltNo != ByteSource/4) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     PFIndexes[i] = EltNo;
 | |
|   }
 | |
| 
 | |
|   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
 | |
|   // perfect shuffle vector to determine if it is cost effective to do this as
 | |
|   // discrete instructions, or whether we should use a vperm.
 | |
|   // For now, we skip this for little endian until such time as we have a
 | |
|   // little-endian perfect shuffle table.
 | |
|   if (isFourElementShuffle && !isLittleEndian) {
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
| 
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost  = (PFEntry >> 30);
 | |
| 
 | |
|     // Determining when to avoid vperm is tricky.  Many things affect the cost
 | |
|     // of vperm, particularly how many times the perm mask needs to be computed.
 | |
|     // For example, if the perm mask can be hoisted out of a loop or is already
 | |
|     // used (perhaps because there are multiple permutes with the same shuffle
 | |
|     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | |
|     // the loop requires an extra register.
 | |
|     //
 | |
|     // As a compromise, we only emit discrete instructions if the shuffle can be
 | |
|     // generated in 3 or fewer operations.  When we have loop information
 | |
|     // available, if this block is within a loop, we should avoid using vperm
 | |
|     // for 3-operation perms and use a constant pool load instead.
 | |
|     if (Cost < 3)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | |
|   // vector that will get spilled to the constant pool.
 | |
|   if (V2.isUndef()) V2 = V1;
 | |
| 
 | |
|   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | |
|   // that it is in input element units, not in bytes.  Convert now.
 | |
| 
 | |
|   // For little endian, the order of the input vectors is reversed, and
 | |
|   // the permutation mask is complemented with respect to 31.  This is
 | |
|   // necessary to produce proper semantics with the big-endian-biased vperm
 | |
|   // instruction.
 | |
|   EVT EltVT = V1.getValueType().getVectorElementType();
 | |
|   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | |
| 
 | |
|   SmallVector<SDValue, 16> ResultMask;
 | |
|   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | |
|     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
 | |
| 
 | |
|     for (unsigned j = 0; j != BytesPerElement; ++j)
 | |
|       if (isLittleEndian)
 | |
|         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
 | |
|                                              dl, MVT::i32));
 | |
|       else
 | |
|         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
 | |
|                                              MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
 | |
|   if (isLittleEndian)
 | |
|     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | |
|                        V2, V1, VPermMask);
 | |
|   else
 | |
|     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | |
|                        V1, V2, VPermMask);
 | |
| }
 | |
| 
 | |
| /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
 | |
| /// vector comparison.  If it is, return true and fill in Opc/isDot with
 | |
| /// information about the intrinsic.
 | |
| static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
 | |
|                                  bool &isDot, const PPCSubtarget &Subtarget) {
 | |
|   unsigned IntrinsicID =
 | |
|       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
 | |
|   CompareOpc = -1;
 | |
|   isDot = false;
 | |
|   switch (IntrinsicID) {
 | |
|   default:
 | |
|     return false;
 | |
|   // Comparison predicates.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp_p:
 | |
|     CompareOpc = 966;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | |
|     CompareOpc = 198;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb_p:
 | |
|     CompareOpc = 6;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh_p:
 | |
|     CompareOpc = 70;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw_p:
 | |
|     CompareOpc = 134;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequd_p:
 | |
|     if (Subtarget.hasP8Altivec()) {
 | |
|       CompareOpc = 199;
 | |
|       isDot = true;
 | |
|     } else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpneb_p:
 | |
|   case Intrinsic::ppc_altivec_vcmpneh_p:
 | |
|   case Intrinsic::ppc_altivec_vcmpnew_p:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezb_p:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezh_p:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezw_p:
 | |
|     if (Subtarget.hasP9Altivec()) {
 | |
|       switch (IntrinsicID) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown comparison intrinsic.");
 | |
|       case Intrinsic::ppc_altivec_vcmpneb_p:
 | |
|         CompareOpc = 7;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpneh_p:
 | |
|         CompareOpc = 71;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnew_p:
 | |
|         CompareOpc = 135;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezb_p:
 | |
|         CompareOpc = 263;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezh_p:
 | |
|         CompareOpc = 327;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezw_p:
 | |
|         CompareOpc = 391;
 | |
|         break;
 | |
|       }
 | |
|       isDot = true;
 | |
|     } else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp_p:
 | |
|     CompareOpc = 454;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | |
|     CompareOpc = 710;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | |
|     CompareOpc = 774;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | |
|     CompareOpc = 838;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | |
|     CompareOpc = 902;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | |
|     if (Subtarget.hasP8Altivec()) {
 | |
|       CompareOpc = 967;
 | |
|       isDot = true;
 | |
|     } else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub_p:
 | |
|     CompareOpc = 518;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | |
|     CompareOpc = 582;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | |
|     CompareOpc = 646;
 | |
|     isDot = true;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtud_p:
 | |
|     if (Subtarget.hasP8Altivec()) {
 | |
|       CompareOpc = 711;
 | |
|       isDot = true;
 | |
|     } else
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   // VSX predicate comparisons use the same infrastructure
 | |
|   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | |
|   case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | |
|   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | |
|   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | |
|   case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | |
|   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | |
|     if (Subtarget.hasVSX()) {
 | |
|       switch (IntrinsicID) {
 | |
|       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | |
|         CompareOpc = 99;
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | |
|         CompareOpc = 115;
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | |
|         CompareOpc = 107;
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | |
|         CompareOpc = 67;
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | |
|         CompareOpc = 83;
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | |
|         CompareOpc = 75;
 | |
|         break;
 | |
|       }
 | |
|       isDot = true;
 | |
|     } else
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   // Normal Comparisons.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp:
 | |
|     CompareOpc = 966;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp:
 | |
|     CompareOpc = 198;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb:
 | |
|     CompareOpc = 6;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh:
 | |
|     CompareOpc = 70;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw:
 | |
|     CompareOpc = 134;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequd:
 | |
|     if (Subtarget.hasP8Altivec())
 | |
|       CompareOpc = 199;
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpneb:
 | |
|   case Intrinsic::ppc_altivec_vcmpneh:
 | |
|   case Intrinsic::ppc_altivec_vcmpnew:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezb:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezh:
 | |
|   case Intrinsic::ppc_altivec_vcmpnezw:
 | |
|     if (Subtarget.hasP9Altivec())
 | |
|       switch (IntrinsicID) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown comparison intrinsic.");
 | |
|       case Intrinsic::ppc_altivec_vcmpneb:
 | |
|         CompareOpc = 7;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpneh:
 | |
|         CompareOpc = 71;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnew:
 | |
|         CompareOpc = 135;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezb:
 | |
|         CompareOpc = 263;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezh:
 | |
|         CompareOpc = 327;
 | |
|         break;
 | |
|       case Intrinsic::ppc_altivec_vcmpnezw:
 | |
|         CompareOpc = 391;
 | |
|         break;
 | |
|       }
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp:
 | |
|     CompareOpc = 454;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp:
 | |
|     CompareOpc = 710;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb:
 | |
|     CompareOpc = 774;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh:
 | |
|     CompareOpc = 838;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw:
 | |
|     CompareOpc = 902;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsd:
 | |
|     if (Subtarget.hasP8Altivec())
 | |
|       CompareOpc = 967;
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub:
 | |
|     CompareOpc = 518;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh:
 | |
|     CompareOpc = 582;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw:
 | |
|     CompareOpc = 646;
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtud:
 | |
|     if (Subtarget.hasP8Altivec())
 | |
|       CompareOpc = 711;
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | |
| /// lower, do it, otherwise return null.
 | |
| SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   unsigned IntrinsicID =
 | |
|     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (IntrinsicID == Intrinsic::thread_pointer) {
 | |
|     // Reads the thread pointer register, used for __builtin_thread_pointer.
 | |
|     if (Subtarget.isPPC64())
 | |
|       return DAG.getRegister(PPC::X13, MVT::i64);
 | |
|     return DAG.getRegister(PPC::R2, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   // We are looking for absolute values here.
 | |
|   // The idea is to try to fit one of two patterns:
 | |
|   //  max (a, (0-a))  OR  max ((0-a), a)
 | |
|   if (Subtarget.hasP9Vector() &&
 | |
|       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
 | |
|        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
 | |
|        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
 | |
|     SDValue V1 = Op.getOperand(1);
 | |
|     SDValue V2 = Op.getOperand(2);
 | |
|     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
 | |
|         (V1.getSimpleValueType() == MVT::v4i32 ||
 | |
|          V1.getSimpleValueType() == MVT::v8i16 ||
 | |
|          V1.getSimpleValueType() == MVT::v16i8)) {
 | |
|       if ( V1.getOpcode() == ISD::SUB &&
 | |
|            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
 | |
|            V1.getOperand(1) == V2 ) {
 | |
|         // Generate the abs instruction with the operands
 | |
|         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
 | |
|       }
 | |
| 
 | |
|       if ( V2.getOpcode() == ISD::SUB &&
 | |
|            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
 | |
|            V2.getOperand(1) == V1 ) {
 | |
|         // Generate the abs instruction with the operands
 | |
|         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | |
|   // opcode number of the comparison.
 | |
|   int CompareOpc;
 | |
|   bool isDot;
 | |
|   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
 | |
|     return SDValue();    // Don't custom lower most intrinsics.
 | |
| 
 | |
|   // If this is a non-dot comparison, make the VCMP node and we are done.
 | |
|   if (!isDot) {
 | |
|     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
 | |
|                               Op.getOperand(1), Op.getOperand(2),
 | |
|                               DAG.getConstant(CompareOpc, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
 | |
|   }
 | |
| 
 | |
|   // Create the PPCISD altivec 'dot' comparison node.
 | |
|   SDValue Ops[] = {
 | |
|     Op.getOperand(2),  // LHS
 | |
|     Op.getOperand(3),  // RHS
 | |
|     DAG.getConstant(CompareOpc, dl, MVT::i32)
 | |
|   };
 | |
|   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
 | |
|   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
 | |
| 
 | |
|   // Now that we have the comparison, emit a copy from the CR to a GPR.
 | |
|   // This is flagged to the above dot comparison.
 | |
|   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
 | |
|                                 DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                                 CompNode.getValue(1));
 | |
| 
 | |
|   // Unpack the result based on how the target uses it.
 | |
|   unsigned BitNo;   // Bit # of CR6.
 | |
|   bool InvertBit;   // Invert result?
 | |
|   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | |
|   default:  // Can't happen, don't crash on invalid number though.
 | |
|   case 0:   // Return the value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = false;
 | |
|     break;
 | |
|   case 1:   // Return the inverted value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = true;
 | |
|     break;
 | |
|   case 2:   // Return the value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = false;
 | |
|     break;
 | |
|   case 3:   // Return the inverted value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Shift the bit into the low position.
 | |
|   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
 | |
|   // Isolate the bit.
 | |
|   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|   // If we are supposed to, toggle the bit.
 | |
|   if (InvertBit)
 | |
|     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
 | |
|                         DAG.getConstant(1, dl, MVT::i32));
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
 | |
|   // the beginning of the argument list.
 | |
|   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
 | |
|   SDLoc DL(Op);
 | |
|   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
 | |
|   case Intrinsic::ppc_cfence: {
 | |
|     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
 | |
|     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
 | |
|     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
 | |
|                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
 | |
|                                                   Op.getOperand(ArgStart + 1)),
 | |
|                                       Op.getOperand(0)),
 | |
|                    0);
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Check for a DIV with the same operands as this REM.
 | |
|   for (auto UI : Op.getOperand(1)->uses()) {
 | |
|     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
 | |
|         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
 | |
|       if (UI->getOperand(0) == Op.getOperand(0) &&
 | |
|           UI->getOperand(1) == Op.getOperand(1))
 | |
|         return SDValue();
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // Lower scalar BSWAP64 to xxbrd.
 | |
| SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   // MTVSRDD
 | |
|   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
 | |
|                    Op.getOperand(0));
 | |
|   // XXBRD
 | |
|   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
 | |
|   // MFVSRD
 | |
|   int VectorIndex = 0;
 | |
|   if (Subtarget.isLittleEndian())
 | |
|     VectorIndex = 1;
 | |
|   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
 | |
|                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
 | |
| // compared to a value that is atomically loaded (atomic loads zero-extend).
 | |
| SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
 | |
|          "Expecting an atomic compare-and-swap here.");
 | |
|   SDLoc dl(Op);
 | |
|   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
 | |
|   EVT MemVT = AtomicNode->getMemoryVT();
 | |
|   if (MemVT.getSizeInBits() >= 32)
 | |
|     return Op;
 | |
| 
 | |
|   SDValue CmpOp = Op.getOperand(2);
 | |
|   // If this is already correctly zero-extended, leave it alone.
 | |
|   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
 | |
|   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
 | |
|     return Op;
 | |
| 
 | |
|   // Clear the high bits of the compare operand.
 | |
|   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
 | |
|   SDValue NewCmpOp =
 | |
|     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
 | |
|                 DAG.getConstant(MaskVal, dl, MVT::i32));
 | |
| 
 | |
|   // Replace the existing compare operand with the properly zero-extended one.
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
 | |
|     Ops.push_back(AtomicNode->getOperand(i));
 | |
|   Ops[2] = NewCmpOp;
 | |
|   MachineMemOperand *MMO = AtomicNode->getMemOperand();
 | |
|   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
 | |
|   auto NodeTy =
 | |
|     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
 | |
|   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   // Create a stack slot that is 16-byte aligned.
 | |
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   // Store the input value into Value#0 of the stack slot.
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | |
|                                MachinePointerInfo());
 | |
|   // Load it out.
 | |
|   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
 | |
|          "Should only be called for ISD::INSERT_VECTOR_ELT");
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | |
|   // We have legal lowering for constant indices but not for variable ones.
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
 | |
|   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
 | |
|     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
 | |
|     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
 | |
|     unsigned InsertAtElement = C->getZExtValue();
 | |
|     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
 | |
|     if (Subtarget.isLittleEndian()) {
 | |
|       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
 | |
|     }
 | |
|     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
 | |
|                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   SDNode *N = Op.getNode();
 | |
| 
 | |
|   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
 | |
|          "Unknown extract_vector_elt type");
 | |
| 
 | |
|   SDValue Value = N->getOperand(0);
 | |
| 
 | |
|   // The first part of this is like the store lowering except that we don't
 | |
|   // need to track the chain.
 | |
| 
 | |
|   // The values are now known to be -1 (false) or 1 (true). To convert this
 | |
|   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | |
|   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | |
|   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | |
| 
 | |
|   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
 | |
|   // understand how to form the extending load.
 | |
|   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | |
| 
 | |
|   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | |
| 
 | |
|   // Now convert to an integer and store.
 | |
|   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | |
|     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
 | |
|     Value);
 | |
| 
 | |
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | |
|   MachinePointerInfo PtrInfo =
 | |
|       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   SDValue StoreChain = DAG.getEntryNode();
 | |
|   SDValue Ops[] = {StoreChain,
 | |
|                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
 | |
|                    Value, FIdx};
 | |
|   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
 | |
| 
 | |
|   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
 | |
|     dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | |
| 
 | |
|   // Extract the value requested.
 | |
|   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | |
|   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | |
| 
 | |
|   SDValue IntVal =
 | |
|       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
 | |
| 
 | |
|   if (!Subtarget.useCRBits())
 | |
|     return IntVal;
 | |
| 
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
 | |
| }
 | |
| 
 | |
| /// Lowering for QPX v4i1 loads
 | |
| SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
 | |
|   SDValue LoadChain = LN->getChain();
 | |
|   SDValue BasePtr = LN->getBasePtr();
 | |
| 
 | |
|   if (Op.getValueType() == MVT::v4f64 ||
 | |
|       Op.getValueType() == MVT::v4f32) {
 | |
|     EVT MemVT = LN->getMemoryVT();
 | |
|     unsigned Alignment = LN->getAlignment();
 | |
| 
 | |
|     // If this load is properly aligned, then it is legal.
 | |
|     if (Alignment >= MemVT.getStoreSize())
 | |
|       return Op;
 | |
| 
 | |
|     EVT ScalarVT = Op.getValueType().getScalarType(),
 | |
|         ScalarMemVT = MemVT.getScalarType();
 | |
|     unsigned Stride = ScalarMemVT.getStoreSize();
 | |
| 
 | |
|     SDValue Vals[4], LoadChains[4];
 | |
|     for (unsigned Idx = 0; Idx < 4; ++Idx) {
 | |
|       SDValue Load;
 | |
|       if (ScalarVT != ScalarMemVT)
 | |
|         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
 | |
|                               BasePtr,
 | |
|                               LN->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
 | |
|                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | |
|       else
 | |
|         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
 | |
|                            LN->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|                            MinAlign(Alignment, Idx * Stride),
 | |
|                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | |
| 
 | |
|       if (Idx == 0 && LN->isIndexed()) {
 | |
|         assert(LN->getAddressingMode() == ISD::PRE_INC &&
 | |
|                "Unknown addressing mode on vector load");
 | |
|         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
 | |
|                                   LN->getAddressingMode());
 | |
|       }
 | |
| 
 | |
|       Vals[Idx] = Load;
 | |
|       LoadChains[Idx] = Load.getValue(1);
 | |
| 
 | |
|       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | |
|                             DAG.getConstant(Stride, dl,
 | |
|                                             BasePtr.getValueType()));
 | |
|     }
 | |
| 
 | |
|     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | |
|     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
 | |
| 
 | |
|     if (LN->isIndexed()) {
 | |
|       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
 | |
|       return DAG.getMergeValues(RetOps, dl);
 | |
|     }
 | |
| 
 | |
|     SDValue RetOps[] = { Value, TF };
 | |
|     return DAG.getMergeValues(RetOps, dl);
 | |
|   }
 | |
| 
 | |
|   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
 | |
|   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
 | |
| 
 | |
|   // To lower v4i1 from a byte array, we load the byte elements of the
 | |
|   // vector and then reuse the BUILD_VECTOR logic.
 | |
| 
 | |
|   SDValue VectElmts[4], VectElmtChains[4];
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
 | |
|     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
 | |
| 
 | |
|     VectElmts[i] = DAG.getExtLoad(
 | |
|         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
 | |
|         LN->getPointerInfo().getWithOffset(i), MVT::i8,
 | |
|         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | |
|     VectElmtChains[i] = VectElmts[i].getValue(1);
 | |
|   }
 | |
| 
 | |
|   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
 | |
|   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
 | |
| 
 | |
|   SDValue RVals[] = { Value, LoadChain };
 | |
|   return DAG.getMergeValues(RVals, dl);
 | |
| }
 | |
| 
 | |
| /// Lowering for QPX v4i1 stores
 | |
| SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
 | |
|   SDValue StoreChain = SN->getChain();
 | |
|   SDValue BasePtr = SN->getBasePtr();
 | |
|   SDValue Value = SN->getValue();
 | |
| 
 | |
|   if (Value.getValueType() == MVT::v4f64 ||
 | |
|       Value.getValueType() == MVT::v4f32) {
 | |
|     EVT MemVT = SN->getMemoryVT();
 | |
|     unsigned Alignment = SN->getAlignment();
 | |
| 
 | |
|     // If this store is properly aligned, then it is legal.
 | |
|     if (Alignment >= MemVT.getStoreSize())
 | |
|       return Op;
 | |
| 
 | |
|     EVT ScalarVT = Value.getValueType().getScalarType(),
 | |
|         ScalarMemVT = MemVT.getScalarType();
 | |
|     unsigned Stride = ScalarMemVT.getStoreSize();
 | |
| 
 | |
|     SDValue Stores[4];
 | |
|     for (unsigned Idx = 0; Idx < 4; ++Idx) {
 | |
|       SDValue Ex = DAG.getNode(
 | |
|           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
 | |
|           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
 | |
|       SDValue Store;
 | |
|       if (ScalarVT != ScalarMemVT)
 | |
|         Store =
 | |
|             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
 | |
|                               SN->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
 | |
|                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
 | |
|       else
 | |
|         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
 | |
|                              SN->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|                              MinAlign(Alignment, Idx * Stride),
 | |
|                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
 | |
| 
 | |
|       if (Idx == 0 && SN->isIndexed()) {
 | |
|         assert(SN->getAddressingMode() == ISD::PRE_INC &&
 | |
|                "Unknown addressing mode on vector store");
 | |
|         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
 | |
|                                     SN->getAddressingMode());
 | |
|       }
 | |
| 
 | |
|       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | |
|                             DAG.getConstant(Stride, dl,
 | |
|                                             BasePtr.getValueType()));
 | |
|       Stores[Idx] = Store;
 | |
|     }
 | |
| 
 | |
|     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | |
| 
 | |
|     if (SN->isIndexed()) {
 | |
|       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
 | |
|       return DAG.getMergeValues(RetOps, dl);
 | |
|     }
 | |
| 
 | |
|     return TF;
 | |
|   }
 | |
| 
 | |
|   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
 | |
|   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
 | |
| 
 | |
|   // The values are now known to be -1 (false) or 1 (true). To convert this
 | |
|   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | |
|   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | |
|   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | |
| 
 | |
|   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
 | |
|   // understand how to form the extending load.
 | |
|   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | |
| 
 | |
|   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | |
| 
 | |
|   // Now convert to an integer and store.
 | |
|   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | |
|     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
 | |
|     Value);
 | |
| 
 | |
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | |
|   MachinePointerInfo PtrInfo =
 | |
|       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   SDValue Ops[] = {StoreChain,
 | |
|                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
 | |
|                    Value, FIdx};
 | |
|   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
 | |
| 
 | |
|   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
 | |
|     dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | |
| 
 | |
|   // Move data into the byte array.
 | |
|   SDValue Loads[4], LoadChains[4];
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     unsigned Offset = 4*i;
 | |
|     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | |
|     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | |
| 
 | |
|     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
 | |
|                            PtrInfo.getWithOffset(Offset));
 | |
|     LoadChains[i] = Loads[i].getValue(1);
 | |
|   }
 | |
| 
 | |
|   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | |
| 
 | |
|   SDValue Stores[4];
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
 | |
|     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
 | |
| 
 | |
|     Stores[i] = DAG.getTruncStore(
 | |
|         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
 | |
|         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
 | |
|         SN->getAAInfo());
 | |
|   }
 | |
| 
 | |
|   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | |
| 
 | |
|   return StoreChain;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   if (Op.getValueType() == MVT::v4i32) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
 | |
|     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
 | |
| 
 | |
|     SDValue RHSSwap =   // = vrlw RHS, 16
 | |
|       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
 | |
| 
 | |
|     // Shrinkify inputs to v8i16.
 | |
|     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
 | |
|     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
 | |
|     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
 | |
| 
 | |
|     // Low parts multiplied together, generating 32-bit results (we ignore the
 | |
|     // top parts).
 | |
|     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | |
|                                         LHS, RHS, DAG, dl, MVT::v4i32);
 | |
| 
 | |
|     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | |
|                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
 | |
|     // Shift the high parts up 16 bits.
 | |
|     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
 | |
|                               Neg16, DAG, dl);
 | |
|     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
 | |
|   } else if (Op.getValueType() == MVT::v8i16) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
 | |
| 
 | |
|     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | |
|                             LHS, RHS, Zero, DAG, dl);
 | |
|   } else if (Op.getValueType() == MVT::v16i8) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|     bool isLittleEndian = Subtarget.isLittleEndian();
 | |
| 
 | |
|     // Multiply the even 8-bit parts, producing 16-bit sums.
 | |
|     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | |
|                                            LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
 | |
| 
 | |
|     // Multiply the odd 8-bit parts, producing 16-bit sums.
 | |
|     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | |
|                                           LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
 | |
| 
 | |
|     // Merge the results together.  Because vmuleub and vmuloub are
 | |
|     // instructions with a big-endian bias, we must reverse the
 | |
|     // element numbering and reverse the meaning of "odd" and "even"
 | |
|     // when generating little endian code.
 | |
|     int Ops[16];
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       if (isLittleEndian) {
 | |
|         Ops[i*2  ] = 2*i;
 | |
|         Ops[i*2+1] = 2*i+16;
 | |
|       } else {
 | |
|         Ops[i*2  ] = 2*i+1;
 | |
|         Ops[i*2+1] = 2*i+1+16;
 | |
|       }
 | |
|     }
 | |
|     if (isLittleEndian)
 | |
|       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
 | |
|     else
 | |
|       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown mul to lower!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
 | |
|   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
 | |
| 
 | |
|   // Variable argument lowering.
 | |
|   case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | |
|   case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | |
|   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | |
| 
 | |
|   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::GET_DYNAMIC_AREA_OFFSET:
 | |
|     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
 | |
| 
 | |
|   // Exception handling lowering.
 | |
|   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
 | |
|   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
 | |
| 
 | |
|   case ISD::LOAD:               return LowerLOAD(Op, DAG);
 | |
|   case ISD::STORE:              return LowerSTORE(Op, DAG);
 | |
|   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
 | |
|   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
 | |
|   case ISD::UINT_TO_FP:
 | |
|   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | |
| 
 | |
|   // Lower 64-bit shifts.
 | |
|   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | |
|   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | |
|   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | |
| 
 | |
|   // Vector-related lowering.
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL(Op, DAG);
 | |
| 
 | |
|   // For counter-based loop handling.
 | |
|   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
 | |
| 
 | |
|   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
 | |
| 
 | |
|   // Frame & Return address.
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
| 
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|     return LowerINTRINSIC_VOID(Op, DAG);
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM:
 | |
|     return LowerREM(Op, DAG);
 | |
|   case ISD::BSWAP:
 | |
|     return LowerBSWAP(Op, DAG);
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     return LowerATOMIC_CMP_SWAP(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDLoc dl(N);
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Do not know how to custom type legalize this operation!");
 | |
|   case ISD::READCYCLECOUNTER: {
 | |
|     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | |
|     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
 | |
| 
 | |
|     Results.push_back(RTB);
 | |
|     Results.push_back(RTB.getValue(1));
 | |
|     Results.push_back(RTB.getValue(2));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
 | |
|         Intrinsic::ppc_is_decremented_ctr_nonzero)
 | |
|       break;
 | |
| 
 | |
|     assert(N->getValueType(0) == MVT::i1 &&
 | |
|            "Unexpected result type for CTR decrement intrinsic");
 | |
|     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | |
|                                  N->getValueType(0));
 | |
|     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
 | |
|     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
 | |
|                                  N->getOperand(1));
 | |
| 
 | |
|     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
 | |
|     Results.push_back(NewInt.getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VAARG: {
 | |
|     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
 | |
|       return;
 | |
| 
 | |
|     EVT VT = N->getValueType(0);
 | |
| 
 | |
|     if (VT == MVT::i64) {
 | |
|       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
 | |
| 
 | |
|       Results.push_back(NewNode);
 | |
|       Results.push_back(NewNode.getValue(1));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:
 | |
|     // LowerFP_TO_INT() can only handle f32 and f64.
 | |
|     if (N->getOperand(0).getValueType() == MVT::ppcf128)
 | |
|       return;
 | |
|     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
 | |
|     return;
 | |
|   case ISD::BITCAST:
 | |
|     // Don't handle bitcast here.
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Other Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   Function *Func = Intrinsic::getDeclaration(M, Id);
 | |
|   return Builder.CreateCall(Func, {});
 | |
| }
 | |
| 
 | |
| // The mappings for emitLeading/TrailingFence is taken from
 | |
| // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
 | |
| Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
 | |
|                                                  Instruction *Inst,
 | |
|                                                  AtomicOrdering Ord) const {
 | |
|   if (Ord == AtomicOrdering::SequentiallyConsistent)
 | |
|     return callIntrinsic(Builder, Intrinsic::ppc_sync);
 | |
|   if (isReleaseOrStronger(Ord))
 | |
|     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
 | |
|                                                   Instruction *Inst,
 | |
|                                                   AtomicOrdering Ord) const {
 | |
|   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
 | |
|     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
 | |
|     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
 | |
|     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
 | |
|     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
 | |
|       return Builder.CreateCall(
 | |
|           Intrinsic::getDeclaration(
 | |
|               Builder.GetInsertBlock()->getParent()->getParent(),
 | |
|               Intrinsic::ppc_cfence, {Inst->getType()}),
 | |
|           {Inst});
 | |
|     // FIXME: Can use isync for rmw operation.
 | |
|     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
 | |
|                                     unsigned AtomicSize,
 | |
|                                     unsigned BinOpcode,
 | |
|                                     unsigned CmpOpcode,
 | |
|                                     unsigned CmpPred) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
| 
 | |
|   auto LoadMnemonic = PPC::LDARX;
 | |
|   auto StoreMnemonic = PPC::STDCX;
 | |
|   switch (AtomicSize) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected size of atomic entity");
 | |
|   case 1:
 | |
|     LoadMnemonic = PPC::LBARX;
 | |
|     StoreMnemonic = PPC::STBCX;
 | |
|     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | |
|     break;
 | |
|   case 2:
 | |
|     LoadMnemonic = PPC::LHARX;
 | |
|     StoreMnemonic = PPC::STHCX;
 | |
|     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | |
|     break;
 | |
|   case 4:
 | |
|     LoadMnemonic = PPC::LWARX;
 | |
|     StoreMnemonic = PPC::STWCX;
 | |
|     break;
 | |
|   case 8:
 | |
|     LoadMnemonic = PPC::LDARX;
 | |
|     StoreMnemonic = PPC::STDCX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = ++BB->getIterator();
 | |
| 
 | |
|   unsigned dest = MI.getOperand(0).getReg();
 | |
|   unsigned ptrA = MI.getOperand(1).getReg();
 | |
|   unsigned ptrB = MI.getOperand(2).getReg();
 | |
|   unsigned incr = MI.getOperand(3).getReg();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *loop2MBB =
 | |
|     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   if (CmpOpcode)
 | |
|     F->insert(It, loop2MBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   unsigned TmpReg = (!BinOpcode) ? incr :
 | |
|     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
 | |
|                                            : &PPC::GPRCRegClass);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   l[wd]arx dest, ptr
 | |
|   //   add r0, dest, incr
 | |
|   //   st[wd]cx. r0, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
| 
 | |
|   // For max/min...
 | |
|   //  loopMBB:
 | |
|   //   l[wd]arx dest, ptr
 | |
|   //   cmpl?[wd] incr, dest
 | |
|   //   bgt exitMBB
 | |
|   //  loop2MBB:
 | |
|   //   st[wd]cx. dest, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
| 
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
 | |
|     .addReg(ptrA).addReg(ptrB);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | |
|   if (CmpOpcode) {
 | |
|     // Signed comparisons of byte or halfword values must be sign-extended.
 | |
|     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
 | |
|       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | |
|       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
 | |
|               ExtReg).addReg(dest);
 | |
|       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | |
|         .addReg(incr).addReg(ExtReg);
 | |
|     } else
 | |
|       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | |
|         .addReg(incr).addReg(dest);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
|     BB = loop2MBB;
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(StoreMnemonic))
 | |
|     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
 | |
|                                             MachineBasicBlock *BB,
 | |
|                                             bool is8bit, // operation
 | |
|                                             unsigned BinOpcode,
 | |
|                                             unsigned CmpOpcode,
 | |
|                                             unsigned CmpPred) const {
 | |
|   // If we support part-word atomic mnemonics, just use them
 | |
|   if (Subtarget.hasPartwordAtomics())
 | |
|     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
 | |
|                             CmpOpcode, CmpPred);
 | |
| 
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   // In 64 bit mode we have to use 64 bits for addresses, even though the
 | |
|   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | |
|   // registers without caring whether they're 32 or 64, but here we're
 | |
|   // doing actual arithmetic on the addresses.
 | |
|   bool is64bit = Subtarget.isPPC64();
 | |
|   bool isLittleEndian = Subtarget.isLittleEndian();
 | |
|   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = ++BB->getIterator();
 | |
| 
 | |
|   unsigned dest = MI.getOperand(0).getReg();
 | |
|   unsigned ptrA = MI.getOperand(1).getReg();
 | |
|   unsigned ptrB = MI.getOperand(2).getReg();
 | |
|   unsigned incr = MI.getOperand(3).getReg();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *loop2MBB =
 | |
|     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   if (CmpOpcode)
 | |
|     F->insert(It, loop2MBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
 | |
|                                           : &PPC::GPRCRegClass;
 | |
|   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned ShiftReg =
 | |
|     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Ptr1Reg;
 | |
|   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   // The 4-byte load must be aligned, while a char or short may be
 | |
|   // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|   //   xori shift, shift1, 24 [16]
 | |
|   //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|   //   slw incr2, incr, shift
 | |
|   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|   //   slw mask, mask2, shift
 | |
|   //  loopMBB:
 | |
|   //   lwarx tmpDest, ptr
 | |
|   //   add tmp, tmpDest, incr2
 | |
|   //   andc tmp2, tmpDest, mask
 | |
|   //   and tmp3, tmp, mask
 | |
|   //   or tmp4, tmp3, tmp2
 | |
|   //   stwcx. tmp4, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   //   srw dest, tmpDest, shift
 | |
|   if (ptrA != ZeroReg) {
 | |
|     Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|   } else {
 | |
|     Ptr1Reg = ptrB;
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|   if (!isLittleEndian)
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|   if (is64bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|   else
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
 | |
|       .addReg(incr).addReg(ShiftReg);
 | |
|   if (is8bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|   else {
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|       .addReg(Mask2Reg).addReg(ShiftReg);
 | |
| 
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|     .addReg(ZeroReg).addReg(PtrReg);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
 | |
|       .addReg(Incr2Reg).addReg(TmpDestReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
 | |
|     .addReg(TmpDestReg).addReg(MaskReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
 | |
|     .addReg(TmpReg).addReg(MaskReg);
 | |
|   if (CmpOpcode) {
 | |
|     // For unsigned comparisons, we can directly compare the shifted values.
 | |
|     // For signed comparisons we shift and sign extend.
 | |
|     unsigned SReg = RegInfo.createVirtualRegister(RC);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
 | |
|       .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     unsigned ValueReg = SReg;
 | |
|     unsigned CmpReg = Incr2Reg;
 | |
|     if (CmpOpcode == PPC::CMPW) {
 | |
|       ValueReg = RegInfo.createVirtualRegister(RC);
 | |
|       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
 | |
|         .addReg(SReg).addReg(ShiftReg);
 | |
|       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
 | |
|       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
 | |
|         .addReg(ValueReg);
 | |
|       ValueReg = ValueSReg;
 | |
|       CmpReg = incr;
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | |
|       .addReg(CmpReg).addReg(ValueReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
|     BB = loop2MBB;
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
 | |
|     .addReg(Tmp3Reg).addReg(Tmp2Reg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::STWCX))
 | |
|     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
 | |
|     .addReg(ShiftReg);
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| llvm::MachineBasicBlock *
 | |
| PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
 | |
|                                     MachineBasicBlock *MBB) const {
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
| 
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator I = ++MBB->getIterator();
 | |
| 
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | |
|   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
 | |
|   unsigned mainDstReg = MRI.createVirtualRegister(RC);
 | |
|   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   MVT PVT = getPointerTy(MF->getDataLayout());
 | |
|   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | |
|          "Invalid Pointer Size!");
 | |
|   // For v = setjmp(buf), we generate
 | |
|   //
 | |
|   // thisMBB:
 | |
|   //  SjLjSetup mainMBB
 | |
|   //  bl mainMBB
 | |
|   //  v_restore = 1
 | |
|   //  b sinkMBB
 | |
|   //
 | |
|   // mainMBB:
 | |
|   //  buf[LabelOffset] = LR
 | |
|   //  v_main = 0
 | |
|   //
 | |
|   // sinkMBB:
 | |
|   //  v = phi(main, restore)
 | |
|   //
 | |
| 
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | |
|   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | |
|   MF->insert(I, mainMBB);
 | |
|   MF->insert(I, sinkMBB);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|   sinkMBB->splice(sinkMBB->begin(), MBB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | |
|   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   // Note that the structure of the jmp_buf used here is not compatible
 | |
|   // with that used by libc, and is not designed to be. Specifically, it
 | |
|   // stores only those 'reserved' registers that LLVM does not otherwise
 | |
|   // understand how to spill. Also, by convention, by the time this
 | |
|   // intrinsic is called, Clang has already stored the frame address in the
 | |
|   // first slot of the buffer and stack address in the third. Following the
 | |
|   // X86 target code, we'll store the jump address in the second slot. We also
 | |
|   // need to save the TOC pointer (R2) to handle jumps between shared
 | |
|   // libraries, and that will be stored in the fourth slot. The thread
 | |
|   // identifier (R13) is not affected.
 | |
| 
 | |
|   // thisMBB:
 | |
|   const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | |
|   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | |
|   const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | |
| 
 | |
|   // Prepare IP either in reg.
 | |
|   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
 | |
|   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
 | |
|   unsigned BufReg = MI.getOperand(1).getReg();
 | |
| 
 | |
|   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
 | |
|     setUsesTOCBasePtr(*MBB->getParent());
 | |
|     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
 | |
|               .addReg(PPC::X2)
 | |
|               .addImm(TOCOffset)
 | |
|               .addReg(BufReg)
 | |
|               .cloneMemRefs(MI);
 | |
|   }
 | |
| 
 | |
|   // Naked functions never have a base pointer, and so we use r1. For all
 | |
|   // other functions, this decision must be delayed until during PEI.
 | |
|   unsigned BaseReg;
 | |
|   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
 | |
|     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
 | |
|   else
 | |
|     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
 | |
| 
 | |
|   MIB = BuildMI(*thisMBB, MI, DL,
 | |
|                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
 | |
|             .addReg(BaseReg)
 | |
|             .addImm(BPOffset)
 | |
|             .addReg(BufReg)
 | |
|             .cloneMemRefs(MI);
 | |
| 
 | |
|   // Setup
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
 | |
|   MIB.addRegMask(TRI->getNoPreservedMask());
 | |
| 
 | |
|   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
 | |
| 
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
 | |
|           .addMBB(mainMBB);
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
 | |
| 
 | |
|   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
 | |
|   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
 | |
| 
 | |
|   // mainMBB:
 | |
|   //  mainDstReg = 0
 | |
|   MIB =
 | |
|       BuildMI(mainMBB, DL,
 | |
|               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
 | |
| 
 | |
|   // Store IP
 | |
|   if (Subtarget.isPPC64()) {
 | |
|     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
 | |
|             .addReg(LabelReg)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
 | |
|             .addReg(LabelReg)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.cloneMemRefs(MI);
 | |
| 
 | |
|   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
 | |
|   mainMBB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   // sinkMBB:
 | |
|   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | |
|           TII->get(PPC::PHI), DstReg)
 | |
|     .addReg(mainDstReg).addMBB(mainMBB)
 | |
|     .addReg(restoreDstReg).addMBB(thisMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return sinkMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
 | |
|                                      MachineBasicBlock *MBB) const {
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
| 
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|   MVT PVT = getPointerTy(MF->getDataLayout());
 | |
|   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | |
|          "Invalid Pointer Size!");
 | |
| 
 | |
|   const TargetRegisterClass *RC =
 | |
|     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|   unsigned Tmp = MRI.createVirtualRegister(RC);
 | |
|   // Since FP is only updated here but NOT referenced, it's treated as GPR.
 | |
|   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
 | |
|   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
 | |
|   unsigned BP =
 | |
|       (PVT == MVT::i64)
 | |
|           ? PPC::X30
 | |
|           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
 | |
|                                                               : PPC::R30);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
| 
 | |
|   const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | |
|   const int64_t SPOffset    = 2 * PVT.getStoreSize();
 | |
|   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | |
|   const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | |
| 
 | |
|   unsigned BufReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // Reload FP (the jumped-to function may not have had a
 | |
|   // frame pointer, and if so, then its r31 will be restored
 | |
|   // as necessary).
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
 | |
|             .addImm(0)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
 | |
|             .addImm(0)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.cloneMemRefs(MI);
 | |
| 
 | |
|   // Reload IP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.cloneMemRefs(MI);
 | |
| 
 | |
|   // Reload SP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
 | |
|             .addImm(SPOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
 | |
|             .addImm(SPOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.cloneMemRefs(MI);
 | |
| 
 | |
|   // Reload BP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
 | |
|             .addImm(BPOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
 | |
|             .addImm(BPOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.cloneMemRefs(MI);
 | |
| 
 | |
|   // Reload TOC
 | |
|   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
 | |
|     setUsesTOCBasePtr(*MBB->getParent());
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
 | |
|               .addImm(TOCOffset)
 | |
|               .addReg(BufReg)
 | |
|               .cloneMemRefs(MI);
 | |
|   }
 | |
| 
 | |
|   // Jump
 | |
|   BuildMI(*MBB, MI, DL,
 | |
|           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
 | |
|   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
 | |
|       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
 | |
|     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
 | |
|         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
 | |
|       // Call lowering should have added an r2 operand to indicate a dependence
 | |
|       // on the TOC base pointer value. It can't however, because there is no
 | |
|       // way to mark the dependence as implicit there, and so the stackmap code
 | |
|       // will confuse it with a regular operand. Instead, add the dependence
 | |
|       // here.
 | |
|       setUsesTOCBasePtr(*BB->getParent());
 | |
|       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
 | |
|     }
 | |
| 
 | |
|     return emitPatchPoint(MI, BB);
 | |
|   }
 | |
| 
 | |
|   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
 | |
|       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
 | |
|     return emitEHSjLjSetJmp(MI, BB);
 | |
|   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
 | |
|              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
 | |
|     return emitEHSjLjLongJmp(MI, BB);
 | |
|   }
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
| 
 | |
|   // To "insert" these instructions we actually have to insert their
 | |
|   // control-flow patterns.
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = ++BB->getIterator();
 | |
| 
 | |
|   MachineFunction *F = BB->getParent();
 | |
| 
 | |
|   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|        MI.getOpcode() == PPC::SELECT_CC_I8 ||
 | |
|        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
 | |
|     SmallVector<MachineOperand, 2> Cond;
 | |
|     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|         MI.getOpcode() == PPC::SELECT_CC_I8)
 | |
|       Cond.push_back(MI.getOperand(4));
 | |
|     else
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|     Cond.push_back(MI.getOperand(1));
 | |
| 
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
|     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
 | |
|                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
 | |
|   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_I8 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_F4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_F8 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_F16 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_CC_SPE ||
 | |
|              MI.getOpcode() == PPC::SELECT_I4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_I8 ||
 | |
|              MI.getOpcode() == PPC::SELECT_F4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_F8 ||
 | |
|              MI.getOpcode() == PPC::SELECT_F16 ||
 | |
|              MI.getOpcode() == PPC::SELECT_QFRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_QSRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_QBRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_SPE ||
 | |
|              MI.getOpcode() == PPC::SELECT_SPE4 ||
 | |
|              MI.getOpcode() == PPC::SELECT_VRRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_VSFRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_VSSRC ||
 | |
|              MI.getOpcode() == PPC::SELECT_VSRC) {
 | |
|     // The incoming instruction knows the destination vreg to set, the
 | |
|     // condition code register to branch on, the true/false values to
 | |
|     // select between, and a branch opcode to use.
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     // Next, add the true and fallthrough blocks as its successors.
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
 | |
|         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
 | |
|         MI.getOpcode() == PPC::SELECT_F16 ||
 | |
|         MI.getOpcode() == PPC::SELECT_SPE4 ||
 | |
|         MI.getOpcode() == PPC::SELECT_SPE ||
 | |
|         MI.getOpcode() == PPC::SELECT_QFRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_QSRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_QBRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_VRRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_VSFRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_VSSRC ||
 | |
|         MI.getOpcode() == PPC::SELECT_VSRC) {
 | |
|       BuildMI(BB, dl, TII->get(PPC::BC))
 | |
|           .addReg(MI.getOperand(1).getReg())
 | |
|           .addMBB(sinkMBB);
 | |
|     } else {
 | |
|       unsigned SelectPred = MI.getOperand(4).getImm();
 | |
|       BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|           .addImm(SelectPred)
 | |
|           .addReg(MI.getOperand(1).getReg())
 | |
|           .addMBB(sinkMBB);
 | |
|     }
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
 | |
|         .addReg(MI.getOperand(3).getReg())
 | |
|         .addMBB(copy0MBB)
 | |
|         .addReg(MI.getOperand(2).getReg())
 | |
|         .addMBB(thisMBB);
 | |
|   } else if (MI.getOpcode() == PPC::ReadTB) {
 | |
|     // To read the 64-bit time-base register on a 32-bit target, we read the
 | |
|     // two halves. Should the counter have wrapped while it was being read, we
 | |
|     // need to try again.
 | |
|     // ...
 | |
|     // readLoop:
 | |
|     // mfspr Rx,TBU # load from TBU
 | |
|     // mfspr Ry,TB  # load from TB
 | |
|     // mfspr Rz,TBU # load from TBU
 | |
|     // cmpw crX,Rx,Rz # check if 'old'='new'
 | |
|     // bne readLoop   # branch if they're not equal
 | |
|     // ...
 | |
| 
 | |
|     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
|     F->insert(It, readMBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(readMBB);
 | |
|     BB = readMBB;
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | |
|     unsigned LoReg = MI.getOperand(0).getReg();
 | |
|     unsigned HiReg = MI.getOperand(1).getReg();
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
 | |
|     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
 | |
|     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
 | |
| 
 | |
|     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
 | |
|       .addReg(HiReg).addReg(ReadAgainReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
 | |
| 
 | |
|     BB->addSuccessor(readMBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
|   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
 | |
| 
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, 4, 0);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, 8, 0);
 | |
|   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | |
|            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
 | |
|            (Subtarget.hasPartwordAtomics() &&
 | |
|             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
 | |
|            (Subtarget.hasPartwordAtomics() &&
 | |
|             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
 | |
|     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | |
| 
 | |
|     auto LoadMnemonic = PPC::LDARX;
 | |
|     auto StoreMnemonic = PPC::STDCX;
 | |
|     switch (MI.getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable("Compare and swap of unknown size");
 | |
|     case PPC::ATOMIC_CMP_SWAP_I8:
 | |
|       LoadMnemonic = PPC::LBARX;
 | |
|       StoreMnemonic = PPC::STBCX;
 | |
|       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | |
|       break;
 | |
|     case PPC::ATOMIC_CMP_SWAP_I16:
 | |
|       LoadMnemonic = PPC::LHARX;
 | |
|       StoreMnemonic = PPC::STHCX;
 | |
|       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | |
|       break;
 | |
|     case PPC::ATOMIC_CMP_SWAP_I32:
 | |
|       LoadMnemonic = PPC::LWARX;
 | |
|       StoreMnemonic = PPC::STWCX;
 | |
|       break;
 | |
|     case PPC::ATOMIC_CMP_SWAP_I64:
 | |
|       LoadMnemonic = PPC::LDARX;
 | |
|       StoreMnemonic = PPC::STDCX;
 | |
|       break;
 | |
|     }
 | |
|     unsigned dest = MI.getOperand(0).getReg();
 | |
|     unsigned ptrA = MI.getOperand(1).getReg();
 | |
|     unsigned ptrB = MI.getOperand(2).getReg();
 | |
|     unsigned oldval = MI.getOperand(3).getReg();
 | |
|     unsigned newval = MI.getOperand(4).getReg();
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->splice(exitMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // loop1MBB:
 | |
|     //   l[bhwd]arx dest, ptr
 | |
|     //   cmp[wd] dest, oldval
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   st[bhwd]cx. newval, ptr
 | |
|     //   bne- loopMBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   st[bhwd]cx. dest, ptr
 | |
|     // exitBB:
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | |
|       .addReg(oldval).addReg(dest);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(StoreMnemonic))
 | |
|       .addReg(newval).addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(StoreMnemonic))
 | |
|       .addReg(dest).addReg(ptrA).addReg(ptrB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | |
|              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | |
|     // We must use 64-bit registers for addresses when targeting 64-bit,
 | |
|     // since we're actually doing arithmetic on them.  Other registers
 | |
|     // can be 32-bit.
 | |
|     bool is64bit = Subtarget.isPPC64();
 | |
|     bool isLittleEndian = Subtarget.isLittleEndian();
 | |
|     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | |
| 
 | |
|     unsigned dest = MI.getOperand(0).getReg();
 | |
|     unsigned ptrA = MI.getOperand(1).getReg();
 | |
|     unsigned ptrB = MI.getOperand(2).getReg();
 | |
|     unsigned oldval = MI.getOperand(3).getReg();
 | |
|     unsigned newval = MI.getOperand(4).getReg();
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->splice(exitMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
 | |
|                                             : &PPC::GPRCRegClass;
 | |
|     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned ShiftReg =
 | |
|       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Ptr1Reg;
 | |
|     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // The 4-byte load must be aligned, while a char or short may be
 | |
|     // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|     //   xori shift, shift1, 24 [16]
 | |
|     //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|     //   slw newval2, newval, shift
 | |
|     //   slw oldval2, oldval,shift
 | |
|     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|     //   slw mask, mask2, shift
 | |
|     //   and newval3, newval2, mask
 | |
|     //   and oldval3, oldval2, mask
 | |
|     // loop1MBB:
 | |
|     //   lwarx tmpDest, ptr
 | |
|     //   and tmp, tmpDest, mask
 | |
|     //   cmpw tmp, oldval3
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   andc tmp2, tmpDest, mask
 | |
|     //   or tmp4, tmp2, newval3
 | |
|     //   stwcx. tmp4, ptr
 | |
|     //   bne- loop1MBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   stwcx. tmpDest, ptr
 | |
|     // exitBB:
 | |
|     //   srw dest, tmpDest, shift
 | |
|     if (ptrA != ZeroReg) {
 | |
|       Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|         .addReg(ptrA).addReg(ptrB);
 | |
|     } else {
 | |
|       Ptr1Reg = ptrB;
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|     if (!isLittleEndian)
 | |
|       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|     if (is64bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|     else
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
 | |
|         .addReg(newval).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
 | |
|         .addReg(oldval).addReg(ShiftReg);
 | |
|     if (is8bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|     else {
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | |
|         .addReg(Mask3Reg).addImm(65535);
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|         .addReg(Mask2Reg).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
 | |
|         .addReg(NewVal2Reg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
 | |
|         .addReg(OldVal2Reg).addReg(MaskReg);
 | |
| 
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|         .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
 | |
|         .addReg(TmpReg).addReg(OldVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
 | |
|         .addReg(Tmp2Reg).addReg(NewVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
 | |
|         .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
 | |
|       .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
 | |
|       .addReg(ShiftReg);
 | |
|   } else if (MI.getOpcode() == PPC::FADDrtz) {
 | |
|     // This pseudo performs an FADD with rounding mode temporarily forced
 | |
|     // to round-to-zero.  We emit this via custom inserter since the FPSCR
 | |
|     // is not modeled at the SelectionDAG level.
 | |
|     unsigned Dest = MI.getOperand(0).getReg();
 | |
|     unsigned Src1 = MI.getOperand(1).getReg();
 | |
|     unsigned Src2 = MI.getOperand(2).getReg();
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | |
| 
 | |
|     // Save FPSCR value.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
 | |
| 
 | |
|     // Set rounding mode to round-to-zero.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
 | |
| 
 | |
|     // Perform addition.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
 | |
| 
 | |
|     // Restore FPSCR value.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
 | |
|   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | |
|              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
 | |
|              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | |
|              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
 | |
|     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | |
|                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
 | |
|                           ? PPC::ANDIo8
 | |
|                           : PPC::ANDIo;
 | |
|     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | |
|                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
 | |
|                                                   &PPC::GPRCRegClass :
 | |
|                                                   &PPC::G8RCRegClass);
 | |
| 
 | |
|     DebugLoc dl = MI.getDebugLoc();
 | |
|     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
 | |
|         .addReg(MI.getOperand(1).getReg())
 | |
|         .addImm(1);
 | |
|     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
 | |
|             MI.getOperand(0).getReg())
 | |
|         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
 | |
|   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
 | |
|     DebugLoc Dl = MI.getDebugLoc();
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | |
|     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
 | |
|     return BB;
 | |
|   } else {
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
 | |
|   // For the estimates, convergence is quadratic, so we essentially double the
 | |
|   // number of digits correct after every iteration. For both FRE and FRSQRTE,
 | |
|   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
 | |
|   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
 | |
|   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
 | |
|   if (VT.getScalarType() == MVT::f64)
 | |
|     RefinementSteps++;
 | |
|   return RefinementSteps;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
 | |
|                                            int Enabled, int &RefinementSteps,
 | |
|                                            bool &UseOneConstNR,
 | |
|                                            bool Reciprocal) const {
 | |
|   EVT VT = Operand.getValueType();
 | |
|   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
 | |
|       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
 | |
|       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | |
|       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
 | |
|       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
 | |
|       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
 | |
|     if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | |
|       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | |
| 
 | |
|     UseOneConstNR = true;
 | |
|     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
 | |
|                                             int Enabled,
 | |
|                                             int &RefinementSteps) const {
 | |
|   EVT VT = Operand.getValueType();
 | |
|   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
 | |
|       (VT == MVT::f64 && Subtarget.hasFRE()) ||
 | |
|       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | |
|       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
 | |
|       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
 | |
|       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
 | |
|     if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | |
|       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | |
|     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
 | |
|   // Note: This functionality is used only when unsafe-fp-math is enabled, and
 | |
|   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
 | |
|   // enabled for division), this functionality is redundant with the default
 | |
|   // combiner logic (once the division -> reciprocal/multiply transformation
 | |
|   // has taken place). As a result, this matters more for older cores than for
 | |
|   // newer ones.
 | |
| 
 | |
|   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
 | |
|   // reciprocal if there are two or more FDIVs (for embedded cores with only
 | |
|   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
 | |
|   switch (Subtarget.getDarwinDirective()) {
 | |
|   default:
 | |
|     return 3;
 | |
|   case PPC::DIR_440:
 | |
|   case PPC::DIR_A2:
 | |
|   case PPC::DIR_E500:
 | |
|   case PPC::DIR_E500mc:
 | |
|   case PPC::DIR_E5500:
 | |
|     return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isConsecutiveLSLoc needs to work even if all adds have not yet been
 | |
| // collapsed, and so we need to look through chains of them.
 | |
| static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
 | |
|                                      int64_t& Offset, SelectionDAG &DAG) {
 | |
|   if (DAG.isBaseWithConstantOffset(Loc)) {
 | |
|     Base = Loc.getOperand(0);
 | |
|     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
 | |
| 
 | |
|     // The base might itself be a base plus an offset, and if so, accumulate
 | |
|     // that as well.
 | |
|     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
 | |
|                             unsigned Bytes, int Dist,
 | |
|                             SelectionDAG &DAG) {
 | |
|   if (VT.getSizeInBits() / 8 != Bytes)
 | |
|     return false;
 | |
| 
 | |
|   SDValue BaseLoc = Base->getBasePtr();
 | |
|   if (Loc.getOpcode() == ISD::FrameIndex) {
 | |
|     if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | |
|       return false;
 | |
|     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | |
|     int FS  = MFI.getObjectSize(FI);
 | |
|     int BFS = MFI.getObjectSize(BFI);
 | |
|     if (FS != BFS || FS != (int)Bytes) return false;
 | |
|     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
 | |
|   }
 | |
| 
 | |
|   SDValue Base1 = Loc, Base2 = BaseLoc;
 | |
|   int64_t Offset1 = 0, Offset2 = 0;
 | |
|   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
 | |
|   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
 | |
|   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
 | |
|     return true;
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const GlobalValue *GV1 = nullptr;
 | |
|   const GlobalValue *GV2 = nullptr;
 | |
|   Offset1 = 0;
 | |
|   Offset2 = 0;
 | |
|   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
 | |
|   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
 | |
|   if (isGA1 && isGA2 && GV1 == GV2)
 | |
|     return Offset1 == (Offset2 + Dist*Bytes);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
 | |
| // not enforce equality of the chain operands.
 | |
| static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
 | |
|                             unsigned Bytes, int Dist,
 | |
|                             SelectionDAG &DAG) {
 | |
|   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
 | |
|     EVT VT = LS->getMemoryVT();
 | |
|     SDValue Loc = LS->getBasePtr();
 | |
|     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
 | |
|     EVT VT;
 | |
|     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|     default: return false;
 | |
|     case Intrinsic::ppc_qpx_qvlfd:
 | |
|     case Intrinsic::ppc_qpx_qvlfda:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfs:
 | |
|     case Intrinsic::ppc_qpx_qvlfsa:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcd:
 | |
|     case Intrinsic::ppc_qpx_qvlfcda:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcs:
 | |
|     case Intrinsic::ppc_qpx_qvlfcsa:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfiwa:
 | |
|     case Intrinsic::ppc_qpx_qvlfiwz:
 | |
|     case Intrinsic::ppc_altivec_lvx:
 | |
|     case Intrinsic::ppc_altivec_lvxl:
 | |
|     case Intrinsic::ppc_vsx_lxvw4x:
 | |
|     case Intrinsic::ppc_vsx_lxvw4x_be:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_lxvd2x:
 | |
|     case Intrinsic::ppc_vsx_lxvd2x_be:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_lvebx:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_lvehx:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_lvewx:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     EVT VT;
 | |
|     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|     default: return false;
 | |
|     case Intrinsic::ppc_qpx_qvstfd:
 | |
|     case Intrinsic::ppc_qpx_qvstfda:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfs:
 | |
|     case Intrinsic::ppc_qpx_qvstfsa:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcd:
 | |
|     case Intrinsic::ppc_qpx_qvstfcda:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcs:
 | |
|     case Intrinsic::ppc_qpx_qvstfcsa:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfiw:
 | |
|     case Intrinsic::ppc_qpx_qvstfiwa:
 | |
|     case Intrinsic::ppc_altivec_stvx:
 | |
|     case Intrinsic::ppc_altivec_stvxl:
 | |
|     case Intrinsic::ppc_vsx_stxvw4x:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_stxvd2x:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_stxvw4x_be:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_stxvd2x_be:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvebx:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvehx:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvewx:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true is there is a nearyby consecutive load to the one provided
 | |
| // (regardless of alignment). We search up and down the chain, looking though
 | |
| // token factors and other loads (but nothing else). As a result, a true result
 | |
| // indicates that it is safe to create a new consecutive load adjacent to the
 | |
| // load provided.
 | |
| static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
 | |
|   SDValue Chain = LD->getChain();
 | |
|   EVT VT = LD->getMemoryVT();
 | |
| 
 | |
|   SmallSet<SDNode *, 16> LoadRoots;
 | |
|   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
 | |
|   SmallSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   // First, search up the chain, branching to follow all token-factor operands.
 | |
|   // If we find a consecutive load, then we're done, otherwise, record all
 | |
|   // nodes just above the top-level loads and token factors.
 | |
|   while (!Queue.empty()) {
 | |
|     SDNode *ChainNext = Queue.pop_back_val();
 | |
|     if (!Visited.insert(ChainNext).second)
 | |
|       continue;
 | |
| 
 | |
|     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
 | |
|       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | |
|         return true;
 | |
| 
 | |
|       if (!Visited.count(ChainLD->getChain().getNode()))
 | |
|         Queue.push_back(ChainLD->getChain().getNode());
 | |
|     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
 | |
|       for (const SDUse &O : ChainNext->ops())
 | |
|         if (!Visited.count(O.getNode()))
 | |
|           Queue.push_back(O.getNode());
 | |
|     } else
 | |
|       LoadRoots.insert(ChainNext);
 | |
|   }
 | |
| 
 | |
|   // Second, search down the chain, starting from the top-level nodes recorded
 | |
|   // in the first phase. These top-level nodes are the nodes just above all
 | |
|   // loads and token factors. Starting with their uses, recursively look though
 | |
|   // all loads (just the chain uses) and token factors to find a consecutive
 | |
|   // load.
 | |
|   Visited.clear();
 | |
|   Queue.clear();
 | |
| 
 | |
|   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
 | |
|        IE = LoadRoots.end(); I != IE; ++I) {
 | |
|     Queue.push_back(*I);
 | |
| 
 | |
|     while (!Queue.empty()) {
 | |
|       SDNode *LoadRoot = Queue.pop_back_val();
 | |
|       if (!Visited.insert(LoadRoot).second)
 | |
|         continue;
 | |
| 
 | |
|       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
 | |
|         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | |
|           return true;
 | |
| 
 | |
|       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
 | |
|            UE = LoadRoot->use_end(); UI != UE; ++UI)
 | |
|         if (((isa<MemSDNode>(*UI) &&
 | |
|             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
 | |
|             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
 | |
|           Queue.push_back(*UI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This function is called when we have proved that a SETCC node can be replaced
 | |
| /// by subtraction (and other supporting instructions) so that the result of
 | |
| /// comparison is kept in a GPR instead of CR. This function is purely for
 | |
| /// codegen purposes and has some flags to guide the codegen process.
 | |
| static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
 | |
|                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
 | |
|   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | |
| 
 | |
|   // Zero extend the operands to the largest legal integer. Originally, they
 | |
|   // must be of a strictly smaller size.
 | |
|   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
 | |
|                          DAG.getConstant(Size, DL, MVT::i32));
 | |
|   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
 | |
|                          DAG.getConstant(Size, DL, MVT::i32));
 | |
| 
 | |
|   // Swap if needed. Depends on the condition code.
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Subtract extended integers.
 | |
|   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
 | |
| 
 | |
|   // Move the sign bit to the least significant position and zero out the rest.
 | |
|   // Now the least significant bit carries the result of original comparison.
 | |
|   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
 | |
|                              DAG.getConstant(Size - 1, DL, MVT::i32));
 | |
|   auto Final = Shifted;
 | |
| 
 | |
|   // Complement the result if needed. Based on the condition code.
 | |
|   if (Complement)
 | |
|     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
 | |
|                         DAG.getConstant(1, DL, MVT::i64));
 | |
| 
 | |
|   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
 | |
|                                                   DAGCombinerInfo &DCI) const {
 | |
|   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // Size of integers being compared has a critical role in the following
 | |
|   // analysis, so we prefer to do this when all types are legal.
 | |
|   if (!DCI.isAfterLegalizeDAG())
 | |
|     return SDValue();
 | |
| 
 | |
|   // If all users of SETCC extend its value to a legal integer type
 | |
|   // then we replace SETCC with a subtraction
 | |
|   for (SDNode::use_iterator UI = N->use_begin(),
 | |
|        UE = N->use_end(); UI != UE; ++UI) {
 | |
|     if (UI->getOpcode() != ISD::ZERO_EXTEND)
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   auto OpSize = N->getOperand(0).getValueSizeInBits();
 | |
| 
 | |
|   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
 | |
| 
 | |
|   if (OpSize < Size) {
 | |
|     switch (CC) {
 | |
|     default: break;
 | |
|     case ISD::SETULT:
 | |
|       return generateEquivalentSub(N, Size, false, false, DL, DAG);
 | |
|     case ISD::SETULE:
 | |
|       return generateEquivalentSub(N, Size, true, true, DL, DAG);
 | |
|     case ISD::SETUGT:
 | |
|       return generateEquivalentSub(N, Size, false, true, DL, DAG);
 | |
|     case ISD::SETUGE:
 | |
|       return generateEquivalentSub(N, Size, true, false, DL, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
 | |
|                                                   DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
 | |
|   // If we're tracking CR bits, we need to be careful that we don't have:
 | |
|   //   trunc(binary-ops(zext(x), zext(y)))
 | |
|   // or
 | |
|   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
 | |
|   // such that we're unnecessarily moving things into GPRs when it would be
 | |
|   // better to keep them in CR bits.
 | |
| 
 | |
|   // Note that trunc here can be an actual i1 trunc, or can be the effective
 | |
|   // truncation that comes from a setcc or select_cc.
 | |
|   if (N->getOpcode() == ISD::TRUNCATE &&
 | |
|       N->getValueType(0) != MVT::i1)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOperand(0).getValueType() != MVT::i32 &&
 | |
|       N->getOperand(0).getValueType() != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::SETCC ||
 | |
|       N->getOpcode() == ISD::SELECT_CC) {
 | |
|     // If we're looking at a comparison, then we need to make sure that the
 | |
|     // high bits (all except for the first) don't matter the result.
 | |
|     ISD::CondCode CC =
 | |
|       cast<CondCodeSDNode>(N->getOperand(
 | |
|         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
 | |
|     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
 | |
| 
 | |
|     if (ISD::isSignedIntSetCC(CC)) {
 | |
|       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
 | |
|           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
 | |
|         return SDValue();
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (!DAG.MaskedValueIsZero(N->getOperand(0),
 | |
|                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
 | |
|           !DAG.MaskedValueIsZero(N->getOperand(1),
 | |
|                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
 | |
|         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
 | |
|                                              : SDValue());
 | |
|     } else {
 | |
|       // This is neither a signed nor an unsigned comparison, just make sure
 | |
|       // that the high bits are equal.
 | |
|       KnownBits Op1Known, Op2Known;
 | |
|       DAG.computeKnownBits(N->getOperand(0), Op1Known);
 | |
|       DAG.computeKnownBits(N->getOperand(1), Op2Known);
 | |
| 
 | |
|       // We don't really care about what is known about the first bit (if
 | |
|       // anything), so clear it in all masks prior to comparing them.
 | |
|       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
 | |
|       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
 | |
| 
 | |
|       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
 | |
|         return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We now know that the higher-order bits are irrelevant, we just need to
 | |
|   // make sure that all of the intermediate operations are bit operations, and
 | |
|   // all inputs are extensions.
 | |
|   if (N->getOperand(0).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(0).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
 | |
|       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
 | |
|     return SDValue();
 | |
| 
 | |
|   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
 | |
|       N->getOperand(1).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(1).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
 | |
|       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 4> Inputs;
 | |
|   SmallVector<SDValue, 8> BinOps, PromOps;
 | |
|   SmallPtrSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | |
|           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | |
|         isa<ConstantSDNode>(N->getOperand(i)))
 | |
|       Inputs.push_back(N->getOperand(i));
 | |
|     else
 | |
|       BinOps.push_back(N->getOperand(i));
 | |
| 
 | |
|     if (N->getOpcode() == ISD::TRUNCATE)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Visit all inputs, collect all binary operations (and, or, xor and
 | |
|   // select) that are all fed by extensions.
 | |
|   while (!BinOps.empty()) {
 | |
|     SDValue BinOp = BinOps.back();
 | |
|     BinOps.pop_back();
 | |
| 
 | |
|     if (!Visited.insert(BinOp.getNode()).second)
 | |
|       continue;
 | |
| 
 | |
|     PromOps.push_back(BinOp);
 | |
| 
 | |
|     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | |
|       // The condition of the select is not promoted.
 | |
|       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | |
|         continue;
 | |
|       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | |
|         continue;
 | |
| 
 | |
|       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | |
|            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | |
|           isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | |
|         Inputs.push_back(BinOp.getOperand(i));
 | |
|       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
 | |
|         BinOps.push_back(BinOp.getOperand(i));
 | |
|       } else {
 | |
|         // We have an input that is not an extension or another binary
 | |
|         // operation; we'll abort this transformation.
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that this is a self-contained cluster of operations (which
 | |
|   // is not quite the same thing as saying that everything has only one
 | |
|   // use).
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | |
|                               UE = Inputs[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == Inputs[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == Inputs[i] ||
 | |
|             User->getOperand(1) == Inputs[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | |
|     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | |
|                               UE = PromOps[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == PromOps[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == PromOps[i] ||
 | |
|             User->getOperand(1) == PromOps[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace all inputs with the extension operand.
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     // Constants may have users outside the cluster of to-be-promoted nodes,
 | |
|     // and so we need to replace those as we do the promotions.
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
|     else
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
 | |
|   }
 | |
| 
 | |
|   std::list<HandleSDNode> PromOpHandles;
 | |
|   for (auto &PromOp : PromOps)
 | |
|     PromOpHandles.emplace_back(PromOp);
 | |
| 
 | |
|   // Replace all operations (these are all the same, but have a different
 | |
|   // (i1) return type). DAG.getNode will validate that the types of
 | |
|   // a binary operator match, so go through the list in reverse so that
 | |
|   // we've likely promoted both operands first. Any intermediate truncations or
 | |
|   // extensions disappear.
 | |
|   while (!PromOpHandles.empty()) {
 | |
|     SDValue PromOp = PromOpHandles.back().getValue();
 | |
|     PromOpHandles.pop_back();
 | |
| 
 | |
|     if (PromOp.getOpcode() == ISD::TRUNCATE ||
 | |
|         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
 | |
|         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|         PromOp.getOpcode() == ISD::ANY_EXTEND) {
 | |
|       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
 | |
|           PromOp.getOperand(0).getValueType() != MVT::i1) {
 | |
|         // The operand is not yet ready (see comment below).
 | |
|         PromOpHandles.emplace_front(PromOp);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       SDValue RepValue = PromOp.getOperand(0);
 | |
|       if (isa<ConstantSDNode>(RepValue))
 | |
|         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
 | |
| 
 | |
|       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned C;
 | |
|     switch (PromOp.getOpcode()) {
 | |
|     default:             C = 0; break;
 | |
|     case ISD::SELECT:    C = 1; break;
 | |
|     case ISD::SELECT_CC: C = 2; break;
 | |
|     }
 | |
| 
 | |
|     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | |
|          PromOp.getOperand(C).getValueType() != MVT::i1) ||
 | |
|         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | |
|          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
 | |
|       // The to-be-promoted operands of this node have not yet been
 | |
|       // promoted (this should be rare because we're going through the
 | |
|       // list backward, but if one of the operands has several users in
 | |
|       // this cluster of to-be-promoted nodes, it is possible).
 | |
|       PromOpHandles.emplace_front(PromOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | |
|                                 PromOp.getNode()->op_end());
 | |
| 
 | |
|     // If there are any constant inputs, make sure they're replaced now.
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       if (isa<ConstantSDNode>(Ops[C+i]))
 | |
|         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(PromOp,
 | |
|       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
 | |
|   }
 | |
| 
 | |
|   // Now we're left with the initial truncation itself.
 | |
|   if (N->getOpcode() == ISD::TRUNCATE)
 | |
|     return N->getOperand(0);
 | |
| 
 | |
|   // Otherwise, this is a comparison. The operands to be compared have just
 | |
|   // changed type (to i1), but everything else is the same.
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
 | |
|                                                   DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // If we're tracking CR bits, we need to be careful that we don't have:
 | |
|   //   zext(binary-ops(trunc(x), trunc(y)))
 | |
|   // or
 | |
|   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
 | |
|   // such that we're unnecessarily moving things into CR bits that can more
 | |
|   // efficiently stay in GPRs. Note that if we're not certain that the high
 | |
|   // bits are set as required by the final extension, we still may need to do
 | |
|   // some masking to get the proper behavior.
 | |
| 
 | |
|   // This same functionality is important on PPC64 when dealing with
 | |
|   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
 | |
|   // the return values of functions. Because it is so similar, it is handled
 | |
|   // here as well.
 | |
| 
 | |
|   if (N->getValueType(0) != MVT::i32 &&
 | |
|       N->getValueType(0) != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
 | |
|         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOperand(0).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(0).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 4> Inputs;
 | |
|   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
 | |
|   SmallPtrSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   // Visit all inputs, collect all binary operations (and, or, xor and
 | |
|   // select) that are all fed by truncations.
 | |
|   while (!BinOps.empty()) {
 | |
|     SDValue BinOp = BinOps.back();
 | |
|     BinOps.pop_back();
 | |
| 
 | |
|     if (!Visited.insert(BinOp.getNode()).second)
 | |
|       continue;
 | |
| 
 | |
|     PromOps.push_back(BinOp);
 | |
| 
 | |
|     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | |
|       // The condition of the select is not promoted.
 | |
|       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | |
|         continue;
 | |
|       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | |
|         continue;
 | |
| 
 | |
|       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | |
|           isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | |
|         Inputs.push_back(BinOp.getOperand(i));
 | |
|       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
 | |
|         BinOps.push_back(BinOp.getOperand(i));
 | |
|       } else {
 | |
|         // We have an input that is not a truncation or another binary
 | |
|         // operation; we'll abort this transformation.
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The operands of a select that must be truncated when the select is
 | |
|   // promoted because the operand is actually part of the to-be-promoted set.
 | |
|   DenseMap<SDNode *, EVT> SelectTruncOp[2];
 | |
| 
 | |
|   // Make sure that this is a self-contained cluster of operations (which
 | |
|   // is not quite the same thing as saying that everything has only one
 | |
|   // use).
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | |
|                               UE = Inputs[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // If we're going to promote the non-output-value operand(s) or SELECT or
 | |
|       // SELECT_CC, record them for truncation.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == Inputs[i])
 | |
|           SelectTruncOp[0].insert(std::make_pair(User,
 | |
|                                     User->getOperand(0).getValueType()));
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == Inputs[i])
 | |
|           SelectTruncOp[0].insert(std::make_pair(User,
 | |
|                                     User->getOperand(0).getValueType()));
 | |
|         if (User->getOperand(1) == Inputs[i])
 | |
|           SelectTruncOp[1].insert(std::make_pair(User,
 | |
|                                     User->getOperand(1).getValueType()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | |
|     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | |
|                               UE = PromOps[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // If we're going to promote the non-output-value operand(s) or SELECT or
 | |
|       // SELECT_CC, record them for truncation.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == PromOps[i])
 | |
|           SelectTruncOp[0].insert(std::make_pair(User,
 | |
|                                     User->getOperand(0).getValueType()));
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == PromOps[i])
 | |
|           SelectTruncOp[0].insert(std::make_pair(User,
 | |
|                                     User->getOperand(0).getValueType()));
 | |
|         if (User->getOperand(1) == PromOps[i])
 | |
|           SelectTruncOp[1].insert(std::make_pair(User,
 | |
|                                     User->getOperand(1).getValueType()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
 | |
|   bool ReallyNeedsExt = false;
 | |
|   if (N->getOpcode() != ISD::ANY_EXTEND) {
 | |
|     // If all of the inputs are not already sign/zero extended, then
 | |
|     // we'll still need to do that at the end.
 | |
|     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|       if (isa<ConstantSDNode>(Inputs[i]))
 | |
|         continue;
 | |
| 
 | |
|       unsigned OpBits =
 | |
|         Inputs[i].getOperand(0).getValueSizeInBits();
 | |
|       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
 | |
| 
 | |
|       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
 | |
|            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
 | |
|                                   APInt::getHighBitsSet(OpBits,
 | |
|                                                         OpBits-PromBits))) ||
 | |
|           (N->getOpcode() == ISD::SIGN_EXTEND &&
 | |
|            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
 | |
|              (OpBits-(PromBits-1)))) {
 | |
|         ReallyNeedsExt = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace all inputs, either with the truncation operand, or a
 | |
|   // truncation or extension to the final output type.
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     // Constant inputs need to be replaced with the to-be-promoted nodes that
 | |
|     // use them because they might have users outside of the cluster of
 | |
|     // promoted nodes.
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     SDValue InSrc = Inputs[i].getOperand(0);
 | |
|     if (Inputs[i].getValueType() == N->getValueType(0))
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
 | |
|     else if (N->getOpcode() == ISD::SIGN_EXTEND)
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|     else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|     else
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|   }
 | |
| 
 | |
|   std::list<HandleSDNode> PromOpHandles;
 | |
|   for (auto &PromOp : PromOps)
 | |
|     PromOpHandles.emplace_back(PromOp);
 | |
| 
 | |
|   // Replace all operations (these are all the same, but have a different
 | |
|   // (promoted) return type). DAG.getNode will validate that the types of
 | |
|   // a binary operator match, so go through the list in reverse so that
 | |
|   // we've likely promoted both operands first.
 | |
|   while (!PromOpHandles.empty()) {
 | |
|     SDValue PromOp = PromOpHandles.back().getValue();
 | |
|     PromOpHandles.pop_back();
 | |
| 
 | |
|     unsigned C;
 | |
|     switch (PromOp.getOpcode()) {
 | |
|     default:             C = 0; break;
 | |
|     case ISD::SELECT:    C = 1; break;
 | |
|     case ISD::SELECT_CC: C = 2; break;
 | |
|     }
 | |
| 
 | |
|     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | |
|          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
 | |
|         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | |
|          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
 | |
|       // The to-be-promoted operands of this node have not yet been
 | |
|       // promoted (this should be rare because we're going through the
 | |
|       // list backward, but if one of the operands has several users in
 | |
|       // this cluster of to-be-promoted nodes, it is possible).
 | |
|       PromOpHandles.emplace_front(PromOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For SELECT and SELECT_CC nodes, we do a similar check for any
 | |
|     // to-be-promoted comparison inputs.
 | |
|     if (PromOp.getOpcode() == ISD::SELECT ||
 | |
|         PromOp.getOpcode() == ISD::SELECT_CC) {
 | |
|       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
 | |
|            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
 | |
|           (SelectTruncOp[1].count(PromOp.getNode()) &&
 | |
|            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
 | |
|         PromOpHandles.emplace_front(PromOp);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | |
|                                 PromOp.getNode()->op_end());
 | |
| 
 | |
|     // If this node has constant inputs, then they'll need to be promoted here.
 | |
|     for (unsigned i = 0; i < 2; ++i) {
 | |
|       if (!isa<ConstantSDNode>(Ops[C+i]))
 | |
|         continue;
 | |
|       if (Ops[C+i].getValueType() == N->getValueType(0))
 | |
|         continue;
 | |
| 
 | |
|       if (N->getOpcode() == ISD::SIGN_EXTEND)
 | |
|         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|       else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|       else
 | |
|         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|     }
 | |
| 
 | |
|     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
 | |
|     // truncate them again to the original value type.
 | |
|     if (PromOp.getOpcode() == ISD::SELECT ||
 | |
|         PromOp.getOpcode() == ISD::SELECT_CC) {
 | |
|       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
 | |
|       if (SI0 != SelectTruncOp[0].end())
 | |
|         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
 | |
|       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
 | |
|       if (SI1 != SelectTruncOp[1].end())
 | |
|         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
 | |
|     }
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(PromOp,
 | |
|       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
 | |
|   }
 | |
| 
 | |
|   // Now we're left with the initial extension itself.
 | |
|   if (!ReallyNeedsExt)
 | |
|     return N->getOperand(0);
 | |
| 
 | |
|   // To zero extend, just mask off everything except for the first bit (in the
 | |
|   // i1 case).
 | |
|   if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
 | |
|                        DAG.getConstant(APInt::getLowBitsSet(
 | |
|                                          N->getValueSizeInBits(0), PromBits),
 | |
|                                        dl, N->getValueType(0)));
 | |
| 
 | |
|   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
 | |
|          "Invalid extension type");
 | |
|   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
 | |
|   SDValue ShiftCst =
 | |
|       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
 | |
|   return DAG.getNode(
 | |
|       ISD::SRA, dl, N->getValueType(0),
 | |
|       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
 | |
|       ShiftCst);
 | |
| }
 | |
| 
 | |
| // Is this an extending load from an f32 to an f64?
 | |
| static bool isFPExtLoad(SDValue Op) {
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
 | |
|     return LD->getExtensionType() == ISD::EXTLOAD &&
 | |
|       Op.getValueType() == MVT::f64;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Reduces the number of fp-to-int conversion when building a vector.
 | |
| ///
 | |
| /// If this vector is built out of floating to integer conversions,
 | |
| /// transform it to a vector built out of floating point values followed by a
 | |
| /// single floating to integer conversion of the vector.
 | |
| /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
 | |
| /// becomes (fptosi (build_vector ($A, $B, ...)))
 | |
| SDValue PPCTargetLowering::
 | |
| combineElementTruncationToVectorTruncation(SDNode *N,
 | |
|                                            DAGCombinerInfo &DCI) const {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          "Should be called with a BUILD_VECTOR node");
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SDValue FirstInput = N->getOperand(0);
 | |
|   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
 | |
|          "The input operand must be an fp-to-int conversion.");
 | |
| 
 | |
|   // This combine happens after legalization so the fp_to_[su]i nodes are
 | |
|   // already converted to PPCSISD nodes.
 | |
|   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
 | |
|   if (FirstConversion == PPCISD::FCTIDZ ||
 | |
|       FirstConversion == PPCISD::FCTIDUZ ||
 | |
|       FirstConversion == PPCISD::FCTIWZ ||
 | |
|       FirstConversion == PPCISD::FCTIWUZ) {
 | |
|     bool IsSplat = true;
 | |
|     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
 | |
|       FirstConversion == PPCISD::FCTIWUZ;
 | |
|     EVT SrcVT = FirstInput.getOperand(0).getValueType();
 | |
|     SmallVector<SDValue, 4> Ops;
 | |
|     EVT TargetVT = N->getValueType(0);
 | |
|     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | |
|       SDValue NextOp = N->getOperand(i);
 | |
|       if (NextOp.getOpcode() != PPCISD::MFVSR)
 | |
|         return SDValue();
 | |
|       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
 | |
|       if (NextConversion != FirstConversion)
 | |
|         return SDValue();
 | |
|       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
 | |
|       // This is not valid if the input was originally double precision. It is
 | |
|       // also not profitable to do unless this is an extending load in which
 | |
|       // case doing this combine will allow us to combine consecutive loads.
 | |
|       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
 | |
|         return SDValue();
 | |
|       if (N->getOperand(i) != FirstInput)
 | |
|         IsSplat = false;
 | |
|     }
 | |
| 
 | |
|     // If this is a splat, we leave it as-is since there will be only a single
 | |
|     // fp-to-int conversion followed by a splat of the integer. This is better
 | |
|     // for 32-bit and smaller ints and neutral for 64-bit ints.
 | |
|     if (IsSplat)
 | |
|       return SDValue();
 | |
| 
 | |
|     // Now that we know we have the right type of node, get its operands
 | |
|     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | |
|       SDValue In = N->getOperand(i).getOperand(0);
 | |
|       if (Is32Bit) {
 | |
|         // For 32-bit values, we need to add an FP_ROUND node (if we made it
 | |
|         // here, we know that all inputs are extending loads so this is safe).
 | |
|         if (In.isUndef())
 | |
|           Ops.push_back(DAG.getUNDEF(SrcVT));
 | |
|         else {
 | |
|           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                                       MVT::f32, In.getOperand(0),
 | |
|                                       DAG.getIntPtrConstant(1, dl));
 | |
|           Ops.push_back(Trunc);
 | |
|         }
 | |
|       } else
 | |
|         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
 | |
|     }
 | |
| 
 | |
|     unsigned Opcode;
 | |
|     if (FirstConversion == PPCISD::FCTIDZ ||
 | |
|         FirstConversion == PPCISD::FCTIWZ)
 | |
|       Opcode = ISD::FP_TO_SINT;
 | |
|     else
 | |
|       Opcode = ISD::FP_TO_UINT;
 | |
| 
 | |
|     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
 | |
|     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
 | |
|     return DAG.getNode(Opcode, dl, TargetVT, BV);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Reduce the number of loads when building a vector.
 | |
| ///
 | |
| /// Building a vector out of multiple loads can be converted to a load
 | |
| /// of the vector type if the loads are consecutive. If the loads are
 | |
| /// consecutive but in descending order, a shuffle is added at the end
 | |
| /// to reorder the vector.
 | |
| static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          "Should be called with a BUILD_VECTOR node");
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   bool InputsAreConsecutiveLoads = true;
 | |
|   bool InputsAreReverseConsecutive = true;
 | |
|   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
 | |
|   SDValue FirstInput = N->getOperand(0);
 | |
|   bool IsRoundOfExtLoad = false;
 | |
| 
 | |
|   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
 | |
|       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
 | |
|     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
 | |
|   }
 | |
|   // Not a build vector of (possibly fp_rounded) loads.
 | |
|   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
 | |
|       N->getNumOperands() == 1)
 | |
|     return SDValue();
 | |
| 
 | |
|   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
 | |
|     // If any inputs are fp_round(extload), they all must be.
 | |
|     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
 | |
|       return SDValue();
 | |
| 
 | |
|     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
 | |
|       N->getOperand(i);
 | |
|     if (NextInput.getOpcode() != ISD::LOAD)
 | |
|       return SDValue();
 | |
| 
 | |
|     SDValue PreviousInput =
 | |
|       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
 | |
|     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
 | |
|     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
 | |
| 
 | |
|     // If any inputs are fp_round(extload), they all must be.
 | |
|     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
 | |
|       InputsAreConsecutiveLoads = false;
 | |
|     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
 | |
|       InputsAreReverseConsecutive = false;
 | |
| 
 | |
|     // Exit early if the loads are neither consecutive nor reverse consecutive.
 | |
|     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
 | |
|          "The loads cannot be both consecutive and reverse consecutive.");
 | |
| 
 | |
|   SDValue FirstLoadOp =
 | |
|     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
 | |
|   SDValue LastLoadOp =
 | |
|     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
 | |
|                        N->getOperand(N->getNumOperands()-1);
 | |
| 
 | |
|   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
 | |
|   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
 | |
|   if (InputsAreConsecutiveLoads) {
 | |
|     assert(LD1 && "Input needs to be a LoadSDNode.");
 | |
|     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
 | |
|                        LD1->getBasePtr(), LD1->getPointerInfo(),
 | |
|                        LD1->getAlignment());
 | |
|   }
 | |
|   if (InputsAreReverseConsecutive) {
 | |
|     assert(LDL && "Input needs to be a LoadSDNode.");
 | |
|     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
 | |
|                                LDL->getBasePtr(), LDL->getPointerInfo(),
 | |
|                                LDL->getAlignment());
 | |
|     SmallVector<int, 16> Ops;
 | |
|     for (int i = N->getNumOperands() - 1; i >= 0; i--)
 | |
|       Ops.push_back(i);
 | |
| 
 | |
|     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
 | |
|                                 DAG.getUNDEF(N->getValueType(0)), Ops);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // This function adds the required vector_shuffle needed to get
 | |
| // the elements of the vector extract in the correct position
 | |
| // as specified by the CorrectElems encoding.
 | |
| static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
 | |
|                                       SDValue Input, uint64_t Elems,
 | |
|                                       uint64_t CorrectElems) {
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   unsigned NumElems = Input.getValueType().getVectorNumElements();
 | |
|   SmallVector<int, 16> ShuffleMask(NumElems, -1);
 | |
| 
 | |
|   // Knowing the element indices being extracted from the original
 | |
|   // vector and the order in which they're being inserted, just put
 | |
|   // them at element indices required for the instruction.
 | |
|   for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | |
|     if (DAG.getDataLayout().isLittleEndian())
 | |
|       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
 | |
|     else
 | |
|       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
 | |
|     CorrectElems = CorrectElems >> 8;
 | |
|     Elems = Elems >> 8;
 | |
|   }
 | |
| 
 | |
|   SDValue Shuffle =
 | |
|       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
 | |
|                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
 | |
| 
 | |
|   EVT Ty = N->getValueType(0);
 | |
|   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
 | |
|   return BV;
 | |
| }
 | |
| 
 | |
| // Look for build vector patterns where input operands come from sign
 | |
| // extended vector_extract elements of specific indices. If the correct indices
 | |
| // aren't used, add a vector shuffle to fix up the indices and create a new
 | |
| // PPCISD:SExtVElems node which selects the vector sign extend instructions
 | |
| // during instruction selection.
 | |
| static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
 | |
|   // This array encodes the indices that the vector sign extend instructions
 | |
|   // extract from when extending from one type to another for both BE and LE.
 | |
|   // The right nibble of each byte corresponds to the LE incides.
 | |
|   // and the left nibble of each byte corresponds to the BE incides.
 | |
|   // For example: 0x3074B8FC  byte->word
 | |
|   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
 | |
|   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
 | |
|   // For example: 0x000070F8  byte->double word
 | |
|   // For LE: the allowed indices are: 0x0,0x8
 | |
|   // For BE: the allowed indices are: 0x7,0xF
 | |
|   uint64_t TargetElems[] = {
 | |
|       0x3074B8FC, // b->w
 | |
|       0x000070F8, // b->d
 | |
|       0x10325476, // h->w
 | |
|       0x00003074, // h->d
 | |
|       0x00001032, // w->d
 | |
|   };
 | |
| 
 | |
|   uint64_t Elems = 0;
 | |
|   int Index;
 | |
|   SDValue Input;
 | |
| 
 | |
|   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
 | |
|     if (!Op)
 | |
|       return false;
 | |
|     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
 | |
|         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
 | |
|       return false;
 | |
| 
 | |
|     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
 | |
|     // of the right width.
 | |
|     SDValue Extract = Op.getOperand(0);
 | |
|     if (Extract.getOpcode() == ISD::ANY_EXTEND)
 | |
|       Extract = Extract.getOperand(0);
 | |
|     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|       return false;
 | |
| 
 | |
|     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
 | |
|     if (!ExtOp)
 | |
|       return false;
 | |
| 
 | |
|     Index = ExtOp->getZExtValue();
 | |
|     if (Input && Input != Extract.getOperand(0))
 | |
|       return false;
 | |
| 
 | |
|     if (!Input)
 | |
|       Input = Extract.getOperand(0);
 | |
| 
 | |
|     Elems = Elems << 8;
 | |
|     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
 | |
|     Elems |= Index;
 | |
| 
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // If the build vector operands aren't sign extended vector extracts,
 | |
|   // of the same input vector, then return.
 | |
|   for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | |
|     if (!isSExtOfVecExtract(N->getOperand(i))) {
 | |
|       return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the vector extract indicies are not correct, add the appropriate
 | |
|   // vector_shuffle.
 | |
|   int TgtElemArrayIdx;
 | |
|   int InputSize = Input.getValueType().getScalarSizeInBits();
 | |
|   int OutputSize = N->getValueType(0).getScalarSizeInBits();
 | |
|   if (InputSize + OutputSize == 40)
 | |
|     TgtElemArrayIdx = 0;
 | |
|   else if (InputSize + OutputSize == 72)
 | |
|     TgtElemArrayIdx = 1;
 | |
|   else if (InputSize + OutputSize == 48)
 | |
|     TgtElemArrayIdx = 2;
 | |
|   else if (InputSize + OutputSize == 80)
 | |
|     TgtElemArrayIdx = 3;
 | |
|   else if (InputSize + OutputSize == 96)
 | |
|     TgtElemArrayIdx = 4;
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
 | |
|   CorrectElems = DAG.getDataLayout().isLittleEndian()
 | |
|                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
 | |
|                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
 | |
|   if (Elems != CorrectElems) {
 | |
|     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
 | |
|   }
 | |
| 
 | |
|   // Regular lowering will catch cases where a shuffle is not needed.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
 | |
|                                                  DAGCombinerInfo &DCI) const {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          "Should be called with a BUILD_VECTOR node");
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   if (!Subtarget.hasVSX())
 | |
|     return SDValue();
 | |
| 
 | |
|   // The target independent DAG combiner will leave a build_vector of
 | |
|   // float-to-int conversions intact. We can generate MUCH better code for
 | |
|   // a float-to-int conversion of a vector of floats.
 | |
|   SDValue FirstInput = N->getOperand(0);
 | |
|   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
 | |
|     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
 | |
|     if (Reduced)
 | |
|       return Reduced;
 | |
|   }
 | |
| 
 | |
|   // If we're building a vector out of consecutive loads, just load that
 | |
|   // vector type.
 | |
|   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
 | |
|   if (Reduced)
 | |
|     return Reduced;
 | |
| 
 | |
|   // If we're building a vector out of extended elements from another vector
 | |
|   // we have P9 vector integer extend instructions. The code assumes legal
 | |
|   // input types (i.e. it can't handle things like v4i16) so do not run before
 | |
|   // legalization.
 | |
|   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
 | |
|     Reduced = combineBVOfVecSExt(N, DAG);
 | |
|     if (Reduced)
 | |
|       return Reduced;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (N->getValueType(0) != MVT::v2f64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Looking for:
 | |
|   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
 | |
|   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
 | |
|       FirstInput.getOpcode() != ISD::UINT_TO_FP)
 | |
|     return SDValue();
 | |
|   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
 | |
|       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
 | |
|     return SDValue();
 | |
|   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Ext1 = FirstInput.getOperand(0);
 | |
|   SDValue Ext2 = N->getOperand(1).getOperand(0);
 | |
|   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | |
|      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
 | |
|   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
 | |
|   if (!Ext1Op || !Ext2Op)
 | |
|     return SDValue();
 | |
|   if (Ext1.getValueType() != MVT::i32 ||
 | |
|       Ext2.getValueType() != MVT::i32)
 | |
|   if (Ext1.getOperand(0) != Ext2.getOperand(0))
 | |
|     return SDValue();
 | |
| 
 | |
|   int FirstElem = Ext1Op->getZExtValue();
 | |
|   int SecondElem = Ext2Op->getZExtValue();
 | |
|   int SubvecIdx;
 | |
|   if (FirstElem == 0 && SecondElem == 1)
 | |
|     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
 | |
|   else if (FirstElem == 2 && SecondElem == 3)
 | |
|     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue SrcVec = Ext1.getOperand(0);
 | |
|   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
 | |
|     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
 | |
|   return DAG.getNode(NodeType, dl, MVT::v2f64,
 | |
|                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
 | |
|                                               DAGCombinerInfo &DCI) const {
 | |
|   assert((N->getOpcode() == ISD::SINT_TO_FP ||
 | |
|           N->getOpcode() == ISD::UINT_TO_FP) &&
 | |
|          "Need an int -> FP conversion node here");
 | |
| 
 | |
|   if (useSoftFloat() || !Subtarget.has64BitSupport())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   SDValue Op(N, 0);
 | |
| 
 | |
|   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
 | |
|   // from the hardware.
 | |
|   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | |
|     return SDValue();
 | |
|   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
 | |
|       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue FirstOperand(Op.getOperand(0));
 | |
|   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
 | |
|     (FirstOperand.getValueType() == MVT::i8 ||
 | |
|      FirstOperand.getValueType() == MVT::i16);
 | |
|   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
 | |
|     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
 | |
|     bool DstDouble = Op.getValueType() == MVT::f64;
 | |
|     unsigned ConvOp = Signed ?
 | |
|       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
 | |
|       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
 | |
|     SDValue WidthConst =
 | |
|       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
 | |
|                             dl, false);
 | |
|     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
 | |
|     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
 | |
|     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
 | |
|                                          DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                          Ops, MVT::i8, LDN->getMemOperand());
 | |
| 
 | |
|     // For signed conversion, we need to sign-extend the value in the VSR
 | |
|     if (Signed) {
 | |
|       SDValue ExtOps[] = { Ld, WidthConst };
 | |
|       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
 | |
|       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
 | |
|     } else
 | |
|       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // For i32 intermediate values, unfortunately, the conversion functions
 | |
|   // leave the upper 32 bits of the value are undefined. Within the set of
 | |
|   // scalar instructions, we have no method for zero- or sign-extending the
 | |
|   // value. Thus, we cannot handle i32 intermediate values here.
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
 | |
|          "UINT_TO_FP is supported only with FPCVT");
 | |
| 
 | |
|   // If we have FCFIDS, then use it when converting to single-precision.
 | |
|   // Otherwise, convert to double-precision and then round.
 | |
|   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | |
|                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
 | |
|                                                             : PPCISD::FCFIDS)
 | |
|                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
 | |
|                                                             : PPCISD::FCFID);
 | |
|   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | |
|                   ? MVT::f32
 | |
|                   : MVT::f64;
 | |
| 
 | |
|   // If we're converting from a float, to an int, and back to a float again,
 | |
|   // then we don't need the store/load pair at all.
 | |
|   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
 | |
|        Subtarget.hasFPCVT()) ||
 | |
|       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
 | |
|     SDValue Src = Op.getOperand(0).getOperand(0);
 | |
|     if (Src.getValueType() == MVT::f32) {
 | |
|       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | |
|       DCI.AddToWorklist(Src.getNode());
 | |
|     } else if (Src.getValueType() != MVT::f64) {
 | |
|       // Make sure that we don't pick up a ppc_fp128 source value.
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     unsigned FCTOp =
 | |
|       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | |
|                                                         PPCISD::FCTIDUZ;
 | |
| 
 | |
|     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
 | |
|     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
 | |
| 
 | |
|     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
 | |
|       FP = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
 | |
|       DCI.AddToWorklist(FP.getNode());
 | |
|     }
 | |
| 
 | |
|     return FP;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
 | |
| // builtins) into loads with swaps.
 | |
| SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
 | |
|                                               DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   SDValue Chain;
 | |
|   SDValue Base;
 | |
|   MachineMemOperand *MMO;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode for little endian VSX load");
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     Chain = LD->getChain();
 | |
|     Base = LD->getBasePtr();
 | |
|     MMO = LD->getMemOperand();
 | |
|     // If the MMO suggests this isn't a load of a full vector, leave
 | |
|     // things alone.  For a built-in, we have to make the change for
 | |
|     // correctness, so if there is a size problem that will be a bug.
 | |
|     if (MMO->getSize() < 16)
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | |
|     Chain = Intrin->getChain();
 | |
|     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
 | |
|     // us what we want. Get operand 2 instead.
 | |
|     Base = Intrin->getOperand(2);
 | |
|     MMO = Intrin->getMemOperand();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   MVT VecTy = N->getValueType(0).getSimpleVT();
 | |
| 
 | |
|   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
 | |
|   // aligned and the type is a vector with elements up to 4 bytes
 | |
|   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
 | |
|       && VecTy.getScalarSizeInBits() <= 32 ) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   SDValue LoadOps[] = { Chain, Base };
 | |
|   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
 | |
|                                          DAG.getVTList(MVT::v2f64, MVT::Other),
 | |
|                                          LoadOps, MVT::v2f64, MMO);
 | |
| 
 | |
|   DCI.AddToWorklist(Load.getNode());
 | |
|   Chain = Load.getValue(1);
 | |
|   SDValue Swap = DAG.getNode(
 | |
|       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
 | |
|   DCI.AddToWorklist(Swap.getNode());
 | |
| 
 | |
|   // Add a bitcast if the resulting load type doesn't match v2f64.
 | |
|   if (VecTy != MVT::v2f64) {
 | |
|     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
 | |
|     DCI.AddToWorklist(N.getNode());
 | |
|     // Package {bitcast value, swap's chain} to match Load's shape.
 | |
|     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
 | |
|                        N, Swap.getValue(1));
 | |
|   }
 | |
| 
 | |
|   return Swap;
 | |
| }
 | |
| 
 | |
| // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
 | |
| // builtins) into stores with swaps.
 | |
| SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   SDValue Chain;
 | |
|   SDValue Base;
 | |
|   unsigned SrcOpnd;
 | |
|   MachineMemOperand *MMO;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode for little endian VSX store");
 | |
|   case ISD::STORE: {
 | |
|     StoreSDNode *ST = cast<StoreSDNode>(N);
 | |
|     Chain = ST->getChain();
 | |
|     Base = ST->getBasePtr();
 | |
|     MMO = ST->getMemOperand();
 | |
|     SrcOpnd = 1;
 | |
|     // If the MMO suggests this isn't a store of a full vector, leave
 | |
|     // things alone.  For a built-in, we have to make the change for
 | |
|     // correctness, so if there is a size problem that will be a bug.
 | |
|     if (MMO->getSize() < 16)
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | |
|     Chain = Intrin->getChain();
 | |
|     // Intrin->getBasePtr() oddly does not get what we want.
 | |
|     Base = Intrin->getOperand(3);
 | |
|     MMO = Intrin->getMemOperand();
 | |
|     SrcOpnd = 2;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   SDValue Src = N->getOperand(SrcOpnd);
 | |
|   MVT VecTy = Src.getValueType().getSimpleVT();
 | |
| 
 | |
|   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
 | |
|   // aligned and the type is a vector with elements up to 4 bytes
 | |
|   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
 | |
|       && VecTy.getScalarSizeInBits() <= 32 ) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // All stores are done as v2f64 and possible bit cast.
 | |
|   if (VecTy != MVT::v2f64) {
 | |
|     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
 | |
|     DCI.AddToWorklist(Src.getNode());
 | |
|   }
 | |
| 
 | |
|   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
 | |
|                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
 | |
|   DCI.AddToWorklist(Swap.getNode());
 | |
|   Chain = Swap.getValue(1);
 | |
|   SDValue StoreOps[] = { Chain, Swap, Base };
 | |
|   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
 | |
|                                           DAG.getVTList(MVT::Other),
 | |
|                                           StoreOps, VecTy, MMO);
 | |
|   DCI.AddToWorklist(Store.getNode());
 | |
|   return Store;
 | |
| }
 | |
| 
 | |
| // Handle DAG combine for STORE (FP_TO_INT F).
 | |
| SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   unsigned Opcode = N->getOperand(1).getOpcode();
 | |
| 
 | |
|   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
 | |
|          && "Not a FP_TO_INT Instruction!");
 | |
| 
 | |
|   SDValue Val = N->getOperand(1).getOperand(0);
 | |
|   EVT Op1VT = N->getOperand(1).getValueType();
 | |
|   EVT ResVT = Val.getValueType();
 | |
| 
 | |
|   // Floating point types smaller than 32 bits are not legal on Power.
 | |
|   if (ResVT.getScalarSizeInBits() < 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
 | |
|   bool ValidTypeForStoreFltAsInt =
 | |
|         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
 | |
|          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
 | |
| 
 | |
|   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
 | |
|       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Extend f32 values to f64
 | |
|   if (ResVT.getScalarSizeInBits() == 32) {
 | |
|     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | |
|     DCI.AddToWorklist(Val.getNode());
 | |
|   }
 | |
| 
 | |
|   // Set signed or unsigned conversion opcode.
 | |
|   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
 | |
|                           PPCISD::FP_TO_SINT_IN_VSR :
 | |
|                           PPCISD::FP_TO_UINT_IN_VSR;
 | |
| 
 | |
|   Val = DAG.getNode(ConvOpcode,
 | |
|                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
 | |
|   DCI.AddToWorklist(Val.getNode());
 | |
| 
 | |
|   // Set number of bytes being converted.
 | |
|   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
 | |
|   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
 | |
|                     DAG.getIntPtrConstant(ByteSize, dl, false),
 | |
|                     DAG.getValueType(Op1VT) };
 | |
| 
 | |
|   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
 | |
|           DAG.getVTList(MVT::Other), Ops,
 | |
|           cast<StoreSDNode>(N)->getMemoryVT(),
 | |
|           cast<StoreSDNode>(N)->getMemOperand());
 | |
| 
 | |
|   DCI.AddToWorklist(Val.getNode());
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ADD:
 | |
|     return combineADD(N, DCI);
 | |
|   case ISD::SHL:
 | |
|     return combineSHL(N, DCI);
 | |
|   case ISD::SRA:
 | |
|     return combineSRA(N, DCI);
 | |
|   case ISD::SRL:
 | |
|     return combineSRL(N, DCI);
 | |
|   case PPCISD::SHL:
 | |
|     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     break;
 | |
|   case PPCISD::SRL:
 | |
|     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     break;
 | |
|   case PPCISD::SRA:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->isNullValue() ||   //  0 >>s V -> 0.
 | |
|           C->isAllOnesValue())    // -1 >>s V -> -1.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND:
 | |
|     return DAGCombineExtBoolTrunc(N, DCI);
 | |
|   case ISD::TRUNCATE:
 | |
|     return combineTRUNCATE(N, DCI);
 | |
|   case ISD::SETCC:
 | |
|   case ISD::SELECT_CC:
 | |
|     return DAGCombineTruncBoolExt(N, DCI);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|     return combineFPToIntToFP(N, DCI);
 | |
|   case ISD::STORE: {
 | |
| 
 | |
|     EVT Op1VT = N->getOperand(1).getValueType();
 | |
|     unsigned Opcode = N->getOperand(1).getOpcode();
 | |
| 
 | |
|     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
 | |
|       SDValue Val= combineStoreFPToInt(N, DCI);
 | |
|       if (Val)
 | |
|         return Val;
 | |
|     }
 | |
| 
 | |
|     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | |
|     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
 | |
|         N->getOperand(1).getNode()->hasOneUse() &&
 | |
|         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
 | |
|          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
 | |
| 
 | |
|       // STBRX can only handle simple types.
 | |
|       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
 | |
|       if (mVT.isExtended())
 | |
|         break;
 | |
| 
 | |
|       SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | |
|       // Do an any-extend to 32-bits if this is a half-word input.
 | |
|       if (BSwapOp.getValueType() == MVT::i16)
 | |
|         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
 | |
| 
 | |
|       // If the type of BSWAP operand is wider than stored memory width
 | |
|       // it need to be shifted to the right side before STBRX.
 | |
|       if (Op1VT.bitsGT(mVT)) {
 | |
|         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
 | |
|         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
 | |
|                               DAG.getConstant(Shift, dl, MVT::i32));
 | |
|         // Need to truncate if this is a bswap of i64 stored as i32/i16.
 | |
|         if (Op1VT == MVT::i64)
 | |
|           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
 | |
|       }
 | |
| 
 | |
|       SDValue Ops[] = {
 | |
|         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
 | |
|       };
 | |
|       return
 | |
|         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
 | |
|                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
 | |
|                                 cast<StoreSDNode>(N)->getMemOperand());
 | |
|     }
 | |
| 
 | |
|     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
 | |
|     // So it can increase the chance of CSE constant construction.
 | |
|     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
 | |
|         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
 | |
|       // Need to sign-extended to 64-bits to handle negative values.
 | |
|       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
 | |
|       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
 | |
|                                     MemVT.getSizeInBits());
 | |
|       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
 | |
| 
 | |
|       // DAG.getTruncStore() can't be used here because it doesn't accept
 | |
|       // the general (base + offset) addressing mode.
 | |
|       // So we use UpdateNodeOperands and setTruncatingStore instead.
 | |
|       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
 | |
|                              N->getOperand(3));
 | |
|       cast<StoreSDNode>(N)->setTruncatingStore(true);
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
| 
 | |
|     // For little endian, VSX stores require generating xxswapd/lxvd2x.
 | |
|     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | |
|     if (Op1VT.isSimple()) {
 | |
|       MVT StoreVT = Op1VT.getSimpleVT();
 | |
|       if (Subtarget.needsSwapsForVSXMemOps() &&
 | |
|           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
 | |
|            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
 | |
|         return expandVSXStoreForLE(N, DCI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     EVT VT = LD->getValueType(0);
 | |
| 
 | |
|     // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | |
|     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | |
|     if (VT.isSimple()) {
 | |
|       MVT LoadVT = VT.getSimpleVT();
 | |
|       if (Subtarget.needsSwapsForVSXMemOps() &&
 | |
|           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
 | |
|            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
 | |
|         return expandVSXLoadForLE(N, DCI);
 | |
|     }
 | |
| 
 | |
|     // We sometimes end up with a 64-bit integer load, from which we extract
 | |
|     // two single-precision floating-point numbers. This happens with
 | |
|     // std::complex<float>, and other similar structures, because of the way we
 | |
|     // canonicalize structure copies. However, if we lack direct moves,
 | |
|     // then the final bitcasts from the extracted integer values to the
 | |
|     // floating-point numbers turn into store/load pairs. Even with direct moves,
 | |
|     // just loading the two floating-point numbers is likely better.
 | |
|     auto ReplaceTwoFloatLoad = [&]() {
 | |
|       if (VT != MVT::i64)
 | |
|         return false;
 | |
| 
 | |
|       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
 | |
|           LD->isVolatile())
 | |
|         return false;
 | |
| 
 | |
|       //  We're looking for a sequence like this:
 | |
|       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
 | |
|       //      t16: i64 = srl t13, Constant:i32<32>
 | |
|       //    t17: i32 = truncate t16
 | |
|       //  t18: f32 = bitcast t17
 | |
|       //    t19: i32 = truncate t13
 | |
|       //  t20: f32 = bitcast t19
 | |
| 
 | |
|       if (!LD->hasNUsesOfValue(2, 0))
 | |
|         return false;
 | |
| 
 | |
|       auto UI = LD->use_begin();
 | |
|       while (UI.getUse().getResNo() != 0) ++UI;
 | |
|       SDNode *Trunc = *UI++;
 | |
|       while (UI.getUse().getResNo() != 0) ++UI;
 | |
|       SDNode *RightShift = *UI;
 | |
|       if (Trunc->getOpcode() != ISD::TRUNCATE)
 | |
|         std::swap(Trunc, RightShift);
 | |
| 
 | |
|       if (Trunc->getOpcode() != ISD::TRUNCATE ||
 | |
|           Trunc->getValueType(0) != MVT::i32 ||
 | |
|           !Trunc->hasOneUse())
 | |
|         return false;
 | |
|       if (RightShift->getOpcode() != ISD::SRL ||
 | |
|           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
 | |
|           RightShift->getConstantOperandVal(1) != 32 ||
 | |
|           !RightShift->hasOneUse())
 | |
|         return false;
 | |
| 
 | |
|       SDNode *Trunc2 = *RightShift->use_begin();
 | |
|       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
 | |
|           Trunc2->getValueType(0) != MVT::i32 ||
 | |
|           !Trunc2->hasOneUse())
 | |
|         return false;
 | |
| 
 | |
|       SDNode *Bitcast = *Trunc->use_begin();
 | |
|       SDNode *Bitcast2 = *Trunc2->use_begin();
 | |
| 
 | |
|       if (Bitcast->getOpcode() != ISD::BITCAST ||
 | |
|           Bitcast->getValueType(0) != MVT::f32)
 | |
|         return false;
 | |
|       if (Bitcast2->getOpcode() != ISD::BITCAST ||
 | |
|           Bitcast2->getValueType(0) != MVT::f32)
 | |
|         return false;
 | |
| 
 | |
|       if (Subtarget.isLittleEndian())
 | |
|         std::swap(Bitcast, Bitcast2);
 | |
| 
 | |
|       // Bitcast has the second float (in memory-layout order) and Bitcast2
 | |
|       // has the first one.
 | |
| 
 | |
|       SDValue BasePtr = LD->getBasePtr();
 | |
|       if (LD->isIndexed()) {
 | |
|         assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | |
|                "Non-pre-inc AM on PPC?");
 | |
|         BasePtr =
 | |
|           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | |
|                       LD->getOffset());
 | |
|       }
 | |
| 
 | |
|       auto MMOFlags =
 | |
|           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
 | |
|       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
 | |
|                                       LD->getPointerInfo(), LD->getAlignment(),
 | |
|                                       MMOFlags, LD->getAAInfo());
 | |
|       SDValue AddPtr =
 | |
|         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
 | |
|                     BasePtr, DAG.getIntPtrConstant(4, dl));
 | |
|       SDValue FloatLoad2 = DAG.getLoad(
 | |
|           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
 | |
|           LD->getPointerInfo().getWithOffset(4),
 | |
|           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
 | |
| 
 | |
|       if (LD->isIndexed()) {
 | |
|         // Note that DAGCombine should re-form any pre-increment load(s) from
 | |
|         // what is produced here if that makes sense.
 | |
|         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
 | |
|       }
 | |
| 
 | |
|       DCI.CombineTo(Bitcast2, FloatLoad);
 | |
|       DCI.CombineTo(Bitcast, FloatLoad2);
 | |
| 
 | |
|       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
 | |
|                                     SDValue(FloatLoad2.getNode(), 1));
 | |
|       return true;
 | |
|     };
 | |
| 
 | |
|     if (ReplaceTwoFloatLoad())
 | |
|       return SDValue(N, 0);
 | |
| 
 | |
|     EVT MemVT = LD->getMemoryVT();
 | |
|     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
 | |
|     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
 | |
|     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
 | |
|     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
 | |
|     if (LD->isUnindexed() && VT.isVector() &&
 | |
|         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
 | |
|           // P8 and later hardware should just use LOAD.
 | |
|           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
 | |
|                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
 | |
|          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
 | |
|           LD->getAlignment() >= ScalarABIAlignment)) &&
 | |
|         LD->getAlignment() < ABIAlignment) {
 | |
|       // This is a type-legal unaligned Altivec or QPX load.
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Ptr = LD->getBasePtr();
 | |
|       bool isLittleEndian = Subtarget.isLittleEndian();
 | |
| 
 | |
|       // This implements the loading of unaligned vectors as described in
 | |
|       // the venerable Apple Velocity Engine overview. Specifically:
 | |
|       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
 | |
|       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
 | |
|       //
 | |
|       // The general idea is to expand a sequence of one or more unaligned
 | |
|       // loads into an alignment-based permutation-control instruction (lvsl
 | |
|       // or lvsr), a series of regular vector loads (which always truncate
 | |
|       // their input address to an aligned address), and a series of
 | |
|       // permutations.  The results of these permutations are the requested
 | |
|       // loaded values.  The trick is that the last "extra" load is not taken
 | |
|       // from the address you might suspect (sizeof(vector) bytes after the
 | |
|       // last requested load), but rather sizeof(vector) - 1 bytes after the
 | |
|       // last requested vector. The point of this is to avoid a page fault if
 | |
|       // the base address happened to be aligned. This works because if the
 | |
|       // base address is aligned, then adding less than a full vector length
 | |
|       // will cause the last vector in the sequence to be (re)loaded.
 | |
|       // Otherwise, the next vector will be fetched as you might suspect was
 | |
|       // necessary.
 | |
| 
 | |
|       // We might be able to reuse the permutation generation from
 | |
|       // a different base address offset from this one by an aligned amount.
 | |
|       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
 | |
|       // optimization later.
 | |
|       Intrinsic::ID Intr, IntrLD, IntrPerm;
 | |
|       MVT PermCntlTy, PermTy, LDTy;
 | |
|       if (Subtarget.hasAltivec()) {
 | |
|         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
 | |
|                                  Intrinsic::ppc_altivec_lvsl;
 | |
|         IntrLD = Intrinsic::ppc_altivec_lvx;
 | |
|         IntrPerm = Intrinsic::ppc_altivec_vperm;
 | |
|         PermCntlTy = MVT::v16i8;
 | |
|         PermTy = MVT::v4i32;
 | |
|         LDTy = MVT::v4i32;
 | |
|       } else {
 | |
|         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
 | |
|                                        Intrinsic::ppc_qpx_qvlpcls;
 | |
|         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
 | |
|                                        Intrinsic::ppc_qpx_qvlfs;
 | |
|         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
 | |
|         PermCntlTy = MVT::v4f64;
 | |
|         PermTy = MVT::v4f64;
 | |
|         LDTy = MemVT.getSimpleVT();
 | |
|       }
 | |
| 
 | |
|       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
 | |
| 
 | |
|       // Create the new MMO for the new base load. It is like the original MMO,
 | |
|       // but represents an area in memory almost twice the vector size centered
 | |
|       // on the original address. If the address is unaligned, we might start
 | |
|       // reading up to (sizeof(vector)-1) bytes below the address of the
 | |
|       // original unaligned load.
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
|       MachineMemOperand *BaseMMO =
 | |
|         MF.getMachineMemOperand(LD->getMemOperand(),
 | |
|                                 -(long)MemVT.getStoreSize()+1,
 | |
|                                 2*MemVT.getStoreSize()-1);
 | |
| 
 | |
|       // Create the new base load.
 | |
|       SDValue LDXIntID =
 | |
|           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
 | |
|       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
 | |
|       SDValue BaseLoad =
 | |
|         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | |
|                                 DAG.getVTList(PermTy, MVT::Other),
 | |
|                                 BaseLoadOps, LDTy, BaseMMO);
 | |
| 
 | |
|       // Note that the value of IncOffset (which is provided to the next
 | |
|       // load's pointer info offset value, and thus used to calculate the
 | |
|       // alignment), and the value of IncValue (which is actually used to
 | |
|       // increment the pointer value) are different! This is because we
 | |
|       // require the next load to appear to be aligned, even though it
 | |
|       // is actually offset from the base pointer by a lesser amount.
 | |
|       int IncOffset = VT.getSizeInBits() / 8;
 | |
|       int IncValue = IncOffset;
 | |
| 
 | |
|       // Walk (both up and down) the chain looking for another load at the real
 | |
|       // (aligned) offset (the alignment of the other load does not matter in
 | |
|       // this case). If found, then do not use the offset reduction trick, as
 | |
|       // that will prevent the loads from being later combined (as they would
 | |
|       // otherwise be duplicates).
 | |
|       if (!findConsecutiveLoad(LD, DAG))
 | |
|         --IncValue;
 | |
| 
 | |
|       SDValue Increment =
 | |
|           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
 | |
|       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | |
| 
 | |
|       MachineMemOperand *ExtraMMO =
 | |
|         MF.getMachineMemOperand(LD->getMemOperand(),
 | |
|                                 1, 2*MemVT.getStoreSize()-1);
 | |
|       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
 | |
|       SDValue ExtraLoad =
 | |
|         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | |
|                                 DAG.getVTList(PermTy, MVT::Other),
 | |
|                                 ExtraLoadOps, LDTy, ExtraMMO);
 | |
| 
 | |
|       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|         BaseLoad.getValue(1), ExtraLoad.getValue(1));
 | |
| 
 | |
|       // Because vperm has a big-endian bias, we must reverse the order
 | |
|       // of the input vectors and complement the permute control vector
 | |
|       // when generating little endian code.  We have already handled the
 | |
|       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
 | |
|       // and ExtraLoad here.
 | |
|       SDValue Perm;
 | |
|       if (isLittleEndian)
 | |
|         Perm = BuildIntrinsicOp(IntrPerm,
 | |
|                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
 | |
|       else
 | |
|         Perm = BuildIntrinsicOp(IntrPerm,
 | |
|                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
 | |
| 
 | |
|       if (VT != PermTy)
 | |
|         Perm = Subtarget.hasAltivec() ?
 | |
|                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
 | |
|                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
 | |
|                                DAG.getTargetConstant(1, dl, MVT::i64));
 | |
|                                // second argument is 1 because this rounding
 | |
|                                // is always exact.
 | |
| 
 | |
|       // The output of the permutation is our loaded result, the TokenFactor is
 | |
|       // our new chain.
 | |
|       DCI.CombineTo(N, Perm, TF);
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|     case ISD::INTRINSIC_WO_CHAIN: {
 | |
|       bool isLittleEndian = Subtarget.isLittleEndian();
 | |
|       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
 | |
|                                            : Intrinsic::ppc_altivec_lvsl);
 | |
|       if ((IID == Intr ||
 | |
|            IID == Intrinsic::ppc_qpx_qvlpcld  ||
 | |
|            IID == Intrinsic::ppc_qpx_qvlpcls) &&
 | |
|         N->getOperand(1)->getOpcode() == ISD::ADD) {
 | |
|         SDValue Add = N->getOperand(1);
 | |
| 
 | |
|         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
 | |
|                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
 | |
| 
 | |
|         if (DAG.MaskedValueIsZero(Add->getOperand(1),
 | |
|                                   APInt::getAllOnesValue(Bits /* alignment */)
 | |
|                                       .zext(Add.getScalarValueSizeInBits()))) {
 | |
|           SDNode *BasePtr = Add->getOperand(0).getNode();
 | |
|           for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | |
|                                     UE = BasePtr->use_end();
 | |
|                UI != UE; ++UI) {
 | |
|             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
 | |
|               // We've found another LVSL/LVSR, and this address is an aligned
 | |
|               // multiple of that one. The results will be the same, so use the
 | |
|               // one we've just found instead.
 | |
| 
 | |
|               return SDValue(*UI, 0);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (isa<ConstantSDNode>(Add->getOperand(1))) {
 | |
|           SDNode *BasePtr = Add->getOperand(0).getNode();
 | |
|           for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | |
|                UE = BasePtr->use_end(); UI != UE; ++UI) {
 | |
|             if (UI->getOpcode() == ISD::ADD &&
 | |
|                 isa<ConstantSDNode>(UI->getOperand(1)) &&
 | |
|                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
 | |
|                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
 | |
|                 (1ULL << Bits) == 0) {
 | |
|               SDNode *OtherAdd = *UI;
 | |
|               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
 | |
|                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
 | |
|                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
 | |
|                   return SDValue(*VI, 0);
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | |
|     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | |
|     if (Subtarget.needsSwapsForVSXMemOps()) {
 | |
|       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|       default:
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_lxvw4x:
 | |
|       case Intrinsic::ppc_vsx_lxvd2x:
 | |
|         return expandVSXLoadForLE(N, DCI);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|     // For little endian, VSX stores require generating xxswapd/stxvd2x.
 | |
|     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | |
|     if (Subtarget.needsSwapsForVSXMemOps()) {
 | |
|       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|       default:
 | |
|         break;
 | |
|       case Intrinsic::ppc_vsx_stxvw4x:
 | |
|       case Intrinsic::ppc_vsx_stxvd2x:
 | |
|         return expandVSXStoreForLE(N, DCI);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BSWAP:
 | |
|     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | |
|     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | |
|         N->getOperand(0).hasOneUse() &&
 | |
|         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
 | |
|          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
 | |
|           N->getValueType(0) == MVT::i64))) {
 | |
|       SDValue Load = N->getOperand(0);
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Load);
 | |
|       // Create the byte-swapping load.
 | |
|       SDValue Ops[] = {
 | |
|         LD->getChain(),    // Chain
 | |
|         LD->getBasePtr(),  // Ptr
 | |
|         DAG.getValueType(N->getValueType(0)) // VT
 | |
|       };
 | |
|       SDValue BSLoad =
 | |
|         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
 | |
|                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
 | |
|                                               MVT::i64 : MVT::i32, MVT::Other),
 | |
|                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
 | |
| 
 | |
|       // If this is an i16 load, insert the truncate.
 | |
|       SDValue ResVal = BSLoad;
 | |
|       if (N->getValueType(0) == MVT::i16)
 | |
|         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
 | |
| 
 | |
|       // First, combine the bswap away.  This makes the value produced by the
 | |
|       // load dead.
 | |
|       DCI.CombineTo(N, ResVal);
 | |
| 
 | |
|       // Next, combine the load away, we give it a bogus result value but a real
 | |
|       // chain result.  The result value is dead because the bswap is dead.
 | |
|       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | |
| 
 | |
|       // Return N so it doesn't get rechecked!
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::VCMP:
 | |
|     // If a VCMPo node already exists with exactly the same operands as this
 | |
|     // node, use its result instead of this node (VCMPo computes both a CR6 and
 | |
|     // a normal output).
 | |
|     //
 | |
|     if (!N->getOperand(0).hasOneUse() &&
 | |
|         !N->getOperand(1).hasOneUse() &&
 | |
|         !N->getOperand(2).hasOneUse()) {
 | |
| 
 | |
|       // Scan all of the users of the LHS, looking for VCMPo's that match.
 | |
|       SDNode *VCMPoNode = nullptr;
 | |
| 
 | |
|       SDNode *LHSN = N->getOperand(0).getNode();
 | |
|       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (UI->getOpcode() == PPCISD::VCMPo &&
 | |
|             UI->getOperand(1) == N->getOperand(1) &&
 | |
|             UI->getOperand(2) == N->getOperand(2) &&
 | |
|             UI->getOperand(0) == N->getOperand(0)) {
 | |
|           VCMPoNode = *UI;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // If there is no VCMPo node, or if the flag value has a single use, don't
 | |
|       // transform this.
 | |
|       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | |
|         break;
 | |
| 
 | |
|       // Look at the (necessarily single) use of the flag value.  If it has a
 | |
|       // chain, this transformation is more complex.  Note that multiple things
 | |
|       // could use the value result, which we should ignore.
 | |
|       SDNode *FlagUser = nullptr;
 | |
|       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
 | |
|            FlagUser == nullptr; ++UI) {
 | |
|         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | |
|         SDNode *User = *UI;
 | |
|         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
 | |
|             FlagUser = User;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the user is a MFOCRF instruction, we know this is safe.
 | |
|       // Otherwise we give up for right now.
 | |
|       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
 | |
|         return SDValue(VCMPoNode, 0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BRCOND: {
 | |
|     SDValue Cond = N->getOperand(1);
 | |
|     SDValue Target = N->getOperand(2);
 | |
| 
 | |
|     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero) {
 | |
| 
 | |
|       // We now need to make the intrinsic dead (it cannot be instruction
 | |
|       // selected).
 | |
|       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
 | |
|       assert(Cond.getNode()->hasOneUse() &&
 | |
|              "Counter decrement has more than one use");
 | |
| 
 | |
|       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
 | |
|                          N->getOperand(0), Target);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
|   case ISD::BR_CC: {
 | |
|     // If this is a branch on an altivec predicate comparison, lower this so
 | |
|     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
 | |
|     // lowering is done pre-legalize, because the legalizer lowers the predicate
 | |
|     // compare down to code that is difficult to reassemble.
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | |
| 
 | |
|     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
 | |
|     // value. If so, pass-through the AND to get to the intrinsic.
 | |
|     if (LHS.getOpcode() == ISD::AND &&
 | |
|         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | |
|         isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | |
|         !isNullConstant(LHS.getOperand(1)))
 | |
|       LHS = LHS.getOperand(0);
 | |
| 
 | |
|     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | |
|         isa<ConstantSDNode>(RHS)) {
 | |
|       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|              "Counter decrement comparison is not EQ or NE");
 | |
| 
 | |
|       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
 | |
|                     (CC == ISD::SETNE && !Val);
 | |
| 
 | |
|       // We now need to make the intrinsic dead (it cannot be instruction
 | |
|       // selected).
 | |
|       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
 | |
|       assert(LHS.getNode()->hasOneUse() &&
 | |
|              "Counter decrement has more than one use");
 | |
| 
 | |
|       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
 | |
|                          N->getOperand(0), N->getOperand(4));
 | |
|     }
 | |
| 
 | |
|     int CompareOpc;
 | |
|     bool isDot;
 | |
| 
 | |
|     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
 | |
|       assert(isDot && "Can't compare against a vector result!");
 | |
| 
 | |
|       // If this is a comparison against something other than 0/1, then we know
 | |
|       // that the condition is never/always true.
 | |
|       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|       if (Val != 0 && Val != 1) {
 | |
|         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | |
|           return N->getOperand(0);
 | |
|         // Always !=, turn it into an unconditional branch.
 | |
|         return DAG.getNode(ISD::BR, dl, MVT::Other,
 | |
|                            N->getOperand(0), N->getOperand(4));
 | |
|       }
 | |
| 
 | |
|       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | |
| 
 | |
|       // Create the PPCISD altivec 'dot' comparison node.
 | |
|       SDValue Ops[] = {
 | |
|         LHS.getOperand(2),  // LHS of compare
 | |
|         LHS.getOperand(3),  // RHS of compare
 | |
|         DAG.getConstant(CompareOpc, dl, MVT::i32)
 | |
|       };
 | |
|       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
 | |
|       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
 | |
| 
 | |
|       // Unpack the result based on how the target uses it.
 | |
|       PPC::Predicate CompOpc;
 | |
|       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
 | |
|       default:  // Can't happen, don't crash on invalid number though.
 | |
|       case 0:   // Branch on the value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | |
|         break;
 | |
|       case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | |
|         break;
 | |
|       case 2:   // Branch on the value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | |
|         break;
 | |
|       case 3:   // Branch on the inverted value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
 | |
|                          DAG.getConstant(CompOpc, dl, MVT::i32),
 | |
|                          DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                          N->getOperand(4), CompNode.getValue(1));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     return DAGCombineBuildVector(N, DCI);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | |
|                                  SelectionDAG &DAG,
 | |
|                                  SmallVectorImpl<SDNode *> &Created) const {
 | |
|   // fold (sdiv X, pow2)
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT == MVT::i64 && !Subtarget.isPPC64())
 | |
|     return SDValue();
 | |
|   if ((VT != MVT::i32 && VT != MVT::i64) ||
 | |
|       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N);
 | |
|   SDValue N0 = N->getOperand(0);
 | |
| 
 | |
|   bool IsNegPow2 = (-Divisor).isPowerOf2();
 | |
|   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
 | |
|   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
 | |
| 
 | |
|   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
 | |
|   Created.push_back(Op.getNode());
 | |
| 
 | |
|   if (IsNegPow2) {
 | |
|     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
 | |
|     Created.push_back(Op.getNode());
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | |
|                                                       KnownBits &Known,
 | |
|                                                       const APInt &DemandedElts,
 | |
|                                                       const SelectionDAG &DAG,
 | |
|                                                       unsigned Depth) const {
 | |
|   Known.resetAll();
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case PPCISD::LBRX: {
 | |
|     // lhbrx is known to have the top bits cleared out.
 | |
|     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
 | |
|       Known.Zero = 0xFFFF0000;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
 | |
|     default: break;
 | |
|     case Intrinsic::ppc_altivec_vcmpbfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequd_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgefp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtub_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtud_p:
 | |
|       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
 | |
|   switch (Subtarget.getDarwinDirective()) {
 | |
|   default: break;
 | |
|   case PPC::DIR_970:
 | |
|   case PPC::DIR_PWR4:
 | |
|   case PPC::DIR_PWR5:
 | |
|   case PPC::DIR_PWR5X:
 | |
|   case PPC::DIR_PWR6:
 | |
|   case PPC::DIR_PWR6X:
 | |
|   case PPC::DIR_PWR7:
 | |
|   case PPC::DIR_PWR8:
 | |
|   case PPC::DIR_PWR9: {
 | |
|     if (!ML)
 | |
|       break;
 | |
| 
 | |
|     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
 | |
| 
 | |
|     // For small loops (between 5 and 8 instructions), align to a 32-byte
 | |
|     // boundary so that the entire loop fits in one instruction-cache line.
 | |
|     uint64_t LoopSize = 0;
 | |
|     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
 | |
|       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
 | |
|         LoopSize += TII->getInstSizeInBytes(*J);
 | |
|         if (LoopSize > 32)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|     if (LoopSize > 16 && LoopSize <= 32)
 | |
|       return 5;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getPrefLoopAlignment(ML);
 | |
| }
 | |
| 
 | |
| /// getConstraintType - Given a constraint, return the type of
 | |
| /// constraint it is for this target.
 | |
| PPCTargetLowering::ConstraintType
 | |
| PPCTargetLowering::getConstraintType(StringRef Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'b':
 | |
|     case 'r':
 | |
|     case 'f':
 | |
|     case 'd':
 | |
|     case 'v':
 | |
|     case 'y':
 | |
|       return C_RegisterClass;
 | |
|     case 'Z':
 | |
|       // FIXME: While Z does indicate a memory constraint, it specifically
 | |
|       // indicates an r+r address (used in conjunction with the 'y' modifier
 | |
|       // in the replacement string). Currently, we're forcing the base
 | |
|       // register to be r0 in the asm printer (which is interpreted as zero)
 | |
|       // and forming the complete address in the second register. This is
 | |
|       // suboptimal.
 | |
|       return C_Memory;
 | |
|     }
 | |
|   } else if (Constraint == "wc") { // individual CR bits.
 | |
|     return C_RegisterClass;
 | |
|   } else if (Constraint == "wa" || Constraint == "wd" ||
 | |
|              Constraint == "wf" || Constraint == "ws") {
 | |
|     return C_RegisterClass; // VSX registers.
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
| PPCTargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
| 
 | |
|   // Look at the constraint type.
 | |
|   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
 | |
|     return CW_Register; // an individual CR bit.
 | |
|   else if ((StringRef(constraint) == "wa" ||
 | |
|             StringRef(constraint) == "wd" ||
 | |
|             StringRef(constraint) == "wf") &&
 | |
|            type->isVectorTy())
 | |
|     return CW_Register;
 | |
|   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
 | |
|     return CW_Register;
 | |
| 
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'b':
 | |
|     if (type->isIntegerTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'f':
 | |
|     if (type->isFloatTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'd':
 | |
|     if (type->isDoubleTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'v':
 | |
|     if (type->isVectorTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'y':
 | |
|     weight = CW_Register;
 | |
|     break;
 | |
|   case 'Z':
 | |
|     weight = CW_Memory;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | |
|                                                 StringRef Constraint,
 | |
|                                                 MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC RS6000 Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'b':   // R1-R31
 | |
|       if (VT == MVT::i64 && Subtarget.isPPC64())
 | |
|         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
 | |
|       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
 | |
|     case 'r':   // R0-R31
 | |
|       if (VT == MVT::i64 && Subtarget.isPPC64())
 | |
|         return std::make_pair(0U, &PPC::G8RCRegClass);
 | |
|       return std::make_pair(0U, &PPC::GPRCRegClass);
 | |
|     // 'd' and 'f' constraints are both defined to be "the floating point
 | |
|     // registers", where one is for 32-bit and the other for 64-bit. We don't
 | |
|     // really care overly much here so just give them all the same reg classes.
 | |
|     case 'd':
 | |
|     case 'f':
 | |
|       if (Subtarget.hasSPE()) {
 | |
|         if (VT == MVT::f32 || VT == MVT::i32)
 | |
|           return std::make_pair(0U, &PPC::SPE4RCRegClass);
 | |
|         if (VT == MVT::f64 || VT == MVT::i64)
 | |
|           return std::make_pair(0U, &PPC::SPERCRegClass);
 | |
|       } else {
 | |
|         if (VT == MVT::f32 || VT == MVT::i32)
 | |
|           return std::make_pair(0U, &PPC::F4RCRegClass);
 | |
|         if (VT == MVT::f64 || VT == MVT::i64)
 | |
|           return std::make_pair(0U, &PPC::F8RCRegClass);
 | |
|         if (VT == MVT::v4f64 && Subtarget.hasQPX())
 | |
|           return std::make_pair(0U, &PPC::QFRCRegClass);
 | |
|         if (VT == MVT::v4f32 && Subtarget.hasQPX())
 | |
|           return std::make_pair(0U, &PPC::QSRCRegClass);
 | |
|       }
 | |
|       break;
 | |
|     case 'v':
 | |
|       if (VT == MVT::v4f64 && Subtarget.hasQPX())
 | |
|         return std::make_pair(0U, &PPC::QFRCRegClass);
 | |
|       if (VT == MVT::v4f32 && Subtarget.hasQPX())
 | |
|         return std::make_pair(0U, &PPC::QSRCRegClass);
 | |
|       if (Subtarget.hasAltivec())
 | |
|         return std::make_pair(0U, &PPC::VRRCRegClass);
 | |
|       break;
 | |
|     case 'y':   // crrc
 | |
|       return std::make_pair(0U, &PPC::CRRCRegClass);
 | |
|     }
 | |
|   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
 | |
|     // An individual CR bit.
 | |
|     return std::make_pair(0U, &PPC::CRBITRCRegClass);
 | |
|   } else if ((Constraint == "wa" || Constraint == "wd" ||
 | |
|              Constraint == "wf") && Subtarget.hasVSX()) {
 | |
|     return std::make_pair(0U, &PPC::VSRCRegClass);
 | |
|   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
 | |
|     if (VT == MVT::f32 && Subtarget.hasP8Vector())
 | |
|       return std::make_pair(0U, &PPC::VSSRCRegClass);
 | |
|     else
 | |
|       return std::make_pair(0U, &PPC::VSFRCRegClass);
 | |
|   }
 | |
| 
 | |
|   std::pair<unsigned, const TargetRegisterClass *> R =
 | |
|       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| 
 | |
|   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
 | |
|   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
 | |
|   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
 | |
|   // register.
 | |
|   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
 | |
|   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
 | |
|   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
 | |
|       PPC::GPRCRegClass.contains(R.first))
 | |
|     return std::make_pair(TRI->getMatchingSuperReg(R.first,
 | |
|                             PPC::sub_32, &PPC::G8RCRegClass),
 | |
|                           &PPC::G8RCRegClass);
 | |
| 
 | |
|   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
 | |
|   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
 | |
|     R.first = PPC::CR0;
 | |
|     R.second = &PPC::CRRCRegClass;
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      std::string &Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result;
 | |
| 
 | |
|   // Only support length 1 constraints.
 | |
|   if (Constraint.length() > 1) return;
 | |
| 
 | |
|   char Letter = Constraint[0];
 | |
|   switch (Letter) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P': {
 | |
|     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!CST) return; // Must be an immediate to match.
 | |
|     SDLoc dl(Op);
 | |
|     int64_t Value = CST->getSExtValue();
 | |
|     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
 | |
|                          // numbers are printed as such.
 | |
|     switch (Letter) {
 | |
|     default: llvm_unreachable("Unknown constraint letter!");
 | |
|     case 'I':  // "I" is a signed 16-bit constant.
 | |
|       if (isInt<16>(Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | |
|       if (isShiftedUInt<16, 16>(Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | |
|       if (isShiftedInt<16, 16>(Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | |
|       if (isUInt<16>(Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'M':  // "M" is a constant that is greater than 31.
 | |
|       if (Value > 31)
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'N':  // "N" is a positive constant that is an exact power of two.
 | |
|       if (Value > 0 && isPowerOf2_64(Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'O':  // "O" is the constant zero.
 | |
|       if (Value == 0)
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | |
|       if (isInt<16>(-Value))
 | |
|         Result = DAG.getTargetConstant(Value, dl, TCVT);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle standard constraint letters.
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                               const AddrMode &AM, Type *Ty,
 | |
|                                               unsigned AS, Instruction *I) const {
 | |
|   // PPC does not allow r+i addressing modes for vectors!
 | |
|   if (Ty->isVectorTy() && AM.BaseOffs != 0)
 | |
|     return false;
 | |
| 
 | |
|   // PPC allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // PPC only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default:
 | |
|     // No other scales are supported.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   // Make sure the function does not optimize away the store of the RA to
 | |
|   // the stack.
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setLRStoreRequired();
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   auto PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   if (Depth > 0) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset =
 | |
|         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
 | |
|                         isPPC64 ? MVT::i64 : MVT::i32);
 | |
|     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo());
 | |
|   }
 | |
| 
 | |
|   // Just load the return address off the stack.
 | |
|   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | |
|   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
 | |
|                      MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
| 
 | |
|   // Naked functions never have a frame pointer, and so we use r1. For all
 | |
|   // other functions, this decision must be delayed until during PEI.
 | |
|   unsigned FrameReg;
 | |
|   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
 | |
|     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
 | |
|   else
 | |
|     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
 | |
| 
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
 | |
|                                          PtrVT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
 | |
|                             FrameAddr, MachinePointerInfo());
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| // FIXME? Maybe this could be a TableGen attribute on some registers and
 | |
| // this table could be generated automatically from RegInfo.
 | |
| unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   bool isDarwinABI = Subtarget.isDarwinABI();
 | |
| 
 | |
|   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
 | |
|       (!isPPC64 && VT != MVT::i32))
 | |
|     report_fatal_error("Invalid register global variable type");
 | |
| 
 | |
|   bool is64Bit = isPPC64 && VT == MVT::i64;
 | |
|   unsigned Reg = StringSwitch<unsigned>(RegName)
 | |
|                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
 | |
|                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
 | |
|                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
 | |
|                                   (is64Bit ? PPC::X13 : PPC::R13))
 | |
|                    .Default(0);
 | |
| 
 | |
|   if (Reg)
 | |
|     return Reg;
 | |
|   report_fatal_error("Invalid register name global variable");
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The PowerPC target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                            const CallInst &I,
 | |
|                                            MachineFunction &MF,
 | |
|                                            unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::ppc_qpx_qvlfd:
 | |
|   case Intrinsic::ppc_qpx_qvlfs:
 | |
|   case Intrinsic::ppc_qpx_qvlfcd:
 | |
|   case Intrinsic::ppc_qpx_qvlfcs:
 | |
|   case Intrinsic::ppc_qpx_qvlfiwa:
 | |
|   case Intrinsic::ppc_qpx_qvlfiwz:
 | |
|   case Intrinsic::ppc_altivec_lvx:
 | |
|   case Intrinsic::ppc_altivec_lvxl:
 | |
|   case Intrinsic::ppc_altivec_lvebx:
 | |
|   case Intrinsic::ppc_altivec_lvehx:
 | |
|   case Intrinsic::ppc_altivec_lvewx:
 | |
|   case Intrinsic::ppc_vsx_lxvd2x:
 | |
|   case Intrinsic::ppc_vsx_lxvw4x: {
 | |
|     EVT VT;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::ppc_altivec_lvebx:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_lvehx:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_lvewx:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_lxvd2x:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfd:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfs:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcd:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcs:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = VT;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = -VT.getStoreSize()+1;
 | |
|     Info.size = 2*VT.getStoreSize()-1;
 | |
|     Info.align = 1;
 | |
|     Info.flags = MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::ppc_qpx_qvlfda:
 | |
|   case Intrinsic::ppc_qpx_qvlfsa:
 | |
|   case Intrinsic::ppc_qpx_qvlfcda:
 | |
|   case Intrinsic::ppc_qpx_qvlfcsa:
 | |
|   case Intrinsic::ppc_qpx_qvlfiwaa:
 | |
|   case Intrinsic::ppc_qpx_qvlfiwza: {
 | |
|     EVT VT;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::ppc_qpx_qvlfda:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfsa:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcda:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvlfcsa:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = VT;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.size = VT.getStoreSize();
 | |
|     Info.align = 1;
 | |
|     Info.flags = MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::ppc_qpx_qvstfd:
 | |
|   case Intrinsic::ppc_qpx_qvstfs:
 | |
|   case Intrinsic::ppc_qpx_qvstfcd:
 | |
|   case Intrinsic::ppc_qpx_qvstfcs:
 | |
|   case Intrinsic::ppc_qpx_qvstfiw:
 | |
|   case Intrinsic::ppc_altivec_stvx:
 | |
|   case Intrinsic::ppc_altivec_stvxl:
 | |
|   case Intrinsic::ppc_altivec_stvebx:
 | |
|   case Intrinsic::ppc_altivec_stvehx:
 | |
|   case Intrinsic::ppc_altivec_stvewx:
 | |
|   case Intrinsic::ppc_vsx_stxvd2x:
 | |
|   case Intrinsic::ppc_vsx_stxvw4x: {
 | |
|     EVT VT;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::ppc_altivec_stvebx:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvehx:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     case Intrinsic::ppc_altivec_stvewx:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_vsx_stxvd2x:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfd:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfs:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcd:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcs:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     Info.memVT = VT;
 | |
|     Info.ptrVal = I.getArgOperand(1);
 | |
|     Info.offset = -VT.getStoreSize()+1;
 | |
|     Info.size = 2*VT.getStoreSize()-1;
 | |
|     Info.align = 1;
 | |
|     Info.flags = MachineMemOperand::MOStore;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::ppc_qpx_qvstfda:
 | |
|   case Intrinsic::ppc_qpx_qvstfsa:
 | |
|   case Intrinsic::ppc_qpx_qvstfcda:
 | |
|   case Intrinsic::ppc_qpx_qvstfcsa:
 | |
|   case Intrinsic::ppc_qpx_qvstfiwa: {
 | |
|     EVT VT;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::ppc_qpx_qvstfda:
 | |
|       VT = MVT::v4f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfsa:
 | |
|       VT = MVT::v4f32;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcda:
 | |
|       VT = MVT::v2f64;
 | |
|       break;
 | |
|     case Intrinsic::ppc_qpx_qvstfcsa:
 | |
|       VT = MVT::v2f32;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::v4i32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     Info.memVT = VT;
 | |
|     Info.ptrVal = I.getArgOperand(1);
 | |
|     Info.offset = 0;
 | |
|     Info.size = VT.getStoreSize();
 | |
|     Info.align = 1;
 | |
|     Info.flags = MachineMemOperand::MOStore;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
| /// and store operations as a result of memset, memcpy, and memmove
 | |
| /// lowering. If DstAlign is zero that means it's safe to destination
 | |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | |
| /// means there isn't a need to check it against alignment requirement,
 | |
| /// probably because the source does not need to be loaded. If 'IsMemset' is
 | |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
 | |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
 | |
| /// source is constant so it does not need to be loaded.
 | |
| /// It returns EVT::Other if the type should be determined using generic
 | |
| /// target-independent logic.
 | |
| EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
 | |
|                                            unsigned DstAlign, unsigned SrcAlign,
 | |
|                                            bool IsMemset, bool ZeroMemset,
 | |
|                                            bool MemcpyStrSrc,
 | |
|                                            MachineFunction &MF) const {
 | |
|   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
 | |
|     const Function &F = MF.getFunction();
 | |
|     // When expanding a memset, require at least two QPX instructions to cover
 | |
|     // the cost of loading the value to be stored from the constant pool.
 | |
|     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
 | |
|        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
 | |
|         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
 | |
|       return MVT::v4f64;
 | |
|     }
 | |
| 
 | |
|     // We should use Altivec/VSX loads and stores when available. For unaligned
 | |
|     // addresses, unaligned VSX loads are only fast starting with the P8.
 | |
|     if (Subtarget.hasAltivec() && Size >= 16 &&
 | |
|         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
 | |
|          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
 | |
|       return MVT::v4i32;
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.isPPC64()) {
 | |
|     return MVT::i64;
 | |
|   }
 | |
| 
 | |
|   return MVT::i32;
 | |
| }
 | |
| 
 | |
| /// Returns true if it is beneficial to convert a load of a constant
 | |
| /// to just the constant itself.
 | |
| bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                           Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   return !(BitSize == 0 || BitSize > 64);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   return NumBits1 == 64 && NumBits2 == 32;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   return NumBits1 == 64 && NumBits2 == 32;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | |
|   // Generally speaking, zexts are not free, but they are free when they can be
 | |
|   // folded with other operations.
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
 | |
|     EVT MemVT = LD->getMemoryVT();
 | |
|     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
 | |
|          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
 | |
|         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
 | |
|          LD->getExtensionType() == ISD::ZEXTLOAD))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Add other cases...
 | |
|   //  - 32-bit shifts with a zext to i64
 | |
|   //  - zext after ctlz, bswap, etc.
 | |
|   //  - zext after and by a constant mask
 | |
| 
 | |
|   return TargetLowering::isZExtFree(Val, VT2);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
 | |
|   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
 | |
|          "invalid fpext types");
 | |
|   // Extending to float128 is not free.
 | |
|   if (DestVT == MVT::f128)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return isInt<16>(Imm) || isUInt<16>(Imm);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   return isInt<16>(Imm) || isUInt<16>(Imm);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                        unsigned,
 | |
|                                                        unsigned,
 | |
|                                                        bool *Fast) const {
 | |
|   if (DisablePPCUnaligned)
 | |
|     return false;
 | |
| 
 | |
|   // PowerPC supports unaligned memory access for simple non-vector types.
 | |
|   // Although accessing unaligned addresses is not as efficient as accessing
 | |
|   // aligned addresses, it is generally more efficient than manual expansion,
 | |
|   // and generally only traps for software emulation when crossing page
 | |
|   // boundaries.
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (VT.getSimpleVT().isVector()) {
 | |
|     if (Subtarget.hasVSX()) {
 | |
|       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
 | |
|           VT != MVT::v4f32 && VT != MVT::v4i32)
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::ppcf128)
 | |
|     return false;
 | |
| 
 | |
|   if (Fast)
 | |
|     *Fast = true;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   case MVT::f128:
 | |
|     return (EnableQuadPrecision && Subtarget.hasP9Vector());
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const MCPhysReg *
 | |
| PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
 | |
|   // LR is a callee-save register, but we must treat it as clobbered by any call
 | |
|   // site. Hence we include LR in the scratch registers, which are in turn added
 | |
|   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
 | |
|   // to CTR, which is used by any indirect call.
 | |
|   static const MCPhysReg ScratchRegs[] = {
 | |
|     PPC::X12, PPC::LR8, PPC::CTR8, 0
 | |
|   };
 | |
| 
 | |
|   return ScratchRegs;
 | |
| }
 | |
| 
 | |
| unsigned PPCTargetLowering::getExceptionPointerRegister(
 | |
|     const Constant *PersonalityFn) const {
 | |
|   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
 | |
| }
 | |
| 
 | |
| unsigned PPCTargetLowering::getExceptionSelectorRegister(
 | |
|     const Constant *PersonalityFn) const {
 | |
|   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
 | |
|                      EVT VT , unsigned DefinedValues) const {
 | |
|   if (VT == MVT::v2i64)
 | |
|     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
 | |
| 
 | |
|   if (Subtarget.hasVSX() || Subtarget.hasQPX())
 | |
|     return true;
 | |
| 
 | |
|   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
 | |
| }
 | |
| 
 | |
| Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
 | |
|   if (DisableILPPref || Subtarget.enableMachineScheduler())
 | |
|     return TargetLowering::getSchedulingPreference(N);
 | |
| 
 | |
|   return Sched::ILP;
 | |
| }
 | |
| 
 | |
| // Create a fast isel object.
 | |
| FastISel *
 | |
| PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
 | |
|                                   const TargetLibraryInfo *LibInfo) const {
 | |
|   return PPC::createFastISel(FuncInfo, LibInfo);
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
 | |
|   if (Subtarget.isDarwinABI()) return;
 | |
|   if (!Subtarget.isPPC64()) return;
 | |
| 
 | |
|   // Update IsSplitCSR in PPCFunctionInfo
 | |
|   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
 | |
|   PFI->setIsSplitCSR(true);
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::insertCopiesSplitCSR(
 | |
|   MachineBasicBlock *Entry,
 | |
|   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
 | |
|   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
 | |
|   if (!IStart)
 | |
|     return;
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
 | |
|   MachineBasicBlock::iterator MBBI = Entry->begin();
 | |
|   for (const MCPhysReg *I = IStart; *I; ++I) {
 | |
|     const TargetRegisterClass *RC = nullptr;
 | |
|     if (PPC::G8RCRegClass.contains(*I))
 | |
|       RC = &PPC::G8RCRegClass;
 | |
|     else if (PPC::F8RCRegClass.contains(*I))
 | |
|       RC = &PPC::F8RCRegClass;
 | |
|     else if (PPC::CRRCRegClass.contains(*I))
 | |
|       RC = &PPC::CRRCRegClass;
 | |
|     else if (PPC::VRRCRegClass.contains(*I))
 | |
|       RC = &PPC::VRRCRegClass;
 | |
|     else
 | |
|       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | |
| 
 | |
|     unsigned NewVR = MRI->createVirtualRegister(RC);
 | |
|     // Create copy from CSR to a virtual register.
 | |
|     // FIXME: this currently does not emit CFI pseudo-instructions, it works
 | |
|     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
 | |
|     // nounwind. If we want to generalize this later, we may need to emit
 | |
|     // CFI pseudo-instructions.
 | |
|     assert(Entry->getParent()->getFunction().hasFnAttribute(
 | |
|              Attribute::NoUnwind) &&
 | |
|            "Function should be nounwind in insertCopiesSplitCSR!");
 | |
|     Entry->addLiveIn(*I);
 | |
|     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
 | |
|       .addReg(*I);
 | |
| 
 | |
|     // Insert the copy-back instructions right before the terminator
 | |
|     for (auto *Exit : Exits)
 | |
|       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
 | |
|               TII->get(TargetOpcode::COPY), *I)
 | |
|         .addReg(NewVR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Override to enable LOAD_STACK_GUARD lowering on Linux.
 | |
| bool PPCTargetLowering::useLoadStackGuardNode() const {
 | |
|   if (!Subtarget.isTargetLinux())
 | |
|     return TargetLowering::useLoadStackGuardNode();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Override to disable global variable loading on Linux.
 | |
| void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
 | |
|   if (!Subtarget.isTargetLinux())
 | |
|     return TargetLowering::insertSSPDeclarations(M);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   if (!VT.isSimple() || !Subtarget.hasVSX())
 | |
|     return false;
 | |
| 
 | |
|   switch(VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     // For FP types that are currently not supported by PPC backend, return
 | |
|     // false. Examples: f16, f80.
 | |
|     return false;
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|   case MVT::ppcf128:
 | |
|     return Imm.isPosZero();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For vector shift operation op, fold
 | |
| // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
 | |
| static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
 | |
|                                   SelectionDAG &DAG) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   EVT VT = N0.getValueType();
 | |
|   unsigned OpSizeInBits = VT.getScalarSizeInBits();
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   unsigned TargetOpcode;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected shift operation");
 | |
|   case ISD::SHL:
 | |
|     TargetOpcode = PPCISD::SHL;
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     TargetOpcode = PPCISD::SRL;
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     TargetOpcode = PPCISD::SRA;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
 | |
|       N1->getOpcode() == ISD::AND)
 | |
|     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
 | |
|       if (Mask->getZExtValue() == OpSizeInBits - 1)
 | |
|         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | |
|     return Value;
 | |
| 
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!Subtarget.isISA3_0() ||
 | |
|       N0.getOpcode() != ISD::SIGN_EXTEND ||
 | |
|       N0.getOperand(0).getValueType() != MVT::i32 ||
 | |
|       CN1 == nullptr || N->getValueType(0) != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // We can't save an operation here if the value is already extended, and
 | |
|   // the existing shift is easier to combine.
 | |
|   SDValue ExtsSrc = N0.getOperand(0);
 | |
|   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
 | |
|       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N0);
 | |
|   SDValue ShiftBy = SDValue(CN1, 0);
 | |
|   // We want the shift amount to be i32 on the extswli, but the shift could
 | |
|   // have an i64.
 | |
|   if (ShiftBy.getValueType() == MVT::i64)
 | |
|     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
 | |
| 
 | |
|   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
 | |
|                          ShiftBy);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | |
|     return Value;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | |
|     return Value;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
 | |
| // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
 | |
| // When C is zero, the equation (addi Z, -C) can be simplified to Z
 | |
| // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
 | |
| static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
 | |
|                                  const PPCSubtarget &Subtarget) {
 | |
|   if (!Subtarget.isPPC64())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|   auto isZextOfCompareWithConstant = [](SDValue Op) {
 | |
|     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
 | |
|         Op.getValueType() != MVT::i64)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Cmp = Op.getOperand(0);
 | |
|     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
 | |
|         Cmp.getOperand(0).getValueType() != MVT::i64)
 | |
|       return false;
 | |
| 
 | |
|     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
 | |
|       int64_t NegConstant = 0 - Constant->getSExtValue();
 | |
|       // Due to the limitations of the addi instruction,
 | |
|       // -C is required to be [-32768, 32767].
 | |
|       return isInt<16>(NegConstant);
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
 | |
|   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
 | |
| 
 | |
|   // If there is a pattern, canonicalize a zext operand to the RHS.
 | |
|   if (LHSHasPattern && !RHSHasPattern)
 | |
|     std::swap(LHS, RHS);
 | |
|   else if (!LHSHasPattern && !RHSHasPattern)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N);
 | |
|   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64);
 | |
|   SDValue Cmp = RHS.getOperand(0);
 | |
|   SDValue Z = Cmp.getOperand(0);
 | |
|   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
 | |
| 
 | |
|   assert(Constant && "Constant Should not be a null pointer.");
 | |
|   int64_t NegConstant = 0 - Constant->getSExtValue();
 | |
| 
 | |
|   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
 | |
|   default: break;
 | |
|   case ISD::SETNE: {
 | |
|     //                                 when C == 0
 | |
|     //                             --> addze X, (addic Z, -1).carry
 | |
|     //                            /
 | |
|     // add X, (zext(setne Z, C))--
 | |
|     //                            \    when -32768 <= -C <= 32767 && C != 0
 | |
|     //                             --> addze X, (addic (addi Z, -C), -1).carry
 | |
|     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | |
|                               DAG.getConstant(NegConstant, DL, MVT::i64));
 | |
|     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | |
|     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | |
|                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
 | |
|     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | |
|                        SDValue(Addc.getNode(), 1));
 | |
|     }
 | |
|   case ISD::SETEQ: {
 | |
|     //                                 when C == 0
 | |
|     //                             --> addze X, (subfic Z, 0).carry
 | |
|     //                            /
 | |
|     // add X, (zext(sete  Z, C))--
 | |
|     //                            \    when -32768 <= -C <= 32767 && C != 0
 | |
|     //                             --> addze X, (subfic (addi Z, -C), 0).carry
 | |
|     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | |
|                               DAG.getConstant(NegConstant, DL, MVT::i64));
 | |
|     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | |
|     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | |
|                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
 | |
|     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | |
|                        SDValue(Subc.getNode(), 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
 | |
|     return Value;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Detect TRUNCATE operations on bitcasts of float128 values.
 | |
| // What we are looking for here is the situtation where we extract a subset
 | |
| // of bits from a 128 bit float.
 | |
| // This can be of two forms:
 | |
| // 1) BITCAST of f128 feeding TRUNCATE
 | |
| // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
 | |
| // The reason this is required is because we do not have a legal i128 type
 | |
| // and so we want to prevent having to store the f128 and then reload part
 | |
| // of it.
 | |
| SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
 | |
|                                            DAGCombinerInfo &DCI) const {
 | |
|   // If we are using CRBits then try that first.
 | |
|   if (Subtarget.useCRBits()) {
 | |
|     // Check if CRBits did anything and return that if it did.
 | |
|     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
 | |
|       return CRTruncValue;
 | |
|   }
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
| 
 | |
|   // Looking for a truncate of i128 to i64.
 | |
|   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | |
| 
 | |
|   // SRL feeding TRUNCATE.
 | |
|   if (Op0.getOpcode() == ISD::SRL) {
 | |
|     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
 | |
|     // The right shift has to be by 64 bits.
 | |
|     if (!ConstNode || ConstNode->getZExtValue() != 64)
 | |
|       return SDValue();
 | |
| 
 | |
|     // Switch the element number to extract.
 | |
|     EltToExtract = EltToExtract ? 0 : 1;
 | |
|     // Update Op0 past the SRL.
 | |
|     Op0 = Op0.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // BITCAST feeding a TRUNCATE possibly via SRL.
 | |
|   if (Op0.getOpcode() == ISD::BITCAST &&
 | |
|       Op0.getValueType() == MVT::i128 &&
 | |
|       Op0.getOperand(0).getValueType() == MVT::f128) {
 | |
|     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
 | |
|     return DCI.DAG.getNode(
 | |
|         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
 | |
|         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | |
|   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
 | |
|   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
 | |
|     return false;
 | |
| 
 | |
|   // If not a tail call then no need to proceed.
 | |
|   if (!CI->isTailCall())
 | |
|     return false;
 | |
| 
 | |
|   // If tail calls are disabled for the caller then we are done.
 | |
|   const Function *Caller = CI->getParent()->getParent();
 | |
|   auto Attr = Caller->getFnAttribute("disable-tail-calls");
 | |
|   if (Attr.getValueAsString() == "true")
 | |
|     return false;
 | |
| 
 | |
|   // If sibling calls have been disabled and tail-calls aren't guaranteed
 | |
|   // there is no reason to duplicate.
 | |
|   auto &TM = getTargetMachine();
 | |
|   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
 | |
|     return false;
 | |
| 
 | |
|   // Can't tail call a function called indirectly, or if it has variadic args.
 | |
|   const Function *Callee = CI->getCalledFunction();
 | |
|   if (!Callee || Callee->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure the callee and caller calling conventions are eligible for tco.
 | |
|   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
 | |
|                                            CI->getCallingConv()))
 | |
|       return false;
 | |
| 
 | |
|   // If the function is local then we have a good chance at tail-calling it
 | |
|   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
 | |
|   if (!Subtarget.hasVSX())
 | |
|     return false;
 | |
|   if (Subtarget.hasP9Vector() && VT == MVT::f128)
 | |
|     return true;
 | |
|   return VT == MVT::f32 || VT == MVT::f64 ||
 | |
|     VT == MVT::v4f32 || VT == MVT::v2f64;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::
 | |
| isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
 | |
|   const Value *Mask = AndI.getOperand(1);
 | |
|   // If the mask is suitable for andi. or andis. we should sink the and.
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
 | |
|     // Can't handle constants wider than 64-bits.
 | |
|     if (CI->getBitWidth() > 64)
 | |
|       return false;
 | |
|     int64_t ConstVal = CI->getZExtValue();
 | |
|     return isUInt<16>(ConstVal) ||
 | |
|       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
 | |
|   }
 | |
| 
 | |
|   // For non-constant masks, we can always use the record-form and.
 | |
|   return true;
 | |
| }
 |