forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3748 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3748 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the PowerPC implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCInstrInfo.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPC.h"
 | |
| #include "PPCHazardRecognizers.h"
 | |
| #include "PPCInstrBuilder.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-instr-info"
 | |
| 
 | |
| #define GET_INSTRMAP_INFO
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #include "PPCGenInstrInfo.inc"
 | |
| 
 | |
| STATISTIC(NumStoreSPILLVSRRCAsVec,
 | |
|           "Number of spillvsrrc spilled to stack as vec");
 | |
| STATISTIC(NumStoreSPILLVSRRCAsGpr,
 | |
|           "Number of spillvsrrc spilled to stack as gpr");
 | |
| STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
 | |
| STATISTIC(CmpIselsConverted,
 | |
|           "Number of ISELs that depend on comparison of constants converted");
 | |
| STATISTIC(MissedConvertibleImmediateInstrs,
 | |
|           "Number of compare-immediate instructions fed by constants");
 | |
| STATISTIC(NumRcRotatesConvertedToRcAnd,
 | |
|           "Number of record-form rotates converted to record-form andi");
 | |
| 
 | |
| static cl::
 | |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
 | |
|             cl::desc("Disable analysis for CTR loops"));
 | |
| 
 | |
| static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
 | |
| cl::desc("Disable compare instruction optimization"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
 | |
| cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
 | |
| cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
 | |
|   cl::desc("Use the old (incorrect) instruction latency calculation"));
 | |
| 
 | |
| // Index into the OpcodesForSpill array.
 | |
| enum SpillOpcodeKey {
 | |
|   SOK_Int4Spill,
 | |
|   SOK_Int8Spill,
 | |
|   SOK_Float8Spill,
 | |
|   SOK_Float4Spill,
 | |
|   SOK_CRSpill,
 | |
|   SOK_CRBitSpill,
 | |
|   SOK_VRVectorSpill,
 | |
|   SOK_VSXVectorSpill,
 | |
|   SOK_VectorFloat8Spill,
 | |
|   SOK_VectorFloat4Spill,
 | |
|   SOK_VRSaveSpill,
 | |
|   SOK_QuadFloat8Spill,
 | |
|   SOK_QuadFloat4Spill,
 | |
|   SOK_QuadBitSpill,
 | |
|   SOK_SpillToVSR,
 | |
|   SOK_SPESpill,
 | |
|   SOK_SPE4Spill,
 | |
|   SOK_LastOpcodeSpill  // This must be last on the enum.
 | |
| };
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void PPCInstrInfo::anchor() {}
 | |
| 
 | |
| PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
 | |
|     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
 | |
|                       /* CatchRetOpcode */ -1,
 | |
|                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
 | |
|       Subtarget(STI), RI(STI.getTargetMachine()) {}
 | |
| 
 | |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | |
| /// this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
 | |
|                                            const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
 | |
|   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
 | |
|       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
 | |
|     const InstrItineraryData *II =
 | |
|         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
 | |
|     return new ScoreboardHazardRecognizer(II, DAG);
 | |
|   }
 | |
| 
 | |
|   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
 | |
| }
 | |
| 
 | |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
 | |
| /// to use for this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                                  const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
 | |
| 
 | |
|   // FIXME: Leaving this as-is until we have POWER9 scheduling info
 | |
|   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
 | |
|     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
 | |
| 
 | |
|   // Most subtargets use a PPC970 recognizer.
 | |
|   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
 | |
|       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
 | |
|     assert(DAG->TII && "No InstrInfo?");
 | |
| 
 | |
|     return new PPCHazardRecognizer970(*DAG);
 | |
|   }
 | |
| 
 | |
|   return new ScoreboardHazardRecognizer(II, DAG);
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                        const MachineInstr &MI,
 | |
|                                        unsigned *PredCost) const {
 | |
|   if (!ItinData || UseOldLatencyCalc)
 | |
|     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
 | |
| 
 | |
|   // The default implementation of getInstrLatency calls getStageLatency, but
 | |
|   // getStageLatency does not do the right thing for us. While we have
 | |
|   // itinerary, most cores are fully pipelined, and so the itineraries only
 | |
|   // express the first part of the pipeline, not every stage. Instead, we need
 | |
|   // to use the listed output operand cycle number (using operand 0 here, which
 | |
|   // is an output).
 | |
| 
 | |
|   unsigned Latency = 1;
 | |
|   unsigned DefClass = MI.getDesc().getSchedClass();
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | |
|       continue;
 | |
| 
 | |
|     int Cycle = ItinData->getOperandCycle(DefClass, i);
 | |
|     if (Cycle < 0)
 | |
|       continue;
 | |
| 
 | |
|     Latency = std::max(Latency, (unsigned) Cycle);
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const MachineInstr &DefMI, unsigned DefIdx,
 | |
|                                     const MachineInstr &UseMI,
 | |
|                                     unsigned UseIdx) const {
 | |
|   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
 | |
|                                                    UseMI, UseIdx);
 | |
| 
 | |
|   if (!DefMI.getParent())
 | |
|     return Latency;
 | |
| 
 | |
|   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
 | |
|   unsigned Reg = DefMO.getReg();
 | |
| 
 | |
|   bool IsRegCR;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     const MachineRegisterInfo *MRI =
 | |
|         &DefMI.getParent()->getParent()->getRegInfo();
 | |
|     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
 | |
|               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
 | |
|   } else {
 | |
|     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
 | |
|               PPC::CRBITRCRegClass.contains(Reg);
 | |
|   }
 | |
| 
 | |
|   if (UseMI.isBranch() && IsRegCR) {
 | |
|     if (Latency < 0)
 | |
|       Latency = getInstrLatency(ItinData, DefMI);
 | |
| 
 | |
|     // On some cores, there is an additional delay between writing to a condition
 | |
|     // register, and using it from a branch.
 | |
|     unsigned Directive = Subtarget.getDarwinDirective();
 | |
|     switch (Directive) {
 | |
|     default: break;
 | |
|     case PPC::DIR_7400:
 | |
|     case PPC::DIR_750:
 | |
|     case PPC::DIR_970:
 | |
|     case PPC::DIR_E5500:
 | |
|     case PPC::DIR_PWR4:
 | |
|     case PPC::DIR_PWR5:
 | |
|     case PPC::DIR_PWR5X:
 | |
|     case PPC::DIR_PWR6:
 | |
|     case PPC::DIR_PWR6X:
 | |
|     case PPC::DIR_PWR7:
 | |
|     case PPC::DIR_PWR8:
 | |
|     // FIXME: Is this needed for POWER9?
 | |
|       Latency += 2;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| // This function does not list all associative and commutative operations, but
 | |
| // only those worth feeding through the machine combiner in an attempt to
 | |
| // reduce the critical path. Mostly, this means floating-point operations,
 | |
| // because they have high latencies (compared to other operations, such and
 | |
| // and/or, which are also associative and commutative, but have low latencies).
 | |
| bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
 | |
|   switch (Inst.getOpcode()) {
 | |
|   // FP Add:
 | |
|   case PPC::FADD:
 | |
|   case PPC::FADDS:
 | |
|   // FP Multiply:
 | |
|   case PPC::FMUL:
 | |
|   case PPC::FMULS:
 | |
|   // Altivec Add:
 | |
|   case PPC::VADDFP:
 | |
|   // VSX Add:
 | |
|   case PPC::XSADDDP:
 | |
|   case PPC::XVADDDP:
 | |
|   case PPC::XVADDSP:
 | |
|   case PPC::XSADDSP:
 | |
|   // VSX Multiply:
 | |
|   case PPC::XSMULDP:
 | |
|   case PPC::XVMULDP:
 | |
|   case PPC::XVMULSP:
 | |
|   case PPC::XSMULSP:
 | |
|   // QPX Add:
 | |
|   case PPC::QVFADD:
 | |
|   case PPC::QVFADDS:
 | |
|   case PPC::QVFADDSs:
 | |
|   // QPX Multiply:
 | |
|   case PPC::QVFMUL:
 | |
|   case PPC::QVFMULS:
 | |
|   case PPC::QVFMULSs:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::getMachineCombinerPatterns(
 | |
|     MachineInstr &Root,
 | |
|     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
 | |
|   // Using the machine combiner in this way is potentially expensive, so
 | |
|   // restrict to when aggressive optimizations are desired.
 | |
|   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
 | |
|     return false;
 | |
| 
 | |
|   // FP reassociation is only legal when we don't need strict IEEE semantics.
 | |
|   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
 | |
|     return false;
 | |
| 
 | |
|   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
 | |
| }
 | |
| 
 | |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
 | |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                          unsigned &SrcReg, unsigned &DstReg,
 | |
|                                          unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: return false;
 | |
|   case PPC::EXTSW:
 | |
|   case PPC::EXTSW_32:
 | |
|   case PPC::EXTSW_32_64:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SubIdx = PPC::sub_32;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
 | |
|                                            int &FrameIndex) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
 | |
|   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
 | |
| 
 | |
|   if (End != std::find(OpcodesForSpill, End, Opcode)) {
 | |
|     // Check for the operands added by addFrameReference (the immediate is the
 | |
|     // offset which defaults to 0).
 | |
|     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | |
|         MI.getOperand(2).isFI()) {
 | |
|       FrameIndex = MI.getOperand(2).getIndex();
 | |
|       return MI.getOperand(0).getReg();
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // For opcodes with the ReMaterializable flag set, this function is called to
 | |
| // verify the instruction is really rematable.
 | |
| bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
 | |
|                                                      AliasAnalysis *AA) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     // This function should only be called for opcodes with the ReMaterializable
 | |
|     // flag set.
 | |
|     llvm_unreachable("Unknown rematerializable operation!");
 | |
|     break;
 | |
|   case PPC::LI:
 | |
|   case PPC::LI8:
 | |
|   case PPC::LIS:
 | |
|   case PPC::LIS8:
 | |
|   case PPC::QVGPCI:
 | |
|   case PPC::ADDIStocHA:
 | |
|   case PPC::ADDItocL:
 | |
|   case PPC::LOAD_STACK_GUARD:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
 | |
|   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
 | |
| 
 | |
|   if (End != std::find(OpcodesForSpill, End, Opcode)) {
 | |
|     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | |
|         MI.getOperand(2).isFI()) {
 | |
|       FrameIndex = MI.getOperand(2).getIndex();
 | |
|       return MI.getOperand(0).getReg();
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
 | |
|                                                    unsigned OpIdx1,
 | |
|                                                    unsigned OpIdx2) const {
 | |
|   MachineFunction &MF = *MI.getParent()->getParent();
 | |
| 
 | |
|   // Normal instructions can be commuted the obvious way.
 | |
|   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
 | |
|     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
 | |
|   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
 | |
|   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
 | |
|   // changing the relative order of the mask operands might change what happens
 | |
|   // to the high-bits of the mask (and, thus, the result).
 | |
| 
 | |
|   // Cannot commute if it has a non-zero rotate count.
 | |
|   if (MI.getOperand(3).getImm() != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we have a zero rotate count, we have:
 | |
|   //   M = mask(MB,ME)
 | |
|   //   Op0 = (Op1 & ~M) | (Op2 & M)
 | |
|   // Change this to:
 | |
|   //   M = mask((ME+1)&31, (MB-1)&31)
 | |
|   //   Op0 = (Op2 & ~M) | (Op1 & M)
 | |
| 
 | |
|   // Swap op1/op2
 | |
|   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
 | |
|          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
 | |
|   unsigned Reg0 = MI.getOperand(0).getReg();
 | |
|   unsigned Reg1 = MI.getOperand(1).getReg();
 | |
|   unsigned Reg2 = MI.getOperand(2).getReg();
 | |
|   unsigned SubReg1 = MI.getOperand(1).getSubReg();
 | |
|   unsigned SubReg2 = MI.getOperand(2).getSubReg();
 | |
|   bool Reg1IsKill = MI.getOperand(1).isKill();
 | |
|   bool Reg2IsKill = MI.getOperand(2).isKill();
 | |
|   bool ChangeReg0 = false;
 | |
|   // If machine instrs are no longer in two-address forms, update
 | |
|   // destination register as well.
 | |
|   if (Reg0 == Reg1) {
 | |
|     // Must be two address instruction!
 | |
|     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
 | |
|            "Expecting a two-address instruction!");
 | |
|     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
 | |
|     Reg2IsKill = false;
 | |
|     ChangeReg0 = true;
 | |
|   }
 | |
| 
 | |
|   // Masks.
 | |
|   unsigned MB = MI.getOperand(4).getImm();
 | |
|   unsigned ME = MI.getOperand(5).getImm();
 | |
| 
 | |
|   // We can't commute a trivial mask (there is no way to represent an all-zero
 | |
|   // mask).
 | |
|   if (MB == 0 && ME == 31)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (NewMI) {
 | |
|     // Create a new instruction.
 | |
|     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
 | |
|     bool Reg0IsDead = MI.getOperand(0).isDead();
 | |
|     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
 | |
|         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
 | |
|         .addReg(Reg2, getKillRegState(Reg2IsKill))
 | |
|         .addReg(Reg1, getKillRegState(Reg1IsKill))
 | |
|         .addImm((ME + 1) & 31)
 | |
|         .addImm((MB - 1) & 31);
 | |
|   }
 | |
| 
 | |
|   if (ChangeReg0) {
 | |
|     MI.getOperand(0).setReg(Reg2);
 | |
|     MI.getOperand(0).setSubReg(SubReg2);
 | |
|   }
 | |
|   MI.getOperand(2).setReg(Reg1);
 | |
|   MI.getOperand(1).setReg(Reg2);
 | |
|   MI.getOperand(2).setSubReg(SubReg1);
 | |
|   MI.getOperand(1).setSubReg(SubReg2);
 | |
|   MI.getOperand(2).setIsKill(Reg1IsKill);
 | |
|   MI.getOperand(1).setIsKill(Reg2IsKill);
 | |
| 
 | |
|   // Swap the mask around.
 | |
|   MI.getOperand(4).setImm((ME + 1) & 31);
 | |
|   MI.getOperand(5).setImm((MB - 1) & 31);
 | |
|   return &MI;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
 | |
|                                          unsigned &SrcOpIdx2) const {
 | |
|   // For VSX A-Type FMA instructions, it is the first two operands that can be
 | |
|   // commuted, however, because the non-encoded tied input operand is listed
 | |
|   // first, the operands to swap are actually the second and third.
 | |
| 
 | |
|   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
 | |
|   if (AltOpc == -1)
 | |
|     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
 | |
| 
 | |
|   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
 | |
|   // and SrcOpIdx2.
 | |
|   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
 | |
|                               MachineBasicBlock::iterator MI) const {
 | |
|   // This function is used for scheduling, and the nop wanted here is the type
 | |
|   // that terminates dispatch groups on the POWER cores.
 | |
|   unsigned Directive = Subtarget.getDarwinDirective();
 | |
|   unsigned Opcode;
 | |
|   switch (Directive) {
 | |
|   default:            Opcode = PPC::NOP; break;
 | |
|   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
 | |
|   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
 | |
|   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
 | |
|   // FIXME: Update when POWER9 scheduling model is ready.
 | |
|   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
 | |
|   }
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   BuildMI(MBB, MI, DL, get(Opcode));
 | |
| }
 | |
| 
 | |
| /// Return the noop instruction to use for a noop.
 | |
| void PPCInstrInfo::getNoop(MCInst &NopInst) const {
 | |
|   NopInst.setOpcode(PPC::NOP);
 | |
| }
 | |
| 
 | |
| // Branch analysis.
 | |
| // Note: If the condition register is set to CTR or CTR8 then this is a
 | |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch.
 | |
| bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | |
|   if (I == MBB.end())
 | |
|     return false;
 | |
| 
 | |
|   if (!isUnpredicatedTerminator(*I))
 | |
|     return false;
 | |
| 
 | |
|   if (AllowModify) {
 | |
|     // If the BB ends with an unconditional branch to the fallthrough BB,
 | |
|     // we eliminate the branch instruction.
 | |
|     if (I->getOpcode() == PPC::B &&
 | |
|         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | |
|       I->eraseFromParent();
 | |
| 
 | |
|       // We update iterator after deleting the last branch.
 | |
|       I = MBB.getLastNonDebugInstr();
 | |
|       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr &LastInst = *I;
 | |
| 
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
 | |
|     if (LastInst.getOpcode() == PPC::B) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BCC) {
 | |
|       if (!LastInst.getOperand(2).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(2).getMBB();
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       Cond.push_back(LastInst.getOperand(1));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BC) {
 | |
|       if (!LastInst.getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BCn) {
 | |
|       if (!LastInst.getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
 | |
|                LastInst.getOpcode() == PPC::BDNZ) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(1));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
 | |
|                LastInst.getOpcode() == PPC::BDZ) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(0));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, don't know what this is.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Get the instruction before it if it's a terminator.
 | |
|   MachineInstr &SecondLastInst = *I;
 | |
| 
 | |
|   // If there are three terminators, we don't know what sort of block this is.
 | |
|   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
 | |
|     return true;
 | |
| 
 | |
|   // If the block ends with PPC::B and PPC:BCC, handle it.
 | |
|   if (SecondLastInst.getOpcode() == PPC::BCC &&
 | |
|       LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(2).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(2).getMBB();
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     Cond.push_back(SecondLastInst.getOperand(1));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst.getOpcode() == PPC::BC &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(1).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(1).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
 | |
|               SecondLastInst.getOpcode() == PPC::BDNZ) &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(1));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
 | |
|               SecondLastInst.getOpcode() == PPC::BDZ) &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(0));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with two PPC:Bs, handle it.  The second one is not
 | |
|   // executed, so remove it.
 | |
|   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
 | |
|                                     int *BytesRemoved) const {
 | |
|   assert(!BytesRemoved && "code size not handled");
 | |
| 
 | |
|   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | |
|   if (I == MBB.end())
 | |
|     return 0;
 | |
| 
 | |
|   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock *TBB,
 | |
|                                     MachineBasicBlock *FBB,
 | |
|                                     ArrayRef<MachineOperand> Cond,
 | |
|                                     const DebugLoc &DL,
 | |
|                                     int *BytesAdded) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "insertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "PPC branch conditions have two components!");
 | |
|   assert(!BytesAdded && "code size not handled");
 | |
| 
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // One-way branch.
 | |
|   if (!FBB) {
 | |
|     if (Cond.empty())   // Unconditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
 | |
|     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | |
|     else                // Conditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|           .addImm(Cond[0].getImm())
 | |
|           .add(Cond[1])
 | |
|           .addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Two-way Conditional Branch.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | |
|   else
 | |
|     BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|         .addImm(Cond[0].getImm())
 | |
|         .add(Cond[1])
 | |
|         .addMBB(TBB);
 | |
|   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| // Select analysis.
 | |
| bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
 | |
|                 ArrayRef<MachineOperand> Cond,
 | |
|                 unsigned TrueReg, unsigned FalseReg,
 | |
|                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
 | |
|   if (Cond.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // If this is really a bdnz-like condition, then it cannot be turned into a
 | |
|   // select.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     return false;
 | |
| 
 | |
|   // Check register classes.
 | |
|   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   if (!RC)
 | |
|     return false;
 | |
| 
 | |
|   // isel is for regular integer GPRs only.
 | |
|   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: These numbers are for the A2, how well they work for other cores is
 | |
|   // an open question. On the A2, the isel instruction has a 2-cycle latency
 | |
|   // but single-cycle throughput. These numbers are used in combination with
 | |
|   // the MispredictPenalty setting from the active SchedMachineModel.
 | |
|   CondCycles = 1;
 | |
|   TrueCycles = 1;
 | |
|   FalseCycles = 1;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator MI,
 | |
|                                 const DebugLoc &dl, unsigned DestReg,
 | |
|                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
 | |
|                                 unsigned FalseReg) const {
 | |
|   assert(Cond.size() == 2 &&
 | |
|          "PPC branch conditions have two components!");
 | |
| 
 | |
|   // Get the register classes.
 | |
|   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
 | |
| 
 | |
|   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
 | |
|   assert((Is64Bit ||
 | |
|           PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
 | |
|          "isel is for regular integer GPRs only");
 | |
| 
 | |
|   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
 | |
|   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
 | |
| 
 | |
|   unsigned SubIdx = 0;
 | |
|   bool SwapOps = false;
 | |
|   switch (SelectPred) {
 | |
|   case PPC::PRED_EQ:
 | |
|   case PPC::PRED_EQ_MINUS:
 | |
|   case PPC::PRED_EQ_PLUS:
 | |
|       SubIdx = PPC::sub_eq; SwapOps = false; break;
 | |
|   case PPC::PRED_NE:
 | |
|   case PPC::PRED_NE_MINUS:
 | |
|   case PPC::PRED_NE_PLUS:
 | |
|       SubIdx = PPC::sub_eq; SwapOps = true; break;
 | |
|   case PPC::PRED_LT:
 | |
|   case PPC::PRED_LT_MINUS:
 | |
|   case PPC::PRED_LT_PLUS:
 | |
|       SubIdx = PPC::sub_lt; SwapOps = false; break;
 | |
|   case PPC::PRED_GE:
 | |
|   case PPC::PRED_GE_MINUS:
 | |
|   case PPC::PRED_GE_PLUS:
 | |
|       SubIdx = PPC::sub_lt; SwapOps = true; break;
 | |
|   case PPC::PRED_GT:
 | |
|   case PPC::PRED_GT_MINUS:
 | |
|   case PPC::PRED_GT_PLUS:
 | |
|       SubIdx = PPC::sub_gt; SwapOps = false; break;
 | |
|   case PPC::PRED_LE:
 | |
|   case PPC::PRED_LE_MINUS:
 | |
|   case PPC::PRED_LE_PLUS:
 | |
|       SubIdx = PPC::sub_gt; SwapOps = true; break;
 | |
|   case PPC::PRED_UN:
 | |
|   case PPC::PRED_UN_MINUS:
 | |
|   case PPC::PRED_UN_PLUS:
 | |
|       SubIdx = PPC::sub_un; SwapOps = false; break;
 | |
|   case PPC::PRED_NU:
 | |
|   case PPC::PRED_NU_MINUS:
 | |
|   case PPC::PRED_NU_PLUS:
 | |
|       SubIdx = PPC::sub_un; SwapOps = true; break;
 | |
|   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
 | |
|   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
 | |
|   }
 | |
| 
 | |
|   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
 | |
|            SecondReg = SwapOps ? TrueReg  : FalseReg;
 | |
| 
 | |
|   // The first input register of isel cannot be r0. If it is a member
 | |
|   // of a register class that can be r0, then copy it first (the
 | |
|   // register allocator should eliminate the copy).
 | |
|   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
 | |
|     const TargetRegisterClass *FirstRC =
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
 | |
|         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
 | |
|     unsigned OldFirstReg = FirstReg;
 | |
|     FirstReg = MRI.createVirtualRegister(FirstRC);
 | |
|     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
 | |
|       .addReg(OldFirstReg);
 | |
|   }
 | |
| 
 | |
|   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
 | |
|     .addReg(FirstReg).addReg(SecondReg)
 | |
|     .addReg(Cond[1].getReg(), 0, SubIdx);
 | |
| }
 | |
| 
 | |
| static unsigned getCRBitValue(unsigned CRBit) {
 | |
|   unsigned Ret = 4;
 | |
|   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
 | |
|       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
 | |
|       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
 | |
|       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
 | |
|     Ret = 3;
 | |
|   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
 | |
|       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
 | |
|       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
 | |
|       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
 | |
|     Ret = 2;
 | |
|   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
 | |
|       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
 | |
|       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
 | |
|       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
 | |
|     Ret = 1;
 | |
|   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
 | |
|       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
 | |
|       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
 | |
|       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
 | |
|     Ret = 0;
 | |
| 
 | |
|   assert(Ret != 4 && "Invalid CR bit register");
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator I,
 | |
|                                const DebugLoc &DL, unsigned DestReg,
 | |
|                                unsigned SrcReg, bool KillSrc) const {
 | |
|   // We can end up with self copies and similar things as a result of VSX copy
 | |
|   // legalization. Promote them here.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   if (PPC::F8RCRegClass.contains(DestReg) &&
 | |
|       PPC::VSRCRegClass.contains(SrcReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && SrcReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     DestReg = SuperReg;
 | |
|   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
 | |
|              PPC::VSRCRegClass.contains(DestReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && DestReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     SrcReg = SuperReg;
 | |
|   }
 | |
| 
 | |
|   // Different class register copy
 | |
|   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
 | |
|       PPC::GPRCRegClass.contains(DestReg)) {
 | |
|     unsigned CRReg = getCRFromCRBit(SrcReg);
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     // Rotate the CR bit in the CR fields to be the least significant bit and
 | |
|     // then mask with 0x1 (MB = ME = 31).
 | |
|     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
 | |
|        .addReg(DestReg, RegState::Kill)
 | |
|        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
 | |
|        .addImm(31)
 | |
|        .addImm(31);
 | |
|     return;
 | |
|   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
 | |
|       PPC::G8RCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
 | |
|       PPC::GPRCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
 | |
|              PPC::VSFRCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
 | |
|     NumGPRtoVSRSpill++;
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
 | |
|              PPC::G8RCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
 | |
|              PPC::SPE4RCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
 | |
|              PPC::SPERCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR;
 | |
|   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR8;
 | |
|   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::FMR;
 | |
|   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::MCRF;
 | |
|   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::VOR;
 | |
|   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
 | |
|     // There are two different ways this can be done:
 | |
|     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
 | |
|     //      issue in VSU pipeline 0.
 | |
|     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
 | |
|     //      can go to either pipeline.
 | |
|     // We'll always use xxlor here, because in practically all cases where
 | |
|     // copies are generated, they are close enough to some use that the
 | |
|     // lower-latency form is preferable.
 | |
|     Opc = PPC::XXLOR;
 | |
|   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
 | |
|            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
 | |
|   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMR;
 | |
|   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMRs;
 | |
|   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMRb;
 | |
|   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::CROR;
 | |
|   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::EVOR;
 | |
|   else
 | |
|     llvm_unreachable("Impossible reg-to-reg copy");
 | |
| 
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   if (MCID.getNumOperands() == 3)
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg)
 | |
|       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
|   else
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
 | |
|                                               const TargetRegisterClass *RC)
 | |
|                                               const {
 | |
|   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
 | |
|   int OpcodeIndex = 0;
 | |
| 
 | |
|   if (RC != nullptr) {
 | |
|     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Int4Spill;
 | |
|     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Int8Spill;
 | |
|     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Float8Spill;
 | |
|     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Float4Spill;
 | |
|     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SPESpill;
 | |
|     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SPE4Spill;
 | |
|     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_CRSpill;
 | |
|     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_CRBitSpill;
 | |
|     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VRVectorSpill;
 | |
|     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VSXVectorSpill;
 | |
|     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VectorFloat8Spill;
 | |
|     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VectorFloat4Spill;
 | |
|     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VRSaveSpill;
 | |
|     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadFloat8Spill;
 | |
|     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadFloat4Spill;
 | |
|     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadBitSpill;
 | |
|     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SpillToVSR;
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown regclass!");
 | |
|     }
 | |
|   } else {
 | |
|     if (PPC::GPRCRegClass.contains(Reg) ||
 | |
|         PPC::GPRC_NOR0RegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Int4Spill;
 | |
|     } else if (PPC::G8RCRegClass.contains(Reg) ||
 | |
|                PPC::G8RC_NOX0RegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Int8Spill;
 | |
|     } else if (PPC::F8RCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Float8Spill;
 | |
|     } else if (PPC::F4RCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Float4Spill;
 | |
|     } else if (PPC::CRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_CRSpill;
 | |
|     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_CRBitSpill;
 | |
|     } else if (PPC::VRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VRVectorSpill;
 | |
|     } else if (PPC::VSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VSXVectorSpill;
 | |
|     } else if (PPC::VSFRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VectorFloat8Spill;
 | |
|     } else if (PPC::VSSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VectorFloat4Spill;
 | |
|     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VRSaveSpill;
 | |
|     } else if (PPC::QFRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadFloat8Spill;
 | |
|     } else if (PPC::QSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadFloat4Spill;
 | |
|     } else if (PPC::QBRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadBitSpill;
 | |
|     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_SpillToVSR;
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown regclass!");
 | |
|     }
 | |
|   }
 | |
|   return OpcodesForSpill[OpcodeIndex];
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
 | |
|                                     const TargetRegisterClass *RC) const {
 | |
|   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
 | |
|   int OpcodeIndex = 0;
 | |
| 
 | |
|   if (RC != nullptr) {
 | |
|     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Int4Spill;
 | |
|     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Int8Spill;
 | |
|     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Float8Spill;
 | |
|     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_Float4Spill;
 | |
|     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SPESpill;
 | |
|     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SPE4Spill;
 | |
|     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_CRSpill;
 | |
|     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_CRBitSpill;
 | |
|     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VRVectorSpill;
 | |
|     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VSXVectorSpill;
 | |
|     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VectorFloat8Spill;
 | |
|     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VectorFloat4Spill;
 | |
|     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_VRSaveSpill;
 | |
|     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadFloat8Spill;
 | |
|     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadFloat4Spill;
 | |
|     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_QuadBitSpill;
 | |
|     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
 | |
|       OpcodeIndex = SOK_SpillToVSR;
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown regclass!");
 | |
|     }
 | |
|   } else {
 | |
|     if (PPC::GPRCRegClass.contains(Reg) ||
 | |
|         PPC::GPRC_NOR0RegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Int4Spill;
 | |
|     } else if (PPC::G8RCRegClass.contains(Reg) ||
 | |
|                PPC::G8RC_NOX0RegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Int8Spill;
 | |
|     } else if (PPC::F8RCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Float8Spill;
 | |
|     } else if (PPC::F4RCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_Float4Spill;
 | |
|     } else if (PPC::CRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_CRSpill;
 | |
|     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_CRBitSpill;
 | |
|     } else if (PPC::VRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VRVectorSpill;
 | |
|     } else if (PPC::VSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VSXVectorSpill;
 | |
|     } else if (PPC::VSFRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VectorFloat8Spill;
 | |
|     } else if (PPC::VSSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VectorFloat4Spill;
 | |
|     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_VRSaveSpill;
 | |
|     } else if (PPC::QFRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadFloat8Spill;
 | |
|     } else if (PPC::QSRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadFloat4Spill;
 | |
|     } else if (PPC::QBRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_QuadBitSpill;
 | |
|     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
 | |
|       OpcodeIndex = SOK_SpillToVSR;
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown regclass!");
 | |
|     }
 | |
|   }
 | |
|   return OpcodesForSpill[OpcodeIndex];
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::StoreRegToStackSlot(
 | |
|     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|     const TargetRegisterClass *RC,
 | |
|     SmallVectorImpl<MachineInstr *> &NewMIs) const {
 | |
|   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
 | |
|   DebugLoc DL;
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   NewMIs.push_back(addFrameReference(
 | |
|       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
 | |
|       FrameIdx));
 | |
| 
 | |
|   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::CRBITRCRegClass.hasSubClassEq(RC))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (isXFormMemOp(Opcode))
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                        MachineBasicBlock::iterator MI,
 | |
|                                        unsigned SrcReg, bool isKill,
 | |
|                                        int FrameIdx,
 | |
|                                        const TargetRegisterClass *RC,
 | |
|                                        const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr *, 4> NewMIs;
 | |
| 
 | |
|   // We need to avoid a situation in which the value from a VRRC register is
 | |
|   // spilled using an Altivec instruction and reloaded into a VSRC register
 | |
|   // using a VSX instruction. The issue with this is that the VSX
 | |
|   // load/store instructions swap the doublewords in the vector and the Altivec
 | |
|   // ones don't. The register classes on the spill/reload may be different if
 | |
|   // the register is defined using an Altivec instruction and is then used by a
 | |
|   // VSX instruction.
 | |
|   RC = updatedRC(RC);
 | |
| 
 | |
|   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | |
|       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
 | |
|       MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
 | |
|                                         unsigned DestReg, int FrameIdx,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                         SmallVectorImpl<MachineInstr *> &NewMIs)
 | |
|                                         const {
 | |
|   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
 | |
|   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
 | |
|                                      FrameIdx));
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::CRBITRCRegClass.hasSubClassEq(RC))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (isXFormMemOp(Opcode))
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| }
 | |
| 
 | |
| void
 | |
| PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator MI,
 | |
|                                    unsigned DestReg, int FrameIdx,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
|   DebugLoc DL;
 | |
|   if (MI != MBB.end()) DL = MI->getDebugLoc();
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   // We need to avoid a situation in which the value from a VRRC register is
 | |
|   // spilled using an Altivec instruction and reloaded into a VSRC register
 | |
|   // using a VSX instruction. The issue with this is that the VSX
 | |
|   // load/store instructions swap the doublewords in the vector and the Altivec
 | |
|   // ones don't. The register classes on the spill/reload may be different if
 | |
|   // the register is defined using an Altivec instruction and is then used by a
 | |
|   // VSX instruction.
 | |
|   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
 | |
|     RC = &PPC::VSRCRegClass;
 | |
| 
 | |
|   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | |
|       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
 | |
|       MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::
 | |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
 | |
|   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
 | |
|     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
 | |
|   else
 | |
|     // Leave the CR# the same, but invert the condition.
 | |
|     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
 | |
|                                  unsigned Reg, MachineRegisterInfo *MRI) const {
 | |
|   // For some instructions, it is legal to fold ZERO into the RA register field.
 | |
|   // A zero immediate should always be loaded with a single li.
 | |
|   unsigned DefOpc = DefMI.getOpcode();
 | |
|   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
 | |
|     return false;
 | |
|   if (!DefMI.getOperand(1).isImm())
 | |
|     return false;
 | |
|   if (DefMI.getOperand(1).getImm() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Note that we cannot here invert the arguments of an isel in order to fold
 | |
|   // a ZERO into what is presented as the second argument. All we have here
 | |
|   // is the condition bit, and that might come from a CR-logical bit operation.
 | |
| 
 | |
|   const MCInstrDesc &UseMCID = UseMI.getDesc();
 | |
| 
 | |
|   // Only fold into real machine instructions.
 | |
|   if (UseMCID.isPseudo())
 | |
|     return false;
 | |
| 
 | |
|   unsigned UseIdx;
 | |
|   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
 | |
|     if (UseMI.getOperand(UseIdx).isReg() &&
 | |
|         UseMI.getOperand(UseIdx).getReg() == Reg)
 | |
|       break;
 | |
| 
 | |
|   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
 | |
|   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
 | |
| 
 | |
|   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
 | |
| 
 | |
|   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
 | |
|   // register (which might also be specified as a pointer class kind).
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     if (UseInfo->RegClass /* Kind */ != 1)
 | |
|       return false;
 | |
|   } else {
 | |
|     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
 | |
|         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure this is not tied to an output register (or otherwise
 | |
|   // constrained). This is true for ST?UX registers, for example, which
 | |
|   // are tied to their output registers.
 | |
|   if (UseInfo->Constraints != 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned ZeroReg;
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
|     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
 | |
|   } else {
 | |
|     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
 | |
|               PPC::ZERO8 : PPC::ZERO;
 | |
|   }
 | |
| 
 | |
|   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
 | |
|   UseMI.getOperand(UseIdx).setReg(ZeroReg);
 | |
| 
 | |
|   if (DeleteDef)
 | |
|     DefMI.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
 | |
|        I != IE; ++I)
 | |
|     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // We should make sure that, if we're going to predicate both sides of a
 | |
| // condition (a diamond), that both sides don't define the counter register. We
 | |
| // can predicate counter-decrement-based branches, but while that predicates
 | |
| // the branching, it does not predicate the counter decrement. If we tried to
 | |
| // merge the triangle into one predicated block, we'd decrement the counter
 | |
| // twice.
 | |
| bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                      unsigned NumT, unsigned ExtraT,
 | |
|                      MachineBasicBlock &FMBB,
 | |
|                      unsigned NumF, unsigned ExtraF,
 | |
|                      BranchProbability Probability) const {
 | |
|   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
 | |
| }
 | |
| 
 | |
| 
 | |
| bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
 | |
|   // The predicated branches are identified by their type, not really by the
 | |
|   // explicit presence of a predicate. Furthermore, some of them can be
 | |
|   // predicated more than once. Because if conversion won't try to predicate
 | |
|   // any instruction which already claims to be predicated (by returning true
 | |
|   // here), always return false. In doing so, we let isPredicable() be the
 | |
|   // final word on whether not the instruction can be (further) predicated.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
 | |
|   if (!MI.isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MI.isBranch() && !MI.isBarrier())
 | |
|     return true;
 | |
| 
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
 | |
|                                         ArrayRef<MachineOperand> Pred) const {
 | |
|   unsigned OpC = MI.getOpcode();
 | |
|   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
 | |
|                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI.setDesc(get(PPC::BCLR));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI.setDesc(get(PPC::BCLRn));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|     } else {
 | |
|       MI.setDesc(get(PPC::BCCLR));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addImm(Pred[0].getImm())
 | |
|           .addReg(Pred[1].getReg());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::B) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
 | |
|                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BC));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BCn));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     } else {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BCC));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addImm(Pred[0].getImm())
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
 | |
|              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
 | |
|       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
 | |
| 
 | |
|     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
 | |
|                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
 | |
|                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
 | |
|                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(Pred[0].getImm())
 | |
|         .addReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
 | |
|                                      ArrayRef<MachineOperand> Pred2) const {
 | |
|   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
 | |
|   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
 | |
| 
 | |
|   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
|   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
| 
 | |
|   // P1 can only subsume P2 if they test the same condition register.
 | |
|   if (Pred1[1].getReg() != Pred2[1].getReg())
 | |
|     return false;
 | |
| 
 | |
|   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
 | |
|   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
 | |
| 
 | |
|   if (P1 == P2)
 | |
|     return true;
 | |
| 
 | |
|   // Does P1 subsume P2, e.g. GE subsumes GT.
 | |
|   if (P1 == PPC::PRED_LE &&
 | |
|       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
|   if (P1 == PPC::PRED_GE &&
 | |
|       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
 | |
|                                     std::vector<MachineOperand> &Pred) const {
 | |
|   // Note: At the present time, the contents of Pred from this function is
 | |
|   // unused by IfConversion. This implementation follows ARM by pushing the
 | |
|   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
 | |
|   // predicate, instructions defining CTR or CTR8 are also included as
 | |
|   // predicate-defining instructions.
 | |
| 
 | |
|   const TargetRegisterClass *RCs[] =
 | |
|     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
 | |
|       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
 | |
|       const TargetRegisterClass *RC = RCs[c];
 | |
|       if (MO.isReg()) {
 | |
|         if (MO.isDef() && RC->contains(MO.getReg())) {
 | |
|           Pred.push_back(MO);
 | |
|           Found = true;
 | |
|         }
 | |
|       } else if (MO.isRegMask()) {
 | |
|         for (TargetRegisterClass::iterator I = RC->begin(),
 | |
|              IE = RC->end(); I != IE; ++I)
 | |
|           if (MO.clobbersPhysReg(*I)) {
 | |
|             Pred.push_back(MO);
 | |
|             Found = true;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
 | |
|   unsigned OpC = MI.getOpcode();
 | |
|   switch (OpC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case PPC::B:
 | |
|   case PPC::BLR:
 | |
|   case PPC::BLR8:
 | |
|   case PPC::BCTR:
 | |
|   case PPC::BCTR8:
 | |
|   case PPC::BCTRL:
 | |
|   case PPC::BCTRL8:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
 | |
|                                   unsigned &SrcReg2, int &Mask,
 | |
|                                   int &Value) const {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case PPC::CMPWI:
 | |
|   case PPC::CMPLWI:
 | |
|   case PPC::CMPDI:
 | |
|   case PPC::CMPLDI:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     Value = MI.getOperand(2).getImm();
 | |
|     Mask = 0xFFFF;
 | |
|     return true;
 | |
|   case PPC::CMPW:
 | |
|   case PPC::CMPLW:
 | |
|   case PPC::CMPD:
 | |
|   case PPC::CMPLD:
 | |
|   case PPC::FCMPUS:
 | |
|   case PPC::FCMPUD:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     SrcReg2 = MI.getOperand(2).getReg();
 | |
|     Value = 0;
 | |
|     Mask = 0;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
 | |
|                                         unsigned SrcReg2, int Mask, int Value,
 | |
|                                         const MachineRegisterInfo *MRI) const {
 | |
|   if (DisableCmpOpt)
 | |
|     return false;
 | |
| 
 | |
|   int OpC = CmpInstr.getOpcode();
 | |
|   unsigned CRReg = CmpInstr.getOperand(0).getReg();
 | |
| 
 | |
|   // FP record forms set CR1 based on the exception status bits, not a
 | |
|   // comparison with zero.
 | |
|   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
 | |
|     return false;
 | |
| 
 | |
|   // The record forms set the condition register based on a signed comparison
 | |
|   // with zero (so says the ISA manual). This is not as straightforward as it
 | |
|   // seems, however, because this is always a 64-bit comparison on PPC64, even
 | |
|   // for instructions that are 32-bit in nature (like slw for example).
 | |
|   // So, on PPC32, for unsigned comparisons, we can use the record forms only
 | |
|   // for equality checks (as those don't depend on the sign). On PPC64,
 | |
|   // we are restricted to equality for unsigned 64-bit comparisons and for
 | |
|   // signed 32-bit comparisons the applicability is more restricted.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
 | |
|   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
 | |
|   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
 | |
| 
 | |
|   // Get the unique definition of SrcReg.
 | |
|   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | |
|   if (!MI) return false;
 | |
| 
 | |
|   bool equalityOnly = false;
 | |
|   bool noSub = false;
 | |
|   if (isPPC64) {
 | |
|     if (is32BitSignedCompare) {
 | |
|       // We can perform this optimization only if MI is sign-extending.
 | |
|       if (isSignExtended(*MI))
 | |
|         noSub = true;
 | |
|       else
 | |
|         return false;
 | |
|     } else if (is32BitUnsignedCompare) {
 | |
|       // We can perform this optimization, equality only, if MI is
 | |
|       // zero-extending.
 | |
|       if (isZeroExtended(*MI)) {
 | |
|         noSub = true;
 | |
|         equalityOnly = true;
 | |
|       } else
 | |
|         return false;
 | |
|     } else
 | |
|       equalityOnly = is64BitUnsignedCompare;
 | |
|   } else
 | |
|     equalityOnly = is32BitUnsignedCompare;
 | |
| 
 | |
|   if (equalityOnly) {
 | |
|     // We need to check the uses of the condition register in order to reject
 | |
|     // non-equality comparisons.
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | |
|          I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | |
|         unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|         // We ignore hint bits when checking for non-equality comparisons.
 | |
|         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
 | |
|           return false;
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
 | |
|         if (SubIdx != PPC::sub_eq)
 | |
|           return false;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator I = CmpInstr;
 | |
| 
 | |
|   // Scan forward to find the first use of the compare.
 | |
|   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
 | |
|        ++I) {
 | |
|     bool FoundUse = false;
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
 | |
|          J != JE; ++J)
 | |
|       if (&*J == &*I) {
 | |
|         FoundUse = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (FoundUse)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
 | |
|   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
 | |
| 
 | |
|   // There are two possible candidates which can be changed to set CR[01].
 | |
|   // One is MI, the other is a SUB instruction.
 | |
|   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
 | |
|   MachineInstr *Sub = nullptr;
 | |
|   if (SrcReg2 != 0)
 | |
|     // MI is not a candidate for CMPrr.
 | |
|     MI = nullptr;
 | |
|   // FIXME: Conservatively refuse to convert an instruction which isn't in the
 | |
|   // same BB as the comparison. This is to allow the check below to avoid calls
 | |
|   // (and other explicit clobbers); instead we should really check for these
 | |
|   // more explicitly (in at least a few predecessors).
 | |
|   else if (MI->getParent() != CmpInstr.getParent())
 | |
|     return false;
 | |
|   else if (Value != 0) {
 | |
|     // The record-form instructions set CR bit based on signed comparison
 | |
|     // against 0. We try to convert a compare against 1 or -1 into a compare
 | |
|     // against 0 to exploit record-form instructions. For example, we change
 | |
|     // the condition "greater than -1" into "greater than or equal to 0"
 | |
|     // and "less than 1" into "less than or equal to 0".
 | |
| 
 | |
|     // Since we optimize comparison based on a specific branch condition,
 | |
|     // we don't optimize if condition code is used by more than once.
 | |
|     if (equalityOnly || !MRI->hasOneUse(CRReg))
 | |
|       return false;
 | |
| 
 | |
|     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
 | |
|     if (UseMI->getOpcode() != PPC::BCC)
 | |
|       return false;
 | |
| 
 | |
|     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | |
|     PPC::Predicate NewPred = Pred;
 | |
|     unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|     unsigned PredHint = PPC::getPredicateHint(Pred);
 | |
|     int16_t Immed = (int16_t)Value;
 | |
| 
 | |
|     // When modifying the condition in the predicate, we propagate hint bits
 | |
|     // from the original predicate to the new one.
 | |
|     if (Immed == -1 && PredCond == PPC::PRED_GT)
 | |
|       // We convert "greater than -1" into "greater than or equal to 0",
 | |
|       // since we are assuming signed comparison by !equalityOnly
 | |
|       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
 | |
|     else if (Immed == -1 && PredCond == PPC::PRED_LE)
 | |
|       // We convert "less than or equal to -1" into "less than 0".
 | |
|       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
 | |
|     else if (Immed == 1 && PredCond == PPC::PRED_LT)
 | |
|       // We convert "less than 1" into "less than or equal to 0".
 | |
|       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
 | |
|     else if (Immed == 1 && PredCond == PPC::PRED_GE)
 | |
|       // We convert "greater than or equal to 1" into "greater than 0".
 | |
|       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                             NewPred));
 | |
|   }
 | |
| 
 | |
|   // Search for Sub.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   --I;
 | |
| 
 | |
|   // Get ready to iterate backward from CmpInstr.
 | |
|   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
 | |
| 
 | |
|   for (; I != E && !noSub; --I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
|     unsigned IOpC = Instr.getOpcode();
 | |
| 
 | |
|     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
 | |
|                              Instr.readsRegister(PPC::CR0, TRI)))
 | |
|       // This instruction modifies or uses the record condition register after
 | |
|       // the one we want to change. While we could do this transformation, it
 | |
|       // would likely not be profitable. This transformation removes one
 | |
|       // instruction, and so even forcing RA to generate one move probably
 | |
|       // makes it unprofitable.
 | |
|       return false;
 | |
| 
 | |
|     // Check whether CmpInstr can be made redundant by the current instruction.
 | |
|     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
 | |
|          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
 | |
|         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
 | |
|         ((Instr.getOperand(1).getReg() == SrcReg &&
 | |
|           Instr.getOperand(2).getReg() == SrcReg2) ||
 | |
|         (Instr.getOperand(1).getReg() == SrcReg2 &&
 | |
|          Instr.getOperand(2).getReg() == SrcReg))) {
 | |
|       Sub = &*I;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (I == B)
 | |
|       // The 'and' is below the comparison instruction.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Return false if no candidates exist.
 | |
|   if (!MI && !Sub)
 | |
|     return false;
 | |
| 
 | |
|   // The single candidate is called MI.
 | |
|   if (!MI) MI = Sub;
 | |
| 
 | |
|   int NewOpC = -1;
 | |
|   int MIOpC = MI->getOpcode();
 | |
|   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
 | |
|       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
 | |
|     NewOpC = MIOpC;
 | |
|   else {
 | |
|     NewOpC = PPC::getRecordFormOpcode(MIOpC);
 | |
|     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
 | |
|       NewOpC = MIOpC;
 | |
|   }
 | |
| 
 | |
|   // FIXME: On the non-embedded POWER architectures, only some of the record
 | |
|   // forms are fast, and we should use only the fast ones.
 | |
| 
 | |
|   // The defining instruction has a record form (or is already a record
 | |
|   // form). It is possible, however, that we'll need to reverse the condition
 | |
|   // code of the users.
 | |
|   if (NewOpC == -1)
 | |
|     return false;
 | |
| 
 | |
|   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
 | |
|   // needs to be updated to be based on SUB.  Push the condition code
 | |
|   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
 | |
|   // condition code of these operands will be modified.
 | |
|   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
 | |
|   // comparison against 0, which may modify predicate.
 | |
|   bool ShouldSwap = false;
 | |
|   if (Sub && Value == 0) {
 | |
|     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | |
|       Sub->getOperand(2).getReg() == SrcReg;
 | |
| 
 | |
|     // The operands to subf are the opposite of sub, so only in the fixed-point
 | |
|     // case, invert the order.
 | |
|     ShouldSwap = !ShouldSwap;
 | |
|   }
 | |
| 
 | |
|   if (ShouldSwap)
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | |
|          I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
 | |
|         unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|         assert((!equalityOnly ||
 | |
|                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
 | |
|                "Invalid predicate for equality-only optimization");
 | |
|         (void)PredCond; // To suppress warning in release build.
 | |
|         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                 PPC::getSwappedPredicate(Pred)));
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
 | |
|         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
 | |
|                "Invalid CR bit for equality-only optimization");
 | |
| 
 | |
|         if (NewSubReg == PPC::sub_lt)
 | |
|           NewSubReg = PPC::sub_gt;
 | |
|         else if (NewSubReg == PPC::sub_gt)
 | |
|           NewSubReg = PPC::sub_lt;
 | |
| 
 | |
|         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
 | |
|                                                  NewSubReg));
 | |
|       } else // We need to abort on a user we don't understand.
 | |
|         return false;
 | |
|     }
 | |
|   assert(!(Value != 0 && ShouldSwap) &&
 | |
|          "Non-zero immediate support and ShouldSwap"
 | |
|          "may conflict in updating predicate");
 | |
| 
 | |
|   // Create a new virtual register to hold the value of the CR set by the
 | |
|   // record-form instruction. If the instruction was not previously in
 | |
|   // record form, then set the kill flag on the CR.
 | |
|   CmpInstr.eraseFromParent();
 | |
| 
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
 | |
|           get(TargetOpcode::COPY), CRReg)
 | |
|     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
 | |
| 
 | |
|   // Even if CR0 register were dead before, it is alive now since the
 | |
|   // instruction we just built uses it.
 | |
|   MI->clearRegisterDeads(PPC::CR0);
 | |
| 
 | |
|   if (MIOpC != NewOpC) {
 | |
|     // We need to be careful here: we're replacing one instruction with
 | |
|     // another, and we need to make sure that we get all of the right
 | |
|     // implicit uses and defs. On the other hand, the caller may be holding
 | |
|     // an iterator to this instruction, and so we can't delete it (this is
 | |
|     // specifically the case if this is the instruction directly after the
 | |
|     // compare).
 | |
| 
 | |
|     // Rotates are expensive instructions. If we're emitting a record-form
 | |
|     // rotate that can just be an andi/andis, we should just emit that.
 | |
|     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
 | |
|       unsigned GPRRes = MI->getOperand(0).getReg();
 | |
|       int64_t SH = MI->getOperand(2).getImm();
 | |
|       int64_t MB = MI->getOperand(3).getImm();
 | |
|       int64_t ME = MI->getOperand(4).getImm();
 | |
|       // We can only do this if both the start and end of the mask are in the
 | |
|       // same halfword.
 | |
|       bool MBInLoHWord = MB >= 16;
 | |
|       bool MEInLoHWord = ME >= 16;
 | |
|       uint64_t Mask = ~0LLU;
 | |
| 
 | |
|       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
 | |
|         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
 | |
|         // The mask value needs to shift right 16 if we're emitting andis.
 | |
|         Mask >>= MBInLoHWord ? 0 : 16;
 | |
|         NewOpC = MIOpC == PPC::RLWINM ?
 | |
|           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
 | |
|           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
 | |
|       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
 | |
|                  (ME - MB + 1 == SH) && (MB >= 16)) {
 | |
|         // If we are rotating by the exact number of bits as are in the mask
 | |
|         // and the mask is in the least significant bits of the register,
 | |
|         // that's just an andis. (as long as the GPR result has no uses).
 | |
|         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
 | |
|         Mask >>= 16;
 | |
|         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
 | |
|       }
 | |
|       // If we've set the mask, we can transform.
 | |
|       if (Mask != ~0LLU) {
 | |
|         MI->RemoveOperand(4);
 | |
|         MI->RemoveOperand(3);
 | |
|         MI->getOperand(2).setImm(Mask);
 | |
|         NumRcRotatesConvertedToRcAnd++;
 | |
|       }
 | |
|     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
 | |
|       int64_t MB = MI->getOperand(3).getImm();
 | |
|       if (MB >= 48) {
 | |
|         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
 | |
|         NewOpC = PPC::ANDIo8;
 | |
|         MI->RemoveOperand(3);
 | |
|         MI->getOperand(2).setImm(Mask);
 | |
|         NumRcRotatesConvertedToRcAnd++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const MCInstrDesc &NewDesc = get(NewOpC);
 | |
|     MI->setDesc(NewDesc);
 | |
| 
 | |
|     if (NewDesc.ImplicitDefs)
 | |
|       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
 | |
|            *ImpDefs; ++ImpDefs)
 | |
|         if (!MI->definesRegister(*ImpDefs))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpDefs, true, true));
 | |
|     if (NewDesc.ImplicitUses)
 | |
|       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
 | |
|            *ImpUses; ++ImpUses)
 | |
|         if (!MI->readsRegister(*ImpUses))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpUses, false, true));
 | |
|   }
 | |
|   assert(MI->definesRegister(PPC::CR0) &&
 | |
|          "Record-form instruction does not define cr0?");
 | |
| 
 | |
|   // Modify the condition code of operands in OperandsToUpdate.
 | |
|   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
 | |
|   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | |
|   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
 | |
|     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
 | |
| 
 | |
|   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
 | |
|     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetInstSize - Return the number of bytes of code the specified
 | |
| /// instruction may be.  This returns the maximum number of bytes.
 | |
| ///
 | |
| unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
| 
 | |
|   if (Opcode == PPC::INLINEASM) {
 | |
|     const MachineFunction *MF = MI.getParent()->getParent();
 | |
|     const char *AsmStr = MI.getOperand(0).getSymbolName();
 | |
|     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | |
|   } else if (Opcode == TargetOpcode::STACKMAP) {
 | |
|     StackMapOpers Opers(&MI);
 | |
|     return Opers.getNumPatchBytes();
 | |
|   } else if (Opcode == TargetOpcode::PATCHPOINT) {
 | |
|     PatchPointOpers Opers(&MI);
 | |
|     return Opers.getNumPatchBytes();
 | |
|   } else {
 | |
|     return get(Opcode).getSize();
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, unsigned>
 | |
| PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
 | |
|   const unsigned Mask = PPCII::MO_ACCESS_MASK;
 | |
|   return std::make_pair(TF & Mask, TF & ~Mask);
 | |
| }
 | |
| 
 | |
| ArrayRef<std::pair<unsigned, const char *>>
 | |
| PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
 | |
|   using namespace PPCII;
 | |
|   static const std::pair<unsigned, const char *> TargetFlags[] = {
 | |
|       {MO_LO, "ppc-lo"},
 | |
|       {MO_HA, "ppc-ha"},
 | |
|       {MO_TPREL_LO, "ppc-tprel-lo"},
 | |
|       {MO_TPREL_HA, "ppc-tprel-ha"},
 | |
|       {MO_DTPREL_LO, "ppc-dtprel-lo"},
 | |
|       {MO_TLSLD_LO, "ppc-tlsld-lo"},
 | |
|       {MO_TOC_LO, "ppc-toc-lo"},
 | |
|       {MO_TLS, "ppc-tls"}};
 | |
|   return makeArrayRef(TargetFlags);
 | |
| }
 | |
| 
 | |
| ArrayRef<std::pair<unsigned, const char *>>
 | |
| PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
 | |
|   using namespace PPCII;
 | |
|   static const std::pair<unsigned, const char *> TargetFlags[] = {
 | |
|       {MO_PLT, "ppc-plt"},
 | |
|       {MO_PIC_FLAG, "ppc-pic"},
 | |
|       {MO_NLP_FLAG, "ppc-nlp"},
 | |
|       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
 | |
|   return makeArrayRef(TargetFlags);
 | |
| }
 | |
| 
 | |
| // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
 | |
| // The VSX versions have the advantage of a full 64-register target whereas
 | |
| // the FP ones have the advantage of lower latency and higher throughput. So
 | |
| // what we are after is using the faster instructions in low register pressure
 | |
| // situations and using the larger register file in high register pressure
 | |
| // situations.
 | |
| bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
 | |
|     unsigned UpperOpcode, LowerOpcode;
 | |
|     switch (MI.getOpcode()) {
 | |
|     case PPC::DFLOADf32:
 | |
|       UpperOpcode = PPC::LXSSP;
 | |
|       LowerOpcode = PPC::LFS;
 | |
|       break;
 | |
|     case PPC::DFLOADf64:
 | |
|       UpperOpcode = PPC::LXSD;
 | |
|       LowerOpcode = PPC::LFD;
 | |
|       break;
 | |
|     case PPC::DFSTOREf32:
 | |
|       UpperOpcode = PPC::STXSSP;
 | |
|       LowerOpcode = PPC::STFS;
 | |
|       break;
 | |
|     case PPC::DFSTOREf64:
 | |
|       UpperOpcode = PPC::STXSD;
 | |
|       LowerOpcode = PPC::STFD;
 | |
|       break;
 | |
|     case PPC::XFLOADf32:
 | |
|       UpperOpcode = PPC::LXSSPX;
 | |
|       LowerOpcode = PPC::LFSX;
 | |
|       break;
 | |
|     case PPC::XFLOADf64:
 | |
|       UpperOpcode = PPC::LXSDX;
 | |
|       LowerOpcode = PPC::LFDX;
 | |
|       break;
 | |
|     case PPC::XFSTOREf32:
 | |
|       UpperOpcode = PPC::STXSSPX;
 | |
|       LowerOpcode = PPC::STFSX;
 | |
|       break;
 | |
|     case PPC::XFSTOREf64:
 | |
|       UpperOpcode = PPC::STXSDX;
 | |
|       LowerOpcode = PPC::STFDX;
 | |
|       break;
 | |
|     case PPC::LIWAX:
 | |
|       UpperOpcode = PPC::LXSIWAX;
 | |
|       LowerOpcode = PPC::LFIWAX;
 | |
|       break;
 | |
|     case PPC::LIWZX:
 | |
|       UpperOpcode = PPC::LXSIWZX;
 | |
|       LowerOpcode = PPC::LFIWZX;
 | |
|       break;
 | |
|     case PPC::STIWX:
 | |
|       UpperOpcode = PPC::STXSIWX;
 | |
|       LowerOpcode = PPC::STFIWX;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Unknown Operation!");
 | |
|     }
 | |
| 
 | |
|     unsigned TargetReg = MI.getOperand(0).getReg();
 | |
|     unsigned Opcode;
 | |
|     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
 | |
|         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
 | |
|       Opcode = LowerOpcode;
 | |
|     else
 | |
|       Opcode = UpperOpcode;
 | |
|     MI.setDesc(get(Opcode));
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool isAnImmediateOperand(const MachineOperand &MO) {
 | |
|   return MO.isCPI() || MO.isGlobal() || MO.isImm();
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
 | |
|   auto &MBB = *MI.getParent();
 | |
|   auto DL = MI.getDebugLoc();
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   case TargetOpcode::LOAD_STACK_GUARD: {
 | |
|     assert(Subtarget.isTargetLinux() &&
 | |
|            "Only Linux target is expected to contain LOAD_STACK_GUARD");
 | |
|     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
 | |
|     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
 | |
|     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(Offset)
 | |
|         .addReg(Reg);
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::DFLOADf32:
 | |
|   case PPC::DFLOADf64:
 | |
|   case PPC::DFSTOREf32:
 | |
|   case PPC::DFSTOREf64: {
 | |
|     assert(Subtarget.hasP9Vector() &&
 | |
|            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
 | |
|     assert(MI.getOperand(2).isReg() &&
 | |
|            isAnImmediateOperand(MI.getOperand(1)) &&
 | |
|            "D-form op must have register and immediate operands");
 | |
|     return expandVSXMemPseudo(MI);
 | |
|   }
 | |
|   case PPC::XFLOADf32:
 | |
|   case PPC::XFSTOREf32:
 | |
|   case PPC::LIWAX:
 | |
|   case PPC::LIWZX:
 | |
|   case PPC::STIWX: {
 | |
|     assert(Subtarget.hasP8Vector() &&
 | |
|            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
 | |
|     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
 | |
|            "X-form op must have register and register operands");
 | |
|     return expandVSXMemPseudo(MI);
 | |
|   }
 | |
|   case PPC::XFLOADf64:
 | |
|   case PPC::XFSTOREf64: {
 | |
|     assert(Subtarget.hasVSX() &&
 | |
|            "Invalid X-Form Pseudo-ops on target that has no VSX.");
 | |
|     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
 | |
|            "X-form op must have register and register operands");
 | |
|     return expandVSXMemPseudo(MI);
 | |
|   }
 | |
|   case PPC::SPILLTOVSR_LD: {
 | |
|     unsigned TargetReg = MI.getOperand(0).getReg();
 | |
|     if (PPC::VSFRCRegClass.contains(TargetReg)) {
 | |
|       MI.setDesc(get(PPC::DFLOADf64));
 | |
|       return expandPostRAPseudo(MI);
 | |
|     }
 | |
|     else
 | |
|       MI.setDesc(get(PPC::LD));
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::SPILLTOVSR_ST: {
 | |
|     unsigned SrcReg = MI.getOperand(0).getReg();
 | |
|     if (PPC::VSFRCRegClass.contains(SrcReg)) {
 | |
|       NumStoreSPILLVSRRCAsVec++;
 | |
|       MI.setDesc(get(PPC::DFSTOREf64));
 | |
|       return expandPostRAPseudo(MI);
 | |
|     } else {
 | |
|       NumStoreSPILLVSRRCAsGpr++;
 | |
|       MI.setDesc(get(PPC::STD));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::SPILLTOVSR_LDX: {
 | |
|     unsigned TargetReg = MI.getOperand(0).getReg();
 | |
|     if (PPC::VSFRCRegClass.contains(TargetReg))
 | |
|       MI.setDesc(get(PPC::LXSDX));
 | |
|     else
 | |
|       MI.setDesc(get(PPC::LDX));
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::SPILLTOVSR_STX: {
 | |
|     unsigned SrcReg = MI.getOperand(0).getReg();
 | |
|     if (PPC::VSFRCRegClass.contains(SrcReg)) {
 | |
|       NumStoreSPILLVSRRCAsVec++;
 | |
|       MI.setDesc(get(PPC::STXSDX));
 | |
|     } else {
 | |
|       NumStoreSPILLVSRRCAsGpr++;
 | |
|       MI.setDesc(get(PPC::STDX));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case PPC::CFENCE8: {
 | |
|     auto Val = MI.getOperand(0).getReg();
 | |
|     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
 | |
|     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
 | |
|         .addImm(PPC::PRED_NE_MINUS)
 | |
|         .addReg(PPC::CR7)
 | |
|         .addImm(1);
 | |
|     MI.setDesc(get(PPC::ISYNC));
 | |
|     MI.RemoveOperand(0);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Essentially a compile-time implementation of a compare->isel sequence.
 | |
| // It takes two constants to compare, along with the true/false registers
 | |
| // and the comparison type (as a subreg to a CR field) and returns one
 | |
| // of the true/false registers, depending on the comparison results.
 | |
| static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
 | |
|                           unsigned TrueReg, unsigned FalseReg,
 | |
|                           unsigned CRSubReg) {
 | |
|   // Signed comparisons. The immediates are assumed to be sign-extended.
 | |
|   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
 | |
|     switch (CRSubReg) {
 | |
|     default: llvm_unreachable("Unknown integer comparison type.");
 | |
|     case PPC::sub_lt:
 | |
|       return Imm1 < Imm2 ? TrueReg : FalseReg;
 | |
|     case PPC::sub_gt:
 | |
|       return Imm1 > Imm2 ? TrueReg : FalseReg;
 | |
|     case PPC::sub_eq:
 | |
|       return Imm1 == Imm2 ? TrueReg : FalseReg;
 | |
|     }
 | |
|   }
 | |
|   // Unsigned comparisons.
 | |
|   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
 | |
|     switch (CRSubReg) {
 | |
|     default: llvm_unreachable("Unknown integer comparison type.");
 | |
|     case PPC::sub_lt:
 | |
|       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
 | |
|     case PPC::sub_gt:
 | |
|       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
 | |
|     case PPC::sub_eq:
 | |
|       return Imm1 == Imm2 ? TrueReg : FalseReg;
 | |
|     }
 | |
|   }
 | |
|   return PPC::NoRegister;
 | |
| }
 | |
| 
 | |
| // Replace an instruction with one that materializes a constant (and sets
 | |
| // CR0 if the original instruction was a record-form instruction).
 | |
| void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
 | |
|                                       const LoadImmediateInfo &LII) const {
 | |
|   // Remove existing operands.
 | |
|   int OperandToKeep = LII.SetCR ? 1 : 0;
 | |
|   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
 | |
|     MI.RemoveOperand(i);
 | |
| 
 | |
|   // Replace the instruction.
 | |
|   if (LII.SetCR) {
 | |
|     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
 | |
|     // Set the immediate.
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
 | |
|     return;
 | |
|   }
 | |
|   else
 | |
|     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
 | |
| 
 | |
|   // Set the immediate.
 | |
|   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|       .addImm(LII.Imm);
 | |
| }
 | |
| 
 | |
| MachineInstr *PPCInstrInfo::getForwardingDefMI(
 | |
|   MachineInstr &MI,
 | |
|   unsigned &OpNoForForwarding,
 | |
|   bool &SeenIntermediateUse) const {
 | |
|   OpNoForForwarding = ~0U;
 | |
|   MachineInstr *DefMI = nullptr;
 | |
|   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   // If we're in SSA, get the defs through the MRI. Otherwise, only look
 | |
|   // within the basic block to see if the register is defined using an LI/LI8.
 | |
|   if (MRI->isSSA()) {
 | |
|     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
 | |
|       if (!MI.getOperand(i).isReg())
 | |
|         continue;
 | |
|       unsigned Reg = MI.getOperand(i).getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|         continue;
 | |
|       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
 | |
|       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
 | |
|         DefMI = MRI->getVRegDef(TrueReg);
 | |
|         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
 | |
|           OpNoForForwarding = i;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Looking back through the definition for each operand could be expensive,
 | |
|     // so exit early if this isn't an instruction that either has an immediate
 | |
|     // form or is already an immediate form that we can handle.
 | |
|     ImmInstrInfo III;
 | |
|     unsigned Opc = MI.getOpcode();
 | |
|     bool ConvertibleImmForm =
 | |
|       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
 | |
|       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
 | |
|       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
 | |
|       Opc == PPC::ORI || Opc == PPC::ORI8 ||
 | |
|       Opc == PPC::XORI || Opc == PPC::XORI8 ||
 | |
|       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
 | |
|       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
 | |
|       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
 | |
|       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
 | |
|     if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Don't convert or %X, %Y, %Y since that's just a register move.
 | |
|     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
 | |
|         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
 | |
|       return nullptr;
 | |
|     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       SeenIntermediateUse = false;
 | |
|       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
 | |
|         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
 | |
|         It++;
 | |
|         unsigned Reg = MI.getOperand(i).getReg();
 | |
|         // MachineInstr::readsRegister only returns true if the machine
 | |
|         // instruction reads the exact register or its super-register. It
 | |
|         // does not consider uses of sub-registers which seems like strange
 | |
|         // behaviour. Nonetheless, if we end up with a 64-bit register here,
 | |
|         // get the corresponding 32-bit register to check.
 | |
|         if (PPC::G8RCRegClass.contains(Reg))
 | |
|           Reg = Reg - PPC::X0 + PPC::R0;
 | |
| 
 | |
|         // Is this register defined by some form of add-immediate (including
 | |
|         // load-immediate) within this basic block?
 | |
|         for ( ; It != E; ++It) {
 | |
|           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
 | |
|             switch (It->getOpcode()) {
 | |
|             default: break;
 | |
|             case PPC::LI:
 | |
|             case PPC::LI8:
 | |
|             case PPC::ADDItocL:
 | |
|             case PPC::ADDI:
 | |
|             case PPC::ADDI8:
 | |
|               OpNoForForwarding = i;
 | |
|               return &*It;
 | |
|             }
 | |
|             break;
 | |
|           } else if (It->readsRegister(Reg, &getRegisterInfo())) 
 | |
|             // If we see another use of this reg between the def and the MI,
 | |
|             // we want to flat it so the def isn't deleted.
 | |
|             SeenIntermediateUse = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return OpNoForForwarding == ~0U ? nullptr : DefMI;
 | |
| }
 | |
| 
 | |
| const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
 | |
|   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
 | |
|       // Power 8
 | |
|       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
 | |
|        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
 | |
|        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
 | |
|        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
 | |
|       // Power 9
 | |
|       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
 | |
|        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
 | |
|        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
 | |
|        PPC::SPILLTOVSR_ST}};
 | |
| 
 | |
|   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
 | |
| }
 | |
| 
 | |
| const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
 | |
|   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
 | |
|       // Power 8
 | |
|       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
 | |
|        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
 | |
|        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
 | |
|        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
 | |
|       // Power 9
 | |
|       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
 | |
|        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
 | |
|        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
 | |
|        PPC::SPILLTOVSR_LD}};
 | |
| 
 | |
|   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
 | |
| }
 | |
| 
 | |
| // If this instruction has an immediate form and one of its operands is a
 | |
| // result of a load-immediate or an add-immediate, convert it to
 | |
| // the immediate form if the constant is in range.
 | |
| bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
 | |
|                                           MachineInstr **KilledDef) const {
 | |
|   MachineFunction *MF = MI.getParent()->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   bool PostRA = !MRI->isSSA();
 | |
|   bool SeenIntermediateUse = true;
 | |
|   unsigned ForwardingOperand = ~0U;
 | |
|   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
 | |
|                                            SeenIntermediateUse);
 | |
|   if (!DefMI)
 | |
|     return false;
 | |
|   assert(ForwardingOperand < MI.getNumOperands() &&
 | |
|          "The forwarding operand needs to be valid at this point");
 | |
|   bool KillFwdDefMI = !SeenIntermediateUse &&
 | |
|     MI.getOperand(ForwardingOperand).isKill();
 | |
|   if (KilledDef && KillFwdDefMI)
 | |
|     *KilledDef = DefMI;
 | |
| 
 | |
|   ImmInstrInfo III;
 | |
|   bool HasImmForm = instrHasImmForm(MI, III, PostRA);
 | |
|   // If this is a reg+reg instruction that has a reg+imm form,
 | |
|   // and one of the operands is produced by an add-immediate,
 | |
|   // try to convert it.
 | |
|   if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand,
 | |
|                                                *DefMI, KillFwdDefMI))
 | |
|     return true;
 | |
| 
 | |
|   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
 | |
|       !DefMI->getOperand(1).isImm())
 | |
|     return false;
 | |
| 
 | |
|   int64_t Immediate = DefMI->getOperand(1).getImm();
 | |
|   // Sign-extend to 64-bits.
 | |
|   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
 | |
|     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
 | |
| 
 | |
|   // If this is a reg+reg instruction that has a reg+imm form,
 | |
|   // and one of the operands is produced by LI, convert it now.
 | |
|   if (HasImmForm)
 | |
|     return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm);
 | |
| 
 | |
|   bool ReplaceWithLI = false;
 | |
|   bool Is64BitLI = false;
 | |
|   int64_t NewImm = 0;
 | |
|   bool SetCR = false;
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
| 
 | |
|   // FIXME: Any branches conditional on such a comparison can be made
 | |
|   // unconditional. At this time, this happens too infrequently to be worth
 | |
|   // the implementation effort, but if that ever changes, we could convert
 | |
|   // such a pattern here.
 | |
|   case PPC::CMPWI:
 | |
|   case PPC::CMPLWI:
 | |
|   case PPC::CMPDI:
 | |
|   case PPC::CMPLDI: {
 | |
|     // Doing this post-RA would require dataflow analysis to reliably find uses
 | |
|     // of the CR register set by the compare.
 | |
|     if (PostRA)
 | |
|       return false;
 | |
|     // If a compare-immediate is fed by an immediate and is itself an input of
 | |
|     // an ISEL (the most common case) into a COPY of the correct register.
 | |
|     bool Changed = false;
 | |
|     unsigned DefReg = MI.getOperand(0).getReg();
 | |
|     int64_t Comparand = MI.getOperand(2).getImm();
 | |
|     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
 | |
|       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
 | |
| 
 | |
|     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
 | |
|       unsigned UseOpc = CompareUseMI.getOpcode();
 | |
|       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
 | |
|         continue;
 | |
|       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
 | |
|       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
 | |
|       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
 | |
|       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
 | |
|                                      FalseReg, CRSubReg);
 | |
|       if (RegToCopy == PPC::NoRegister)
 | |
|         continue;
 | |
|       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
 | |
|       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
 | |
|         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
 | |
|         CompareUseMI.getOperand(1).ChangeToImmediate(0);
 | |
|         CompareUseMI.RemoveOperand(3);
 | |
|         CompareUseMI.RemoveOperand(2);
 | |
|         continue;
 | |
|       }
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
 | |
|       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
 | |
|       LLVM_DEBUG(dbgs() << "Is converted to:\n");
 | |
|       // Convert to copy and remove unneeded operands.
 | |
|       CompareUseMI.setDesc(get(PPC::COPY));
 | |
|       CompareUseMI.RemoveOperand(3);
 | |
|       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
 | |
|       CmpIselsConverted++;
 | |
|       Changed = true;
 | |
|       LLVM_DEBUG(CompareUseMI.dump());
 | |
|     }
 | |
|     if (Changed)
 | |
|       return true;
 | |
|     // This may end up incremented multiple times since this function is called
 | |
|     // during a fixed-point transformation, but it is only meant to indicate the
 | |
|     // presence of this opportunity.
 | |
|     MissedConvertibleImmediateInstrs++;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Immediate forms - may simply be convertable to an LI.
 | |
|   case PPC::ADDI:
 | |
|   case PPC::ADDI8: {
 | |
|     // Does the sum fit in a 16-bit signed field?
 | |
|     int64_t Addend = MI.getOperand(2).getImm();
 | |
|     if (isInt<16>(Addend + SExtImm)) {
 | |
|       ReplaceWithLI = true;
 | |
|       Is64BitLI = Opc == PPC::ADDI8;
 | |
|       NewImm = Addend + SExtImm;
 | |
|       break;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case PPC::RLDICL:
 | |
|   case PPC::RLDICLo:
 | |
|   case PPC::RLDICL_32:
 | |
|   case PPC::RLDICL_32_64: {
 | |
|     // Use APInt's rotate function.
 | |
|     int64_t SH = MI.getOperand(2).getImm();
 | |
|     int64_t MB = MI.getOperand(3).getImm();
 | |
|     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
 | |
|                 64 : 32, SExtImm, true);
 | |
|     InVal = InVal.rotl(SH);
 | |
|     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
 | |
|     InVal &= Mask;
 | |
|     // Can't replace negative values with an LI as that will sign-extend
 | |
|     // and not clear the left bits. If we're setting the CR bit, we will use
 | |
|     // ANDIo which won't sign extend, so that's safe.
 | |
|     if (isUInt<15>(InVal.getSExtValue()) ||
 | |
|         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
 | |
|       ReplaceWithLI = true;
 | |
|       Is64BitLI = Opc != PPC::RLDICL_32;
 | |
|       NewImm = InVal.getSExtValue();
 | |
|       SetCR = Opc == PPC::RLDICLo;
 | |
|       break;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case PPC::RLWINM:
 | |
|   case PPC::RLWINM8:
 | |
|   case PPC::RLWINMo:
 | |
|   case PPC::RLWINM8o: {
 | |
|     int64_t SH = MI.getOperand(2).getImm();
 | |
|     int64_t MB = MI.getOperand(3).getImm();
 | |
|     int64_t ME = MI.getOperand(4).getImm();
 | |
|     APInt InVal(32, SExtImm, true);
 | |
|     InVal = InVal.rotl(SH);
 | |
|     // Set the bits (        MB + 32        ) to (        ME + 32        ).
 | |
|     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
 | |
|     InVal &= Mask;
 | |
|     // Can't replace negative values with an LI as that will sign-extend
 | |
|     // and not clear the left bits. If we're setting the CR bit, we will use
 | |
|     // ANDIo which won't sign extend, so that's safe.
 | |
|     bool ValueFits = isUInt<15>(InVal.getSExtValue());
 | |
|     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
 | |
|                   isUInt<16>(InVal.getSExtValue()));
 | |
|     if (ValueFits) {
 | |
|       ReplaceWithLI = true;
 | |
|       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
 | |
|       NewImm = InVal.getSExtValue();
 | |
|       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
 | |
|       break;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case PPC::ORI:
 | |
|   case PPC::ORI8:
 | |
|   case PPC::XORI:
 | |
|   case PPC::XORI8: {
 | |
|     int64_t LogicalImm = MI.getOperand(2).getImm();
 | |
|     int64_t Result = 0;
 | |
|     if (Opc == PPC::ORI || Opc == PPC::ORI8)
 | |
|       Result = LogicalImm | SExtImm;
 | |
|     else
 | |
|       Result = LogicalImm ^ SExtImm;
 | |
|     if (isInt<16>(Result)) {
 | |
|       ReplaceWithLI = true;
 | |
|       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
 | |
|       NewImm = Result;
 | |
|       break;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (ReplaceWithLI) {
 | |
|     // We need to be careful with CR-setting instructions we're replacing.
 | |
|     if (SetCR) {
 | |
|       // We don't know anything about uses when we're out of SSA, so only
 | |
|       // replace if the new immediate will be reproduced.
 | |
|       bool ImmChanged = (SExtImm & NewImm) != NewImm;
 | |
|       if (PostRA && ImmChanged)
 | |
|         return false;
 | |
| 
 | |
|       if (!PostRA) {
 | |
|         // If the defining load-immediate has no other uses, we can just replace
 | |
|         // the immediate with the new immediate.
 | |
|         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
 | |
|           DefMI->getOperand(1).setImm(NewImm);
 | |
| 
 | |
|         // If we're not using the GPR result of the CR-setting instruction, we
 | |
|         // just need to and with zero/non-zero depending on the new immediate.
 | |
|         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
 | |
|           if (NewImm) {
 | |
|             assert(Immediate && "Transformation converted zero to non-zero?");
 | |
|             NewImm = Immediate;
 | |
|           }
 | |
|         }
 | |
|         else if (ImmChanged)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
 | |
|     LLVM_DEBUG(MI.dump());
 | |
|     LLVM_DEBUG(dbgs() << "Fed by:\n");
 | |
|     LLVM_DEBUG(DefMI->dump());
 | |
|     LoadImmediateInfo LII;
 | |
|     LII.Imm = NewImm;
 | |
|     LII.Is64Bit = Is64BitLI;
 | |
|     LII.SetCR = SetCR;
 | |
|     // If we're setting the CR, the original load-immediate must be kept (as an
 | |
|     // operand to ANDIo/ANDI8o).
 | |
|     if (KilledDef && SetCR)
 | |
|       *KilledDef = nullptr;
 | |
|     replaceInstrWithLI(MI, LII);
 | |
|     LLVM_DEBUG(dbgs() << "With:\n");
 | |
|     LLVM_DEBUG(MI.dump());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isVFReg(unsigned Reg) {
 | |
|   return PPC::VFRCRegClass.contains(Reg);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
 | |
|                                    ImmInstrInfo &III, bool PostRA) const {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   // The vast majority of the instructions would need their operand 2 replaced
 | |
|   // with an immediate when switching to the reg+imm form. A marked exception
 | |
|   // are the update form loads/stores for which a constant operand 2 would need
 | |
|   // to turn into a displacement and move operand 1 to the operand 2 position.
 | |
|   III.ImmOpNo = 2;
 | |
|   III.OpNoForForwarding = 2;
 | |
|   III.ImmWidth = 16;
 | |
|   III.ImmMustBeMultipleOf = 1;
 | |
|   III.TruncateImmTo = 0;
 | |
|   III.IsSummingOperands = false;
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case PPC::ADD4:
 | |
|   case PPC::ADD8:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 1;
 | |
|     III.IsCommutative = true;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
 | |
|     break;
 | |
|   case PPC::ADDC:
 | |
|   case PPC::ADDC8:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = true;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
 | |
|     break;
 | |
|   case PPC::ADDCo:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = true;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpcode = PPC::ADDICo;
 | |
|     break;
 | |
|   case PPC::SUBFC:
 | |
|   case PPC::SUBFC8:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = false;
 | |
|     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
 | |
|     break;
 | |
|   case PPC::CMPW:
 | |
|   case PPC::CMPD:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = false;
 | |
|     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
 | |
|     break;
 | |
|   case PPC::CMPLW:
 | |
|   case PPC::CMPLD:
 | |
|     III.SignedImm = false;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = false;
 | |
|     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
 | |
|     break;
 | |
|   case PPC::ANDo:
 | |
|   case PPC::AND8o:
 | |
|   case PPC::OR:
 | |
|   case PPC::OR8:
 | |
|   case PPC::XOR:
 | |
|   case PPC::XOR8:
 | |
|     III.SignedImm = false;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = true;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
 | |
|     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
 | |
|     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
 | |
|     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
 | |
|     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
 | |
|     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
 | |
|     }
 | |
|     break;
 | |
|   case PPC::RLWNM:
 | |
|   case PPC::RLWNM8:
 | |
|   case PPC::RLWNMo:
 | |
|   case PPC::RLWNM8o:
 | |
|   case PPC::SLW:
 | |
|   case PPC::SLW8:
 | |
|   case PPC::SLWo:
 | |
|   case PPC::SLW8o:
 | |
|   case PPC::SRW:
 | |
|   case PPC::SRW8:
 | |
|   case PPC::SRWo:
 | |
|   case PPC::SRW8o:
 | |
|   case PPC::SRAW:
 | |
|   case PPC::SRAWo:
 | |
|     III.SignedImm = false;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = false;
 | |
|     // This isn't actually true, but the instructions ignore any of the
 | |
|     // upper bits, so any immediate loaded with an LI is acceptable.
 | |
|     // This does not apply to shift right algebraic because a value
 | |
|     // out of range will produce a -1/0.
 | |
|     III.ImmWidth = 16;
 | |
|     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
 | |
|         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
 | |
|       III.TruncateImmTo = 5;
 | |
|     else
 | |
|       III.TruncateImmTo = 6;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
 | |
|     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
 | |
|     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
 | |
|     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
 | |
|     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
 | |
|     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
 | |
|     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
 | |
|     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
 | |
|     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
 | |
|     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
 | |
|     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
 | |
|     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
 | |
|     case PPC::SRAW:
 | |
|       III.ImmWidth = 5;
 | |
|       III.TruncateImmTo = 0;
 | |
|       III.ImmOpcode = PPC::SRAWI;
 | |
|       break;
 | |
|     case PPC::SRAWo:
 | |
|       III.ImmWidth = 5;
 | |
|       III.TruncateImmTo = 0;
 | |
|       III.ImmOpcode = PPC::SRAWIo;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case PPC::RLDCL:
 | |
|   case PPC::RLDCLo:
 | |
|   case PPC::RLDCR:
 | |
|   case PPC::RLDCRo:
 | |
|   case PPC::SLD:
 | |
|   case PPC::SLDo:
 | |
|   case PPC::SRD:
 | |
|   case PPC::SRDo:
 | |
|   case PPC::SRAD:
 | |
|   case PPC::SRADo:
 | |
|     III.SignedImm = false;
 | |
|     III.ZeroIsSpecialOrig = 0;
 | |
|     III.ZeroIsSpecialNew = 0;
 | |
|     III.IsCommutative = false;
 | |
|     // This isn't actually true, but the instructions ignore any of the
 | |
|     // upper bits, so any immediate loaded with an LI is acceptable.
 | |
|     // This does not apply to shift right algebraic because a value
 | |
|     // out of range will produce a -1/0.
 | |
|     III.ImmWidth = 16;
 | |
|     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
 | |
|         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
 | |
|       III.TruncateImmTo = 6;
 | |
|     else
 | |
|       III.TruncateImmTo = 7;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
 | |
|     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
 | |
|     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
 | |
|     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
 | |
|     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
 | |
|     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
 | |
|     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
 | |
|     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
 | |
|     case PPC::SRAD:
 | |
|       III.ImmWidth = 6;
 | |
|       III.TruncateImmTo = 0;
 | |
|       III.ImmOpcode = PPC::SRADI;
 | |
|        break;
 | |
|     case PPC::SRADo:
 | |
|       III.ImmWidth = 6;
 | |
|       III.TruncateImmTo = 0;
 | |
|       III.ImmOpcode = PPC::SRADIo;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   // Loads and stores:
 | |
|   case PPC::LBZX:
 | |
|   case PPC::LBZX8:
 | |
|   case PPC::LHZX:
 | |
|   case PPC::LHZX8:
 | |
|   case PPC::LHAX:
 | |
|   case PPC::LHAX8:
 | |
|   case PPC::LWZX:
 | |
|   case PPC::LWZX8:
 | |
|   case PPC::LWAX:
 | |
|   case PPC::LDX:
 | |
|   case PPC::LFSX:
 | |
|   case PPC::LFDX:
 | |
|   case PPC::STBX:
 | |
|   case PPC::STBX8:
 | |
|   case PPC::STHX:
 | |
|   case PPC::STHX8:
 | |
|   case PPC::STWX:
 | |
|   case PPC::STWX8:
 | |
|   case PPC::STDX:
 | |
|   case PPC::STFSX:
 | |
|   case PPC::STFDX:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 1;
 | |
|     III.ZeroIsSpecialNew = 2;
 | |
|     III.IsCommutative = true;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpNo = 1;
 | |
|     III.OpNoForForwarding = 2;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
 | |
|     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
 | |
|     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
 | |
|     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
 | |
|     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
 | |
|     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
 | |
|     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
 | |
|     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
 | |
|     case PPC::LWAX:
 | |
|       III.ImmOpcode = PPC::LWA;
 | |
|       III.ImmMustBeMultipleOf = 4;
 | |
|       break;
 | |
|     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
 | |
|     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
 | |
|     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
 | |
|     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
 | |
|     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
 | |
|     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
 | |
|     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
 | |
|     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
 | |
|     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
 | |
|     case PPC::STDX:
 | |
|       III.ImmOpcode = PPC::STD;
 | |
|       III.ImmMustBeMultipleOf = 4;
 | |
|       break;
 | |
|     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
 | |
|     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
 | |
|     }
 | |
|     break;
 | |
|   case PPC::LBZUX:
 | |
|   case PPC::LBZUX8:
 | |
|   case PPC::LHZUX:
 | |
|   case PPC::LHZUX8:
 | |
|   case PPC::LHAUX:
 | |
|   case PPC::LHAUX8:
 | |
|   case PPC::LWZUX:
 | |
|   case PPC::LWZUX8:
 | |
|   case PPC::LDUX:
 | |
|   case PPC::LFSUX:
 | |
|   case PPC::LFDUX:
 | |
|   case PPC::STBUX:
 | |
|   case PPC::STBUX8:
 | |
|   case PPC::STHUX:
 | |
|   case PPC::STHUX8:
 | |
|   case PPC::STWUX:
 | |
|   case PPC::STWUX8:
 | |
|   case PPC::STDUX:
 | |
|   case PPC::STFSUX:
 | |
|   case PPC::STFDUX:
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 2;
 | |
|     III.ZeroIsSpecialNew = 3;
 | |
|     III.IsCommutative = false;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpNo = 2;
 | |
|     III.OpNoForForwarding = 3;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
 | |
|     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
 | |
|     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
 | |
|     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
 | |
|     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
 | |
|     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
 | |
|     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
 | |
|     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
 | |
|     case PPC::LDUX:
 | |
|       III.ImmOpcode = PPC::LDU;
 | |
|       III.ImmMustBeMultipleOf = 4;
 | |
|       break;
 | |
|     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
 | |
|     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
 | |
|     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
 | |
|     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
 | |
|     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
 | |
|     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
 | |
|     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
 | |
|     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
 | |
|     case PPC::STDUX:
 | |
|       III.ImmOpcode = PPC::STDU;
 | |
|       III.ImmMustBeMultipleOf = 4;
 | |
|       break;
 | |
|     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
 | |
|     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
 | |
|     }
 | |
|     break;
 | |
|   // Power9 and up only. For some of these, the X-Form version has access to all
 | |
|   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
 | |
|   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
 | |
|   // into or stored from is one of the VR registers.
 | |
|   case PPC::LXVX:
 | |
|   case PPC::LXSSPX:
 | |
|   case PPC::LXSDX:
 | |
|   case PPC::STXVX:
 | |
|   case PPC::STXSSPX:
 | |
|   case PPC::STXSDX:
 | |
|   case PPC::XFLOADf32:
 | |
|   case PPC::XFLOADf64:
 | |
|   case PPC::XFSTOREf32:
 | |
|   case PPC::XFSTOREf64:
 | |
|     if (!Subtarget.hasP9Vector())
 | |
|       return false;
 | |
|     III.SignedImm = true;
 | |
|     III.ZeroIsSpecialOrig = 1;
 | |
|     III.ZeroIsSpecialNew = 2;
 | |
|     III.IsCommutative = true;
 | |
|     III.IsSummingOperands = true;
 | |
|     III.ImmOpNo = 1;
 | |
|     III.OpNoForForwarding = 2;
 | |
|     III.ImmMustBeMultipleOf = 4;
 | |
|     switch(Opc) {
 | |
|     default: llvm_unreachable("Unknown opcode");
 | |
|     case PPC::LXVX:
 | |
|       III.ImmOpcode = PPC::LXV;
 | |
|       III.ImmMustBeMultipleOf = 16;
 | |
|       break;
 | |
|     case PPC::LXSSPX:
 | |
|       if (PostRA) {
 | |
|         if (isVFReg(MI.getOperand(0).getReg()))
 | |
|           III.ImmOpcode = PPC::LXSSP;
 | |
|         else
 | |
|           III.ImmOpcode = PPC::LFS;
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case PPC::XFLOADf32:
 | |
|       III.ImmOpcode = PPC::DFLOADf32;
 | |
|       break;
 | |
|     case PPC::LXSDX:
 | |
|       if (PostRA) {
 | |
|         if (isVFReg(MI.getOperand(0).getReg()))
 | |
|           III.ImmOpcode = PPC::LXSD;
 | |
|         else
 | |
|           III.ImmOpcode = PPC::LFD;
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case PPC::XFLOADf64:
 | |
|       III.ImmOpcode = PPC::DFLOADf64;
 | |
|       break;
 | |
|     case PPC::STXVX:
 | |
|       III.ImmOpcode = PPC::STXV;
 | |
|       III.ImmMustBeMultipleOf = 16;
 | |
|       break;
 | |
|     case PPC::STXSSPX:
 | |
|       if (PostRA) {
 | |
|         if (isVFReg(MI.getOperand(0).getReg()))
 | |
|           III.ImmOpcode = PPC::STXSSP;
 | |
|         else
 | |
|           III.ImmOpcode = PPC::STFS;
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case PPC::XFSTOREf32:
 | |
|       III.ImmOpcode = PPC::DFSTOREf32;
 | |
|       break;
 | |
|     case PPC::STXSDX:
 | |
|       if (PostRA) {
 | |
|         if (isVFReg(MI.getOperand(0).getReg()))
 | |
|           III.ImmOpcode = PPC::STXSD;
 | |
|         else
 | |
|           III.ImmOpcode = PPC::STFD;
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case PPC::XFSTOREf64:
 | |
|       III.ImmOpcode = PPC::DFSTOREf64;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Utility function for swaping two arbitrary operands of an instruction.
 | |
| static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
 | |
|   assert(Op1 != Op2 && "Cannot swap operand with itself.");
 | |
| 
 | |
|   unsigned MaxOp = std::max(Op1, Op2);
 | |
|   unsigned MinOp = std::min(Op1, Op2);
 | |
|   MachineOperand MOp1 = MI.getOperand(MinOp);
 | |
|   MachineOperand MOp2 = MI.getOperand(MaxOp);
 | |
|   MI.RemoveOperand(std::max(Op1, Op2));
 | |
|   MI.RemoveOperand(std::min(Op1, Op2));
 | |
| 
 | |
|   // If the operands we are swapping are the two at the end (the common case)
 | |
|   // we can just remove both and add them in the opposite order.
 | |
|   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
 | |
|     MI.addOperand(MOp2);
 | |
|     MI.addOperand(MOp1);
 | |
|   } else {
 | |
|     // Store all operands in a temporary vector, remove them and re-add in the
 | |
|     // right order.
 | |
|     SmallVector<MachineOperand, 2> MOps;
 | |
|     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
 | |
|     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
 | |
|       MOps.push_back(MI.getOperand(i));
 | |
|       MI.RemoveOperand(i);
 | |
|     }
 | |
|     // MOp2 needs to be added next.
 | |
|     MI.addOperand(MOp2);
 | |
|     // Now add the rest.
 | |
|     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
 | |
|       if (i == MaxOp)
 | |
|         MI.addOperand(MOp1);
 | |
|       else {
 | |
|         MI.addOperand(MOps.back());
 | |
|         MOps.pop_back();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check if the 'MI' that has the index OpNoForForwarding 
 | |
| // meets the requirement described in the ImmInstrInfo.
 | |
| bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
 | |
|                                                const ImmInstrInfo &III,
 | |
|                                                unsigned OpNoForForwarding
 | |
|                                                ) const {
 | |
|   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
 | |
|   // would not work pre-RA, we can only do the check post RA.
 | |
|   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   if (MRI.isSSA())
 | |
|     return false;
 | |
| 
 | |
|   // Cannot do the transform if MI isn't summing the operands.
 | |
|   if (!III.IsSummingOperands)
 | |
|     return false;
 | |
| 
 | |
|   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
 | |
|   if (!III.ZeroIsSpecialOrig)
 | |
|     return false;
 | |
| 
 | |
|   // We cannot do the transform if the operand we are trying to replace
 | |
|   // isn't the same as the operand the instruction allows.
 | |
|   if (OpNoForForwarding != III.OpNoForForwarding)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the instruction we are trying to transform really has
 | |
|   // the special zero register as its operand.
 | |
|   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
 | |
|       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
 | |
|     return false;
 | |
| 
 | |
|   // This machine instruction is convertible if it is,
 | |
|   // 1. summing the operands.
 | |
|   // 2. one of the operands is special zero register.
 | |
|   // 3. the operand we are trying to replace is allowed by the MI.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Check if the DefMI is the add inst and set the ImmMO and RegMO
 | |
| // accordingly.
 | |
| bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
 | |
|                                                const ImmInstrInfo &III,
 | |
|                                                MachineOperand *&ImmMO,
 | |
|                                                MachineOperand *&RegMO) const {
 | |
|   unsigned Opc = DefMI.getOpcode();
 | |
|   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
 | |
|     return false; 
 | |
| 
 | |
|   assert(DefMI.getNumOperands() >= 3 &&
 | |
|          "Add inst must have at least three operands");
 | |
|   RegMO = &DefMI.getOperand(1);
 | |
|   ImmMO = &DefMI.getOperand(2);
 | |
| 
 | |
|   // This DefMI is elgible for forwarding if it is:
 | |
|   // 1. add inst
 | |
|   // 2. one of the operands is Imm/CPI/Global.
 | |
|   return isAnImmediateOperand(*ImmMO);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO,
 | |
|                                              const MachineInstr &DefMI,
 | |
|                                              const MachineInstr &MI,
 | |
|                                              bool KillDefMI
 | |
|                                              ) const {
 | |
|   // x = addi y, imm
 | |
|   // ...
 | |
|   // z = lfdx 0, x   -> z = lfd imm(y)
 | |
|   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
 | |
|   // of "y" between the DEF of "x" and "z".
 | |
|   // The query is only valid post RA.
 | |
|   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   if (MRI.isSSA())
 | |
|     return false;
 | |
| 
 | |
|   // MachineInstr::readsRegister only returns true if the machine
 | |
|   // instruction reads the exact register or its super-register. It
 | |
|   // does not consider uses of sub-registers which seems like strange
 | |
|   // behaviour. Nonetheless, if we end up with a 64-bit register here,
 | |
|   // get the corresponding 32-bit register to check.
 | |
|   unsigned Reg = RegMO.getReg();
 | |
|   if (PPC::G8RCRegClass.contains(Reg))
 | |
|     Reg = Reg - PPC::X0 + PPC::R0;
 | |
| 
 | |
|   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
 | |
|   MachineBasicBlock::const_reverse_iterator It = MI;
 | |
|   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
 | |
|   It++;
 | |
|   for (; It != E; ++It) {
 | |
|     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
 | |
|       return false;
 | |
|     // Made it to DefMI without encountering a clobber.
 | |
|     if ((&*It) == &DefMI)
 | |
|       break;
 | |
|   }
 | |
|   assert((&*It) == &DefMI && "DefMI is missing");
 | |
| 
 | |
|   // If DefMI also uses the register to be forwarded, we can only forward it
 | |
|   // if DefMI is being erased.
 | |
|   if (DefMI.readsRegister(Reg, &getRegisterInfo()))
 | |
|     return KillDefMI;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
 | |
|                                              const MachineInstr &DefMI,
 | |
|                                              const ImmInstrInfo &III,
 | |
|                                              int64_t &Imm) const {
 | |
|   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
 | |
|   if (DefMI.getOpcode() == PPC::ADDItocL) {
 | |
|     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
 | |
|     // However, we know that, it is 16-bit width, and has the alignment of 4.
 | |
|     // Check if the instruction met the requirement.
 | |
|     if (III.ImmMustBeMultipleOf > 4 ||
 | |
|        III.TruncateImmTo || III.ImmWidth != 16)
 | |
|       return false;
 | |
| 
 | |
|     // Going from XForm to DForm loads means that the displacement needs to be
 | |
|     // not just an immediate but also a multiple of 4, or 16 depending on the
 | |
|     // load. A DForm load cannot be represented if it is a multiple of say 2.
 | |
|     // XForm loads do not have this restriction.
 | |
|     if (ImmMO.isGlobal() &&
 | |
|         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (ImmMO.isImm()) {
 | |
|     // It is Imm, we need to check if the Imm fit the range.
 | |
|     int64_t Immediate = ImmMO.getImm();
 | |
|     // Sign-extend to 64-bits.
 | |
|     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
 | |
|       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
 | |
| 
 | |
|     if (Imm % III.ImmMustBeMultipleOf)
 | |
|       return false;
 | |
|     if (III.TruncateImmTo)
 | |
|       Imm &= ((1 << III.TruncateImmTo) - 1);
 | |
|     if (III.SignedImm) {
 | |
|       APInt ActualValue(64, Imm, true);
 | |
|       if (!ActualValue.isSignedIntN(III.ImmWidth))
 | |
|         return false;
 | |
|     } else {
 | |
|       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
 | |
|       if ((uint64_t)Imm > UnsignedMax)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // This ImmMO is forwarded if it meets the requriement describle
 | |
|   // in ImmInstrInfo
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If an X-Form instruction is fed by an add-immediate and one of its operands
 | |
| // is the literal zero, attempt to forward the source of the add-immediate to
 | |
| // the corresponding D-Form instruction with the displacement coming from
 | |
| // the immediate being added.
 | |
| bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI,
 | |
|                                               const ImmInstrInfo &III,
 | |
|                                               unsigned OpNoForForwarding,
 | |
|                                               MachineInstr &DefMI,
 | |
|                                               bool KillDefMI) const {
 | |
|   //         RegMO ImmMO
 | |
|   //           |    |
 | |
|   // x = addi reg, imm  <----- DefMI
 | |
|   // y = op    0 ,  x   <----- MI
 | |
|   //                |
 | |
|   //         OpNoForForwarding
 | |
|   // Check if the MI meet the requirement described in the III.
 | |
|   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
 | |
|     return false;
 | |
| 
 | |
|   // Check if the DefMI meet the requirement
 | |
|   // described in the III. If yes, set the ImmMO and RegMO accordingly.
 | |
|   MachineOperand *ImmMO = nullptr;
 | |
|   MachineOperand *RegMO = nullptr;
 | |
|   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
 | |
|     return false;
 | |
|   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
 | |
| 
 | |
|   // As we get the Imm operand now, we need to check if the ImmMO meet
 | |
|   // the requirement described in the III. If yes set the Imm.
 | |
|   int64_t Imm = 0;
 | |
|   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
 | |
|     return false;
 | |
| 
 | |
|   // Check if the RegMO can be forwarded to MI.
 | |
|   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI))
 | |
|     return false;
 | |
| 
 | |
|   // We know that, the MI and DefMI both meet the pattern, and
 | |
|   // the Imm also meet the requirement with the new Imm-form.
 | |
|   // It is safe to do the transformation now.
 | |
|   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
 | |
|   LLVM_DEBUG(MI.dump());
 | |
|   LLVM_DEBUG(dbgs() << "Fed by:\n");
 | |
|   LLVM_DEBUG(DefMI.dump());
 | |
| 
 | |
|   // Update the base reg first.
 | |
|   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
 | |
|                                                         false, false,
 | |
|                                                         RegMO->isKill());
 | |
| 
 | |
|   // Then, update the imm.
 | |
|   if (ImmMO->isImm()) {
 | |
|     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
 | |
|     // directly.
 | |
|     MI.getOperand(III.ZeroIsSpecialOrig).ChangeToImmediate(Imm);
 | |
|   }
 | |
|   else {
 | |
|     // Otherwise, it is Constant Pool Index(CPI) or Global,
 | |
|     // which is relocation in fact. We need to replace the special zero
 | |
|     // register with ImmMO.
 | |
|     // Before that, we need to fixup the target flags for imm. 
 | |
|     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
 | |
|     if (DefMI.getOpcode() == PPC::ADDItocL)
 | |
|       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
 | |
| 
 | |
|     // MI didn't have the interface such as MI.setOperand(i) though
 | |
|     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
 | |
|     // ImmMO, we need to remove ZERO operand and all the operands behind it,
 | |
|     // and, add the ImmMO, then, move back all the operands behind ZERO.
 | |
|     SmallVector<MachineOperand, 2> MOps;
 | |
|     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
 | |
|       MOps.push_back(MI.getOperand(i));
 | |
|       MI.RemoveOperand(i);
 | |
|     }
 | |
| 
 | |
|     // Remove the last MO in the list, which is ZERO operand in fact.
 | |
|     MOps.pop_back();
 | |
|     // Add the imm operand.
 | |
|     MI.addOperand(*ImmMO);
 | |
|     // Now add the rest back.
 | |
|     for (auto &MO : MOps)
 | |
|       MI.addOperand(MO);
 | |
|   }
 | |
| 
 | |
|   // Update the opcode.
 | |
|   MI.setDesc(get(III.ImmOpcode));
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "With:\n");
 | |
|   LLVM_DEBUG(MI.dump());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
 | |
|                                              const ImmInstrInfo &III,
 | |
|                                              unsigned ConstantOpNo,
 | |
|                                              int64_t Imm) const {
 | |
|   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   bool PostRA = !MRI.isSSA();
 | |
|   // Exit early if we can't convert this.
 | |
|   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
 | |
|     return false;
 | |
|   if (Imm % III.ImmMustBeMultipleOf)
 | |
|     return false;
 | |
|   if (III.TruncateImmTo)
 | |
|     Imm &= ((1 << III.TruncateImmTo) - 1);
 | |
|   if (III.SignedImm) {
 | |
|     APInt ActualValue(64, Imm, true);
 | |
|     if (!ActualValue.isSignedIntN(III.ImmWidth))
 | |
|       return false;
 | |
|   } else {
 | |
|     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
 | |
|     if ((uint64_t)Imm > UnsignedMax)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we're post-RA, the instructions don't agree on whether register zero is
 | |
|   // special, we can transform this as long as the register operand that will
 | |
|   // end up in the location where zero is special isn't R0.
 | |
|   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
 | |
|     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
 | |
|       III.ZeroIsSpecialNew + 1;
 | |
|     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
 | |
|     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
 | |
|     // If R0 is in the operand where zero is special for the new instruction,
 | |
|     // it is unsafe to transform if the constant operand isn't that operand.
 | |
|     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
 | |
|         ConstantOpNo != III.ZeroIsSpecialNew)
 | |
|       return false;
 | |
|     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
 | |
|         ConstantOpNo != PosForOrigZero)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   bool SpecialShift32 =
 | |
|     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
 | |
|   bool SpecialShift64 =
 | |
|     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
 | |
|   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
 | |
|     Opc == PPC::SLDo || Opc == PPC::SRDo;
 | |
|   bool RightShift =
 | |
|     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
 | |
| 
 | |
|   MI.setDesc(get(III.ImmOpcode));
 | |
|   if (ConstantOpNo == III.OpNoForForwarding) {
 | |
|     // Converting shifts to immediate form is a bit tricky since they may do
 | |
|     // one of three things:
 | |
|     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
 | |
|     // 2. If the shift amount is zero, the result is unchanged (save for maybe
 | |
|     //    setting CR0)
 | |
|     // 3. If the shift amount is in [1, OpSize), it's just a shift
 | |
|     if (SpecialShift32 || SpecialShift64) {
 | |
|       LoadImmediateInfo LII;
 | |
|       LII.Imm = 0;
 | |
|       LII.SetCR = SetCR;
 | |
|       LII.Is64Bit = SpecialShift64;
 | |
|       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
 | |
|       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
 | |
|         replaceInstrWithLI(MI, LII);
 | |
|       // Shifts by zero don't change the value. If we don't need to set CR0,
 | |
|       // just convert this to a COPY. Can't do this post-RA since we've already
 | |
|       // cleaned up the copies.
 | |
|       else if (!SetCR && ShAmt == 0 && !PostRA) {
 | |
|         MI.RemoveOperand(2);
 | |
|         MI.setDesc(get(PPC::COPY));
 | |
|       } else {
 | |
|         // The 32 bit and 64 bit instructions are quite different.
 | |
|         if (SpecialShift32) {
 | |
|           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
 | |
|           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
 | |
|           uint64_t MB = RightShift ? ShAmt : 0;
 | |
|           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
 | |
|           MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH);
 | |
|           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
 | |
|             .addImm(ME);
 | |
|         } else {
 | |
|           // Left shifts use (N, 63-N), right shifts use (64-N, N).
 | |
|           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
 | |
|           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
 | |
|           MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH);
 | |
|           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
 | |
|         }
 | |
|       }
 | |
|     } else
 | |
|       MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
 | |
|   }
 | |
|   // Convert commutative instructions (switch the operands and convert the
 | |
|   // desired one to an immediate.
 | |
|   else if (III.IsCommutative) {
 | |
|     MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
 | |
|     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
 | |
|   } else
 | |
|     llvm_unreachable("Should have exited early!");
 | |
| 
 | |
|   // For instructions for which the constant register replaces a different
 | |
|   // operand than where the immediate goes, we need to swap them.
 | |
|   if (III.OpNoForForwarding != III.ImmOpNo)
 | |
|     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
 | |
| 
 | |
|   // If the R0/X0 register is special for the original instruction and not for
 | |
|   // the new instruction (or vice versa), we need to fix up the register class.
 | |
|   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
 | |
|     if (!III.ZeroIsSpecialOrig) {
 | |
|       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
 | |
|       const TargetRegisterClass *NewRC =
 | |
|         MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
 | |
|         &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
 | |
|       MRI.setRegClass(RegToModify, NewRC);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *
 | |
| PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
 | |
|   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
 | |
|     return &PPC::VSRCRegClass;
 | |
|   return RC;
 | |
| }
 | |
| 
 | |
| int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
 | |
|   return PPC::getRecordFormOpcode(Opcode);
 | |
| }
 | |
| 
 | |
| // This function returns true if the machine instruction
 | |
| // always outputs a value by sign-extending a 32 bit value,
 | |
| // i.e. 0 to 31-th bits are same as 32-th bit.
 | |
| static bool isSignExtendingOp(const MachineInstr &MI) {
 | |
|   int Opcode = MI.getOpcode();
 | |
|   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
 | |
|       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
 | |
|       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
 | |
|       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
 | |
|       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
 | |
|       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
 | |
|       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
 | |
|       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
 | |
|       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
 | |
|       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
 | |
|       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
 | |
|       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
 | |
|       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
 | |
|       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
 | |
|       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
 | |
|       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
 | |
|       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
 | |
|       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
 | |
|       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
 | |
|       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
 | |
|       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
 | |
|       Opcode == PPC::EXTSB8_32_64)
 | |
|     return true;
 | |
| 
 | |
|   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
 | |
|     return true;
 | |
| 
 | |
|   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
 | |
|        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
 | |
|       MI.getOperand(3).getImm() > 0 &&
 | |
|       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // This function returns true if the machine instruction
 | |
| // always outputs zeros in higher 32 bits.
 | |
| static bool isZeroExtendingOp(const MachineInstr &MI) {
 | |
|   int Opcode = MI.getOpcode();
 | |
|   // The 16-bit immediate is sign-extended in li/lis.
 | |
|   // If the most significant bit is zero, all higher bits are zero.
 | |
|   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
 | |
|       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
 | |
|     int64_t Imm = MI.getOperand(1).getImm();
 | |
|     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // We have some variations of rotate-and-mask instructions
 | |
|   // that clear higher 32-bits.
 | |
|   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
 | |
|        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
 | |
|        Opcode == PPC::RLDICL_32_64) &&
 | |
|       MI.getOperand(3).getImm() >= 32)
 | |
|     return true;
 | |
| 
 | |
|   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
 | |
|       MI.getOperand(3).getImm() >= 32 &&
 | |
|       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
 | |
|     return true;
 | |
| 
 | |
|   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
 | |
|        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
 | |
|        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
 | |
|       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
 | |
|     return true;
 | |
| 
 | |
|   // There are other instructions that clear higher 32-bits.
 | |
|   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
 | |
|       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
 | |
|       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
 | |
|       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
 | |
|       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
 | |
|       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
 | |
|       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
 | |
|       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
 | |
|       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
 | |
|       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
 | |
|       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
 | |
|       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
 | |
|       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
 | |
|       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
 | |
|       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
 | |
|       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
 | |
|       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
 | |
|       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
 | |
|       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
 | |
|       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
 | |
|       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
 | |
|       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
 | |
|       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
 | |
|       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
 | |
|       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
 | |
|       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
 | |
|       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
 | |
|       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
 | |
|       Opcode == PPC::MFVSRWZ)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // This function returns true if the input MachineInstr is a TOC save
 | |
| // instruction.
 | |
| bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
 | |
|   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
 | |
|     return false;
 | |
|   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | |
|   unsigned StackOffset = MI.getOperand(1).getImm();
 | |
|   unsigned StackReg = MI.getOperand(2).getReg();
 | |
|   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // We limit the max depth to track incoming values of PHIs or binary ops
 | |
| // (e.g. AND) to avoid excessive cost.
 | |
| const unsigned MAX_DEPTH = 1;
 | |
| 
 | |
| bool
 | |
| PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
 | |
|                                    const unsigned Depth) const {
 | |
|   const MachineFunction *MF = MI.getParent()->getParent();
 | |
|   const MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
| 
 | |
|   // If we know this instruction returns sign- or zero-extended result,
 | |
|   // return true.
 | |
|   if (SignExt ? isSignExtendingOp(MI):
 | |
|                 isZeroExtendingOp(MI))
 | |
|     return true;
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   case PPC::COPY: {
 | |
|     unsigned SrcReg = MI.getOperand(1).getReg();
 | |
| 
 | |
|     // In both ELFv1 and v2 ABI, method parameters and the return value
 | |
|     // are sign- or zero-extended.
 | |
|     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
 | |
|       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
 | |
|       // We check the ZExt/SExt flags for a method parameter.
 | |
|       if (MI.getParent()->getBasicBlock() ==
 | |
|           &MF->getFunction().getEntryBlock()) {
 | |
|         unsigned VReg = MI.getOperand(0).getReg();
 | |
|         if (MF->getRegInfo().isLiveIn(VReg))
 | |
|           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
 | |
|                            FuncInfo->isLiveInZExt(VReg);
 | |
|       }
 | |
| 
 | |
|       // For a method return value, we check the ZExt/SExt flags in attribute.
 | |
|       // We assume the following code sequence for method call.
 | |
|       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
 | |
|       //   BL8_NOP @func,...
 | |
|       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
 | |
|       //   %5 = COPY %x3; G8RC:%5
 | |
|       if (SrcReg == PPC::X3) {
 | |
|         const MachineBasicBlock *MBB = MI.getParent();
 | |
|         MachineBasicBlock::const_instr_iterator II =
 | |
|           MachineBasicBlock::const_instr_iterator(&MI);
 | |
|         if (II != MBB->instr_begin() &&
 | |
|             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
 | |
|           const MachineInstr &CallMI = *(--II);
 | |
|           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
 | |
|             const Function *CalleeFn =
 | |
|               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
 | |
|             if (!CalleeFn)
 | |
|               return false;
 | |
|             const IntegerType *IntTy =
 | |
|               dyn_cast<IntegerType>(CalleeFn->getReturnType());
 | |
|             const AttributeSet &Attrs =
 | |
|               CalleeFn->getAttributes().getRetAttributes();
 | |
|             if (IntTy && IntTy->getBitWidth() <= 32)
 | |
|               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
 | |
|                                                   Attribute::ZExt);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is a copy from another register, we recursively check source.
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|       return false;
 | |
|     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | |
|     if (SrcMI != NULL)
 | |
|       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case PPC::ANDIo:
 | |
|   case PPC::ANDISo:
 | |
|   case PPC::ORI:
 | |
|   case PPC::ORIS:
 | |
|   case PPC::XORI:
 | |
|   case PPC::XORIS:
 | |
|   case PPC::ANDIo8:
 | |
|   case PPC::ANDISo8:
 | |
|   case PPC::ORI8:
 | |
|   case PPC::ORIS8:
 | |
|   case PPC::XORI8:
 | |
|   case PPC::XORIS8: {
 | |
|     // logical operation with 16-bit immediate does not change the upper bits.
 | |
|     // So, we track the operand register as we do for register copy.
 | |
|     unsigned SrcReg = MI.getOperand(1).getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|       return false;
 | |
|     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | |
|     if (SrcMI != NULL)
 | |
|       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If all incoming values are sign-/zero-extended,
 | |
|   // the output of OR, ISEL or PHI is also sign-/zero-extended.
 | |
|   case PPC::OR:
 | |
|   case PPC::OR8:
 | |
|   case PPC::ISEL:
 | |
|   case PPC::PHI: {
 | |
|     if (Depth >= MAX_DEPTH)
 | |
|       return false;
 | |
| 
 | |
|     // The input registers for PHI are operand 1, 3, ...
 | |
|     // The input registers for others are operand 1 and 2.
 | |
|     unsigned E = 3, D = 1;
 | |
|     if (MI.getOpcode() == PPC::PHI) {
 | |
|       E = MI.getNumOperands();
 | |
|       D = 2;
 | |
|     }
 | |
| 
 | |
|     for (unsigned I = 1; I != E; I += D) {
 | |
|       if (MI.getOperand(I).isReg()) {
 | |
|         unsigned SrcReg = MI.getOperand(I).getReg();
 | |
|         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|           return false;
 | |
|         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | |
|         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
 | |
|           return false;
 | |
|       }
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If at least one of the incoming values of an AND is zero extended
 | |
|   // then the output is also zero-extended. If both of the incoming values
 | |
|   // are sign-extended then the output is also sign extended.
 | |
|   case PPC::AND:
 | |
|   case PPC::AND8: {
 | |
|     if (Depth >= MAX_DEPTH)
 | |
|        return false;
 | |
| 
 | |
|     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
 | |
| 
 | |
|     unsigned SrcReg1 = MI.getOperand(1).getReg();
 | |
|     unsigned SrcReg2 = MI.getOperand(2).getReg();
 | |
| 
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
 | |
|         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
 | |
|        return false;
 | |
| 
 | |
|     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
 | |
|     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
 | |
|     if (!MISrc1 || !MISrc2)
 | |
|         return false;
 | |
| 
 | |
|     if(SignExt)
 | |
|         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
 | |
|                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
 | |
|     else
 | |
|         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
 | |
|                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 |