forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			713 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===---------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass aims to reduce the number of logical operations on bits in the CR
 | |
| // register. These instructions have a fairly high latency and only a single
 | |
| // pipeline at their disposal in modern PPC cores. Furthermore, they have a
 | |
| // tendency to occur in fairly small blocks where there's little opportunity
 | |
| // to hide the latency between the CR logical operation and its user.
 | |
| //
 | |
| //===---------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPC.h"
 | |
| #include "PPCInstrInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-reduce-cr-ops"
 | |
| 
 | |
| STATISTIC(NumContainedSingleUseBinOps,
 | |
|           "Number of single-use binary CR logical ops contained in a block");
 | |
| STATISTIC(NumToSplitBlocks,
 | |
|           "Number of binary CR logical ops that can be used to split blocks");
 | |
| STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
 | |
| STATISTIC(TotalNullaryCRLogicals,
 | |
|           "Number of nullary CR logical ops (CRSET/CRUNSET).");
 | |
| STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
 | |
| STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
 | |
| STATISTIC(NumBlocksSplitOnBinaryCROp,
 | |
|           "Number of blocks split on CR binary logical ops.");
 | |
| STATISTIC(NumNotSplitIdenticalOperands,
 | |
|           "Number of blocks not split due to operands being identical.");
 | |
| STATISTIC(NumNotSplitChainCopies,
 | |
|           "Number of blocks not split due to operands being chained copies.");
 | |
| STATISTIC(NumNotSplitWrongOpcode,
 | |
|           "Number of blocks not split due to the wrong opcode.");
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializePPCReduceCRLogicalsPass(PassRegistry&);
 | |
| }
 | |
| 
 | |
| /// Given a basic block \p Successor that potentially contains PHIs, this
 | |
| /// function will look for any incoming values in the PHIs that are supposed to
 | |
| /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
 | |
| /// Any such PHIs will be updated to reflect reality.
 | |
| static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
 | |
|                        MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
 | |
|   for (auto &MI : Successor->instrs()) {
 | |
|     if (!MI.isPHI())
 | |
|       continue;
 | |
|     // This is a really ugly-looking loop, but it was pillaged directly from
 | |
|     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
 | |
|     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.getMBB() == OrigMBB) {
 | |
|         // Check if the instruction is actually defined in NewMBB.
 | |
|         if (MI.getOperand(i - 1).isReg()) {
 | |
|           MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
 | |
|           if (DefMI->getParent() == NewMBB ||
 | |
|               !OrigMBB->isSuccessor(Successor)) {
 | |
|             MO.setMBB(NewMBB);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given a basic block \p Successor that potentially contains PHIs, this
 | |
| /// function will look for PHIs that have an incoming value from \p OrigMBB
 | |
| /// and will add the same incoming value from \p NewMBB.
 | |
| /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
 | |
| /// \p OrigMBB.
 | |
| static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
 | |
|                                     MachineBasicBlock *OrigMBB,
 | |
|                                     MachineBasicBlock *NewMBB,
 | |
|                                     MachineRegisterInfo *MRI) {
 | |
|   assert(OrigMBB->isSuccessor(NewMBB) &&
 | |
|          "NewMBB must be a successor of OrigMBB");
 | |
|   for (auto &MI : Successor->instrs()) {
 | |
|     if (!MI.isPHI())
 | |
|       continue;
 | |
|     // This is a really ugly-looking loop, but it was pillaged directly from
 | |
|     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
 | |
|     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.getMBB() == OrigMBB) {
 | |
|         MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
 | |
|         MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| struct BlockSplitInfo {
 | |
|   MachineInstr *OrigBranch;
 | |
|   MachineInstr *SplitBefore;
 | |
|   MachineInstr *SplitCond;
 | |
|   bool InvertNewBranch;
 | |
|   bool InvertOrigBranch;
 | |
|   bool BranchToFallThrough;
 | |
|   const MachineBranchProbabilityInfo *MBPI;
 | |
|   MachineInstr *MIToDelete;
 | |
|   MachineInstr *NewCond;
 | |
|   bool allInstrsInSameMBB() {
 | |
|     if (!OrigBranch || !SplitBefore || !SplitCond)
 | |
|       return false;
 | |
|     MachineBasicBlock *MBB = OrigBranch->getParent();
 | |
|     if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
 | |
|       return false;
 | |
|     if (MIToDelete && MIToDelete->getParent() != MBB)
 | |
|       return false;
 | |
|     if (NewCond && NewCond->getParent() != MBB)
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
 | |
| /// branch is \p OrigBranch. The target of the new branch can either be the same
 | |
| /// as the target of the original branch or the fallthrough successor of the
 | |
| /// original block as determined by \p BranchToFallThrough. The branch
 | |
| /// conditions will be inverted according to \p InvertNewBranch and
 | |
| /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
 | |
| /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
 | |
| /// the branch condition. The branch probabilities will be set if the
 | |
| /// MachineBranchProbabilityInfo isn't null.
 | |
| static bool splitMBB(BlockSplitInfo &BSI) {
 | |
|   assert(BSI.allInstrsInSameMBB() &&
 | |
|          "All instructions must be in the same block.");
 | |
| 
 | |
|   MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
 | |
|   MachineFunction *MF = ThisMBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
 | |
|   if (ThisMBB->succ_size() != 2) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Don't know how to handle blocks that don't have exactly"
 | |
|                << " two successors.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
 | |
|   unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
 | |
|   unsigned InvertedOpcode =
 | |
|       OrigBROpcode == PPC::BC
 | |
|           ? PPC::BCn
 | |
|           : OrigBROpcode == PPC::BCn
 | |
|                 ? PPC::BC
 | |
|                 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
 | |
|   unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
 | |
|   MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
 | |
|   MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
 | |
|                                            ? *ThisMBB->succ_rbegin()
 | |
|                                            : *ThisMBB->succ_begin();
 | |
|   MachineBasicBlock *NewBRTarget =
 | |
|       BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
 | |
|   BranchProbability ProbToNewTarget =
 | |
|       !BSI.MBPI ? BranchProbability::getUnknown()
 | |
|                 : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget);
 | |
| 
 | |
|   // Create a new basic block.
 | |
|   MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
 | |
|   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
 | |
|   MachineFunction::iterator It = ThisMBB->getIterator();
 | |
|   MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(++It, NewMBB);
 | |
| 
 | |
|   // Move everything after SplitBefore into the new block.
 | |
|   NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
 | |
|   NewMBB->transferSuccessors(ThisMBB);
 | |
| 
 | |
|   // Add the two successors to ThisMBB. The probabilities come from the
 | |
|   // existing blocks if available.
 | |
|   ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
 | |
|   ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl());
 | |
| 
 | |
|   // Add the branches to ThisMBB.
 | |
|   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
 | |
|           TII->get(NewBROpcode))
 | |
|       .addReg(BSI.SplitCond->getOperand(0).getReg())
 | |
|       .addMBB(NewBRTarget);
 | |
|   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
 | |
|           TII->get(PPC::B))
 | |
|       .addMBB(NewMBB);
 | |
|   if (BSI.MIToDelete)
 | |
|     BSI.MIToDelete->eraseFromParent();
 | |
| 
 | |
|   // Change the condition on the original branch and invert it if requested.
 | |
|   auto FirstTerminator = NewMBB->getFirstTerminator();
 | |
|   if (BSI.NewCond) {
 | |
|     assert(FirstTerminator->getOperand(0).isReg() &&
 | |
|            "Can't update condition of unconditional branch.");
 | |
|     FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
 | |
|   }
 | |
|   if (BSI.InvertOrigBranch)
 | |
|     FirstTerminator->setDesc(TII->get(InvertedOpcode));
 | |
| 
 | |
|   // If any of the PHIs in the successors of NewMBB reference values that
 | |
|   // now come from NewMBB, they need to be updated.
 | |
|   for (auto *Succ : NewMBB->successors()) {
 | |
|     updatePHIs(Succ, ThisMBB, NewMBB, MRI);
 | |
|   }
 | |
|   addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
 | |
|   LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
 | |
|   LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isBinary(MachineInstr &MI) {
 | |
|   return MI.getNumOperands() == 3;
 | |
| }
 | |
| 
 | |
| static bool isNullary(MachineInstr &MI) {
 | |
|   return MI.getNumOperands() == 1;
 | |
| }
 | |
| 
 | |
| /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
 | |
| /// a flag to indicate if the first operand of \p CROp is used as the
 | |
| /// SplitBefore operand, determines whether either of the branches are to be
 | |
| /// inverted as well as whether the new target should be the original
 | |
| /// fall-through block.
 | |
| static void
 | |
| computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
 | |
|                                 bool &InvertNewBranch, bool &InvertOrigBranch,
 | |
|                                 bool &TargetIsFallThrough) {
 | |
|   // The conditions under which each of the output operands should be [un]set
 | |
|   // can certainly be written much more concisely with just 3 if statements or
 | |
|   // ternary expressions. However, this provides a much clearer overview to the
 | |
|   // reader as to what is set for each <CROp, BROp, OpUsed> combination.
 | |
|   if (BROp == PPC::BC || BROp == PPC::BCLR) {
 | |
|     // Regular branches.
 | |
|     switch (CROp) {
 | |
|     default:
 | |
|       llvm_unreachable("Don't know how to handle this CR logical.");
 | |
|     case PPC::CROR:
 | |
|       InvertNewBranch = false;
 | |
|       InvertOrigBranch = false;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     case PPC::CRAND:
 | |
|       InvertNewBranch = true;
 | |
|       InvertOrigBranch = false;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     case PPC::CRNAND:
 | |
|       InvertNewBranch = true;
 | |
|       InvertOrigBranch = true;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     case PPC::CRNOR:
 | |
|       InvertNewBranch = false;
 | |
|       InvertOrigBranch = true;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     case PPC::CRORC:
 | |
|       InvertNewBranch = UsingDef1;
 | |
|       InvertOrigBranch = !UsingDef1;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     case PPC::CRANDC:
 | |
|       InvertNewBranch = !UsingDef1;
 | |
|       InvertOrigBranch = !UsingDef1;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     }
 | |
|   } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
 | |
|     // Negated branches.
 | |
|     switch (CROp) {
 | |
|     default:
 | |
|       llvm_unreachable("Don't know how to handle this CR logical.");
 | |
|     case PPC::CROR:
 | |
|       InvertNewBranch = true;
 | |
|       InvertOrigBranch = false;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     case PPC::CRAND:
 | |
|       InvertNewBranch = false;
 | |
|       InvertOrigBranch = false;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     case PPC::CRNAND:
 | |
|       InvertNewBranch = false;
 | |
|       InvertOrigBranch = true;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     case PPC::CRNOR:
 | |
|       InvertNewBranch = true;
 | |
|       InvertOrigBranch = true;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     case PPC::CRORC:
 | |
|       InvertNewBranch = !UsingDef1;
 | |
|       InvertOrigBranch = !UsingDef1;
 | |
|       TargetIsFallThrough = true;
 | |
|       return;
 | |
|     case PPC::CRANDC:
 | |
|       InvertNewBranch = UsingDef1;
 | |
|       InvertOrigBranch = !UsingDef1;
 | |
|       TargetIsFallThrough = false;
 | |
|       return;
 | |
|     }
 | |
|   } else
 | |
|     llvm_unreachable("Don't know how to handle this branch.");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class PPCReduceCRLogicals : public MachineFunctionPass {
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   struct CRLogicalOpInfo {
 | |
|     MachineInstr *MI;
 | |
|     // FIXME: If chains of copies are to be handled, this should be a vector.
 | |
|     std::pair<MachineInstr*, MachineInstr*> CopyDefs;
 | |
|     std::pair<MachineInstr*, MachineInstr*> TrueDefs;
 | |
|     unsigned IsBinary : 1;
 | |
|     unsigned IsNullary : 1;
 | |
|     unsigned ContainedInBlock : 1;
 | |
|     unsigned FeedsISEL : 1;
 | |
|     unsigned FeedsBR : 1;
 | |
|     unsigned FeedsLogical : 1;
 | |
|     unsigned SingleUse : 1;
 | |
|     unsigned DefsSingleUse : 1;
 | |
|     unsigned SubregDef1;
 | |
|     unsigned SubregDef2;
 | |
|     CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
 | |
|                         ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
 | |
|                         FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
 | |
|                         SubregDef1(0), SubregDef2(0) { }
 | |
|     void dump();
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   const PPCInstrInfo *TII;
 | |
|   MachineFunction *MF;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const MachineBranchProbabilityInfo *MBPI;
 | |
| 
 | |
|   // A vector to contain all the CR logical operations
 | |
|   std::vector<CRLogicalOpInfo> AllCRLogicalOps;
 | |
|   void initialize(MachineFunction &MFParm);
 | |
|   void collectCRLogicals();
 | |
|   bool handleCROp(CRLogicalOpInfo &CRI);
 | |
|   bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
 | |
|   static bool isCRLogical(MachineInstr &MI) {
 | |
|     unsigned Opc = MI.getOpcode();
 | |
|     return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
 | |
|       Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
 | |
|       Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
 | |
|       Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
 | |
|   }
 | |
|   bool simplifyCode() {
 | |
|     bool Changed = false;
 | |
|     // Not using a range-based for loop here as the vector may grow while being
 | |
|     // operated on.
 | |
|     for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
 | |
|       Changed |= handleCROp(AllCRLogicalOps[i]);
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   PPCReduceCRLogicals() : MachineFunctionPass(ID) {
 | |
|     initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
 | |
|                                   MachineInstr *&CpDef);
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override {
 | |
|     if (skipFunction(MF.getFunction()))
 | |
|       return false;
 | |
| 
 | |
|     // If the subtarget doesn't use CR bits, there's nothing to do.
 | |
|     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
 | |
|     if (!STI.useCRBits())
 | |
|       return false;
 | |
| 
 | |
|     initialize(MF);
 | |
|     collectCRLogicals();
 | |
|     return simplifyCode();
 | |
|   }
 | |
|   CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|     AU.addRequired<MachineDominatorTree>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
 | |
|   dbgs() << "CRLogicalOpMI: ";
 | |
|   MI->dump();
 | |
|   dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
 | |
|   dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
 | |
|   dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
 | |
|   dbgs() << ", DefsSingleUse: " << DefsSingleUse;
 | |
|   dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
 | |
|   dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
 | |
|   if (!IsNullary) {
 | |
|     dbgs() << "\nDefs:\n";
 | |
|     TrueDefs.first->dump();
 | |
|   }
 | |
|   if (IsBinary)
 | |
|     TrueDefs.second->dump();
 | |
|   dbgs() << "\n";
 | |
|   if (CopyDefs.first) {
 | |
|     dbgs() << "CopyDef1: ";
 | |
|     CopyDefs.first->dump();
 | |
|   }
 | |
|   if (CopyDefs.second) {
 | |
|     dbgs() << "CopyDef2: ";
 | |
|     CopyDefs.second->dump();
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| PPCReduceCRLogicals::CRLogicalOpInfo
 | |
| PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
 | |
|   CRLogicalOpInfo Ret;
 | |
|   Ret.MI = &MIParam;
 | |
|   // Get the defs
 | |
|   if (isNullary(MIParam)) {
 | |
|     Ret.IsNullary = 1;
 | |
|     Ret.TrueDefs = std::make_pair(nullptr, nullptr);
 | |
|     Ret.CopyDefs = std::make_pair(nullptr, nullptr);
 | |
|   } else {
 | |
|     MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
 | |
|                                            Ret.SubregDef1, Ret.CopyDefs.first);
 | |
|     Ret.DefsSingleUse &=
 | |
|       MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
 | |
|     Ret.DefsSingleUse &=
 | |
|       MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
 | |
|     assert(Def1 && "Must be able to find a definition of operand 1.");
 | |
|     if (isBinary(MIParam)) {
 | |
|       Ret.IsBinary = 1;
 | |
|       MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
 | |
|                                              Ret.SubregDef2,
 | |
|                                              Ret.CopyDefs.second);
 | |
|       Ret.DefsSingleUse &=
 | |
|         MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
 | |
|       Ret.DefsSingleUse &=
 | |
|         MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
 | |
|       assert(Def2 && "Must be able to find a definition of operand 2.");
 | |
|       Ret.TrueDefs = std::make_pair(Def1, Def2);
 | |
|     } else {
 | |
|       Ret.TrueDefs = std::make_pair(Def1, nullptr);
 | |
|       Ret.CopyDefs.second = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Ret.ContainedInBlock = 1;
 | |
|   // Get the uses
 | |
|   for (MachineInstr &UseMI :
 | |
|        MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
 | |
|     unsigned Opc = UseMI.getOpcode();
 | |
|     if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
 | |
|       Ret.FeedsISEL = 1;
 | |
|     if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
 | |
|         Opc == PPC::BCLRn)
 | |
|       Ret.FeedsBR = 1;
 | |
|     Ret.FeedsLogical = isCRLogical(UseMI);
 | |
|     if (UseMI.getParent() != MIParam.getParent())
 | |
|       Ret.ContainedInBlock = 0;
 | |
|   }
 | |
|   Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
 | |
| 
 | |
|   // We now know whether all the uses of the CR logical are in the same block.
 | |
|   if (!Ret.IsNullary) {
 | |
|     Ret.ContainedInBlock &=
 | |
|       (MIParam.getParent() == Ret.TrueDefs.first->getParent());
 | |
|     if (Ret.IsBinary)
 | |
|       Ret.ContainedInBlock &=
 | |
|         (MIParam.getParent() == Ret.TrueDefs.second->getParent());
 | |
|   }
 | |
|   LLVM_DEBUG(Ret.dump());
 | |
|   if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
 | |
|     NumContainedSingleUseBinOps++;
 | |
|     if (Ret.FeedsBR && Ret.DefsSingleUse)
 | |
|       NumToSplitBlocks++;
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// Looks through a COPY instruction to the actual definition of the CR-bit
 | |
| /// register and returns the instruction that defines it.
 | |
| /// FIXME: This currently handles what is by-far the most common case:
 | |
| /// an instruction that defines a CR field followed by a single copy of a bit
 | |
| /// from that field into a virtual register. If chains of copies need to be
 | |
| /// handled, this should have a loop until a non-copy instruction is found.
 | |
| MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
 | |
|                                                      unsigned &Subreg,
 | |
|                                                      MachineInstr *&CpDef) {
 | |
|   Subreg = -1;
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return nullptr;
 | |
|   MachineInstr *Copy = MRI->getVRegDef(Reg);
 | |
|   CpDef = Copy;
 | |
|   if (!Copy->isCopy())
 | |
|     return Copy;
 | |
|   unsigned CopySrc = Copy->getOperand(1).getReg();
 | |
|   Subreg = Copy->getOperand(1).getSubReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
 | |
|     const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
 | |
|     // Set the Subreg
 | |
|     if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
 | |
|       Subreg = PPC::sub_eq;
 | |
|     if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
 | |
|       Subreg = PPC::sub_lt;
 | |
|     if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
 | |
|       Subreg = PPC::sub_gt;
 | |
|     if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
 | |
|       Subreg = PPC::sub_un;
 | |
|     // Loop backwards and return the first MI that modifies the physical CR Reg.
 | |
|     MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
 | |
|     while (Me != B)
 | |
|       if ((--Me)->modifiesRegister(CopySrc, TRI))
 | |
|         return &*Me;
 | |
|     return nullptr;
 | |
|   }
 | |
|   return MRI->getVRegDef(CopySrc);
 | |
| }
 | |
| 
 | |
| void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
 | |
|   MF = &MFParam;
 | |
|   MRI = &MF->getRegInfo();
 | |
|   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
 | |
|   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | |
| 
 | |
|   AllCRLogicalOps.clear();
 | |
| }
 | |
| 
 | |
| /// Contains all the implemented transformations on CR logical operations.
 | |
| /// For example, a binary CR logical can be used to split a block on its inputs,
 | |
| /// a unary CR logical might be used to change the condition code on a
 | |
| /// comparison feeding it. A nullary CR logical might simply be removable
 | |
| /// if the user of the bit it [un]sets can be transformed.
 | |
| bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
 | |
|   // We can definitely split a block on the inputs to a binary CR operation
 | |
|   // whose defs and (single) use are within the same block.
 | |
|   bool Changed = false;
 | |
|   if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
 | |
|       CRI.DefsSingleUse) {
 | |
|     Changed = splitBlockOnBinaryCROp(CRI);
 | |
|     if (Changed)
 | |
|       NumBlocksSplitOnBinaryCROp++;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Splits a block that contains a CR-logical operation that feeds a branch
 | |
| /// and whose operands are produced within the block.
 | |
| /// Example:
 | |
| ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
 | |
| ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
 | |
| ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
 | |
| ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
 | |
| ///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
 | |
| ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
 | |
| /// Becomes:
 | |
| ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
 | |
| ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
 | |
| ///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
 | |
| ///
 | |
| ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
 | |
| ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
 | |
| ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
 | |
| bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
 | |
|   if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
 | |
|     LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
 | |
|     NumNotSplitIdenticalOperands++;
 | |
|     return false;
 | |
|   }
 | |
|   if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
 | |
|       CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Unable to split because one of the operands is a PHI or "
 | |
|                   "chain of copies.\n");
 | |
|     NumNotSplitChainCopies++;
 | |
|     return false;
 | |
|   }
 | |
|   // Note: keep in sync with computeBranchTargetAndInversion().
 | |
|   if (CRI.MI->getOpcode() != PPC::CROR &&
 | |
|       CRI.MI->getOpcode() != PPC::CRAND &&
 | |
|       CRI.MI->getOpcode() != PPC::CRNOR &&
 | |
|       CRI.MI->getOpcode() != PPC::CRNAND &&
 | |
|       CRI.MI->getOpcode() != PPC::CRORC &&
 | |
|       CRI.MI->getOpcode() != PPC::CRANDC) {
 | |
|     LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
 | |
|     NumNotSplitWrongOpcode++;
 | |
|     return false;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
 | |
|   MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
 | |
|   MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
 | |
| 
 | |
|   bool UsingDef1 = false;
 | |
|   MachineInstr *SplitBefore = &*Def2It;
 | |
|   for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
 | |
|     if (Def1It == Def2It) { // Def2 comes before Def1.
 | |
|       SplitBefore = &*Def1It;
 | |
|       UsingDef1 = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
 | |
|   LLVM_DEBUG(CRI.MI->getParent()->dump());
 | |
|   LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
 | |
| 
 | |
|   // Get the branch instruction.
 | |
|   MachineInstr *Branch =
 | |
|     MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
 | |
| 
 | |
|   // We want the new block to have no code in it other than the definition
 | |
|   // of the input to the CR logical and the CR logical itself. So we move
 | |
|   // those to the bottom of the block (just before the branch). Then we
 | |
|   // will split before the CR logical.
 | |
|   MachineBasicBlock *MBB = SplitBefore->getParent();
 | |
|   auto FirstTerminator = MBB->getFirstTerminator();
 | |
|   MachineBasicBlock::iterator FirstInstrToMove =
 | |
|     UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
 | |
|   MachineBasicBlock::iterator SecondInstrToMove =
 | |
|     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
 | |
| 
 | |
|   // The instructions that need to be moved are not guaranteed to be
 | |
|   // contiguous. Move them individually.
 | |
|   // FIXME: If one of the operands is a chain of (single use) copies, they
 | |
|   // can all be moved and we can still split.
 | |
|   MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
 | |
|   if (FirstInstrToMove != SecondInstrToMove)
 | |
|     MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
 | |
|   MBB->splice(FirstTerminator, MBB, CRI.MI);
 | |
| 
 | |
|   unsigned Opc = CRI.MI->getOpcode();
 | |
|   bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
 | |
|   computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
 | |
|                                   InvertNewBranch, InvertOrigBranch,
 | |
|                                   TargetIsFallThrough);
 | |
|   MachineInstr *SplitCond =
 | |
|     UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
 | |
|   LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
 | |
|   LLVM_DEBUG(dbgs() << " the original branch and the target is the "
 | |
|                     << (TargetIsFallThrough ? "fallthrough block\n"
 | |
|                                             : "orig. target block\n"));
 | |
|   LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
 | |
|   BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
 | |
|     InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
 | |
|     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
 | |
|   bool Changed = splitMBB(BSI);
 | |
|   // If we've split on a CR logical that is fed by a CR logical,
 | |
|   // recompute the source CR logical as it may be usable for splitting.
 | |
|   if (Changed) {
 | |
|     bool Input1CRlogical =
 | |
|       CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
 | |
|     bool Input2CRlogical =
 | |
|       CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
 | |
|     if (Input1CRlogical)
 | |
|       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
 | |
|     if (Input2CRlogical)
 | |
|       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void PPCReduceCRLogicals::collectCRLogicals() {
 | |
|   for (MachineBasicBlock &MBB : *MF) {
 | |
|     for (MachineInstr &MI : MBB) {
 | |
|       if (isCRLogical(MI)) {
 | |
|         AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
 | |
|         TotalCRLogicals++;
 | |
|         if (AllCRLogicalOps.back().IsNullary)
 | |
|           TotalNullaryCRLogicals++;
 | |
|         else if (AllCRLogicalOps.back().IsBinary)
 | |
|           TotalBinaryCRLogicals++;
 | |
|         else
 | |
|           TotalUnaryCRLogicals++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
 | |
|                       "PowerPC Reduce CR logical Operation", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
 | |
|                     "PowerPC Reduce CR logical Operation", false, false)
 | |
| 
 | |
| char PPCReduceCRLogicals::ID = 0;
 | |
| FunctionPass*
 | |
| llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }
 |