forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			993 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			993 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a TargetTransformInfo analysis pass specific to the
 | 
						|
// SystemZ target machine. It uses the target's detailed information to provide
 | 
						|
// more precise answers to certain TTI queries, while letting the target
 | 
						|
// independent and default TTI implementations handle the rest.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SystemZTargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/BasicTTIImpl.h"
 | 
						|
#include "llvm/CodeGen/CostTable.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "systemztti"
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// SystemZ cost model.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | 
						|
  // here, so that constant hoisting will ignore this constant.
 | 
						|
  if (BitSize == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  // No cost model for operations on integers larger than 64 bit implemented yet.
 | 
						|
  if (BitSize > 64)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Imm == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Imm.getBitWidth() <= 64) {
 | 
						|
    // Constants loaded via lgfi.
 | 
						|
    if (isInt<32>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Basic;
 | 
						|
    // Constants loaded via llilf.
 | 
						|
    if (isUInt<32>(Imm.getZExtValue()))
 | 
						|
      return TTI::TCC_Basic;
 | 
						|
    // Constants loaded via llihf:
 | 
						|
    if ((Imm.getZExtValue() & 0xffffffff) == 0)
 | 
						|
      return TTI::TCC_Basic;
 | 
						|
 | 
						|
    return 2 * TTI::TCC_Basic;
 | 
						|
  }
 | 
						|
 | 
						|
  return 4 * TTI::TCC_Basic;
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
 | 
						|
                                  const APInt &Imm, Type *Ty) {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | 
						|
  // here, so that constant hoisting will ignore this constant.
 | 
						|
  if (BitSize == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  // No cost model for operations on integers larger than 64 bit implemented yet.
 | 
						|
  if (BitSize > 64)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // Always hoist the base address of a GetElementPtr. This prevents the
 | 
						|
    // creation of new constants for every base constant that gets constant
 | 
						|
    // folded with the offset.
 | 
						|
    if (Idx == 0)
 | 
						|
      return 2 * TTI::TCC_Basic;
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::Store:
 | 
						|
    if (Idx == 0 && Imm.getBitWidth() <= 64) {
 | 
						|
      // Any 8-bit immediate store can by implemented via mvi.
 | 
						|
      if (BitSize == 8)
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
 | 
						|
      if (isInt<16>(Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::ICmp:
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      // Comparisons against signed 32-bit immediates implemented via cgfi.
 | 
						|
      if (isInt<32>(Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // Comparisons against unsigned 32-bit immediates implemented via clgfi.
 | 
						|
      if (isUInt<32>(Imm.getZExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
 | 
						|
      if (isUInt<32>(Imm.getZExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // Or their negation, by swapping addition vs. subtraction.
 | 
						|
      if (isUInt<32>(-Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      // We use msgfi to multiply by 32-bit signed immediates.
 | 
						|
      if (isInt<32>(Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      // Masks supported by oilf/xilf.
 | 
						|
      if (isUInt<32>(Imm.getZExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // Masks supported by oihf/xihf.
 | 
						|
      if ((Imm.getZExtValue() & 0xffffffff) == 0)
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      // Any 32-bit AND operation can by implemented via nilf.
 | 
						|
      if (BitSize <= 32)
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // 64-bit masks supported by nilf.
 | 
						|
      if (isUInt<32>(~Imm.getZExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // 64-bit masks supported by nilh.
 | 
						|
      if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      // Some 64-bit AND operations can be implemented via risbg.
 | 
						|
      const SystemZInstrInfo *TII = ST->getInstrInfo();
 | 
						|
      unsigned Start, End;
 | 
						|
      if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    // Always return TCC_Free for the shift value of a shift instruction.
 | 
						|
    if (Idx == 1)
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::PHI:
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Select:
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::Load:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | 
						|
                                  const APInt &Imm, Type *Ty) {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | 
						|
  // here, so that constant hoisting will ignore this constant.
 | 
						|
  if (BitSize == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  // No cost model for operations on integers larger than 64 bit implemented yet.
 | 
						|
  if (BitSize > 64)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
    // These get expanded to include a normal addition/subtraction.
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      if (isUInt<32>(Imm.getZExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
      if (isUInt<32>(-Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
    // These get expanded to include a normal multiplication.
 | 
						|
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
 | 
						|
      if (isInt<32>(Imm.getSExtValue()))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::PopcntSupportKind
 | 
						|
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
 | 
						|
  assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
 | 
						|
  if (ST->hasPopulationCount() && TyWidth <= 64)
 | 
						|
    return TTI::PSK_FastHardware;
 | 
						|
  return TTI::PSK_Software;
 | 
						|
}
 | 
						|
 | 
						|
void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 | 
						|
                                             TTI::UnrollingPreferences &UP) {
 | 
						|
  // Find out if L contains a call, what the machine instruction count
 | 
						|
  // estimate is, and how many stores there are.
 | 
						|
  bool HasCall = false;
 | 
						|
  unsigned NumStores = 0;
 | 
						|
  for (auto &BB : L->blocks())
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
 | 
						|
        ImmutableCallSite CS(&I);
 | 
						|
        if (const Function *F = CS.getCalledFunction()) {
 | 
						|
          if (isLoweredToCall(F))
 | 
						|
            HasCall = true;
 | 
						|
          if (F->getIntrinsicID() == Intrinsic::memcpy ||
 | 
						|
              F->getIntrinsicID() == Intrinsic::memset)
 | 
						|
            NumStores++;
 | 
						|
        } else { // indirect call.
 | 
						|
          HasCall = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (isa<StoreInst>(&I)) {
 | 
						|
        Type *MemAccessTy = I.getOperand(0)->getType();
 | 
						|
        NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // The z13 processor will run out of store tags if too many stores
 | 
						|
  // are fed into it too quickly. Therefore make sure there are not
 | 
						|
  // too many stores in the resulting unrolled loop.
 | 
						|
  unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
 | 
						|
 | 
						|
  if (HasCall) {
 | 
						|
    // Only allow full unrolling if loop has any calls.
 | 
						|
    UP.FullUnrollMaxCount = Max;
 | 
						|
    UP.MaxCount = 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  UP.MaxCount = Max;
 | 
						|
  if (UP.MaxCount <= 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Allow partial and runtime trip count unrolling.
 | 
						|
  UP.Partial = UP.Runtime = true;
 | 
						|
 | 
						|
  UP.PartialThreshold = 75;
 | 
						|
  UP.DefaultUnrollRuntimeCount = 4;
 | 
						|
 | 
						|
  // Allow expensive instructions in the pre-header of the loop.
 | 
						|
  UP.AllowExpensiveTripCount = true;
 | 
						|
 | 
						|
  UP.Force = true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
 | 
						|
                                   TargetTransformInfo::LSRCost &C2) {
 | 
						|
  // SystemZ specific: check instruction count (first), and don't care about
 | 
						|
  // ImmCost, since offsets are checked explicitly.
 | 
						|
  return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
 | 
						|
                  C1.NumIVMuls, C1.NumBaseAdds,
 | 
						|
                  C1.ScaleCost, C1.SetupCost) <
 | 
						|
    std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
 | 
						|
             C2.NumIVMuls, C2.NumBaseAdds,
 | 
						|
             C2.ScaleCost, C2.SetupCost);
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
 | 
						|
  if (!Vector)
 | 
						|
    // Discount the stack pointer.  Also leave out %r0, since it can't
 | 
						|
    // be used in an address.
 | 
						|
    return 14;
 | 
						|
  if (ST->hasVector())
 | 
						|
    return 32;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
 | 
						|
  if (!Vector)
 | 
						|
    return 64;
 | 
						|
  if (ST->hasVector())
 | 
						|
    return 128;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
 | 
						|
  EVT VT = TLI->getValueType(DL, DataType);
 | 
						|
  return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
 | 
						|
}
 | 
						|
 | 
						|
// Return the bit size for the scalar type or vector element
 | 
						|
// type. getScalarSizeInBits() returns 0 for a pointer type.
 | 
						|
static unsigned getScalarSizeInBits(Type *Ty) {
 | 
						|
  unsigned Size =
 | 
						|
    (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
 | 
						|
  assert(Size > 0 && "Element must have non-zero size.");
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
 | 
						|
// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
 | 
						|
// 3.
 | 
						|
static unsigned getNumVectorRegs(Type *Ty) {
 | 
						|
  assert(Ty->isVectorTy() && "Expected vector type");
 | 
						|
  unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
 | 
						|
  assert(WideBits > 0 && "Could not compute size of vector");
 | 
						|
  return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty,
 | 
						|
    TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
 | 
						|
    TTI::OperandValueProperties Opd1PropInfo,
 | 
						|
    TTI::OperandValueProperties Opd2PropInfo,
 | 
						|
    ArrayRef<const Value *> Args) {
 | 
						|
 | 
						|
  // TODO: return a good value for BB-VECTORIZER that includes the
 | 
						|
  // immediate loads, which we do not want to count for the loop
 | 
						|
  // vectorizer, since they are hopefully hoisted out of the loop. This
 | 
						|
  // would require a new parameter 'InLoop', but not sure if constant
 | 
						|
  // args are common enough to motivate this.
 | 
						|
 | 
						|
  unsigned ScalarBits = Ty->getScalarSizeInBits();
 | 
						|
 | 
						|
  // There are thre cases of division and remainder: Dividing with a register
 | 
						|
  // needs a divide instruction. A divisor which is a power of two constant
 | 
						|
  // can be implemented with a sequence of shifts. Any other constant needs a
 | 
						|
  // multiply and shifts.
 | 
						|
  const unsigned DivInstrCost = 20;
 | 
						|
  const unsigned DivMulSeqCost = 10;
 | 
						|
  const unsigned SDivPow2Cost = 4;
 | 
						|
 | 
						|
  bool SignedDivRem =
 | 
						|
      Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
 | 
						|
  bool UnsignedDivRem =
 | 
						|
      Opcode == Instruction::UDiv || Opcode == Instruction::URem;
 | 
						|
 | 
						|
  // Check for a constant divisor.
 | 
						|
  bool DivRemConst = false;
 | 
						|
  bool DivRemConstPow2 = false;
 | 
						|
  if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
 | 
						|
    if (const Constant *C = dyn_cast<Constant>(Args[1])) {
 | 
						|
      const ConstantInt *CVal =
 | 
						|
          (C->getType()->isVectorTy()
 | 
						|
               ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
 | 
						|
               : dyn_cast<const ConstantInt>(C));
 | 
						|
      if (CVal != nullptr &&
 | 
						|
          (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
 | 
						|
        DivRemConstPow2 = true;
 | 
						|
      else
 | 
						|
        DivRemConst = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isVectorTy()) {
 | 
						|
    assert(ST->hasVector() &&
 | 
						|
           "getArithmeticInstrCost() called with vector type.");
 | 
						|
    unsigned VF = Ty->getVectorNumElements();
 | 
						|
    unsigned NumVectors = getNumVectorRegs(Ty);
 | 
						|
 | 
						|
    // These vector operations are custom handled, but are still supported
 | 
						|
    // with one instruction per vector, regardless of element size.
 | 
						|
    if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
 | 
						|
        Opcode == Instruction::AShr) {
 | 
						|
      return NumVectors;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DivRemConstPow2)
 | 
						|
      return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
 | 
						|
    if (DivRemConst)
 | 
						|
      return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
 | 
						|
    if ((SignedDivRem || UnsignedDivRem) && VF > 4)
 | 
						|
      // Temporary hack: disable high vectorization factors with integer
 | 
						|
      // division/remainder, which will get scalarized and handled with
 | 
						|
      // GR128 registers. The mischeduler is not clever enough to avoid
 | 
						|
      // spilling yet.
 | 
						|
      return 1000;
 | 
						|
 | 
						|
    // These FP operations are supported with a single vector instruction for
 | 
						|
    // double (base implementation assumes float generally costs 2). For
 | 
						|
    // FP128, the scalar cost is 1, and there is no overhead since the values
 | 
						|
    // are already in scalar registers.
 | 
						|
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
 | 
						|
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
 | 
						|
      switch (ScalarBits) {
 | 
						|
      case 32: {
 | 
						|
        // The vector enhancements facility 1 provides v4f32 instructions.
 | 
						|
        if (ST->hasVectorEnhancements1())
 | 
						|
          return NumVectors;
 | 
						|
        // Return the cost of multiple scalar invocation plus the cost of
 | 
						|
        // inserting and extracting the values.
 | 
						|
        unsigned ScalarCost =
 | 
						|
            getArithmeticInstrCost(Opcode, Ty->getScalarType());
 | 
						|
        unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
 | 
						|
        // FIXME: VF 2 for these FP operations are currently just as
 | 
						|
        // expensive as for VF 4.
 | 
						|
        if (VF == 2)
 | 
						|
          Cost *= 2;
 | 
						|
        return Cost;
 | 
						|
      }
 | 
						|
      case 64:
 | 
						|
      case 128:
 | 
						|
        return NumVectors;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // There is no native support for FRem.
 | 
						|
    if (Opcode == Instruction::FRem) {
 | 
						|
      unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
 | 
						|
      // FIXME: VF 2 for float is currently just as expensive as for VF 4.
 | 
						|
      if (VF == 2 && ScalarBits == 32)
 | 
						|
        Cost *= 2;
 | 
						|
      return Cost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {  // Scalar:
 | 
						|
    // These FP operations are supported with a dedicated instruction for
 | 
						|
    // float, double and fp128 (base implementation assumes float generally
 | 
						|
    // costs 2).
 | 
						|
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
 | 
						|
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    // There is no native support for FRem.
 | 
						|
    if (Opcode == Instruction::FRem)
 | 
						|
      return LIBCALL_COST;
 | 
						|
 | 
						|
    if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
 | 
						|
      return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
 | 
						|
 | 
						|
    // Or requires one instruction, although it has custom handling for i64.
 | 
						|
    if (Opcode == Instruction::Or)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    if (Opcode == Instruction::Xor && ScalarBits == 1) {
 | 
						|
      if (ST->hasLoadStoreOnCond2())
 | 
						|
        return 5; // 2 * (li 0; loc 1); xor
 | 
						|
      return 7; // 2 * ipm sequences ; xor ; shift ; compare
 | 
						|
    }
 | 
						|
 | 
						|
    if (DivRemConstPow2)
 | 
						|
      return (SignedDivRem ? SDivPow2Cost : 1);
 | 
						|
    if (DivRemConst)
 | 
						|
      return DivMulSeqCost;
 | 
						|
    if (SignedDivRem)
 | 
						|
      // sext of op(s) for narrow types
 | 
						|
      return DivInstrCost + (ScalarBits < 32 ? 3 : (ScalarBits == 32 ? 1 : 0));
 | 
						|
    if (UnsignedDivRem)
 | 
						|
      // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
 | 
						|
      return DivInstrCost + (ScalarBits < 32 ? 3 : 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Fallback to the default implementation.
 | 
						|
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
 | 
						|
                                       Opd1PropInfo, Opd2PropInfo, Args);
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | 
						|
                                   Type *SubTp) {
 | 
						|
  assert (Tp->isVectorTy());
 | 
						|
  assert (ST->hasVector() && "getShuffleCost() called.");
 | 
						|
  unsigned NumVectors = getNumVectorRegs(Tp);
 | 
						|
 | 
						|
  // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
 | 
						|
 | 
						|
  // FP128 values are always in scalar registers, so there is no work
 | 
						|
  // involved with a shuffle, except for broadcast. In that case register
 | 
						|
  // moves are done with a single instruction per element.
 | 
						|
  if (Tp->getScalarType()->isFP128Ty())
 | 
						|
    return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
  case  TargetTransformInfo::SK_ExtractSubvector:
 | 
						|
    // ExtractSubvector Index indicates start offset.
 | 
						|
 | 
						|
    // Extracting a subvector from first index is a noop.
 | 
						|
    return (Index == 0 ? 0 : NumVectors);
 | 
						|
 | 
						|
  case TargetTransformInfo::SK_Broadcast:
 | 
						|
    // Loop vectorizer calls here to figure out the extra cost of
 | 
						|
    // broadcasting a loaded value to all elements of a vector. Since vlrep
 | 
						|
    // loads and replicates with a single instruction, adjust the returned
 | 
						|
    // value.
 | 
						|
    return NumVectors - 1;
 | 
						|
 | 
						|
  default:
 | 
						|
 | 
						|
    // SystemZ supports single instruction permutation / replication.
 | 
						|
    return NumVectors;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
}
 | 
						|
 | 
						|
// Return the log2 difference of the element sizes of the two vector types.
 | 
						|
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
 | 
						|
  unsigned Bits0 = Ty0->getScalarSizeInBits();
 | 
						|
  unsigned Bits1 = Ty1->getScalarSizeInBits();
 | 
						|
 | 
						|
  if (Bits1 >  Bits0)
 | 
						|
    return (Log2_32(Bits1) - Log2_32(Bits0));
 | 
						|
 | 
						|
  return (Log2_32(Bits0) - Log2_32(Bits1));
 | 
						|
}
 | 
						|
 | 
						|
// Return the number of instructions needed to truncate SrcTy to DstTy.
 | 
						|
unsigned SystemZTTIImpl::
 | 
						|
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
 | 
						|
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
 | 
						|
  assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
 | 
						|
          "Packing must reduce size of vector type.");
 | 
						|
  assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
 | 
						|
          "Packing should not change number of elements.");
 | 
						|
 | 
						|
  // TODO: Since fp32 is expanded, the extract cost should always be 0.
 | 
						|
 | 
						|
  unsigned NumParts = getNumVectorRegs(SrcTy);
 | 
						|
  if (NumParts <= 2)
 | 
						|
    // Up to 2 vector registers can be truncated efficiently with pack or
 | 
						|
    // permute. The latter requires an immediate mask to be loaded, which
 | 
						|
    // typically gets hoisted out of a loop.  TODO: return a good value for
 | 
						|
    // BB-VECTORIZER that includes the immediate loads, which we do not want
 | 
						|
    // to count for the loop vectorizer.
 | 
						|
    return 1;
 | 
						|
 | 
						|
  unsigned Cost = 0;
 | 
						|
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
 | 
						|
  unsigned VF = SrcTy->getVectorNumElements();
 | 
						|
  for (unsigned P = 0; P < Log2Diff; ++P) {
 | 
						|
    if (NumParts > 1)
 | 
						|
      NumParts /= 2;
 | 
						|
    Cost += NumParts;
 | 
						|
  }
 | 
						|
 | 
						|
  // Currently, a general mix of permutes and pack instructions is output by
 | 
						|
  // isel, which follow the cost computation above except for this case which
 | 
						|
  // is one instruction less:
 | 
						|
  if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
 | 
						|
      DstTy->getScalarSizeInBits() == 8)
 | 
						|
    Cost--;
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
// Return the cost of converting a vector bitmask produced by a compare
 | 
						|
// (SrcTy), to the type of the select or extend instruction (DstTy).
 | 
						|
unsigned SystemZTTIImpl::
 | 
						|
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
 | 
						|
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
 | 
						|
          "Should only be called with vector types.");
 | 
						|
 | 
						|
  unsigned PackCost = 0;
 | 
						|
  unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
 | 
						|
  unsigned DstScalarBits = DstTy->getScalarSizeInBits();
 | 
						|
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
 | 
						|
  if (SrcScalarBits > DstScalarBits)
 | 
						|
    // The bitmask will be truncated.
 | 
						|
    PackCost = getVectorTruncCost(SrcTy, DstTy);
 | 
						|
  else if (SrcScalarBits < DstScalarBits) {
 | 
						|
    unsigned DstNumParts = getNumVectorRegs(DstTy);
 | 
						|
    // Each vector select needs its part of the bitmask unpacked.
 | 
						|
    PackCost = Log2Diff * DstNumParts;
 | 
						|
    // Extra cost for moving part of mask before unpacking.
 | 
						|
    PackCost += DstNumParts - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return PackCost;
 | 
						|
}
 | 
						|
 | 
						|
// Return the type of the compared operands. This is needed to compute the
 | 
						|
// cost for a Select / ZExt or SExt instruction.
 | 
						|
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
 | 
						|
  Type *OpTy = nullptr;
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
 | 
						|
    OpTy = CI->getOperand(0)->getType();
 | 
						|
  else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
 | 
						|
    if (LogicI->getNumOperands() == 2)
 | 
						|
      if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
 | 
						|
        if (isa<CmpInst>(LogicI->getOperand(1)))
 | 
						|
          OpTy = CI0->getOperand(0)->getType();
 | 
						|
 | 
						|
  if (OpTy != nullptr) {
 | 
						|
    if (VF == 1) {
 | 
						|
      assert (!OpTy->isVectorTy() && "Expected scalar type");
 | 
						|
      return OpTy;
 | 
						|
    }
 | 
						|
    // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
 | 
						|
    // be either scalar or already vectorized with a same or lesser VF.
 | 
						|
    Type *ElTy = OpTy->getScalarType();
 | 
						|
    return VectorType::get(ElTy, VF);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 | 
						|
                                     const Instruction *I) {
 | 
						|
  unsigned DstScalarBits = Dst->getScalarSizeInBits();
 | 
						|
  unsigned SrcScalarBits = Src->getScalarSizeInBits();
 | 
						|
 | 
						|
  if (Src->isVectorTy()) {
 | 
						|
    assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
 | 
						|
    assert (Dst->isVectorTy());
 | 
						|
    unsigned VF = Src->getVectorNumElements();
 | 
						|
    unsigned NumDstVectors = getNumVectorRegs(Dst);
 | 
						|
    unsigned NumSrcVectors = getNumVectorRegs(Src);
 | 
						|
 | 
						|
    if (Opcode == Instruction::Trunc) {
 | 
						|
      if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
 | 
						|
        return 0; // Check for NOOP conversions.
 | 
						|
      return getVectorTruncCost(Src, Dst);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
 | 
						|
      if (SrcScalarBits >= 8) {
 | 
						|
        // ZExt/SExt will be handled with one unpack per doubling of width.
 | 
						|
        unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
 | 
						|
 | 
						|
        // For types that spans multiple vector registers, some additional
 | 
						|
        // instructions are used to setup the unpacking.
 | 
						|
        unsigned NumSrcVectorOps =
 | 
						|
          (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
 | 
						|
                          : (NumDstVectors / 2));
 | 
						|
 | 
						|
        return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
 | 
						|
      }
 | 
						|
      else if (SrcScalarBits == 1) {
 | 
						|
        // This should be extension of a compare i1 result.
 | 
						|
        // If we know what the widths of the compared operands, get the
 | 
						|
        // cost of converting it to Dst. Otherwise assume same widths.
 | 
						|
        unsigned Cost = 0;
 | 
						|
        Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
 | 
						|
        if (CmpOpTy != nullptr)
 | 
						|
          Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
 | 
						|
        if (Opcode == Instruction::ZExt)
 | 
						|
          // One 'vn' per dst vector with an immediate mask.
 | 
						|
          Cost += NumDstVectors;
 | 
						|
        return Cost;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
 | 
						|
        Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
 | 
						|
      // TODO: Fix base implementation which could simplify things a bit here
 | 
						|
      // (seems to miss on differentiating on scalar/vector types).
 | 
						|
 | 
						|
      // Only 64 bit vector conversions are natively supported.
 | 
						|
      if (SrcScalarBits == 64 && DstScalarBits == 64)
 | 
						|
        return NumDstVectors;
 | 
						|
 | 
						|
      // Return the cost of multiple scalar invocation plus the cost of
 | 
						|
      // inserting and extracting the values. Base implementation does not
 | 
						|
      // realize float->int gets scalarized.
 | 
						|
      unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
 | 
						|
                                             Src->getScalarType());
 | 
						|
      unsigned TotCost = VF * ScalarCost;
 | 
						|
      bool NeedsInserts = true, NeedsExtracts = true;
 | 
						|
      // FP128 registers do not get inserted or extracted.
 | 
						|
      if (DstScalarBits == 128 &&
 | 
						|
          (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
 | 
						|
        NeedsInserts = false;
 | 
						|
      if (SrcScalarBits == 128 &&
 | 
						|
          (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
 | 
						|
        NeedsExtracts = false;
 | 
						|
 | 
						|
      TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
 | 
						|
 | 
						|
      // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
 | 
						|
      if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
 | 
						|
        TotCost *= 2;
 | 
						|
 | 
						|
      return TotCost;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode == Instruction::FPTrunc) {
 | 
						|
      if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
 | 
						|
        return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
 | 
						|
      else // double -> float
 | 
						|
        return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opcode == Instruction::FPExt) {
 | 
						|
      if (SrcScalarBits == 32 && DstScalarBits == 64) {
 | 
						|
        // float -> double is very rare and currently unoptimized. Instead of
 | 
						|
        // using vldeb, which can do two at a time, all conversions are
 | 
						|
        // scalarized.
 | 
						|
        return VF * 2;
 | 
						|
      }
 | 
						|
      // -> fp128.  VF * lxdb/lxeb + extraction of elements.
 | 
						|
      return VF + getScalarizationOverhead(Src, false, true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else { // Scalar
 | 
						|
    assert (!Dst->isVectorTy());
 | 
						|
 | 
						|
    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
 | 
						|
      return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
 | 
						|
 | 
						|
    if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
 | 
						|
        Src->isIntegerTy(1)) {
 | 
						|
      if (ST->hasLoadStoreOnCond2())
 | 
						|
        return 2; // li 0; loc 1
 | 
						|
 | 
						|
      // This should be extension of a compare i1 result, which is done with
 | 
						|
      // ipm and a varying sequence of instructions.
 | 
						|
      unsigned Cost = 0;
 | 
						|
      if (Opcode == Instruction::SExt)
 | 
						|
        Cost = (DstScalarBits < 64 ? 3 : 4);
 | 
						|
      if (Opcode == Instruction::ZExt)
 | 
						|
        Cost = 3;
 | 
						|
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
 | 
						|
      if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
 | 
						|
        // If operands of an fp-type was compared, this costs +1.
 | 
						|
        Cost++;
 | 
						|
      return Cost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                       Type *CondTy, const Instruction *I) {
 | 
						|
  if (ValTy->isVectorTy()) {
 | 
						|
    assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
 | 
						|
    unsigned VF = ValTy->getVectorNumElements();
 | 
						|
 | 
						|
    // Called with a compare instruction.
 | 
						|
    if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
 | 
						|
      unsigned PredicateExtraCost = 0;
 | 
						|
      if (I != nullptr) {
 | 
						|
        // Some predicates cost one or two extra instructions.
 | 
						|
        switch (cast<CmpInst>(I)->getPredicate()) {
 | 
						|
        case CmpInst::Predicate::ICMP_NE:
 | 
						|
        case CmpInst::Predicate::ICMP_UGE:
 | 
						|
        case CmpInst::Predicate::ICMP_ULE:
 | 
						|
        case CmpInst::Predicate::ICMP_SGE:
 | 
						|
        case CmpInst::Predicate::ICMP_SLE:
 | 
						|
          PredicateExtraCost = 1;
 | 
						|
          break;
 | 
						|
        case CmpInst::Predicate::FCMP_ONE:
 | 
						|
        case CmpInst::Predicate::FCMP_ORD:
 | 
						|
        case CmpInst::Predicate::FCMP_UEQ:
 | 
						|
        case CmpInst::Predicate::FCMP_UNO:
 | 
						|
          PredicateExtraCost = 2;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
 | 
						|
      // floats.  FIXME: <2 x float> generates same code as <4 x float>.
 | 
						|
      unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
 | 
						|
      unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
 | 
						|
 | 
						|
      unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
 | 
						|
      return Cost;
 | 
						|
    }
 | 
						|
    else { // Called with a select instruction.
 | 
						|
      assert (Opcode == Instruction::Select);
 | 
						|
 | 
						|
      // We can figure out the extra cost of packing / unpacking if the
 | 
						|
      // instruction was passed and the compare instruction is found.
 | 
						|
      unsigned PackCost = 0;
 | 
						|
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
 | 
						|
      if (CmpOpTy != nullptr)
 | 
						|
        PackCost =
 | 
						|
          getVectorBitmaskConversionCost(CmpOpTy, ValTy);
 | 
						|
 | 
						|
      return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else { // Scalar
 | 
						|
    switch (Opcode) {
 | 
						|
    case Instruction::ICmp: {
 | 
						|
      unsigned Cost = 1;
 | 
						|
      if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
 | 
						|
        Cost += 2; // extend both operands
 | 
						|
      return Cost;
 | 
						|
    }
 | 
						|
    case Instruction::Select:
 | 
						|
      if (ValTy->isFloatingPointTy())
 | 
						|
        return 4; // No load on condition for FP - costs a conditional jump.
 | 
						|
      return 1; // Load On Condition.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::
 | 
						|
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
 | 
						|
  // vlvgp will insert two grs into a vector register, so only count half the
 | 
						|
  // number of instructions.
 | 
						|
  if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
 | 
						|
    return ((Index % 2 == 0) ? 1 : 0);
 | 
						|
 | 
						|
  if (Opcode == Instruction::ExtractElement) {
 | 
						|
    int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
 | 
						|
 | 
						|
    // Give a slight penalty for moving out of vector pipeline to FXU unit.
 | 
						|
    if (Index == 0 && Val->isIntOrIntVectorTy())
 | 
						|
      Cost += 1;
 | 
						|
 | 
						|
    return Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
}
 | 
						|
 | 
						|
// Check if a load may be folded as a memory operand in its user.
 | 
						|
bool SystemZTTIImpl::
 | 
						|
isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
 | 
						|
  if (!Ld->hasOneUse())
 | 
						|
    return false;
 | 
						|
  FoldedValue = Ld;
 | 
						|
  const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
 | 
						|
  unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
 | 
						|
  unsigned TruncBits = 0;
 | 
						|
  unsigned SExtBits = 0;
 | 
						|
  unsigned ZExtBits = 0;
 | 
						|
  if (UserI->hasOneUse()) {
 | 
						|
    unsigned UserBits = UserI->getType()->getScalarSizeInBits();
 | 
						|
    if (isa<TruncInst>(UserI))
 | 
						|
      TruncBits = UserBits;
 | 
						|
    else if (isa<SExtInst>(UserI))
 | 
						|
      SExtBits = UserBits;
 | 
						|
    else if (isa<ZExtInst>(UserI))
 | 
						|
      ZExtBits = UserBits;
 | 
						|
  }
 | 
						|
  if (TruncBits || SExtBits || ZExtBits) {
 | 
						|
    FoldedValue = UserI;
 | 
						|
    UserI = cast<Instruction>(*UserI->user_begin());
 | 
						|
    // Load (single use) -> trunc/extend (single use) -> UserI
 | 
						|
  }
 | 
						|
  switch (UserI->getOpcode()) {
 | 
						|
  case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
 | 
						|
  case Instruction::Sub:
 | 
						|
    if (LoadedBits == 32 && ZExtBits == 64)
 | 
						|
      return true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
 | 
						|
    if (LoadedBits == 16 &&
 | 
						|
        (SExtBits == 32 ||
 | 
						|
         (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
 | 
						|
      return true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::SDiv:// SE: 32->64
 | 
						|
    if (LoadedBits == 32 && SExtBits == 64)
 | 
						|
      return true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::ICmp:
 | 
						|
    // This also makes sense for float operations, but disabled for now due
 | 
						|
    // to regressions.
 | 
						|
    // case Instruction::FCmp:
 | 
						|
    // case Instruction::FAdd:
 | 
						|
    // case Instruction::FSub:
 | 
						|
    // case Instruction::FMul:
 | 
						|
    // case Instruction::FDiv:
 | 
						|
 | 
						|
    // All possible extensions of memory checked above.
 | 
						|
    if (SExtBits || ZExtBits)
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned LoadOrTruncBits = (TruncBits ? TruncBits : LoadedBits);
 | 
						|
    return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                    unsigned Alignment, unsigned AddressSpace,
 | 
						|
                                    const Instruction *I) {
 | 
						|
  assert(!Src->isVoidTy() && "Invalid type");
 | 
						|
 | 
						|
  if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
 | 
						|
    // Store the load or its truncated or extended value in FoldedValue.
 | 
						|
    const Instruction *FoldedValue = nullptr;
 | 
						|
    if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
 | 
						|
      const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
 | 
						|
      assert (UserI->getNumOperands() == 2 && "Expected a binop.");
 | 
						|
 | 
						|
      // UserI can't fold two loads, so in that case return 0 cost only
 | 
						|
      // half of the time.
 | 
						|
      for (unsigned i = 0; i < 2; ++i) {
 | 
						|
        if (UserI->getOperand(i) == FoldedValue)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
 | 
						|
          LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
 | 
						|
          if (!OtherLoad &&
 | 
						|
              (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
 | 
						|
               isa<ZExtInst>(OtherOp)))
 | 
						|
            OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
 | 
						|
          if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
 | 
						|
            return i == 0; // Both operands foldable.
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return 0; // Only I is foldable in user.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumOps =
 | 
						|
    (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
 | 
						|
 | 
						|
  if (Src->getScalarSizeInBits() == 128)
 | 
						|
    // 128 bit scalars are held in a pair of two 64 bit registers.
 | 
						|
    NumOps *= 2;
 | 
						|
 | 
						|
  return  NumOps;
 | 
						|
}
 | 
						|
 | 
						|
int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
 | 
						|
                                               unsigned Factor,
 | 
						|
                                               ArrayRef<unsigned> Indices,
 | 
						|
                                               unsigned Alignment,
 | 
						|
                                               unsigned AddressSpace,
 | 
						|
                                               bool IsMasked) {
 | 
						|
  if (IsMasked)
 | 
						|
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | 
						|
                                             Alignment, AddressSpace, IsMasked);
 | 
						|
  assert(isa<VectorType>(VecTy) &&
 | 
						|
         "Expect a vector type for interleaved memory op");
 | 
						|
 | 
						|
  int NumWideParts = getNumVectorRegs(VecTy);
 | 
						|
 | 
						|
  // How many source vectors are handled to produce a vectorized operand?
 | 
						|
  int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
 | 
						|
  int NumSrcParts =
 | 
						|
    ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
 | 
						|
 | 
						|
  // A Load group may have gaps.
 | 
						|
  unsigned NumOperands =
 | 
						|
    ((Opcode == Instruction::Load) ? Indices.size() : Factor);
 | 
						|
 | 
						|
  // Each needed permute takes two vectors as input.
 | 
						|
  if (NumSrcParts > 1)
 | 
						|
    NumSrcParts--;
 | 
						|
  int NumPermutes = NumSrcParts * NumOperands;
 | 
						|
 | 
						|
  // Cost of load/store operations and the permutations needed.
 | 
						|
  return NumWideParts + NumPermutes;
 | 
						|
}
 |