forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2587 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2587 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines an implementation of Andersen's interprocedural alias
 | |
| // analysis
 | |
| //
 | |
| // In pointer analysis terms, this is a subset-based, flow-insensitive,
 | |
| // field-sensitive, and context-insensitive algorithm pointer algorithm.
 | |
| //
 | |
| // This algorithm is implemented as three stages:
 | |
| //   1. Object identification.
 | |
| //   2. Inclusion constraint identification.
 | |
| //   3. Offline constraint graph optimization
 | |
| //   4. Inclusion constraint solving.
 | |
| //
 | |
| // The object identification stage identifies all of the memory objects in the
 | |
| // program, which includes globals, heap allocated objects, and stack allocated
 | |
| // objects.
 | |
| //
 | |
| // The inclusion constraint identification stage finds all inclusion constraints
 | |
| // in the program by scanning the program, looking for pointer assignments and
 | |
| // other statements that effect the points-to graph.  For a statement like "A =
 | |
| // B", this statement is processed to indicate that A can point to anything that
 | |
| // B can point to.  Constraints can handle copies, loads, and stores, and
 | |
| // address taking.
 | |
| //
 | |
| // The offline constraint graph optimization portion includes offline variable
 | |
| // substitution algorithms intended to computer pointer and location
 | |
| // equivalences.  Pointer equivalences are those pointers that will have the
 | |
| // same points-to sets, and location equivalences are those variables that
 | |
| // always appear together in points-to sets.
 | |
| //
 | |
| // The inclusion constraint solving phase iteratively propagates the inclusion
 | |
| // constraints until a fixed point is reached.  This is an O(N^3) algorithm.
 | |
| //
 | |
| // Function constraints are handled as if they were structs with X fields.
 | |
| // Thus, an access to argument X of function Y is an access to node index
 | |
| // getNode(Y) + X.  This representation allows handling of indirect calls
 | |
| // without any issues.  To wit, an indirect call Y(a,b) is equivalent to
 | |
| // *(Y + 1) = a, *(Y + 2) = b.
 | |
| // The return node for a function is always located at getNode(F) +
 | |
| // CallReturnPos. The arguments start at getNode(F) + CallArgPos.
 | |
| //
 | |
| // Future Improvements:
 | |
| //   Offline detection of online cycles.  Use of BDD's.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| #include <list>
 | |
| #include <stack>
 | |
| #include <vector>
 | |
| #include <queue>
 | |
| 
 | |
| // Determining the actual set of nodes the universal set can consist of is very
 | |
| // expensive because it means propagating around very large sets.  We rely on
 | |
| // other analysis being able to determine which nodes can never be pointed to in
 | |
| // order to disambiguate further than "points-to anything".
 | |
| #define FULL_UNIVERSAL 0
 | |
| 
 | |
| using namespace llvm;
 | |
| STATISTIC(NumIters      , "Number of iterations to reach convergence");
 | |
| STATISTIC(NumConstraints, "Number of constraints");
 | |
| STATISTIC(NumNodes      , "Number of nodes");
 | |
| STATISTIC(NumUnified    , "Number of variables unified");
 | |
| STATISTIC(NumErased     , "Number of redundant constraints erased");
 | |
| 
 | |
| namespace {
 | |
|   const unsigned SelfRep = (unsigned)-1;
 | |
|   const unsigned Unvisited = (unsigned)-1;
 | |
|   // Position of the function return node relative to the function node.
 | |
|   const unsigned CallReturnPos = 1;
 | |
|   // Position of the function call node relative to the function node.
 | |
|   const unsigned CallFirstArgPos = 2;
 | |
| 
 | |
|   struct BitmapKeyInfo {
 | |
|     static inline SparseBitVector<> *getEmptyKey() {
 | |
|       return reinterpret_cast<SparseBitVector<> *>(-1);
 | |
|     }
 | |
|     static inline SparseBitVector<> *getTombstoneKey() {
 | |
|       return reinterpret_cast<SparseBitVector<> *>(-2);
 | |
|     }
 | |
|     static unsigned getHashValue(const SparseBitVector<> *bitmap) {
 | |
|       return bitmap->getHashValue();
 | |
|     }
 | |
|     static bool isEqual(const SparseBitVector<> *LHS,
 | |
|                         const SparseBitVector<> *RHS) {
 | |
|       if (LHS == RHS)
 | |
|         return true;
 | |
|       else if (LHS == getEmptyKey() || RHS == getEmptyKey()
 | |
|                || LHS == getTombstoneKey() || RHS == getTombstoneKey())
 | |
|         return false;
 | |
| 
 | |
|       return *LHS == *RHS;
 | |
|     }
 | |
| 
 | |
|     static bool isPod() { return true; }
 | |
|   };
 | |
| 
 | |
|   class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
 | |
|                                       private InstVisitor<Andersens> {
 | |
|     struct Node;
 | |
| 
 | |
|     /// Constraint - Objects of this structure are used to represent the various
 | |
|     /// constraints identified by the algorithm.  The constraints are 'copy',
 | |
|     /// for statements like "A = B", 'load' for statements like "A = *B",
 | |
|     /// 'store' for statements like "*A = B", and AddressOf for statements like
 | |
|     /// A = alloca;  The Offset is applied as *(A + K) = B for stores,
 | |
|     /// A = *(B + K) for loads, and A = B + K for copies.  It is
 | |
|     /// illegal on addressof constraints (because it is statically
 | |
|     /// resolvable to A = &C where C = B + K)
 | |
| 
 | |
|     struct Constraint {
 | |
|       enum ConstraintType { Copy, Load, Store, AddressOf } Type;
 | |
|       unsigned Dest;
 | |
|       unsigned Src;
 | |
|       unsigned Offset;
 | |
| 
 | |
|       Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
 | |
|         : Type(Ty), Dest(D), Src(S), Offset(O) {
 | |
|         assert(Offset == 0 || Ty != AddressOf &&
 | |
|                "Offset is illegal on addressof constraints");
 | |
|       }
 | |
| 
 | |
|       bool operator==(const Constraint &RHS) const {
 | |
|         return RHS.Type == Type
 | |
|           && RHS.Dest == Dest
 | |
|           && RHS.Src == Src
 | |
|           && RHS.Offset == Offset;
 | |
|       }
 | |
| 
 | |
|       bool operator!=(const Constraint &RHS) const {
 | |
|         return !(*this == RHS);
 | |
|       }
 | |
| 
 | |
|       bool operator<(const Constraint &RHS) const {
 | |
|         if (RHS.Type != Type)
 | |
|           return RHS.Type < Type;
 | |
|         else if (RHS.Dest != Dest)
 | |
|           return RHS.Dest < Dest;
 | |
|         else if (RHS.Src != Src)
 | |
|           return RHS.Src < Src;
 | |
|         return RHS.Offset < Offset;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Information DenseSet requires implemented in order to be able to do
 | |
|     // it's thing
 | |
|     struct PairKeyInfo {
 | |
|       static inline std::pair<unsigned, unsigned> getEmptyKey() {
 | |
|         return std::make_pair(~0UL, ~0UL);
 | |
|       }
 | |
|       static inline std::pair<unsigned, unsigned> getTombstoneKey() {
 | |
|         return std::make_pair(~0UL - 1, ~0UL - 1);
 | |
|       }
 | |
|       static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
 | |
|         return P.first ^ P.second;
 | |
|       }
 | |
|       static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
 | |
|                               const std::pair<unsigned, unsigned> &RHS) {
 | |
|         return LHS == RHS;
 | |
|       }
 | |
|     };
 | |
|     
 | |
|     struct ConstraintKeyInfo {
 | |
|       static inline Constraint getEmptyKey() {
 | |
|         return Constraint(Constraint::Copy, ~0UL, ~0UL, ~0UL);
 | |
|       }
 | |
|       static inline Constraint getTombstoneKey() {
 | |
|         return Constraint(Constraint::Copy, ~0UL - 1, ~0UL - 1, ~0UL - 1);
 | |
|       }
 | |
|       static unsigned getHashValue(const Constraint &C) {
 | |
|         return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
 | |
|       }
 | |
|       static bool isEqual(const Constraint &LHS,
 | |
|                           const Constraint &RHS) {
 | |
|         return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
 | |
|           && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Node class - This class is used to represent a node in the constraint
 | |
|     // graph.  Due to various optimizations, it is not always the case that
 | |
|     // there is a mapping from a Node to a Value.  In particular, we add
 | |
|     // artificial Node's that represent the set of pointed-to variables shared
 | |
|     // for each location equivalent Node.
 | |
|     struct Node {
 | |
|     private:
 | |
|       static unsigned Counter;
 | |
| 
 | |
|     public:
 | |
|       Value *Val;
 | |
|       SparseBitVector<> *Edges;
 | |
|       SparseBitVector<> *PointsTo;
 | |
|       SparseBitVector<> *OldPointsTo;
 | |
|       std::list<Constraint> Constraints;
 | |
| 
 | |
|       // Pointer and location equivalence labels
 | |
|       unsigned PointerEquivLabel;
 | |
|       unsigned LocationEquivLabel;
 | |
|       // Predecessor edges, both real and implicit
 | |
|       SparseBitVector<> *PredEdges;
 | |
|       SparseBitVector<> *ImplicitPredEdges;
 | |
|       // Set of nodes that point to us, only use for location equivalence.
 | |
|       SparseBitVector<> *PointedToBy;
 | |
|       // Number of incoming edges, used during variable substitution to early
 | |
|       // free the points-to sets
 | |
|       unsigned NumInEdges;
 | |
|       // True if our points-to set is in the Set2PEClass map
 | |
|       bool StoredInHash;
 | |
|       // True if our node has no indirect constraints (complex or otherwise)
 | |
|       bool Direct;
 | |
|       // True if the node is address taken, *or* it is part of a group of nodes
 | |
|       // that must be kept together.  This is set to true for functions and
 | |
|       // their arg nodes, which must be kept at the same position relative to
 | |
|       // their base function node.
 | |
|       bool AddressTaken;
 | |
| 
 | |
|       // Nodes in cycles (or in equivalence classes) are united together using a
 | |
|       // standard union-find representation with path compression.  NodeRep
 | |
|       // gives the index into GraphNodes for the representative Node.
 | |
|       unsigned NodeRep;
 | |
| 
 | |
|       // Modification timestamp.  Assigned from Counter.
 | |
|       // Used for work list prioritization.
 | |
|       unsigned Timestamp;
 | |
| 
 | |
|       explicit Node(bool direct = true) :
 | |
|         Val(0), Edges(0), PointsTo(0), OldPointsTo(0), 
 | |
|         PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
 | |
|         ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
 | |
|         StoredInHash(false), Direct(direct), AddressTaken(false),
 | |
|         NodeRep(SelfRep), Timestamp(0) { }
 | |
| 
 | |
|       Node *setValue(Value *V) {
 | |
|         assert(Val == 0 && "Value already set for this node!");
 | |
|         Val = V;
 | |
|         return this;
 | |
|       }
 | |
| 
 | |
|       /// getValue - Return the LLVM value corresponding to this node.
 | |
|       ///
 | |
|       Value *getValue() const { return Val; }
 | |
| 
 | |
|       /// addPointerTo - Add a pointer to the list of pointees of this node,
 | |
|       /// returning true if this caused a new pointer to be added, or false if
 | |
|       /// we already knew about the points-to relation.
 | |
|       bool addPointerTo(unsigned Node) {
 | |
|         return PointsTo->test_and_set(Node);
 | |
|       }
 | |
| 
 | |
|       /// intersects - Return true if the points-to set of this node intersects
 | |
|       /// with the points-to set of the specified node.
 | |
|       bool intersects(Node *N) const;
 | |
| 
 | |
|       /// intersectsIgnoring - Return true if the points-to set of this node
 | |
|       /// intersects with the points-to set of the specified node on any nodes
 | |
|       /// except for the specified node to ignore.
 | |
|       bool intersectsIgnoring(Node *N, unsigned) const;
 | |
| 
 | |
|       // Timestamp a node (used for work list prioritization)
 | |
|       void Stamp() {
 | |
|         Timestamp = Counter++;
 | |
|       }
 | |
| 
 | |
|       bool isRep() {
 | |
|         return( (int) NodeRep < 0 );
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     struct WorkListElement {
 | |
|       Node* node;
 | |
|       unsigned Timestamp;
 | |
|       WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
 | |
| 
 | |
|       // Note that we reverse the sense of the comparison because we
 | |
|       // actually want to give low timestamps the priority over high,
 | |
|       // whereas priority is typically interpreted as a greater value is
 | |
|       // given high priority.
 | |
|       bool operator<(const WorkListElement& that) const {
 | |
|         return( this->Timestamp > that.Timestamp );
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Priority-queue based work list specialized for Nodes.
 | |
|     class WorkList {
 | |
|       std::priority_queue<WorkListElement> Q;
 | |
| 
 | |
|     public:
 | |
|       void insert(Node* n) {
 | |
|         Q.push( WorkListElement(n, n->Timestamp) );
 | |
|       }
 | |
| 
 | |
|       // We automatically discard non-representative nodes and nodes
 | |
|       // that were in the work list twice (we keep a copy of the
 | |
|       // timestamp in the work list so we can detect this situation by
 | |
|       // comparing against the node's current timestamp).
 | |
|       Node* pop() {
 | |
|         while( !Q.empty() ) {
 | |
|           WorkListElement x = Q.top(); Q.pop();
 | |
|           Node* INode = x.node;
 | |
| 
 | |
|           if( INode->isRep() &&
 | |
|               INode->Timestamp == x.Timestamp ) {
 | |
|             return(x.node);
 | |
|           }
 | |
|         }
 | |
|         return(0);
 | |
|       }
 | |
| 
 | |
|       bool empty() {
 | |
|         return Q.empty();
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// GraphNodes - This vector is populated as part of the object
 | |
|     /// identification stage of the analysis, which populates this vector with a
 | |
|     /// node for each memory object and fills in the ValueNodes map.
 | |
|     std::vector<Node> GraphNodes;
 | |
| 
 | |
|     /// ValueNodes - This map indicates the Node that a particular Value* is
 | |
|     /// represented by.  This contains entries for all pointers.
 | |
|     DenseMap<Value*, unsigned> ValueNodes;
 | |
| 
 | |
|     /// ObjectNodes - This map contains entries for each memory object in the
 | |
|     /// program: globals, alloca's and mallocs.
 | |
|     DenseMap<Value*, unsigned> ObjectNodes;
 | |
| 
 | |
|     /// ReturnNodes - This map contains an entry for each function in the
 | |
|     /// program that returns a value.
 | |
|     DenseMap<Function*, unsigned> ReturnNodes;
 | |
| 
 | |
|     /// VarargNodes - This map contains the entry used to represent all pointers
 | |
|     /// passed through the varargs portion of a function call for a particular
 | |
|     /// function.  An entry is not present in this map for functions that do not
 | |
|     /// take variable arguments.
 | |
|     DenseMap<Function*, unsigned> VarargNodes;
 | |
| 
 | |
| 
 | |
|     /// Constraints - This vector contains a list of all of the constraints
 | |
|     /// identified by the program.
 | |
|     std::vector<Constraint> Constraints;
 | |
| 
 | |
|     // Map from graph node to maximum K value that is allowed (for functions,
 | |
|     // this is equivalent to the number of arguments + CallFirstArgPos)
 | |
|     std::map<unsigned, unsigned> MaxK;
 | |
| 
 | |
|     /// This enum defines the GraphNodes indices that correspond to important
 | |
|     /// fixed sets.
 | |
|     enum {
 | |
|       UniversalSet = 0,
 | |
|       NullPtr      = 1,
 | |
|       NullObject   = 2,
 | |
|       NumberSpecialNodes
 | |
|     };
 | |
|     // Stack for Tarjan's
 | |
|     std::stack<unsigned> SCCStack;
 | |
|     // Map from Graph Node to DFS number
 | |
|     std::vector<unsigned> Node2DFS;
 | |
|     // Map from Graph Node to Deleted from graph.
 | |
|     std::vector<bool> Node2Deleted;
 | |
|     // Same as Node Maps, but implemented as std::map because it is faster to
 | |
|     // clear 
 | |
|     std::map<unsigned, unsigned> Tarjan2DFS;
 | |
|     std::map<unsigned, bool> Tarjan2Deleted;
 | |
|     // Current DFS number
 | |
|     unsigned DFSNumber;
 | |
| 
 | |
|     // Work lists.
 | |
|     WorkList w1, w2;
 | |
|     WorkList *CurrWL, *NextWL; // "current" and "next" work lists
 | |
| 
 | |
|     // Offline variable substitution related things
 | |
| 
 | |
|     // Temporary rep storage, used because we can't collapse SCC's in the
 | |
|     // predecessor graph by uniting the variables permanently, we can only do so
 | |
|     // for the successor graph.
 | |
|     std::vector<unsigned> VSSCCRep;
 | |
|     // Mapping from node to whether we have visited it during SCC finding yet.
 | |
|     std::vector<bool> Node2Visited;
 | |
|     // During variable substitution, we create unknowns to represent the unknown
 | |
|     // value that is a dereference of a variable.  These nodes are known as
 | |
|     // "ref" nodes (since they represent the value of dereferences).
 | |
|     unsigned FirstRefNode;
 | |
|     // During HVN, we create represent address taken nodes as if they were
 | |
|     // unknown (since HVN, unlike HU, does not evaluate unions).
 | |
|     unsigned FirstAdrNode;
 | |
|     // Current pointer equivalence class number
 | |
|     unsigned PEClass;
 | |
|     // Mapping from points-to sets to equivalence classes
 | |
|     typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
 | |
|     BitVectorMap Set2PEClass;
 | |
|     // Mapping from pointer equivalences to the representative node.  -1 if we
 | |
|     // have no representative node for this pointer equivalence class yet.
 | |
|     std::vector<int> PEClass2Node;
 | |
|     // Mapping from pointer equivalences to representative node.  This includes
 | |
|     // pointer equivalent but not location equivalent variables. -1 if we have
 | |
|     // no representative node for this pointer equivalence class yet.
 | |
|     std::vector<int> PENLEClass2Node;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     Andersens() : ModulePass((intptr_t)&ID) {}
 | |
| 
 | |
|     bool runOnModule(Module &M) {
 | |
|       InitializeAliasAnalysis(this);
 | |
|       IdentifyObjects(M);
 | |
|       CollectConstraints(M);
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa-constraints"
 | |
|       DEBUG(PrintConstraints());
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
|       SolveConstraints();
 | |
|       DEBUG(PrintPointsToGraph());
 | |
| 
 | |
|       // Free the constraints list, as we don't need it to respond to alias
 | |
|       // requests.
 | |
|       ObjectNodes.clear();
 | |
|       ReturnNodes.clear();
 | |
|       VarargNodes.clear();
 | |
|       std::vector<Constraint>().swap(Constraints);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() {
 | |
|       // FIXME: Until we have transitively required passes working correctly,
 | |
|       // this cannot be enabled!  Otherwise, using -count-aa with the pass
 | |
|       // causes memory to be freed too early. :(
 | |
| #if 0
 | |
|       // The memory objects and ValueNodes data structures at the only ones that
 | |
|       // are still live after construction.
 | |
|       std::vector<Node>().swap(GraphNodes);
 | |
|       ValueNodes.clear();
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AliasAnalysis::getAnalysisUsage(AU);
 | |
|       AU.setPreservesAll();                         // Does not transform code
 | |
|     }
 | |
| 
 | |
|     //------------------------------------------------
 | |
|     // Implement the AliasAnalysis API
 | |
|     //
 | |
|     AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                       const Value *V2, unsigned V2Size);
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
 | |
|     void getMustAliases(Value *P, std::vector<Value*> &RetVals);
 | |
|     bool pointsToConstantMemory(const Value *P);
 | |
| 
 | |
|     virtual void deleteValue(Value *V) {
 | |
|       ValueNodes.erase(V);
 | |
|       getAnalysis<AliasAnalysis>().deleteValue(V);
 | |
|     }
 | |
| 
 | |
|     virtual void copyValue(Value *From, Value *To) {
 | |
|       ValueNodes[To] = ValueNodes[From];
 | |
|       getAnalysis<AliasAnalysis>().copyValue(From, To);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// getNode - Return the node corresponding to the specified pointer scalar.
 | |
|     ///
 | |
|     unsigned getNode(Value *V) {
 | |
|       if (Constant *C = dyn_cast<Constant>(V))
 | |
|         if (!isa<GlobalValue>(C))
 | |
|           return getNodeForConstantPointer(C);
 | |
| 
 | |
|       DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
 | |
|       if (I == ValueNodes.end()) {
 | |
| #ifndef NDEBUG
 | |
|         V->dump();
 | |
| #endif
 | |
|         assert(0 && "Value does not have a node in the points-to graph!");
 | |
|       }
 | |
|       return I->second;
 | |
|     }
 | |
| 
 | |
|     /// getObject - Return the node corresponding to the memory object for the
 | |
|     /// specified global or allocation instruction.
 | |
|     unsigned getObject(Value *V) {
 | |
|       DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
 | |
|       assert(I != ObjectNodes.end() &&
 | |
|              "Value does not have an object in the points-to graph!");
 | |
|       return I->second;
 | |
|     }
 | |
| 
 | |
|     /// getReturnNode - Return the node representing the return value for the
 | |
|     /// specified function.
 | |
|     unsigned getReturnNode(Function *F) {
 | |
|       DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
 | |
|       assert(I != ReturnNodes.end() && "Function does not return a value!");
 | |
|       return I->second;
 | |
|     }
 | |
| 
 | |
|     /// getVarargNode - Return the node representing the variable arguments
 | |
|     /// formal for the specified function.
 | |
|     unsigned getVarargNode(Function *F) {
 | |
|       DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
 | |
|       assert(I != VarargNodes.end() && "Function does not take var args!");
 | |
|       return I->second;
 | |
|     }
 | |
| 
 | |
|     /// getNodeValue - Get the node for the specified LLVM value and set the
 | |
|     /// value for it to be the specified value.
 | |
|     unsigned getNodeValue(Value &V) {
 | |
|       unsigned Index = getNode(&V);
 | |
|       GraphNodes[Index].setValue(&V);
 | |
|       return Index;
 | |
|     }
 | |
| 
 | |
|     unsigned UniteNodes(unsigned First, unsigned Second,
 | |
|                         bool UnionByRank = true);
 | |
|     unsigned FindNode(unsigned Node);
 | |
| 
 | |
|     void IdentifyObjects(Module &M);
 | |
|     void CollectConstraints(Module &M);
 | |
|     bool AnalyzeUsesOfFunction(Value *);
 | |
|     void CreateConstraintGraph();
 | |
|     void OptimizeConstraints();
 | |
|     unsigned FindEquivalentNode(unsigned, unsigned);
 | |
|     void ClumpAddressTaken();
 | |
|     void RewriteConstraints();
 | |
|     void HU();
 | |
|     void HVN();
 | |
|     void UnitePointerEquivalences();
 | |
|     void SolveConstraints();
 | |
|     bool QueryNode(unsigned Node);
 | |
|     void Condense(unsigned Node);
 | |
|     void HUValNum(unsigned Node);
 | |
|     void HVNValNum(unsigned Node);
 | |
|     unsigned getNodeForConstantPointer(Constant *C);
 | |
|     unsigned getNodeForConstantPointerTarget(Constant *C);
 | |
|     void AddGlobalInitializerConstraints(unsigned, Constant *C);
 | |
| 
 | |
|     void AddConstraintsForNonInternalLinkage(Function *F);
 | |
|     void AddConstraintsForCall(CallSite CS, Function *F);
 | |
|     bool AddConstraintsForExternalCall(CallSite CS, Function *F);
 | |
| 
 | |
| 
 | |
|     void PrintNode(Node *N);
 | |
|     void PrintConstraints();
 | |
|     void PrintConstraint(const Constraint &);
 | |
|     void PrintLabels();
 | |
|     void PrintPointsToGraph();
 | |
| 
 | |
|     //===------------------------------------------------------------------===//
 | |
|     // Instruction visitation methods for adding constraints
 | |
|     //
 | |
|     friend class InstVisitor<Andersens>;
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
 | |
|     void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
 | |
|     void visitCallSite(CallSite CS);
 | |
|     void visitAllocationInst(AllocationInst &AI);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitCastInst(CastInst &CI);
 | |
|     void visitICmpInst(ICmpInst &ICI) {} // NOOP!
 | |
|     void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     void visitVAArg(VAArgInst &I);
 | |
|     void visitInstruction(Instruction &I);
 | |
| 
 | |
|   };
 | |
| 
 | |
|   char Andersens::ID = 0;
 | |
|   RegisterPass<Andersens> X("anders-aa",
 | |
|                             "Andersen's Interprocedural Alias Analysis");
 | |
|   RegisterAnalysisGroup<AliasAnalysis> Y(X);
 | |
| 
 | |
|   // Initialize Timestamp Counter (static).
 | |
|   unsigned Andersens::Node::Counter = 0;
 | |
| }
 | |
| 
 | |
| ModulePass *llvm::createAndersensPass() { return new Andersens(); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                  AliasAnalysis Interface Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
 | |
|                                             const Value *V2, unsigned V2Size) {
 | |
|   Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
 | |
|   Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
 | |
| 
 | |
|   // Check to see if the two pointers are known to not alias.  They don't alias
 | |
|   // if their points-to sets do not intersect.
 | |
|   if (!N1->intersectsIgnoring(N2, NullObject))
 | |
|     return NoAlias;
 | |
| 
 | |
|   return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | |
|   // The only thing useful that we can contribute for mod/ref information is
 | |
|   // when calling external function calls: if we know that memory never escapes
 | |
|   // from the program, it cannot be modified by an external call.
 | |
|   //
 | |
|   // NOTE: This is not really safe, at least not when the entire program is not
 | |
|   // available.  The deal is that the external function could call back into the
 | |
|   // program and modify stuff.  We ignore this technical niggle for now.  This
 | |
|   // is, after all, a "research quality" implementation of Andersen's analysis.
 | |
|   if (Function *F = CS.getCalledFunction())
 | |
|     if (F->isDeclaration()) {
 | |
|       Node *N1 = &GraphNodes[FindNode(getNode(P))];
 | |
| 
 | |
|       if (N1->PointsTo->empty())
 | |
|         return NoModRef;
 | |
| 
 | |
|       if (!N1->PointsTo->test(UniversalSet))
 | |
|         return NoModRef;  // P doesn't point to the universal set.
 | |
|     }
 | |
| 
 | |
|   return AliasAnalysis::getModRefInfo(CS, P, Size);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
 | |
|   return AliasAnalysis::getModRefInfo(CS1,CS2);
 | |
| }
 | |
| 
 | |
| /// getMustAlias - We can provide must alias information if we know that a
 | |
| /// pointer can only point to a specific function or the null pointer.
 | |
| /// Unfortunately we cannot determine must-alias information for global
 | |
| /// variables or any other memory memory objects because we do not track whether
 | |
| /// a pointer points to the beginning of an object or a field of it.
 | |
| void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
 | |
|   Node *N = &GraphNodes[FindNode(getNode(P))];
 | |
|   if (N->PointsTo->count() == 1) {
 | |
|     Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
 | |
|     // If a function is the only object in the points-to set, then it must be
 | |
|     // the destination.  Note that we can't handle global variables here,
 | |
|     // because we don't know if the pointer is actually pointing to a field of
 | |
|     // the global or to the beginning of it.
 | |
|     if (Value *V = Pointee->getValue()) {
 | |
|       if (Function *F = dyn_cast<Function>(V))
 | |
|         RetVals.push_back(F);
 | |
|     } else {
 | |
|       // If the object in the points-to set is the null object, then the null
 | |
|       // pointer is a must alias.
 | |
|       if (Pointee == &GraphNodes[NullObject])
 | |
|         RetVals.push_back(Constant::getNullValue(P->getType()));
 | |
|     }
 | |
|   }
 | |
|   AliasAnalysis::getMustAliases(P, RetVals);
 | |
| }
 | |
| 
 | |
| /// pointsToConstantMemory - If we can determine that this pointer only points
 | |
| /// to constant memory, return true.  In practice, this means that if the
 | |
| /// pointer can only point to constant globals, functions, or the null pointer,
 | |
| /// return true.
 | |
| ///
 | |
| bool Andersens::pointsToConstantMemory(const Value *P) {
 | |
|   Node *N = &GraphNodes[FindNode(getNode((Value*)P))];
 | |
|   unsigned i;
 | |
| 
 | |
|   for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
 | |
|        bi != N->PointsTo->end();
 | |
|        ++bi) {
 | |
|     i = *bi;
 | |
|     Node *Pointee = &GraphNodes[i];
 | |
|     if (Value *V = Pointee->getValue()) {
 | |
|       if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
 | |
|                                    !cast<GlobalVariable>(V)->isConstant()))
 | |
|         return AliasAnalysis::pointsToConstantMemory(P);
 | |
|     } else {
 | |
|       if (i != NullObject)
 | |
|         return AliasAnalysis::pointsToConstantMemory(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Object Identification Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IdentifyObjects - This stage scans the program, adding an entry to the
 | |
| /// GraphNodes list for each memory object in the program (global stack or
 | |
| /// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
 | |
| ///
 | |
| void Andersens::IdentifyObjects(Module &M) {
 | |
|   unsigned NumObjects = 0;
 | |
| 
 | |
|   // Object #0 is always the universal set: the object that we don't know
 | |
|   // anything about.
 | |
|   assert(NumObjects == UniversalSet && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Object #1 always represents the null pointer.
 | |
|   assert(NumObjects == NullPtr && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Object #2 always represents the null object (the object pointed to by null)
 | |
|   assert(NumObjects == NullObject && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Add all the globals first.
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E; ++I) {
 | |
|     ObjectNodes[I] = NumObjects++;
 | |
|     ValueNodes[I] = NumObjects++;
 | |
|   }
 | |
| 
 | |
|   // Add nodes for all of the functions and the instructions inside of them.
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     // The function itself is a memory object.
 | |
|     unsigned First = NumObjects;
 | |
|     ValueNodes[F] = NumObjects++;
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|       ReturnNodes[F] = NumObjects++;
 | |
|     if (F->getFunctionType()->isVarArg())
 | |
|       VarargNodes[F] = NumObjects++;
 | |
| 
 | |
| 
 | |
|     // Add nodes for all of the incoming pointer arguments.
 | |
|     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I)
 | |
|       {
 | |
|         if (isa<PointerType>(I->getType()))
 | |
|           ValueNodes[I] = NumObjects++;
 | |
|       }
 | |
|     MaxK[First] = NumObjects - First;
 | |
| 
 | |
|     // Scan the function body, creating a memory object for each heap/stack
 | |
|     // allocation in the body of the function and a node to represent all
 | |
|     // pointer values defined by instructions and used as operands.
 | |
|     for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | |
|       // If this is an heap or stack allocation, create a node for the memory
 | |
|       // object.
 | |
|       if (isa<PointerType>(II->getType())) {
 | |
|         ValueNodes[&*II] = NumObjects++;
 | |
|         if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
 | |
|           ObjectNodes[AI] = NumObjects++;
 | |
|       }
 | |
| 
 | |
|       // Calls to inline asm need to be added as well because the callee isn't
 | |
|       // referenced anywhere else.
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
 | |
|         Value *Callee = CI->getCalledValue();
 | |
|         if (isa<InlineAsm>(Callee))
 | |
|           ValueNodes[Callee] = NumObjects++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many objects to create, make them all now!
 | |
|   GraphNodes.resize(NumObjects);
 | |
|   NumNodes += NumObjects;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Constraint Identification Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getNodeForConstantPointer - Return the node corresponding to the constant
 | |
| /// pointer itself.
 | |
| unsigned Andersens::getNodeForConstantPointer(Constant *C) {
 | |
|   assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
 | |
|     return NullPtr;
 | |
|   else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return getNode(GV);
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       return getNodeForConstantPointer(CE->getOperand(0));
 | |
|     case Instruction::IntToPtr:
 | |
|       return UniversalSet;
 | |
|     case Instruction::BitCast:
 | |
|       return getNodeForConstantPointer(CE->getOperand(0));
 | |
|     default:
 | |
|       cerr << "Constant Expr not yet handled: " << *CE << "\n";
 | |
|       assert(0);
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant pointer!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getNodeForConstantPointerTarget - Return the node POINTED TO by the
 | |
| /// specified constant pointer.
 | |
| unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
 | |
|   assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(C))
 | |
|     return NullObject;
 | |
|   else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return getObject(GV);
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       return getNodeForConstantPointerTarget(CE->getOperand(0));
 | |
|     case Instruction::IntToPtr:
 | |
|       return UniversalSet;
 | |
|     case Instruction::BitCast:
 | |
|       return getNodeForConstantPointerTarget(CE->getOperand(0));
 | |
|     default:
 | |
|       cerr << "Constant Expr not yet handled: " << *CE << "\n";
 | |
|       assert(0);
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant pointer!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
 | |
| /// object N, which contains values indicated by C.
 | |
| void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
 | |
|                                                 Constant *C) {
 | |
|   if (C->getType()->isFirstClassType()) {
 | |
|     if (isa<PointerType>(C->getType()))
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
 | |
|                                        getNodeForConstantPointer(C)));
 | |
|   } else if (C->isNullValue()) {
 | |
|     Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
 | |
|                                      NullObject));
 | |
|     return;
 | |
|   } else if (!isa<UndefValue>(C)) {
 | |
|     // If this is an array or struct, include constraints for each element.
 | |
|     assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
 | |
|     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
 | |
|       AddGlobalInitializerConstraints(NodeIndex,
 | |
|                                       cast<Constant>(C->getOperand(i)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddConstraintsForNonInternalLinkage - If this function does not have
 | |
| /// internal linkage, realize that we can't trust anything passed into or
 | |
| /// returned by this function.
 | |
| void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | |
|     if (isa<PointerType>(I->getType()))
 | |
|       // If this is an argument of an externally accessible function, the
 | |
|       // incoming pointer might point to anything.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
 | |
|                                        UniversalSet));
 | |
| }
 | |
| 
 | |
| /// AddConstraintsForCall - If this is a call to a "known" function, add the
 | |
| /// constraints and return true.  If this is a call to an unknown function,
 | |
| /// return false.
 | |
| bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
 | |
|   assert(F->isDeclaration() && "Not an external function!");
 | |
| 
 | |
|   // These functions don't induce any points-to constraints.
 | |
|   if (F->getName() == "atoi" || F->getName() == "atof" ||
 | |
|       F->getName() == "atol" || F->getName() == "atoll" ||
 | |
|       F->getName() == "remove" || F->getName() == "unlink" ||
 | |
|       F->getName() == "rename" || F->getName() == "memcmp" ||
 | |
|       F->getName() == "llvm.memset.i32" ||
 | |
|       F->getName() == "llvm.memset.i64" ||
 | |
|       F->getName() == "strcmp" || F->getName() == "strncmp" ||
 | |
|       F->getName() == "execl" || F->getName() == "execlp" ||
 | |
|       F->getName() == "execle" || F->getName() == "execv" ||
 | |
|       F->getName() == "execvp" || F->getName() == "chmod" ||
 | |
|       F->getName() == "puts" || F->getName() == "write" ||
 | |
|       F->getName() == "open" || F->getName() == "create" ||
 | |
|       F->getName() == "truncate" || F->getName() == "chdir" ||
 | |
|       F->getName() == "mkdir" || F->getName() == "rmdir" ||
 | |
|       F->getName() == "read" || F->getName() == "pipe" ||
 | |
|       F->getName() == "wait" || F->getName() == "time" ||
 | |
|       F->getName() == "stat" || F->getName() == "fstat" ||
 | |
|       F->getName() == "lstat" || F->getName() == "strtod" ||
 | |
|       F->getName() == "strtof" || F->getName() == "strtold" ||
 | |
|       F->getName() == "fopen" || F->getName() == "fdopen" ||
 | |
|       F->getName() == "freopen" ||
 | |
|       F->getName() == "fflush" || F->getName() == "feof" ||
 | |
|       F->getName() == "fileno" || F->getName() == "clearerr" ||
 | |
|       F->getName() == "rewind" || F->getName() == "ftell" ||
 | |
|       F->getName() == "ferror" || F->getName() == "fgetc" ||
 | |
|       F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
 | |
|       F->getName() == "fwrite" || F->getName() == "fread" ||
 | |
|       F->getName() == "fgets" || F->getName() == "ungetc" ||
 | |
|       F->getName() == "fputc" ||
 | |
|       F->getName() == "fputs" || F->getName() == "putc" ||
 | |
|       F->getName() == "ftell" || F->getName() == "rewind" ||
 | |
|       F->getName() == "_IO_putc" || F->getName() == "fseek" ||
 | |
|       F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
 | |
|       F->getName() == "printf" || F->getName() == "fprintf" ||
 | |
|       F->getName() == "sprintf" || F->getName() == "vprintf" ||
 | |
|       F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
 | |
|       F->getName() == "scanf" || F->getName() == "fscanf" ||
 | |
|       F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
 | |
|       F->getName() == "modf")
 | |
|     return true;
 | |
| 
 | |
| 
 | |
|   // These functions do induce points-to edges.
 | |
|   if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" ||
 | |
|       F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" ||
 | |
|       F->getName() == "memmove") {
 | |
| 
 | |
|     // *Dest = *Src, which requires an artificial graph node to represent the
 | |
|     // constraint.  It is broken up into *Dest = temp, temp = *Src
 | |
|     unsigned FirstArg = getNode(CS.getArgument(0));
 | |
|     unsigned SecondArg = getNode(CS.getArgument(1));
 | |
|     unsigned TempArg = GraphNodes.size();
 | |
|     GraphNodes.push_back(Node());
 | |
|     Constraints.push_back(Constraint(Constraint::Store,
 | |
|                                      FirstArg, TempArg));
 | |
|     Constraints.push_back(Constraint(Constraint::Load,
 | |
|                                      TempArg, SecondArg));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Result = Arg0
 | |
|   if (F->getName() == "realloc" || F->getName() == "strchr" ||
 | |
|       F->getName() == "strrchr" || F->getName() == "strstr" ||
 | |
|       F->getName() == "strtok") {
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      getNode(CS.getInstruction()),
 | |
|                                      getNode(CS.getArgument(0))));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
 | |
| /// If this is used by anything complex (i.e., the address escapes), return
 | |
| /// true.
 | |
| bool Andersens::AnalyzeUsesOfFunction(Value *V) {
 | |
| 
 | |
|   if (!isa<PointerType>(V->getType())) return true;
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
 | |
|     if (dyn_cast<LoadInst>(*UI)) {
 | |
|       return false;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | |
|       if (V == SI->getOperand(1)) {
 | |
|         return false;
 | |
|       } else if (SI->getOperand(1)) {
 | |
|         return true;  // Storing the pointer
 | |
|       }
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | |
|       if (AnalyzeUsesOfFunction(GEP)) return true;
 | |
|     } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
 | |
|       // Make sure that this is just the function being called, not that it is
 | |
|       // passing into the function.
 | |
|       for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
 | |
|         if (CI->getOperand(i) == V) return true;
 | |
|     } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
 | |
|       // Make sure that this is just the function being called, not that it is
 | |
|       // passing into the function.
 | |
|       for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
 | |
|         if (II->getOperand(i) == V) return true;
 | |
|     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr ||
 | |
|           CE->getOpcode() == Instruction::BitCast) {
 | |
|         if (AnalyzeUsesOfFunction(CE))
 | |
|           return true;
 | |
|       } else {
 | |
|         return true;
 | |
|       }
 | |
|     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
 | |
|       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
 | |
|         return true;  // Allow comparison against null.
 | |
|     } else if (dyn_cast<FreeInst>(*UI)) {
 | |
|       return false;
 | |
|     } else {
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CollectConstraints - This stage scans the program, adding a constraint to
 | |
| /// the Constraints list for each instruction in the program that induces a
 | |
| /// constraint, and setting up the initial points-to graph.
 | |
| ///
 | |
| void Andersens::CollectConstraints(Module &M) {
 | |
|   // First, the universal set points to itself.
 | |
|   Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
 | |
|                                    UniversalSet));
 | |
|   Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
 | |
|                                    UniversalSet));
 | |
| 
 | |
|   // Next, the null pointer points to the null object.
 | |
|   Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
 | |
| 
 | |
|   // Next, add any constraints on global variables and their initializers.
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E; ++I) {
 | |
|     // Associate the address of the global object as pointing to the memory for
 | |
|     // the global: &G = <G memory>
 | |
|     unsigned ObjectIndex = getObject(I);
 | |
|     Node *Object = &GraphNodes[ObjectIndex];
 | |
|     Object->setValue(I);
 | |
|     Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
 | |
|                                      ObjectIndex));
 | |
| 
 | |
|     if (I->hasInitializer()) {
 | |
|       AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
 | |
|     } else {
 | |
|       // If it doesn't have an initializer (i.e. it's defined in another
 | |
|       // translation unit), it points to the universal set.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
 | |
|                                        UniversalSet));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     // Set up the return value node.
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|       GraphNodes[getReturnNode(F)].setValue(F);
 | |
|     if (F->getFunctionType()->isVarArg())
 | |
|       GraphNodes[getVarargNode(F)].setValue(F);
 | |
| 
 | |
|     // Set up incoming argument nodes.
 | |
|     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I)
 | |
|       if (isa<PointerType>(I->getType()))
 | |
|         getNodeValue(*I);
 | |
| 
 | |
|     // At some point we should just add constraints for the escaping functions
 | |
|     // at solve time, but this slows down solving. For now, we simply mark
 | |
|     // address taken functions as escaping and treat them as external.
 | |
|     if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F))
 | |
|       AddConstraintsForNonInternalLinkage(F);
 | |
| 
 | |
|     if (!F->isDeclaration()) {
 | |
|       // Scan the function body, creating a memory object for each heap/stack
 | |
|       // allocation in the body of the function and a node to represent all
 | |
|       // pointer values defined by instructions and used as operands.
 | |
|       visit(F);
 | |
|     } else {
 | |
|       // External functions that return pointers return the universal set.
 | |
|       if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|         Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                          getReturnNode(F),
 | |
|                                          UniversalSet));
 | |
| 
 | |
|       // Any pointers that are passed into the function have the universal set
 | |
|       // stored into them.
 | |
|       for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|            I != E; ++I)
 | |
|         if (isa<PointerType>(I->getType())) {
 | |
|           // Pointers passed into external functions could have anything stored
 | |
|           // through them.
 | |
|           Constraints.push_back(Constraint(Constraint::Store, getNode(I),
 | |
|                                            UniversalSet));
 | |
|           // Memory objects passed into external function calls can have the
 | |
|           // universal set point to them.
 | |
| #if FULL_UNIVERSAL
 | |
|           Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                            UniversalSet,
 | |
|                                            getNode(I)));
 | |
| #else
 | |
|           Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                            getNode(I),
 | |
|                                            UniversalSet));
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|       // If this is an external varargs function, it can also store pointers
 | |
|       // into any pointers passed through the varargs section.
 | |
|       if (F->getFunctionType()->isVarArg())
 | |
|         Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
 | |
|                                          UniversalSet));
 | |
|     }
 | |
|   }
 | |
|   NumConstraints += Constraints.size();
 | |
| }
 | |
| 
 | |
| 
 | |
| void Andersens::visitInstruction(Instruction &I) {
 | |
| #ifdef NDEBUG
 | |
|   return;          // This function is just a big assert.
 | |
| #endif
 | |
|   if (isa<BinaryOperator>(I))
 | |
|     return;
 | |
|   // Most instructions don't have any effect on pointer values.
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Br:
 | |
|   case Instruction::Switch:
 | |
|   case Instruction::Unwind:
 | |
|   case Instruction::Unreachable:
 | |
|   case Instruction::Free:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return;
 | |
|   default:
 | |
|     // Is this something we aren't handling yet?
 | |
|     cerr << "Unknown instruction: " << I;
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitAllocationInst(AllocationInst &AI) {
 | |
|   unsigned ObjectIndex = getObject(&AI);
 | |
|   GraphNodes[ObjectIndex].setValue(&AI);
 | |
|   Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
 | |
|                                    ObjectIndex));
 | |
| }
 | |
| 
 | |
| void Andersens::visitReturnInst(ReturnInst &RI) {
 | |
|   if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
 | |
|     // return V   -->   <Copy/retval{F}/v>
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      getReturnNode(RI.getParent()->getParent()),
 | |
|                                      getNode(RI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitLoadInst(LoadInst &LI) {
 | |
|   if (isa<PointerType>(LI.getType()))
 | |
|     // P1 = load P2  -->  <Load/P1/P2>
 | |
|     Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
 | |
|                                      getNode(LI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitStoreInst(StoreInst &SI) {
 | |
|   if (isa<PointerType>(SI.getOperand(0)->getType()))
 | |
|     // store P1, P2  -->  <Store/P2/P1>
 | |
|     Constraints.push_back(Constraint(Constraint::Store,
 | |
|                                      getNode(SI.getOperand(1)),
 | |
|                                      getNode(SI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   // P1 = getelementptr P2, ... --> <Copy/P1/P2>
 | |
|   Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
 | |
|                                    getNode(GEP.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitPHINode(PHINode &PN) {
 | |
|   if (isa<PointerType>(PN.getType())) {
 | |
|     unsigned PNN = getNodeValue(PN);
 | |
|     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|       // P1 = phi P2, P3  -->  <Copy/P1/P2>, <Copy/P1/P3>, ...
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, PNN,
 | |
|                                        getNode(PN.getIncomingValue(i))));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
|   if (isa<PointerType>(CI.getType())) {
 | |
|     if (isa<PointerType>(Op->getType())) {
 | |
|       // P1 = cast P2  --> <Copy/P1/P2>
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | |
|                                        getNode(CI.getOperand(0))));
 | |
|     } else {
 | |
|       // P1 = cast int --> <Copy/P1/Univ>
 | |
| #if 0
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | |
|                                        UniversalSet));
 | |
| #else
 | |
|       getNodeValue(CI);
 | |
| #endif
 | |
|     }
 | |
|   } else if (isa<PointerType>(Op->getType())) {
 | |
|     // int = cast P1 --> <Copy/Univ/P1>
 | |
| #if 0
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      UniversalSet,
 | |
|                                      getNode(CI.getOperand(0))));
 | |
| #else
 | |
|     getNode(CI.getOperand(0));
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitSelectInst(SelectInst &SI) {
 | |
|   if (isa<PointerType>(SI.getType())) {
 | |
|     unsigned SIN = getNodeValue(SI);
 | |
|     // P1 = select C, P2, P3   ---> <Copy/P1/P2>, <Copy/P1/P3>
 | |
|     Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | |
|                                      getNode(SI.getOperand(1))));
 | |
|     Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | |
|                                      getNode(SI.getOperand(2))));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitVAArg(VAArgInst &I) {
 | |
|   assert(0 && "vaarg not handled yet!");
 | |
| }
 | |
| 
 | |
| /// AddConstraintsForCall - Add constraints for a call with actual arguments
 | |
| /// specified by CS to the function specified by F.  Note that the types of
 | |
| /// arguments might not match up in the case where this is an indirect call and
 | |
| /// the function pointer has been casted.  If this is the case, do something
 | |
| /// reasonable.
 | |
| void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
 | |
|   Value *CallValue = CS.getCalledValue();
 | |
|   bool IsDeref = F == NULL;
 | |
| 
 | |
|   // If this is a call to an external function, try to handle it directly to get
 | |
|   // some taste of context sensitivity.
 | |
|   if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
 | |
|     return;
 | |
| 
 | |
|   if (isa<PointerType>(CS.getType())) {
 | |
|     unsigned CSN = getNode(CS.getInstruction());
 | |
|     if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | |
|       if (IsDeref)
 | |
|         Constraints.push_back(Constraint(Constraint::Load, CSN,
 | |
|                                          getNode(CallValue), CallReturnPos));
 | |
|       else
 | |
|         Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | |
|                                          getNode(CallValue) + CallReturnPos));
 | |
|     } else {
 | |
|       // If the function returns a non-pointer value, handle this just like we
 | |
|       // treat a nonpointer cast to pointer.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | |
|                                        UniversalSet));
 | |
|     }
 | |
|   } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | |
| #if FULL_UNIVERSAL
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      UniversalSet,
 | |
|                                      getNode(CallValue) + CallReturnPos));
 | |
| #else
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                       getNode(CallValue) + CallReturnPos,
 | |
|                                       UniversalSet));
 | |
| #endif
 | |
|                           
 | |
|     
 | |
|   }
 | |
| 
 | |
|   CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
 | |
|   if (F) {
 | |
|     // Direct Call
 | |
|     Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
 | |
|     for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
 | |
|       if (isa<PointerType>(AI->getType())) {
 | |
|         if (isa<PointerType>((*ArgI)->getType())) {
 | |
|           // Copy the actual argument into the formal argument.
 | |
|           Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | |
|                                            getNode(*ArgI)));
 | |
|         } else {
 | |
|           Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | |
|                                            UniversalSet));
 | |
|         }
 | |
|       } else if (isa<PointerType>((*ArgI)->getType())) {
 | |
| #if FULL_UNIVERSAL
 | |
|         Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                          UniversalSet,
 | |
|                                          getNode(*ArgI)));
 | |
| #else
 | |
|         Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                          getNode(*ArgI),
 | |
|                                          UniversalSet));
 | |
| #endif
 | |
|       }
 | |
|   } else {
 | |
|     //Indirect Call
 | |
|     unsigned ArgPos = CallFirstArgPos;
 | |
|     for (; ArgI != ArgE; ++ArgI) {
 | |
|       if (isa<PointerType>((*ArgI)->getType())) {
 | |
|         // Copy the actual argument into the formal argument.
 | |
|         Constraints.push_back(Constraint(Constraint::Store,
 | |
|                                          getNode(CallValue),
 | |
|                                          getNode(*ArgI), ArgPos++));
 | |
|       } else {
 | |
|         Constraints.push_back(Constraint(Constraint::Store,
 | |
|                                          getNode (CallValue),
 | |
|                                          UniversalSet, ArgPos++));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Copy all pointers passed through the varargs section to the varargs node.
 | |
|   if (F && F->getFunctionType()->isVarArg())
 | |
|     for (; ArgI != ArgE; ++ArgI)
 | |
|       if (isa<PointerType>((*ArgI)->getType()))
 | |
|         Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
 | |
|                                          getNode(*ArgI)));
 | |
|   // If more arguments are passed in than we track, just drop them on the floor.
 | |
| }
 | |
| 
 | |
| void Andersens::visitCallSite(CallSite CS) {
 | |
|   if (isa<PointerType>(CS.getType()))
 | |
|     getNodeValue(*CS.getInstruction());
 | |
| 
 | |
|   if (Function *F = CS.getCalledFunction()) {
 | |
|     AddConstraintsForCall(CS, F);
 | |
|   } else {
 | |
|     AddConstraintsForCall(CS, NULL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Constraint Solving Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// intersects - Return true if the points-to set of this node intersects
 | |
| /// with the points-to set of the specified node.
 | |
| bool Andersens::Node::intersects(Node *N) const {
 | |
|   return PointsTo->intersects(N->PointsTo);
 | |
| }
 | |
| 
 | |
| /// intersectsIgnoring - Return true if the points-to set of this node
 | |
| /// intersects with the points-to set of the specified node on any nodes
 | |
| /// except for the specified node to ignore.
 | |
| bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
 | |
|   // TODO: If we are only going to call this with the same value for Ignoring,
 | |
|   // we should move the special values out of the points-to bitmap.
 | |
|   bool WeHadIt = PointsTo->test(Ignoring);
 | |
|   bool NHadIt = N->PointsTo->test(Ignoring);
 | |
|   bool Result = false;
 | |
|   if (WeHadIt)
 | |
|     PointsTo->reset(Ignoring);
 | |
|   if (NHadIt)
 | |
|     N->PointsTo->reset(Ignoring);
 | |
|   Result = PointsTo->intersects(N->PointsTo);
 | |
|   if (WeHadIt)
 | |
|     PointsTo->set(Ignoring);
 | |
|   if (NHadIt)
 | |
|     N->PointsTo->set(Ignoring);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void dumpToDOUT(SparseBitVector<> *bitmap) {
 | |
| #ifndef NDEBUG
 | |
|   dump(*bitmap, DOUT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Clump together address taken variables so that the points-to sets use up
 | |
| /// less space and can be operated on faster.
 | |
| 
 | |
| void Andersens::ClumpAddressTaken() {
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa-renumber"
 | |
|   std::vector<unsigned> Translate;
 | |
|   std::vector<Node> NewGraphNodes;
 | |
| 
 | |
|   Translate.resize(GraphNodes.size());
 | |
|   unsigned NewPos = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i < Constraints.size(); ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     if (C.Type == Constraint::AddressOf) {
 | |
|       GraphNodes[C.Src].AddressTaken = true;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
 | |
|     unsigned Pos = NewPos++;
 | |
|     Translate[i] = Pos;
 | |
|     NewGraphNodes.push_back(GraphNodes[i]);
 | |
|     DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
 | |
|   }
 | |
| 
 | |
|   // I believe this ends up being faster than making two vectors and splicing
 | |
|   // them.
 | |
|   for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
 | |
|     if (GraphNodes[i].AddressTaken) {
 | |
|       unsigned Pos = NewPos++;
 | |
|       Translate[i] = Pos;
 | |
|       NewGraphNodes.push_back(GraphNodes[i]);
 | |
|       DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
 | |
|     if (!GraphNodes[i].AddressTaken) {
 | |
|       unsigned Pos = NewPos++;
 | |
|       Translate[i] = Pos;
 | |
|       NewGraphNodes.push_back(GraphNodes[i]);
 | |
|       DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
 | |
|        Iter != ValueNodes.end();
 | |
|        ++Iter)
 | |
|     Iter->second = Translate[Iter->second];
 | |
| 
 | |
|   for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
 | |
|        Iter != ObjectNodes.end();
 | |
|        ++Iter)
 | |
|     Iter->second = Translate[Iter->second];
 | |
| 
 | |
|   for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
 | |
|        Iter != ReturnNodes.end();
 | |
|        ++Iter)
 | |
|     Iter->second = Translate[Iter->second];
 | |
| 
 | |
|   for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
 | |
|        Iter != VarargNodes.end();
 | |
|        ++Iter)
 | |
|     Iter->second = Translate[Iter->second];
 | |
| 
 | |
|   for (unsigned i = 0; i < Constraints.size(); ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     C.Src = Translate[C.Src];
 | |
|     C.Dest = Translate[C.Dest];
 | |
|   }
 | |
| 
 | |
|   GraphNodes.swap(NewGraphNodes);
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
| }
 | |
| 
 | |
| /// The technique used here is described in "Exploiting Pointer and Location
 | |
| /// Equivalence to Optimize Pointer Analysis. In the 14th International Static
 | |
| /// Analysis Symposium (SAS), August 2007."  It is known as the "HVN" algorithm,
 | |
| /// and is equivalent to value numbering the collapsed constraint graph without
 | |
| /// evaluating unions.  This is used as a pre-pass to HU in order to resolve
 | |
| /// first order pointer dereferences and speed up/reduce memory usage of HU.
 | |
| /// Running both is equivalent to HRU without the iteration
 | |
| /// HVN in more detail:
 | |
| /// Imagine the set of constraints was simply straight line code with no loops
 | |
| /// (we eliminate cycles, so there are no loops), such as:
 | |
| /// E = &D
 | |
| /// E = &C
 | |
| /// E = F
 | |
| /// F = G
 | |
| /// G = F
 | |
| /// Applying value numbering to this code tells us:
 | |
| /// G == F == E
 | |
| ///
 | |
| /// For HVN, this is as far as it goes.  We assign new value numbers to every
 | |
| /// "address node", and every "reference node".
 | |
| /// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
 | |
| /// cycle must have the same value number since the = operation is really
 | |
| /// inclusion, not overwrite), and value number nodes we receive points-to sets
 | |
| /// before we value our own node.
 | |
| /// The advantage of HU over HVN is that HU considers the inclusion property, so
 | |
| /// that if you have
 | |
| /// E = &D
 | |
| /// E = &C
 | |
| /// E = F
 | |
| /// F = G
 | |
| /// F = &D
 | |
| /// G = F
 | |
| /// HU will determine that G == F == E.  HVN will not, because it cannot prove
 | |
| /// that the points to information ends up being the same because they all
 | |
| /// receive &D from E anyway.
 | |
| 
 | |
| void Andersens::HVN() {
 | |
|   DOUT << "Beginning HVN\n";
 | |
|   // Build a predecessor graph.  This is like our constraint graph with the
 | |
|   // edges going in the opposite direction, and there are edges for all the
 | |
|   // constraints, instead of just copy constraints.  We also build implicit
 | |
|   // edges for constraints are implied but not explicit.  I.E for the constraint
 | |
|   // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     if (C.Type == Constraint::AddressOf) {
 | |
|       GraphNodes[C.Src].AddressTaken = true;
 | |
|       GraphNodes[C.Src].Direct = false;
 | |
| 
 | |
|       // Dest = &src edge
 | |
|       unsigned AdrNode = C.Src + FirstAdrNode;
 | |
|       if (!GraphNodes[C.Dest].PredEdges)
 | |
|         GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[C.Dest].PredEdges->set(AdrNode);
 | |
| 
 | |
|       // *Dest = src edge
 | |
|       unsigned RefNode = C.Dest + FirstRefNode;
 | |
|       if (!GraphNodes[RefNode].ImplicitPredEdges)
 | |
|         GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
 | |
|     } else if (C.Type == Constraint::Load) {
 | |
|       if (C.Offset == 0) {
 | |
|         // dest = *src edge
 | |
|         if (!GraphNodes[C.Dest].PredEdges)
 | |
|           GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | |
|         GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
 | |
|       } else {
 | |
|         GraphNodes[C.Dest].Direct = false;
 | |
|       }
 | |
|     } else if (C.Type == Constraint::Store) {
 | |
|       if (C.Offset == 0) {
 | |
|         // *dest = src edge
 | |
|         unsigned RefNode = C.Dest + FirstRefNode;
 | |
|         if (!GraphNodes[RefNode].PredEdges)
 | |
|           GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
 | |
|         GraphNodes[RefNode].PredEdges->set(C.Src);
 | |
|       }
 | |
|     } else {
 | |
|       // Dest = Src edge and *Dest = *Src edge
 | |
|       if (!GraphNodes[C.Dest].PredEdges)
 | |
|         GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[C.Dest].PredEdges->set(C.Src);
 | |
|       unsigned RefNode = C.Dest + FirstRefNode;
 | |
|       if (!GraphNodes[RefNode].ImplicitPredEdges)
 | |
|         GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
 | |
|     }
 | |
|   }
 | |
|   PEClass = 1;
 | |
|   // Do SCC finding first to condense our predecessor graph
 | |
|   DFSNumber = 0;
 | |
|   Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | |
|   Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | |
|   Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | |
| 
 | |
|   for (unsigned i = 0; i < FirstRefNode; ++i) {
 | |
|     unsigned Node = VSSCCRep[i];
 | |
|     if (!Node2Visited[Node])
 | |
|       HVNValNum(Node);
 | |
|   }
 | |
|   for (BitVectorMap::iterator Iter = Set2PEClass.begin();
 | |
|        Iter != Set2PEClass.end();
 | |
|        ++Iter)
 | |
|     delete Iter->first;
 | |
|   Set2PEClass.clear();
 | |
|   Node2DFS.clear();
 | |
|   Node2Deleted.clear();
 | |
|   Node2Visited.clear();
 | |
|   DOUT << "Finished HVN\n";
 | |
| 
 | |
| }
 | |
| 
 | |
| /// This is the workhorse of HVN value numbering. We combine SCC finding at the
 | |
| /// same time because it's easy.
 | |
| void Andersens::HVNValNum(unsigned NodeIndex) {
 | |
|   unsigned MyDFS = DFSNumber++;
 | |
|   Node *N = &GraphNodes[NodeIndex];
 | |
|   Node2Visited[NodeIndex] = true;
 | |
|   Node2DFS[NodeIndex] = MyDFS;
 | |
| 
 | |
|   // First process all our explicit edges
 | |
|   if (N->PredEdges)
 | |
|     for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | |
|          Iter != N->PredEdges->end();
 | |
|          ++Iter) {
 | |
|       unsigned j = VSSCCRep[*Iter];
 | |
|       if (!Node2Deleted[j]) {
 | |
|         if (!Node2Visited[j])
 | |
|           HVNValNum(j);
 | |
|         if (Node2DFS[NodeIndex] > Node2DFS[j])
 | |
|           Node2DFS[NodeIndex] = Node2DFS[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Now process all the implicit edges
 | |
|   if (N->ImplicitPredEdges)
 | |
|     for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
 | |
|          Iter != N->ImplicitPredEdges->end();
 | |
|          ++Iter) {
 | |
|       unsigned j = VSSCCRep[*Iter];
 | |
|       if (!Node2Deleted[j]) {
 | |
|         if (!Node2Visited[j])
 | |
|           HVNValNum(j);
 | |
|         if (Node2DFS[NodeIndex] > Node2DFS[j])
 | |
|           Node2DFS[NodeIndex] = Node2DFS[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // See if we found any cycles
 | |
|   if (MyDFS == Node2DFS[NodeIndex]) {
 | |
|     while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
 | |
|       unsigned CycleNodeIndex = SCCStack.top();
 | |
|       Node *CycleNode = &GraphNodes[CycleNodeIndex];
 | |
|       VSSCCRep[CycleNodeIndex] = NodeIndex;
 | |
|       // Unify the nodes
 | |
|       N->Direct &= CycleNode->Direct;
 | |
| 
 | |
|       if (CycleNode->PredEdges) {
 | |
|         if (!N->PredEdges)
 | |
|           N->PredEdges = new SparseBitVector<>;
 | |
|         *(N->PredEdges) |= CycleNode->PredEdges;
 | |
|         delete CycleNode->PredEdges;
 | |
|         CycleNode->PredEdges = NULL;
 | |
|       }
 | |
|       if (CycleNode->ImplicitPredEdges) {
 | |
|         if (!N->ImplicitPredEdges)
 | |
|           N->ImplicitPredEdges = new SparseBitVector<>;
 | |
|         *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
 | |
|         delete CycleNode->ImplicitPredEdges;
 | |
|         CycleNode->ImplicitPredEdges = NULL;
 | |
|       }
 | |
| 
 | |
|       SCCStack.pop();
 | |
|     }
 | |
| 
 | |
|     Node2Deleted[NodeIndex] = true;
 | |
| 
 | |
|     if (!N->Direct) {
 | |
|       GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Collect labels of successor nodes
 | |
|     bool AllSame = true;
 | |
|     unsigned First = ~0;
 | |
|     SparseBitVector<> *Labels = new SparseBitVector<>;
 | |
|     bool Used = false;
 | |
| 
 | |
|     if (N->PredEdges)
 | |
|       for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | |
|            Iter != N->PredEdges->end();
 | |
|          ++Iter) {
 | |
|         unsigned j = VSSCCRep[*Iter];
 | |
|         unsigned Label = GraphNodes[j].PointerEquivLabel;
 | |
|         // Ignore labels that are equal to us or non-pointers
 | |
|         if (j == NodeIndex || Label == 0)
 | |
|           continue;
 | |
|         if (First == (unsigned)~0)
 | |
|           First = Label;
 | |
|         else if (First != Label)
 | |
|           AllSame = false;
 | |
|         Labels->set(Label);
 | |
|     }
 | |
| 
 | |
|     // We either have a non-pointer, a copy of an existing node, or a new node.
 | |
|     // Assign the appropriate pointer equivalence label.
 | |
|     if (Labels->empty()) {
 | |
|       GraphNodes[NodeIndex].PointerEquivLabel = 0;
 | |
|     } else if (AllSame) {
 | |
|       GraphNodes[NodeIndex].PointerEquivLabel = First;
 | |
|     } else {
 | |
|       GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
 | |
|       if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
 | |
|         unsigned EquivClass = PEClass++;
 | |
|         Set2PEClass[Labels] = EquivClass;
 | |
|         GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
 | |
|         Used = true;
 | |
|       }
 | |
|     }
 | |
|     if (!Used)
 | |
|       delete Labels;
 | |
|   } else {
 | |
|     SCCStack.push(NodeIndex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// The technique used here is described in "Exploiting Pointer and Location
 | |
| /// Equivalence to Optimize Pointer Analysis. In the 14th International Static
 | |
| /// Analysis Symposium (SAS), August 2007."  It is known as the "HU" algorithm,
 | |
| /// and is equivalent to value numbering the collapsed constraint graph
 | |
| /// including evaluating unions.
 | |
| void Andersens::HU() {
 | |
|   DOUT << "Beginning HU\n";
 | |
|   // Build a predecessor graph.  This is like our constraint graph with the
 | |
|   // edges going in the opposite direction, and there are edges for all the
 | |
|   // constraints, instead of just copy constraints.  We also build implicit
 | |
|   // edges for constraints are implied but not explicit.  I.E for the constraint
 | |
|   // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     if (C.Type == Constraint::AddressOf) {
 | |
|       GraphNodes[C.Src].AddressTaken = true;
 | |
|       GraphNodes[C.Src].Direct = false;
 | |
| 
 | |
|       GraphNodes[C.Dest].PointsTo->set(C.Src);
 | |
|       // *Dest = src edge
 | |
|       unsigned RefNode = C.Dest + FirstRefNode;
 | |
|       if (!GraphNodes[RefNode].ImplicitPredEdges)
 | |
|         GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
 | |
|       GraphNodes[C.Src].PointedToBy->set(C.Dest);
 | |
|     } else if (C.Type == Constraint::Load) {
 | |
|       if (C.Offset == 0) {
 | |
|         // dest = *src edge
 | |
|         if (!GraphNodes[C.Dest].PredEdges)
 | |
|           GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | |
|         GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
 | |
|       } else {
 | |
|         GraphNodes[C.Dest].Direct = false;
 | |
|       }
 | |
|     } else if (C.Type == Constraint::Store) {
 | |
|       if (C.Offset == 0) {
 | |
|         // *dest = src edge
 | |
|         unsigned RefNode = C.Dest + FirstRefNode;
 | |
|         if (!GraphNodes[RefNode].PredEdges)
 | |
|           GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
 | |
|         GraphNodes[RefNode].PredEdges->set(C.Src);
 | |
|       }
 | |
|     } else {
 | |
|       // Dest = Src edge and *Dest = *Src edg
 | |
|       if (!GraphNodes[C.Dest].PredEdges)
 | |
|         GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[C.Dest].PredEdges->set(C.Src);
 | |
|       unsigned RefNode = C.Dest + FirstRefNode;
 | |
|       if (!GraphNodes[RefNode].ImplicitPredEdges)
 | |
|         GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | |
|       GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
 | |
|     }
 | |
|   }
 | |
|   PEClass = 1;
 | |
|   // Do SCC finding first to condense our predecessor graph
 | |
|   DFSNumber = 0;
 | |
|   Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | |
|   Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | |
|   Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | |
| 
 | |
|   for (unsigned i = 0; i < FirstRefNode; ++i) {
 | |
|     if (FindNode(i) == i) {
 | |
|       unsigned Node = VSSCCRep[i];
 | |
|       if (!Node2Visited[Node])
 | |
|         Condense(Node);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reset tables for actual labeling
 | |
|   Node2DFS.clear();
 | |
|   Node2Visited.clear();
 | |
|   Node2Deleted.clear();
 | |
|   // Pre-grow our densemap so that we don't get really bad behavior
 | |
|   Set2PEClass.resize(GraphNodes.size());
 | |
| 
 | |
|   // Visit the condensed graph and generate pointer equivalence labels.
 | |
|   Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | |
|   for (unsigned i = 0; i < FirstRefNode; ++i) {
 | |
|     if (FindNode(i) == i) {
 | |
|       unsigned Node = VSSCCRep[i];
 | |
|       if (!Node2Visited[Node])
 | |
|         HUValNum(Node);
 | |
|     }
 | |
|   }
 | |
|   // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
 | |
|   Set2PEClass.clear();
 | |
|   DOUT << "Finished HU\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
 | |
| void Andersens::Condense(unsigned NodeIndex) {
 | |
|   unsigned MyDFS = DFSNumber++;
 | |
|   Node *N = &GraphNodes[NodeIndex];
 | |
|   Node2Visited[NodeIndex] = true;
 | |
|   Node2DFS[NodeIndex] = MyDFS;
 | |
| 
 | |
|   // First process all our explicit edges
 | |
|   if (N->PredEdges)
 | |
|     for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | |
|          Iter != N->PredEdges->end();
 | |
|          ++Iter) {
 | |
|       unsigned j = VSSCCRep[*Iter];
 | |
|       if (!Node2Deleted[j]) {
 | |
|         if (!Node2Visited[j])
 | |
|           Condense(j);
 | |
|         if (Node2DFS[NodeIndex] > Node2DFS[j])
 | |
|           Node2DFS[NodeIndex] = Node2DFS[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Now process all the implicit edges
 | |
|   if (N->ImplicitPredEdges)
 | |
|     for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
 | |
|          Iter != N->ImplicitPredEdges->end();
 | |
|          ++Iter) {
 | |
|       unsigned j = VSSCCRep[*Iter];
 | |
|       if (!Node2Deleted[j]) {
 | |
|         if (!Node2Visited[j])
 | |
|           Condense(j);
 | |
|         if (Node2DFS[NodeIndex] > Node2DFS[j])
 | |
|           Node2DFS[NodeIndex] = Node2DFS[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // See if we found any cycles
 | |
|   if (MyDFS == Node2DFS[NodeIndex]) {
 | |
|     while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
 | |
|       unsigned CycleNodeIndex = SCCStack.top();
 | |
|       Node *CycleNode = &GraphNodes[CycleNodeIndex];
 | |
|       VSSCCRep[CycleNodeIndex] = NodeIndex;
 | |
|       // Unify the nodes
 | |
|       N->Direct &= CycleNode->Direct;
 | |
| 
 | |
|       *(N->PointsTo) |= CycleNode->PointsTo;
 | |
|       delete CycleNode->PointsTo;
 | |
|       CycleNode->PointsTo = NULL;
 | |
|       if (CycleNode->PredEdges) {
 | |
|         if (!N->PredEdges)
 | |
|           N->PredEdges = new SparseBitVector<>;
 | |
|         *(N->PredEdges) |= CycleNode->PredEdges;
 | |
|         delete CycleNode->PredEdges;
 | |
|         CycleNode->PredEdges = NULL;
 | |
|       }
 | |
|       if (CycleNode->ImplicitPredEdges) {
 | |
|         if (!N->ImplicitPredEdges)
 | |
|           N->ImplicitPredEdges = new SparseBitVector<>;
 | |
|         *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
 | |
|         delete CycleNode->ImplicitPredEdges;
 | |
|         CycleNode->ImplicitPredEdges = NULL;
 | |
|       }
 | |
|       SCCStack.pop();
 | |
|     }
 | |
| 
 | |
|     Node2Deleted[NodeIndex] = true;
 | |
| 
 | |
|     // Set up number of incoming edges for other nodes
 | |
|     if (N->PredEdges)
 | |
|       for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | |
|            Iter != N->PredEdges->end();
 | |
|            ++Iter)
 | |
|         ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
 | |
|   } else {
 | |
|     SCCStack.push(NodeIndex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::HUValNum(unsigned NodeIndex) {
 | |
|   Node *N = &GraphNodes[NodeIndex];
 | |
|   Node2Visited[NodeIndex] = true;
 | |
| 
 | |
|   // Eliminate dereferences of non-pointers for those non-pointers we have
 | |
|   // already identified.  These are ref nodes whose non-ref node:
 | |
|   // 1. Has already been visited determined to point to nothing (and thus, a
 | |
|   // dereference of it must point to nothing)
 | |
|   // 2. Any direct node with no predecessor edges in our graph and with no
 | |
|   // points-to set (since it can't point to anything either, being that it
 | |
|   // receives no points-to sets and has none).
 | |
|   if (NodeIndex >= FirstRefNode) {
 | |
|     unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
 | |
|     if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
 | |
|         || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
 | |
|             && GraphNodes[j].PointsTo->empty())){
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|     // Process all our explicit edges
 | |
|   if (N->PredEdges)
 | |
|     for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | |
|          Iter != N->PredEdges->end();
 | |
|          ++Iter) {
 | |
|       unsigned j = VSSCCRep[*Iter];
 | |
|       if (!Node2Visited[j])
 | |
|         HUValNum(j);
 | |
| 
 | |
|       // If this edge turned out to be the same as us, or got no pointer
 | |
|       // equivalence label (and thus points to nothing) , just decrement our
 | |
|       // incoming edges and continue.
 | |
|       if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
 | |
|         --GraphNodes[j].NumInEdges;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       *(N->PointsTo) |= GraphNodes[j].PointsTo;
 | |
| 
 | |
|       // If we didn't end up storing this in the hash, and we're done with all
 | |
|       // the edges, we don't need the points-to set anymore.
 | |
|       --GraphNodes[j].NumInEdges;
 | |
|       if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
 | |
|         delete GraphNodes[j].PointsTo;
 | |
|         GraphNodes[j].PointsTo = NULL;
 | |
|       }
 | |
|     }
 | |
|   // If this isn't a direct node, generate a fresh variable.
 | |
|   if (!N->Direct) {
 | |
|     N->PointsTo->set(FirstRefNode + NodeIndex);
 | |
|   }
 | |
| 
 | |
|   // See If we have something equivalent to us, if not, generate a new
 | |
|   // equivalence class.
 | |
|   if (N->PointsTo->empty()) {
 | |
|     delete N->PointsTo;
 | |
|     N->PointsTo = NULL;
 | |
|   } else {
 | |
|     if (N->Direct) {
 | |
|       N->PointerEquivLabel = Set2PEClass[N->PointsTo];
 | |
|       if (N->PointerEquivLabel == 0) {
 | |
|         unsigned EquivClass = PEClass++;
 | |
|         N->StoredInHash = true;
 | |
|         Set2PEClass[N->PointsTo] = EquivClass;
 | |
|         N->PointerEquivLabel = EquivClass;
 | |
|       }
 | |
|     } else {
 | |
|       N->PointerEquivLabel = PEClass++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Rewrite our list of constraints so that pointer equivalent nodes are
 | |
| /// replaced by their the pointer equivalence class representative.
 | |
| void Andersens::RewriteConstraints() {
 | |
|   std::vector<Constraint> NewConstraints;
 | |
|   DenseSet<Constraint, ConstraintKeyInfo> Seen;
 | |
| 
 | |
|   PEClass2Node.clear();
 | |
|   PENLEClass2Node.clear();
 | |
| 
 | |
|   // We may have from 1 to Graphnodes + 1 equivalence classes.
 | |
|   PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
 | |
|   PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
 | |
| 
 | |
|   // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
 | |
|   // nodes, and rewriting constraints to use the representative nodes.
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     unsigned RHSNode = FindNode(C.Src);
 | |
|     unsigned LHSNode = FindNode(C.Dest);
 | |
|     unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
 | |
|     unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
 | |
| 
 | |
|     // First we try to eliminate constraints for things we can prove don't point
 | |
|     // to anything.
 | |
|     if (LHSLabel == 0) {
 | |
|       DEBUG(PrintNode(&GraphNodes[LHSNode]));
 | |
|       DOUT << " is a non-pointer, ignoring constraint.\n";
 | |
|       continue;
 | |
|     }
 | |
|     if (RHSLabel == 0) {
 | |
|       DEBUG(PrintNode(&GraphNodes[RHSNode]));
 | |
|       DOUT << " is a non-pointer, ignoring constraint.\n";
 | |
|       continue;
 | |
|     }
 | |
|     // This constraint may be useless, and it may become useless as we translate
 | |
|     // it.
 | |
|     if (C.Src == C.Dest && C.Type == Constraint::Copy)
 | |
|       continue;
 | |
| 
 | |
|     C.Src = FindEquivalentNode(RHSNode, RHSLabel);
 | |
|     C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
 | |
|     if (C.Src == C.Dest && C.Type == Constraint::Copy
 | |
|         || Seen.count(C))
 | |
|       continue;
 | |
| 
 | |
|     Seen.insert(C);
 | |
|     NewConstraints.push_back(C);
 | |
|   }
 | |
|   Constraints.swap(NewConstraints);
 | |
|   PEClass2Node.clear();
 | |
| }
 | |
| 
 | |
| /// See if we have a node that is pointer equivalent to the one being asked
 | |
| /// about, and if so, unite them and return the equivalent node.  Otherwise,
 | |
| /// return the original node.
 | |
| unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
 | |
|                                        unsigned NodeLabel) {
 | |
|   if (!GraphNodes[NodeIndex].AddressTaken) {
 | |
|     if (PEClass2Node[NodeLabel] != -1) {
 | |
|       // We found an existing node with the same pointer label, so unify them.
 | |
|       // We specifically request that Union-By-Rank not be used so that
 | |
|       // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
 | |
|       return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
 | |
|     } else {
 | |
|       PEClass2Node[NodeLabel] = NodeIndex;
 | |
|       PENLEClass2Node[NodeLabel] = NodeIndex;
 | |
|     }
 | |
|   } else if (PENLEClass2Node[NodeLabel] == -1) {
 | |
|     PENLEClass2Node[NodeLabel] = NodeIndex;
 | |
|   }
 | |
| 
 | |
|   return NodeIndex;
 | |
| }
 | |
| 
 | |
| void Andersens::PrintLabels() {
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     if (i < FirstRefNode) {
 | |
|       PrintNode(&GraphNodes[i]);
 | |
|     } else if (i < FirstAdrNode) {
 | |
|       DOUT << "REF(";
 | |
|       PrintNode(&GraphNodes[i-FirstRefNode]);
 | |
|       DOUT <<")";
 | |
|     } else {
 | |
|       DOUT << "ADR(";
 | |
|       PrintNode(&GraphNodes[i-FirstAdrNode]);
 | |
|       DOUT <<")";
 | |
|     }
 | |
| 
 | |
|     DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel
 | |
|          << " and SCC rep " << VSSCCRep[i]
 | |
|          << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
 | |
|          << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Optimize the constraints by performing offline variable substitution and
 | |
| /// other optimizations.
 | |
| void Andersens::OptimizeConstraints() {
 | |
|   DOUT << "Beginning constraint optimization\n";
 | |
| 
 | |
|   // Function related nodes need to stay in the same relative position and can't
 | |
|   // be location equivalent.
 | |
|   for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
 | |
|        Iter != MaxK.end();
 | |
|        ++Iter) {
 | |
|     for (unsigned i = Iter->first;
 | |
|          i != Iter->first + Iter->second;
 | |
|          ++i) {
 | |
|       GraphNodes[i].AddressTaken = true;
 | |
|       GraphNodes[i].Direct = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ClumpAddressTaken();
 | |
|   FirstRefNode = GraphNodes.size();
 | |
|   FirstAdrNode = FirstRefNode + GraphNodes.size();
 | |
|   GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
 | |
|                     Node(false));
 | |
|   VSSCCRep.resize(GraphNodes.size());
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     VSSCCRep[i] = i;
 | |
|   }
 | |
|   HVN();
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     delete N->PredEdges;
 | |
|     N->PredEdges = NULL;
 | |
|     delete N->ImplicitPredEdges;
 | |
|     N->ImplicitPredEdges = NULL;
 | |
|   }
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa-labels"
 | |
|   DEBUG(PrintLabels());
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
|   RewriteConstraints();
 | |
|   // Delete the adr nodes.
 | |
|   GraphNodes.resize(FirstRefNode * 2);
 | |
| 
 | |
|   // Now perform HU
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     if (FindNode(i) == i) {
 | |
|       N->PointsTo = new SparseBitVector<>;
 | |
|       N->PointedToBy = new SparseBitVector<>;
 | |
|       // Reset our labels
 | |
|     }
 | |
|     VSSCCRep[i] = i;
 | |
|     N->PointerEquivLabel = 0;
 | |
|   }
 | |
|   HU();
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa-labels"
 | |
|   DEBUG(PrintLabels());
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
|   RewriteConstraints();
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     if (FindNode(i) == i) {
 | |
|       Node *N = &GraphNodes[i];
 | |
|       delete N->PointsTo;
 | |
|       delete N->PredEdges;
 | |
|       delete N->ImplicitPredEdges;
 | |
|       delete N->PointedToBy;
 | |
|     }
 | |
|   }
 | |
|   GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
 | |
|   DOUT << "Finished constraint optimization\n";
 | |
|   FirstRefNode = 0;
 | |
|   FirstAdrNode = 0;
 | |
| }
 | |
| 
 | |
| /// Unite pointer but not location equivalent variables, now that the constraint
 | |
| /// graph is built.
 | |
| void Andersens::UnitePointerEquivalences() {
 | |
|   DOUT << "Uniting remaining pointer equivalences\n";
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
 | |
|       unsigned Label = GraphNodes[i].PointerEquivLabel;
 | |
| 
 | |
|       if (Label && PENLEClass2Node[Label] != -1)
 | |
|         UniteNodes(i, PENLEClass2Node[Label]);
 | |
|     }
 | |
|   }
 | |
|   DOUT << "Finished remaining pointer equivalences\n";
 | |
|   PENLEClass2Node.clear();
 | |
| }
 | |
| 
 | |
| /// Create the constraint graph used for solving points-to analysis.
 | |
| ///
 | |
| void Andersens::CreateConstraintGraph() {
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     Constraint &C = Constraints[i];
 | |
|     assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
 | |
|     if (C.Type == Constraint::AddressOf)
 | |
|       GraphNodes[C.Dest].PointsTo->set(C.Src);
 | |
|     else if (C.Type == Constraint::Load)
 | |
|       GraphNodes[C.Src].Constraints.push_back(C);
 | |
|     else if (C.Type == Constraint::Store)
 | |
|       GraphNodes[C.Dest].Constraints.push_back(C);
 | |
|     else if (C.Offset != 0)
 | |
|       GraphNodes[C.Src].Constraints.push_back(C);
 | |
|     else
 | |
|       GraphNodes[C.Src].Edges->set(C.Dest);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Perform DFS and cycle detection.
 | |
| bool Andersens::QueryNode(unsigned Node) {
 | |
|   assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
 | |
|   unsigned OurDFS = ++DFSNumber;
 | |
|   SparseBitVector<> ToErase;
 | |
|   SparseBitVector<> NewEdges;
 | |
|   Tarjan2DFS[Node] = OurDFS;
 | |
| 
 | |
|   // Changed denotes a change from a recursive call that we will bubble up.
 | |
|   // Merged is set if we actually merge a node ourselves.
 | |
|   bool Changed = false, Merged = false;
 | |
| 
 | |
|   for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
 | |
|        bi != GraphNodes[Node].Edges->end();
 | |
|        ++bi) {
 | |
|     unsigned RepNode = FindNode(*bi);
 | |
|     // If this edge points to a non-representative node but we are
 | |
|     // already planning to add an edge to its representative, we have no
 | |
|     // need for this edge anymore.
 | |
|     if (RepNode != *bi && NewEdges.test(RepNode)){
 | |
|       ToErase.set(*bi);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Continue about our DFS.
 | |
|     if (!Tarjan2Deleted[RepNode]){
 | |
|       if (Tarjan2DFS[RepNode] == 0) {
 | |
|         Changed |= QueryNode(RepNode);
 | |
|         // May have been changed by QueryNode
 | |
|         RepNode = FindNode(RepNode);
 | |
|       }
 | |
|       if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
 | |
|         Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
 | |
|     }
 | |
| 
 | |
|     // We may have just discovered that this node is part of a cycle, in
 | |
|     // which case we can also erase it.
 | |
|     if (RepNode != *bi) {
 | |
|       ToErase.set(*bi);
 | |
|       NewEdges.set(RepNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   GraphNodes[Node].Edges->intersectWithComplement(ToErase);
 | |
|   GraphNodes[Node].Edges |= NewEdges;
 | |
| 
 | |
|   // If this node is a root of a non-trivial SCC, place it on our 
 | |
|   // worklist to be processed.
 | |
|   if (OurDFS == Tarjan2DFS[Node]) {
 | |
|     while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
 | |
|       Node = UniteNodes(Node, SCCStack.top());
 | |
| 
 | |
|       SCCStack.pop();
 | |
|       Merged = true;
 | |
|     }
 | |
|     Tarjan2Deleted[Node] = true;
 | |
| 
 | |
|     if (Merged)
 | |
|       NextWL->insert(&GraphNodes[Node]);
 | |
|   } else {
 | |
|     SCCStack.push(Node);
 | |
|   }
 | |
| 
 | |
|   return(Changed | Merged);
 | |
| }
 | |
| 
 | |
| /// SolveConstraints - This stage iteratively processes the constraints list
 | |
| /// propagating constraints (adding edges to the Nodes in the points-to graph)
 | |
| /// until a fixed point is reached.
 | |
| ///
 | |
| /// We use a variant of the technique called "Lazy Cycle Detection", which is
 | |
| /// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
 | |
| /// Analysis for Millions of Lines of Code. In Programming Language Design and
 | |
| /// Implementation (PLDI), June 2007."
 | |
| /// The paper describes performing cycle detection one node at a time, which can
 | |
| /// be expensive if there are no cycles, but there are long chains of nodes that
 | |
| /// it heuristically believes are cycles (because it will DFS from each node
 | |
| /// without state from previous nodes).
 | |
| /// Instead, we use the heuristic to build a worklist of nodes to check, then
 | |
| /// cycle detect them all at the same time to do this more cheaply.  This
 | |
| /// catches cycles slightly later than the original technique did, but does it
 | |
| /// make significantly cheaper.
 | |
| 
 | |
| void Andersens::SolveConstraints() {
 | |
|   CurrWL = &w1;
 | |
|   NextWL = &w2;
 | |
| 
 | |
|   OptimizeConstraints();
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa-constraints"
 | |
|       DEBUG(PrintConstraints());
 | |
| #undef DEBUG_TYPE
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
| 
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     N->PointsTo = new SparseBitVector<>;
 | |
|     N->OldPointsTo = new SparseBitVector<>;
 | |
|     N->Edges = new SparseBitVector<>;
 | |
|   }
 | |
|   CreateConstraintGraph();
 | |
|   UnitePointerEquivalences();
 | |
|   assert(SCCStack.empty() && "SCC Stack should be empty by now!");
 | |
|   Node2DFS.clear();
 | |
|   Node2Deleted.clear();
 | |
|   Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | |
|   Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | |
|   DFSNumber = 0;
 | |
|   DenseSet<Constraint, ConstraintKeyInfo> Seen;
 | |
|   DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
 | |
| 
 | |
|   // Order graph and add initial nodes to work list.
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     Node *INode = &GraphNodes[i];
 | |
| 
 | |
|     // Add to work list if it's a representative and can contribute to the
 | |
|     // calculation right now.
 | |
|     if (INode->isRep() && !INode->PointsTo->empty()
 | |
|         && (!INode->Edges->empty() || !INode->Constraints.empty())) {
 | |
|       INode->Stamp();
 | |
|       CurrWL->insert(INode);
 | |
|     }
 | |
|   }
 | |
|   std::queue<unsigned int> TarjanWL;
 | |
|   while( !CurrWL->empty() ) {
 | |
|     DOUT << "Starting iteration #" << ++NumIters << "\n";
 | |
| 
 | |
|     Node* CurrNode;
 | |
|     unsigned CurrNodeIndex;
 | |
| 
 | |
|     // Actual cycle checking code.  We cycle check all of the lazy cycle
 | |
|     // candidates from the last iteration in one go.
 | |
|     if (!TarjanWL.empty()) {
 | |
|       DFSNumber = 0;
 | |
|       
 | |
|       Tarjan2DFS.clear();
 | |
|       Tarjan2Deleted.clear();
 | |
|       while (!TarjanWL.empty()) {
 | |
|         unsigned int ToTarjan = TarjanWL.front();
 | |
|         TarjanWL.pop();
 | |
|         if (!Tarjan2Deleted[ToTarjan]
 | |
|             && GraphNodes[ToTarjan].isRep()
 | |
|             && Tarjan2DFS[ToTarjan] == 0)
 | |
|           QueryNode(ToTarjan);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Add to work list if it's a representative and can contribute to the
 | |
|     // calculation right now.
 | |
|     while( (CurrNode = CurrWL->pop()) != NULL ) {
 | |
|       CurrNodeIndex = CurrNode - &GraphNodes[0];
 | |
|       CurrNode->Stamp();
 | |
|       
 | |
|           
 | |
|       // Figure out the changed points to bits
 | |
|       SparseBitVector<> CurrPointsTo;
 | |
|       CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
 | |
|                                            CurrNode->OldPointsTo);
 | |
|       if (CurrPointsTo.empty())
 | |
|         continue;
 | |
| 
 | |
|       *(CurrNode->OldPointsTo) |= CurrPointsTo;
 | |
|       Seen.clear();
 | |
| 
 | |
|       /* Now process the constraints for this node.  */
 | |
|       for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
 | |
|            li != CurrNode->Constraints.end(); ) {
 | |
|         li->Src = FindNode(li->Src);
 | |
|         li->Dest = FindNode(li->Dest);
 | |
| 
 | |
|         // Delete redundant constraints
 | |
|         if( Seen.count(*li) ) {
 | |
|           std::list<Constraint>::iterator lk = li; li++;
 | |
| 
 | |
|           CurrNode->Constraints.erase(lk);
 | |
|           ++NumErased;
 | |
|           continue;
 | |
|         }
 | |
|         Seen.insert(*li);
 | |
| 
 | |
|         // Src and Dest will be the vars we are going to process.
 | |
|         // This may look a bit ugly, but what it does is allow us to process
 | |
|         // both store and load constraints with the same code.
 | |
|         // Load constraints say that every member of our RHS solution has K
 | |
|         // added to it, and that variable gets an edge to LHS. We also union
 | |
|         // RHS+K's solution into the LHS solution.
 | |
|         // Store constraints say that every member of our LHS solution has K
 | |
|         // added to it, and that variable gets an edge from RHS. We also union
 | |
|         // RHS's solution into the LHS+K solution.
 | |
|         unsigned *Src;
 | |
|         unsigned *Dest;
 | |
|         unsigned K = li->Offset;
 | |
|         unsigned CurrMember;
 | |
|         if (li->Type == Constraint::Load) {
 | |
|           Src = &CurrMember;
 | |
|           Dest = &li->Dest;
 | |
|         } else if (li->Type == Constraint::Store) {
 | |
|           Src = &li->Src;
 | |
|           Dest = &CurrMember;
 | |
|         } else {
 | |
|           // TODO Handle offseted copy constraint
 | |
|           li++;
 | |
|           continue;
 | |
|         }
 | |
|         // TODO: hybrid cycle detection would go here, we should check
 | |
|         // if it was a statically detected offline equivalence that
 | |
|         // involves pointers , and if so, remove the redundant constraints.
 | |
| 
 | |
|         const SparseBitVector<> &Solution = CurrPointsTo;
 | |
| 
 | |
|         for (SparseBitVector<>::iterator bi = Solution.begin();
 | |
|              bi != Solution.end();
 | |
|              ++bi) {
 | |
|           CurrMember = *bi;
 | |
| 
 | |
|           // Need to increment the member by K since that is where we are
 | |
|           // supposed to copy to/from.  Note that in positive weight cycles,
 | |
|           // which occur in address taking of fields, K can go past
 | |
|           // MaxK[CurrMember] elements, even though that is all it could point
 | |
|           // to.
 | |
|           if (K > 0 && K > MaxK[CurrMember])
 | |
|             continue;
 | |
|           else
 | |
|             CurrMember = FindNode(CurrMember + K);
 | |
| 
 | |
|           // Add an edge to the graph, so we can just do regular bitmap ior next
 | |
|           // time.  It may also let us notice a cycle.
 | |
| #if !FULL_UNIVERSAL
 | |
|           if (*Dest < NumberSpecialNodes)
 | |
|             continue;
 | |
| #endif
 | |
|           if (GraphNodes[*Src].Edges->test_and_set(*Dest))
 | |
|             if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
 | |
|               NextWL->insert(&GraphNodes[*Dest]);
 | |
| 
 | |
|         }
 | |
|         li++;
 | |
|       }
 | |
|       SparseBitVector<> NewEdges;
 | |
|       SparseBitVector<> ToErase;
 | |
| 
 | |
|       // Now all we have left to do is propagate points-to info along the
 | |
|       // edges, erasing the redundant edges.
 | |
|       for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
 | |
|            bi != CurrNode->Edges->end();
 | |
|            ++bi) {
 | |
| 
 | |
|         unsigned DestVar = *bi;
 | |
|         unsigned Rep = FindNode(DestVar);
 | |
| 
 | |
| 	// If we ended up with this node as our destination, or we've already
 | |
| 	// got an edge for the representative, delete the current edge.
 | |
| 	if (Rep == CurrNodeIndex ||
 | |
| 	    (Rep != DestVar && NewEdges.test(Rep))) {
 | |
| 	    ToErase.set(DestVar);
 | |
| 	    continue;
 | |
| 	}
 | |
|         
 | |
| 	std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
 | |
|         
 | |
|         // This is where we do lazy cycle detection.
 | |
|         // If this is a cycle candidate (equal points-to sets and this
 | |
|         // particular edge has not been cycle-checked previously), add to the
 | |
|         // list to check for cycles on the next iteration.
 | |
|         if (!EdgesChecked.count(edge) &&
 | |
|             *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
 | |
|           EdgesChecked.insert(edge);
 | |
|           TarjanWL.push(Rep);
 | |
|         }
 | |
|         // Union the points-to sets into the dest
 | |
| #if !FULL_UNIVERSAL
 | |
|         if (Rep >= NumberSpecialNodes)
 | |
| #endif
 | |
|         if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
 | |
|           NextWL->insert(&GraphNodes[Rep]);
 | |
|         }
 | |
|         // If this edge's destination was collapsed, rewrite the edge.
 | |
|         if (Rep != DestVar) {
 | |
|           ToErase.set(DestVar);
 | |
|           NewEdges.set(Rep);
 | |
|         }
 | |
|       }
 | |
|       CurrNode->Edges->intersectWithComplement(ToErase);
 | |
|       CurrNode->Edges |= NewEdges;
 | |
|     }
 | |
| 
 | |
|     // Switch to other work list.
 | |
|     WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   Node2DFS.clear();
 | |
|   Node2Deleted.clear();
 | |
|   for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     delete N->OldPointsTo;
 | |
|     delete N->Edges;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Union-Find
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Unite nodes First and Second, returning the one which is now the
 | |
| // representative node.  First and Second are indexes into GraphNodes
 | |
| unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
 | |
|                                bool UnionByRank) {
 | |
|   assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
 | |
|           "Attempting to merge nodes that don't exist");
 | |
| 
 | |
|   Node *FirstNode = &GraphNodes[First];
 | |
|   Node *SecondNode = &GraphNodes[Second];
 | |
| 
 | |
|   assert (SecondNode->isRep() && FirstNode->isRep() &&
 | |
|           "Trying to unite two non-representative nodes!");
 | |
|   if (First == Second)
 | |
|     return First;
 | |
| 
 | |
|   if (UnionByRank) {
 | |
|     int RankFirst  = (int) FirstNode ->NodeRep;
 | |
|     int RankSecond = (int) SecondNode->NodeRep;
 | |
| 
 | |
|     // Rank starts at -1 and gets decremented as it increases.
 | |
|     // Translation: higher rank, lower NodeRep value, which is always negative.
 | |
|     if (RankFirst > RankSecond) {
 | |
|       unsigned t = First; First = Second; Second = t;
 | |
|       Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
 | |
|     } else if (RankFirst == RankSecond) {
 | |
|       FirstNode->NodeRep = (unsigned) (RankFirst - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SecondNode->NodeRep = First;
 | |
| #if !FULL_UNIVERSAL
 | |
|   if (First >= NumberSpecialNodes)
 | |
| #endif
 | |
|   if (FirstNode->PointsTo && SecondNode->PointsTo)
 | |
|     FirstNode->PointsTo |= *(SecondNode->PointsTo);
 | |
|   if (FirstNode->Edges && SecondNode->Edges)
 | |
|     FirstNode->Edges |= *(SecondNode->Edges);
 | |
|   if (!SecondNode->Constraints.empty())
 | |
|     FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
 | |
|                                   SecondNode->Constraints);
 | |
|   if (FirstNode->OldPointsTo) {
 | |
|     delete FirstNode->OldPointsTo;
 | |
|     FirstNode->OldPointsTo = new SparseBitVector<>;
 | |
|   }
 | |
| 
 | |
|   // Destroy interesting parts of the merged-from node.
 | |
|   delete SecondNode->OldPointsTo;
 | |
|   delete SecondNode->Edges;
 | |
|   delete SecondNode->PointsTo;
 | |
|   SecondNode->Edges = NULL;
 | |
|   SecondNode->PointsTo = NULL;
 | |
|   SecondNode->OldPointsTo = NULL;
 | |
| 
 | |
|   NumUnified++;
 | |
|   DOUT << "Unified Node ";
 | |
|   DEBUG(PrintNode(FirstNode));
 | |
|   DOUT << " and Node ";
 | |
|   DEBUG(PrintNode(SecondNode));
 | |
|   DOUT << "\n";
 | |
| 
 | |
|   // TODO: Handle SDT
 | |
|   return First;
 | |
| }
 | |
| 
 | |
| // Find the index into GraphNodes of the node representing Node, performing
 | |
| // path compression along the way
 | |
| unsigned Andersens::FindNode(unsigned NodeIndex) {
 | |
|   assert (NodeIndex < GraphNodes.size()
 | |
|           && "Attempting to find a node that can't exist");
 | |
|   Node *N = &GraphNodes[NodeIndex];
 | |
|   if (N->isRep())
 | |
|     return NodeIndex;
 | |
|   else
 | |
|     return (N->NodeRep = FindNode(N->NodeRep));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Debugging Output
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Andersens::PrintNode(Node *N) {
 | |
|   if (N == &GraphNodes[UniversalSet]) {
 | |
|     cerr << "<universal>";
 | |
|     return;
 | |
|   } else if (N == &GraphNodes[NullPtr]) {
 | |
|     cerr << "<nullptr>";
 | |
|     return;
 | |
|   } else if (N == &GraphNodes[NullObject]) {
 | |
|     cerr << "<null>";
 | |
|     return;
 | |
|   }
 | |
|   if (!N->getValue()) {
 | |
|     cerr << "artificial" << (intptr_t) N;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(N->getValue() != 0 && "Never set node label!");
 | |
|   Value *V = N->getValue();
 | |
|   if (Function *F = dyn_cast<Function>(V)) {
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
 | |
|         N == &GraphNodes[getReturnNode(F)]) {
 | |
|       cerr << F->getName() << ":retval";
 | |
|       return;
 | |
|     } else if (F->getFunctionType()->isVarArg() &&
 | |
|                N == &GraphNodes[getVarargNode(F)]) {
 | |
|       cerr << F->getName() << ":vararg";
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     cerr << I->getParent()->getParent()->getName() << ":";
 | |
|   else if (Argument *Arg = dyn_cast<Argument>(V))
 | |
|     cerr << Arg->getParent()->getName() << ":";
 | |
| 
 | |
|   if (V->hasName())
 | |
|     cerr << V->getName();
 | |
|   else
 | |
|     cerr << "(unnamed)";
 | |
| 
 | |
|   if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
 | |
|     if (N == &GraphNodes[getObject(V)])
 | |
|       cerr << "<mem>";
 | |
| }
 | |
| void Andersens::PrintConstraint(const Constraint &C) {
 | |
|   if (C.Type == Constraint::Store) {
 | |
|     cerr << "*";
 | |
|     if (C.Offset != 0)
 | |
|       cerr << "(";
 | |
|   }
 | |
|   PrintNode(&GraphNodes[C.Dest]);
 | |
|   if (C.Type == Constraint::Store && C.Offset != 0)
 | |
|     cerr << " + " << C.Offset << ")";
 | |
|   cerr << " = ";
 | |
|   if (C.Type == Constraint::Load) {
 | |
|     cerr << "*";
 | |
|     if (C.Offset != 0)
 | |
|       cerr << "(";
 | |
|   }
 | |
|   else if (C.Type == Constraint::AddressOf)
 | |
|     cerr << "&";
 | |
|   PrintNode(&GraphNodes[C.Src]);
 | |
|   if (C.Offset != 0 && C.Type != Constraint::Store)
 | |
|     cerr << " + " << C.Offset;
 | |
|   if (C.Type == Constraint::Load && C.Offset != 0)
 | |
|     cerr << ")";
 | |
|   cerr << "\n";
 | |
| }
 | |
| 
 | |
| void Andersens::PrintConstraints() {
 | |
|   cerr << "Constraints:\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
 | |
|     PrintConstraint(Constraints[i]);
 | |
| }
 | |
| 
 | |
| void Andersens::PrintPointsToGraph() {
 | |
|   cerr << "Points-to graph:\n";
 | |
|   for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     if (FindNode (i) != i) {
 | |
|       PrintNode(N);
 | |
|       cerr << "\t--> same as ";
 | |
|       PrintNode(&GraphNodes[FindNode(i)]);
 | |
|       cerr << "\n";
 | |
|     } else {
 | |
|       cerr << "[" << (N->PointsTo->count()) << "] ";
 | |
|       PrintNode(N);
 | |
|       cerr << "\t--> ";
 | |
| 
 | |
|       bool first = true;
 | |
|       for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
 | |
|            bi != N->PointsTo->end();
 | |
|            ++bi) {
 | |
|         if (!first)
 | |
|           cerr << ", ";
 | |
|         PrintNode(&GraphNodes[*bi]);
 | |
|         first = false;
 | |
|       }
 | |
|       cerr << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 |