forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			459 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			459 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------------------- SSI.cpp - Creates SSI Representation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass converts a list of variables to the Static Single Information
 | 
						|
// form. This is a program representation described by Scott Ananian in his
 | 
						|
// Master Thesis: "The Static Single Information Form (1999)".
 | 
						|
// We are building an on-demand representation, that is, we do not convert
 | 
						|
// every single variable in the target function to SSI form. Rather, we receive
 | 
						|
// a list of target variables that must be converted. We also do not
 | 
						|
// completely convert a target variable to the SSI format. Instead, we only
 | 
						|
// change the variable in the points where new information can be attached
 | 
						|
// to its live range, that is, at branch points.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ssi"
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/SSI.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static const std::string SSI_PHI = "SSI_phi";
 | 
						|
static const std::string SSI_SIG = "SSI_sigma";
 | 
						|
 | 
						|
static const unsigned UNSIGNED_INFINITE = ~0U;
 | 
						|
 | 
						|
STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
 | 
						|
STATISTIC(NumPhiInserted, "Number of phi functions inserted");
 | 
						|
 | 
						|
void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<DominanceFrontier>();
 | 
						|
  AU.addRequired<DominatorTree>();
 | 
						|
  AU.setPreservesCFG();
 | 
						|
}
 | 
						|
 | 
						|
bool SSI::runOnFunction(Function &F) {
 | 
						|
  DT_ = &getAnalysis<DominatorTree>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This methods creates the SSI representation for the list of values
 | 
						|
/// received. It will only create SSI representation if a value is used
 | 
						|
/// in a to decide a branch. Repeated values are created only once.
 | 
						|
///
 | 
						|
void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
 | 
						|
  init(value);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    if (created.insert(value[i])) {
 | 
						|
      needConstruction[i] = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  insertSigmaFunctions(value);
 | 
						|
 | 
						|
  // Test if there is a need to transform to SSI
 | 
						|
  if (needConstruction.any()) {
 | 
						|
    insertPhiFunctions(value);
 | 
						|
    renameInit(value);
 | 
						|
    rename(DT_->getRoot());
 | 
						|
    fixPhis();
 | 
						|
  }
 | 
						|
 | 
						|
  clean();
 | 
						|
}
 | 
						|
 | 
						|
/// Insert sigma functions (a sigma function is a phi function with one
 | 
						|
/// operator)
 | 
						|
///
 | 
						|
void SSI::insertSigmaFunctions(SmallVectorImpl<Instruction *> &value) {
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    if (!needConstruction[i])
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (Value::use_iterator begin = value[i]->use_begin(), end =
 | 
						|
         value[i]->use_end(); begin != end; ++begin) {
 | 
						|
      // Test if the Use of the Value is in a comparator
 | 
						|
      if (CmpInst *CI = dyn_cast<CmpInst>(begin)) {
 | 
						|
        // Iterates through all uses of CmpInst
 | 
						|
        for (Value::use_iterator begin_ci = CI->use_begin(), end_ci =
 | 
						|
             CI->use_end(); begin_ci != end_ci; ++begin_ci) {
 | 
						|
          // Test if any use of CmpInst is in a Terminator
 | 
						|
          if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) {
 | 
						|
            insertSigma(TI, value[i], i);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts Sigma Functions in every BasicBlock successor to Terminator
 | 
						|
/// Instruction TI. All inserted Sigma Function are related to Instruction I.
 | 
						|
///
 | 
						|
void SSI::insertSigma(TerminatorInst *TI, Instruction *I, unsigned pos) {
 | 
						|
  // Basic Block of the Terminator Instruction
 | 
						|
  BasicBlock *BB = TI->getParent();
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
 | 
						|
    // Next Basic Block
 | 
						|
    BasicBlock *BB_next = TI->getSuccessor(i);
 | 
						|
    if (BB_next != BB &&
 | 
						|
        BB_next->getSinglePredecessor() != NULL &&
 | 
						|
        dominateAny(BB_next, I)) {
 | 
						|
      PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin());
 | 
						|
      PN->addIncoming(I, BB);
 | 
						|
      sigmas.insert(std::make_pair(PN, pos));
 | 
						|
      created.insert(PN);
 | 
						|
      needConstruction[pos] = true;
 | 
						|
      defsites[pos].push_back(BB_next);
 | 
						|
      ++NumSigmaInserted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert phi functions when necessary
 | 
						|
///
 | 
						|
void SSI::insertPhiFunctions(SmallVectorImpl<Instruction *> &value) {
 | 
						|
  DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    // Test if there were any sigmas for this variable
 | 
						|
    if (needConstruction[i]) {
 | 
						|
 | 
						|
      SmallPtrSet<BasicBlock *, 16> BB_visited;
 | 
						|
 | 
						|
      // Insert phi functions if there is any sigma function
 | 
						|
      while (!defsites[i].empty()) {
 | 
						|
 | 
						|
        BasicBlock *BB = defsites[i].back();
 | 
						|
 | 
						|
        defsites[i].pop_back();
 | 
						|
        DominanceFrontier::iterator DF_BB = DF->find(BB);
 | 
						|
 | 
						|
        // The BB is unreachable. Skip it.
 | 
						|
        if (DF_BB == DF->end())
 | 
						|
          continue; 
 | 
						|
 | 
						|
        // Iterates through all the dominance frontier of BB
 | 
						|
        for (std::set<BasicBlock *>::iterator DF_BB_begin =
 | 
						|
             DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
 | 
						|
             DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
 | 
						|
          BasicBlock *BB_dominated = *DF_BB_begin;
 | 
						|
 | 
						|
          // Test if has not yet visited this node and if the
 | 
						|
          // original definition dominates this node
 | 
						|
          if (BB_visited.insert(BB_dominated) &&
 | 
						|
              DT_->properlyDominates(value_original[i], BB_dominated) &&
 | 
						|
              dominateAny(BB_dominated, value[i])) {
 | 
						|
            PHINode *PN = PHINode::Create(
 | 
						|
                value[i]->getType(), SSI_PHI, BB_dominated->begin());
 | 
						|
            phis.insert(std::make_pair(PN, i));
 | 
						|
            created.insert(PN);
 | 
						|
 | 
						|
            defsites[i].push_back(BB_dominated);
 | 
						|
            ++NumPhiInserted;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      BB_visited.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Some initialization for the rename part
 | 
						|
///
 | 
						|
void SSI::renameInit(SmallVectorImpl<Instruction *> &value) {
 | 
						|
  value_stack.resize(num_values);
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    value_stack[i].push_back(value[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Renames all variables in the specified BasicBlock.
 | 
						|
/// Only variables that need to be rename will be.
 | 
						|
///
 | 
						|
void SSI::rename(BasicBlock *BB) {
 | 
						|
  BitVector *defined = new BitVector(num_values, false);
 | 
						|
 | 
						|
  // Iterate through instructions and make appropriate renaming.
 | 
						|
  // For SSI_PHI (b = PHI()), store b at value_stack as a new
 | 
						|
  // definition of the variable it represents.
 | 
						|
  // For SSI_SIG (b = PHI(a)), substitute a with the current
 | 
						|
  // value of a, present in the value_stack.
 | 
						|
  // Then store bin the value_stack as the new definition of a.
 | 
						|
  // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
 | 
						|
  // all operands with its current value, present in value_stack.
 | 
						|
  for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
 | 
						|
       begin != end; ++begin) {
 | 
						|
    Instruction *I = begin;
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
 | 
						|
      int position;
 | 
						|
 | 
						|
      // Treat SSI_PHI
 | 
						|
      if ((position = getPositionPhi(PN)) != -1) {
 | 
						|
        value_stack[position].push_back(PN);
 | 
						|
        (*defined)[position] = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Treat SSI_SIG
 | 
						|
      else if ((position = getPositionSigma(PN)) != -1) {
 | 
						|
        substituteUse(I);
 | 
						|
        value_stack[position].push_back(PN);
 | 
						|
        (*defined)[position] = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Treat all other PHI functions
 | 
						|
      else {
 | 
						|
        substituteUse(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Treat all other functions
 | 
						|
    else {
 | 
						|
      substituteUse(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This loop iterates in all BasicBlocks that are successors of the current
 | 
						|
  // BasicBlock. For each SSI_PHI instruction found, insert an operand.
 | 
						|
  // This operand is the current operand in value_stack for the variable
 | 
						|
  // in "position". And the BasicBlock this operand represents is the current
 | 
						|
  // BasicBlock.
 | 
						|
  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
 | 
						|
    BasicBlock *BB_succ = *SI;
 | 
						|
 | 
						|
    for (BasicBlock::iterator begin = BB_succ->begin(),
 | 
						|
         notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
 | 
						|
      Instruction *I = begin;
 | 
						|
      PHINode *PN = dyn_cast<PHINode>(I);
 | 
						|
      int position;
 | 
						|
      if (PN && ((position = getPositionPhi(PN)) != -1)) {
 | 
						|
        PN->addIncoming(value_stack[position].back(), BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This loop calls rename on all children from this block. This time children
 | 
						|
  // refers to a successor block in the dominance tree.
 | 
						|
  DomTreeNode *DTN = DT_->getNode(BB);
 | 
						|
  for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
 | 
						|
       begin != end; ++begin) {
 | 
						|
    DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
 | 
						|
    BasicBlock *BB_children = DTN_children->getBlock();
 | 
						|
    rename(BB_children);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we remove all inserted definitions of a variable from the top of
 | 
						|
  // the stack leaving the previous one as the top.
 | 
						|
  if (defined->any()) {
 | 
						|
    for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
      if ((*defined)[i]) {
 | 
						|
        value_stack[i].pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  delete defined;
 | 
						|
}
 | 
						|
 | 
						|
/// Substitute any use in this instruction for the last definition of
 | 
						|
/// the variable
 | 
						|
///
 | 
						|
void SSI::substituteUse(Instruction *I) {
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
 | 
						|
    Value *operand = I->getOperand(i);
 | 
						|
    for (unsigned j = 0; j < num_values; ++j) {
 | 
						|
      if (operand == value_stack[j].front() &&
 | 
						|
          I != value_stack[j].back()) {
 | 
						|
        PHINode *PN_I = dyn_cast<PHINode>(I);
 | 
						|
        PHINode *PN_vs = dyn_cast<PHINode>(value_stack[j].back());
 | 
						|
 | 
						|
        // If a phi created in a BasicBlock is used as an operand of another
 | 
						|
        // created in the same BasicBlock, this step marks this second phi,
 | 
						|
        // to fix this issue later. It cannot be fixed now, because the
 | 
						|
        // operands of the first phi are not final yet.
 | 
						|
        if (PN_I && PN_vs &&
 | 
						|
            value_stack[j].back()->getParent() == I->getParent()) {
 | 
						|
 | 
						|
          phisToFix.insert(PN_I);
 | 
						|
        }
 | 
						|
 | 
						|
        I->setOperand(i, value_stack[j].back());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Test if the BasicBlock BB dominates any use or definition of value.
 | 
						|
/// If it dominates a phi instruction that is on the same BasicBlock,
 | 
						|
/// that does not count.
 | 
						|
///
 | 
						|
bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
 | 
						|
  for (Value::use_iterator begin = value->use_begin(),
 | 
						|
       end = value->use_end(); begin != end; ++begin) {
 | 
						|
    Instruction *I = cast<Instruction>(*begin);
 | 
						|
    BasicBlock *BB_father = I->getParent();
 | 
						|
    if (BB == BB_father && isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (DT_->dominates(BB, BB_father)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// When there is a phi node that is created in a BasicBlock and it is used
 | 
						|
/// as an operand of another phi function used in the same BasicBlock,
 | 
						|
/// LLVM looks this as an error. So on the second phi, the first phi is called
 | 
						|
/// P and the BasicBlock it incomes is B. This P will be replaced by the value
 | 
						|
/// it has for BasicBlock B. It also includes undef values for predecessors
 | 
						|
/// that were not included in the phi.
 | 
						|
///
 | 
						|
void SSI::fixPhis() {
 | 
						|
  for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
 | 
						|
       end = phisToFix.end(); begin != end; ++begin) {
 | 
						|
    PHINode *PN = *begin;
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
 | 
						|
      PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i));
 | 
						|
      if (PN_father && PN->getParent() == PN_father->getParent() &&
 | 
						|
          !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
 | 
						|
        BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
        int pos = PN_father->getBasicBlockIndex(BB);
 | 
						|
        PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (DenseMapIterator<PHINode *, unsigned> begin = phis.begin(),
 | 
						|
       end = phis.end(); begin != end; ++begin) {
 | 
						|
    PHINode *PN = begin->first;
 | 
						|
    BasicBlock *BB = PN->getParent();
 | 
						|
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
    SmallVector<BasicBlock*, 8> Preds(PI, PE);
 | 
						|
    for (unsigned size = Preds.size();
 | 
						|
         PI != PE && PN->getNumIncomingValues() != size; ++PI) {
 | 
						|
      bool found = false;
 | 
						|
      for (unsigned i = 0, pn_end = PN->getNumIncomingValues();
 | 
						|
           i < pn_end; ++i) {
 | 
						|
        if (PN->getIncomingBlock(i) == *PI) {
 | 
						|
          found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!found) {
 | 
						|
        PN->addIncoming(UndefValue::get(PN->getType()), *PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return which variable (position on the vector of variables) this phi
 | 
						|
/// represents on the phis list.
 | 
						|
///
 | 
						|
unsigned SSI::getPositionPhi(PHINode *PN) {
 | 
						|
  DenseMap<PHINode *, unsigned>::iterator val = phis.find(PN);
 | 
						|
  if (val == phis.end())
 | 
						|
    return UNSIGNED_INFINITE;
 | 
						|
  else
 | 
						|
    return val->second;
 | 
						|
}
 | 
						|
 | 
						|
/// Return which variable (position on the vector of variables) this phi
 | 
						|
/// represents on the sigmas list.
 | 
						|
///
 | 
						|
unsigned SSI::getPositionSigma(PHINode *PN) {
 | 
						|
  DenseMap<PHINode *, unsigned>::iterator val = sigmas.find(PN);
 | 
						|
  if (val == sigmas.end())
 | 
						|
    return UNSIGNED_INFINITE;
 | 
						|
  else
 | 
						|
    return val->second;
 | 
						|
}
 | 
						|
 | 
						|
/// Initializes
 | 
						|
///
 | 
						|
void SSI::init(SmallVectorImpl<Instruction *> &value) {
 | 
						|
  num_values = value.size();
 | 
						|
  needConstruction.resize(num_values, false);
 | 
						|
 | 
						|
  value_original.resize(num_values);
 | 
						|
  defsites.resize(num_values);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    value_original[i] = value[i]->getParent();
 | 
						|
    defsites[i].push_back(value_original[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Clean all used resources in this creation of SSI
 | 
						|
///
 | 
						|
void SSI::clean() {
 | 
						|
  for (unsigned i = 0; i < num_values; ++i) {
 | 
						|
    defsites[i].clear();
 | 
						|
    if (i < value_stack.size())
 | 
						|
      value_stack[i].clear();
 | 
						|
  }
 | 
						|
 | 
						|
  phis.clear();
 | 
						|
  sigmas.clear();
 | 
						|
  phisToFix.clear();
 | 
						|
 | 
						|
  defsites.clear();
 | 
						|
  value_stack.clear();
 | 
						|
  value_original.clear();
 | 
						|
  needConstruction.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// createSSIPass - The public interface to this file...
 | 
						|
///
 | 
						|
FunctionPass *llvm::createSSIPass() { return new SSI(); }
 | 
						|
 | 
						|
char SSI::ID = 0;
 | 
						|
static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
 | 
						|
 | 
						|
/// SSIEverything - A pass that runs createSSI on every non-void variable,
 | 
						|
/// intended for debugging.
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    SSIEverything() : FunctionPass(&ID) {}
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<SSI>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool SSIEverything::runOnFunction(Function &F) {
 | 
						|
  SmallVector<Instruction *, 16> Insts;
 | 
						|
  SSI &ssi = getAnalysis<SSI>();
 | 
						|
 | 
						|
  if (F.isDeclaration() || F.isIntrinsic()) return false;
 | 
						|
 | 
						|
  for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
 | 
						|
    for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
 | 
						|
      if (I->getType() != Type::getVoidTy(F.getContext()))
 | 
						|
        Insts.push_back(I);
 | 
						|
 | 
						|
  ssi.createSSI(Insts);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// createSSIEverythingPass - The public interface to this file...
 | 
						|
///
 | 
						|
FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
 | 
						|
 | 
						|
char SSIEverything::ID = 0;
 | 
						|
static RegisterPass<SSIEverything>
 | 
						|
Y("ssi-everything", "Static Single Information Construction");
 |