forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1940 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1940 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ScopDetection.cpp - Detect Scops -----------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Detect the maximal Scops of a function.
 | |
| //
 | |
| // A static control part (Scop) is a subgraph of the control flow graph (CFG)
 | |
| // that only has statically known control flow and can therefore be described
 | |
| // within the polyhedral model.
 | |
| //
 | |
| // Every Scop fulfills these restrictions:
 | |
| //
 | |
| // * It is a single entry single exit region
 | |
| //
 | |
| // * Only affine linear bounds in the loops
 | |
| //
 | |
| // Every natural loop in a Scop must have a number of loop iterations that can
 | |
| // be described as an affine linear function in surrounding loop iterators or
 | |
| // parameters. (A parameter is a scalar that does not change its value during
 | |
| // execution of the Scop).
 | |
| //
 | |
| // * Only comparisons of affine linear expressions in conditions
 | |
| //
 | |
| // * All loops and conditions perfectly nested
 | |
| //
 | |
| // The control flow needs to be structured such that it could be written using
 | |
| // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
 | |
| // 'continue'.
 | |
| //
 | |
| // * Side effect free functions call
 | |
| //
 | |
| // Function calls and intrinsics that do not have side effects (readnone)
 | |
| // or memory intrinsics (memset, memcpy, memmove) are allowed.
 | |
| //
 | |
| // The Scop detection finds the largest Scops by checking if the largest
 | |
| // region is a Scop. If this is not the case, its canonical subregions are
 | |
| // checked until a region is a Scop. It is now tried to extend this Scop by
 | |
| // creating a larger non canonical region.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "polly/ScopDetection.h"
 | |
| #include "polly/LinkAllPasses.h"
 | |
| #include "polly/Options.h"
 | |
| #include "polly/ScopDetectionDiagnostic.h"
 | |
| #include "polly/Support/SCEVValidator.h"
 | |
| #include "polly/Support/ScopHelper.h"
 | |
| #include "polly/Support/ScopLocation.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/RegionInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace polly;
 | |
| 
 | |
| #define DEBUG_TYPE "polly-detect"
 | |
| 
 | |
| // This option is set to a very high value, as analyzing such loops increases
 | |
| // compile time on several cases. For experiments that enable this option,
 | |
| // a value of around 40 has been working to avoid run-time regressions with
 | |
| // Polly while still exposing interesting optimization opportunities.
 | |
| static cl::opt<int> ProfitabilityMinPerLoopInstructions(
 | |
|     "polly-detect-profitability-min-per-loop-insts",
 | |
|     cl::desc("The minimal number of per-loop instructions before a single loop "
 | |
|              "region is considered profitable"),
 | |
|     cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
 | |
| 
 | |
| bool polly::PollyProcessUnprofitable;
 | |
| 
 | |
| static cl::opt<bool, true> XPollyProcessUnprofitable(
 | |
|     "polly-process-unprofitable",
 | |
|     cl::desc(
 | |
|         "Process scops that are unlikely to benefit from Polly optimizations."),
 | |
|     cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
 | |
|     cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::list<std::string> OnlyFunctions(
 | |
|     "polly-only-func",
 | |
|     cl::desc("Only run on functions that match a regex. "
 | |
|              "Multiple regexes can be comma separated. "
 | |
|              "Scop detection will run on all functions that match "
 | |
|              "ANY of the regexes provided."),
 | |
|     cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::list<std::string> IgnoredFunctions(
 | |
|     "polly-ignore-func",
 | |
|     cl::desc("Ignore functions that match a regex. "
 | |
|              "Multiple regexes can be comma separated. "
 | |
|              "Scop detection will ignore all functions that match "
 | |
|              "ANY of the regexes provided."),
 | |
|     cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
 | |
| 
 | |
| bool polly::PollyAllowFullFunction;
 | |
| 
 | |
| static cl::opt<bool, true>
 | |
|     XAllowFullFunction("polly-detect-full-functions",
 | |
|                        cl::desc("Allow the detection of full functions"),
 | |
|                        cl::location(polly::PollyAllowFullFunction),
 | |
|                        cl::init(false), cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<std::string> OnlyRegion(
 | |
|     "polly-only-region",
 | |
|     cl::desc("Only run on certain regions (The provided identifier must "
 | |
|              "appear in the name of the region's entry block"),
 | |
|     cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
 | |
|     cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     IgnoreAliasing("polly-ignore-aliasing",
 | |
|                    cl::desc("Ignore possible aliasing of the array bases"),
 | |
|                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | |
|                    cl::cat(PollyCategory));
 | |
| 
 | |
| bool polly::PollyAllowUnsignedOperations;
 | |
| 
 | |
| static cl::opt<bool, true> XPollyAllowUnsignedOperations(
 | |
|     "polly-allow-unsigned-operations",
 | |
|     cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
 | |
|     cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
 | |
|     cl::init(true), cl::cat(PollyCategory));
 | |
| 
 | |
| bool polly::PollyUseRuntimeAliasChecks;
 | |
| 
 | |
| static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
 | |
|     "polly-use-runtime-alias-checks",
 | |
|     cl::desc("Use runtime alias checks to resolve possible aliasing."),
 | |
|     cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
 | |
|     cl::init(true), cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     ReportLevel("polly-report",
 | |
|                 cl::desc("Print information about the activities of Polly"),
 | |
|                 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool> AllowDifferentTypes(
 | |
|     "polly-allow-differing-element-types",
 | |
|     cl::desc("Allow different element types for array accesses"), cl::Hidden,
 | |
|     cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     AllowNonAffine("polly-allow-nonaffine",
 | |
|                    cl::desc("Allow non affine access functions in arrays"),
 | |
|                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | |
|                    cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     AllowModrefCall("polly-allow-modref-calls",
 | |
|                     cl::desc("Allow functions with known modref behavior"),
 | |
|                     cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | |
|                     cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool> AllowNonAffineSubRegions(
 | |
|     "polly-allow-nonaffine-branches",
 | |
|     cl::desc("Allow non affine conditions for branches"), cl::Hidden,
 | |
|     cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
 | |
|                            cl::desc("Allow non affine conditions for loops"),
 | |
|                            cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | |
|                            cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool, true>
 | |
|     TrackFailures("polly-detect-track-failures",
 | |
|                   cl::desc("Track failure strings in detecting scop regions"),
 | |
|                   cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
 | |
|                   cl::init(true), cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool> KeepGoing("polly-detect-keep-going",
 | |
|                                cl::desc("Do not fail on the first error."),
 | |
|                                cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | |
|                                cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool, true>
 | |
|     PollyDelinearizeX("polly-delinearize",
 | |
|                       cl::desc("Delinearize array access functions"),
 | |
|                       cl::location(PollyDelinearize), cl::Hidden,
 | |
|                       cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     VerifyScops("polly-detect-verify",
 | |
|                 cl::desc("Verify the detected SCoPs after each transformation"),
 | |
|                 cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | |
|                 cl::cat(PollyCategory));
 | |
| 
 | |
| bool polly::PollyInvariantLoadHoisting;
 | |
| 
 | |
| static cl::opt<bool, true> XPollyInvariantLoadHoisting(
 | |
|     "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
 | |
|     cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
 | |
|     cl::init(false), cl::cat(PollyCategory));
 | |
| 
 | |
| /// The minimal trip count under which loops are considered unprofitable.
 | |
| static const unsigned MIN_LOOP_TRIP_COUNT = 8;
 | |
| 
 | |
| bool polly::PollyTrackFailures = false;
 | |
| bool polly::PollyDelinearize = false;
 | |
| StringRef polly::PollySkipFnAttr = "polly.skip.fn";
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Statistics.
 | |
| 
 | |
| STATISTIC(NumScopRegions, "Number of scops");
 | |
| STATISTIC(NumLoopsInScop, "Number of loops in scops");
 | |
| STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
 | |
| STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
 | |
| STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
 | |
| STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
 | |
| STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
 | |
| STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
 | |
| STATISTIC(NumScopsDepthLarger,
 | |
|           "Number of scops with maximal loop depth 6 and larger");
 | |
| STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
 | |
| STATISTIC(NumLoopsInProfScop,
 | |
|           "Number of loops in scops (profitable scops only)");
 | |
| STATISTIC(NumLoopsOverall, "Number of total loops");
 | |
| STATISTIC(NumProfScopsDepthZero,
 | |
|           "Number of scops with maximal loop depth 0 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthOne,
 | |
|           "Number of scops with maximal loop depth 1 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthTwo,
 | |
|           "Number of scops with maximal loop depth 2 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthThree,
 | |
|           "Number of scops with maximal loop depth 3 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthFour,
 | |
|           "Number of scops with maximal loop depth 4 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthFive,
 | |
|           "Number of scops with maximal loop depth 5 (profitable scops only)");
 | |
| STATISTIC(NumProfScopsDepthLarger,
 | |
|           "Number of scops with maximal loop depth 6 and larger "
 | |
|           "(profitable scops only)");
 | |
| STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
 | |
| STATISTIC(MaxNumLoopsInProfScop,
 | |
|           "Maximal number of loops in scops (profitable scops only)");
 | |
| 
 | |
| static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
 | |
|                                      bool OnlyProfitable);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class DiagnosticScopFound : public DiagnosticInfo {
 | |
| private:
 | |
|   static int PluginDiagnosticKind;
 | |
| 
 | |
|   Function &F;
 | |
|   std::string FileName;
 | |
|   unsigned EntryLine, ExitLine;
 | |
| 
 | |
| public:
 | |
|   DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
 | |
|                       unsigned ExitLine)
 | |
|       : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
 | |
|         EntryLine(EntryLine), ExitLine(ExitLine) {}
 | |
| 
 | |
|   void print(DiagnosticPrinter &DP) const override;
 | |
| 
 | |
|   static bool classof(const DiagnosticInfo *DI) {
 | |
|     return DI->getKind() == PluginDiagnosticKind;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| int DiagnosticScopFound::PluginDiagnosticKind =
 | |
|     getNextAvailablePluginDiagnosticKind();
 | |
| 
 | |
| void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
 | |
|   DP << "Polly detected an optimizable loop region (scop) in function '" << F
 | |
|      << "'\n";
 | |
| 
 | |
|   if (FileName.empty()) {
 | |
|     DP << "Scop location is unknown. Compile with debug info "
 | |
|           "(-g) to get more precise information. ";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DP << FileName << ":" << EntryLine << ": Start of scop\n";
 | |
|   DP << FileName << ":" << ExitLine << ": End of scop";
 | |
| }
 | |
| 
 | |
| /// Check if a string matches any regex in a list of regexes.
 | |
| /// @param Str the input string to match against.
 | |
| /// @param RegexList a list of strings that are regular expressions.
 | |
| static bool doesStringMatchAnyRegex(StringRef Str,
 | |
|                                     const cl::list<std::string> &RegexList) {
 | |
|   for (auto RegexStr : RegexList) {
 | |
|     Regex R(RegexStr);
 | |
| 
 | |
|     std::string Err;
 | |
|     if (!R.isValid(Err))
 | |
|       report_fatal_error("invalid regex given as input to polly: " + Err, true);
 | |
| 
 | |
|     if (R.match(Str))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScopDetection.
 | |
| 
 | |
| ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
 | |
|                              ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
 | |
|                              AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
 | |
|     : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
 | |
|   if (!PollyProcessUnprofitable && LI.empty())
 | |
|     return;
 | |
| 
 | |
|   Region *TopRegion = RI.getTopLevelRegion();
 | |
| 
 | |
|   if (!OnlyFunctions.empty() &&
 | |
|       !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
 | |
|     return;
 | |
| 
 | |
|   if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
 | |
|     return;
 | |
| 
 | |
|   if (!isValidFunction(F))
 | |
|     return;
 | |
| 
 | |
|   findScops(*TopRegion);
 | |
| 
 | |
|   NumScopRegions += ValidRegions.size();
 | |
| 
 | |
|   // Prune non-profitable regions.
 | |
|   for (auto &DIt : DetectionContextMap) {
 | |
|     auto &DC = DIt.getSecond();
 | |
|     if (DC.Log.hasErrors())
 | |
|       continue;
 | |
|     if (!ValidRegions.count(&DC.CurRegion))
 | |
|       continue;
 | |
|     LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
 | |
|     updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
 | |
|     if (isProfitableRegion(DC)) {
 | |
|       updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ValidRegions.remove(&DC.CurRegion);
 | |
|   }
 | |
| 
 | |
|   NumProfScopRegions += ValidRegions.size();
 | |
|   NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;
 | |
| 
 | |
|   // Only makes sense when we tracked errors.
 | |
|   if (PollyTrackFailures)
 | |
|     emitMissedRemarks(F);
 | |
| 
 | |
|   if (ReportLevel)
 | |
|     printLocations(F);
 | |
| 
 | |
|   assert(ValidRegions.size() <= DetectionContextMap.size() &&
 | |
|          "Cached more results than valid regions");
 | |
| }
 | |
| 
 | |
| template <class RR, typename... Args>
 | |
| inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
 | |
|                                    Args &&... Arguments) const {
 | |
|   if (!Context.Verifying) {
 | |
|     RejectLog &Log = Context.Log;
 | |
|     std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
 | |
| 
 | |
|     if (PollyTrackFailures)
 | |
|       Log.report(RejectReason);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << RejectReason->getMessage());
 | |
|     LLVM_DEBUG(dbgs() << "\n");
 | |
|   } else {
 | |
|     assert(!Assert && "Verification of detected scop failed");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
 | |
|   if (!ValidRegions.count(&R))
 | |
|     return false;
 | |
| 
 | |
|   if (Verify) {
 | |
|     DetectionContextMap.erase(getBBPairForRegion(&R));
 | |
|     const auto &It = DetectionContextMap.insert(std::make_pair(
 | |
|         getBBPairForRegion(&R),
 | |
|         DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
 | |
|     DetectionContext &Context = It.first->second;
 | |
|     return isValidRegion(Context);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
 | |
|   // Get the first error we found. Even in keep-going mode, this is the first
 | |
|   // reason that caused the candidate to be rejected.
 | |
|   auto *Log = lookupRejectionLog(R);
 | |
| 
 | |
|   // This can happen when we marked a region invalid, but didn't track
 | |
|   // an error for it.
 | |
|   if (!Log || !Log->hasErrors())
 | |
|     return "";
 | |
| 
 | |
|   RejectReasonPtr RR = *Log->begin();
 | |
|   return RR->getMessage();
 | |
| }
 | |
| 
 | |
| bool ScopDetection::addOverApproximatedRegion(Region *AR,
 | |
|                                               DetectionContext &Context) const {
 | |
|   // If we already know about Ar we can exit.
 | |
|   if (!Context.NonAffineSubRegionSet.insert(AR))
 | |
|     return true;
 | |
| 
 | |
|   // All loops in the region have to be overapproximated too if there
 | |
|   // are accesses that depend on the iteration count.
 | |
| 
 | |
|   for (BasicBlock *BB : AR->blocks()) {
 | |
|     Loop *L = LI.getLoopFor(BB);
 | |
|     if (AR->contains(L))
 | |
|       Context.BoxedLoopsSet.insert(L);
 | |
|   }
 | |
| 
 | |
|   return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
 | |
| }
 | |
| 
 | |
| bool ScopDetection::onlyValidRequiredInvariantLoads(
 | |
|     InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
|   const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();
 | |
| 
 | |
|   if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
 | |
|     return false;
 | |
| 
 | |
|   for (LoadInst *Load : RequiredILS) {
 | |
|     // If we already know a load has been accepted as required invariant, we
 | |
|     // already run the validation below once and consequently don't need to
 | |
|     // run it again. Hence, we return early. For certain test cases (e.g.,
 | |
|     // COSMO this avoids us spending 50% of scop-detection time in this
 | |
|     // very function (and its children).
 | |
|     if (Context.RequiredILS.count(Load))
 | |
|       continue;
 | |
|     if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
 | |
|       return false;
 | |
| 
 | |
|     for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
 | |
|       if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
 | |
|                                       Load->getType(), Load->getAlign(), DL))
 | |
|         continue;
 | |
| 
 | |
|       if (NonAffineRegion->contains(Load) &&
 | |
|           Load->getParent() != NonAffineRegion->getEntry())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
 | |
|                                          Loop *Scope) const {
 | |
|   SetVector<Value *> Values;
 | |
|   findValues(S0, SE, Values);
 | |
|   if (S1)
 | |
|     findValues(S1, SE, Values);
 | |
| 
 | |
|   SmallPtrSet<Value *, 8> PtrVals;
 | |
|   for (auto *V : Values) {
 | |
|     if (auto *P2I = dyn_cast<PtrToIntInst>(V))
 | |
|       V = P2I->getOperand(0);
 | |
| 
 | |
|     if (!V->getType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
 | |
|     if (isa<SCEVConstant>(PtrSCEV))
 | |
|       continue;
 | |
| 
 | |
|     auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
 | |
|     if (!BasePtr)
 | |
|       return true;
 | |
| 
 | |
|     auto *BasePtrVal = BasePtr->getValue();
 | |
|     if (PtrVals.insert(BasePtrVal).second) {
 | |
|       for (auto *PtrVal : PtrVals)
 | |
|         if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
 | |
|           return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
 | |
|                              DetectionContext &Context) const {
 | |
|   InvariantLoadsSetTy AccessILS;
 | |
|   if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
 | |
|     return false;
 | |
| 
 | |
|   if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
 | |
|                                   Value *Condition, bool IsLoopBranch,
 | |
|                                   DetectionContext &Context) const {
 | |
|   Loop *L = LI.getLoopFor(&BB);
 | |
|   const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);
 | |
| 
 | |
|   if (IsLoopBranch && L->isLoopLatch(&BB))
 | |
|     return false;
 | |
| 
 | |
|   // Check for invalid usage of different pointers in one expression.
 | |
|   if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
 | |
|     return false;
 | |
| 
 | |
|   if (isAffine(ConditionSCEV, L, Context))
 | |
|     return true;
 | |
| 
 | |
|   if (AllowNonAffineSubRegions &&
 | |
|       addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
 | |
|     return true;
 | |
| 
 | |
|   return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
 | |
|                                      ConditionSCEV, ConditionSCEV, SI);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
 | |
|                                   Value *Condition, bool IsLoopBranch,
 | |
|                                   DetectionContext &Context) const {
 | |
|   // Constant integer conditions are always affine.
 | |
|   if (isa<ConstantInt>(Condition))
 | |
|     return true;
 | |
| 
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
 | |
|     auto Opcode = BinOp->getOpcode();
 | |
|     if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | |
|       Value *Op0 = BinOp->getOperand(0);
 | |
|       Value *Op1 = BinOp->getOperand(1);
 | |
|       return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
 | |
|              isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto PHI = dyn_cast<PHINode>(Condition)) {
 | |
|     auto *Unique = dyn_cast_or_null<ConstantInt>(
 | |
|         getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
 | |
|     if (Unique && (Unique->isZero() || Unique->isOne()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (auto Load = dyn_cast<LoadInst>(Condition))
 | |
|     if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
 | |
|       Context.RequiredILS.insert(Load);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Non constant conditions of branches need to be ICmpInst.
 | |
|   if (!isa<ICmpInst>(Condition)) {
 | |
|     if (!IsLoopBranch && AllowNonAffineSubRegions &&
 | |
|         addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
 | |
|       return true;
 | |
|     return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
 | |
|   }
 | |
| 
 | |
|   ICmpInst *ICmp = cast<ICmpInst>(Condition);
 | |
| 
 | |
|   // Are both operands of the ICmp affine?
 | |
|   if (isa<UndefValue>(ICmp->getOperand(0)) ||
 | |
|       isa<UndefValue>(ICmp->getOperand(1)))
 | |
|     return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
 | |
| 
 | |
|   Loop *L = LI.getLoopFor(&BB);
 | |
|   const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
 | |
|   const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);
 | |
| 
 | |
|   LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
 | |
|   RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);
 | |
| 
 | |
|   // If unsigned operations are not allowed try to approximate the region.
 | |
|   if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
 | |
|     return !IsLoopBranch && AllowNonAffineSubRegions &&
 | |
|            addOverApproximatedRegion(RI.getRegionFor(&BB), Context);
 | |
| 
 | |
|   // Check for invalid usage of different pointers in one expression.
 | |
|   if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
 | |
|       involvesMultiplePtrs(RHS, nullptr, L))
 | |
|     return false;
 | |
| 
 | |
|   // Check for invalid usage of different pointers in a relational comparison.
 | |
|   if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
 | |
|     return false;
 | |
| 
 | |
|   if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
 | |
|     return true;
 | |
| 
 | |
|   if (!IsLoopBranch && AllowNonAffineSubRegions &&
 | |
|       addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
 | |
|     return true;
 | |
| 
 | |
|   if (IsLoopBranch)
 | |
|     return false;
 | |
| 
 | |
|   return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
 | |
|                                      ICmp);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
 | |
|                                bool AllowUnreachable,
 | |
|                                DetectionContext &Context) const {
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
| 
 | |
|   Instruction *TI = BB.getTerminator();
 | |
| 
 | |
|   if (AllowUnreachable && isa<UnreachableInst>(TI))
 | |
|     return true;
 | |
| 
 | |
|   // Return instructions are only valid if the region is the top level region.
 | |
|   if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
 | |
|     return true;
 | |
| 
 | |
|   Value *Condition = getConditionFromTerminator(TI);
 | |
| 
 | |
|   if (!Condition)
 | |
|     return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
 | |
| 
 | |
|   // UndefValue is not allowed as condition.
 | |
|   if (isa<UndefValue>(Condition))
 | |
|     return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
 | |
| 
 | |
|   SwitchInst *SI = dyn_cast<SwitchInst>(TI);
 | |
|   assert(SI && "Terminator was neither branch nor switch");
 | |
| 
 | |
|   return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidCallInst(CallInst &CI,
 | |
|                                     DetectionContext &Context) const {
 | |
|   if (CI.doesNotReturn())
 | |
|     return false;
 | |
| 
 | |
|   if (CI.doesNotAccessMemory())
 | |
|     return true;
 | |
| 
 | |
|   if (auto *II = dyn_cast<IntrinsicInst>(&CI))
 | |
|     if (isValidIntrinsicInst(*II, Context))
 | |
|       return true;
 | |
| 
 | |
|   Function *CalledFunction = CI.getCalledFunction();
 | |
| 
 | |
|   // Indirect calls are not supported.
 | |
|   if (CalledFunction == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   if (isDebugCall(&CI)) {
 | |
|     LLVM_DEBUG(dbgs() << "Allow call to debug function: "
 | |
|                       << CalledFunction->getName() << '\n');
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (AllowModrefCall) {
 | |
|     switch (AA.getModRefBehavior(CalledFunction)) {
 | |
|     case FMRB_UnknownModRefBehavior:
 | |
|       return false;
 | |
|     case FMRB_DoesNotAccessMemory:
 | |
|     case FMRB_OnlyReadsMemory:
 | |
|     case FMRB_OnlyReadsInaccessibleMem:
 | |
|     case FMRB_OnlyReadsInaccessibleOrArgMem:
 | |
|       // Implicitly disable delinearization since we have an unknown
 | |
|       // accesses with an unknown access function.
 | |
|       Context.HasUnknownAccess = true;
 | |
|       // Explicitly use addUnknown so we don't put a loop-variant
 | |
|       // pointer into the alias set.
 | |
|       Context.AST.addUnknown(&CI);
 | |
|       return true;
 | |
|     case FMRB_OnlyReadsArgumentPointees:
 | |
|     case FMRB_OnlyAccessesArgumentPointees:
 | |
|     case FMRB_OnlyWritesArgumentPointees:
 | |
|       for (const auto &Arg : CI.arg_operands()) {
 | |
|         if (!Arg->getType()->isPointerTy())
 | |
|           continue;
 | |
| 
 | |
|         // Bail if a pointer argument has a base address not known to
 | |
|         // ScalarEvolution. Note that a zero pointer is acceptable.
 | |
|         auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
 | |
|         if (ArgSCEV->isZero())
 | |
|           continue;
 | |
| 
 | |
|         auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
 | |
|         if (!BP)
 | |
|           return false;
 | |
| 
 | |
|         // Implicitly disable delinearization since we have an unknown
 | |
|         // accesses with an unknown access function.
 | |
|         Context.HasUnknownAccess = true;
 | |
|       }
 | |
| 
 | |
|       // Explicitly use addUnknown so we don't put a loop-variant
 | |
|       // pointer into the alias set.
 | |
|       Context.AST.addUnknown(&CI);
 | |
|       return true;
 | |
|     case FMRB_OnlyWritesMemory:
 | |
|     case FMRB_OnlyWritesInaccessibleMem:
 | |
|     case FMRB_OnlyWritesInaccessibleOrArgMem:
 | |
|     case FMRB_OnlyAccessesInaccessibleMem:
 | |
|     case FMRB_OnlyAccessesInaccessibleOrArgMem:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
 | |
|                                          DetectionContext &Context) const {
 | |
|   if (isIgnoredIntrinsic(&II))
 | |
|     return true;
 | |
| 
 | |
|   // The closest loop surrounding the call instruction.
 | |
|   Loop *L = LI.getLoopFor(II.getParent());
 | |
| 
 | |
|   // The access function and base pointer for memory intrinsics.
 | |
|   const SCEV *AF;
 | |
|   const SCEVUnknown *BP;
 | |
| 
 | |
|   switch (II.getIntrinsicID()) {
 | |
|   // Memory intrinsics that can be represented are supported.
 | |
|   case Intrinsic::memmove:
 | |
|   case Intrinsic::memcpy:
 | |
|     AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
 | |
|     if (!AF->isZero()) {
 | |
|       BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
 | |
|       // Bail if the source pointer is not valid.
 | |
|       if (!isValidAccess(&II, AF, BP, Context))
 | |
|         return false;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Intrinsic::memset:
 | |
|     AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
 | |
|     if (!AF->isZero()) {
 | |
|       BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
 | |
|       // Bail if the destination pointer is not valid.
 | |
|       if (!isValidAccess(&II, AF, BP, Context))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Bail if the length is not affine.
 | |
|     if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
 | |
|                   Context))
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
 | |
|                                 DetectionContext &Ctx) const {
 | |
|   // A reference to function argument or constant value is invariant.
 | |
|   if (isa<Argument>(Val) || isa<Constant>(Val))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(&Val);
 | |
|   if (!I)
 | |
|     return false;
 | |
| 
 | |
|   if (!Reg.contains(I))
 | |
|     return true;
 | |
| 
 | |
|   // Loads within the SCoP may read arbitrary values, need to hoist them. If it
 | |
|   // is not hoistable, it will be rejected later, but here we assume it is and
 | |
|   // that makes the value invariant.
 | |
|   if (auto LI = dyn_cast<LoadInst>(I)) {
 | |
|     Ctx.RequiredILS.insert(LI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Remove smax of smax(0, size) expressions from a SCEV expression and
 | |
| /// register the '...' components.
 | |
| ///
 | |
| /// Array access expressions as they are generated by GFortran contain smax(0,
 | |
| /// size) expressions that confuse the 'normal' delinearization algorithm.
 | |
| /// However, if we extract such expressions before the normal delinearization
 | |
| /// takes place they can actually help to identify array size expressions in
 | |
| /// Fortran accesses. For the subsequently following delinearization the smax(0,
 | |
| /// size) component can be replaced by just 'size'. This is correct as we will
 | |
| /// always add and verify the assumption that for all subscript expressions
 | |
| /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
 | |
| /// that 0 <= size, which means smax(0, size) == size.
 | |
| class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
 | |
| public:
 | |
|   SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
 | |
|       : SCEVRewriteVisitor(SE), Terms(Terms) {}
 | |
| 
 | |
|   static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
 | |
|                              std::vector<const SCEV *> *Terms = nullptr) {
 | |
|     SCEVRemoveMax Rewriter(SE, Terms);
 | |
|     return Rewriter.visit(Scev);
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
 | |
|     if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
 | |
|       auto Res = visit(Expr->getOperand(1));
 | |
|       if (Terms)
 | |
|         (*Terms).push_back(Res);
 | |
|       return Res;
 | |
|     }
 | |
| 
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   std::vector<const SCEV *> *Terms;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| SmallVector<const SCEV *, 4>
 | |
| ScopDetection::getDelinearizationTerms(DetectionContext &Context,
 | |
|                                        const SCEVUnknown *BasePointer) const {
 | |
|   SmallVector<const SCEV *, 4> Terms;
 | |
|   for (const auto &Pair : Context.Accesses[BasePointer]) {
 | |
|     std::vector<const SCEV *> MaxTerms;
 | |
|     SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
 | |
|     if (!MaxTerms.empty()) {
 | |
|       Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
 | |
|       continue;
 | |
|     }
 | |
|     // In case the outermost expression is a plain add, we check if any of its
 | |
|     // terms has the form 4 * %inst * %param * %param ..., aka a term that
 | |
|     // contains a product between a parameter and an instruction that is
 | |
|     // inside the scop. Such instructions, if allowed at all, are instructions
 | |
|     // SCEV can not represent, but Polly is still looking through. As a
 | |
|     // result, these instructions can depend on induction variables and are
 | |
|     // most likely no array sizes. However, terms that are multiplied with
 | |
|     // them are likely candidates for array sizes.
 | |
|     if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
 | |
|       for (auto Op : AF->operands()) {
 | |
|         if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
 | |
|           SE.collectParametricTerms(AF2, Terms);
 | |
|         if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
 | |
|           SmallVector<const SCEV *, 0> Operands;
 | |
| 
 | |
|           for (auto *MulOp : AF2->operands()) {
 | |
|             if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
 | |
|               Operands.push_back(Const);
 | |
|             if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
 | |
|               if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
 | |
|                 if (!Context.CurRegion.contains(Inst))
 | |
|                   Operands.push_back(MulOp);
 | |
| 
 | |
|               } else {
 | |
|                 Operands.push_back(MulOp);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           if (Operands.size())
 | |
|             Terms.push_back(SE.getMulExpr(Operands));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (Terms.empty())
 | |
|       SE.collectParametricTerms(Pair.second, Terms);
 | |
|   }
 | |
|   return Terms;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
 | |
|                                        SmallVectorImpl<const SCEV *> &Sizes,
 | |
|                                        const SCEVUnknown *BasePointer,
 | |
|                                        Loop *Scope) const {
 | |
|   // If no sizes were found, all sizes are trivially valid. We allow this case
 | |
|   // to make it possible to pass known-affine accesses to the delinearization to
 | |
|   // try to recover some interesting multi-dimensional accesses, but to still
 | |
|   // allow the already known to be affine access in case the delinearization
 | |
|   // fails. In such situations, the delinearization will just return a Sizes
 | |
|   // array of size zero.
 | |
|   if (Sizes.size() == 0)
 | |
|     return true;
 | |
| 
 | |
|   Value *BaseValue = BasePointer->getValue();
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
|   for (const SCEV *DelinearizedSize : Sizes) {
 | |
|     // Don't pass down the scope to isAfffine; array dimensions must be
 | |
|     // invariant across the entire scop.
 | |
|     if (!isAffine(DelinearizedSize, nullptr, Context)) {
 | |
|       Sizes.clear();
 | |
|       break;
 | |
|     }
 | |
|     if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
 | |
|       auto *V = dyn_cast<Value>(Unknown->getValue());
 | |
|       if (auto *Load = dyn_cast<LoadInst>(V)) {
 | |
|         if (Context.CurRegion.contains(Load) &&
 | |
|             isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
 | |
|           Context.RequiredILS.insert(Load);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
 | |
|                                   Context.RequiredILS))
 | |
|       return invalid<ReportNonAffineAccess>(
 | |
|           Context, /*Assert=*/true, DelinearizedSize,
 | |
|           Context.Accesses[BasePointer].front().first, BaseValue);
 | |
|   }
 | |
| 
 | |
|   // No array shape derived.
 | |
|   if (Sizes.empty()) {
 | |
|     if (AllowNonAffine)
 | |
|       return true;
 | |
| 
 | |
|     for (const auto &Pair : Context.Accesses[BasePointer]) {
 | |
|       const Instruction *Insn = Pair.first;
 | |
|       const SCEV *AF = Pair.second;
 | |
| 
 | |
|       if (!isAffine(AF, Scope, Context)) {
 | |
|         invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
 | |
|                                        BaseValue);
 | |
|         if (!KeepGoing)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // We first store the resulting memory accesses in TempMemoryAccesses. Only
 | |
| // if the access functions for all memory accesses have been successfully
 | |
| // delinearized we continue. Otherwise, we either report a failure or, if
 | |
| // non-affine accesses are allowed, we drop the information. In case the
 | |
| // information is dropped the memory accesses need to be overapproximated
 | |
| // when translated to a polyhedral representation.
 | |
| bool ScopDetection::computeAccessFunctions(
 | |
|     DetectionContext &Context, const SCEVUnknown *BasePointer,
 | |
|     std::shared_ptr<ArrayShape> Shape) const {
 | |
|   Value *BaseValue = BasePointer->getValue();
 | |
|   bool BasePtrHasNonAffine = false;
 | |
|   MapInsnToMemAcc TempMemoryAccesses;
 | |
|   for (const auto &Pair : Context.Accesses[BasePointer]) {
 | |
|     const Instruction *Insn = Pair.first;
 | |
|     auto *AF = Pair.second;
 | |
|     AF = SCEVRemoveMax::rewrite(AF, SE);
 | |
|     bool IsNonAffine = false;
 | |
|     TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
 | |
|     MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
 | |
|     auto *Scope = LI.getLoopFor(Insn->getParent());
 | |
| 
 | |
|     if (!AF) {
 | |
|       if (isAffine(Pair.second, Scope, Context))
 | |
|         Acc->DelinearizedSubscripts.push_back(Pair.second);
 | |
|       else
 | |
|         IsNonAffine = true;
 | |
|     } else {
 | |
|       if (Shape->DelinearizedSizes.size() == 0) {
 | |
|         Acc->DelinearizedSubscripts.push_back(AF);
 | |
|       } else {
 | |
|         SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
 | |
|                                   Shape->DelinearizedSizes);
 | |
|         if (Acc->DelinearizedSubscripts.size() == 0)
 | |
|           IsNonAffine = true;
 | |
|       }
 | |
|       for (const SCEV *S : Acc->DelinearizedSubscripts)
 | |
|         if (!isAffine(S, Scope, Context))
 | |
|           IsNonAffine = true;
 | |
|     }
 | |
| 
 | |
|     // (Possibly) report non affine access
 | |
|     if (IsNonAffine) {
 | |
|       BasePtrHasNonAffine = true;
 | |
|       if (!AllowNonAffine)
 | |
|         invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
 | |
|                                        Insn, BaseValue);
 | |
|       if (!KeepGoing && !AllowNonAffine)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BasePtrHasNonAffine)
 | |
|     Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
 | |
|                                 TempMemoryAccesses.end());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
 | |
|                                           const SCEVUnknown *BasePointer,
 | |
|                                           Loop *Scope) const {
 | |
|   auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
 | |
| 
 | |
|   auto Terms = getDelinearizationTerms(Context, BasePointer);
 | |
| 
 | |
|   SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
 | |
|                          Context.ElementSize[BasePointer]);
 | |
| 
 | |
|   if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
 | |
|                           Scope))
 | |
|     return false;
 | |
| 
 | |
|   return computeAccessFunctions(Context, BasePointer, Shape);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
 | |
|   // TODO: If we have an unknown access and other non-affine accesses we do
 | |
|   //       not try to delinearize them for now.
 | |
|   if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
 | |
|     return AllowNonAffine;
 | |
| 
 | |
|   for (auto &Pair : Context.NonAffineAccesses) {
 | |
|     auto *BasePointer = Pair.first;
 | |
|     auto *Scope = Pair.second;
 | |
|     if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
 | |
|       if (KeepGoing)
 | |
|         continue;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
 | |
|                                   const SCEVUnknown *BP,
 | |
|                                   DetectionContext &Context) const {
 | |
| 
 | |
|   if (!BP)
 | |
|     return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
 | |
| 
 | |
|   auto *BV = BP->getValue();
 | |
|   if (isa<UndefValue>(BV))
 | |
|     return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
 | |
| 
 | |
|   // FIXME: Think about allowing IntToPtrInst
 | |
|   if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
 | |
|     return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
 | |
| 
 | |
|   // Check that the base address of the access is invariant in the current
 | |
|   // region.
 | |
|   if (!isInvariant(*BV, Context.CurRegion, Context))
 | |
|     return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
 | |
| 
 | |
|   AF = SE.getMinusSCEV(AF, BP);
 | |
| 
 | |
|   const SCEV *Size;
 | |
|   if (!isa<MemIntrinsic>(Inst)) {
 | |
|     Size = SE.getElementSize(Inst);
 | |
|   } else {
 | |
|     auto *SizeTy =
 | |
|         SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
 | |
|     Size = SE.getConstant(SizeTy, 8);
 | |
|   }
 | |
| 
 | |
|   if (Context.ElementSize[BP]) {
 | |
|     if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
 | |
|       return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
 | |
|                                                       Inst, BV);
 | |
| 
 | |
|     Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
 | |
|   } else {
 | |
|     Context.ElementSize[BP] = Size;
 | |
|   }
 | |
| 
 | |
|   bool IsVariantInNonAffineLoop = false;
 | |
|   SetVector<const Loop *> Loops;
 | |
|   findLoops(AF, Loops);
 | |
|   for (const Loop *L : Loops)
 | |
|     if (Context.BoxedLoopsSet.count(L))
 | |
|       IsVariantInNonAffineLoop = true;
 | |
| 
 | |
|   auto *Scope = LI.getLoopFor(Inst->getParent());
 | |
|   bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
 | |
|   // Do not try to delinearize memory intrinsics and force them to be affine.
 | |
|   if (isa<MemIntrinsic>(Inst) && !IsAffine) {
 | |
|     return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
 | |
|                                           BV);
 | |
|   } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
 | |
|     Context.Accesses[BP].push_back({Inst, AF});
 | |
| 
 | |
|     if (!IsAffine || hasIVParams(AF))
 | |
|       Context.NonAffineAccesses.insert(
 | |
|           std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
 | |
|   } else if (!AllowNonAffine && !IsAffine) {
 | |
|     return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
 | |
|                                           BV);
 | |
|   }
 | |
| 
 | |
|   if (IgnoreAliasing)
 | |
|     return true;
 | |
| 
 | |
|   // Check if the base pointer of the memory access does alias with
 | |
|   // any other pointer. This cannot be handled at the moment.
 | |
|   AAMDNodes AATags;
 | |
|   Inst->getAAMetadata(AATags);
 | |
|   AliasSet &AS = Context.AST.getAliasSetFor(
 | |
|       MemoryLocation(BP->getValue(), MemoryLocation::UnknownSize, AATags));
 | |
| 
 | |
|   if (!AS.isMustAlias()) {
 | |
|     if (PollyUseRuntimeAliasChecks) {
 | |
|       bool CanBuildRunTimeCheck = true;
 | |
|       // The run-time alias check places code that involves the base pointer at
 | |
|       // the beginning of the SCoP. This breaks if the base pointer is defined
 | |
|       // inside the scop. Hence, we can only create a run-time check if we are
 | |
|       // sure the base pointer is not an instruction defined inside the scop.
 | |
|       // However, we can ignore loads that will be hoisted.
 | |
| 
 | |
|       InvariantLoadsSetTy VariantLS, InvariantLS;
 | |
|       // In order to detect loads which are dependent on other invariant loads
 | |
|       // as invariant, we use fixed-point iteration method here i.e we iterate
 | |
|       // over the alias set for arbitrary number of times until it is safe to
 | |
|       // assume that all the invariant loads have been detected
 | |
|       while (1) {
 | |
|         const unsigned int VariantSize = VariantLS.size(),
 | |
|                            InvariantSize = InvariantLS.size();
 | |
| 
 | |
|         for (const auto &Ptr : AS) {
 | |
|           Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
 | |
|           if (Inst && Context.CurRegion.contains(Inst)) {
 | |
|             auto *Load = dyn_cast<LoadInst>(Inst);
 | |
|             if (Load && InvariantLS.count(Load))
 | |
|               continue;
 | |
|             if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
 | |
|                                         InvariantLS)) {
 | |
|               if (VariantLS.count(Load))
 | |
|                 VariantLS.remove(Load);
 | |
|               Context.RequiredILS.insert(Load);
 | |
|               InvariantLS.insert(Load);
 | |
|             } else {
 | |
|               CanBuildRunTimeCheck = false;
 | |
|               VariantLS.insert(Load);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (InvariantSize == InvariantLS.size() &&
 | |
|             VariantSize == VariantLS.size())
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       if (CanBuildRunTimeCheck)
 | |
|         return true;
 | |
|     }
 | |
|     return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
 | |
|                                         DetectionContext &Context) const {
 | |
|   Value *Ptr = Inst.getPointerOperand();
 | |
|   Loop *L = LI.getLoopFor(Inst->getParent());
 | |
|   const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
 | |
|   const SCEVUnknown *BasePointer;
 | |
| 
 | |
|   BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
 | |
| 
 | |
|   return isValidAccess(Inst, AccessFunction, BasePointer, Context);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidInstruction(Instruction &Inst,
 | |
|                                        DetectionContext &Context) const {
 | |
|   for (auto &Op : Inst.operands()) {
 | |
|     auto *OpInst = dyn_cast<Instruction>(&Op);
 | |
| 
 | |
|     if (!OpInst)
 | |
|       continue;
 | |
| 
 | |
|     if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
 | |
|       auto *PHI = dyn_cast<PHINode>(OpInst);
 | |
|       if (PHI) {
 | |
|         for (User *U : PHI->users()) {
 | |
|           auto *UI = dyn_cast<Instruction>(U);
 | |
|           if (!UI || !UI->isTerminator())
 | |
|             return false;
 | |
|         }
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
 | |
|     return false;
 | |
| 
 | |
|   // We only check the call instruction but not invoke instruction.
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
 | |
|     if (isValidCallInst(*CI, Context))
 | |
|       return true;
 | |
| 
 | |
|     return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
 | |
|   }
 | |
| 
 | |
|   if (!Inst.mayReadOrWriteMemory()) {
 | |
|     if (!isa<AllocaInst>(Inst))
 | |
|       return true;
 | |
| 
 | |
|     return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
 | |
|   }
 | |
| 
 | |
|   // Check the access function.
 | |
|   if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
 | |
|     Context.hasStores |= isa<StoreInst>(MemInst);
 | |
|     Context.hasLoads |= isa<LoadInst>(MemInst);
 | |
|     if (!MemInst.isSimple())
 | |
|       return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
 | |
|                                                   &Inst);
 | |
| 
 | |
|     return isValidMemoryAccess(MemInst, Context);
 | |
|   }
 | |
| 
 | |
|   // We do not know this instruction, therefore we assume it is invalid.
 | |
|   return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
 | |
| }
 | |
| 
 | |
| /// Check whether @p L has exiting blocks.
 | |
| ///
 | |
| /// @param L The loop of interest
 | |
| ///
 | |
| /// @return True if the loop has exiting blocks, false otherwise.
 | |
| static bool hasExitingBlocks(Loop *L) {
 | |
|   SmallVector<BasicBlock *, 4> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
|   return !ExitingBlocks.empty();
 | |
| }
 | |
| 
 | |
| bool ScopDetection::canUseISLTripCount(Loop *L,
 | |
|                                        DetectionContext &Context) const {
 | |
|   // Ensure the loop has valid exiting blocks as well as latches, otherwise we
 | |
|   // need to overapproximate it as a boxed loop.
 | |
|   SmallVector<BasicBlock *, 4> LoopControlBlocks;
 | |
|   L->getExitingBlocks(LoopControlBlocks);
 | |
|   L->getLoopLatches(LoopControlBlocks);
 | |
|   for (BasicBlock *ControlBB : LoopControlBlocks) {
 | |
|     if (!isValidCFG(*ControlBB, true, false, Context))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We can use ISL to compute the trip count of L.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
 | |
|   // Loops that contain part but not all of the blocks of a region cannot be
 | |
|   // handled by the schedule generation. Such loop constructs can happen
 | |
|   // because a region can contain BBs that have no path to the exit block
 | |
|   // (Infinite loops, UnreachableInst), but such blocks are never part of a
 | |
|   // loop.
 | |
|   //
 | |
|   // _______________
 | |
|   // | Loop Header | <-----------.
 | |
|   // ---------------             |
 | |
|   //        |                    |
 | |
|   // _______________       ______________
 | |
|   // | RegionEntry |-----> | RegionExit |----->
 | |
|   // ---------------       --------------
 | |
|   //        |
 | |
|   // _______________
 | |
|   // | EndlessLoop | <--.
 | |
|   // ---------------    |
 | |
|   //       |            |
 | |
|   //       \------------/
 | |
|   //
 | |
|   // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
 | |
|   // neither entirely contained in the region RegionEntry->RegionExit
 | |
|   // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
 | |
|   // in the loop.
 | |
|   // The block EndlessLoop is contained in the region because Region::contains
 | |
|   // tests whether it is not dominated by RegionExit. This is probably to not
 | |
|   // having to query the PostdominatorTree. Instead of an endless loop, a dead
 | |
|   // end can also be formed by an UnreachableInst. This case is already caught
 | |
|   // by isErrorBlock(). We hence only have to reject endless loops here.
 | |
|   if (!hasExitingBlocks(L))
 | |
|     return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
 | |
| 
 | |
|   // The algorithm for domain construction assumes that loops has only a single
 | |
|   // exit block (and hence corresponds to a subregion). Note that we cannot use
 | |
|   // L->getExitBlock() because it does not check whether all exiting edges point
 | |
|   // to the same BB.
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   BasicBlock *TheExitBlock = ExitBlocks[0];
 | |
|   for (BasicBlock *ExitBB : ExitBlocks) {
 | |
|     if (TheExitBlock != ExitBB)
 | |
|       return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
 | |
|   }
 | |
| 
 | |
|   if (canUseISLTripCount(L, Context))
 | |
|     return true;
 | |
| 
 | |
|   if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
 | |
|     Region *R = RI.getRegionFor(L->getHeader());
 | |
|     while (R != &Context.CurRegion && !R->contains(L))
 | |
|       R = R->getParent();
 | |
| 
 | |
|     if (addOverApproximatedRegion(R, Context))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
 | |
|   return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
 | |
| }
 | |
| 
 | |
| /// Return the number of loops in @p L (incl. @p L) that have a trip
 | |
| ///        count that is not known to be less than @MinProfitableTrips.
 | |
| ScopDetection::LoopStats
 | |
| ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
 | |
|                                        unsigned MinProfitableTrips) {
 | |
|   auto *TripCount = SE.getBackedgeTakenCount(L);
 | |
| 
 | |
|   int NumLoops = 1;
 | |
|   int MaxLoopDepth = 1;
 | |
|   if (MinProfitableTrips > 0)
 | |
|     if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
 | |
|       if (TripCountC->getType()->getScalarSizeInBits() <= 64)
 | |
|         if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
 | |
|           NumLoops -= 1;
 | |
| 
 | |
|   for (auto &SubLoop : *L) {
 | |
|     LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
 | |
|     NumLoops += Stats.NumLoops;
 | |
|     MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
 | |
|   }
 | |
| 
 | |
|   return {NumLoops, MaxLoopDepth};
 | |
| }
 | |
| 
 | |
| ScopDetection::LoopStats
 | |
| ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
 | |
|                                     LoopInfo &LI, unsigned MinProfitableTrips) {
 | |
|   int LoopNum = 0;
 | |
|   int MaxLoopDepth = 0;
 | |
| 
 | |
|   auto L = LI.getLoopFor(R->getEntry());
 | |
| 
 | |
|   // If L is fully contained in R, move to first loop surrounding R. Otherwise,
 | |
|   // L is either nullptr or already surrounding R.
 | |
|   if (L && R->contains(L)) {
 | |
|     L = R->outermostLoopInRegion(L);
 | |
|     L = L->getParentLoop();
 | |
|   }
 | |
| 
 | |
|   auto SubLoops =
 | |
|       L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());
 | |
| 
 | |
|   for (auto &SubLoop : SubLoops)
 | |
|     if (R->contains(SubLoop)) {
 | |
|       LoopStats Stats =
 | |
|           countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
 | |
|       LoopNum += Stats.NumLoops;
 | |
|       MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
 | |
|     }
 | |
| 
 | |
|   return {LoopNum, MaxLoopDepth};
 | |
| }
 | |
| 
 | |
| Region *ScopDetection::expandRegion(Region &R) {
 | |
|   // Initial no valid region was found (greater than R)
 | |
|   std::unique_ptr<Region> LastValidRegion;
 | |
|   auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
 | |
| 
 | |
|   while (ExpandedRegion) {
 | |
|     const auto &It = DetectionContextMap.insert(std::make_pair(
 | |
|         getBBPairForRegion(ExpandedRegion.get()),
 | |
|         DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
 | |
|     DetectionContext &Context = It.first->second;
 | |
|     LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
 | |
|     // Only expand when we did not collect errors.
 | |
| 
 | |
|     if (!Context.Log.hasErrors()) {
 | |
|       // If the exit is valid check all blocks
 | |
|       //  - if true, a valid region was found => store it + keep expanding
 | |
|       //  - if false, .tbd. => stop  (should this really end the loop?)
 | |
|       if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
 | |
|         removeCachedResults(*ExpandedRegion);
 | |
|         DetectionContextMap.erase(It.first);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Store this region, because it is the greatest valid (encountered so
 | |
|       // far).
 | |
|       if (LastValidRegion) {
 | |
|         removeCachedResults(*LastValidRegion);
 | |
|         DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
 | |
|       }
 | |
|       LastValidRegion = std::move(ExpandedRegion);
 | |
| 
 | |
|       // Create and test the next greater region (if any)
 | |
|       ExpandedRegion =
 | |
|           std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
 | |
| 
 | |
|     } else {
 | |
|       // Create and test the next greater region (if any)
 | |
|       removeCachedResults(*ExpandedRegion);
 | |
|       DetectionContextMap.erase(It.first);
 | |
|       ExpandedRegion =
 | |
|           std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     if (LastValidRegion)
 | |
|       dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
 | |
|     else
 | |
|       dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
 | |
|   });
 | |
| 
 | |
|   return LastValidRegion.release();
 | |
| }
 | |
| 
 | |
| static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
 | |
|   for (const BasicBlock *BB : R.blocks())
 | |
|     if (R.contains(LI.getLoopFor(BB)))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ScopDetection::removeCachedResultsRecursively(const Region &R) {
 | |
|   for (auto &SubRegion : R) {
 | |
|     if (ValidRegions.count(SubRegion.get())) {
 | |
|       removeCachedResults(*SubRegion.get());
 | |
|     } else
 | |
|       removeCachedResultsRecursively(*SubRegion);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScopDetection::removeCachedResults(const Region &R) {
 | |
|   ValidRegions.remove(&R);
 | |
| }
 | |
| 
 | |
| void ScopDetection::findScops(Region &R) {
 | |
|   const auto &It = DetectionContextMap.insert(std::make_pair(
 | |
|       getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
 | |
|   DetectionContext &Context = It.first->second;
 | |
| 
 | |
|   bool RegionIsValid = false;
 | |
|   if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
 | |
|     invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
 | |
|   else
 | |
|     RegionIsValid = isValidRegion(Context);
 | |
| 
 | |
|   bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
 | |
| 
 | |
|   if (HasErrors) {
 | |
|     removeCachedResults(R);
 | |
|   } else {
 | |
|     ValidRegions.insert(&R);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (auto &SubRegion : R)
 | |
|     findScops(*SubRegion);
 | |
| 
 | |
|   // Try to expand regions.
 | |
|   //
 | |
|   // As the region tree normally only contains canonical regions, non canonical
 | |
|   // regions that form a Scop are not found. Therefore, those non canonical
 | |
|   // regions are checked by expanding the canonical ones.
 | |
| 
 | |
|   std::vector<Region *> ToExpand;
 | |
| 
 | |
|   for (auto &SubRegion : R)
 | |
|     ToExpand.push_back(SubRegion.get());
 | |
| 
 | |
|   for (Region *CurrentRegion : ToExpand) {
 | |
|     // Skip invalid regions. Regions may become invalid, if they are element of
 | |
|     // an already expanded region.
 | |
|     if (!ValidRegions.count(CurrentRegion))
 | |
|       continue;
 | |
| 
 | |
|     // Skip regions that had errors.
 | |
|     bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
 | |
|     if (HadErrors)
 | |
|       continue;
 | |
| 
 | |
|     Region *ExpandedR = expandRegion(*CurrentRegion);
 | |
| 
 | |
|     if (!ExpandedR)
 | |
|       continue;
 | |
| 
 | |
|     R.addSubRegion(ExpandedR, true);
 | |
|     ValidRegions.insert(ExpandedR);
 | |
|     removeCachedResults(*CurrentRegion);
 | |
|     removeCachedResultsRecursively(*ExpandedR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
| 
 | |
|   for (const BasicBlock *BB : CurRegion.blocks()) {
 | |
|     Loop *L = LI.getLoopFor(BB);
 | |
|     if (L && L->getHeader() == BB) {
 | |
|       if (CurRegion.contains(L)) {
 | |
|         if (!isValidLoop(L, Context) && !KeepGoing)
 | |
|           return false;
 | |
|       } else {
 | |
|         SmallVector<BasicBlock *, 1> Latches;
 | |
|         L->getLoopLatches(Latches);
 | |
|         for (BasicBlock *Latch : Latches)
 | |
|           if (CurRegion.contains(Latch))
 | |
|             return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
 | |
|                                                       L);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (BasicBlock *BB : CurRegion.blocks()) {
 | |
|     bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);
 | |
| 
 | |
|     // Also check exception blocks (and possibly register them as non-affine
 | |
|     // regions). Even though exception blocks are not modeled, we use them
 | |
|     // to forward-propagate domain constraints during ScopInfo construction.
 | |
|     if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
 | |
|       return false;
 | |
| 
 | |
|     if (IsErrorBlock)
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
 | |
|       if (!isValidInstruction(*I, Context) && !KeepGoing)
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   if (!hasAffineMemoryAccesses(Context))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
 | |
|                                          int NumLoops) const {
 | |
|   int InstCount = 0;
 | |
| 
 | |
|   if (NumLoops == 0)
 | |
|     return false;
 | |
| 
 | |
|   for (auto *BB : Context.CurRegion.blocks())
 | |
|     if (Context.CurRegion.contains(LI.getLoopFor(BB)))
 | |
|       InstCount += BB->size();
 | |
| 
 | |
|   InstCount = InstCount / NumLoops;
 | |
| 
 | |
|   return InstCount >= ProfitabilityMinPerLoopInstructions;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::hasPossiblyDistributableLoop(
 | |
|     DetectionContext &Context) const {
 | |
|   for (auto *BB : Context.CurRegion.blocks()) {
 | |
|     auto *L = LI.getLoopFor(BB);
 | |
|     if (!Context.CurRegion.contains(L))
 | |
|       continue;
 | |
|     if (Context.BoxedLoopsSet.count(L))
 | |
|       continue;
 | |
|     unsigned StmtsWithStoresInLoops = 0;
 | |
|     for (auto *LBB : L->blocks()) {
 | |
|       bool MemStore = false;
 | |
|       for (auto &I : *LBB)
 | |
|         MemStore |= isa<StoreInst>(&I);
 | |
|       StmtsWithStoresInLoops += MemStore;
 | |
|     }
 | |
|     return (StmtsWithStoresInLoops > 1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
| 
 | |
|   if (PollyProcessUnprofitable)
 | |
|     return true;
 | |
| 
 | |
|   // We can probably not do a lot on scops that only write or only read
 | |
|   // data.
 | |
|   if (!Context.hasStores || !Context.hasLoads)
 | |
|     return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
 | |
| 
 | |
|   int NumLoops =
 | |
|       countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
 | |
|   int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
 | |
| 
 | |
|   // Scops with at least two loops may allow either loop fusion or tiling and
 | |
|   // are consequently interesting to look at.
 | |
|   if (NumAffineLoops >= 2)
 | |
|     return true;
 | |
| 
 | |
|   // A loop with multiple non-trivial blocks might be amendable to distribution.
 | |
|   if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
 | |
|     return true;
 | |
| 
 | |
|   // Scops that contain a loop with a non-trivial amount of computation per
 | |
|   // loop-iteration are interesting as we may be able to parallelize such
 | |
|   // loops. Individual loops that have only a small amount of computation
 | |
|   // per-iteration are performance-wise very fragile as any change to the
 | |
|   // loop induction variables may affect performance. To not cause spurious
 | |
|   // performance regressions, we do not consider such loops.
 | |
|   if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
 | |
|     return true;
 | |
| 
 | |
|   return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidRegion(DetectionContext &Context) const {
 | |
|   Region &CurRegion = Context.CurRegion;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
 | |
| 
 | |
|   if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
 | |
|     LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DebugLoc DbgLoc;
 | |
|   if (CurRegion.getExit() &&
 | |
|       isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
 | |
|     LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
 | |
|     return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
 | |
|                                             CurRegion.getExit(), DbgLoc);
 | |
|   }
 | |
| 
 | |
|   if (!OnlyRegion.empty() &&
 | |
|       !CurRegion.getEntry()->getName().count(OnlyRegion)) {
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "Region entry does not match -polly-region-only";
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // SCoP cannot contain the entry block of the function, because we need
 | |
|   // to insert alloca instruction there when translate scalar to array.
 | |
|   if (!PollyAllowFullFunction &&
 | |
|       CurRegion.getEntry() ==
 | |
|           &(CurRegion.getEntry()->getParent()->getEntryBlock()))
 | |
|     return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
 | |
| 
 | |
|   if (!allBlocksValid(Context))
 | |
|     return false;
 | |
| 
 | |
|   if (!isReducibleRegion(CurRegion, DbgLoc))
 | |
|     return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
 | |
|                                             &CurRegion, DbgLoc);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "OK\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ScopDetection::markFunctionAsInvalid(Function *F) {
 | |
|   F->addFnAttr(PollySkipFnAttr);
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isValidFunction(Function &F) {
 | |
|   return !F.hasFnAttribute(PollySkipFnAttr);
 | |
| }
 | |
| 
 | |
| void ScopDetection::printLocations(Function &F) {
 | |
|   for (const Region *R : *this) {
 | |
|     unsigned LineEntry, LineExit;
 | |
|     std::string FileName;
 | |
| 
 | |
|     getDebugLocation(R, LineEntry, LineExit, FileName);
 | |
|     DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
 | |
|     F.getContext().diagnose(Diagnostic);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScopDetection::emitMissedRemarks(const Function &F) {
 | |
|   for (auto &DIt : DetectionContextMap) {
 | |
|     auto &DC = DIt.getSecond();
 | |
|     if (DC.Log.hasErrors())
 | |
|       emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
 | |
|   /// Enum for coloring BBs in Region.
 | |
|   ///
 | |
|   /// WHITE - Unvisited BB in DFS walk.
 | |
|   /// GREY - BBs which are currently on the DFS stack for processing.
 | |
|   /// BLACK - Visited and completely processed BB.
 | |
|   enum Color { WHITE, GREY, BLACK };
 | |
| 
 | |
|   BasicBlock *REntry = R.getEntry();
 | |
|   BasicBlock *RExit = R.getExit();
 | |
|   // Map to match the color of a BasicBlock during the DFS walk.
 | |
|   DenseMap<const BasicBlock *, Color> BBColorMap;
 | |
|   // Stack keeping track of current BB and index of next child to be processed.
 | |
|   std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
 | |
| 
 | |
|   unsigned AdjacentBlockIndex = 0;
 | |
|   BasicBlock *CurrBB, *SuccBB;
 | |
|   CurrBB = REntry;
 | |
| 
 | |
|   // Initialize the map for all BB with WHITE color.
 | |
|   for (auto *BB : R.blocks())
 | |
|     BBColorMap[BB] = WHITE;
 | |
| 
 | |
|   // Process the entry block of the Region.
 | |
|   BBColorMap[CurrBB] = GREY;
 | |
|   DFSStack.push(std::make_pair(CurrBB, 0));
 | |
| 
 | |
|   while (!DFSStack.empty()) {
 | |
|     // Get next BB on stack to be processed.
 | |
|     CurrBB = DFSStack.top().first;
 | |
|     AdjacentBlockIndex = DFSStack.top().second;
 | |
|     DFSStack.pop();
 | |
| 
 | |
|     // Loop to iterate over the successors of current BB.
 | |
|     const Instruction *TInst = CurrBB->getTerminator();
 | |
|     unsigned NSucc = TInst->getNumSuccessors();
 | |
|     for (unsigned I = AdjacentBlockIndex; I < NSucc;
 | |
|          ++I, ++AdjacentBlockIndex) {
 | |
|       SuccBB = TInst->getSuccessor(I);
 | |
| 
 | |
|       // Checks for region exit block and self-loops in BB.
 | |
|       if (SuccBB == RExit || SuccBB == CurrBB)
 | |
|         continue;
 | |
| 
 | |
|       // WHITE indicates an unvisited BB in DFS walk.
 | |
|       if (BBColorMap[SuccBB] == WHITE) {
 | |
|         // Push the current BB and the index of the next child to be visited.
 | |
|         DFSStack.push(std::make_pair(CurrBB, I + 1));
 | |
|         // Push the next BB to be processed.
 | |
|         DFSStack.push(std::make_pair(SuccBB, 0));
 | |
|         // First time the BB is being processed.
 | |
|         BBColorMap[SuccBB] = GREY;
 | |
|         break;
 | |
|       } else if (BBColorMap[SuccBB] == GREY) {
 | |
|         // GREY indicates a loop in the control flow.
 | |
|         // If the destination dominates the source, it is a natural loop
 | |
|         // else, an irreducible control flow in the region is detected.
 | |
|         if (!DT.dominates(SuccBB, CurrBB)) {
 | |
|           // Get debug info of instruction which causes irregular control flow.
 | |
|           DbgLoc = TInst->getDebugLoc();
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If all children of current BB have been processed,
 | |
|     // then mark that BB as fully processed.
 | |
|     if (AdjacentBlockIndex == NSucc)
 | |
|       BBColorMap[CurrBB] = BLACK;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
 | |
|                                      bool OnlyProfitable) {
 | |
|   if (!OnlyProfitable) {
 | |
|     NumLoopsInScop += Stats.NumLoops;
 | |
|     MaxNumLoopsInScop =
 | |
|         std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
 | |
|     if (Stats.MaxDepth == 0)
 | |
|       NumScopsDepthZero++;
 | |
|     else if (Stats.MaxDepth == 1)
 | |
|       NumScopsDepthOne++;
 | |
|     else if (Stats.MaxDepth == 2)
 | |
|       NumScopsDepthTwo++;
 | |
|     else if (Stats.MaxDepth == 3)
 | |
|       NumScopsDepthThree++;
 | |
|     else if (Stats.MaxDepth == 4)
 | |
|       NumScopsDepthFour++;
 | |
|     else if (Stats.MaxDepth == 5)
 | |
|       NumScopsDepthFive++;
 | |
|     else
 | |
|       NumScopsDepthLarger++;
 | |
|   } else {
 | |
|     NumLoopsInProfScop += Stats.NumLoops;
 | |
|     MaxNumLoopsInProfScop =
 | |
|         std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
 | |
|     if (Stats.MaxDepth == 0)
 | |
|       NumProfScopsDepthZero++;
 | |
|     else if (Stats.MaxDepth == 1)
 | |
|       NumProfScopsDepthOne++;
 | |
|     else if (Stats.MaxDepth == 2)
 | |
|       NumProfScopsDepthTwo++;
 | |
|     else if (Stats.MaxDepth == 3)
 | |
|       NumProfScopsDepthThree++;
 | |
|     else if (Stats.MaxDepth == 4)
 | |
|       NumProfScopsDepthFour++;
 | |
|     else if (Stats.MaxDepth == 5)
 | |
|       NumProfScopsDepthFive++;
 | |
|     else
 | |
|       NumProfScopsDepthLarger++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ScopDetection::DetectionContext *
 | |
| ScopDetection::getDetectionContext(const Region *R) const {
 | |
|   auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
 | |
|   if (DCMIt == DetectionContextMap.end())
 | |
|     return nullptr;
 | |
|   return &DCMIt->second;
 | |
| }
 | |
| 
 | |
| const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
 | |
|   const DetectionContext *DC = getDetectionContext(R);
 | |
|   return DC ? &DC->Log : nullptr;
 | |
| }
 | |
| 
 | |
| void ScopDetection::verifyRegion(const Region &R) const {
 | |
|   assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
 | |
| 
 | |
|   DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
 | |
|   isValidRegion(Context);
 | |
| }
 | |
| 
 | |
| void ScopDetection::verifyAnalysis() const {
 | |
|   if (!VerifyScops)
 | |
|     return;
 | |
| 
 | |
|   for (const Region *R : ValidRegions)
 | |
|     verifyRegion(*R);
 | |
| }
 | |
| 
 | |
| bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
 | |
|   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
 | |
|   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | |
|   Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | |
|   // We also need AA and RegionInfo when we are verifying analysis.
 | |
|   AU.addRequiredTransitive<AAResultsWrapperPass>();
 | |
|   AU.addRequiredTransitive<RegionInfoPass>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
 | |
|   for (const Region *R : Result->ValidRegions)
 | |
|     OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
 | |
|   // Disable runtime alias checks if we ignore aliasing all together.
 | |
|   if (IgnoreAliasing)
 | |
|     PollyUseRuntimeAliasChecks = false;
 | |
| }
 | |
| 
 | |
| ScopAnalysis::ScopAnalysis() {
 | |
|   // Disable runtime alias checks if we ignore aliasing all together.
 | |
|   if (IgnoreAliasing)
 | |
|     PollyUseRuntimeAliasChecks = false;
 | |
| }
 | |
| 
 | |
| void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }
 | |
| 
 | |
| char ScopDetectionWrapperPass::ID;
 | |
| 
 | |
| AnalysisKey ScopAnalysis::Key;
 | |
| 
 | |
| ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
 | |
|   auto &LI = FAM.getResult<LoopAnalysis>(F);
 | |
|   auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
 | |
|   auto &AA = FAM.getResult<AAManager>(F);
 | |
|   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
 | |
|   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | |
|   return {F, DT, SE, LI, RI, AA, ORE};
 | |
| }
 | |
| 
 | |
| PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
 | |
|                                                FunctionAnalysisManager &FAM) {
 | |
|   OS << "Detected Scops in Function " << F.getName() << "\n";
 | |
|   auto &SD = FAM.getResult<ScopAnalysis>(F);
 | |
|   for (const Region *R : SD.ValidRegions)
 | |
|     OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
 | |
| 
 | |
|   OS << "\n";
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| Pass *polly::createScopDetectionWrapperPassPass() {
 | |
|   return new ScopDetectionWrapperPass();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
 | |
|                       "Polly - Detect static control parts (SCoPs)", false,
 | |
|                       false);
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
 | |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
 | |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
 | |
| INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
 | |
|                     "Polly - Detect static control parts (SCoPs)", false, false)
 |