forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			563 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			563 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
#include <isl_ctx_private.h>
 | 
						|
#include <isl/val.h>
 | 
						|
#include <isl_constraint_private.h>
 | 
						|
#include <isl/set.h>
 | 
						|
#include <isl_polynomial_private.h>
 | 
						|
#include <isl_morph.h>
 | 
						|
#include <isl_range.h>
 | 
						|
 | 
						|
struct range_data {
 | 
						|
	struct isl_bound	*bound;
 | 
						|
	int 		    	*signs;
 | 
						|
	int			sign;
 | 
						|
	int			test_monotonicity;
 | 
						|
	int		    	monotonicity;
 | 
						|
	int			tight;
 | 
						|
	isl_qpolynomial	    	*poly;
 | 
						|
	isl_pw_qpolynomial_fold *pwf;
 | 
						|
	isl_pw_qpolynomial_fold *pwf_tight;
 | 
						|
};
 | 
						|
 | 
						|
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
 | 
						|
	__isl_take isl_qpolynomial *poly, struct range_data *data);
 | 
						|
 | 
						|
/* Check whether the polynomial "poly" has sign "sign" over "bset",
 | 
						|
 * i.e., if sign == 1, check that the lower bound on the polynomial
 | 
						|
 * is non-negative and if sign == -1, check that the upper bound on
 | 
						|
 * the polynomial is non-positive.
 | 
						|
 */
 | 
						|
static isl_bool has_sign(__isl_keep isl_basic_set *bset,
 | 
						|
	__isl_keep isl_qpolynomial *poly, int sign, int *signs)
 | 
						|
{
 | 
						|
	struct range_data data_m;
 | 
						|
	isl_size nparam;
 | 
						|
	isl_space *space;
 | 
						|
	isl_val *opt;
 | 
						|
	isl_bool r;
 | 
						|
	enum isl_fold type;
 | 
						|
 | 
						|
	nparam = isl_basic_set_dim(bset, isl_dim_param);
 | 
						|
	if (nparam < 0)
 | 
						|
		return isl_bool_error;
 | 
						|
 | 
						|
	bset = isl_basic_set_copy(bset);
 | 
						|
	poly = isl_qpolynomial_copy(poly);
 | 
						|
 | 
						|
	bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
 | 
						|
					isl_dim_param, 0, nparam);
 | 
						|
	poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
 | 
						|
					isl_dim_param, 0, nparam);
 | 
						|
 | 
						|
	space = isl_qpolynomial_get_space(poly);
 | 
						|
	space = isl_space_params(space);
 | 
						|
	space = isl_space_from_domain(space);
 | 
						|
	space = isl_space_add_dims(space, isl_dim_out, 1);
 | 
						|
 | 
						|
	data_m.test_monotonicity = 0;
 | 
						|
	data_m.signs = signs;
 | 
						|
	data_m.sign = -sign;
 | 
						|
	type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
 | 
						|
	data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type);
 | 
						|
	data_m.tight = 0;
 | 
						|
	data_m.pwf_tight = NULL;
 | 
						|
 | 
						|
	if (propagate_on_domain(bset, poly, &data_m) < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	if (sign > 0)
 | 
						|
		opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
 | 
						|
	else
 | 
						|
		opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
 | 
						|
 | 
						|
	if (!opt)
 | 
						|
		r = isl_bool_error;
 | 
						|
	else if (isl_val_is_nan(opt) ||
 | 
						|
		 isl_val_is_infty(opt) ||
 | 
						|
		 isl_val_is_neginfty(opt))
 | 
						|
		r = isl_bool_false;
 | 
						|
	else
 | 
						|
		r = isl_bool_ok(sign * isl_val_sgn(opt) >= 0);
 | 
						|
 | 
						|
	isl_val_free(opt);
 | 
						|
 | 
						|
	return r;
 | 
						|
error:
 | 
						|
	isl_pw_qpolynomial_fold_free(data_m.pwf);
 | 
						|
	return isl_bool_error;
 | 
						|
}
 | 
						|
 | 
						|
/* Return  1 if poly is monotonically increasing in the last set variable,
 | 
						|
 *        -1 if poly is monotonically decreasing in the last set variable,
 | 
						|
 *	   0 if no conclusion,
 | 
						|
 *	  -2 on error.
 | 
						|
 *
 | 
						|
 * We simply check the sign of p(x+1)-p(x)
 | 
						|
 */
 | 
						|
static int monotonicity(__isl_keep isl_basic_set *bset,
 | 
						|
	__isl_keep isl_qpolynomial *poly, struct range_data *data)
 | 
						|
{
 | 
						|
	isl_ctx *ctx;
 | 
						|
	isl_space *space;
 | 
						|
	isl_qpolynomial *sub = NULL;
 | 
						|
	isl_qpolynomial *diff = NULL;
 | 
						|
	int result = 0;
 | 
						|
	isl_bool s;
 | 
						|
	isl_size nvar;
 | 
						|
 | 
						|
	nvar = isl_basic_set_dim(bset, isl_dim_set);
 | 
						|
	if (nvar < 0)
 | 
						|
		return -2;
 | 
						|
 | 
						|
	ctx = isl_qpolynomial_get_ctx(poly);
 | 
						|
	space = isl_qpolynomial_get_domain_space(poly);
 | 
						|
 | 
						|
	sub = isl_qpolynomial_var_on_domain(isl_space_copy(space),
 | 
						|
						isl_dim_set, nvar - 1);
 | 
						|
	sub = isl_qpolynomial_add(sub,
 | 
						|
		isl_qpolynomial_rat_cst_on_domain(space, ctx->one, ctx->one));
 | 
						|
 | 
						|
	diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
 | 
						|
			isl_dim_in, nvar - 1, 1, &sub);
 | 
						|
	diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
 | 
						|
 | 
						|
	s = has_sign(bset, diff, 1, data->signs);
 | 
						|
	if (s < 0)
 | 
						|
		goto error;
 | 
						|
	if (s)
 | 
						|
		result = 1;
 | 
						|
	else {
 | 
						|
		s = has_sign(bset, diff, -1, data->signs);
 | 
						|
		if (s < 0)
 | 
						|
			goto error;
 | 
						|
		if (s)
 | 
						|
			result = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	isl_qpolynomial_free(diff);
 | 
						|
	isl_qpolynomial_free(sub);
 | 
						|
 | 
						|
	return result;
 | 
						|
error:
 | 
						|
	isl_qpolynomial_free(diff);
 | 
						|
	isl_qpolynomial_free(sub);
 | 
						|
	return -2;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial
 | 
						|
 * with domain space "space".
 | 
						|
 */
 | 
						|
static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space,
 | 
						|
	int sign)
 | 
						|
{
 | 
						|
	if (sign > 0)
 | 
						|
		return isl_qpolynomial_infty_on_domain(space);
 | 
						|
	else
 | 
						|
		return isl_qpolynomial_neginfty_on_domain(space);
 | 
						|
}
 | 
						|
 | 
						|
static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
 | 
						|
	__isl_take isl_space *space, unsigned pos, int sign)
 | 
						|
{
 | 
						|
	if (!bound)
 | 
						|
		return signed_infty(space, sign);
 | 
						|
	isl_space_free(space);
 | 
						|
	return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
 | 
						|
}
 | 
						|
 | 
						|
static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos)
 | 
						|
{
 | 
						|
	isl_int c;
 | 
						|
	int is_int;
 | 
						|
 | 
						|
	if (!bound)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	isl_int_init(c);
 | 
						|
	isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
 | 
						|
	is_int = isl_int_is_one(c) || isl_int_is_negone(c);
 | 
						|
	isl_int_clear(c);
 | 
						|
 | 
						|
	return is_int;
 | 
						|
}
 | 
						|
 | 
						|
struct isl_fixed_sign_data {
 | 
						|
	int		*signs;
 | 
						|
	int		sign;
 | 
						|
	isl_qpolynomial	*poly;
 | 
						|
};
 | 
						|
 | 
						|
/* Add term "term" to data->poly if it has sign data->sign.
 | 
						|
 * The sign is determined based on the signs of the parameters
 | 
						|
 * and variables in data->signs.  The integer divisions, if
 | 
						|
 * any, are assumed to be non-negative.
 | 
						|
 */
 | 
						|
static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
 | 
						|
{
 | 
						|
	struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
 | 
						|
	isl_int n;
 | 
						|
	int i;
 | 
						|
	int sign;
 | 
						|
	isl_size nparam;
 | 
						|
	isl_size nvar;
 | 
						|
	isl_size exp;
 | 
						|
 | 
						|
	nparam = isl_term_dim(term, isl_dim_param);
 | 
						|
	nvar = isl_term_dim(term, isl_dim_set);
 | 
						|
	if (nparam < 0 || nvar < 0)
 | 
						|
		return isl_stat_error;
 | 
						|
 | 
						|
	isl_int_init(n);
 | 
						|
	isl_term_get_num(term, &n);
 | 
						|
	sign = isl_int_sgn(n);
 | 
						|
	isl_int_clear(n);
 | 
						|
 | 
						|
	for (i = 0; i < nparam; ++i) {
 | 
						|
		if (data->signs[i] > 0)
 | 
						|
			continue;
 | 
						|
		exp = isl_term_get_exp(term, isl_dim_param, i);
 | 
						|
		if (exp < 0)
 | 
						|
			return isl_stat_error;
 | 
						|
		if (exp % 2)
 | 
						|
			sign = -sign;
 | 
						|
	}
 | 
						|
	for (i = 0; i < nvar; ++i) {
 | 
						|
		if (data->signs[nparam + i] > 0)
 | 
						|
			continue;
 | 
						|
		exp = isl_term_get_exp(term, isl_dim_set, i);
 | 
						|
		if (exp < 0)
 | 
						|
			return isl_stat_error;
 | 
						|
		if (exp % 2)
 | 
						|
			sign = -sign;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sign == data->sign) {
 | 
						|
		isl_qpolynomial *t = isl_qpolynomial_from_term(term);
 | 
						|
 | 
						|
		data->poly = isl_qpolynomial_add(data->poly, t);
 | 
						|
	} else
 | 
						|
		isl_term_free(term);
 | 
						|
 | 
						|
	return isl_stat_ok;
 | 
						|
}
 | 
						|
 | 
						|
/* Construct and return a polynomial that consists of the terms
 | 
						|
 * in "poly" that have sign "sign".  The integer divisions, if
 | 
						|
 * any, are assumed to be non-negative.
 | 
						|
 */
 | 
						|
__isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
 | 
						|
	__isl_keep isl_qpolynomial *poly, int *signs, int sign)
 | 
						|
{
 | 
						|
	isl_space *space;
 | 
						|
	struct isl_fixed_sign_data data = { signs, sign };
 | 
						|
 | 
						|
	space = isl_qpolynomial_get_domain_space(poly);
 | 
						|
	data.poly = isl_qpolynomial_zero_on_domain(space);
 | 
						|
 | 
						|
	if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	return data.poly;
 | 
						|
error:
 | 
						|
	isl_qpolynomial_free(data.poly);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Helper function to add a guarded polynomial to either pwf_tight or pwf,
 | 
						|
 * depending on whether the result has been determined to be tight.
 | 
						|
 */
 | 
						|
static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset,
 | 
						|
	__isl_take isl_qpolynomial *poly, struct range_data *data)
 | 
						|
{
 | 
						|
	enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
 | 
						|
	isl_set *set;
 | 
						|
	isl_qpolynomial_fold *fold;
 | 
						|
	isl_pw_qpolynomial_fold *pwf;
 | 
						|
 | 
						|
	bset = isl_basic_set_params(bset);
 | 
						|
	poly = isl_qpolynomial_project_domain_on_params(poly);
 | 
						|
 | 
						|
	fold = isl_qpolynomial_fold_alloc(type, poly);
 | 
						|
	set = isl_set_from_basic_set(bset);
 | 
						|
	pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
 | 
						|
	if (data->tight)
 | 
						|
		data->pwf_tight = isl_pw_qpolynomial_fold_fold(
 | 
						|
						data->pwf_tight, pwf);
 | 
						|
	else
 | 
						|
		data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
 | 
						|
 | 
						|
	return isl_stat_ok;
 | 
						|
}
 | 
						|
 | 
						|
/* Plug in "sub" for the variable at position "pos" in "poly".
 | 
						|
 *
 | 
						|
 * If "sub" is an infinite polynomial and if the variable actually
 | 
						|
 * appears in "poly", then calling isl_qpolynomial_substitute
 | 
						|
 * to perform the substitution may result in a NaN result.
 | 
						|
 * In such cases, return positive or negative infinity instead,
 | 
						|
 * depending on whether an upper bound or a lower bound is being computed,
 | 
						|
 * and mark the result as not being tight.
 | 
						|
 */
 | 
						|
static __isl_give isl_qpolynomial *plug_in_at_pos(
 | 
						|
	__isl_take isl_qpolynomial *poly, int pos,
 | 
						|
	__isl_take isl_qpolynomial *sub, struct range_data *data)
 | 
						|
{
 | 
						|
	isl_bool involves, infty;
 | 
						|
 | 
						|
	involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1);
 | 
						|
	if (involves < 0)
 | 
						|
		goto error;
 | 
						|
	if (!involves) {
 | 
						|
		isl_qpolynomial_free(sub);
 | 
						|
		return poly;
 | 
						|
	}
 | 
						|
 | 
						|
	infty = isl_qpolynomial_is_infty(sub);
 | 
						|
	if (infty >= 0 && !infty)
 | 
						|
		infty = isl_qpolynomial_is_neginfty(sub);
 | 
						|
	if (infty < 0)
 | 
						|
		goto error;
 | 
						|
	if (infty) {
 | 
						|
		isl_space *space = isl_qpolynomial_get_domain_space(poly);
 | 
						|
		data->tight = 0;
 | 
						|
		isl_qpolynomial_free(poly);
 | 
						|
		isl_qpolynomial_free(sub);
 | 
						|
		return signed_infty(space, data->sign);
 | 
						|
	}
 | 
						|
 | 
						|
	poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub);
 | 
						|
	isl_qpolynomial_free(sub);
 | 
						|
 | 
						|
	return poly;
 | 
						|
error:
 | 
						|
	isl_qpolynomial_free(poly);
 | 
						|
	isl_qpolynomial_free(sub);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Given a lower and upper bound on the final variable and constraints
 | 
						|
 * on the remaining variables where these bounds are active,
 | 
						|
 * eliminate the variable from data->poly based on these bounds.
 | 
						|
 * If the polynomial has been determined to be monotonic
 | 
						|
 * in the variable, then simply plug in the appropriate bound.
 | 
						|
 * If the current polynomial is tight and if this bound is integer,
 | 
						|
 * then the result is still tight.  In all other cases, the results
 | 
						|
 * may not be tight.
 | 
						|
 * Otherwise, plug in the largest bound (in absolute value) in
 | 
						|
 * the positive terms (if an upper bound is wanted) or the negative terms
 | 
						|
 * (if a lower bounded is wanted) and the other bound in the other terms.
 | 
						|
 *
 | 
						|
 * If all variables have been eliminated, then record the result.
 | 
						|
 * Ohterwise, recurse on the next variable.
 | 
						|
 */
 | 
						|
static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
 | 
						|
	__isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
 | 
						|
	void *user)
 | 
						|
{
 | 
						|
	struct range_data *data = (struct range_data *)user;
 | 
						|
	int save_tight = data->tight;
 | 
						|
	isl_qpolynomial *poly;
 | 
						|
	isl_stat r;
 | 
						|
	isl_size nvar, nparam;
 | 
						|
 | 
						|
	nvar = isl_basic_set_dim(bset, isl_dim_set);
 | 
						|
	nparam = isl_basic_set_dim(bset, isl_dim_param);
 | 
						|
	if (nvar < 0 || nparam < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	if (data->monotonicity) {
 | 
						|
		isl_qpolynomial *sub;
 | 
						|
		isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
 | 
						|
		if (data->monotonicity * data->sign > 0) {
 | 
						|
			if (data->tight)
 | 
						|
				data->tight = bound_is_integer(upper, nvar);
 | 
						|
			sub = bound2poly(upper, space, nvar, 1);
 | 
						|
			isl_constraint_free(lower);
 | 
						|
		} else {
 | 
						|
			if (data->tight)
 | 
						|
				data->tight = bound_is_integer(lower, nvar);
 | 
						|
			sub = bound2poly(lower, space, nvar, -1);
 | 
						|
			isl_constraint_free(upper);
 | 
						|
		}
 | 
						|
		poly = isl_qpolynomial_copy(data->poly);
 | 
						|
		poly = plug_in_at_pos(poly, nvar, sub, data);
 | 
						|
		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
 | 
						|
	} else {
 | 
						|
		isl_qpolynomial *l, *u;
 | 
						|
		isl_qpolynomial *pos, *neg;
 | 
						|
		isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
 | 
						|
		int sign = data->sign * data->signs[nparam + nvar];
 | 
						|
 | 
						|
		data->tight = 0;
 | 
						|
 | 
						|
		u = bound2poly(upper, isl_space_copy(space), nvar, 1);
 | 
						|
		l = bound2poly(lower, space, nvar, -1);
 | 
						|
 | 
						|
		pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
 | 
						|
		neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
 | 
						|
 | 
						|
		pos = plug_in_at_pos(pos, nvar, u, data);
 | 
						|
		neg = plug_in_at_pos(neg, nvar, l, data);
 | 
						|
 | 
						|
		poly = isl_qpolynomial_add(pos, neg);
 | 
						|
		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (nvar == 0)
 | 
						|
		r = add_guarded_poly(bset, poly, data);
 | 
						|
	else
 | 
						|
		r = propagate_on_domain(bset, poly, data);
 | 
						|
 | 
						|
	data->tight = save_tight;
 | 
						|
 | 
						|
	return r;
 | 
						|
error:
 | 
						|
	isl_constraint_free(lower);
 | 
						|
	isl_constraint_free(upper);
 | 
						|
	isl_basic_set_free(bset);
 | 
						|
	return isl_stat_error;
 | 
						|
}
 | 
						|
 | 
						|
/* Recursively perform range propagation on the polynomial "poly"
 | 
						|
 * defined over the basic set "bset" and collect the results in "data".
 | 
						|
 */
 | 
						|
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
 | 
						|
	__isl_take isl_qpolynomial *poly, struct range_data *data)
 | 
						|
{
 | 
						|
	isl_bool is_cst;
 | 
						|
	isl_ctx *ctx;
 | 
						|
	isl_qpolynomial *save_poly = data->poly;
 | 
						|
	int save_monotonicity = data->monotonicity;
 | 
						|
	isl_size d;
 | 
						|
 | 
						|
	d = isl_basic_set_dim(bset, isl_dim_set);
 | 
						|
	is_cst = isl_qpolynomial_is_cst(poly, NULL, NULL);
 | 
						|
	if (d < 0 || is_cst < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	ctx = isl_basic_set_get_ctx(bset);
 | 
						|
	isl_assert(ctx, d >= 1, goto error);
 | 
						|
 | 
						|
	if (is_cst) {
 | 
						|
		bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
 | 
						|
		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
 | 
						|
		return add_guarded_poly(bset, poly, data);
 | 
						|
	}
 | 
						|
 | 
						|
	if (data->test_monotonicity)
 | 
						|
		data->monotonicity = monotonicity(bset, poly, data);
 | 
						|
	else
 | 
						|
		data->monotonicity = 0;
 | 
						|
	if (data->monotonicity < -1)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	data->poly = poly;
 | 
						|
	if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
 | 
						|
					    &propagate_on_bound_pair, data) < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	isl_basic_set_free(bset);
 | 
						|
	isl_qpolynomial_free(poly);
 | 
						|
	data->monotonicity = save_monotonicity;
 | 
						|
	data->poly = save_poly;
 | 
						|
 | 
						|
	return isl_stat_ok;
 | 
						|
error:
 | 
						|
	isl_basic_set_free(bset);
 | 
						|
	isl_qpolynomial_free(poly);
 | 
						|
	data->monotonicity = save_monotonicity;
 | 
						|
	data->poly = save_poly;
 | 
						|
	return isl_stat_error;
 | 
						|
}
 | 
						|
 | 
						|
static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset,
 | 
						|
	void *user)
 | 
						|
{
 | 
						|
	struct range_data *data = (struct range_data *)user;
 | 
						|
	isl_ctx *ctx;
 | 
						|
	isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
 | 
						|
	isl_size dim = isl_basic_set_dim(bset, isl_dim_set);
 | 
						|
	isl_size total = isl_basic_set_dim(bset, isl_dim_all);
 | 
						|
	isl_stat r;
 | 
						|
 | 
						|
	data->signs = NULL;
 | 
						|
 | 
						|
	if (nparam < 0 || dim < 0 || total < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	ctx = isl_basic_set_get_ctx(bset);
 | 
						|
	data->signs = isl_alloc_array(ctx, int, total);
 | 
						|
 | 
						|
	if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
 | 
						|
					data->signs + nparam) < 0)
 | 
						|
		goto error;
 | 
						|
	if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
 | 
						|
					data->signs) < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
 | 
						|
 | 
						|
	free(data->signs);
 | 
						|
 | 
						|
	return r;
 | 
						|
error:
 | 
						|
	free(data->signs);
 | 
						|
	isl_basic_set_free(bset);
 | 
						|
	return isl_stat_error;
 | 
						|
}
 | 
						|
 | 
						|
static isl_stat qpolynomial_bound_on_domain_range(
 | 
						|
	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
 | 
						|
	struct range_data *data)
 | 
						|
{
 | 
						|
	isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
 | 
						|
	isl_size nvar = isl_basic_set_dim(bset, isl_dim_set);
 | 
						|
	isl_set *set = NULL;
 | 
						|
 | 
						|
	if (nparam < 0 || nvar < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	if (nvar == 0)
 | 
						|
		return add_guarded_poly(bset, poly, data);
 | 
						|
 | 
						|
	set = isl_set_from_basic_set(bset);
 | 
						|
	set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
 | 
						|
	set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
 | 
						|
 | 
						|
	data->poly = poly;
 | 
						|
 | 
						|
	data->test_monotonicity = 1;
 | 
						|
	if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	isl_set_free(set);
 | 
						|
	isl_qpolynomial_free(poly);
 | 
						|
 | 
						|
	return isl_stat_ok;
 | 
						|
error:
 | 
						|
	isl_set_free(set);
 | 
						|
	isl_qpolynomial_free(poly);
 | 
						|
	return isl_stat_error;
 | 
						|
}
 | 
						|
 | 
						|
isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
 | 
						|
	__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
 | 
						|
{
 | 
						|
	struct range_data data;
 | 
						|
	isl_stat r;
 | 
						|
 | 
						|
	data.pwf = bound->pwf;
 | 
						|
	data.pwf_tight = bound->pwf_tight;
 | 
						|
	data.tight = bound->check_tight;
 | 
						|
	if (bound->type == isl_fold_min)
 | 
						|
		data.sign = -1;
 | 
						|
	else
 | 
						|
		data.sign = 1;
 | 
						|
 | 
						|
	r = qpolynomial_bound_on_domain_range(bset, poly, &data);
 | 
						|
 | 
						|
	bound->pwf = data.pwf;
 | 
						|
	bound->pwf_tight = data.pwf_tight;
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 |