forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1164 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1164 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Derive information about array elements between statements ("Zones").
 | 
						|
//
 | 
						|
// The algorithms here work on the scatter space - the image space of the
 | 
						|
// schedule returned by Scop::getSchedule(). We call an element in that space a
 | 
						|
// "timepoint". Timepoints are lexicographically ordered such that we can
 | 
						|
// defined ranges in the scatter space. We use two flavors of such ranges:
 | 
						|
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
 | 
						|
// space and is directly stored as isl_set.
 | 
						|
//
 | 
						|
// Zones are used to describe the space between timepoints as open sets, i.e.
 | 
						|
// they do not contain the extrema. Using isl rational sets to express these
 | 
						|
// would be overkill. We also cannot store them as the integer timepoints they
 | 
						|
// contain; the (nonempty) zone between 1 and 2 would be empty and
 | 
						|
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
 | 
						|
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
 | 
						|
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
 | 
						|
// Instead, we store the "half-open" integer extrema, including the lower bound,
 | 
						|
// but excluding the upper bound. Examples:
 | 
						|
//
 | 
						|
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
 | 
						|
//   integer points 1 and 2, but not 0 or 3)
 | 
						|
//
 | 
						|
// * { [1] } represents the zone ]0,1[
 | 
						|
//
 | 
						|
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
 | 
						|
//
 | 
						|
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
 | 
						|
// speaking the integer points never belong to the zone. However, depending an
 | 
						|
// the interpretation, one might want to include them. Part of the
 | 
						|
// interpretation may not be known when the zone is constructed.
 | 
						|
//
 | 
						|
// Reads are assumed to always take place before writes, hence we can think of
 | 
						|
// reads taking place at the beginning of a timepoint and writes at the end.
 | 
						|
//
 | 
						|
// Let's assume that the zone represents the lifetime of a variable. That is,
 | 
						|
// the zone begins with a write that defines the value during its lifetime and
 | 
						|
// ends with the last read of that value. In the following we consider whether a
 | 
						|
// read/write at the beginning/ending of the lifetime zone should be within the
 | 
						|
// zone or outside of it.
 | 
						|
//
 | 
						|
// * A read at the timepoint that starts the live-range loads the previous
 | 
						|
//   value. Hence, exclude the timepoint starting the zone.
 | 
						|
//
 | 
						|
// * A write at the timepoint that starts the live-range is not defined whether
 | 
						|
//   it occurs before or after the write that starts the lifetime. We do not
 | 
						|
//   allow this situation to occur. Hence, we include the timepoint starting the
 | 
						|
//   zone to determine whether they are conflicting.
 | 
						|
//
 | 
						|
// * A read at the timepoint that ends the live-range reads the same variable.
 | 
						|
//   We include the timepoint at the end of the zone to include that read into
 | 
						|
//   the live-range. Doing otherwise would mean that the two reads access
 | 
						|
//   different values, which would mean that the value they read are both alive
 | 
						|
//   at the same time but occupy the same variable.
 | 
						|
//
 | 
						|
// * A write at the timepoint that ends the live-range starts a new live-range.
 | 
						|
//   It must not be included in the live-range of the previous definition.
 | 
						|
//
 | 
						|
// All combinations of reads and writes at the endpoints are possible, but most
 | 
						|
// of the time only the write->read (for instance, a live-range from definition
 | 
						|
// to last use) and read->write (for instance, an unused range from last use to
 | 
						|
// overwrite) and combinations are interesting (half-open ranges). write->write
 | 
						|
// zones might be useful as well in some context to represent
 | 
						|
// output-dependencies.
 | 
						|
//
 | 
						|
// @see convertZoneToTimepoints
 | 
						|
//
 | 
						|
//
 | 
						|
// The code makes use of maps and sets in many different spaces. To not loose
 | 
						|
// track in which space a set or map is expected to be in, variables holding an
 | 
						|
// isl reference are usually annotated in the comments. They roughly follow isl
 | 
						|
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
 | 
						|
// meaning as follows:
 | 
						|
//
 | 
						|
// * Space[] - An unspecified tuple. Used for function parameters such that the
 | 
						|
//             function caller can use it for anything they like.
 | 
						|
//
 | 
						|
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
 | 
						|
//     isl_id_get_name: Stmt_<NameOfBasicBlock>
 | 
						|
//     isl_id_get_user: Pointer to ScopStmt
 | 
						|
//
 | 
						|
// * Element[] - An array element as in the range part of
 | 
						|
//               MemoryAccess::getAccessRelation()
 | 
						|
//     isl_id_get_name: MemRef_<NameOfArrayVariable>
 | 
						|
//     isl_id_get_user: Pointer to ScopArrayInfo
 | 
						|
//
 | 
						|
// * Scatter[] - Scatter space or space of timepoints
 | 
						|
//     Has no tuple id
 | 
						|
//
 | 
						|
// * Zone[] - Range between timepoints as described above
 | 
						|
//     Has no tuple id
 | 
						|
//
 | 
						|
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
 | 
						|
//
 | 
						|
//     A ValInst[] itself can be structured as one of:
 | 
						|
//
 | 
						|
//     * [] - An unknown value.
 | 
						|
//         Always zero dimensions
 | 
						|
//         Has no tuple id
 | 
						|
//
 | 
						|
//     * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
 | 
						|
//                 runtime content does not depend on the timepoint.
 | 
						|
//         Always zero dimensions
 | 
						|
//         isl_id_get_name: Val_<NameOfValue>
 | 
						|
//         isl_id_get_user: A pointer to an llvm::Value
 | 
						|
//
 | 
						|
//     * SCEV[...] - A synthesizable llvm::SCEV Expression.
 | 
						|
//         In contrast to a Value[] is has at least one dimension per
 | 
						|
//         SCEVAddRecExpr in the SCEV.
 | 
						|
//
 | 
						|
//     * [Domain[] -> Value[]] - An llvm::Value that may change during the
 | 
						|
//                               Scop's execution.
 | 
						|
//         The tuple itself has no id, but it wraps a map space holding a
 | 
						|
//         statement instance which defines the llvm::Value as the map's domain
 | 
						|
//         and llvm::Value itself as range.
 | 
						|
//
 | 
						|
// @see makeValInst()
 | 
						|
//
 | 
						|
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
 | 
						|
// statement instance to a timepoint, aka a schedule. There is only one scatter
 | 
						|
// space, but most of the time multiple statements are processed in one set.
 | 
						|
// This is why most of the time isl_union_map has to be used.
 | 
						|
//
 | 
						|
// The basic algorithm works as follows:
 | 
						|
// At first we verify that the SCoP is compatible with this technique. For
 | 
						|
// instance, two writes cannot write to the same location at the same statement
 | 
						|
// instance because we cannot determine within the polyhedral model which one
 | 
						|
// comes first. Once this was verified, we compute zones at which an array
 | 
						|
// element is unused. This computation can fail if it takes too long. Then the
 | 
						|
// main algorithm is executed. Because every store potentially trails an unused
 | 
						|
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
 | 
						|
// MemoryKind::PHI) that we can map to the array element overwritten by the
 | 
						|
// store, preferably one that is used by the store or at least the ScopStmt.
 | 
						|
// When it does not conflict with the lifetime of the values in the array
 | 
						|
// element, the map is applied and the unused zone updated as it is now used. We
 | 
						|
// continue to try to map scalars to the array element until there are no more
 | 
						|
// candidates to map. The algorithm is greedy in the sense that the first scalar
 | 
						|
// not conflicting will be mapped. Other scalars processed later that could have
 | 
						|
// fit the same unused zone will be rejected. As such the result depends on the
 | 
						|
// processing order.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "polly/ZoneAlgo.h"
 | 
						|
#include "polly/ScopInfo.h"
 | 
						|
#include "polly/Support/GICHelper.h"
 | 
						|
#include "polly/Support/ISLTools.h"
 | 
						|
#include "polly/Support/VirtualInstruction.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "polly-zone"
 | 
						|
 | 
						|
STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
 | 
						|
STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
 | 
						|
STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
 | 
						|
STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
 | 
						|
STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
 | 
						|
 | 
						|
using namespace polly;
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static isl::union_map computeReachingDefinition(isl::union_map Schedule,
 | 
						|
                                                isl::union_map Writes,
 | 
						|
                                                bool InclDef, bool InclRedef) {
 | 
						|
  return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the reaching definition of a scalar.
 | 
						|
///
 | 
						|
/// Compared to computeReachingDefinition, there is just one element which is
 | 
						|
/// accessed and therefore only a set if instances that accesses that element is
 | 
						|
/// required.
 | 
						|
///
 | 
						|
/// @param Schedule  { DomainWrite[] -> Scatter[] }
 | 
						|
/// @param Writes    { DomainWrite[] }
 | 
						|
/// @param InclDef   Include the timepoint of the definition to the result.
 | 
						|
/// @param InclRedef Include the timepoint of the overwrite into the result.
 | 
						|
///
 | 
						|
/// @return { Scatter[] -> DomainWrite[] }
 | 
						|
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
 | 
						|
                                                      isl::union_set Writes,
 | 
						|
                                                      bool InclDef,
 | 
						|
                                                      bool InclRedef) {
 | 
						|
  // { DomainWrite[] -> Element[] }
 | 
						|
  isl::union_map Defs = isl::union_map::from_domain(Writes);
 | 
						|
 | 
						|
  // { [Element[] -> Scatter[]] -> DomainWrite[] }
 | 
						|
  auto ReachDefs =
 | 
						|
      computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
 | 
						|
 | 
						|
  // { Scatter[] -> DomainWrite[] }
 | 
						|
  return ReachDefs.curry().range().unwrap();
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the reaching definition of a scalar.
 | 
						|
///
 | 
						|
/// This overload accepts only a single writing statement as an isl_map,
 | 
						|
/// consequently the result also is only a single isl_map.
 | 
						|
///
 | 
						|
/// @param Schedule  { DomainWrite[] -> Scatter[] }
 | 
						|
/// @param Writes    { DomainWrite[] }
 | 
						|
/// @param InclDef   Include the timepoint of the definition to the result.
 | 
						|
/// @param InclRedef Include the timepoint of the overwrite into the result.
 | 
						|
///
 | 
						|
/// @return { Scatter[] -> DomainWrite[] }
 | 
						|
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
 | 
						|
                                                isl::set Writes, bool InclDef,
 | 
						|
                                                bool InclRedef) {
 | 
						|
  isl::space DomainSpace = Writes.get_space();
 | 
						|
  isl::space ScatterSpace = getScatterSpace(Schedule);
 | 
						|
 | 
						|
  //  { Scatter[] -> DomainWrite[] }
 | 
						|
  isl::union_map UMap = computeScalarReachingDefinition(
 | 
						|
      Schedule, isl::union_set(Writes), InclDef, InclRedef);
 | 
						|
 | 
						|
  isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
 | 
						|
  return singleton(UMap, ResultSpace);
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
 | 
						|
  return isl::union_map::from_domain(Domain);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a domain-to-unknown value mapping.
 | 
						|
///
 | 
						|
/// @see makeUnknownForDomain(isl::union_set)
 | 
						|
///
 | 
						|
/// @param Domain { Domain[] }
 | 
						|
///
 | 
						|
/// @return { Domain[] -> ValInst[] }
 | 
						|
static isl::map makeUnknownForDomain(isl::set Domain) {
 | 
						|
  return isl::map::from_domain(Domain);
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether @p Map maps to an unknown value.
 | 
						|
///
 | 
						|
/// @param { [] -> ValInst[] }
 | 
						|
static bool isMapToUnknown(const isl::map &Map) {
 | 
						|
  isl::space Space = Map.get_space().range();
 | 
						|
  return Space.has_tuple_id(isl::dim::set).is_false() &&
 | 
						|
         Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
 | 
						|
  isl::union_map Result = isl::union_map::empty(UMap.get_space());
 | 
						|
  for (isl::map Map : UMap.get_map_list()) {
 | 
						|
    if (!isMapToUnknown(Map))
 | 
						|
      Result = Result.add_map(Map);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
 | 
						|
    : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
 | 
						|
      Schedule(S->getSchedule()) {
 | 
						|
  auto Domains = S->getDomains();
 | 
						|
 | 
						|
  Schedule = Schedule.intersect_domain(Domains);
 | 
						|
  ParamSpace = Schedule.get_space();
 | 
						|
  ScatterSpace = getScatterSpace(Schedule);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if all stores in @p Stmt store the very same value.
 | 
						|
///
 | 
						|
/// This covers a special situation occurring in Polybench's
 | 
						|
/// covariance/correlation (which is typical for algorithms that cover symmetric
 | 
						|
/// matrices):
 | 
						|
///
 | 
						|
/// for (int i = 0; i < n; i += 1)
 | 
						|
/// 	for (int j = 0; j <= i; j += 1) {
 | 
						|
/// 		double x = ...;
 | 
						|
/// 		C[i][j] = x;
 | 
						|
/// 		C[j][i] = x;
 | 
						|
/// 	}
 | 
						|
///
 | 
						|
/// For i == j, the same value is written twice to the same element.Double
 | 
						|
/// writes to the same element are not allowed in DeLICM because its algorithm
 | 
						|
/// does not see which of the writes is effective.But if its the same value
 | 
						|
/// anyway, it doesn't matter.
 | 
						|
///
 | 
						|
/// LLVM passes, however, cannot simplify this because the write is necessary
 | 
						|
/// for i != j (unless it would add a condition for one of the writes to occur
 | 
						|
/// only if i != j).
 | 
						|
///
 | 
						|
/// TODO: In the future we may want to extent this to make the checks
 | 
						|
///       specific to different memory locations.
 | 
						|
static bool onlySameValueWrites(ScopStmt *Stmt) {
 | 
						|
  Value *V = nullptr;
 | 
						|
 | 
						|
  for (auto *MA : *Stmt) {
 | 
						|
    if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
 | 
						|
        !MA->isOriginalArrayKind())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!V) {
 | 
						|
      V = MA->getAccessValue();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (V != MA->getAccessValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Is @p InnerLoop nested inside @p OuterLoop?
 | 
						|
static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
 | 
						|
  // If OuterLoop is nullptr, we cannot call its contains() method. In this case
 | 
						|
  // OuterLoop represents the 'top level' and therefore contains all loop.
 | 
						|
  return !OuterLoop || OuterLoop->contains(InnerLoop);
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
 | 
						|
                                            isl::union_set &IncompatibleElts,
 | 
						|
                                            isl::union_set &AllElts) {
 | 
						|
  auto Stores = makeEmptyUnionMap();
 | 
						|
  auto Loads = makeEmptyUnionMap();
 | 
						|
 | 
						|
  // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
 | 
						|
  // order.
 | 
						|
  for (auto *MA : *Stmt) {
 | 
						|
    if (!MA->isOriginalArrayKind())
 | 
						|
      continue;
 | 
						|
 | 
						|
    isl::map AccRelMap = getAccessRelationFor(MA);
 | 
						|
    isl::union_map AccRel = AccRelMap;
 | 
						|
 | 
						|
    // To avoid solving any ILP problems, always add entire arrays instead of
 | 
						|
    // just the elements that are accessed.
 | 
						|
    auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
 | 
						|
    AllElts = AllElts.add_set(ArrayElts);
 | 
						|
 | 
						|
    if (MA->isRead()) {
 | 
						|
      // Reject load after store to same location.
 | 
						|
      if (!Stores.is_disjoint(AccRel)) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "Load after store of same element in same statement\n");
 | 
						|
        OptimizationRemarkMissed R(PassName, "LoadAfterStore",
 | 
						|
                                   MA->getAccessInstruction());
 | 
						|
        R << "load after store of same element in same statement";
 | 
						|
        R << " (previous stores: " << Stores;
 | 
						|
        R << ", loading: " << AccRel << ")";
 | 
						|
        S->getFunction().getContext().diagnose(R);
 | 
						|
 | 
						|
        IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
 | 
						|
      }
 | 
						|
 | 
						|
      Loads = Loads.unite(AccRel);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // In region statements the order is less clear, eg. the load and store
 | 
						|
    // might be in a boxed loop.
 | 
						|
    if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
 | 
						|
      OptimizationRemarkMissed R(PassName, "StoreInSubregion",
 | 
						|
                                 MA->getAccessInstruction());
 | 
						|
      R << "store is in a non-affine subregion";
 | 
						|
      S->getFunction().getContext().diagnose(R);
 | 
						|
 | 
						|
      IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not allow more than one store to the same location.
 | 
						|
    if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
 | 
						|
      OptimizationRemarkMissed R(PassName, "StoreAfterStore",
 | 
						|
                                 MA->getAccessInstruction());
 | 
						|
      R << "store after store of same element in same statement";
 | 
						|
      R << " (previous stores: " << Stores;
 | 
						|
      R << ", storing: " << AccRel << ")";
 | 
						|
      S->getFunction().getContext().diagnose(R);
 | 
						|
 | 
						|
      IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
 | 
						|
    }
 | 
						|
 | 
						|
    Stores = Stores.unite(AccRel);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
 | 
						|
  assert(MA->isLatestArrayKind());
 | 
						|
  assert(MA->isRead());
 | 
						|
  ScopStmt *Stmt = MA->getStatement();
 | 
						|
 | 
						|
  // { DomainRead[] -> Element[] }
 | 
						|
  auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
 | 
						|
  AllReads = AllReads.add_map(AccRel);
 | 
						|
 | 
						|
  if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
 | 
						|
    // { DomainRead[] -> ValInst[] }
 | 
						|
    isl::map LoadValInst = makeValInst(
 | 
						|
        Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
 | 
						|
 | 
						|
    // { DomainRead[] -> [Element[] -> DomainRead[]] }
 | 
						|
    isl::map IncludeElement = AccRel.domain_map().curry();
 | 
						|
 | 
						|
    // { [Element[] -> DomainRead[]] -> ValInst[] }
 | 
						|
    isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);
 | 
						|
 | 
						|
    AllReadValInst = AllReadValInst.add_map(EltLoadValInst);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
 | 
						|
                                              isl::map AccRel) {
 | 
						|
  if (!MA->isMustWrite())
 | 
						|
    return {};
 | 
						|
 | 
						|
  Value *AccVal = MA->getAccessValue();
 | 
						|
  ScopStmt *Stmt = MA->getStatement();
 | 
						|
  Instruction *AccInst = MA->getAccessInstruction();
 | 
						|
 | 
						|
  // Write a value to a single element.
 | 
						|
  auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
 | 
						|
                                     : Stmt->getSurroundingLoop();
 | 
						|
  if (AccVal &&
 | 
						|
      AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
 | 
						|
      AccRel.is_single_valued().is_true())
 | 
						|
    return makeNormalizedValInst(AccVal, Stmt, L);
 | 
						|
 | 
						|
  // memset(_, '0', ) is equivalent to writing the null value to all touched
 | 
						|
  // elements. isMustWrite() ensures that all of an element's bytes are
 | 
						|
  // overwritten.
 | 
						|
  if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
 | 
						|
    auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
 | 
						|
    Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
 | 
						|
    if (WrittenConstant && WrittenConstant->isZeroValue()) {
 | 
						|
      Constant *Zero = Constant::getNullValue(Ty);
 | 
						|
      return makeNormalizedValInst(Zero, Stmt, L);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
 | 
						|
  assert(MA->isLatestArrayKind());
 | 
						|
  assert(MA->isWrite());
 | 
						|
  auto *Stmt = MA->getStatement();
 | 
						|
 | 
						|
  // { Domain[] -> Element[] }
 | 
						|
  isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
 | 
						|
 | 
						|
  if (MA->isMustWrite())
 | 
						|
    AllMustWrites = AllMustWrites.add_map(AccRel);
 | 
						|
 | 
						|
  if (MA->isMayWrite())
 | 
						|
    AllMayWrites = AllMayWrites.add_map(AccRel);
 | 
						|
 | 
						|
  // { Domain[] -> ValInst[] }
 | 
						|
  isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
 | 
						|
  if (!WriteValInstance)
 | 
						|
    WriteValInstance = makeUnknownForDomain(Stmt);
 | 
						|
 | 
						|
  // { Domain[] -> [Element[] -> Domain[]] }
 | 
						|
  isl::map IncludeElement = AccRel.domain_map().curry();
 | 
						|
 | 
						|
  // { [Element[] -> DomainWrite[]] -> ValInst[] }
 | 
						|
  isl::union_map EltWriteValInst =
 | 
						|
      WriteValInstance.apply_domain(IncludeElement);
 | 
						|
 | 
						|
  AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
 | 
						|
}
 | 
						|
 | 
						|
/// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
 | 
						|
/// use in every instance of @p UseStmt.
 | 
						|
///
 | 
						|
/// @param UseStmt Statement a scalar is used in.
 | 
						|
/// @param DefStmt Statement a scalar is defined in.
 | 
						|
///
 | 
						|
/// @return { DomainUse[] -> DomainDef[] }
 | 
						|
isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
 | 
						|
                                                      ScopStmt *DefStmt) {
 | 
						|
  // { DomainUse[] -> Scatter[] }
 | 
						|
  isl::map UseScatter = getScatterFor(UseStmt);
 | 
						|
 | 
						|
  // { Zone[] -> DomainDef[] }
 | 
						|
  isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
 | 
						|
 | 
						|
  // { Scatter[] -> DomainDef[] }
 | 
						|
  isl::map ReachDefTimepoints =
 | 
						|
      convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
 | 
						|
 | 
						|
  // { DomainUse[] -> DomainDef[] }
 | 
						|
  return UseScatter.apply_range(ReachDefTimepoints);
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether @p PHI refers (also transitively through other PHIs) to
 | 
						|
/// itself.
 | 
						|
///
 | 
						|
/// loop:
 | 
						|
///   %phi1 = phi [0, %preheader], [%phi1, %loop]
 | 
						|
///   br i1 %c, label %loop, label %exit
 | 
						|
///
 | 
						|
/// exit:
 | 
						|
///   %phi2 = phi [%phi1, %bb]
 | 
						|
///
 | 
						|
/// In this example, %phi1 is recursive, but %phi2 is not.
 | 
						|
static bool isRecursivePHI(const PHINode *PHI) {
 | 
						|
  SmallVector<const PHINode *, 8> Worklist;
 | 
						|
  SmallPtrSet<const PHINode *, 8> Visited;
 | 
						|
  Worklist.push_back(PHI);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    const PHINode *Cur = Worklist.pop_back_val();
 | 
						|
 | 
						|
    if (Visited.count(Cur))
 | 
						|
      continue;
 | 
						|
    Visited.insert(Cur);
 | 
						|
 | 
						|
    for (const Use &Incoming : Cur->incoming_values()) {
 | 
						|
      Value *IncomingVal = Incoming.get();
 | 
						|
      auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
 | 
						|
      if (!IncomingPHI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (IncomingPHI == PHI)
 | 
						|
        return true;
 | 
						|
      Worklist.push_back(IncomingPHI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
 | 
						|
  // TODO: If the PHI has an incoming block from before the SCoP, it is not
 | 
						|
  // represented in any ScopStmt.
 | 
						|
 | 
						|
  auto *PHI = cast<PHINode>(SAI->getBasePtr());
 | 
						|
  auto It = PerPHIMaps.find(PHI);
 | 
						|
  if (It != PerPHIMaps.end())
 | 
						|
    return It->second;
 | 
						|
 | 
						|
  assert(SAI->isPHIKind());
 | 
						|
 | 
						|
  // { DomainPHIWrite[] -> Scatter[] }
 | 
						|
  isl::union_map PHIWriteScatter = makeEmptyUnionMap();
 | 
						|
 | 
						|
  // Collect all incoming block timepoints.
 | 
						|
  for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
 | 
						|
    isl::map Scatter = getScatterFor(MA);
 | 
						|
    PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
 | 
						|
  }
 | 
						|
 | 
						|
  // { DomainPHIRead[] -> Scatter[] }
 | 
						|
  isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
 | 
						|
 | 
						|
  // { DomainPHIRead[] -> Scatter[] }
 | 
						|
  isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
 | 
						|
 | 
						|
  // { Scatter[] }
 | 
						|
  isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
 | 
						|
 | 
						|
  // { DomainPHIRead[] -> Scatter[] }
 | 
						|
  isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
 | 
						|
 | 
						|
  // Remove instances outside the context.
 | 
						|
  PHIWriteTimes = PHIWriteTimes.intersect_params(S->getAssumedContext());
 | 
						|
  PHIWriteTimes = subtractParams(PHIWriteTimes, S->getInvalidContext());
 | 
						|
 | 
						|
  isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
 | 
						|
 | 
						|
  // { DomainPHIRead[] -> DomainPHIWrite[] }
 | 
						|
  isl::union_map Result =
 | 
						|
      isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
 | 
						|
  assert(!Result.is_single_valued().is_false());
 | 
						|
  assert(!Result.is_injective().is_false());
 | 
						|
 | 
						|
  PerPHIMaps.insert({PHI, Result});
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
 | 
						|
  return isl::union_set::empty(ParamSpace);
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
 | 
						|
  return isl::union_map::empty(ParamSpace);
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::collectCompatibleElts() {
 | 
						|
  // First find all the incompatible elements, then take the complement.
 | 
						|
  // We compile the list of compatible (rather than incompatible) elements so
 | 
						|
  // users can intersect with the list, not requiring a subtract operation. It
 | 
						|
  // also allows us to define a 'universe' of all elements and makes it more
 | 
						|
  // explicit in which array elements can be used.
 | 
						|
  isl::union_set AllElts = makeEmptyUnionSet();
 | 
						|
  isl::union_set IncompatibleElts = makeEmptyUnionSet();
 | 
						|
 | 
						|
  for (auto &Stmt : *S)
 | 
						|
    collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
 | 
						|
 | 
						|
  NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
 | 
						|
  CompatibleElts = AllElts.subtract(IncompatibleElts);
 | 
						|
  NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
 | 
						|
  isl::space ResultSpace =
 | 
						|
      Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
 | 
						|
  return Schedule.extract_map(ResultSpace);
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
 | 
						|
  return getScatterFor(MA->getStatement());
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
 | 
						|
  return Schedule.intersect_domain(Domain);
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
 | 
						|
  auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
 | 
						|
  auto UDomain = isl::union_set(Domain);
 | 
						|
  auto UResult = getScatterFor(std::move(UDomain));
 | 
						|
  auto Result = singleton(std::move(UResult), std::move(ResultSpace));
 | 
						|
  assert(!Result || Result.domain().is_equal(Domain) == isl_bool_true);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
 | 
						|
  return Stmt->getDomain().remove_redundancies();
 | 
						|
}
 | 
						|
 | 
						|
isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
 | 
						|
  return getDomainFor(MA->getStatement());
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
 | 
						|
  auto Domain = getDomainFor(MA);
 | 
						|
  auto AccRel = MA->getLatestAccessRelation();
 | 
						|
  return AccRel.intersect_domain(Domain);
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
 | 
						|
                                       ScopStmt *TargetStmt) {
 | 
						|
  // No translation required if the definition is already at the target.
 | 
						|
  if (TargetStmt == DefStmt)
 | 
						|
    return isl::map::identity(
 | 
						|
        getDomainFor(TargetStmt).get_space().map_from_set());
 | 
						|
 | 
						|
  isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];
 | 
						|
 | 
						|
  // This is a shortcut in case the schedule is still the original and
 | 
						|
  // TargetStmt is in the same or nested inside DefStmt's loop. With the
 | 
						|
  // additional assumption that operand trees do not cross DefStmt's loop
 | 
						|
  // header, then TargetStmt's instance shared coordinates are the same as
 | 
						|
  // DefStmt's coordinates. All TargetStmt instances with this prefix share
 | 
						|
  // the same DefStmt instance.
 | 
						|
  // Model:
 | 
						|
  //
 | 
						|
  //   for (int i < 0; i < N; i+=1) {
 | 
						|
  // DefStmt:
 | 
						|
  //    D = ...;
 | 
						|
  //    for (int j < 0; j < N; j+=1) {
 | 
						|
  // TargetStmt:
 | 
						|
  //      use(D);
 | 
						|
  //    }
 | 
						|
  //  }
 | 
						|
  //
 | 
						|
  // Here, the value used in TargetStmt is defined in the corresponding
 | 
						|
  // DefStmt, i.e.
 | 
						|
  //
 | 
						|
  //   { DefStmt[i] -> TargetStmt[i,j] }
 | 
						|
  //
 | 
						|
  // In practice, this should cover the majority of cases.
 | 
						|
  if (!Result && S->isOriginalSchedule() &&
 | 
						|
      isInsideLoop(DefStmt->getSurroundingLoop(),
 | 
						|
                   TargetStmt->getSurroundingLoop())) {
 | 
						|
    isl::set DefDomain = getDomainFor(DefStmt);
 | 
						|
    isl::set TargetDomain = getDomainFor(TargetStmt);
 | 
						|
    assert(DefDomain.dim(isl::dim::set) <= TargetDomain.dim(isl::dim::set));
 | 
						|
 | 
						|
    Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
 | 
						|
    for (unsigned i = 0, DefDims = DefDomain.dim(isl::dim::set); i < DefDims;
 | 
						|
         i += 1)
 | 
						|
      Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Result) {
 | 
						|
    // { DomainDef[] -> DomainTarget[] }
 | 
						|
    Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
 | 
						|
    simplify(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
 | 
						|
  auto &Result = ScalarReachDefZone[Stmt];
 | 
						|
  if (Result)
 | 
						|
    return Result;
 | 
						|
 | 
						|
  auto Domain = getDomainFor(Stmt);
 | 
						|
  Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
 | 
						|
  simplify(Result);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
 | 
						|
  auto DomId = DomainDef.get_tuple_id();
 | 
						|
  auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));
 | 
						|
 | 
						|
  auto StmtResult = getScalarReachingDefinition(Stmt);
 | 
						|
 | 
						|
  return StmtResult.intersect_range(DomainDef);
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
 | 
						|
  return ::makeUnknownForDomain(getDomainFor(Stmt));
 | 
						|
}
 | 
						|
 | 
						|
isl::id ZoneAlgorithm::makeValueId(Value *V) {
 | 
						|
  if (!V)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto &Id = ValueIds[V];
 | 
						|
  if (Id.is_null()) {
 | 
						|
    auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
 | 
						|
                                     std::string(), UseInstructionNames);
 | 
						|
    Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
 | 
						|
  }
 | 
						|
  return Id;
 | 
						|
}
 | 
						|
 | 
						|
isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
 | 
						|
  auto Result = ParamSpace.set_from_params();
 | 
						|
  return Result.set_tuple_id(isl::dim::set, makeValueId(V));
 | 
						|
}
 | 
						|
 | 
						|
isl::set ZoneAlgorithm::makeValueSet(Value *V) {
 | 
						|
  auto Space = makeValueSpace(V);
 | 
						|
  return isl::set::universe(Space);
 | 
						|
}
 | 
						|
 | 
						|
isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
 | 
						|
                                    bool IsCertain) {
 | 
						|
  // If the definition/write is conditional, the value at the location could
 | 
						|
  // be either the written value or the old value. Since we cannot know which
 | 
						|
  // one, consider the value to be unknown.
 | 
						|
  if (!IsCertain)
 | 
						|
    return makeUnknownForDomain(UserStmt);
 | 
						|
 | 
						|
  auto DomainUse = getDomainFor(UserStmt);
 | 
						|
  auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
 | 
						|
  switch (VUse.getKind()) {
 | 
						|
  case VirtualUse::Constant:
 | 
						|
  case VirtualUse::Block:
 | 
						|
  case VirtualUse::Hoisted:
 | 
						|
  case VirtualUse::ReadOnly: {
 | 
						|
    // The definition does not depend on the statement which uses it.
 | 
						|
    auto ValSet = makeValueSet(Val);
 | 
						|
    return isl::map::from_domain_and_range(DomainUse, ValSet);
 | 
						|
  }
 | 
						|
 | 
						|
  case VirtualUse::Synthesizable: {
 | 
						|
    auto *ScevExpr = VUse.getScevExpr();
 | 
						|
    auto UseDomainSpace = DomainUse.get_space();
 | 
						|
 | 
						|
    // Construct the SCEV space.
 | 
						|
    // TODO: Add only the induction variables referenced in SCEVAddRecExpr
 | 
						|
    // expressions, not just all of them.
 | 
						|
    auto ScevId = isl::manage(isl_id_alloc(
 | 
						|
        UseDomainSpace.get_ctx().get(), nullptr, const_cast<SCEV *>(ScevExpr)));
 | 
						|
 | 
						|
    auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
 | 
						|
    ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);
 | 
						|
 | 
						|
    // { DomainUse[] -> ScevExpr[] }
 | 
						|
    auto ValInst =
 | 
						|
        isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
 | 
						|
    return ValInst;
 | 
						|
  }
 | 
						|
 | 
						|
  case VirtualUse::Intra: {
 | 
						|
    // Definition and use is in the same statement. We do not need to compute
 | 
						|
    // a reaching definition.
 | 
						|
 | 
						|
    // { llvm::Value }
 | 
						|
    auto ValSet = makeValueSet(Val);
 | 
						|
 | 
						|
    // {  UserDomain[] -> llvm::Value }
 | 
						|
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
 | 
						|
 | 
						|
    // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
 | 
						|
    auto Result = ValInstSet.domain_map().reverse();
 | 
						|
    simplify(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case VirtualUse::Inter: {
 | 
						|
    // The value is defined in a different statement.
 | 
						|
 | 
						|
    auto *Inst = cast<Instruction>(Val);
 | 
						|
    auto *ValStmt = S->getStmtFor(Inst);
 | 
						|
 | 
						|
    // If the llvm::Value is defined in a removed Stmt, we cannot derive its
 | 
						|
    // domain. We could use an arbitrary statement, but this could result in
 | 
						|
    // different ValInst[] for the same llvm::Value.
 | 
						|
    if (!ValStmt)
 | 
						|
      return ::makeUnknownForDomain(DomainUse);
 | 
						|
 | 
						|
    // { DomainUse[] -> DomainDef[] }
 | 
						|
    auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();
 | 
						|
 | 
						|
    // { llvm::Value }
 | 
						|
    auto ValSet = makeValueSet(Val);
 | 
						|
 | 
						|
    // { DomainUse[] -> llvm::Value[] }
 | 
						|
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
 | 
						|
 | 
						|
    // { DomainUse[] -> [DomainDef[] -> llvm::Value]  }
 | 
						|
    auto Result = UsedInstance.range_product(ValInstSet);
 | 
						|
 | 
						|
    simplify(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled use type");
 | 
						|
}
 | 
						|
 | 
						|
/// Remove all computed PHIs out of @p Input and replace by their incoming
 | 
						|
/// value.
 | 
						|
///
 | 
						|
/// @param Input        { [] -> ValInst[] }
 | 
						|
/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
 | 
						|
///                     on the LHS of @p NormalizeMap.
 | 
						|
/// @param NormalizeMap { ValInst[] -> ValInst[] }
 | 
						|
static isl::union_map normalizeValInst(isl::union_map Input,
 | 
						|
                                       const DenseSet<PHINode *> &ComputedPHIs,
 | 
						|
                                       isl::union_map NormalizeMap) {
 | 
						|
  isl::union_map Result = isl::union_map::empty(Input.get_space());
 | 
						|
  for (isl::map Map : Input.get_map_list()) {
 | 
						|
    isl::space Space = Map.get_space();
 | 
						|
    isl::space RangeSpace = Space.range();
 | 
						|
 | 
						|
    // Instructions within the SCoP are always wrapped. Non-wrapped tuples
 | 
						|
    // are therefore invariant in the SCoP and don't need normalization.
 | 
						|
    if (!RangeSpace.is_wrapping()) {
 | 
						|
      Result = Result.add_map(Map);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
 | 
						|
        RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
 | 
						|
 | 
						|
    // If no normalization is necessary, then the ValInst stands for itself.
 | 
						|
    if (!ComputedPHIs.count(PHI)) {
 | 
						|
      Result = Result.add_map(Map);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, apply the normalization.
 | 
						|
    isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
 | 
						|
    Result = Result.unite(Mapped);
 | 
						|
    NumPHINormialization++;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
 | 
						|
                                                    ScopStmt *UserStmt,
 | 
						|
                                                    llvm::Loop *Scope,
 | 
						|
                                                    bool IsCertain) {
 | 
						|
  isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
 | 
						|
  isl::union_map Normalized =
 | 
						|
      normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
 | 
						|
  return Normalized;
 | 
						|
}
 | 
						|
 | 
						|
bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
 | 
						|
  if (!MA)
 | 
						|
    return false;
 | 
						|
  if (!MA->isLatestArrayKind())
 | 
						|
    return false;
 | 
						|
  Instruction *AccInst = MA->getAccessInstruction();
 | 
						|
  return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
 | 
						|
}
 | 
						|
 | 
						|
bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
 | 
						|
  assert(MA->isRead());
 | 
						|
 | 
						|
  // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
 | 
						|
  // MemoryAccess.
 | 
						|
  if (!MA->isOriginalPHIKind())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Exclude recursive PHIs, normalizing them would require a transitive
 | 
						|
  // closure.
 | 
						|
  auto *PHI = cast<PHINode>(MA->getAccessInstruction());
 | 
						|
  if (RecursivePHIs.count(PHI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure that each incoming value can be represented by a ValInst[].
 | 
						|
  // We do represent values from statements associated to multiple incoming
 | 
						|
  // value by the PHI itself, but we do not handle this case yet (especially
 | 
						|
  // isNormalized()) when normalizing.
 | 
						|
  const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
 | 
						|
  auto Incomings = S->getPHIIncomings(SAI);
 | 
						|
  for (MemoryAccess *Incoming : Incomings) {
 | 
						|
    if (Incoming->getIncoming().size() != 1)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
 | 
						|
  isl::space Space = Map.get_space();
 | 
						|
  isl::space RangeSpace = Space.range();
 | 
						|
 | 
						|
  isl::boolean IsWrapping = RangeSpace.is_wrapping();
 | 
						|
  if (!IsWrapping.is_true())
 | 
						|
    return !IsWrapping;
 | 
						|
  isl::space Unwrapped = RangeSpace.unwrap();
 | 
						|
 | 
						|
  isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
 | 
						|
  if (OutTupleId.is_null())
 | 
						|
    return isl::boolean();
 | 
						|
  auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
 | 
						|
  if (!PHI)
 | 
						|
    return true;
 | 
						|
 | 
						|
  isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
 | 
						|
  if (OutTupleId.is_null())
 | 
						|
    return isl::boolean();
 | 
						|
  auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
 | 
						|
  MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
 | 
						|
  if (!isNormalizable(PHIRead))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
 | 
						|
  isl::boolean Result = true;
 | 
						|
  for (isl::map Map : UMap.get_map_list()) {
 | 
						|
    Result = isNormalized(Map);
 | 
						|
    if (Result.is_true())
 | 
						|
      continue;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::computeCommon() {
 | 
						|
  AllReads = makeEmptyUnionMap();
 | 
						|
  AllMayWrites = makeEmptyUnionMap();
 | 
						|
  AllMustWrites = makeEmptyUnionMap();
 | 
						|
  AllWriteValInst = makeEmptyUnionMap();
 | 
						|
  AllReadValInst = makeEmptyUnionMap();
 | 
						|
 | 
						|
  // Default to empty, i.e. no normalization/replacement is taking place. Call
 | 
						|
  // computeNormalizedPHIs() to initialize.
 | 
						|
  NormalizeMap = makeEmptyUnionMap();
 | 
						|
  ComputedPHIs.clear();
 | 
						|
 | 
						|
  for (auto &Stmt : *S) {
 | 
						|
    for (auto *MA : Stmt) {
 | 
						|
      if (!MA->isLatestArrayKind())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MA->isRead())
 | 
						|
        addArrayReadAccess(MA);
 | 
						|
 | 
						|
      if (MA->isWrite())
 | 
						|
        addArrayWriteAccess(MA);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // { DomainWrite[] -> Element[] }
 | 
						|
  AllWrites = AllMustWrites.unite(AllMayWrites);
 | 
						|
 | 
						|
  // { [Element[] -> Zone[]] -> DomainWrite[] }
 | 
						|
  WriteReachDefZone =
 | 
						|
      computeReachingDefinition(Schedule, AllWrites, false, true);
 | 
						|
  simplify(WriteReachDefZone);
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::computeNormalizedPHIs() {
 | 
						|
  // Determine which PHIs can reference themselves. They are excluded from
 | 
						|
  // normalization to avoid problems with transitive closures.
 | 
						|
  for (ScopStmt &Stmt : *S) {
 | 
						|
    for (MemoryAccess *MA : Stmt) {
 | 
						|
      if (!MA->isPHIKind())
 | 
						|
        continue;
 | 
						|
      if (!MA->isRead())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // TODO: Can be more efficient since isRecursivePHI can theoretically
 | 
						|
      // determine recursiveness for multiple values and/or cache results.
 | 
						|
      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
 | 
						|
      if (isRecursivePHI(PHI)) {
 | 
						|
        NumRecursivePHIs++;
 | 
						|
        RecursivePHIs.insert(PHI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // { PHIValInst[] -> IncomingValInst[] }
 | 
						|
  isl::union_map AllPHIMaps = makeEmptyUnionMap();
 | 
						|
 | 
						|
  // Discover new PHIs and try to normalize them.
 | 
						|
  DenseSet<PHINode *> AllPHIs;
 | 
						|
  for (ScopStmt &Stmt : *S) {
 | 
						|
    for (MemoryAccess *MA : Stmt) {
 | 
						|
      if (!MA->isOriginalPHIKind())
 | 
						|
        continue;
 | 
						|
      if (!MA->isRead())
 | 
						|
        continue;
 | 
						|
      if (!isNormalizable(MA))
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
 | 
						|
      const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
 | 
						|
 | 
						|
      // { PHIDomain[] -> PHIValInst[] }
 | 
						|
      isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
 | 
						|
 | 
						|
      // { IncomingDomain[] -> IncomingValInst[] }
 | 
						|
      isl::union_map IncomingValInsts = makeEmptyUnionMap();
 | 
						|
 | 
						|
      // Get all incoming values.
 | 
						|
      for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
 | 
						|
        ScopStmt *IncomingStmt = MA->getStatement();
 | 
						|
 | 
						|
        auto Incoming = MA->getIncoming();
 | 
						|
        assert(Incoming.size() == 1 && "The incoming value must be "
 | 
						|
                                       "representable by something else than "
 | 
						|
                                       "the PHI itself");
 | 
						|
        Value *IncomingVal = Incoming[0].second;
 | 
						|
 | 
						|
        // { IncomingDomain[] -> IncomingValInst[] }
 | 
						|
        isl::map IncomingValInst = makeValInst(
 | 
						|
            IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
 | 
						|
 | 
						|
        IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
 | 
						|
      }
 | 
						|
 | 
						|
      // Determine which instance of the PHI statement corresponds to which
 | 
						|
      // incoming value.
 | 
						|
      // { PHIDomain[] -> IncomingDomain[] }
 | 
						|
      isl::union_map PerPHI = computePerPHI(SAI);
 | 
						|
 | 
						|
      // { PHIValInst[] -> IncomingValInst[] }
 | 
						|
      isl::union_map PHIMap =
 | 
						|
          PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
 | 
						|
      assert(!PHIMap.is_single_valued().is_false());
 | 
						|
 | 
						|
      // Resolve transitiveness: The incoming value of the newly discovered PHI
 | 
						|
      // may reference a previously normalized PHI. At the same time, already
 | 
						|
      // normalized PHIs might be normalized to the new PHI. At the end, none of
 | 
						|
      // the PHIs may appear on the right-hand-side of the normalization map.
 | 
						|
      PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
 | 
						|
      AllPHIs.insert(PHI);
 | 
						|
      AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
 | 
						|
 | 
						|
      AllPHIMaps = AllPHIMaps.unite(PHIMap);
 | 
						|
      NumNormalizablePHIs++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  simplify(AllPHIMaps);
 | 
						|
 | 
						|
  // Apply the normalization.
 | 
						|
  ComputedPHIs = AllPHIs;
 | 
						|
  NormalizeMap = AllPHIMaps;
 | 
						|
 | 
						|
  assert(!NormalizeMap || isNormalized(NormalizeMap));
 | 
						|
}
 | 
						|
 | 
						|
void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
 | 
						|
  OS.indent(Indent) << "After accesses {\n";
 | 
						|
  for (auto &Stmt : *S) {
 | 
						|
    OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
 | 
						|
    for (auto *MA : Stmt)
 | 
						|
      MA->print(OS);
 | 
						|
  }
 | 
						|
  OS.indent(Indent) << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
 | 
						|
  // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
 | 
						|
  isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
 | 
						|
 | 
						|
  // { [Element[] -> DomainWrite[]] -> ValInst[] }
 | 
						|
  isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
 | 
						|
 | 
						|
  // { [Element[] -> Zone[]] -> ValInst[] }
 | 
						|
  return EltReachdDef.apply_range(AllKnownWriteValInst);
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
 | 
						|
  // { Element[] }
 | 
						|
  isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
 | 
						|
 | 
						|
  // { Element[] -> Scatter[] }
 | 
						|
  isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
 | 
						|
      AllAccessedElts, isl::set::universe(ScatterSpace));
 | 
						|
 | 
						|
  // This assumes there are no "holes" in
 | 
						|
  // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
 | 
						|
  // before the first write or that are not written at all.
 | 
						|
  // { Element[] -> Scatter[] }
 | 
						|
  isl::union_set NonReachDef =
 | 
						|
      EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
 | 
						|
 | 
						|
  // { [Element[] -> Zone[]] -> ReachDefId[] }
 | 
						|
  isl::union_map DefZone =
 | 
						|
      WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
 | 
						|
 | 
						|
  // { [Element[] -> Scatter[]] -> Element[] }
 | 
						|
  isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
 | 
						|
 | 
						|
  // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
 | 
						|
  isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
 | 
						|
 | 
						|
  // { Element[] -> [Zone[] -> ReachDefId[]] }
 | 
						|
  isl::union_map EltDefZone = DefZone.curry();
 | 
						|
 | 
						|
  // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
 | 
						|
  isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
 | 
						|
 | 
						|
  // { [Element[] -> Scatter[]] -> DomainRead[] }
 | 
						|
  isl::union_map Reads = AllReads.range_product(Schedule).reverse();
 | 
						|
 | 
						|
  // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
 | 
						|
  isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
 | 
						|
 | 
						|
  // { [Element[] -> Scatter[]] -> ValInst[] }
 | 
						|
  isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
 | 
						|
 | 
						|
  // { [Element[] -> ReachDefId[]] -> ValInst[] }
 | 
						|
  isl::union_map DefidKnown =
 | 
						|
      DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
 | 
						|
 | 
						|
  // { [Element[] -> Zone[]] -> ValInst[] }
 | 
						|
  return DefZoneEltDefId.apply_range(DefidKnown);
 | 
						|
}
 | 
						|
 | 
						|
isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
 | 
						|
                                           bool FromRead) const {
 | 
						|
  isl::union_map Result = makeEmptyUnionMap();
 | 
						|
 | 
						|
  if (FromWrite)
 | 
						|
    Result = Result.unite(computeKnownFromMustWrites());
 | 
						|
 | 
						|
  if (FromRead)
 | 
						|
    Result = Result.unite(computeKnownFromLoad());
 | 
						|
 | 
						|
  simplify(Result);
 | 
						|
  return Result;
 | 
						|
}
 |