forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1699 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1699 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG.  This pass is where
 | |
| // algebraic simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add i32 %X, 1
 | |
| //    %Z = add i32 %Y, 1
 | |
| // into:
 | |
| //    %Z = add i32 %X, 2
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following canonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All cmp instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //   ... etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm-c/Initialization.h"
 | |
| #include <algorithm>
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| STATISTIC(NumCombined , "Number of insts combined");
 | |
| STATISTIC(NumConstProp, "Number of constant folds");
 | |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | |
| STATISTIC(NumSunkInst , "Number of instructions sunk");
 | |
| STATISTIC(NumExpand,    "Number of expansions");
 | |
| STATISTIC(NumFactor   , "Number of factorizations");
 | |
| STATISTIC(NumReassoc  , "Number of reassociations");
 | |
| 
 | |
| // Initialization Routines
 | |
| void llvm::initializeInstCombine(PassRegistry &Registry) {
 | |
|   initializeInstCombinerPass(Registry);
 | |
| }
 | |
| 
 | |
| void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
 | |
|   initializeInstCombine(*unwrap(R));
 | |
| }
 | |
| 
 | |
| char InstCombiner::ID = 0;
 | |
| INITIALIZE_PASS(InstCombiner, "instcombine",
 | |
|                 "Combine redundant instructions", false, false)
 | |
| 
 | |
| void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ShouldChangeType - Return true if it is desirable to convert a computation
 | |
| /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
 | |
| /// type for example, or from a smaller to a larger illegal type.
 | |
| bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
 | |
|   assert(From->isIntegerTy() && To->isIntegerTy());
 | |
|   
 | |
|   // If we don't have TD, we don't know if the source/dest are legal.
 | |
|   if (!TD) return false;
 | |
|   
 | |
|   unsigned FromWidth = From->getPrimitiveSizeInBits();
 | |
|   unsigned ToWidth = To->getPrimitiveSizeInBits();
 | |
|   bool FromLegal = TD->isLegalInteger(FromWidth);
 | |
|   bool ToLegal = TD->isLegalInteger(ToWidth);
 | |
|   
 | |
|   // If this is a legal integer from type, and the result would be an illegal
 | |
|   // type, don't do the transformation.
 | |
|   if (FromLegal && !ToLegal)
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, if both are illegal, do not increase the size of the result. We
 | |
|   // do allow things like i160 -> i64, but not i64 -> i160.
 | |
|   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
 | |
|     return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
 | |
| /// operators which are associative or commutative:
 | |
| //
 | |
| //  Commutative operators:
 | |
| //
 | |
| //  1. Order operands such that they are listed from right (least complex) to
 | |
| //     left (most complex).  This puts constants before unary operators before
 | |
| //     binary operators.
 | |
| //
 | |
| //  Associative operators:
 | |
| //
 | |
| //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | |
| //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | |
| //
 | |
| //  Associative and commutative operators:
 | |
| //
 | |
| //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | |
| //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | |
| //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | |
| //     if C1 and C2 are constants.
 | |
| //
 | |
| bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   do {
 | |
|     // Order operands such that they are listed from right (least complex) to
 | |
|     // left (most complex).  This puts constants before unary operators before
 | |
|     // binary operators.
 | |
|     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
 | |
|         getComplexity(I.getOperand(1)))
 | |
|       Changed = !I.swapOperands();
 | |
| 
 | |
|     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
 | |
|     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
 | |
| 
 | |
|     if (I.isAssociative()) {
 | |
|       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | |
|       if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Value *B = Op0->getOperand(1);
 | |
|         Value *C = I.getOperand(1);
 | |
| 
 | |
|         // Does "B op C" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
 | |
|           // It simplifies to V.  Form "A op V".
 | |
|           I.setOperand(0, A);
 | |
|           I.setOperand(1, V);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           I.clearSubclassOptionalData();
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | |
|       if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|         Value *A = I.getOperand(0);
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Value *C = Op1->getOperand(1);
 | |
| 
 | |
|         // Does "A op B" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
 | |
|           // It simplifies to V.  Form "V op C".
 | |
|           I.setOperand(0, V);
 | |
|           I.setOperand(1, C);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           I.clearSubclassOptionalData();
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (I.isAssociative() && I.isCommutative()) {
 | |
|       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | |
|       if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Value *B = Op0->getOperand(1);
 | |
|         Value *C = I.getOperand(1);
 | |
| 
 | |
|         // Does "C op A" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
 | |
|           // It simplifies to V.  Form "V op B".
 | |
|           I.setOperand(0, V);
 | |
|           I.setOperand(1, B);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           I.clearSubclassOptionalData();
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | |
|       if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|         Value *A = I.getOperand(0);
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Value *C = Op1->getOperand(1);
 | |
| 
 | |
|         // Does "C op A" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
 | |
|           // It simplifies to V.  Form "B op V".
 | |
|           I.setOperand(0, B);
 | |
|           I.setOperand(1, V);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           I.clearSubclassOptionalData();
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | |
|       // if C1 and C2 are constants.
 | |
|       if (Op0 && Op1 &&
 | |
|           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
 | |
|           isa<Constant>(Op0->getOperand(1)) &&
 | |
|           isa<Constant>(Op1->getOperand(1)) &&
 | |
|           Op0->hasOneUse() && Op1->hasOneUse()) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Constant *C1 = cast<Constant>(Op0->getOperand(1));
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
 | |
|         Instruction *New = BinaryOperator::Create(Opcode, A, B);
 | |
|         InsertNewInstWith(New, I);
 | |
|         New->takeName(Op1);
 | |
|         I.setOperand(0, New);
 | |
|         I.setOperand(1, Folded);
 | |
|         // Conservatively clear the optional flags, since they may not be
 | |
|         // preserved by the reassociation.
 | |
|         I.clearSubclassOptionalData();
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // No further simplifications.
 | |
|     return Changed;
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
 | |
| /// "(X LOp Y) ROp (X LOp Z)".
 | |
| static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
 | |
|                                      Instruction::BinaryOps ROp) {
 | |
|   switch (LOp) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::And:
 | |
|     // And distributes over Or and Xor.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|     // Multiplication distributes over addition and subtraction.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   case Instruction::Or:
 | |
|     // Or distributes over And.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::And:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
 | |
| /// "(X ROp Z) LOp (Y ROp Z)".
 | |
| static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
 | |
|                                      Instruction::BinaryOps ROp) {
 | |
|   if (Instruction::isCommutative(ROp))
 | |
|     return LeftDistributesOverRight(ROp, LOp);
 | |
|   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
 | |
|   // but this requires knowing that the addition does not overflow and other
 | |
|   // such subtleties.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
 | |
| /// which some other binary operation distributes over either by factorizing
 | |
| /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
 | |
| /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
 | |
| /// a win).  Returns the simplified value, or null if it didn't simplify.
 | |
| Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
|   Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
 | |
| 
 | |
|   // Factorization.
 | |
|   if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
 | |
|     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
 | |
|     // a common term.
 | |
|     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
 | |
|     Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
 | |
|     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | |
| 
 | |
|     // Does "X op' Y" always equal "Y op' X"?
 | |
|     bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
 | |
| 
 | |
|     // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
 | |
|     if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
 | |
|       // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | |
|       // commutative case, "(A op' B) op (C op' A)"?
 | |
|       if (A == C || (InnerCommutative && A == D)) {
 | |
|         if (A != C)
 | |
|           std::swap(C, D);
 | |
|         // Consider forming "A op' (B op D)".
 | |
|         // If "B op D" simplifies then it can be formed with no cost.
 | |
|         Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
 | |
|         // If "B op D" doesn't simplify then only go on if both of the existing
 | |
|         // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | |
|         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
 | |
|           V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
 | |
|         if (V) {
 | |
|           ++NumFactor;
 | |
|           V = Builder->CreateBinOp(InnerOpcode, A, V);
 | |
|           V->takeName(&I);
 | |
|           return V;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
 | |
|     if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
 | |
|       // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | |
|       // commutative case, "(A op' B) op (B op' D)"?
 | |
|       if (B == D || (InnerCommutative && B == C)) {
 | |
|         if (B != D)
 | |
|           std::swap(C, D);
 | |
|         // Consider forming "(A op C) op' B".
 | |
|         // If "A op C" simplifies then it can be formed with no cost.
 | |
|         Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
 | |
|         // If "A op C" doesn't simplify then only go on if both of the existing
 | |
|         // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | |
|         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
 | |
|           V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
 | |
|         if (V) {
 | |
|           ++NumFactor;
 | |
|           V = Builder->CreateBinOp(InnerOpcode, V, B);
 | |
|           V->takeName(&I);
 | |
|           return V;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Expansion.
 | |
|   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
 | |
|     // The instruction has the form "(A op' B) op C".  See if expanding it out
 | |
|     // to "(A op C) op' (B op C)" results in simplifications.
 | |
|     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | |
|     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | |
| 
 | |
|     // Do "A op C" and "B op C" both simplify?
 | |
|     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
 | |
|       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
 | |
|         // They do! Return "L op' R".
 | |
|         ++NumExpand;
 | |
|         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | |
|         if ((L == A && R == B) ||
 | |
|             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
 | |
|           return Op0;
 | |
|         // Otherwise return "L op' R" if it simplifies.
 | |
|         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
 | |
|           return V;
 | |
|         // Otherwise, create a new instruction.
 | |
|         C = Builder->CreateBinOp(InnerOpcode, L, R);
 | |
|         C->takeName(&I);
 | |
|         return C;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
 | |
|     // The instruction has the form "A op (B op' C)".  See if expanding it out
 | |
|     // to "(A op B) op' (A op C)" results in simplifications.
 | |
|     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | |
|     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
 | |
| 
 | |
|     // Do "A op B" and "A op C" both simplify?
 | |
|     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
 | |
|       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
 | |
|         // They do! Return "L op' R".
 | |
|         ++NumExpand;
 | |
|         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | |
|         if ((L == B && R == C) ||
 | |
|             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
 | |
|           return Op1;
 | |
|         // Otherwise return "L op' R" if it simplifies.
 | |
|         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
 | |
|           return V;
 | |
|         // Otherwise, create a new instruction.
 | |
|         A = Builder->CreateBinOp(InnerOpcode, L, R);
 | |
|         A->takeName(&I);
 | |
|         return A;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | |
| // if the LHS is a constant zero (which is the 'negate' form).
 | |
| //
 | |
| Value *InstCombiner::dyn_castNegVal(Value *V) const {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | |
|     if (C->getType()->getElementType()->isIntegerTy())
 | |
|       return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
 | |
| // instruction if the LHS is a constant negative zero (which is the 'negate'
 | |
| // form).
 | |
| //
 | |
| Value *InstCombiner::dyn_castFNegVal(Value *V) const {
 | |
|   if (BinaryOperator::isFNeg(V))
 | |
|     return BinaryOperator::getFNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | |
|     return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | |
|     if (C->getType()->getElementType()->isFloatingPointTy())
 | |
|       return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | |
|                                              InstCombiner *IC) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
 | |
|     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
 | |
|   }
 | |
| 
 | |
|   // Figure out if the constant is the left or the right argument.
 | |
|   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | |
|   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | |
| 
 | |
|   if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | |
|     if (ConstIsRHS)
 | |
|       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | |
|     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = SO, *Op1 = ConstOperand;
 | |
|   if (!ConstIsRHS)
 | |
|     std::swap(Op0, Op1);
 | |
|   
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | |
|     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
 | |
|                                     SO->getName()+".op");
 | |
|   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
 | |
|     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | |
|                                    SO->getName()+".cmp");
 | |
|   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
 | |
|     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | |
|                                    SO->getName()+".cmp");
 | |
|   llvm_unreachable("Unknown binary instruction type!");
 | |
| }
 | |
| 
 | |
| // FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | |
| // constant as the other operand, try to fold the binary operator into the
 | |
| // select arguments.  This also works for Cast instructions, which obviously do
 | |
| // not have a second operand.
 | |
| Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
 | |
|   // Don't modify shared select instructions
 | |
|   if (!SI->hasOneUse()) return 0;
 | |
|   Value *TV = SI->getOperand(1);
 | |
|   Value *FV = SI->getOperand(2);
 | |
| 
 | |
|   if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | |
|     // Bool selects with constant operands can be folded to logical ops.
 | |
|     if (SI->getType()->isIntegerTy(1)) return 0;
 | |
| 
 | |
|     // If it's a bitcast involving vectors, make sure it has the same number of
 | |
|     // elements on both sides.
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
 | |
|       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
 | |
|       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
 | |
| 
 | |
|       // Verify that either both or neither are vectors.
 | |
|       if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
 | |
|       // If vectors, verify that they have the same number of elements.
 | |
|       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
 | |
|         return 0;
 | |
|     }
 | |
|     
 | |
|     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
 | |
|     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
 | |
| 
 | |
|     return SelectInst::Create(SI->getCondition(),
 | |
|                               SelectTrueVal, SelectFalseVal);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
 | |
| /// has a PHI node as operand #0, see if we can fold the instruction into the
 | |
| /// PHI (which is only possible if all operands to the PHI are constants).
 | |
| ///
 | |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | |
|   PHINode *PN = cast<PHINode>(I.getOperand(0));
 | |
|   unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|   if (NumPHIValues == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // We normally only transform phis with a single use.  However, if a PHI has
 | |
|   // multiple uses and they are all the same operation, we can fold *all* of the
 | |
|   // uses into the PHI.
 | |
|   if (!PN->hasOneUse()) {
 | |
|     // Walk the use list for the instruction, comparing them to I.
 | |
|     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       Instruction *User = cast<Instruction>(*UI);
 | |
|       if (User != &I && !I.isIdenticalTo(User))
 | |
|         return 0;
 | |
|     }
 | |
|     // Otherwise, we can replace *all* users with the new PHI we form.
 | |
|   }
 | |
|   
 | |
|   // Check to see if all of the operands of the PHI are simple constants
 | |
|   // (constantint/constantfp/undef).  If there is one non-constant value,
 | |
|   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | |
|   // bail out.  We don't do arbitrary constant expressions here because moving
 | |
|   // their computation can be expensive without a cost model.
 | |
|   BasicBlock *NonConstBB = 0;
 | |
|   for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|     Value *InVal = PN->getIncomingValue(i);
 | |
|     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
 | |
|       continue;
 | |
| 
 | |
|     if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
 | |
|     if (NonConstBB) return 0;  // More than one non-const value.
 | |
|     
 | |
|     NonConstBB = PN->getIncomingBlock(i);
 | |
| 
 | |
|     // If the InVal is an invoke at the end of the pred block, then we can't
 | |
|     // insert a computation after it without breaking the edge.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
 | |
|       if (II->getParent() == NonConstBB)
 | |
|         return 0;
 | |
|     
 | |
|     // If the incoming non-constant value is in I's block, we will remove one
 | |
|     // instruction, but insert another equivalent one, leading to infinite
 | |
|     // instcombine.
 | |
|     if (NonConstBB == I.getParent())
 | |
|       return 0;
 | |
|   }
 | |
|   
 | |
|   // If there is exactly one non-constant value, we can insert a copy of the
 | |
|   // operation in that block.  However, if this is a critical edge, we would be
 | |
|   // inserting the computation one some other paths (e.g. inside a loop).  Only
 | |
|   // do this if the pred block is unconditionally branching into the phi block.
 | |
|   if (NonConstBB != 0) {
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional()) return 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can do the transformation: create the new PHI node.
 | |
|   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
 | |
|   InsertNewInstBefore(NewPN, *PN);
 | |
|   NewPN->takeName(PN);
 | |
|   
 | |
|   // If we are going to have to insert a new computation, do so right before the
 | |
|   // predecessors terminator.
 | |
|   if (NonConstBB)
 | |
|     Builder->SetInsertPoint(NonConstBB->getTerminator());
 | |
|   
 | |
|   // Next, add all of the operands to the PHI.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | |
|     // We only currently try to fold the condition of a select when it is a phi,
 | |
|     // not the true/false values.
 | |
|     Value *TrueV = SI->getTrueValue();
 | |
|     Value *FalseV = SI->getFalseValue();
 | |
|     BasicBlock *PhiTransBB = PN->getParent();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | |
|       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *InV = 0;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | |
|       else
 | |
|         InV = Builder->CreateSelect(PN->getIncomingValue(i),
 | |
|                                     TrueVInPred, FalseVInPred, "phitmp");
 | |
|       NewPN->addIncoming(InV, ThisBB);
 | |
|     }
 | |
|   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV = 0;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | |
|       else if (isa<ICmpInst>(CI))
 | |
|         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
 | |
|                                   C, "phitmp");
 | |
|       else
 | |
|         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
 | |
|                                   C, "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else if (I.getNumOperands() == 2) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV = 0;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | |
|       else
 | |
|         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
 | |
|                                    PN->getIncomingValue(i), C, "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else { 
 | |
|     CastInst *CI = cast<CastInst>(&I);
 | |
|     Type *RetTy = CI->getType();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | |
|       else 
 | |
|         InV = Builder->CreateCast(CI->getOpcode(),
 | |
|                                 PN->getIncomingValue(i), I.getType(), "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|        UI != E; ) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     if (User == &I) continue;
 | |
|     ReplaceInstUsesWith(*User, NewPN);
 | |
|     EraseInstFromFunction(*User);
 | |
|   }
 | |
|   return ReplaceInstUsesWith(I, NewPN);
 | |
| }
 | |
| 
 | |
| /// FindElementAtOffset - Given a type and a constant offset, determine whether
 | |
| /// or not there is a sequence of GEP indices into the type that will land us at
 | |
| /// the specified offset.  If so, fill them into NewIndices and return the
 | |
| /// resultant element type, otherwise return null.
 | |
| Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, 
 | |
|                                           SmallVectorImpl<Value*> &NewIndices) {
 | |
|   if (!TD) return 0;
 | |
|   if (!Ty->isSized()) return 0;
 | |
|   
 | |
|   // Start with the index over the outer type.  Note that the type size
 | |
|   // might be zero (even if the offset isn't zero) if the indexed type
 | |
|   // is something like [0 x {int, int}]
 | |
|   Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
 | |
|   int64_t FirstIdx = 0;
 | |
|   if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
 | |
|     FirstIdx = Offset/TySize;
 | |
|     Offset -= FirstIdx*TySize;
 | |
|     
 | |
|     // Handle hosts where % returns negative instead of values [0..TySize).
 | |
|     if (Offset < 0) {
 | |
|       --FirstIdx;
 | |
|       Offset += TySize;
 | |
|       assert(Offset >= 0);
 | |
|     }
 | |
|     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | |
|   }
 | |
|   
 | |
|   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
 | |
|     
 | |
|   // Index into the types.  If we fail, set OrigBase to null.
 | |
|   while (Offset) {
 | |
|     // Indexing into tail padding between struct/array elements.
 | |
|     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
 | |
|       return 0;
 | |
|     
 | |
|     if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|       const StructLayout *SL = TD->getStructLayout(STy);
 | |
|       assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | |
|              "Offset must stay within the indexed type");
 | |
|       
 | |
|       unsigned Elt = SL->getElementContainingOffset(Offset);
 | |
|       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | |
|                                             Elt));
 | |
|       
 | |
|       Offset -= SL->getElementOffset(Elt);
 | |
|       Ty = STy->getElementType(Elt);
 | |
|     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | |
|       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
 | |
|       assert(EltSize && "Cannot index into a zero-sized array");
 | |
|       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
 | |
|       Offset %= EltSize;
 | |
|       Ty = AT->getElementType();
 | |
|     } else {
 | |
|       // Otherwise, we can't index into the middle of this atomic type, bail.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
 | |
|   // If this GEP has only 0 indices, it is the same pointer as
 | |
|   // Src. If Src is not a trivial GEP too, don't combine
 | |
|   // the indices.
 | |
|   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
 | |
|       !Src.hasOneUse())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 | |
| 
 | |
|   if (Value *V = SimplifyGEPInst(Ops, TD))
 | |
|     return ReplaceInstUsesWith(GEP, V);
 | |
| 
 | |
|   Value *PtrOp = GEP.getOperand(0);
 | |
| 
 | |
|   // Eliminate unneeded casts for indices, and replace indices which displace
 | |
|   // by multiples of a zero size type with zero.
 | |
|   if (TD) {
 | |
|     bool MadeChange = false;
 | |
|     Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
 | |
| 
 | |
|     gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
 | |
|          I != E; ++I, ++GTI) {
 | |
|       // Skip indices into struct types.
 | |
|       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
 | |
|       if (!SeqTy) continue;
 | |
| 
 | |
|       // If the element type has zero size then any index over it is equivalent
 | |
|       // to an index of zero, so replace it with zero if it is not zero already.
 | |
|       if (SeqTy->getElementType()->isSized() &&
 | |
|           TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
 | |
|         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
 | |
|           *I = Constant::getNullValue(IntPtrTy);
 | |
|           MadeChange = true;
 | |
|         }
 | |
| 
 | |
|       if ((*I)->getType() != IntPtrTy) {
 | |
|         // If we are using a wider index than needed for this platform, shrink
 | |
|         // it to what we need.  If narrower, sign-extend it to what we need.
 | |
|         // This explicit cast can make subsequent optimizations more obvious.
 | |
|         *I = Builder->CreateIntCast(*I, IntPtrTy, true);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|     if (MadeChange) return &GEP;
 | |
|   }
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | |
|     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
 | |
|       return 0;
 | |
| 
 | |
|     // Note that if our source is a gep chain itself that we wait for that
 | |
|     // chain to be resolved before we perform this transformation.  This
 | |
|     // avoids us creating a TON of code in some cases.
 | |
|     if (GEPOperator *SrcGEP =
 | |
|           dyn_cast<GEPOperator>(Src->getOperand(0)))
 | |
|       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
 | |
|         return 0;   // Wait until our source is folded to completion.
 | |
| 
 | |
|     SmallVector<Value*, 8> Indices;
 | |
| 
 | |
|     // Find out whether the last index in the source GEP is a sequential idx.
 | |
|     bool EndsWithSequential = false;
 | |
|     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | |
|          I != E; ++I)
 | |
|       EndsWithSequential = !(*I)->isStructTy();
 | |
| 
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (EndsWithSequential) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *Sum;
 | |
|       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | |
|       Value *GO1 = GEP.getOperand(1);
 | |
|       if (SO1 == Constant::getNullValue(SO1->getType())) {
 | |
|         Sum = GO1;
 | |
|       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | |
|         Sum = SO1;
 | |
|       } else {
 | |
|         // If they aren't the same type, then the input hasn't been processed
 | |
|         // by the loop above yet (which canonicalizes sequential index types to
 | |
|         // intptr_t).  Just avoid transforming this until the input has been
 | |
|         // normalized.
 | |
|         if (SO1->getType() != GO1->getType())
 | |
|           return 0;
 | |
|         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
 | |
|       }
 | |
| 
 | |
|       // Update the GEP in place if possible.
 | |
|       if (Src->getNumOperands() == 2) {
 | |
|         GEP.setOperand(0, Src->getOperand(0));
 | |
|         GEP.setOperand(1, Sum);
 | |
|         return &GEP;
 | |
|       }
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | |
|       Indices.push_back(Sum);
 | |
|       Indices.append(GEP.op_begin()+2, GEP.op_end());
 | |
|     } else if (isa<Constant>(*GEP.idx_begin()) &&
 | |
|                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | |
|                Src->getNumOperands() != 1) {
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end());
 | |
|       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return (GEP.isInBounds() && Src->isInBounds()) ?
 | |
|         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
 | |
|                                           GEP.getName()) :
 | |
|         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
 | |
|   }
 | |
| 
 | |
|   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | |
|   Value *StrippedPtr = PtrOp->stripPointerCasts();
 | |
|   PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
 | |
|   if (StrippedPtr != PtrOp &&
 | |
|     StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
 | |
| 
 | |
|     bool HasZeroPointerIndex = false;
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
 | |
|       HasZeroPointerIndex = C->isZero();
 | |
| 
 | |
|     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | |
|     // into     : GEP [10 x i8]* X, i32 0, ...
 | |
|     //
 | |
|     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | |
|     //           into     : GEP i8* X, ...
 | |
|     //
 | |
|     // This occurs when the program declares an array extern like "int X[];"
 | |
|     if (HasZeroPointerIndex) {
 | |
|       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | |
|       if (ArrayType *CATy =
 | |
|           dyn_cast<ArrayType>(CPTy->getElementType())) {
 | |
|         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | |
|         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
 | |
|           // -> GEP i8* X, ...
 | |
|           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
 | |
|           GetElementPtrInst *Res =
 | |
|             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
 | |
|           Res->setIsInBounds(GEP.isInBounds());
 | |
|           return Res;
 | |
|         }
 | |
|         
 | |
|         if (ArrayType *XATy =
 | |
|               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
 | |
|           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | |
|           if (CATy->getElementType() == XATy->getElementType()) {
 | |
|             // -> GEP [10 x i8]* X, i32 0, ...
 | |
|             // At this point, we know that the cast source type is a pointer
 | |
|             // to an array of the same type as the destination pointer
 | |
|             // array.  Because the array type is never stepped over (there
 | |
|             // is a leading zero) we can fold the cast into this GEP.
 | |
|             GEP.setOperand(0, StrippedPtr);
 | |
|             return &GEP;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (GEP.getNumOperands() == 2) {
 | |
|       // Transform things like:
 | |
|       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | |
|       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | |
|       Type *SrcElTy = StrippedPtrTy->getElementType();
 | |
|       Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | |
|       if (TD && SrcElTy->isArrayTy() &&
 | |
|           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | |
|           TD->getTypeAllocSize(ResElTy)) {
 | |
|         Value *Idx[2];
 | |
|         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | |
|         Idx[1] = GEP.getOperand(1);
 | |
|         Value *NewGEP = GEP.isInBounds() ?
 | |
|           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
 | |
|           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
 | |
|         // V and GEP are both pointer types --> BitCast
 | |
|         return new BitCastInst(NewGEP, GEP.getType());
 | |
|       }
 | |
|       
 | |
|       // Transform things like:
 | |
|       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | |
|       //   (where tmp = 8*tmp2) into:
 | |
|       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | |
|       
 | |
|       if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
 | |
|         uint64_t ArrayEltSize =
 | |
|             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
 | |
|         
 | |
|         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | |
|         // allow either a mul, shift, or constant here.
 | |
|         Value *NewIdx = 0;
 | |
|         ConstantInt *Scale = 0;
 | |
|         if (ArrayEltSize == 1) {
 | |
|           NewIdx = GEP.getOperand(1);
 | |
|           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
 | |
|         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | |
|           NewIdx = ConstantInt::get(CI->getType(), 1);
 | |
|           Scale = CI;
 | |
|         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | |
|           if (Inst->getOpcode() == Instruction::Shl &&
 | |
|               isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
 | |
|             uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
 | |
|             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
 | |
|                                      1ULL << ShAmtVal);
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           } else if (Inst->getOpcode() == Instruction::Mul &&
 | |
|                      isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             Scale = cast<ConstantInt>(Inst->getOperand(1));
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // If the index will be to exactly the right offset with the scale taken
 | |
|         // out, perform the transformation. Note, we don't know whether Scale is
 | |
|         // signed or not. We'll use unsigned version of division/modulo
 | |
|         // operation after making sure Scale doesn't have the sign bit set.
 | |
|         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
 | |
|             Scale->getZExtValue() % ArrayEltSize == 0) {
 | |
|           Scale = ConstantInt::get(Scale->getType(),
 | |
|                                    Scale->getZExtValue() / ArrayEltSize);
 | |
|           if (Scale->getZExtValue() != 1) {
 | |
|             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
 | |
|                                                        false /*ZExt*/);
 | |
|             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
 | |
|           }
 | |
| 
 | |
|           // Insert the new GEP instruction.
 | |
|           Value *Idx[2];
 | |
|           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | |
|           Idx[1] = NewIdx;
 | |
|           Value *NewGEP = GEP.isInBounds() ?
 | |
|             Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
 | |
|             Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
 | |
|           // The NewGEP must be pointer typed, so must the old one -> BitCast
 | |
|           return new BitCastInst(NewGEP, GEP.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// See if we can simplify:
 | |
|   ///   X = bitcast A* to B*
 | |
|   ///   Y = gep X, <...constant indices...>
 | |
|   /// into a gep of the original struct.  This is important for SROA and alias
 | |
|   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
 | |
|     if (TD &&
 | |
|         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
 | |
|         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
 | |
| 
 | |
|       // Determine how much the GEP moves the pointer.  We are guaranteed to get
 | |
|       // a constant back from EmitGEPOffset.
 | |
|       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
 | |
|       int64_t Offset = OffsetV->getSExtValue();
 | |
| 
 | |
|       // If this GEP instruction doesn't move the pointer, just replace the GEP
 | |
|       // with a bitcast of the real input to the dest type.
 | |
|       if (Offset == 0) {
 | |
|         // If the bitcast is of an allocation, and the allocation will be
 | |
|         // converted to match the type of the cast, don't touch this.
 | |
|         if (isa<AllocaInst>(BCI->getOperand(0)) ||
 | |
|             isMalloc(BCI->getOperand(0))) {
 | |
|           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | |
|           if (Instruction *I = visitBitCast(*BCI)) {
 | |
|             if (I != BCI) {
 | |
|               I->takeName(BCI);
 | |
|               BCI->getParent()->getInstList().insert(BCI, I);
 | |
|               ReplaceInstUsesWith(*BCI, I);
 | |
|             }
 | |
|             return &GEP;
 | |
|           }
 | |
|         }
 | |
|         return new BitCastInst(BCI->getOperand(0), GEP.getType());
 | |
|       }
 | |
|       
 | |
|       // Otherwise, if the offset is non-zero, we need to find out if there is a
 | |
|       // field at Offset in 'A's type.  If so, we can pull the cast through the
 | |
|       // GEP.
 | |
|       SmallVector<Value*, 8> NewIndices;
 | |
|       Type *InTy =
 | |
|         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
 | |
|       if (FindElementAtOffset(InTy, Offset, NewIndices)) {
 | |
|         Value *NGEP = GEP.isInBounds() ?
 | |
|           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
 | |
|           Builder->CreateGEP(BCI->getOperand(0), NewIndices);
 | |
|         
 | |
|         if (NGEP->getType() == GEP.getType())
 | |
|           return ReplaceInstUsesWith(GEP, NGEP);
 | |
|         NGEP->takeName(&GEP);
 | |
|         return new BitCastInst(NGEP, GEP.getType());
 | |
|       }
 | |
|     }
 | |
|   }    
 | |
|     
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
 | |
|                                        int Depth = 0) {
 | |
|   if (Depth == 8)
 | |
|     return false;
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     User *U = *UI;
 | |
|     if (isFreeCall(U)) {
 | |
|       Users.push_back(U);
 | |
|       continue;
 | |
|     }
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
 | |
|       if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
 | |
|         Users.push_back(ICI);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | |
|       if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
 | |
|         Users.push_back(BCI);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
 | |
|         Users.push_back(GEPI);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         Users.push_back(II);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMalloc(Instruction &MI) {
 | |
|   // If we have a malloc call which is only used in any amount of comparisons
 | |
|   // to null and free calls, delete the calls and replace the comparisons with
 | |
|   // true or false as appropriate.
 | |
|   SmallVector<WeakVH, 64> Users;
 | |
|   if (IsOnlyNullComparedAndFreed(&MI, Users)) {
 | |
|     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | |
|       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
 | |
|       if (!I) continue;
 | |
| 
 | |
|       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
 | |
|         ReplaceInstUsesWith(*C,
 | |
|                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
 | |
|                                              C->isFalseWhenEqual()));
 | |
|       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
 | |
|         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
 | |
|       }
 | |
|       EraseInstFromFunction(*I);
 | |
|     }
 | |
|     return EraseInstFromFunction(MI);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitFree(CallInst &FI) {
 | |
|   Value *Op = FI.getArgOperand(0);
 | |
| 
 | |
|   // free undef -> unreachable.
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     // Insert a new store to null because we cannot modify the CFG here.
 | |
|     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
 | |
|                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
 | |
|     return EraseInstFromFunction(FI);
 | |
|   }
 | |
|   
 | |
|   // If we have 'free null' delete the instruction.  This can happen in stl code
 | |
|   // when lots of inlining happens.
 | |
|   if (isa<ConstantPointerNull>(Op))
 | |
|     return EraseInstFromFunction(FI);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   Value *X = 0;
 | |
|   BasicBlock *TrueDest;
 | |
|   BasicBlock *FalseDest;
 | |
|   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // Swap Destinations and condition...
 | |
|     BI.setCondition(X);
 | |
|     BI.setSuccessor(0, FalseDest);
 | |
|     BI.setSuccessor(1, TrueDest);
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // Cannonicalize fcmp_one -> fcmp_oeq
 | |
|   FCmpInst::Predicate FPred; Value *Y;
 | |
|   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
 | |
|                              TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | |
|         FPred == FCmpInst::FCMP_OGE) {
 | |
|       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
 | |
|       
 | |
|       // Swap Destinations and condition.
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   // Cannonicalize icmp_ne -> icmp_eq
 | |
|   ICmpInst::Predicate IPred;
 | |
|   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | |
|                       TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | |
|         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | |
|         IPred == ICmpInst::ICMP_SGE) {
 | |
|       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
 | |
|       // Swap Destinations and condition.
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | |
|   Value *Cond = SI.getCondition();
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | |
|     if (I->getOpcode() == Instruction::Add)
 | |
|       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | |
|         for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | |
|           SI.setOperand(i,
 | |
|                    ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | |
|                                                 AddRHS));
 | |
|         SI.setOperand(0, I->getOperand(0));
 | |
|         Worklist.Add(I);
 | |
|         return &SI;
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | |
|   Value *Agg = EV.getAggregateOperand();
 | |
| 
 | |
|   if (!EV.hasIndices())
 | |
|     return ReplaceInstUsesWith(EV, Agg);
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Agg)) {
 | |
|     if (isa<UndefValue>(C))
 | |
|       return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
 | |
|       
 | |
|     if (isa<ConstantAggregateZero>(C))
 | |
|       return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
 | |
| 
 | |
|     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
 | |
|       // Extract the element indexed by the first index out of the constant
 | |
|       Value *V = C->getOperand(*EV.idx_begin());
 | |
|       if (EV.getNumIndices() > 1)
 | |
|         // Extract the remaining indices out of the constant indexed by the
 | |
|         // first index
 | |
|         return ExtractValueInst::Create(V, EV.getIndices().slice(1));
 | |
|       else
 | |
|         return ReplaceInstUsesWith(EV, V);
 | |
|     }
 | |
|     return 0; // Can't handle other constants
 | |
|   } 
 | |
|   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | |
|     // We're extracting from an insertvalue instruction, compare the indices
 | |
|     const unsigned *exti, *exte, *insi, *inse;
 | |
|     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | |
|          exte = EV.idx_end(), inse = IV->idx_end();
 | |
|          exti != exte && insi != inse;
 | |
|          ++exti, ++insi) {
 | |
|       if (*insi != *exti)
 | |
|         // The insert and extract both reference distinctly different elements.
 | |
|         // This means the extract is not influenced by the insert, and we can
 | |
|         // replace the aggregate operand of the extract with the aggregate
 | |
|         // operand of the insert. i.e., replace
 | |
|         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|         // %E = extractvalue { i32, { i32 } } %I, 0
 | |
|         // with
 | |
|         // %E = extractvalue { i32, { i32 } } %A, 0
 | |
|         return ExtractValueInst::Create(IV->getAggregateOperand(),
 | |
|                                         EV.getIndices());
 | |
|     }
 | |
|     if (exti == exte && insi == inse)
 | |
|       // Both iterators are at the end: Index lists are identical. Replace
 | |
|       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | |
|       // with "i32 42"
 | |
|       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | |
|     if (exti == exte) {
 | |
|       // The extract list is a prefix of the insert list. i.e. replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1
 | |
|       // with
 | |
|       // %X = extractvalue { i32, { i32 } } %A, 1
 | |
|       // %E = insertvalue { i32 } %X, i32 42, 0
 | |
|       // by switching the order of the insert and extract (though the
 | |
|       // insertvalue should be left in, since it may have other uses).
 | |
|       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
 | |
|                                                  EV.getIndices());
 | |
|       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | |
|                                      makeArrayRef(insi, inse));
 | |
|     }
 | |
|     if (insi == inse)
 | |
|       // The insert list is a prefix of the extract list
 | |
|       // We can simply remove the common indices from the extract and make it
 | |
|       // operate on the inserted value instead of the insertvalue result.
 | |
|       // i.e., replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | |
|       // with
 | |
|       // %E extractvalue { i32 } { i32 42 }, 0
 | |
|       return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
 | |
|                                       makeArrayRef(exti, exte));
 | |
|   }
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
 | |
|     // We're extracting from an intrinsic, see if we're the only user, which
 | |
|     // allows us to simplify multiple result intrinsics to simpler things that
 | |
|     // just get one value.
 | |
|     if (II->hasOneUse()) {
 | |
|       // Check if we're grabbing the overflow bit or the result of a 'with
 | |
|       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
 | |
|       // and replace it with a traditional binary instruction.
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       case Intrinsic::uadd_with_overflow:
 | |
|       case Intrinsic::sadd_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           EraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateAdd(LHS, RHS);
 | |
|         }
 | |
|           
 | |
|         // If the normal result of the add is dead, and the RHS is a constant,
 | |
|         // we can transform this into a range comparison.
 | |
|         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
 | |
|         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
 | |
|             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
 | |
|                                 ConstantExpr::getNot(CI));
 | |
|         break;
 | |
|       case Intrinsic::usub_with_overflow:
 | |
|       case Intrinsic::ssub_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           EraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateSub(LHS, RHS);
 | |
|         }
 | |
|         break;
 | |
|       case Intrinsic::umul_with_overflow:
 | |
|       case Intrinsic::smul_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           EraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateMul(LHS, RHS);
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
 | |
|     // If the (non-volatile) load only has one use, we can rewrite this to a
 | |
|     // load from a GEP. This reduces the size of the load.
 | |
|     // FIXME: If a load is used only by extractvalue instructions then this
 | |
|     //        could be done regardless of having multiple uses.
 | |
|     if (!L->isVolatile() && L->hasOneUse()) {
 | |
|       // extractvalue has integer indices, getelementptr has Value*s. Convert.
 | |
|       SmallVector<Value*, 4> Indices;
 | |
|       // Prefix an i32 0 since we need the first element.
 | |
|       Indices.push_back(Builder->getInt32(0));
 | |
|       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
 | |
|             I != E; ++I)
 | |
|         Indices.push_back(Builder->getInt32(*I));
 | |
| 
 | |
|       // We need to insert these at the location of the old load, not at that of
 | |
|       // the extractvalue.
 | |
|       Builder->SetInsertPoint(L->getParent(), L);
 | |
|       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
 | |
|       // Returning the load directly will cause the main loop to insert it in
 | |
|       // the wrong spot, so use ReplaceInstUsesWith().
 | |
|       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
 | |
|     }
 | |
|   // We could simplify extracts from other values. Note that nested extracts may
 | |
|   // already be simplified implicitly by the above: extract (extract (insert) )
 | |
|   // will be translated into extract ( insert ( extract ) ) first and then just
 | |
|   // the value inserted, if appropriate. Similarly for extracts from single-use
 | |
|   // loads: extract (extract (load)) will be translated to extract (load (gep))
 | |
|   // and if again single-use then via load (gep (gep)) to load (gep).
 | |
|   // However, double extracts from e.g. function arguments or return values
 | |
|   // aren't handled yet.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// TryToSinkInstruction - Try to move the specified instruction from its
 | |
| /// current block into the beginning of DestBlock, which can only happen if it's
 | |
| /// safe to move the instruction past all of the instructions between it and the
 | |
| /// end of its block.
 | |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | |
|   assert(I->hasOneUse() && "Invariants didn't hold!");
 | |
| 
 | |
|   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | |
|   if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   // Do not sink alloca instructions out of the entry block.
 | |
|   if (isa<AllocaInst>(I) && I->getParent() ==
 | |
|         &DestBlock->getParent()->getEntryBlock())
 | |
|     return false;
 | |
| 
 | |
|   // We can only sink load instructions if there is nothing between the load and
 | |
|   // the end of block that could change the value.
 | |
|   if (I->mayReadFromMemory()) {
 | |
|     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
 | |
|          Scan != E; ++Scan)
 | |
|       if (Scan->mayWriteToMemory())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
 | |
| 
 | |
|   I->moveBefore(InsertPos);
 | |
|   ++NumSunkInst;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | |
| /// all reachable code to the worklist.
 | |
| ///
 | |
| /// This has a couple of tricks to make the code faster and more powerful.  In
 | |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding
 | |
| /// them to the worklist (this significantly speeds up instcombine on code where
 | |
| /// many instructions are dead or constant).  Additionally, if we find a branch
 | |
| /// whose condition is a known constant, we only visit the reachable successors.
 | |
| ///
 | |
| static bool AddReachableCodeToWorklist(BasicBlock *BB, 
 | |
|                                        SmallPtrSet<BasicBlock*, 64> &Visited,
 | |
|                                        InstCombiner &IC,
 | |
|                                        const TargetData *TD) {
 | |
|   bool MadeIRChange = false;
 | |
|   SmallVector<BasicBlock*, 256> Worklist;
 | |
|   Worklist.push_back(BB);
 | |
| 
 | |
|   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
 | |
|   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
 | |
| 
 | |
|   do {
 | |
|     BB = Worklist.pop_back_val();
 | |
|     
 | |
|     // We have now visited this block!  If we've already been here, ignore it.
 | |
|     if (!Visited.insert(BB)) continue;
 | |
| 
 | |
|     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|       Instruction *Inst = BBI++;
 | |
|       
 | |
|       // DCE instruction if trivially dead.
 | |
|       if (isInstructionTriviallyDead(Inst)) {
 | |
|         ++NumDeadInst;
 | |
|         DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
 | |
|         Inst->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // ConstantProp instruction if trivially constant.
 | |
|       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
 | |
|         if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
 | |
|           DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
 | |
|                        << *Inst << '\n');
 | |
|           Inst->replaceAllUsesWith(C);
 | |
|           ++NumConstProp;
 | |
|           Inst->eraseFromParent();
 | |
|           continue;
 | |
|         }
 | |
|       
 | |
|       if (TD) {
 | |
|         // See if we can constant fold its operands.
 | |
|         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
 | |
|              i != e; ++i) {
 | |
|           ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
 | |
|           if (CE == 0) continue;
 | |
| 
 | |
|           Constant*& FoldRes = FoldedConstants[CE];
 | |
|           if (!FoldRes)
 | |
|             FoldRes = ConstantFoldConstantExpression(CE, TD);
 | |
|           if (!FoldRes)
 | |
|             FoldRes = CE;
 | |
| 
 | |
|           if (FoldRes != CE) {
 | |
|             *i = FoldRes;
 | |
|             MadeIRChange = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       InstrsForInstCombineWorklist.push_back(Inst);
 | |
|     }
 | |
| 
 | |
|     // Recursively visit successors.  If this is a branch or switch on a
 | |
|     // constant, only visit the reachable successor.
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | |
|         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | |
|         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | |
|         Worklist.push_back(ReachableBB);
 | |
|         continue;
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | |
|         // See if this is an explicit destination.
 | |
|         for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | |
|           if (SI->getCaseValue(i) == Cond) {
 | |
|             BasicBlock *ReachableBB = SI->getSuccessor(i);
 | |
|             Worklist.push_back(ReachableBB);
 | |
|             continue;
 | |
|           }
 | |
|         
 | |
|         // Otherwise it is the default destination.
 | |
|         Worklist.push_back(SI->getSuccessor(0));
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       Worklist.push_back(TI->getSuccessor(i));
 | |
|   } while (!Worklist.empty());
 | |
|   
 | |
|   // Once we've found all of the instructions to add to instcombine's worklist,
 | |
|   // add them in reverse order.  This way instcombine will visit from the top
 | |
|   // of the function down.  This jives well with the way that it adds all uses
 | |
|   // of instructions to the worklist after doing a transformation, thus avoiding
 | |
|   // some N^2 behavior in pathological cases.
 | |
|   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
 | |
|                               InstrsForInstCombineWorklist.size());
 | |
|   
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
 | |
|   MadeIRChange = false;
 | |
|   
 | |
|   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | |
|         << F.getNameStr() << "\n");
 | |
| 
 | |
|   {
 | |
|     // Do a depth-first traversal of the function, populate the worklist with
 | |
|     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | |
|     // track of which blocks we visit.
 | |
|     SmallPtrSet<BasicBlock*, 64> Visited;
 | |
|     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
 | |
| 
 | |
|     // Do a quick scan over the function.  If we find any blocks that are
 | |
|     // unreachable, remove any instructions inside of them.  This prevents
 | |
|     // the instcombine code from having to deal with some bad special cases.
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|       if (!Visited.count(BB)) {
 | |
|         Instruction *Term = BB->getTerminator();
 | |
|         while (Term != BB->begin()) {   // Remove instrs bottom-up
 | |
|           BasicBlock::iterator I = Term; --I;
 | |
| 
 | |
|           DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | |
|           // A debug intrinsic shouldn't force another iteration if we weren't
 | |
|           // going to do one without it.
 | |
|           if (!isa<DbgInfoIntrinsic>(I)) {
 | |
|             ++NumDeadInst;
 | |
|             MadeIRChange = true;
 | |
|           }
 | |
| 
 | |
|           // If I is not void type then replaceAllUsesWith undef.
 | |
|           // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|           if (!I->getType()->isVoidTy())
 | |
|             I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|           I->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.isEmpty()) {
 | |
|     Instruction *I = Worklist.RemoveOne();
 | |
|     if (I == 0) continue;  // skip null values.
 | |
| 
 | |
|     // Check to see if we can DCE the instruction.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | |
|       EraseInstFromFunction(*I);
 | |
|       ++NumDeadInst;
 | |
|       MadeIRChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it.
 | |
|     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
 | |
|       if (Constant *C = ConstantFoldInstruction(I, TD)) {
 | |
|         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 | |
| 
 | |
|         // Add operands to the worklist.
 | |
|         ReplaceInstUsesWith(*I, C);
 | |
|         ++NumConstProp;
 | |
|         EraseInstFromFunction(*I);
 | |
|         MadeIRChange = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // See if we can trivially sink this instruction to a successor basic block.
 | |
|     if (I->hasOneUse()) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       Instruction *UserInst = cast<Instruction>(I->use_back());
 | |
|       BasicBlock *UserParent;
 | |
|       
 | |
|       // Get the block the use occurs in.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | |
|         UserParent = PN->getIncomingBlock(I->use_begin().getUse());
 | |
|       else
 | |
|         UserParent = UserInst->getParent();
 | |
|       
 | |
|       if (UserParent != BB) {
 | |
|         bool UserIsSuccessor = false;
 | |
|         // See if the user is one of our successors.
 | |
|         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|           if (*SI == UserParent) {
 | |
|             UserIsSuccessor = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // If the user is one of our immediate successors, and if that successor
 | |
|         // only has us as a predecessors (we'd have to split the critical edge
 | |
|         // otherwise), we can keep going.
 | |
|         if (UserIsSuccessor && UserParent->getSinglePredecessor())
 | |
|           // Okay, the CFG is simple enough, try to sink this instruction.
 | |
|           MadeIRChange |= TryToSinkInstruction(I, UserParent);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have an instruction, try combining it to simplify it.
 | |
|     Builder->SetInsertPoint(I->getParent(), I);
 | |
|     Builder->SetCurrentDebugLocation(I->getDebugLoc());
 | |
|     
 | |
| #ifndef NDEBUG
 | |
|     std::string OrigI;
 | |
| #endif
 | |
|     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | |
|     DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
 | |
| 
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         DEBUG(errs() << "IC: Old = " << *I << '\n'
 | |
|                      << "    New = " << *Result << '\n');
 | |
| 
 | |
|         if (!I->getDebugLoc().isUnknown())
 | |
|           Result->setDebugLoc(I->getDebugLoc());
 | |
|         // Everything uses the new instruction now.
 | |
|         I->replaceAllUsesWith(Result);
 | |
| 
 | |
|         // Push the new instruction and any users onto the worklist.
 | |
|         Worklist.Add(Result);
 | |
|         Worklist.AddUsersToWorkList(*Result);
 | |
| 
 | |
|         // Move the name to the new instruction first.
 | |
|         Result->takeName(I);
 | |
| 
 | |
|         // Insert the new instruction into the basic block...
 | |
|         BasicBlock *InstParent = I->getParent();
 | |
|         BasicBlock::iterator InsertPos = I;
 | |
| 
 | |
|         if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | |
|           while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | |
|             ++InsertPos;
 | |
| 
 | |
|         InstParent->getInstList().insert(InsertPos, Result);
 | |
| 
 | |
|         EraseInstFromFunction(*I);
 | |
|       } else {
 | |
| #ifndef NDEBUG
 | |
|         DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
 | |
|                      << "    New = " << *I << '\n');
 | |
| #endif
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (isInstructionTriviallyDead(I)) {
 | |
|           EraseInstFromFunction(*I);
 | |
|         } else {
 | |
|           Worklist.Add(I);
 | |
|           Worklist.AddUsersToWorkList(*I);
 | |
|         }
 | |
|       }
 | |
|       MadeIRChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Worklist.Zap();
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool InstCombiner::runOnFunction(Function &F) {
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|   
 | |
|   /// Builder - This is an IRBuilder that automatically inserts new
 | |
|   /// instructions into the worklist when they are created.
 | |
|   IRBuilder<true, TargetFolder, InstCombineIRInserter> 
 | |
|     TheBuilder(F.getContext(), TargetFolder(TD),
 | |
|                InstCombineIRInserter(Worklist));
 | |
|   Builder = &TheBuilder;
 | |
|   
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   // Lower dbg.declare intrinsics otherwise their value may be clobbered
 | |
|   // by instcombiner.
 | |
|   EverMadeChange = LowerDbgDeclare(F);
 | |
| 
 | |
|   // Iterate while there is work to do.
 | |
|   unsigned Iteration = 0;
 | |
|   while (DoOneIteration(F, Iteration++))
 | |
|     EverMadeChange = true;
 | |
|   
 | |
|   Builder = 0;
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInstructionCombiningPass() {
 | |
|   return new InstCombiner();
 | |
| }
 |