forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1190 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1190 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inlining of a function into a call site, resolving
 | |
| // parameters and the return value as appropriate.
 | |
| //
 | |
| // The code in this file for handling inlines through invoke
 | |
| // instructions preserves semantics only under some assumptions about
 | |
| // the behavior of unwinders which correspond to gcc-style libUnwind
 | |
| // exception personality functions.  Eventually the IR will be
 | |
| // improved to make this unnecessary, but until then, this code is
 | |
| // marked [LIBUNWIND].
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Attributes.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
 | |
|   return InlineFunction(CallSite(CI), IFI);
 | |
| }
 | |
| bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
 | |
|   return InlineFunction(CallSite(II), IFI);
 | |
| }
 | |
| 
 | |
| /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
 | |
| static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
 | |
|   for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
 | |
|     EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
 | |
|     if (exn) return exn;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
 | |
| /// the given llvm.eh.exception call.
 | |
| static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
 | |
|   BasicBlock *exnBlock = exn->getParent();
 | |
| 
 | |
|   EHSelectorInst *outOfBlockSelector = 0;
 | |
|   for (Instruction::use_iterator
 | |
|          ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
 | |
|     EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
 | |
|     if (!sel) continue;
 | |
| 
 | |
|     // Immediately accept an eh.selector in the same block as the
 | |
|     // excepton call.
 | |
|     if (sel->getParent() == exnBlock) return sel;
 | |
| 
 | |
|     // Otherwise, use the first selector we see.
 | |
|     if (!outOfBlockSelector) outOfBlockSelector = sel;
 | |
|   }
 | |
| 
 | |
|   return outOfBlockSelector;
 | |
| }
 | |
| 
 | |
| /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
 | |
| /// in the given landing pad.  In principle, llvm.eh.exception is
 | |
| /// required to be in the landing pad; in practice, SplitCriticalEdge
 | |
| /// can break that invariant, and then inlining can break it further.
 | |
| /// There's a real need for a reliable solution here, but until that
 | |
| /// happens, we have some fragile workarounds here.
 | |
| static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
 | |
|   // Look for an exception call in the actual landing pad.
 | |
|   EHExceptionInst *exn = findExceptionInBlock(lpad);
 | |
|   if (exn) return findSelectorForException(exn);
 | |
| 
 | |
|   // Okay, if that failed, look for one in an obvious successor.  If
 | |
|   // we find one, we'll fix the IR by moving things back to the
 | |
|   // landing pad.
 | |
| 
 | |
|   bool dominates = true; // does the lpad dominate the exn call
 | |
|   BasicBlock *nonDominated = 0; // if not, the first non-dominated block
 | |
|   BasicBlock *lastDominated = 0; // and the block which branched to it
 | |
| 
 | |
|   BasicBlock *exnBlock = lpad;
 | |
| 
 | |
|   // We need to protect against lpads that lead into infinite loops.
 | |
|   SmallPtrSet<BasicBlock*,4> visited;
 | |
|   visited.insert(exnBlock);
 | |
| 
 | |
|   do {
 | |
|     // We're not going to apply this hack to anything more complicated
 | |
|     // than a series of unconditional branches, so if the block
 | |
|     // doesn't terminate in an unconditional branch, just fail.  More
 | |
|     // complicated cases can arise when, say, sinking a call into a
 | |
|     // split unwind edge and then inlining it; but that can do almost
 | |
|     // *anything* to the CFG, including leaving the selector
 | |
|     // completely unreachable.  The only way to fix that properly is
 | |
|     // to (1) prohibit transforms which move the exception or selector
 | |
|     // values away from the landing pad, e.g. by producing them with
 | |
|     // instructions that are pinned to an edge like a phi, or
 | |
|     // producing them with not-really-instructions, and (2) making
 | |
|     // transforms which split edges deal with that.
 | |
|     BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
 | |
|     if (!branch || branch->isConditional()) return 0;
 | |
| 
 | |
|     BasicBlock *successor = branch->getSuccessor(0);
 | |
| 
 | |
|     // Fail if we found an infinite loop.
 | |
|     if (!visited.insert(successor)) return 0;
 | |
| 
 | |
|     // If the successor isn't dominated by exnBlock:
 | |
|     if (!successor->getSinglePredecessor()) {
 | |
|       // We don't want to have to deal with threading the exception
 | |
|       // through multiple levels of phi, so give up if we've already
 | |
|       // followed a non-dominating edge.
 | |
|       if (!dominates) return 0;
 | |
| 
 | |
|       // Otherwise, remember this as a non-dominating edge.
 | |
|       dominates = false;
 | |
|       nonDominated = successor;
 | |
|       lastDominated = exnBlock;
 | |
|     }
 | |
| 
 | |
|     exnBlock = successor;
 | |
| 
 | |
|     // Can we stop here?
 | |
|     exn = findExceptionInBlock(exnBlock);
 | |
|   } while (!exn);
 | |
| 
 | |
|   // Look for a selector call for the exception we found.
 | |
|   EHSelectorInst *selector = findSelectorForException(exn);
 | |
|   if (!selector) return 0;
 | |
| 
 | |
|   // The easy case is when the landing pad still dominates the
 | |
|   // exception call, in which case we can just move both calls back to
 | |
|   // the landing pad.
 | |
|   if (dominates) {
 | |
|     selector->moveBefore(lpad->getFirstNonPHI());
 | |
|     exn->moveBefore(selector);
 | |
|     return selector;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to split at the first non-dominating block.
 | |
|   // The CFG looks basically like this:
 | |
|   //    lpad:
 | |
|   //      phis_0
 | |
|   //      insnsAndBranches_1
 | |
|   //      br label %nonDominated
 | |
|   //    nonDominated:
 | |
|   //      phis_2
 | |
|   //      insns_3
 | |
|   //      %exn = call i8* @llvm.eh.exception()
 | |
|   //      insnsAndBranches_4
 | |
|   //      %selector = call @llvm.eh.selector(i8* %exn, ...
 | |
|   // We need to turn this into:
 | |
|   //    lpad:
 | |
|   //      phis_0
 | |
|   //      %exn0 = call i8* @llvm.eh.exception()
 | |
|   //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
 | |
|   //      insnsAndBranches_1
 | |
|   //      br label %split // from lastDominated
 | |
|   //    nonDominated:
 | |
|   //      phis_2 (without edge from lastDominated)
 | |
|   //      %exn1 = call i8* @llvm.eh.exception()
 | |
|   //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
 | |
|   //      br label %split
 | |
|   //    split:
 | |
|   //      phis_2 (edge from lastDominated, edge from split)
 | |
|   //      %exn = phi ...
 | |
|   //      %selector = phi ...
 | |
|   //      insns_3
 | |
|   //      insnsAndBranches_4
 | |
| 
 | |
|   assert(nonDominated);
 | |
|   assert(lastDominated);
 | |
| 
 | |
|   // First, make clones of the intrinsics to go in lpad.
 | |
|   EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
 | |
|   EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
 | |
|   lpadSelector->setArgOperand(0, lpadExn);
 | |
|   lpadSelector->insertBefore(lpad->getFirstNonPHI());
 | |
|   lpadExn->insertBefore(lpadSelector);
 | |
| 
 | |
|   // Split the non-dominated block.
 | |
|   BasicBlock *split =
 | |
|     nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
 | |
|                                   nonDominated->getName() + ".lpad-fix");
 | |
| 
 | |
|   // Redirect the last dominated branch there.
 | |
|   cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
 | |
| 
 | |
|   // Move the existing intrinsics to the end of the old block.
 | |
|   selector->moveBefore(&nonDominated->back());
 | |
|   exn->moveBefore(selector);
 | |
| 
 | |
|   Instruction *splitIP = &split->front();
 | |
| 
 | |
|   // For all the phis in nonDominated, make a new phi in split to join
 | |
|   // that phi with the edge from lastDominated.
 | |
|   for (BasicBlock::iterator
 | |
|          i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
 | |
|     PHINode *phi = dyn_cast<PHINode>(i);
 | |
|     if (!phi) break;
 | |
| 
 | |
|     PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
 | |
|                                         splitIP);
 | |
|     phi->replaceAllUsesWith(splitPhi);
 | |
|     splitPhi->addIncoming(phi, nonDominated);
 | |
|     splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
 | |
|                           lastDominated);
 | |
|   }
 | |
| 
 | |
|   // Make new phis for the exception and selector.
 | |
|   PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
 | |
|   exn->replaceAllUsesWith(exnPhi);
 | |
|   selector->setArgOperand(0, exn); // except for this use
 | |
|   exnPhi->addIncoming(exn, nonDominated);
 | |
|   exnPhi->addIncoming(lpadExn, lastDominated);
 | |
| 
 | |
|   PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
 | |
|   selector->replaceAllUsesWith(selectorPhi);
 | |
|   selectorPhi->addIncoming(selector, nonDominated);
 | |
|   selectorPhi->addIncoming(lpadSelector, lastDominated);
 | |
| 
 | |
|   return lpadSelector;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A class for recording information about inlining through an invoke.
 | |
|   class InvokeInliningInfo {
 | |
|     BasicBlock *OuterUnwindDest;
 | |
|     EHSelectorInst *OuterSelector;
 | |
|     BasicBlock *InnerUnwindDest;
 | |
|     PHINode *InnerExceptionPHI;
 | |
|     PHINode *InnerSelectorPHI;
 | |
|     SmallVector<Value*, 8> UnwindDestPHIValues;
 | |
| 
 | |
|   public:
 | |
|     InvokeInliningInfo(InvokeInst *II) :
 | |
|       OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
 | |
|       InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {
 | |
| 
 | |
|       // If there are PHI nodes in the unwind destination block, we
 | |
|       // need to keep track of which values came into them from the
 | |
|       // invoke before removing the edge from this block.
 | |
|       llvm::BasicBlock *invokeBB = II->getParent();
 | |
|       for (BasicBlock::iterator I = OuterUnwindDest->begin();
 | |
|              isa<PHINode>(I); ++I) {
 | |
|         // Save the value to use for this edge.
 | |
|         PHINode *phi = cast<PHINode>(I);
 | |
|         UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// The outer unwind destination is the target of unwind edges
 | |
|     /// introduced for calls within the inlined function.
 | |
|     BasicBlock *getOuterUnwindDest() const {
 | |
|       return OuterUnwindDest;
 | |
|     }
 | |
| 
 | |
|     EHSelectorInst *getOuterSelector() {
 | |
|       if (!OuterSelector)
 | |
|         OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
 | |
|       return OuterSelector;
 | |
|     }
 | |
| 
 | |
|     BasicBlock *getInnerUnwindDest();
 | |
| 
 | |
|     bool forwardEHResume(CallInst *call, BasicBlock *src);
 | |
| 
 | |
|     /// Add incoming-PHI values to the unwind destination block for
 | |
|     /// the given basic block, using the values for the original
 | |
|     /// invoke's source block.
 | |
|     void addIncomingPHIValuesFor(BasicBlock *BB) const {
 | |
|       addIncomingPHIValuesForInto(BB, OuterUnwindDest);
 | |
|     }
 | |
| 
 | |
|     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
 | |
|       BasicBlock::iterator I = dest->begin();
 | |
|       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|         PHINode *phi = cast<PHINode>(I);
 | |
|         phi->addIncoming(UnwindDestPHIValues[i], src);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Get or create a target for the branch out of rewritten calls to
 | |
| /// llvm.eh.resume.
 | |
| BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
 | |
|   if (InnerUnwindDest) return InnerUnwindDest;
 | |
| 
 | |
|   // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
 | |
|   // in the outer landing pad to immediately following the phis.
 | |
|   EHSelectorInst *selector = getOuterSelector();
 | |
|   if (!selector) return 0;
 | |
| 
 | |
|   // The call to llvm.eh.exception *must* be in the landing pad.
 | |
|   Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
 | |
|   assert(exn->getParent() == OuterUnwindDest);
 | |
| 
 | |
|   // TODO: recognize when we've already done this, so that we don't
 | |
|   // get a linear number of these when inlining calls into lots of
 | |
|   // invokes with the same landing pad.
 | |
| 
 | |
|   // Do the hoisting.
 | |
|   Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
 | |
|   assert(splitPoint != selector && "selector-on-exception dominance broken!");
 | |
|   if (splitPoint == exn) {
 | |
|     selector->removeFromParent();
 | |
|     selector->insertAfter(exn);
 | |
|     splitPoint = selector->getNextNode();
 | |
|   } else {
 | |
|     exn->moveBefore(splitPoint);
 | |
|     selector->moveBefore(splitPoint);
 | |
|   }
 | |
| 
 | |
|   // Split the landing pad.
 | |
|   InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
 | |
|                                         OuterUnwindDest->getName() + ".body");
 | |
| 
 | |
|   // The number of incoming edges we expect to the inner landing pad.
 | |
|   const unsigned phiCapacity = 2;
 | |
| 
 | |
|   // Create corresponding new phis for all the phis in the outer landing pad.
 | |
|   BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
 | |
|   BasicBlock::iterator I = OuterUnwindDest->begin();
 | |
|   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | |
|     PHINode *outerPhi = cast<PHINode>(I);
 | |
|     PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
 | |
|                                         outerPhi->getName() + ".lpad-body",
 | |
|                                         insertPoint);
 | |
|     outerPhi->replaceAllUsesWith(innerPhi);
 | |
|     innerPhi->addIncoming(outerPhi, OuterUnwindDest);
 | |
|   }
 | |
| 
 | |
|   // Create a phi for the exception value...
 | |
|   InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
 | |
|                                       "exn.lpad-body", insertPoint);
 | |
|   exn->replaceAllUsesWith(InnerExceptionPHI);
 | |
|   selector->setArgOperand(0, exn); // restore this use
 | |
|   InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
 | |
| 
 | |
|   // ...and the selector.
 | |
|   InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
 | |
|                                      "selector.lpad-body", insertPoint);
 | |
|   selector->replaceAllUsesWith(InnerSelectorPHI);
 | |
|   InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
 | |
| 
 | |
|   // All done.
 | |
|   return InnerUnwindDest;
 | |
| }
 | |
| 
 | |
| /// [LIBUNWIND] Try to forward the given call, which logically occurs
 | |
| /// at the end of the given block, as a branch to the inner unwind
 | |
| /// block.  Returns true if the call was forwarded.
 | |
| bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
 | |
|   // First, check whether this is a call to the intrinsic.
 | |
|   Function *fn = dyn_cast<Function>(call->getCalledValue());
 | |
|   if (!fn || fn->getName() != "llvm.eh.resume")
 | |
|     return false;
 | |
|   
 | |
|   // At this point, we need to return true on all paths, because
 | |
|   // otherwise we'll construct an invoke of the intrinsic, which is
 | |
|   // not well-formed.
 | |
| 
 | |
|   // Try to find or make an inner unwind dest, which will fail if we
 | |
|   // can't find a selector call for the outer unwind dest.
 | |
|   BasicBlock *dest = getInnerUnwindDest();
 | |
|   bool hasSelector = (dest != 0);
 | |
| 
 | |
|   // If we failed, just use the outer unwind dest, dropping the
 | |
|   // exception and selector on the floor.
 | |
|   if (!hasSelector)
 | |
|     dest = OuterUnwindDest;
 | |
| 
 | |
|   // Make a branch.
 | |
|   BranchInst::Create(dest, src);
 | |
| 
 | |
|   // Update the phis in the destination.  They were inserted in an
 | |
|   // order which makes this work.
 | |
|   addIncomingPHIValuesForInto(src, dest);
 | |
| 
 | |
|   if (hasSelector) {
 | |
|     InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
 | |
|     InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// [LIBUNWIND] Check whether this selector is "only cleanups":
 | |
| ///   call i32 @llvm.eh.selector(blah, blah, i32 0)
 | |
| static bool isCleanupOnlySelector(EHSelectorInst *selector) {
 | |
|   if (selector->getNumArgOperands() != 3) return false;
 | |
|   ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
 | |
|   return (val && val->isZero());
 | |
| }
 | |
| 
 | |
| /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
 | |
| /// an invoke, we have to turn all of the calls that can throw into
 | |
| /// invokes.  This function analyze BB to see if there are any calls, and if so,
 | |
| /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | |
| /// nodes in that block with the values specified in InvokeDestPHIValues.
 | |
| ///
 | |
| /// Returns true to indicate that the next block should be skipped.
 | |
| static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
 | |
|                                                    InvokeInliningInfo &Invoke) {
 | |
|   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|     Instruction *I = BBI++;
 | |
|     
 | |
|     // We only need to check for function calls: inlined invoke
 | |
|     // instructions require no special handling.
 | |
|     CallInst *CI = dyn_cast<CallInst>(I);
 | |
|     if (CI == 0) continue;
 | |
| 
 | |
|     // LIBUNWIND: merge selector instructions.
 | |
|     if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
 | |
|       EHSelectorInst *Outer = Invoke.getOuterSelector();
 | |
|       if (!Outer) continue;
 | |
| 
 | |
|       bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
 | |
|       bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
 | |
| 
 | |
|       // If both selectors contain only cleanups, we don't need to do
 | |
|       // anything.  TODO: this is really just a very specific instance
 | |
|       // of a much more general optimization.
 | |
|       if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
 | |
| 
 | |
|       // Otherwise, we just append the outer selector to the inner selector.
 | |
|       SmallVector<Value*, 16> NewSelector;
 | |
|       for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
 | |
|         NewSelector.push_back(Inner->getArgOperand(i));
 | |
|       for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
 | |
|         NewSelector.push_back(Outer->getArgOperand(i));
 | |
| 
 | |
|       CallInst *NewInner =
 | |
|         IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
 | |
|       // No need to copy attributes, calling convention, etc.
 | |
|       NewInner->takeName(Inner);
 | |
|       Inner->replaceAllUsesWith(NewInner);
 | |
|       Inner->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this call cannot unwind, don't convert it to an invoke.
 | |
|     if (CI->doesNotThrow())
 | |
|       continue;
 | |
|     
 | |
|     // Convert this function call into an invoke instruction.
 | |
|     // First, split the basic block.
 | |
|     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | |
| 
 | |
|     // Delete the unconditional branch inserted by splitBasicBlock
 | |
|     BB->getInstList().pop_back();
 | |
| 
 | |
|     // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
 | |
|     // directly to the new landing pad.
 | |
|     if (Invoke.forwardEHResume(CI, BB)) {
 | |
|       // TODO: 'Split' is now unreachable; clean it up.
 | |
| 
 | |
|       // We want to leave the original call intact so that the call
 | |
|       // graph and other structures won't get misled.  We also have to
 | |
|       // avoid processing the next block, or we'll iterate here forever.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, create the new invoke instruction.
 | |
|     ImmutableCallSite CS(CI);
 | |
|     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
 | |
|     InvokeInst *II =
 | |
|       InvokeInst::Create(CI->getCalledValue(), Split,
 | |
|                          Invoke.getOuterUnwindDest(),
 | |
|                          InvokeArgs, CI->getName(), BB);
 | |
|     II->setCallingConv(CI->getCallingConv());
 | |
|     II->setAttributes(CI->getAttributes());
 | |
|     
 | |
|     // Make sure that anything using the call now uses the invoke!  This also
 | |
|     // updates the CallGraph if present, because it uses a WeakVH.
 | |
|     CI->replaceAllUsesWith(II);
 | |
| 
 | |
|     Split->getInstList().pop_front();  // Delete the original call
 | |
| 
 | |
|     // Update any PHI nodes in the exceptional block to indicate that
 | |
|     // there is now a new entry in them.
 | |
|     Invoke.addIncomingPHIValuesFor(BB);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
|   
 | |
| 
 | |
| /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
 | |
| /// in the body of the inlined function into invokes and turn unwind
 | |
| /// instructions into branches to the invoke unwind dest.
 | |
| ///
 | |
| /// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | |
| /// block of the inlined code (the last block is the end of the function),
 | |
| /// and InlineCodeInfo is information about the code that got inlined.
 | |
| static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
 | |
|                                 ClonedCodeInfo &InlinedCodeInfo) {
 | |
|   BasicBlock *InvokeDest = II->getUnwindDest();
 | |
| 
 | |
|   Function *Caller = FirstNewBlock->getParent();
 | |
| 
 | |
|   // The inlined code is currently at the end of the function, scan from the
 | |
|   // start of the inlined code to its end, checking for stuff we need to
 | |
|   // rewrite.  If the code doesn't have calls or unwinds, we know there is
 | |
|   // nothing to rewrite.
 | |
|   if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
 | |
|     // Now that everything is happy, we have one final detail.  The PHI nodes in
 | |
|     // the exception destination block still have entries due to the original
 | |
|     // invoke instruction.  Eliminate these entries (which might even delete the
 | |
|     // PHI node) now.
 | |
|     InvokeDest->removePredecessor(II->getParent());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   InvokeInliningInfo Invoke(II);
 | |
|   
 | |
|   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
 | |
|     if (InlinedCodeInfo.ContainsCalls)
 | |
|       if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
 | |
|         // Honor a request to skip the next block.  We don't need to
 | |
|         // consider UnwindInsts in this case either.
 | |
|         ++BB;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | |
|       // An UnwindInst requires special handling when it gets inlined into an
 | |
|       // invoke site.  Once this happens, we know that the unwind would cause
 | |
|       // a control transfer to the invoke exception destination, so we can
 | |
|       // transform it into a direct branch to the exception destination.
 | |
|       BranchInst::Create(InvokeDest, UI);
 | |
| 
 | |
|       // Delete the unwind instruction!
 | |
|       UI->eraseFromParent();
 | |
| 
 | |
|       // Update any PHI nodes in the exceptional block to indicate that
 | |
|       // there is now a new entry in them.
 | |
|       Invoke.addIncomingPHIValuesFor(BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that everything is happy, we have one final detail.  The PHI nodes in
 | |
|   // the exception destination block still have entries due to the original
 | |
|   // invoke instruction.  Eliminate these entries (which might even delete the
 | |
|   // PHI node) now.
 | |
|   InvokeDest->removePredecessor(II->getParent());
 | |
| }
 | |
| 
 | |
| /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
 | |
| /// into the caller, update the specified callgraph to reflect the changes we
 | |
| /// made.  Note that it's possible that not all code was copied over, so only
 | |
| /// some edges of the callgraph may remain.
 | |
| static void UpdateCallGraphAfterInlining(CallSite CS,
 | |
|                                          Function::iterator FirstNewBlock,
 | |
|                                          ValueToValueMapTy &VMap,
 | |
|                                          InlineFunctionInfo &IFI) {
 | |
|   CallGraph &CG = *IFI.CG;
 | |
|   const Function *Caller = CS.getInstruction()->getParent()->getParent();
 | |
|   const Function *Callee = CS.getCalledFunction();
 | |
|   CallGraphNode *CalleeNode = CG[Callee];
 | |
|   CallGraphNode *CallerNode = CG[Caller];
 | |
| 
 | |
|   // Since we inlined some uninlined call sites in the callee into the caller,
 | |
|   // add edges from the caller to all of the callees of the callee.
 | |
|   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | |
| 
 | |
|   // Consider the case where CalleeNode == CallerNode.
 | |
|   CallGraphNode::CalledFunctionsVector CallCache;
 | |
|   if (CalleeNode == CallerNode) {
 | |
|     CallCache.assign(I, E);
 | |
|     I = CallCache.begin();
 | |
|     E = CallCache.end();
 | |
|   }
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     const Value *OrigCall = I->first;
 | |
| 
 | |
|     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
 | |
|     // Only copy the edge if the call was inlined!
 | |
|     if (VMI == VMap.end() || VMI->second == 0)
 | |
|       continue;
 | |
|     
 | |
|     // If the call was inlined, but then constant folded, there is no edge to
 | |
|     // add.  Check for this case.
 | |
|     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
 | |
|     if (NewCall == 0) continue;
 | |
| 
 | |
|     // Remember that this call site got inlined for the client of
 | |
|     // InlineFunction.
 | |
|     IFI.InlinedCalls.push_back(NewCall);
 | |
| 
 | |
|     // It's possible that inlining the callsite will cause it to go from an
 | |
|     // indirect to a direct call by resolving a function pointer.  If this
 | |
|     // happens, set the callee of the new call site to a more precise
 | |
|     // destination.  This can also happen if the call graph node of the caller
 | |
|     // was just unnecessarily imprecise.
 | |
|     if (I->second->getFunction() == 0)
 | |
|       if (Function *F = CallSite(NewCall).getCalledFunction()) {
 | |
|         // Indirect call site resolved to direct call.
 | |
|         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
 | |
|   }
 | |
|   
 | |
|   // Update the call graph by deleting the edge from Callee to Caller.  We must
 | |
|   // do this after the loop above in case Caller and Callee are the same.
 | |
|   CallerNode->removeCallEdgeFor(CS);
 | |
| }
 | |
| 
 | |
| /// HandleByValArgument - When inlining a call site that has a byval argument,
 | |
| /// we have to make the implicit memcpy explicit by adding it.
 | |
| static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
 | |
|                                   const Function *CalledFunc,
 | |
|                                   InlineFunctionInfo &IFI,
 | |
|                                   unsigned ByValAlignment) {
 | |
|   Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
 | |
| 
 | |
|   // If the called function is readonly, then it could not mutate the caller's
 | |
|   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
 | |
|   // temporary.
 | |
|   if (CalledFunc->onlyReadsMemory()) {
 | |
|     // If the byval argument has a specified alignment that is greater than the
 | |
|     // passed in pointer, then we either have to round up the input pointer or
 | |
|     // give up on this transformation.
 | |
|     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
 | |
|       return Arg;
 | |
| 
 | |
|     // If the pointer is already known to be sufficiently aligned, or if we can
 | |
|     // round it up to a larger alignment, then we don't need a temporary.
 | |
|     if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
 | |
|                                    IFI.TD) >= ByValAlignment)
 | |
|       return Arg;
 | |
|     
 | |
|     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
 | |
|     // for code quality, but rarely happens and is required for correctness.
 | |
|   }
 | |
|   
 | |
|   LLVMContext &Context = Arg->getContext();
 | |
| 
 | |
|   Type *VoidPtrTy = Type::getInt8PtrTy(Context);
 | |
|   
 | |
|   // Create the alloca.  If we have TargetData, use nice alignment.
 | |
|   unsigned Align = 1;
 | |
|   if (IFI.TD)
 | |
|     Align = IFI.TD->getPrefTypeAlignment(AggTy);
 | |
|   
 | |
|   // If the byval had an alignment specified, we *must* use at least that
 | |
|   // alignment, as it is required by the byval argument (and uses of the
 | |
|   // pointer inside the callee).
 | |
|   Align = std::max(Align, ByValAlignment);
 | |
|   
 | |
|   Function *Caller = TheCall->getParent()->getParent(); 
 | |
|   
 | |
|   Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 
 | |
|                                     &*Caller->begin()->begin());
 | |
|   // Emit a memcpy.
 | |
|   Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
 | |
|   Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
 | |
|                                                  Intrinsic::memcpy, 
 | |
|                                                  Tys);
 | |
|   Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
 | |
|   Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
 | |
|   
 | |
|   Value *Size;
 | |
|   if (IFI.TD == 0)
 | |
|     Size = ConstantExpr::getSizeOf(AggTy);
 | |
|   else
 | |
|     Size = ConstantInt::get(Type::getInt64Ty(Context),
 | |
|                             IFI.TD->getTypeStoreSize(AggTy));
 | |
|   
 | |
|   // Always generate a memcpy of alignment 1 here because we don't know
 | |
|   // the alignment of the src pointer.  Other optimizations can infer
 | |
|   // better alignment.
 | |
|   Value *CallArgs[] = {
 | |
|     DestCast, SrcCast, Size,
 | |
|     ConstantInt::get(Type::getInt32Ty(Context), 1),
 | |
|     ConstantInt::getFalse(Context) // isVolatile
 | |
|   };
 | |
|   IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
 | |
|   
 | |
|   // Uses of the argument in the function should use our new alloca
 | |
|   // instead.
 | |
|   return NewAlloca;
 | |
| }
 | |
| 
 | |
| // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
 | |
| // intrinsic.
 | |
| static bool isUsedByLifetimeMarker(Value *V) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
 | |
|        ++UI) {
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::lifetime_start:
 | |
|       case Intrinsic::lifetime_end:
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // hasLifetimeMarkers - Check whether the given alloca already has
 | |
| // lifetime.start or lifetime.end intrinsics.
 | |
| static bool hasLifetimeMarkers(AllocaInst *AI) {
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
 | |
|   if (AI->getType() == Int8PtrTy)
 | |
|     return isUsedByLifetimeMarker(AI);
 | |
| 
 | |
|   // Do a scan to find all the casts to i8*.
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
 | |
|        ++I) {
 | |
|     if (I->getType() != Int8PtrTy) continue;
 | |
|     if (I->stripPointerCasts() != AI) continue;
 | |
|     if (isUsedByLifetimeMarker(*I))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
 | |
| /// update InlinedAtEntry of a DebugLoc.
 | |
| static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
 | |
|                                     const DebugLoc &InlinedAtDL,
 | |
|                                     LLVMContext &Ctx) {
 | |
|   if (MDNode *IA = DL.getInlinedAt(Ctx)) {
 | |
|     DebugLoc NewInlinedAtDL 
 | |
|       = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
 | |
|     return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | |
|                          NewInlinedAtDL.getAsMDNode(Ctx));
 | |
|   }
 | |
|                                              
 | |
|   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | |
|                        InlinedAtDL.getAsMDNode(Ctx));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// fixupLineNumbers - Update inlined instructions' line numbers to 
 | |
| /// to encode location where these instructions are inlined.
 | |
| static void fixupLineNumbers(Function *Fn, Function::iterator FI,
 | |
|                               Instruction *TheCall) {
 | |
|   DebugLoc TheCallDL = TheCall->getDebugLoc();
 | |
|   if (TheCallDL.isUnknown())
 | |
|     return;
 | |
| 
 | |
|   for (; FI != Fn->end(); ++FI) {
 | |
|     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
 | |
|          BI != BE; ++BI) {
 | |
|       DebugLoc DL = BI->getDebugLoc();
 | |
|       if (!DL.isUnknown()) {
 | |
|         BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
 | |
|         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
 | |
|           LLVMContext &Ctx = BI->getContext();
 | |
|           MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
 | |
|           DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 
 | |
|                                                    InlinedAt, Ctx));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InlineFunction - This function inlines the called function into the basic
 | |
| // block of the caller.  This returns false if it is not possible to inline this
 | |
| // call.  The program is still in a well defined state if this occurs though.
 | |
| //
 | |
| // Note that this only does one level of inlining.  For example, if the
 | |
| // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | |
| // exists in the instruction stream.  Similarly this will inline a recursive
 | |
| // function by one level.
 | |
| //
 | |
| bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   LLVMContext &Context = TheCall->getContext();
 | |
|   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | |
|          "Instruction not in function!");
 | |
| 
 | |
|   // If IFI has any state in it, zap it before we fill it in.
 | |
|   IFI.reset();
 | |
|   
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | |
|       CalledFunc->isDeclaration() || // call, or call to a vararg function!
 | |
|       CalledFunc->getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
|   // If the call to the callee is not a tail call, we must clear the 'tail'
 | |
|   // flags on any calls that we inline.
 | |
|   bool MustClearTailCallFlags =
 | |
|     !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
 | |
| 
 | |
|   // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | |
|   // calls that we inline.
 | |
|   bool MarkNoUnwind = CS.doesNotThrow();
 | |
| 
 | |
|   BasicBlock *OrigBB = TheCall->getParent();
 | |
|   Function *Caller = OrigBB->getParent();
 | |
| 
 | |
|   // GC poses two hazards to inlining, which only occur when the callee has GC:
 | |
|   //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | |
|   //     caller.
 | |
|   //  2. If the caller has a differing GC, it is invalid to inline.
 | |
|   if (CalledFunc->hasGC()) {
 | |
|     if (!Caller->hasGC())
 | |
|       Caller->setGC(CalledFunc->getGC());
 | |
|     else if (CalledFunc->getGC() != Caller->getGC())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Get an iterator to the last basic block in the function, which will have
 | |
|   // the new function inlined after it.
 | |
|   //
 | |
|   Function::iterator LastBlock = &Caller->back();
 | |
| 
 | |
|   // Make sure to capture all of the return instructions from the cloned
 | |
|   // function.
 | |
|   SmallVector<ReturnInst*, 8> Returns;
 | |
|   ClonedCodeInfo InlinedFunctionInfo;
 | |
|   Function::iterator FirstNewBlock;
 | |
| 
 | |
|   { // Scope to destroy VMap after cloning.
 | |
|     ValueToValueMapTy VMap;
 | |
| 
 | |
|     assert(CalledFunc->arg_size() == CS.arg_size() &&
 | |
|            "No varargs calls can be inlined!");
 | |
| 
 | |
|     // Calculate the vector of arguments to pass into the function cloner, which
 | |
|     // matches up the formal to the actual argument values.
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     unsigned ArgNo = 0;
 | |
|     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | |
|          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | |
|       Value *ActualArg = *AI;
 | |
| 
 | |
|       // When byval arguments actually inlined, we need to make the copy implied
 | |
|       // by them explicit.  However, we don't do this if the callee is readonly
 | |
|       // or readnone, because the copy would be unneeded: the callee doesn't
 | |
|       // modify the struct.
 | |
|       if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
 | |
|         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
 | |
|                                         CalledFunc->getParamAlignment(ArgNo+1));
 | |
|  
 | |
|         // Calls that we inline may use the new alloca, so we need to clear
 | |
|         // their 'tail' flags if HandleByValArgument introduced a new alloca and
 | |
|         // the callee has calls.
 | |
|         MustClearTailCallFlags |= ActualArg != *AI;
 | |
|       }
 | |
| 
 | |
|       VMap[I] = ActualArg;
 | |
|     }
 | |
| 
 | |
|     // We want the inliner to prune the code as it copies.  We would LOVE to
 | |
|     // have no dead or constant instructions leftover after inlining occurs
 | |
|     // (which can happen, e.g., because an argument was constant), but we'll be
 | |
|     // happy with whatever the cloner can do.
 | |
|     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
 | |
|                               /*ModuleLevelChanges=*/false, Returns, ".i",
 | |
|                               &InlinedFunctionInfo, IFI.TD, TheCall);
 | |
| 
 | |
|     // Remember the first block that is newly cloned over.
 | |
|     FirstNewBlock = LastBlock; ++FirstNewBlock;
 | |
| 
 | |
|     // Update the callgraph if requested.
 | |
|     if (IFI.CG)
 | |
|       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
 | |
| 
 | |
|     // Update inlined instructions' line number information.
 | |
|     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
 | |
|   }
 | |
| 
 | |
|   // If there are any alloca instructions in the block that used to be the entry
 | |
|   // block for the callee, move them to the entry block of the caller.  First
 | |
|   // calculate which instruction they should be inserted before.  We insert the
 | |
|   // instructions at the end of the current alloca list.
 | |
|   //
 | |
|   {
 | |
|     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | |
|     for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | |
|          E = FirstNewBlock->end(); I != E; ) {
 | |
|       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | |
|       if (AI == 0) continue;
 | |
|       
 | |
|       // If the alloca is now dead, remove it.  This often occurs due to code
 | |
|       // specialization.
 | |
|       if (AI->use_empty()) {
 | |
|         AI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!isa<Constant>(AI->getArraySize()))
 | |
|         continue;
 | |
|       
 | |
|       // Keep track of the static allocas that we inline into the caller.
 | |
|       IFI.StaticAllocas.push_back(AI);
 | |
|       
 | |
|       // Scan for the block of allocas that we can move over, and move them
 | |
|       // all at once.
 | |
|       while (isa<AllocaInst>(I) &&
 | |
|              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
 | |
|         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
 | |
|         ++I;
 | |
|       }
 | |
| 
 | |
|       // Transfer all of the allocas over in a block.  Using splice means
 | |
|       // that the instructions aren't removed from the symbol table, then
 | |
|       // reinserted.
 | |
|       Caller->getEntryBlock().getInstList().splice(InsertPoint,
 | |
|                                                    FirstNewBlock->getInstList(),
 | |
|                                                    AI, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Leave lifetime markers for the static alloca's, scoping them to the
 | |
|   // function we just inlined.
 | |
|   if (!IFI.StaticAllocas.empty()) {
 | |
|     IRBuilder<> builder(FirstNewBlock->begin());
 | |
|     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
 | |
|       AllocaInst *AI = IFI.StaticAllocas[ai];
 | |
| 
 | |
|       // If the alloca is already scoped to something smaller than the whole
 | |
|       // function then there's no need to add redundant, less accurate markers.
 | |
|       if (hasLifetimeMarkers(AI))
 | |
|         continue;
 | |
| 
 | |
|       builder.CreateLifetimeStart(AI);
 | |
|       for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
 | |
|         IRBuilder<> builder(Returns[ri]);
 | |
|         builder.CreateLifetimeEnd(AI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | |
|   // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | |
|   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | |
|     Module *M = Caller->getParent();
 | |
|     // Get the two intrinsics we care about.
 | |
|     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | |
|     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | |
| 
 | |
|     // Insert the llvm.stacksave.
 | |
|     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
 | |
|       .CreateCall(StackSave, "savedstack");
 | |
| 
 | |
|     // Insert a call to llvm.stackrestore before any return instructions in the
 | |
|     // inlined function.
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
 | |
|     }
 | |
| 
 | |
|     // Count the number of StackRestore calls we insert.
 | |
|     unsigned NumStackRestores = Returns.size();
 | |
| 
 | |
|     // If we are inlining an invoke instruction, insert restores before each
 | |
|     // unwind.  These unwinds will be rewritten into branches later.
 | |
|     if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
 | |
|       for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|            BB != E; ++BB)
 | |
|         if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | |
|           IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
 | |
|           ++NumStackRestores;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining tail call instruction through a call site that isn't
 | |
|   // marked 'tail', we must remove the tail marker for any calls in the inlined
 | |
|   // code.  Also, calls inlined through a 'nounwind' call site should be marked
 | |
|   // 'nounwind'.
 | |
|   if (InlinedFunctionInfo.ContainsCalls &&
 | |
|       (MustClearTailCallFlags || MarkNoUnwind)) {
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|          BB != E; ++BB)
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|           if (MustClearTailCallFlags)
 | |
|             CI->setTailCall(false);
 | |
|           if (MarkNoUnwind)
 | |
|             CI->setDoesNotThrow();
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
 | |
|   // instructions are unreachable.
 | |
|   if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|          BB != E; ++BB) {
 | |
|       TerminatorInst *Term = BB->getTerminator();
 | |
|       if (isa<UnwindInst>(Term)) {
 | |
|         new UnreachableInst(Context, Term);
 | |
|         BB->getInstList().erase(Term);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If we are inlining for an invoke instruction, we must make sure to rewrite
 | |
|   // any inlined 'unwind' instructions into branches to the invoke exception
 | |
|   // destination, and call instructions into invoke instructions.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | |
|     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
 | |
| 
 | |
|   // If we cloned in _exactly one_ basic block, and if that block ends in a
 | |
|   // return instruction, we splice the body of the inlined callee directly into
 | |
|   // the calling basic block.
 | |
|   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | |
|     // Move all of the instructions right before the call.
 | |
|     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | |
|                                  FirstNewBlock->begin(), FirstNewBlock->end());
 | |
|     // Remove the cloned basic block.
 | |
|     Caller->getBasicBlockList().pop_back();
 | |
| 
 | |
|     // If the call site was an invoke instruction, add a branch to the normal
 | |
|     // destination.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | |
|       BranchInst::Create(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // If the return instruction returned a value, replace uses of the call with
 | |
|     // uses of the returned value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       ReturnInst *R = Returns[0];
 | |
|       if (TheCall == R->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(R->getReturnValue());
 | |
|     }
 | |
|     // Since we are now done with the Call/Invoke, we can delete it.
 | |
|     TheCall->eraseFromParent();
 | |
| 
 | |
|     // Since we are now done with the return instruction, delete it also.
 | |
|     Returns[0]->eraseFromParent();
 | |
| 
 | |
|     // We are now done with the inlining.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have the normal case, of more than one block to inline or
 | |
|   // multiple return sites.
 | |
| 
 | |
|   // We want to clone the entire callee function into the hole between the
 | |
|   // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | |
|   // this is an invoke instruction or a call instruction.
 | |
|   BasicBlock *AfterCallBB;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
| 
 | |
|     // Add an unconditional branch to make this look like the CallInst case...
 | |
|     BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // Split the basic block.  This guarantees that no PHI nodes will have to be
 | |
|     // updated due to new incoming edges, and make the invoke case more
 | |
|     // symmetric to the call case.
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(NewBr,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
| 
 | |
|   } else {  // It's a call
 | |
|     // If this is a call instruction, we need to split the basic block that
 | |
|     // the call lives in.
 | |
|     //
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
|   }
 | |
| 
 | |
|   // Change the branch that used to go to AfterCallBB to branch to the first
 | |
|   // basic block of the inlined function.
 | |
|   //
 | |
|   TerminatorInst *Br = OrigBB->getTerminator();
 | |
|   assert(Br && Br->getOpcode() == Instruction::Br &&
 | |
|          "splitBasicBlock broken!");
 | |
|   Br->setOperand(0, FirstNewBlock);
 | |
| 
 | |
| 
 | |
|   // Now that the function is correct, make it a little bit nicer.  In
 | |
|   // particular, move the basic blocks inserted from the end of the function
 | |
|   // into the space made by splitting the source basic block.
 | |
|   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | |
|                                      FirstNewBlock, Caller->end());
 | |
| 
 | |
|   // Handle all of the return instructions that we just cloned in, and eliminate
 | |
|   // any users of the original call/invoke instruction.
 | |
|   Type *RTy = CalledFunc->getReturnType();
 | |
| 
 | |
|   PHINode *PHI = 0;
 | |
|   if (Returns.size() > 1) {
 | |
|     // The PHI node should go at the front of the new basic block to merge all
 | |
|     // possible incoming values.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
 | |
|                             AfterCallBB->begin());
 | |
|       // Anything that used the result of the function call should now use the
 | |
|       // PHI node as their operand.
 | |
|       TheCall->replaceAllUsesWith(PHI);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the return instructions adding entries to the PHI node
 | |
|     // as appropriate.
 | |
|     if (PHI) {
 | |
|       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|         ReturnInst *RI = Returns[i];
 | |
|         assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | |
|                "Ret value not consistent in function!");
 | |
|         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Add a branch to the merge points and remove return instructions.
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       ReturnInst *RI = Returns[i];
 | |
|       BranchInst::Create(AfterCallBB, RI);
 | |
|       RI->eraseFromParent();
 | |
|     }
 | |
|   } else if (!Returns.empty()) {
 | |
|     // Otherwise, if there is exactly one return value, just replace anything
 | |
|     // using the return value of the call with the computed value.
 | |
|     if (!TheCall->use_empty()) {
 | |
|       if (TheCall == Returns[0]->getReturnValue())
 | |
|         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|       else
 | |
|         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | |
|     }
 | |
| 
 | |
|     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | |
|     BasicBlock *ReturnBB = Returns[0]->getParent();
 | |
|     ReturnBB->replaceAllUsesWith(AfterCallBB);
 | |
| 
 | |
|     // Splice the code from the return block into the block that it will return
 | |
|     // to, which contains the code that was after the call.
 | |
|     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | |
|                                       ReturnBB->getInstList());
 | |
| 
 | |
|     // Delete the return instruction now and empty ReturnBB now.
 | |
|     Returns[0]->eraseFromParent();
 | |
|     ReturnBB->eraseFromParent();
 | |
|   } else if (!TheCall->use_empty()) {
 | |
|     // No returns, but something is using the return value of the call.  Just
 | |
|     // nuke the result.
 | |
|     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|   }
 | |
| 
 | |
|   // Since we are now done with the Call/Invoke, we can delete it.
 | |
|   TheCall->eraseFromParent();
 | |
| 
 | |
|   // We should always be able to fold the entry block of the function into the
 | |
|   // single predecessor of the block...
 | |
|   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | |
|   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | |
| 
 | |
|   // Splice the code entry block into calling block, right before the
 | |
|   // unconditional branch.
 | |
|   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | |
|   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | |
| 
 | |
|   // Remove the unconditional branch.
 | |
|   OrigBB->getInstList().erase(Br);
 | |
| 
 | |
|   // Now we can remove the CalleeEntry block, which is now empty.
 | |
|   Caller->getBasicBlockList().erase(CalleeEntry);
 | |
| 
 | |
|   // If we inserted a phi node, check to see if it has a single value (e.g. all
 | |
|   // the entries are the same or undef).  If so, remove the PHI so it doesn't
 | |
|   // block other optimizations.
 | |
|   if (PHI)
 | |
|     if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
 | |
|       PHI->replaceAllUsesWith(V);
 | |
|       PHI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 |