forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			426 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities. It does not define any
 | |
| // actual pass or policy, but provides a single function to perform loop
 | |
| // unrolling.
 | |
| //
 | |
| // The process of unrolling can produce extraneous basic blocks linked with
 | |
| // unconditional branches.  This will be corrected in the future.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // TODO: Should these be here or in LoopUnroll?
 | |
| STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | |
| STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
 | |
| 
 | |
| /// RemapInstruction - Convert the instruction operands from referencing the
 | |
| /// current values into those specified by VMap.
 | |
| static inline void RemapInstruction(Instruction *I,
 | |
|                                     ValueToValueMapTy &VMap) {
 | |
|   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | |
|     Value *Op = I->getOperand(op);
 | |
|     ValueToValueMapTy::iterator It = VMap.find(Op);
 | |
|     if (It != VMap.end())
 | |
|       I->setOperand(op, It->second);
 | |
|   }
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
 | |
|       if (It != VMap.end())
 | |
|         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
 | |
| /// only has one predecessor, and that predecessor only has one successor.
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| /// Returns the new combined block.
 | |
| static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
 | |
|                                             LPPassManager *LPM) {
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | |
|   if (!OnlyPred) return 0;
 | |
| 
 | |
|   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
 | |
| 
 | |
|   // Resolve any PHI nodes at the start of the block.  They are all
 | |
|   // guaranteed to have exactly one entry if they exist, unless there are
 | |
|   // multiple duplicate (but guaranteed to be equal) entries for the
 | |
|   // incoming edges.  This occurs when there are multiple edges from
 | |
|   // OnlyPred to OnlySucc.
 | |
|   FoldSingleEntryPHINodes(BB);
 | |
| 
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   OnlyPred->getInstList().pop_back();
 | |
| 
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(OnlyPred);
 | |
| 
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | |
| 
 | |
|   std::string OldName = BB->getName();
 | |
| 
 | |
|   // Erase basic block from the function...
 | |
| 
 | |
|   // ScalarEvolution holds references to loop exit blocks.
 | |
|   if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
 | |
|     if (Loop *L = LI->getLoopFor(BB))
 | |
|       SE->forgetLoop(L);
 | |
|   }
 | |
|   LI->removeBlock(BB);
 | |
|   BB->eraseFromParent();
 | |
| 
 | |
|   // Inherit predecessor's name if it exists...
 | |
|   if (!OldName.empty() && !OnlyPred->hasName())
 | |
|     OnlyPred->setName(OldName);
 | |
| 
 | |
|   return OnlyPred;
 | |
| }
 | |
| 
 | |
| /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
 | |
| /// if unrolling was successful, or false if the loop was unmodified. Unrolling
 | |
| /// can only fail when the loop's latch block is not terminated by a conditional
 | |
| /// branch instruction. However, if the trip count (and multiple) are not known,
 | |
| /// loop unrolling will mostly produce more code that is no faster.
 | |
| ///
 | |
| /// TripCount is generally defined as the number of times the loop header
 | |
| /// executes. UnrollLoop relaxes the definition to permit early exits: here
 | |
| /// TripCount is the iteration on which control exits LatchBlock if no early
 | |
| /// exits were taken. Note that UnrollLoop assumes that the loop counter test
 | |
| /// terminates LatchBlock in order to remove unnecesssary instances of the
 | |
| /// test. In other words, control may exit the loop prior to TripCount
 | |
| /// iterations via an early branch, but control may not exit the loop from the
 | |
| /// LatchBlock's terminator prior to TripCount iterations.
 | |
| ///
 | |
| /// Similarly, TripMultiple divides the number of times that the LatchBlock may
 | |
| /// execute without exiting the loop.
 | |
| ///
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| ///
 | |
| /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
 | |
| /// removed from the LoopPassManager as well. LPM can also be NULL.
 | |
| ///
 | |
| /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
 | |
| /// available it must also preserve those analyses.
 | |
| bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
 | |
|                       unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) {
 | |
|     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (!LatchBlock) {
 | |
|     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | |
| 
 | |
|   if (!BI || BI->isUnconditional()) {
 | |
|     // The loop-rotate pass can be helpful to avoid this in many cases.
 | |
|     DEBUG(dbgs() <<
 | |
|              "  Can't unroll; loop not terminated by a conditional branch.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Header->hasAddressTaken()) {
 | |
|     // The loop-rotate pass can be helpful to avoid this in many cases.
 | |
|     DEBUG(dbgs() <<
 | |
|           "  Won't unroll loop: address of header block is taken.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Notify ScalarEvolution that the loop will be substantially changed,
 | |
|   // if not outright eliminated.
 | |
|   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
 | |
|   if (SE)
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   if (TripCount != 0)
 | |
|     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
 | |
|   if (TripMultiple != 1)
 | |
|     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
 | |
| 
 | |
|   // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | |
|   // and will never be executed.
 | |
|   if (TripCount != 0 && Count > TripCount)
 | |
|     Count = TripCount;
 | |
| 
 | |
|   assert(Count > 0);
 | |
|   assert(TripMultiple > 0);
 | |
|   assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | |
| 
 | |
|   // Are we eliminating the loop control altogether?
 | |
|   bool CompletelyUnroll = Count == TripCount;
 | |
| 
 | |
|   // If we know the trip count, we know the multiple...
 | |
|   unsigned BreakoutTrip = 0;
 | |
|   if (TripCount != 0) {
 | |
|     BreakoutTrip = TripCount % Count;
 | |
|     TripMultiple = 0;
 | |
|   } else {
 | |
|     // Figure out what multiple to use.
 | |
|     BreakoutTrip = TripMultiple =
 | |
|       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | |
|   }
 | |
| 
 | |
|   if (CompletelyUnroll) {
 | |
|     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
 | |
|           << " with trip count " << TripCount << "!\n");
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
 | |
|           << " by " << Count);
 | |
|     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | |
|       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
 | |
|     } else if (TripMultiple != 1) {
 | |
|       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
 | |
|     }
 | |
|     DEBUG(dbgs() << "!\n");
 | |
|   }
 | |
| 
 | |
|   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
 | |
| 
 | |
|   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | |
|   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | |
| 
 | |
|   // For the first iteration of the loop, we should use the precloned values for
 | |
|   // PHI nodes.  Insert associations now.
 | |
|   ValueToValueMapTy LastValueMap;
 | |
|   std::vector<PHINode*> OrigPHINode;
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     OrigPHINode.push_back(cast<PHINode>(I));
 | |
|   }
 | |
| 
 | |
|   std::vector<BasicBlock*> Headers;
 | |
|   std::vector<BasicBlock*> Latches;
 | |
|   Headers.push_back(Header);
 | |
|   Latches.push_back(LatchBlock);
 | |
| 
 | |
|   // The current on-the-fly SSA update requires blocks to be processed in
 | |
|   // reverse postorder so that LastValueMap contains the correct value at each
 | |
|   // exit.
 | |
|   LoopBlocksDFS DFS(L);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   // Stash the DFS iterators before adding blocks to the loop.
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; ++It) {
 | |
|     std::vector<BasicBlock*> NewBlocks;
 | |
| 
 | |
|     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|       ValueToValueMapTy VMap;
 | |
|       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | |
|       Header->getParent()->getBasicBlockList().push_back(New);
 | |
| 
 | |
|       // Loop over all of the PHI nodes in the block, changing them to use the
 | |
|       // incoming values from the previous block.
 | |
|       if (*BB == Header)
 | |
|         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | |
|           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
 | |
|           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | |
|           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | |
|             if (It > 1 && L->contains(InValI))
 | |
|               InVal = LastValueMap[InValI];
 | |
|           VMap[OrigPHINode[i]] = InVal;
 | |
|           New->getInstList().erase(NewPHI);
 | |
|         }
 | |
| 
 | |
|       // Update our running map of newest clones
 | |
|       LastValueMap[*BB] = New;
 | |
|       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | |
|            VI != VE; ++VI)
 | |
|         LastValueMap[VI->first] = VI->second;
 | |
| 
 | |
|       L->addBasicBlockToLoop(New, LI->getBase());
 | |
| 
 | |
|       // Add phi entries for newly created values to all exit blocks.
 | |
|       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
 | |
|            SI != SE; ++SI) {
 | |
|         if (L->contains(*SI))
 | |
|           continue;
 | |
|         for (BasicBlock::iterator BBI = (*SI)->begin();
 | |
|              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | |
|           Value *Incoming = phi->getIncomingValueForBlock(*BB);
 | |
|           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
 | |
|           if (It != LastValueMap.end())
 | |
|             Incoming = It->second;
 | |
|           phi->addIncoming(Incoming, New);
 | |
|         }
 | |
|       }
 | |
|       // Keep track of new headers and latches as we create them, so that
 | |
|       // we can insert the proper branches later.
 | |
|       if (*BB == Header)
 | |
|         Headers.push_back(New);
 | |
|       if (*BB == LatchBlock)
 | |
|         Latches.push_back(New);
 | |
| 
 | |
|       NewBlocks.push_back(New);
 | |
|     }
 | |
| 
 | |
|     // Remap all instructions in the most recent iteration
 | |
|     for (unsigned i = 0; i < NewBlocks.size(); ++i)
 | |
|       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | |
|            E = NewBlocks[i]->end(); I != E; ++I)
 | |
|         ::RemapInstruction(I, LastValueMap);
 | |
|   }
 | |
| 
 | |
|   // Loop over the PHI nodes in the original block, setting incoming values.
 | |
|   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | |
|     PHINode *PN = OrigPHINode[i];
 | |
|     if (CompletelyUnroll) {
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | |
|       Header->getInstList().erase(PN);
 | |
|     }
 | |
|     else if (Count > 1) {
 | |
|       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | |
|       // If this value was defined in the loop, take the value defined by the
 | |
|       // last iteration of the loop.
 | |
|       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | |
|         if (L->contains(InValI))
 | |
|           InVal = LastValueMap[InVal];
 | |
|       }
 | |
|       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
 | |
|       PN->addIncoming(InVal, Latches.back());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all the basic blocks for the unrolled iterations are in place,
 | |
|   // set up the branches to connect them.
 | |
|   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | |
|     // The original branch was replicated in each unrolled iteration.
 | |
|     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | |
| 
 | |
|     // The branch destination.
 | |
|     unsigned j = (i + 1) % e;
 | |
|     BasicBlock *Dest = Headers[j];
 | |
|     bool NeedConditional = true;
 | |
| 
 | |
|     // For a complete unroll, make the last iteration end with a branch
 | |
|     // to the exit block.
 | |
|     if (CompletelyUnroll && j == 0) {
 | |
|       Dest = LoopExit;
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     // If we know the trip count or a multiple of it, we can safely use an
 | |
|     // unconditional branch for some iterations.
 | |
|     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     if (NeedConditional) {
 | |
|       // Update the conditional branch's successor for the following
 | |
|       // iteration.
 | |
|       Term->setSuccessor(!ContinueOnTrue, Dest);
 | |
|     } else {
 | |
|       // Remove phi operands at this loop exit
 | |
|       if (Dest != LoopExit) {
 | |
|         BasicBlock *BB = Latches[i];
 | |
|         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|              SI != SE; ++SI) {
 | |
|           if (*SI == Headers[i])
 | |
|             continue;
 | |
|           for (BasicBlock::iterator BBI = (*SI)->begin();
 | |
|                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | |
|             Phi->removeIncomingValue(BB, false);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       BranchInst::Create(Dest, Term);
 | |
|       Term->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge adjacent basic blocks, if possible.
 | |
|   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | |
|     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | |
|     if (Term->isUnconditional()) {
 | |
|       BasicBlock *Dest = Term->getSuccessor(0);
 | |
|       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
 | |
|         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Reconstruct dom info, because it is not preserved properly.
 | |
|   // Incrementally updating domtree after loop unrolling would be easy.
 | |
|   if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
 | |
|     DT->runOnFunction(*L->getHeader()->getParent());
 | |
| 
 | |
|   // Simplify any new induction variables in the partially unrolled loop.
 | |
|   if (SE && !CompletelyUnroll) {
 | |
|     SmallVector<WeakVH, 16> DeadInsts;
 | |
|     simplifyLoopIVs(L, SE, LPM, DeadInsts);
 | |
| 
 | |
|     // Aggressively clean up dead instructions that simplifyLoopIVs already
 | |
|     // identified. Any remaining should be cleaned up below.
 | |
|     while (!DeadInsts.empty())
 | |
|       if (Instruction *Inst =
 | |
|           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
|   }
 | |
| 
 | |
|   // At this point, the code is well formed.  We now do a quick sweep over the
 | |
|   // inserted code, doing constant propagation and dead code elimination as we
 | |
|   // go.
 | |
|   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
 | |
|   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
 | |
|        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
 | |
|     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
 | |
|       Instruction *Inst = I++;
 | |
| 
 | |
|       if (isInstructionTriviallyDead(Inst))
 | |
|         (*BB)->getInstList().erase(Inst);
 | |
|       else if (Value *V = SimplifyInstruction(Inst))
 | |
|         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
 | |
|           Inst->replaceAllUsesWith(V);
 | |
|           (*BB)->getInstList().erase(Inst);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   NumCompletelyUnrolled += CompletelyUnroll;
 | |
|   ++NumUnrolled;
 | |
|   // Remove the loop from the LoopPassManager if it's completely removed.
 | |
|   if (CompletelyUnroll && LPM != NULL)
 | |
|     LPM->deleteLoopFromQueue(L);
 | |
| 
 | |
|   return true;
 | |
| }
 |