forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			349 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the ValueEnumerator class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ValueEnumerator.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Metadata.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/TypeSymbolTable.h"
 | 
						|
#include "llvm/ValueSymbolTable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static bool isSingleValueType(const std::pair<const llvm::Type*,
 | 
						|
                              unsigned int> &P) {
 | 
						|
  return P.first->isSingleValueType();
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
 | 
						|
  return isa<IntegerType>(V.first->getType());
 | 
						|
}
 | 
						|
 | 
						|
static bool CompareByFrequency(const std::pair<const llvm::Type*,
 | 
						|
                               unsigned int> &P1,
 | 
						|
                               const std::pair<const llvm::Type*,
 | 
						|
                               unsigned int> &P2) {
 | 
						|
  return P1.second > P2.second;
 | 
						|
}
 | 
						|
 | 
						|
/// ValueEnumerator - Enumerate module-level information.
 | 
						|
ValueEnumerator::ValueEnumerator(const Module *M) {
 | 
						|
  // Enumerate the global variables.
 | 
						|
  for (Module::const_global_iterator I = M->global_begin(),
 | 
						|
         E = M->global_end(); I != E; ++I)
 | 
						|
    EnumerateValue(I);
 | 
						|
 | 
						|
  // Enumerate the functions.
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
 | 
						|
    EnumerateValue(I);
 | 
						|
    EnumerateAttributes(cast<Function>(I)->getAttributes());
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate the aliases.
 | 
						|
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    EnumerateValue(I);
 | 
						|
  
 | 
						|
  // Remember what is the cutoff between globalvalue's and other constants.
 | 
						|
  unsigned FirstConstant = Values.size();
 | 
						|
  
 | 
						|
  // Enumerate the global variable initializers.
 | 
						|
  for (Module::const_global_iterator I = M->global_begin(),
 | 
						|
         E = M->global_end(); I != E; ++I)
 | 
						|
    if (I->hasInitializer())
 | 
						|
      EnumerateValue(I->getInitializer());
 | 
						|
 | 
						|
  // Enumerate the aliasees.
 | 
						|
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    EnumerateValue(I->getAliasee());
 | 
						|
  
 | 
						|
  // Enumerate types used by the type symbol table.
 | 
						|
  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
 | 
						|
 | 
						|
  // Insert constants that are named at module level into the slot pool so that
 | 
						|
  // the module symbol table can refer to them...
 | 
						|
  EnumerateValueSymbolTable(M->getValueSymbolTable());
 | 
						|
  
 | 
						|
  // Enumerate types used by function bodies and argument lists.
 | 
						|
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
 | 
						|
    
 | 
						|
    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I)
 | 
						|
      EnumerateType(I->getType());
 | 
						|
    
 | 
						|
    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
 | 
						|
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
 | 
						|
             OI != E; ++OI)
 | 
						|
          EnumerateOperandType(*OI);
 | 
						|
        EnumerateType(I->getType());
 | 
						|
        if (const CallInst *CI = dyn_cast<CallInst>(I))
 | 
						|
          EnumerateAttributes(CI->getAttributes());
 | 
						|
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
 | 
						|
          EnumerateAttributes(II->getAttributes());
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Optimize constant ordering.
 | 
						|
  OptimizeConstants(FirstConstant, Values.size());
 | 
						|
    
 | 
						|
  // Sort the type table by frequency so that most commonly used types are early
 | 
						|
  // in the table (have low bit-width).
 | 
						|
  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
 | 
						|
    
 | 
						|
  // Partition the Type ID's so that the single-value types occur before the
 | 
						|
  // aggregate types.  This allows the aggregate types to be dropped from the
 | 
						|
  // type table after parsing the global variable initializers.
 | 
						|
  std::partition(Types.begin(), Types.end(), isSingleValueType);
 | 
						|
 | 
						|
  // Now that we rearranged the type table, rebuild TypeMap.
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | 
						|
    TypeMap[Types[i].first] = i+1;
 | 
						|
}
 | 
						|
 | 
						|
// Optimize constant ordering.
 | 
						|
namespace {
 | 
						|
  struct CstSortPredicate {
 | 
						|
    ValueEnumerator &VE;
 | 
						|
    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
 | 
						|
    bool operator()(const std::pair<const Value*, unsigned> &LHS,
 | 
						|
                    const std::pair<const Value*, unsigned> &RHS) {
 | 
						|
      // Sort by plane.
 | 
						|
      if (LHS.first->getType() != RHS.first->getType())
 | 
						|
        return VE.getTypeID(LHS.first->getType()) < 
 | 
						|
               VE.getTypeID(RHS.first->getType());
 | 
						|
      // Then by frequency.
 | 
						|
      return LHS.second > RHS.second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeConstants - Reorder constant pool for denser encoding.
 | 
						|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
 | 
						|
  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
 | 
						|
  
 | 
						|
  CstSortPredicate P(*this);
 | 
						|
  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
 | 
						|
  
 | 
						|
  // Ensure that integer constants are at the start of the constant pool.  This
 | 
						|
  // is important so that GEP structure indices come before gep constant exprs.
 | 
						|
  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
 | 
						|
                 isIntegerValue);
 | 
						|
  
 | 
						|
  // Rebuild the modified portion of ValueMap.
 | 
						|
  for (; CstStart != CstEnd; ++CstStart)
 | 
						|
    ValueMap[Values[CstStart].first] = CstStart+1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
 | 
						|
/// table.
 | 
						|
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
 | 
						|
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
 | 
						|
       TI != TE; ++TI)
 | 
						|
    EnumerateType(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
 | 
						|
/// table into the values table.
 | 
						|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
 | 
						|
  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 
 | 
						|
       VI != VE; ++VI)
 | 
						|
    EnumerateValue(VI->getValue());
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateValue(const Value *V) {
 | 
						|
  assert(V->getType() != Type::VoidTy && "Can't insert void values!");
 | 
						|
  
 | 
						|
  // Check to see if it's already in!
 | 
						|
  unsigned &ValueID = ValueMap[V];
 | 
						|
  if (ValueID) {
 | 
						|
    // Increment use count.
 | 
						|
    Values[ValueID-1].second++;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate the type of this value.
 | 
						|
  EnumerateType(V->getType());
 | 
						|
  
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isa<GlobalValue>(C)) {
 | 
						|
      // Initializers for globals are handled explicitly elsewhere.
 | 
						|
    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
 | 
						|
      // Do not enumerate the initializers for an array of simple characters.
 | 
						|
      // The initializers just polute the value table, and we emit the strings
 | 
						|
      // specially.
 | 
						|
    } else if (C->getNumOperands()) {
 | 
						|
      // If a constant has operands, enumerate them.  This makes sure that if a
 | 
						|
      // constant has uses (for example an array of const ints), that they are
 | 
						|
      // inserted also.
 | 
						|
      
 | 
						|
      // We prefer to enumerate them with values before we enumerate the user
 | 
						|
      // itself.  This makes it more likely that we can avoid forward references
 | 
						|
      // in the reader.  We know that there can be no cycles in the constants
 | 
						|
      // graph that don't go through a global variable.
 | 
						|
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | 
						|
           I != E; ++I)
 | 
						|
        EnumerateValue(*I);
 | 
						|
      
 | 
						|
      // Finally, add the value.  Doing this could make the ValueID reference be
 | 
						|
      // dangling, don't reuse it.
 | 
						|
      Values.push_back(std::make_pair(V, 1U));
 | 
						|
      ValueMap[V] = Values.size();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const MDNode *N = dyn_cast<MDNode>(V)) {
 | 
						|
    Values.push_back(std::make_pair(V, 1U));
 | 
						|
    ValueMap[V] = Values.size();
 | 
						|
    ValueID = Values.size();
 | 
						|
    for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (*I)
 | 
						|
        EnumerateValue(*I);
 | 
						|
      else
 | 
						|
        EnumerateType(Type::VoidTy);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const NamedMDNode *N = dyn_cast<NamedMDNode>(V)) {
 | 
						|
    for(NamedMDNode::const_elem_iterator I = N->elem_begin(),
 | 
						|
          E = N->elem_end(); I != E; ++I) {
 | 
						|
      MetadataBase *M = *I;
 | 
						|
      EnumerateValue(M);
 | 
						|
    }
 | 
						|
    Values.push_back(std::make_pair(V, 1U));
 | 
						|
    ValueMap[V] = Values.size();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the value.
 | 
						|
  Values.push_back(std::make_pair(V, 1U));
 | 
						|
  ValueID = Values.size();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateType(const Type *Ty) {
 | 
						|
  unsigned &TypeID = TypeMap[Ty];
 | 
						|
  
 | 
						|
  if (TypeID) {
 | 
						|
    // If we've already seen this type, just increase its occurrence count.
 | 
						|
    Types[TypeID-1].second++;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // First time we saw this type, add it.
 | 
						|
  Types.push_back(std::make_pair(Ty, 1U));
 | 
						|
  TypeID = Types.size();
 | 
						|
  
 | 
						|
  // Enumerate subtypes.
 | 
						|
  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
 | 
						|
       I != E; ++I)
 | 
						|
    EnumerateType(*I);
 | 
						|
}
 | 
						|
 | 
						|
// Enumerate the types for the specified value.  If the value is a constant,
 | 
						|
// walk through it, enumerating the types of the constant.
 | 
						|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
 | 
						|
  EnumerateType(V->getType());
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    // If this constant is already enumerated, ignore it, we know its type must
 | 
						|
    // be enumerated.
 | 
						|
    if (ValueMap.count(V)) return;
 | 
						|
 | 
						|
    // This constant may have operands, make sure to enumerate the types in
 | 
						|
    // them.
 | 
						|
    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
 | 
						|
      EnumerateOperandType(C->getOperand(i));
 | 
						|
 | 
						|
    if (const MDNode *N = dyn_cast<MDNode>(V)) {
 | 
						|
      for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
 | 
						|
        Value *Elem = N->getElement(i);
 | 
						|
        if (Elem)
 | 
						|
          EnumerateOperandType(Elem);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<MDString>(V) || isa<MDNode>(V))
 | 
						|
    EnumerateValue(V);
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
 | 
						|
  if (PAL.isEmpty()) return;  // null is always 0.
 | 
						|
  // Do a lookup.
 | 
						|
  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
 | 
						|
  if (Entry == 0) {
 | 
						|
    // Never saw this before, add it.
 | 
						|
    Attributes.push_back(PAL);
 | 
						|
    Entry = Attributes.size();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ValueEnumerator::incorporateFunction(const Function &F) {
 | 
						|
  NumModuleValues = Values.size();
 | 
						|
  
 | 
						|
  // Adding function arguments to the value table.
 | 
						|
  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
 | 
						|
      I != E; ++I)
 | 
						|
    EnumerateValue(I);
 | 
						|
 | 
						|
  FirstFuncConstantID = Values.size();
 | 
						|
  
 | 
						|
  // Add all function-level constants to the value table.
 | 
						|
  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | 
						|
      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
 | 
						|
           OI != E; ++OI) {
 | 
						|
        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | 
						|
            isa<InlineAsm>(*OI))
 | 
						|
          EnumerateValue(*OI);
 | 
						|
      }
 | 
						|
    BasicBlocks.push_back(BB);
 | 
						|
    ValueMap[BB] = BasicBlocks.size();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Optimize the constant layout.
 | 
						|
  OptimizeConstants(FirstFuncConstantID, Values.size());
 | 
						|
  
 | 
						|
  // Add the function's parameter attributes so they are available for use in
 | 
						|
  // the function's instruction.
 | 
						|
  EnumerateAttributes(F.getAttributes());
 | 
						|
 | 
						|
  FirstInstID = Values.size();
 | 
						|
  
 | 
						|
  // Add all of the instructions.
 | 
						|
  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | 
						|
      if (I->getType() != Type::VoidTy)
 | 
						|
        EnumerateValue(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::purgeFunction() {
 | 
						|
  /// Remove purged values from the ValueMap.
 | 
						|
  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
 | 
						|
    ValueMap.erase(Values[i].first);
 | 
						|
  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
 | 
						|
    ValueMap.erase(BasicBlocks[i]);
 | 
						|
    
 | 
						|
  Values.resize(NumModuleValues);
 | 
						|
  BasicBlocks.clear();
 | 
						|
}
 | 
						|
 |