forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1188 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1188 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the NumericLiteralParser, CharLiteralParser, and
 | 
						|
// StringLiteralParser interfaces.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Lex/LiteralSupport.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/LexDiagnostic.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
 | 
						|
/// not valid.
 | 
						|
static int HexDigitValue(char C) {
 | 
						|
  if (C >= '0' && C <= '9') return C-'0';
 | 
						|
  if (C >= 'a' && C <= 'f') return C-'a'+10;
 | 
						|
  if (C >= 'A' && C <= 'F') return C-'A'+10;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
 | 
						|
  switch (kind) {
 | 
						|
  default: llvm_unreachable("Unknown token type!");
 | 
						|
  case tok::char_constant:
 | 
						|
  case tok::string_literal:
 | 
						|
  case tok::utf8_string_literal:
 | 
						|
    return Target.getCharWidth();
 | 
						|
  case tok::wide_char_constant:
 | 
						|
  case tok::wide_string_literal:
 | 
						|
    return Target.getWCharWidth();
 | 
						|
  case tok::utf16_char_constant:
 | 
						|
  case tok::utf16_string_literal:
 | 
						|
    return Target.getChar16Width();
 | 
						|
  case tok::utf32_char_constant:
 | 
						|
  case tok::utf32_string_literal:
 | 
						|
    return Target.getChar32Width();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
 | 
						|
/// either a character or a string literal.
 | 
						|
static unsigned ProcessCharEscape(const char *&ThisTokBuf,
 | 
						|
                                  const char *ThisTokEnd, bool &HadError,
 | 
						|
                                  FullSourceLoc Loc, unsigned CharWidth,
 | 
						|
                                  DiagnosticsEngine *Diags) {
 | 
						|
  // Skip the '\' char.
 | 
						|
  ++ThisTokBuf;
 | 
						|
 | 
						|
  // We know that this character can't be off the end of the buffer, because
 | 
						|
  // that would have been \", which would not have been the end of string.
 | 
						|
  unsigned ResultChar = *ThisTokBuf++;
 | 
						|
  switch (ResultChar) {
 | 
						|
  // These map to themselves.
 | 
						|
  case '\\': case '\'': case '"': case '?': break;
 | 
						|
 | 
						|
    // These have fixed mappings.
 | 
						|
  case 'a':
 | 
						|
    // TODO: K&R: the meaning of '\\a' is different in traditional C
 | 
						|
    ResultChar = 7;
 | 
						|
    break;
 | 
						|
  case 'b':
 | 
						|
    ResultChar = 8;
 | 
						|
    break;
 | 
						|
  case 'e':
 | 
						|
    if (Diags)
 | 
						|
      Diags->Report(Loc, diag::ext_nonstandard_escape) << "e";
 | 
						|
    ResultChar = 27;
 | 
						|
    break;
 | 
						|
  case 'E':
 | 
						|
    if (Diags)
 | 
						|
      Diags->Report(Loc, diag::ext_nonstandard_escape) << "E";
 | 
						|
    ResultChar = 27;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
    ResultChar = 12;
 | 
						|
    break;
 | 
						|
  case 'n':
 | 
						|
    ResultChar = 10;
 | 
						|
    break;
 | 
						|
  case 'r':
 | 
						|
    ResultChar = 13;
 | 
						|
    break;
 | 
						|
  case 't':
 | 
						|
    ResultChar = 9;
 | 
						|
    break;
 | 
						|
  case 'v':
 | 
						|
    ResultChar = 11;
 | 
						|
    break;
 | 
						|
  case 'x': { // Hex escape.
 | 
						|
    ResultChar = 0;
 | 
						|
    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
 | 
						|
      if (Diags)
 | 
						|
        Diags->Report(Loc, diag::err_hex_escape_no_digits);
 | 
						|
      HadError = 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Hex escapes are a maximal series of hex digits.
 | 
						|
    bool Overflow = false;
 | 
						|
    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
 | 
						|
      int CharVal = HexDigitValue(ThisTokBuf[0]);
 | 
						|
      if (CharVal == -1) break;
 | 
						|
      // About to shift out a digit?
 | 
						|
      Overflow |= (ResultChar & 0xF0000000) ? true : false;
 | 
						|
      ResultChar <<= 4;
 | 
						|
      ResultChar |= CharVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if any bits will be truncated when evaluated as a character.
 | 
						|
    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | 
						|
      Overflow = true;
 | 
						|
      ResultChar &= ~0U >> (32-CharWidth);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for overflow.
 | 
						|
    if (Overflow && Diags)   // Too many digits to fit in
 | 
						|
      Diags->Report(Loc, diag::warn_hex_escape_too_large);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case '0': case '1': case '2': case '3':
 | 
						|
  case '4': case '5': case '6': case '7': {
 | 
						|
    // Octal escapes.
 | 
						|
    --ThisTokBuf;
 | 
						|
    ResultChar = 0;
 | 
						|
 | 
						|
    // Octal escapes are a series of octal digits with maximum length 3.
 | 
						|
    // "\0123" is a two digit sequence equal to "\012" "3".
 | 
						|
    unsigned NumDigits = 0;
 | 
						|
    do {
 | 
						|
      ResultChar <<= 3;
 | 
						|
      ResultChar |= *ThisTokBuf++ - '0';
 | 
						|
      ++NumDigits;
 | 
						|
    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
 | 
						|
             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
 | 
						|
 | 
						|
    // Check for overflow.  Reject '\777', but not L'\777'.
 | 
						|
    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | 
						|
      if (Diags)
 | 
						|
        Diags->Report(Loc, diag::warn_octal_escape_too_large);
 | 
						|
      ResultChar &= ~0U >> (32-CharWidth);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
    // Otherwise, these are not valid escapes.
 | 
						|
  case '(': case '{': case '[': case '%':
 | 
						|
    // GCC accepts these as extensions.  We warn about them as such though.
 | 
						|
    if (Diags)
 | 
						|
      Diags->Report(Loc, diag::ext_nonstandard_escape)
 | 
						|
        << std::string()+(char)ResultChar;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    if (Diags == 0)
 | 
						|
      break;
 | 
						|
      
 | 
						|
    if (isgraph(ResultChar))
 | 
						|
      Diags->Report(Loc, diag::ext_unknown_escape)
 | 
						|
        << std::string()+(char)ResultChar;
 | 
						|
    else
 | 
						|
      Diags->Report(Loc, diag::ext_unknown_escape)
 | 
						|
        << "x"+llvm::utohexstr(ResultChar);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return ResultChar;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
 | 
						|
/// return the UTF32.
 | 
						|
static bool ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
 | 
						|
                             uint32_t &UcnVal, unsigned short &UcnLen,
 | 
						|
                             FullSourceLoc Loc, DiagnosticsEngine *Diags, 
 | 
						|
                             const LangOptions &Features) {
 | 
						|
  if (!Features.CPlusPlus && !Features.C99 && Diags)
 | 
						|
    Diags->Report(Loc, diag::warn_ucn_not_valid_in_c89);
 | 
						|
 | 
						|
  // Save the beginning of the string (for error diagnostics).
 | 
						|
  const char *ThisTokBegin = ThisTokBuf;
 | 
						|
 | 
						|
  // Skip the '\u' char's.
 | 
						|
  ThisTokBuf += 2;
 | 
						|
 | 
						|
  if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
 | 
						|
    if (Diags)
 | 
						|
      Diags->Report(Loc, diag::err_ucn_escape_no_digits);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
 | 
						|
  unsigned short UcnLenSave = UcnLen;
 | 
						|
  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
 | 
						|
    int CharVal = HexDigitValue(ThisTokBuf[0]);
 | 
						|
    if (CharVal == -1) break;
 | 
						|
    UcnVal <<= 4;
 | 
						|
    UcnVal |= CharVal;
 | 
						|
  }
 | 
						|
  // If we didn't consume the proper number of digits, there is a problem.
 | 
						|
  if (UcnLenSave) {
 | 
						|
    if (Diags) {
 | 
						|
      SourceLocation L =
 | 
						|
        Lexer::AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin,
 | 
						|
                                       Loc.getManager(), Features);
 | 
						|
      Diags->Report(FullSourceLoc(L, Loc.getManager()),
 | 
						|
                    diag::err_ucn_escape_incomplete);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // Check UCN constraints (C99 6.4.3p2).
 | 
						|
  if ((UcnVal < 0xa0 &&
 | 
						|
      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
 | 
						|
      || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
 | 
						|
      || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
 | 
						|
    if (Diags)
 | 
						|
      Diags->Report(Loc, diag::err_ucn_escape_invalid);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
 | 
						|
/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
 | 
						|
/// StringLiteralParser. When we decide to implement UCN's for identifiers,
 | 
						|
/// we will likely rework our support for UCN's.
 | 
						|
static void EncodeUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
 | 
						|
                            char *&ResultBuf, bool &HadError,
 | 
						|
                            FullSourceLoc Loc, unsigned CharByteWidth,
 | 
						|
                            DiagnosticsEngine *Diags,
 | 
						|
                            const LangOptions &Features) {
 | 
						|
  typedef uint32_t UTF32;
 | 
						|
  UTF32 UcnVal = 0;
 | 
						|
  unsigned short UcnLen = 0;
 | 
						|
  if (!ProcessUCNEscape(ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, Loc, Diags,
 | 
						|
                        Features)) {
 | 
						|
    HadError = 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
 | 
						|
         "only character widths of 1, 2, or 4 bytes supported");
 | 
						|
 | 
						|
  (void)UcnLen;
 | 
						|
  assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
 | 
						|
 | 
						|
  if (CharByteWidth == 4) {
 | 
						|
    // Note: our internal rep of wide char tokens is always little-endian.
 | 
						|
    *ResultBuf++ = (UcnVal & 0x000000FF);
 | 
						|
    *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
 | 
						|
    *ResultBuf++ = (UcnVal & 0x00FF0000) >> 16;
 | 
						|
    *ResultBuf++ = (UcnVal & 0xFF000000) >> 24;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CharByteWidth == 2) {
 | 
						|
    // Convert to UTF16.
 | 
						|
    if (UcnVal < (UTF32)0xFFFF) {
 | 
						|
      *ResultBuf++ = (UcnVal & 0x000000FF);
 | 
						|
      *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (Diags) Diags->Report(Loc, diag::warn_ucn_escape_too_large);
 | 
						|
 | 
						|
    typedef uint16_t UTF16;
 | 
						|
    UcnVal -= 0x10000;
 | 
						|
    UTF16 surrogate1 = 0xD800 + (UcnVal >> 10);
 | 
						|
    UTF16 surrogate2 = 0xDC00 + (UcnVal & 0x3FF);
 | 
						|
    *ResultBuf++ = (surrogate1 & 0x000000FF);
 | 
						|
    *ResultBuf++ = (surrogate1 & 0x0000FF00) >> 8;
 | 
						|
    *ResultBuf++ = (surrogate2 & 0x000000FF);
 | 
						|
    *ResultBuf++ = (surrogate2 & 0x0000FF00) >> 8;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
 | 
						|
 | 
						|
  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
 | 
						|
  // The conversion below was inspired by:
 | 
						|
  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
 | 
						|
  // First, we determine how many bytes the result will require.
 | 
						|
  typedef uint8_t UTF8;
 | 
						|
 | 
						|
  unsigned short bytesToWrite = 0;
 | 
						|
  if (UcnVal < (UTF32)0x80)
 | 
						|
    bytesToWrite = 1;
 | 
						|
  else if (UcnVal < (UTF32)0x800)
 | 
						|
    bytesToWrite = 2;
 | 
						|
  else if (UcnVal < (UTF32)0x10000)
 | 
						|
    bytesToWrite = 3;
 | 
						|
  else
 | 
						|
    bytesToWrite = 4;
 | 
						|
 | 
						|
  const unsigned byteMask = 0xBF;
 | 
						|
  const unsigned byteMark = 0x80;
 | 
						|
 | 
						|
  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
 | 
						|
  // into the first byte, depending on how many bytes follow.
 | 
						|
  static const UTF8 firstByteMark[5] = {
 | 
						|
    0x00, 0x00, 0xC0, 0xE0, 0xF0
 | 
						|
  };
 | 
						|
  // Finally, we write the bytes into ResultBuf.
 | 
						|
  ResultBuf += bytesToWrite;
 | 
						|
  switch (bytesToWrite) { // note: everything falls through.
 | 
						|
    case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
 | 
						|
  }
 | 
						|
  // Update the buffer.
 | 
						|
  ResultBuf += bytesToWrite;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///       integer-constant: [C99 6.4.4.1]
 | 
						|
///         decimal-constant integer-suffix
 | 
						|
///         octal-constant integer-suffix
 | 
						|
///         hexadecimal-constant integer-suffix
 | 
						|
///       decimal-constant:
 | 
						|
///         nonzero-digit
 | 
						|
///         decimal-constant digit
 | 
						|
///       octal-constant:
 | 
						|
///         0
 | 
						|
///         octal-constant octal-digit
 | 
						|
///       hexadecimal-constant:
 | 
						|
///         hexadecimal-prefix hexadecimal-digit
 | 
						|
///         hexadecimal-constant hexadecimal-digit
 | 
						|
///       hexadecimal-prefix: one of
 | 
						|
///         0x 0X
 | 
						|
///       integer-suffix:
 | 
						|
///         unsigned-suffix [long-suffix]
 | 
						|
///         unsigned-suffix [long-long-suffix]
 | 
						|
///         long-suffix [unsigned-suffix]
 | 
						|
///         long-long-suffix [unsigned-sufix]
 | 
						|
///       nonzero-digit:
 | 
						|
///         1 2 3 4 5 6 7 8 9
 | 
						|
///       octal-digit:
 | 
						|
///         0 1 2 3 4 5 6 7
 | 
						|
///       hexadecimal-digit:
 | 
						|
///         0 1 2 3 4 5 6 7 8 9
 | 
						|
///         a b c d e f
 | 
						|
///         A B C D E F
 | 
						|
///       unsigned-suffix: one of
 | 
						|
///         u U
 | 
						|
///       long-suffix: one of
 | 
						|
///         l L
 | 
						|
///       long-long-suffix: one of
 | 
						|
///         ll LL
 | 
						|
///
 | 
						|
///       floating-constant: [C99 6.4.4.2]
 | 
						|
///         TODO: add rules...
 | 
						|
///
 | 
						|
NumericLiteralParser::
 | 
						|
NumericLiteralParser(const char *begin, const char *end,
 | 
						|
                     SourceLocation TokLoc, Preprocessor &pp)
 | 
						|
  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
 | 
						|
 | 
						|
  // This routine assumes that the range begin/end matches the regex for integer
 | 
						|
  // and FP constants (specifically, the 'pp-number' regex), and assumes that
 | 
						|
  // the byte at "*end" is both valid and not part of the regex.  Because of
 | 
						|
  // this, it doesn't have to check for 'overscan' in various places.
 | 
						|
  assert(!isalnum(*end) && *end != '.' && *end != '_' &&
 | 
						|
         "Lexer didn't maximally munch?");
 | 
						|
 | 
						|
  s = DigitsBegin = begin;
 | 
						|
  saw_exponent = false;
 | 
						|
  saw_period = false;
 | 
						|
  isLong = false;
 | 
						|
  isUnsigned = false;
 | 
						|
  isLongLong = false;
 | 
						|
  isFloat = false;
 | 
						|
  isImaginary = false;
 | 
						|
  isMicrosoftInteger = false;
 | 
						|
  hadError = false;
 | 
						|
 | 
						|
  if (*s == '0') { // parse radix
 | 
						|
    ParseNumberStartingWithZero(TokLoc);
 | 
						|
    if (hadError)
 | 
						|
      return;
 | 
						|
  } else { // the first digit is non-zero
 | 
						|
    radix = 10;
 | 
						|
    s = SkipDigits(s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | 
						|
              diag::err_invalid_decimal_digit) << StringRef(s, 1);
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    } else if (*s == '.') {
 | 
						|
      s++;
 | 
						|
      saw_period = true;
 | 
						|
      s = SkipDigits(s);
 | 
						|
    }
 | 
						|
    if ((*s == 'e' || *s == 'E')) { // exponent
 | 
						|
      const char *Exponent = s;
 | 
						|
      s++;
 | 
						|
      saw_exponent = true;
 | 
						|
      if (*s == '+' || *s == '-')  s++; // sign
 | 
						|
      const char *first_non_digit = SkipDigits(s);
 | 
						|
      if (first_non_digit != s) {
 | 
						|
        s = first_non_digit;
 | 
						|
      } else {
 | 
						|
        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
 | 
						|
                diag::err_exponent_has_no_digits);
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SuffixBegin = s;
 | 
						|
 | 
						|
  // Parse the suffix.  At this point we can classify whether we have an FP or
 | 
						|
  // integer constant.
 | 
						|
  bool isFPConstant = isFloatingLiteral();
 | 
						|
 | 
						|
  // Loop over all of the characters of the suffix.  If we see something bad,
 | 
						|
  // we break out of the loop.
 | 
						|
  for (; s != ThisTokEnd; ++s) {
 | 
						|
    switch (*s) {
 | 
						|
    case 'f':      // FP Suffix for "float"
 | 
						|
    case 'F':
 | 
						|
      if (!isFPConstant) break;  // Error for integer constant.
 | 
						|
      if (isFloat || isLong) break; // FF, LF invalid.
 | 
						|
      isFloat = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'u':
 | 
						|
    case 'U':
 | 
						|
      if (isFPConstant) break;  // Error for floating constant.
 | 
						|
      if (isUnsigned) break;    // Cannot be repeated.
 | 
						|
      isUnsigned = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'l':
 | 
						|
    case 'L':
 | 
						|
      if (isLong || isLongLong) break;  // Cannot be repeated.
 | 
						|
      if (isFloat) break;               // LF invalid.
 | 
						|
 | 
						|
      // Check for long long.  The L's need to be adjacent and the same case.
 | 
						|
      if (s+1 != ThisTokEnd && s[1] == s[0]) {
 | 
						|
        if (isFPConstant) break;        // long long invalid for floats.
 | 
						|
        isLongLong = true;
 | 
						|
        ++s;  // Eat both of them.
 | 
						|
      } else {
 | 
						|
        isLong = true;
 | 
						|
      }
 | 
						|
      continue;  // Success.
 | 
						|
    case 'i':
 | 
						|
    case 'I':
 | 
						|
      if (PP.getLangOptions().MicrosoftExt) {
 | 
						|
        if (isFPConstant || isLong || isLongLong) break;
 | 
						|
 | 
						|
        // Allow i8, i16, i32, i64, and i128.
 | 
						|
        if (s + 1 != ThisTokEnd) {
 | 
						|
          switch (s[1]) {
 | 
						|
            case '8':
 | 
						|
              s += 2; // i8 suffix
 | 
						|
              isMicrosoftInteger = true;
 | 
						|
              break;
 | 
						|
            case '1':
 | 
						|
              if (s + 2 == ThisTokEnd) break;
 | 
						|
              if (s[2] == '6') {
 | 
						|
                s += 3; // i16 suffix
 | 
						|
                isMicrosoftInteger = true;
 | 
						|
              }
 | 
						|
              else if (s[2] == '2') {
 | 
						|
                if (s + 3 == ThisTokEnd) break;
 | 
						|
                if (s[3] == '8') {
 | 
						|
                  s += 4; // i128 suffix
 | 
						|
                  isMicrosoftInteger = true;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              break;
 | 
						|
            case '3':
 | 
						|
              if (s + 2 == ThisTokEnd) break;
 | 
						|
              if (s[2] == '2') {
 | 
						|
                s += 3; // i32 suffix
 | 
						|
                isLong = true;
 | 
						|
                isMicrosoftInteger = true;
 | 
						|
              }
 | 
						|
              break;
 | 
						|
            case '6':
 | 
						|
              if (s + 2 == ThisTokEnd) break;
 | 
						|
              if (s[2] == '4') {
 | 
						|
                s += 3; // i64 suffix
 | 
						|
                isLongLong = true;
 | 
						|
                isMicrosoftInteger = true;
 | 
						|
              }
 | 
						|
              break;
 | 
						|
            default:
 | 
						|
              break;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // fall through.
 | 
						|
    case 'j':
 | 
						|
    case 'J':
 | 
						|
      if (isImaginary) break;   // Cannot be repeated.
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | 
						|
              diag::ext_imaginary_constant);
 | 
						|
      isImaginary = true;
 | 
						|
      continue;  // Success.
 | 
						|
    }
 | 
						|
    // If we reached here, there was an error.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Report an error if there are any.
 | 
						|
  if (s != ThisTokEnd) {
 | 
						|
    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | 
						|
            isFPConstant ? diag::err_invalid_suffix_float_constant :
 | 
						|
                           diag::err_invalid_suffix_integer_constant)
 | 
						|
      << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseNumberStartingWithZero - This method is called when the first character
 | 
						|
/// of the number is found to be a zero.  This means it is either an octal
 | 
						|
/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
 | 
						|
/// a floating point number (01239.123e4).  Eat the prefix, determining the
 | 
						|
/// radix etc.
 | 
						|
void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
 | 
						|
  assert(s[0] == '0' && "Invalid method call");
 | 
						|
  s++;
 | 
						|
 | 
						|
  // Handle a hex number like 0x1234.
 | 
						|
  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
 | 
						|
    s++;
 | 
						|
    radix = 16;
 | 
						|
    DigitsBegin = s;
 | 
						|
    s = SkipHexDigits(s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else if (*s == '.') {
 | 
						|
      s++;
 | 
						|
      saw_period = true;
 | 
						|
      s = SkipHexDigits(s);
 | 
						|
    }
 | 
						|
    // A binary exponent can appear with or with a '.'. If dotted, the
 | 
						|
    // binary exponent is required.
 | 
						|
    if (*s == 'p' || *s == 'P') {
 | 
						|
      const char *Exponent = s;
 | 
						|
      s++;
 | 
						|
      saw_exponent = true;
 | 
						|
      if (*s == '+' || *s == '-')  s++; // sign
 | 
						|
      const char *first_non_digit = SkipDigits(s);
 | 
						|
      if (first_non_digit == s) {
 | 
						|
        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | 
						|
                diag::err_exponent_has_no_digits);
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      s = first_non_digit;
 | 
						|
 | 
						|
      // In C++0x, we cannot support hexadecmial floating literals because
 | 
						|
      // they conflict with user-defined literals, so we warn in previous
 | 
						|
      // versions of C++ by default.
 | 
						|
      if (!PP.getLangOptions().HexFloats)
 | 
						|
        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
 | 
						|
    } else if (saw_period) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | 
						|
              diag::err_hexconstant_requires_exponent);
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle simple binary numbers 0b01010
 | 
						|
  if (*s == 'b' || *s == 'B') {
 | 
						|
    // 0b101010 is a GCC extension.
 | 
						|
    PP.Diag(TokLoc, diag::ext_binary_literal);
 | 
						|
    ++s;
 | 
						|
    radix = 2;
 | 
						|
    DigitsBegin = s;
 | 
						|
    s = SkipBinaryDigits(s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else if (isxdigit(*s)) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | 
						|
              diag::err_invalid_binary_digit) << StringRef(s, 1);
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
    // Other suffixes will be diagnosed by the caller.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For now, the radix is set to 8. If we discover that we have a
 | 
						|
  // floating point constant, the radix will change to 10. Octal floating
 | 
						|
  // point constants are not permitted (only decimal and hexadecimal).
 | 
						|
  radix = 8;
 | 
						|
  DigitsBegin = s;
 | 
						|
  s = SkipOctalDigits(s);
 | 
						|
  if (s == ThisTokEnd)
 | 
						|
    return; // Done, simple octal number like 01234
 | 
						|
 | 
						|
  // If we have some other non-octal digit that *is* a decimal digit, see if
 | 
						|
  // this is part of a floating point number like 094.123 or 09e1.
 | 
						|
  if (isdigit(*s)) {
 | 
						|
    const char *EndDecimal = SkipDigits(s);
 | 
						|
    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
 | 
						|
      s = EndDecimal;
 | 
						|
      radix = 10;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
 | 
						|
  // the code is using an incorrect base.
 | 
						|
  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
 | 
						|
    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | 
						|
            diag::err_invalid_octal_digit) << StringRef(s, 1);
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (*s == '.') {
 | 
						|
    s++;
 | 
						|
    radix = 10;
 | 
						|
    saw_period = true;
 | 
						|
    s = SkipDigits(s); // Skip suffix.
 | 
						|
  }
 | 
						|
  if (*s == 'e' || *s == 'E') { // exponent
 | 
						|
    const char *Exponent = s;
 | 
						|
    s++;
 | 
						|
    radix = 10;
 | 
						|
    saw_exponent = true;
 | 
						|
    if (*s == '+' || *s == '-')  s++; // sign
 | 
						|
    const char *first_non_digit = SkipDigits(s);
 | 
						|
    if (first_non_digit != s) {
 | 
						|
      s = first_non_digit;
 | 
						|
    } else {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | 
						|
              diag::err_exponent_has_no_digits);
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetIntegerValue - Convert this numeric literal value to an APInt that
 | 
						|
/// matches Val's input width.  If there is an overflow, set Val to the low bits
 | 
						|
/// of the result and return true.  Otherwise, return false.
 | 
						|
bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
 | 
						|
  // Fast path: Compute a conservative bound on the maximum number of
 | 
						|
  // bits per digit in this radix. If we can't possibly overflow a
 | 
						|
  // uint64 based on that bound then do the simple conversion to
 | 
						|
  // integer. This avoids the expensive overflow checking below, and
 | 
						|
  // handles the common cases that matter (small decimal integers and
 | 
						|
  // hex/octal values which don't overflow).
 | 
						|
  unsigned MaxBitsPerDigit = 1;
 | 
						|
  while ((1U << MaxBitsPerDigit) < radix)
 | 
						|
    MaxBitsPerDigit += 1;
 | 
						|
  if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
 | 
						|
    uint64_t N = 0;
 | 
						|
    for (s = DigitsBegin; s != SuffixBegin; ++s)
 | 
						|
      N = N*radix + HexDigitValue(*s);
 | 
						|
 | 
						|
    // This will truncate the value to Val's input width. Simply check
 | 
						|
    // for overflow by comparing.
 | 
						|
    Val = N;
 | 
						|
    return Val.getZExtValue() != N;
 | 
						|
  }
 | 
						|
 | 
						|
  Val = 0;
 | 
						|
  s = DigitsBegin;
 | 
						|
 | 
						|
  llvm::APInt RadixVal(Val.getBitWidth(), radix);
 | 
						|
  llvm::APInt CharVal(Val.getBitWidth(), 0);
 | 
						|
  llvm::APInt OldVal = Val;
 | 
						|
 | 
						|
  bool OverflowOccurred = false;
 | 
						|
  while (s < SuffixBegin) {
 | 
						|
    unsigned C = HexDigitValue(*s++);
 | 
						|
 | 
						|
    // If this letter is out of bound for this radix, reject it.
 | 
						|
    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
 | 
						|
 | 
						|
    CharVal = C;
 | 
						|
 | 
						|
    // Add the digit to the value in the appropriate radix.  If adding in digits
 | 
						|
    // made the value smaller, then this overflowed.
 | 
						|
    OldVal = Val;
 | 
						|
 | 
						|
    // Multiply by radix, did overflow occur on the multiply?
 | 
						|
    Val *= RadixVal;
 | 
						|
    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
 | 
						|
 | 
						|
    // Add value, did overflow occur on the value?
 | 
						|
    //   (a + b) ult b  <=> overflow
 | 
						|
    Val += CharVal;
 | 
						|
    OverflowOccurred |= Val.ult(CharVal);
 | 
						|
  }
 | 
						|
  return OverflowOccurred;
 | 
						|
}
 | 
						|
 | 
						|
llvm::APFloat::opStatus
 | 
						|
NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
 | 
						|
  using llvm::APFloat;
 | 
						|
 | 
						|
  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
 | 
						|
  return Result.convertFromString(StringRef(ThisTokBegin, n),
 | 
						|
                                  APFloat::rmNearestTiesToEven);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///       character-literal: [C++0x lex.ccon]
 | 
						|
///         ' c-char-sequence '
 | 
						|
///         u' c-char-sequence '
 | 
						|
///         U' c-char-sequence '
 | 
						|
///         L' c-char-sequence '
 | 
						|
///       c-char-sequence:
 | 
						|
///         c-char
 | 
						|
///         c-char-sequence c-char
 | 
						|
///       c-char:
 | 
						|
///         any member of the source character set except the single-quote ',
 | 
						|
///           backslash \, or new-line character
 | 
						|
///         escape-sequence
 | 
						|
///         universal-character-name
 | 
						|
///       escape-sequence: [C++0x lex.ccon]
 | 
						|
///         simple-escape-sequence
 | 
						|
///         octal-escape-sequence
 | 
						|
///         hexadecimal-escape-sequence
 | 
						|
///       simple-escape-sequence:
 | 
						|
///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | 
						|
///       octal-escape-sequence:
 | 
						|
///         \ octal-digit
 | 
						|
///         \ octal-digit octal-digit
 | 
						|
///         \ octal-digit octal-digit octal-digit
 | 
						|
///       hexadecimal-escape-sequence:
 | 
						|
///         \x hexadecimal-digit
 | 
						|
///         hexadecimal-escape-sequence hexadecimal-digit
 | 
						|
///       universal-character-name:
 | 
						|
///         \u hex-quad
 | 
						|
///         \U hex-quad hex-quad
 | 
						|
///       hex-quad:
 | 
						|
///         hex-digit hex-digit hex-digit hex-digit
 | 
						|
///
 | 
						|
CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
 | 
						|
                                     SourceLocation Loc, Preprocessor &PP,
 | 
						|
                                     tok::TokenKind kind) {
 | 
						|
  // At this point we know that the character matches the regex "L?'.*'".
 | 
						|
  HadError = false;
 | 
						|
 | 
						|
  Kind = kind;
 | 
						|
 | 
						|
  // Determine if this is a wide or UTF character.
 | 
						|
  if (Kind == tok::wide_char_constant || Kind == tok::utf16_char_constant ||
 | 
						|
      Kind == tok::utf32_char_constant) {
 | 
						|
    ++begin;
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the entry quote.
 | 
						|
  assert(begin[0] == '\'' && "Invalid token lexed");
 | 
						|
  ++begin;
 | 
						|
 | 
						|
  // FIXME: The "Value" is an uint64_t so we can handle char literals of
 | 
						|
  // up to 64-bits.
 | 
						|
  // FIXME: This extensively assumes that 'char' is 8-bits.
 | 
						|
  assert(PP.getTargetInfo().getCharWidth() == 8 &&
 | 
						|
         "Assumes char is 8 bits");
 | 
						|
  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
 | 
						|
         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
 | 
						|
         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
 | 
						|
  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
 | 
						|
         "Assumes sizeof(wchar) on target is <= 64");
 | 
						|
 | 
						|
  // This is what we will use for overflow detection
 | 
						|
  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
 | 
						|
 | 
						|
  unsigned NumCharsSoFar = 0;
 | 
						|
  bool Warned = false;
 | 
						|
  while (begin[0] != '\'') {
 | 
						|
    uint64_t ResultChar;
 | 
						|
 | 
						|
      // Is this a Universal Character Name escape?
 | 
						|
    if (begin[0] != '\\')     // If this is a normal character, consume it.
 | 
						|
      ResultChar = (unsigned char)*begin++;
 | 
						|
    else {                    // Otherwise, this is an escape character.
 | 
						|
      unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
 | 
						|
      // Check for UCN.
 | 
						|
      if (begin[1] == 'u' || begin[1] == 'U') {
 | 
						|
        uint32_t utf32 = 0;
 | 
						|
        unsigned short UcnLen = 0;
 | 
						|
        if (!ProcessUCNEscape(begin, end, utf32, UcnLen,
 | 
						|
                              FullSourceLoc(Loc, PP.getSourceManager()),
 | 
						|
                              &PP.getDiagnostics(), PP.getLangOptions())) {
 | 
						|
          HadError = 1;
 | 
						|
        }
 | 
						|
        ResultChar = utf32;
 | 
						|
        if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | 
						|
          PP.Diag(Loc, diag::warn_ucn_escape_too_large);
 | 
						|
          ResultChar &= ~0U >> (32-CharWidth);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Otherwise, this is a non-UCN escape character.  Process it.
 | 
						|
        ResultChar = ProcessCharEscape(begin, end, HadError,
 | 
						|
                                       FullSourceLoc(Loc,PP.getSourceManager()),
 | 
						|
                                       CharWidth, &PP.getDiagnostics());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
 | 
						|
    // implementation defined (C99 6.4.4.4p10).
 | 
						|
    if (NumCharsSoFar) {
 | 
						|
      if (!isAscii()) {
 | 
						|
        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
 | 
						|
        LitVal = 0;
 | 
						|
      } else {
 | 
						|
        // Narrow character literals act as though their value is concatenated
 | 
						|
        // in this implementation, but warn on overflow.
 | 
						|
        if (LitVal.countLeadingZeros() < 8 && !Warned) {
 | 
						|
          PP.Diag(Loc, diag::warn_char_constant_too_large);
 | 
						|
          Warned = true;
 | 
						|
        }
 | 
						|
        LitVal <<= 8;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    LitVal = LitVal + ResultChar;
 | 
						|
    ++NumCharsSoFar;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the second character being processed, do special handling.
 | 
						|
  if (NumCharsSoFar > 1) {
 | 
						|
    // Warn about discarding the top bits for multi-char wide-character
 | 
						|
    // constants (L'abcd').
 | 
						|
    if (!isAscii())
 | 
						|
      PP.Diag(Loc, diag::warn_extraneous_char_constant);
 | 
						|
    else if (NumCharsSoFar != 4)
 | 
						|
      PP.Diag(Loc, diag::ext_multichar_character_literal);
 | 
						|
    else
 | 
						|
      PP.Diag(Loc, diag::ext_four_char_character_literal);
 | 
						|
    IsMultiChar = true;
 | 
						|
  } else
 | 
						|
    IsMultiChar = false;
 | 
						|
 | 
						|
  // Transfer the value from APInt to uint64_t
 | 
						|
  Value = LitVal.getZExtValue();
 | 
						|
 | 
						|
  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
 | 
						|
  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
 | 
						|
  // character constants are not sign extended in the this implementation:
 | 
						|
  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
 | 
						|
  if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
 | 
						|
      PP.getLangOptions().CharIsSigned)
 | 
						|
    Value = (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///       string-literal: [C++0x lex.string]
 | 
						|
///         encoding-prefix " [s-char-sequence] "
 | 
						|
///         encoding-prefix R raw-string
 | 
						|
///       encoding-prefix:
 | 
						|
///         u8
 | 
						|
///         u
 | 
						|
///         U
 | 
						|
///         L
 | 
						|
///       s-char-sequence:
 | 
						|
///         s-char
 | 
						|
///         s-char-sequence s-char
 | 
						|
///       s-char:
 | 
						|
///         any member of the source character set except the double-quote ",
 | 
						|
///           backslash \, or new-line character
 | 
						|
///         escape-sequence
 | 
						|
///         universal-character-name
 | 
						|
///       raw-string:
 | 
						|
///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
 | 
						|
///       r-char-sequence:
 | 
						|
///         r-char
 | 
						|
///         r-char-sequence r-char
 | 
						|
///       r-char:
 | 
						|
///         any member of the source character set, except a right parenthesis )
 | 
						|
///           followed by the initial d-char-sequence (which may be empty)
 | 
						|
///           followed by a double quote ".
 | 
						|
///       d-char-sequence:
 | 
						|
///         d-char
 | 
						|
///         d-char-sequence d-char
 | 
						|
///       d-char:
 | 
						|
///         any member of the basic source character set except:
 | 
						|
///           space, the left parenthesis (, the right parenthesis ),
 | 
						|
///           the backslash \, and the control characters representing horizontal
 | 
						|
///           tab, vertical tab, form feed, and newline.
 | 
						|
///       escape-sequence: [C++0x lex.ccon]
 | 
						|
///         simple-escape-sequence
 | 
						|
///         octal-escape-sequence
 | 
						|
///         hexadecimal-escape-sequence
 | 
						|
///       simple-escape-sequence:
 | 
						|
///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | 
						|
///       octal-escape-sequence:
 | 
						|
///         \ octal-digit
 | 
						|
///         \ octal-digit octal-digit
 | 
						|
///         \ octal-digit octal-digit octal-digit
 | 
						|
///       hexadecimal-escape-sequence:
 | 
						|
///         \x hexadecimal-digit
 | 
						|
///         hexadecimal-escape-sequence hexadecimal-digit
 | 
						|
///       universal-character-name:
 | 
						|
///         \u hex-quad
 | 
						|
///         \U hex-quad hex-quad
 | 
						|
///       hex-quad:
 | 
						|
///         hex-digit hex-digit hex-digit hex-digit
 | 
						|
///
 | 
						|
StringLiteralParser::
 | 
						|
StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
 | 
						|
                    Preprocessor &PP, bool Complain)
 | 
						|
  : SM(PP.getSourceManager()), Features(PP.getLangOptions()),
 | 
						|
    Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
 | 
						|
    MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
 | 
						|
    ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
 | 
						|
  init(StringToks, NumStringToks);
 | 
						|
}
 | 
						|
 | 
						|
void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
 | 
						|
  // The literal token may have come from an invalid source location (e.g. due
 | 
						|
  // to a PCH error), in which case the token length will be 0.
 | 
						|
  if (NumStringToks == 0 || StringToks[0].getLength() < 2) {
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan all of the string portions, remember the max individual token length,
 | 
						|
  // computing a bound on the concatenated string length, and see whether any
 | 
						|
  // piece is a wide-string.  If any of the string portions is a wide-string
 | 
						|
  // literal, the result is a wide-string literal [C99 6.4.5p4].
 | 
						|
  assert(NumStringToks && "expected at least one token");
 | 
						|
  MaxTokenLength = StringToks[0].getLength();
 | 
						|
  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
 | 
						|
  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
 | 
						|
  Kind = StringToks[0].getKind();
 | 
						|
 | 
						|
  hadError = false;
 | 
						|
 | 
						|
  // Implement Translation Phase #6: concatenation of string literals
 | 
						|
  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
 | 
						|
  for (unsigned i = 1; i != NumStringToks; ++i) {
 | 
						|
    if (StringToks[i].getLength() < 2) {
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // The string could be shorter than this if it needs cleaning, but this is a
 | 
						|
    // reasonable bound, which is all we need.
 | 
						|
    assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
 | 
						|
    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
 | 
						|
 | 
						|
    // Remember maximum string piece length.
 | 
						|
    if (StringToks[i].getLength() > MaxTokenLength)
 | 
						|
      MaxTokenLength = StringToks[i].getLength();
 | 
						|
 | 
						|
    // Remember if we see any wide or utf-8/16/32 strings.
 | 
						|
    // Also check for illegal concatenations.
 | 
						|
    if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
 | 
						|
      if (isAscii()) {
 | 
						|
        Kind = StringToks[i].getKind();
 | 
						|
      } else {
 | 
						|
        if (Diags)
 | 
						|
          Diags->Report(FullSourceLoc(StringToks[i].getLocation(), SM),
 | 
						|
                        diag::err_unsupported_string_concat);
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Include space for the null terminator.
 | 
						|
  ++SizeBound;
 | 
						|
 | 
						|
  // TODO: K&R warning: "traditional C rejects string constant concatenation"
 | 
						|
 | 
						|
  // Get the width in bytes of char/wchar_t/char16_t/char32_t
 | 
						|
  CharByteWidth = getCharWidth(Kind, Target);
 | 
						|
  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
 | 
						|
  CharByteWidth /= 8;
 | 
						|
 | 
						|
  // The output buffer size needs to be large enough to hold wide characters.
 | 
						|
  // This is a worst-case assumption which basically corresponds to L"" "long".
 | 
						|
  SizeBound *= CharByteWidth;
 | 
						|
 | 
						|
  // Size the temporary buffer to hold the result string data.
 | 
						|
  ResultBuf.resize(SizeBound);
 | 
						|
 | 
						|
  // Likewise, but for each string piece.
 | 
						|
  llvm::SmallString<512> TokenBuf;
 | 
						|
  TokenBuf.resize(MaxTokenLength);
 | 
						|
 | 
						|
  // Loop over all the strings, getting their spelling, and expanding them to
 | 
						|
  // wide strings as appropriate.
 | 
						|
  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
 | 
						|
 | 
						|
  Pascal = false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
 | 
						|
    const char *ThisTokBuf = &TokenBuf[0];
 | 
						|
    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
 | 
						|
    // that ThisTokBuf points to a buffer that is big enough for the whole token
 | 
						|
    // and 'spelled' tokens can only shrink.
 | 
						|
    bool StringInvalid = false;
 | 
						|
    unsigned ThisTokLen = 
 | 
						|
      Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
 | 
						|
                         &StringInvalid);
 | 
						|
    if (StringInvalid) {
 | 
						|
      hadError = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
 | 
						|
    // TODO: Input character set mapping support.
 | 
						|
 | 
						|
    // Skip marker for wide or unicode strings.
 | 
						|
    if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
 | 
						|
      ++ThisTokBuf;
 | 
						|
      // Skip 8 of u8 marker for utf8 strings.
 | 
						|
      if (ThisTokBuf[0] == '8')
 | 
						|
        ++ThisTokBuf;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for raw string
 | 
						|
    if (ThisTokBuf[0] == 'R') {
 | 
						|
      ThisTokBuf += 2; // skip R"
 | 
						|
 | 
						|
      const char *Prefix = ThisTokBuf;
 | 
						|
      while (ThisTokBuf[0] != '(')
 | 
						|
        ++ThisTokBuf;
 | 
						|
      ++ThisTokBuf; // skip '('
 | 
						|
 | 
						|
      // remove same number of characters from the end
 | 
						|
      if (ThisTokEnd >= ThisTokBuf + (ThisTokBuf - Prefix))
 | 
						|
        ThisTokEnd -= (ThisTokBuf - Prefix);
 | 
						|
 | 
						|
      // Copy the string over
 | 
						|
      CopyStringFragment(StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf));
 | 
						|
    } else {
 | 
						|
      assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
 | 
						|
      ++ThisTokBuf; // skip "
 | 
						|
 | 
						|
      // Check if this is a pascal string
 | 
						|
      if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
 | 
						|
          ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
 | 
						|
 | 
						|
        // If the \p sequence is found in the first token, we have a pascal string
 | 
						|
        // Otherwise, if we already have a pascal string, ignore the first \p
 | 
						|
        if (i == 0) {
 | 
						|
          ++ThisTokBuf;
 | 
						|
          Pascal = true;
 | 
						|
        } else if (Pascal)
 | 
						|
          ThisTokBuf += 2;
 | 
						|
      }
 | 
						|
 | 
						|
      while (ThisTokBuf != ThisTokEnd) {
 | 
						|
        // Is this a span of non-escape characters?
 | 
						|
        if (ThisTokBuf[0] != '\\') {
 | 
						|
          const char *InStart = ThisTokBuf;
 | 
						|
          do {
 | 
						|
            ++ThisTokBuf;
 | 
						|
          } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
 | 
						|
 | 
						|
          // Copy the character span over.
 | 
						|
          CopyStringFragment(StringRef(InStart, ThisTokBuf - InStart));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Is this a Universal Character Name escape?
 | 
						|
        if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
 | 
						|
          EncodeUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
 | 
						|
                          hadError, FullSourceLoc(StringToks[i].getLocation(),SM),
 | 
						|
                          CharByteWidth, Diags, Features);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Otherwise, this is a non-UCN escape character.  Process it.
 | 
						|
        unsigned ResultChar =
 | 
						|
          ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
 | 
						|
                            FullSourceLoc(StringToks[i].getLocation(), SM),
 | 
						|
                            CharByteWidth*8, Diags);
 | 
						|
 | 
						|
        // Note: our internal rep of wide char tokens is always little-endian.
 | 
						|
        *ResultPtr++ = ResultChar & 0xFF;
 | 
						|
 | 
						|
        for (unsigned i = 1, e = CharByteWidth; i != e; ++i)
 | 
						|
          *ResultPtr++ = ResultChar >> i*8;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pascal) {
 | 
						|
    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
 | 
						|
    ResultBuf[0] /= CharByteWidth;
 | 
						|
 | 
						|
    // Verify that pascal strings aren't too large.
 | 
						|
    if (GetStringLength() > 256) {
 | 
						|
      if (Diags) 
 | 
						|
        Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
 | 
						|
                      diag::err_pascal_string_too_long)
 | 
						|
          << SourceRange(StringToks[0].getLocation(),
 | 
						|
                         StringToks[NumStringToks-1].getLocation());
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (Diags) {
 | 
						|
    // Complain if this string literal has too many characters.
 | 
						|
    unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
 | 
						|
    
 | 
						|
    if (GetNumStringChars() > MaxChars)
 | 
						|
      Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
 | 
						|
                    diag::ext_string_too_long)
 | 
						|
        << GetNumStringChars() << MaxChars
 | 
						|
        << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
 | 
						|
        << SourceRange(StringToks[0].getLocation(),
 | 
						|
                       StringToks[NumStringToks-1].getLocation());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// copyStringFragment - This function copies from Start to End into ResultPtr.
 | 
						|
/// Performs widening for multi-byte characters.
 | 
						|
void StringLiteralParser::CopyStringFragment(StringRef Fragment) {
 | 
						|
  // Copy the character span over.
 | 
						|
  if (CharByteWidth == 1) {
 | 
						|
    memcpy(ResultPtr, Fragment.data(), Fragment.size());
 | 
						|
    ResultPtr += Fragment.size();
 | 
						|
  } else {
 | 
						|
    // Note: our internal rep of wide char tokens is always little-endian.
 | 
						|
    for (StringRef::iterator I=Fragment.begin(), E=Fragment.end(); I!=E; ++I) {
 | 
						|
      *ResultPtr++ = *I;
 | 
						|
      // Add zeros at the end.
 | 
						|
      for (unsigned i = 1, e = CharByteWidth; i != e; ++i)
 | 
						|
        *ResultPtr++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getOffsetOfStringByte - This function returns the offset of the
 | 
						|
/// specified byte of the string data represented by Token.  This handles
 | 
						|
/// advancing over escape sequences in the string.
 | 
						|
unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
 | 
						|
                                                    unsigned ByteNo) const {
 | 
						|
  // Get the spelling of the token.
 | 
						|
  llvm::SmallString<32> SpellingBuffer;
 | 
						|
  SpellingBuffer.resize(Tok.getLength());
 | 
						|
 | 
						|
  bool StringInvalid = false;
 | 
						|
  const char *SpellingPtr = &SpellingBuffer[0];
 | 
						|
  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
 | 
						|
                                       &StringInvalid);
 | 
						|
  if (StringInvalid)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
 | 
						|
         SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
 | 
						|
 | 
						|
 | 
						|
  const char *SpellingStart = SpellingPtr;
 | 
						|
  const char *SpellingEnd = SpellingPtr+TokLen;
 | 
						|
 | 
						|
  // Skip over the leading quote.
 | 
						|
  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
 | 
						|
  ++SpellingPtr;
 | 
						|
 | 
						|
  // Skip over bytes until we find the offset we're looking for.
 | 
						|
  while (ByteNo) {
 | 
						|
    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
 | 
						|
 | 
						|
    // Step over non-escapes simply.
 | 
						|
    if (*SpellingPtr != '\\') {
 | 
						|
      ++SpellingPtr;
 | 
						|
      --ByteNo;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, this is an escape character.  Advance over it.
 | 
						|
    bool HadError = false;
 | 
						|
    ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
 | 
						|
                      FullSourceLoc(Tok.getLocation(), SM),
 | 
						|
                      CharByteWidth*8, Diags);
 | 
						|
    assert(!HadError && "This method isn't valid on erroneous strings");
 | 
						|
    --ByteNo;
 | 
						|
  }
 | 
						|
 | 
						|
  return SpellingPtr-SpellingStart;
 | 
						|
}
 |