forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1901 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1901 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the pass that transforms the ARM machine instructions into
 | |
| // relocatable machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "ARM.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMInstrInfo.h"
 | |
| #include "ARMRelocations.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/JITCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #ifndef NDEBUG
 | |
| #include <iomanip>
 | |
| #endif
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class ARMCodeEmitter : public MachineFunctionPass {
 | |
|     ARMJITInfo                *JTI;
 | |
|     const ARMInstrInfo        *II;
 | |
|     const TargetData          *TD;
 | |
|     const ARMSubtarget        *Subtarget;
 | |
|     TargetMachine             &TM;
 | |
|     JITCodeEmitter            &MCE;
 | |
|     MachineModuleInfo *MMI;
 | |
|     const std::vector<MachineConstantPoolEntry> *MCPEs;
 | |
|     const std::vector<MachineJumpTableEntry> *MJTEs;
 | |
|     bool IsPIC;
 | |
|     bool IsThumb;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<MachineModuleInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     static char ID;
 | |
|   public:
 | |
|     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
 | |
|       : MachineFunctionPass(ID), JTI(0),
 | |
|         II((const ARMInstrInfo *)tm.getInstrInfo()),
 | |
|         TD(tm.getTargetData()), TM(tm),
 | |
|         MCE(mce), MCPEs(0), MJTEs(0),
 | |
|         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
 | |
| 
 | |
|     /// getBinaryCodeForInstr - This function, generated by the
 | |
|     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
 | |
|     /// machine instructions.
 | |
|     unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "ARM Machine Code Emitter";
 | |
|     }
 | |
| 
 | |
|     void emitInstruction(const MachineInstr &MI);
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     void emitWordLE(unsigned Binary);
 | |
|     void emitDWordLE(uint64_t Binary);
 | |
|     void emitConstPoolInstruction(const MachineInstr &MI);
 | |
|     void emitMOVi32immInstruction(const MachineInstr &MI);
 | |
|     void emitMOVi2piecesInstruction(const MachineInstr &MI);
 | |
|     void emitLEApcrelJTInstruction(const MachineInstr &MI);
 | |
|     void emitPseudoMoveInstruction(const MachineInstr &MI);
 | |
|     void addPCLabel(unsigned LabelID);
 | |
|     void emitPseudoInstruction(const MachineInstr &MI);
 | |
|     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
 | |
|                                     const MCInstrDesc &MCID,
 | |
|                                     const MachineOperand &MO,
 | |
|                                     unsigned OpIdx);
 | |
| 
 | |
|     unsigned getMachineSoImmOpValue(unsigned SoImm);
 | |
|     unsigned getAddrModeSBit(const MachineInstr &MI,
 | |
|                              const MCInstrDesc &MCID) const;
 | |
| 
 | |
|     void emitDataProcessingInstruction(const MachineInstr &MI,
 | |
|                                        unsigned ImplicitRd = 0,
 | |
|                                        unsigned ImplicitRn = 0);
 | |
| 
 | |
|     void emitLoadStoreInstruction(const MachineInstr &MI,
 | |
|                                   unsigned ImplicitRd = 0,
 | |
|                                   unsigned ImplicitRn = 0);
 | |
| 
 | |
|     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
 | |
|                                       unsigned ImplicitRn = 0);
 | |
| 
 | |
|     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitMulFrmInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitExtendInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitMiscArithInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitSaturateInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitBranchInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitInlineJumpTable(unsigned JTIndex);
 | |
| 
 | |
|     void emitMiscBranchInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitVFPArithInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitVFPConversionInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     void emitNEONLaneInstruction(const MachineInstr &MI);
 | |
|     void emitNEONDupInstruction(const MachineInstr &MI);
 | |
|     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
 | |
|     void emitNEON2RegInstruction(const MachineInstr &MI);
 | |
|     void emitNEON3RegInstruction(const MachineInstr &MI);
 | |
| 
 | |
|     /// getMachineOpValue - Return binary encoding of operand. If the machine
 | |
|     /// operand requires relocation, record the relocation and return zero.
 | |
|     unsigned getMachineOpValue(const MachineInstr &MI,
 | |
|                                const MachineOperand &MO) const;
 | |
|     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
 | |
|       return getMachineOpValue(MI, MI.getOperand(OpIdx));
 | |
|     }
 | |
| 
 | |
|     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
 | |
|     //  TableGen'erated getBinaryCodeForInstr() function to encode any
 | |
|     //  operand values, instead querying getMachineOpValue() directly for
 | |
|     //  each operand it needs to encode. Thus, any of the new encoder
 | |
|     //  helper functions can simply return 0 as the values the return
 | |
|     //  are already handled elsewhere. They are placeholders to allow this
 | |
|     //  encoder to continue to function until the MC encoder is sufficiently
 | |
|     //  far along that this one can be eliminated entirely.
 | |
|     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) 
 | |
|       const { return 0; }
 | |
|     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) 
 | |
|       const { return 0; }
 | |
|     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) 
 | |
|       const { return 0; }
 | |
|     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
 | |
|       const { return 0; }
 | |
|     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
 | |
|       unsigned Op) const { return 0; }
 | |
|     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
 | |
|                                                  unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
 | |
|                                             unsigned Op) const { return 0; }
 | |
|     unsigned getMsbOpValue(const MachineInstr &MI,
 | |
|                            unsigned Op) const { return 0; }
 | |
|     unsigned getSsatBitPosValue(const MachineInstr &MI,
 | |
|                                 unsigned Op) const { return 0; }
 | |
|     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
 | |
|       const {return 0; }
 | |
|     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
 | |
|       const { return 0; }
 | |
| 
 | |
|     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const {
 | |
|       // {17-13} = reg
 | |
|       // {12}    = (U)nsigned (add == '1', sub == '0')
 | |
|       // {11-0}  = imm12
 | |
|       const MachineOperand &MO  = MI.getOperand(Op);
 | |
|       const MachineOperand &MO1 = MI.getOperand(Op + 1);
 | |
|       if (!MO.isReg()) {
 | |
|         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
 | |
|         return 0;
 | |
|       }
 | |
|       unsigned Reg = getARMRegisterNumbering(MO.getReg());
 | |
|       int32_t Imm12 = MO1.getImm();
 | |
|       uint32_t Binary;
 | |
|       Binary = Imm12 & 0xfff;
 | |
|       if (Imm12 >= 0)
 | |
|         Binary |= (1 << 12);
 | |
|       Binary |= (Reg << 13);
 | |
|       return Binary;
 | |
|     }
 | |
| 
 | |
|     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
 | |
|       const { return 0;}
 | |
|     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
 | |
|       const { return 0;}
 | |
|     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
 | |
|       const { return 0;}
 | |
|     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
 | |
|       // {17-13} = reg
 | |
|       // {12}    = (U)nsigned (add == '1', sub == '0')
 | |
|       // {11-0}  = imm12
 | |
|       const MachineOperand &MO  = MI.getOperand(Op);
 | |
|       const MachineOperand &MO1 = MI.getOperand(Op + 1);
 | |
|       if (!MO.isReg()) {
 | |
|         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
 | |
|         return 0;
 | |
|       }
 | |
|       unsigned Reg = getARMRegisterNumbering(MO.getReg());
 | |
|       int32_t Imm12 = MO1.getImm();
 | |
| 
 | |
|       // Special value for #-0
 | |
|       if (Imm12 == INT32_MIN)
 | |
|         Imm12 = 0;
 | |
| 
 | |
|       // Immediate is always encoded as positive. The 'U' bit controls add vs
 | |
|       // sub.
 | |
|       bool isAdd = true;
 | |
|       if (Imm12 < 0) {
 | |
|         Imm12 = -Imm12;
 | |
|         isAdd = false;
 | |
|       }
 | |
| 
 | |
|       uint32_t Binary = Imm12 & 0xfff;
 | |
|       if (isAdd)
 | |
|         Binary |= (1 << 12);
 | |
|       Binary |= (Reg << 13);
 | |
|       return Binary;
 | |
|     }
 | |
|     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
| 
 | |
|     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
| 
 | |
|     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
|     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
 | |
|       const { return 0; }
 | |
| 
 | |
|     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
 | |
|     /// machine operand requires relocation, record the relocation and return
 | |
|     /// zero.
 | |
|     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
 | |
|                             unsigned Reloc);
 | |
| 
 | |
|     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
 | |
|     ///
 | |
|     unsigned getShiftOp(unsigned Imm) const ;
 | |
| 
 | |
|     /// Routines that handle operands which add machine relocations which are
 | |
|     /// fixed up by the relocation stage.
 | |
|     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
 | |
|                            bool MayNeedFarStub,  bool Indirect,
 | |
|                            intptr_t ACPV = 0) const;
 | |
|     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
 | |
|     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
 | |
|     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
 | |
|     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
 | |
|                                intptr_t JTBase = 0) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ARMCodeEmitter::ID = 0;
 | |
| 
 | |
| /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
 | |
| /// code to the specified MCE object.
 | |
| FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
 | |
|                                                 JITCodeEmitter &JCE) {
 | |
|   return new ARMCodeEmitter(TM, JCE);
 | |
| }
 | |
| 
 | |
| bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | |
|           MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | |
|          "JIT relocation model must be set to static or default!");
 | |
|   JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
 | |
|   II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
 | |
|   TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
 | |
|   Subtarget = &TM.getSubtarget<ARMSubtarget>();
 | |
|   MCPEs = &MF.getConstantPool()->getConstants();
 | |
|   MJTEs = 0;
 | |
|   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
 | |
|   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
 | |
|   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
 | |
|   JTI->Initialize(MF, IsPIC);
 | |
|   MMI = &getAnalysis<MachineModuleInfo>();
 | |
|   MCE.setModuleInfo(MMI);
 | |
| 
 | |
|   do {
 | |
|     DEBUG(errs() << "JITTing function '"
 | |
|           << MF.getFunction()->getName() << "'\n");
 | |
|     MCE.startFunction(MF);
 | |
|     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
 | |
|          MBB != E; ++MBB) {
 | |
|       MCE.StartMachineBasicBlock(MBB);
 | |
|       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | |
|            I != E; ++I)
 | |
|         emitInstruction(*I);
 | |
|     }
 | |
|   } while (MCE.finishFunction(MF));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
 | |
| ///
 | |
| unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
 | |
|   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
 | |
|   default: llvm_unreachable("Unknown shift opc!");
 | |
|   case ARM_AM::asr: return 2;
 | |
|   case ARM_AM::lsl: return 0;
 | |
|   case ARM_AM::lsr: return 1;
 | |
|   case ARM_AM::ror:
 | |
|   case ARM_AM::rrx: return 3;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
 | |
| /// machine operand requires relocation, record the relocation and return zero.
 | |
| unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
 | |
|                                         const MachineOperand &MO,
 | |
|                                         unsigned Reloc) {
 | |
|   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
 | |
|       && "Relocation to this function should be for movt or movw");
 | |
| 
 | |
|   if (MO.isImm())
 | |
|     return static_cast<unsigned>(MO.getImm());
 | |
|   else if (MO.isGlobal())
 | |
|     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
 | |
|   else if (MO.isSymbol())
 | |
|     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
 | |
|   else if (MO.isMBB())
 | |
|     emitMachineBasicBlock(MO.getMBB(), Reloc);
 | |
|   else {
 | |
| #ifndef NDEBUG
 | |
|     errs() << MO;
 | |
| #endif
 | |
|     llvm_unreachable("Unsupported operand type for movw/movt");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getMachineOpValue - Return binary encoding of operand. If the machine
 | |
| /// operand requires relocation, record the relocation and return zero.
 | |
| unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
 | |
|                                            const MachineOperand &MO) const {
 | |
|   if (MO.isReg())
 | |
|     return getARMRegisterNumbering(MO.getReg());
 | |
|   else if (MO.isImm())
 | |
|     return static_cast<unsigned>(MO.getImm());
 | |
|   else if (MO.isGlobal())
 | |
|     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
 | |
|   else if (MO.isSymbol())
 | |
|     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
 | |
|   else if (MO.isCPI()) {
 | |
|     const MCInstrDesc &MCID = MI.getDesc();
 | |
|     // For VFP load, the immediate offset is multiplied by 4.
 | |
|     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
 | |
|       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
 | |
|     emitConstPoolAddress(MO.getIndex(), Reloc);
 | |
|   } else if (MO.isJTI())
 | |
|     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
 | |
|   else if (MO.isMBB())
 | |
|     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
 | |
|   else
 | |
|     llvm_unreachable("Unable to encode MachineOperand!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddress - Emit the specified address to the code stream.
 | |
| ///
 | |
| void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
 | |
|                                        bool MayNeedFarStub, bool Indirect,
 | |
|                                        intptr_t ACPV) const {
 | |
|   MachineRelocation MR = Indirect
 | |
|     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
 | |
|                                            const_cast<GlobalValue *>(GV),
 | |
|                                            ACPV, MayNeedFarStub)
 | |
|     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | |
|                                const_cast<GlobalValue *>(GV), ACPV,
 | |
|                                MayNeedFarStub);
 | |
|   MCE.addRelocation(MR);
 | |
| }
 | |
| 
 | |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void ARMCodeEmitter::
 | |
| emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
 | |
|   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | |
|                                                  Reloc, ES));
 | |
| }
 | |
| 
 | |
| /// emitConstPoolAddress - Arrange for the address of an constant pool
 | |
| /// to be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
 | |
|   // Tell JIT emitter we'll resolve the address.
 | |
|   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, CPI, 0, true));
 | |
| }
 | |
| 
 | |
| /// emitJumpTableAddress - Arrange for the address of a jump table to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void ARMCodeEmitter::
 | |
| emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
 | |
|   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, JTIndex, 0, true));
 | |
| }
 | |
| 
 | |
| /// emitMachineBasicBlock - Emit the specified address basic block.
 | |
| void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
 | |
|                                            unsigned Reloc,
 | |
|                                            intptr_t JTBase) const {
 | |
|   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | |
|                                              Reloc, BB, JTBase));
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitWordLE(unsigned Binary) {
 | |
|   DEBUG(errs() << "  0x";
 | |
|         errs().write_hex(Binary) << "\n");
 | |
|   MCE.emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
 | |
|   DEBUG(errs() << "  0x";
 | |
|         errs().write_hex(Binary) << "\n");
 | |
|   MCE.emitDWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
 | |
|   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
 | |
| 
 | |
|   MCE.processDebugLoc(MI.getDebugLoc(), true);
 | |
| 
 | |
|   ++NumEmitted;  // Keep track of the # of mi's emitted
 | |
|   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
 | |
|   default: {
 | |
|     llvm_unreachable("Unhandled instruction encoding format!");
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::MiscFrm:
 | |
|     if (MI.getOpcode() == ARM::LEApcrelJT) {
 | |
|       // Materialize jumptable address.
 | |
|       emitLEApcrelJTInstruction(MI);
 | |
|       break;
 | |
|     }
 | |
|     llvm_unreachable("Unhandled instruction encoding!");
 | |
|     break;
 | |
|   case ARMII::Pseudo:
 | |
|     emitPseudoInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::DPFrm:
 | |
|   case ARMII::DPSoRegFrm:
 | |
|     emitDataProcessingInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::LdFrm:
 | |
|   case ARMII::StFrm:
 | |
|     emitLoadStoreInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::LdMiscFrm:
 | |
|   case ARMII::StMiscFrm:
 | |
|     emitMiscLoadStoreInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::LdStMulFrm:
 | |
|     emitLoadStoreMultipleInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::MulFrm:
 | |
|     emitMulFrmInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::ExtFrm:
 | |
|     emitExtendInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::ArithMiscFrm:
 | |
|     emitMiscArithInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::SatFrm:
 | |
|     emitSaturateInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::BrFrm:
 | |
|     emitBranchInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::BrMiscFrm:
 | |
|     emitMiscBranchInstruction(MI);
 | |
|     break;
 | |
|   // VFP instructions.
 | |
|   case ARMII::VFPUnaryFrm:
 | |
|   case ARMII::VFPBinaryFrm:
 | |
|     emitVFPArithInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::VFPConv1Frm:
 | |
|   case ARMII::VFPConv2Frm:
 | |
|   case ARMII::VFPConv3Frm:
 | |
|   case ARMII::VFPConv4Frm:
 | |
|   case ARMII::VFPConv5Frm:
 | |
|     emitVFPConversionInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::VFPLdStFrm:
 | |
|     emitVFPLoadStoreInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::VFPLdStMulFrm:
 | |
|     emitVFPLoadStoreMultipleInstruction(MI);
 | |
|     break;
 | |
| 
 | |
|   // NEON instructions.
 | |
|   case ARMII::NGetLnFrm:
 | |
|   case ARMII::NSetLnFrm:
 | |
|     emitNEONLaneInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::NDupFrm:
 | |
|     emitNEONDupInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::N1RegModImmFrm:
 | |
|     emitNEON1RegModImmInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::N2RegFrm:
 | |
|     emitNEON2RegInstruction(MI);
 | |
|     break;
 | |
|   case ARMII::N3RegFrm:
 | |
|     emitNEON3RegInstruction(MI);
 | |
|     break;
 | |
|   }
 | |
|   MCE.processDebugLoc(MI.getDebugLoc(), false);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
 | |
|   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
 | |
|   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
 | |
|   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
 | |
| 
 | |
|   // Remember the CONSTPOOL_ENTRY address for later relocation.
 | |
|   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
 | |
| 
 | |
|   // Emit constpool island entry. In most cases, the actual values will be
 | |
|   // resolved and relocated after code emission.
 | |
|   if (MCPE.isMachineConstantPoolEntry()) {
 | |
|     ARMConstantPoolValue *ACPV =
 | |
|       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
 | |
| 
 | |
|     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
 | |
|           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
 | |
| 
 | |
|     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
 | |
|     const GlobalValue *GV = ACPV->getGV();
 | |
|     if (GV) {
 | |
|       Reloc::Model RelocM = TM.getRelocationModel();
 | |
|       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
 | |
|                         isa<Function>(GV),
 | |
|                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
 | |
|                         (intptr_t)ACPV);
 | |
|      } else  {
 | |
|       emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
 | |
|     }
 | |
|     emitWordLE(0);
 | |
|   } else {
 | |
|     const Constant *CV = MCPE.Val.ConstVal;
 | |
| 
 | |
|     DEBUG({
 | |
|         errs() << "  ** Constant pool #" << CPI << " @ "
 | |
|                << (void*)MCE.getCurrentPCValue() << " ";
 | |
|         if (const Function *F = dyn_cast<Function>(CV))
 | |
|           errs() << F->getName();
 | |
|         else
 | |
|           errs() << *CV;
 | |
|         errs() << '\n';
 | |
|       });
 | |
| 
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
 | |
|       emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
 | |
|       emitWordLE(0);
 | |
|     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|       uint32_t Val = uint32_t(*CI->getValue().getRawData());
 | |
|       emitWordLE(Val);
 | |
|     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|       if (CFP->getType()->isFloatTy())
 | |
|         emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | |
|       else if (CFP->getType()->isDoubleTy())
 | |
|         emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | |
|       else {
 | |
|         llvm_unreachable("Unable to handle this constantpool entry!");
 | |
|       }
 | |
|     } else {
 | |
|       llvm_unreachable("Unable to handle this constantpool entry!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
 | |
|   const MachineOperand &MO0 = MI.getOperand(0);
 | |
|   const MachineOperand &MO1 = MI.getOperand(1);
 | |
| 
 | |
|   // Emit the 'movw' instruction.
 | |
|   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
 | |
| 
 | |
|   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
 | |
| 
 | |
|   // Set the conditional execution predicate.
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode Rd.
 | |
|   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode imm16 as imm4:imm12
 | |
|   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
 | |
|   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
 | |
|   emitWordLE(Binary);
 | |
| 
 | |
|   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
 | |
|   // Emit the 'movt' instruction.
 | |
|   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
 | |
| 
 | |
|   // Set the conditional execution predicate.
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode Rd.
 | |
|   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode imm16 as imm4:imm1, same as movw above.
 | |
|   Binary |= Hi16 & 0xFFF;
 | |
|   Binary |= ((Hi16 >> 12) & 0xF) << 16;
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
 | |
|   const MachineOperand &MO0 = MI.getOperand(0);
 | |
|   const MachineOperand &MO1 = MI.getOperand(1);
 | |
|   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
 | |
|                                                   "Not a valid so_imm value!");
 | |
|   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
 | |
|   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
 | |
| 
 | |
|   // Emit the 'mov' instruction.
 | |
|   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
 | |
| 
 | |
|   // Set the conditional execution predicate.
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode Rd.
 | |
|   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode so_imm.
 | |
|   // Set bit I(25) to identify this is the immediate form of <shifter_op>
 | |
|   Binary |= 1 << ARMII::I_BitShift;
 | |
|   Binary |= getMachineSoImmOpValue(V1);
 | |
|   emitWordLE(Binary);
 | |
| 
 | |
|   // Now the 'orr' instruction.
 | |
|   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
 | |
| 
 | |
|   // Set the conditional execution predicate.
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode Rd.
 | |
|   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode Rn.
 | |
|   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
 | |
| 
 | |
|   // Encode so_imm.
 | |
|   // Set bit I(25) to identify this is the immediate form of <shifter_op>
 | |
|   Binary |= 1 << ARMII::I_BitShift;
 | |
|   Binary |= getMachineSoImmOpValue(V2);
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
 | |
|   // It's basically add r, pc, (LJTI - $+8)
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Emit the 'add' instruction.
 | |
|   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode S bit if MI modifies CPSR.
 | |
|   Binary |= getAddrModeSBit(MI, MCID);
 | |
| 
 | |
|   // Encode Rd.
 | |
|   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode Rn which is PC.
 | |
|   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
 | |
| 
 | |
|   // Encode the displacement.
 | |
|   Binary |= 1 << ARMII::I_BitShift;
 | |
|   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
 | |
|   unsigned Opcode = MI.getDesc().Opcode;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode S bit if MI modifies CPSR.
 | |
|   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
 | |
|     Binary |= 1 << ARMII::S_BitShift;
 | |
| 
 | |
|   // Encode register def if there is one.
 | |
|   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode the shift operation.
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ARM::RRX:
 | |
|     // rrx
 | |
|     Binary |= 0x6 << 4;
 | |
|     break;
 | |
|   case ARM::MOVsrl_flag:
 | |
|     // lsr #1
 | |
|     Binary |= (0x2 << 4) | (1 << 7);
 | |
|     break;
 | |
|   case ARM::MOVsra_flag:
 | |
|     // asr #1
 | |
|     Binary |= (0x4 << 4) | (1 << 7);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Encode register Rm.
 | |
|   Binary |= getMachineOpValue(MI, 1);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
 | |
|   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
 | |
|         << (void*)MCE.getCurrentPCValue() << '\n');
 | |
|   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
 | |
|   unsigned Opcode = MI.getDesc().Opcode;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
 | |
|   case ARM::BX_CALL:
 | |
|   case ARM::BMOVPCRX_CALL:
 | |
|   case ARM::BXr9_CALL:
 | |
|   case ARM::BMOVPCRXr9_CALL: {
 | |
|     // First emit mov lr, pc
 | |
|     unsigned Binary = 0x01a0e00f;
 | |
|     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
|     emitWordLE(Binary);
 | |
| 
 | |
|     // and then emit the branch.
 | |
|     emitMiscBranchInstruction(MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::INLINEASM: {
 | |
|     // We allow inline assembler nodes with empty bodies - they can
 | |
|     // implicitly define registers, which is ok for JIT.
 | |
|     if (MI.getOperand(0).getSymbolName()[0]) {
 | |
|       report_fatal_error("JIT does not support inline asm!");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::PROLOG_LABEL:
 | |
|   case TargetOpcode::EH_LABEL:
 | |
|     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
 | |
|     break;
 | |
|   case TargetOpcode::IMPLICIT_DEF:
 | |
|   case TargetOpcode::KILL:
 | |
|     // Do nothing.
 | |
|     break;
 | |
|   case ARM::CONSTPOOL_ENTRY:
 | |
|     emitConstPoolInstruction(MI);
 | |
|     break;
 | |
|   case ARM::PICADD: {
 | |
|     // Remember of the address of the PC label for relocation later.
 | |
|     addPCLabel(MI.getOperand(2).getImm());
 | |
|     // PICADD is just an add instruction that implicitly read pc.
 | |
|     emitDataProcessingInstruction(MI, 0, ARM::PC);
 | |
|     break;
 | |
|   }
 | |
|   case ARM::PICLDR:
 | |
|   case ARM::PICLDRB:
 | |
|   case ARM::PICSTR:
 | |
|   case ARM::PICSTRB: {
 | |
|     // Remember of the address of the PC label for relocation later.
 | |
|     addPCLabel(MI.getOperand(2).getImm());
 | |
|     // These are just load / store instructions that implicitly read pc.
 | |
|     emitLoadStoreInstruction(MI, 0, ARM::PC);
 | |
|     break;
 | |
|   }
 | |
|   case ARM::PICLDRH:
 | |
|   case ARM::PICLDRSH:
 | |
|   case ARM::PICLDRSB:
 | |
|   case ARM::PICSTRH: {
 | |
|     // Remember of the address of the PC label for relocation later.
 | |
|     addPCLabel(MI.getOperand(2).getImm());
 | |
|     // These are just load / store instructions that implicitly read pc.
 | |
|     emitMiscLoadStoreInstruction(MI, ARM::PC);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ARM::MOVi32imm:
 | |
|     // Two instructions to materialize a constant.
 | |
|     if (Subtarget->hasV6T2Ops())
 | |
|       emitMOVi32immInstruction(MI);
 | |
|     else
 | |
|       emitMOVi2piecesInstruction(MI);
 | |
|     break;
 | |
| 
 | |
|   case ARM::LEApcrelJT:
 | |
|     // Materialize jumptable address.
 | |
|     emitLEApcrelJTInstruction(MI);
 | |
|     break;
 | |
|   case ARM::RRX:
 | |
|   case ARM::MOVsrl_flag:
 | |
|   case ARM::MOVsra_flag:
 | |
|     emitPseudoMoveInstruction(MI);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
 | |
|                                                 const MCInstrDesc &MCID,
 | |
|                                                 const MachineOperand &MO,
 | |
|                                                 unsigned OpIdx) {
 | |
|   unsigned Binary = getMachineOpValue(MI, MO);
 | |
| 
 | |
|   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
 | |
|   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
 | |
|   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
 | |
| 
 | |
|   // Encode the shift opcode.
 | |
|   unsigned SBits = 0;
 | |
|   unsigned Rs = MO1.getReg();
 | |
|   if (Rs) {
 | |
|     // Set shift operand (bit[7:4]).
 | |
|     // LSL - 0001
 | |
|     // LSR - 0011
 | |
|     // ASR - 0101
 | |
|     // ROR - 0111
 | |
|     // RRX - 0110 and bit[11:8] clear.
 | |
|     switch (SOpc) {
 | |
|     default: llvm_unreachable("Unknown shift opc!");
 | |
|     case ARM_AM::lsl: SBits = 0x1; break;
 | |
|     case ARM_AM::lsr: SBits = 0x3; break;
 | |
|     case ARM_AM::asr: SBits = 0x5; break;
 | |
|     case ARM_AM::ror: SBits = 0x7; break;
 | |
|     case ARM_AM::rrx: SBits = 0x6; break;
 | |
|     }
 | |
|   } else {
 | |
|     // Set shift operand (bit[6:4]).
 | |
|     // LSL - 000
 | |
|     // LSR - 010
 | |
|     // ASR - 100
 | |
|     // ROR - 110
 | |
|     switch (SOpc) {
 | |
|     default: llvm_unreachable("Unknown shift opc!");
 | |
|     case ARM_AM::lsl: SBits = 0x0; break;
 | |
|     case ARM_AM::lsr: SBits = 0x2; break;
 | |
|     case ARM_AM::asr: SBits = 0x4; break;
 | |
|     case ARM_AM::ror: SBits = 0x6; break;
 | |
|     }
 | |
|   }
 | |
|   Binary |= SBits << 4;
 | |
|   if (SOpc == ARM_AM::rrx)
 | |
|     return Binary;
 | |
| 
 | |
|   // Encode the shift operation Rs or shift_imm (except rrx).
 | |
|   if (Rs) {
 | |
|     // Encode Rs bit[11:8].
 | |
|     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
 | |
|     return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
 | |
|   }
 | |
| 
 | |
|   // Encode shift_imm bit[11:7].
 | |
|   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
 | |
| }
 | |
| 
 | |
| unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
 | |
|   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
 | |
|   assert(SoImmVal != -1 && "Not a valid so_imm value!");
 | |
| 
 | |
|   // Encode rotate_imm.
 | |
|   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
 | |
|     << ARMII::SoRotImmShift;
 | |
| 
 | |
|   // Encode immed_8.
 | |
|   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
 | |
|                                          const MCInstrDesc &MCID) const {
 | |
|   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e; --i){
 | |
|     const MachineOperand &MO = MI.getOperand(i-1);
 | |
|     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
 | |
|       return 1 << ARMII::S_BitShift;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
 | |
|                                                    unsigned ImplicitRd,
 | |
|                                                    unsigned ImplicitRn) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode S bit if MI modifies CPSR.
 | |
|   Binary |= getAddrModeSBit(MI, MCID);
 | |
| 
 | |
|   // Encode register def if there is one.
 | |
|   unsigned NumDefs = MCID.getNumDefs();
 | |
|   unsigned OpIdx = 0;
 | |
|   if (NumDefs)
 | |
|     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | |
|   else if (ImplicitRd)
 | |
|     // Special handling for implicit use (e.g. PC).
 | |
|     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
 | |
| 
 | |
|   if (MCID.Opcode == ARM::MOVi16) {
 | |
|       // Get immediate from MI.
 | |
|       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
 | |
|                       ARM::reloc_arm_movw);
 | |
|       // Encode imm which is the same as in emitMOVi32immInstruction().
 | |
|       Binary |= Lo16 & 0xFFF;
 | |
|       Binary |= ((Lo16 >> 12) & 0xF) << 16;
 | |
|       emitWordLE(Binary);
 | |
|       return;
 | |
|   } else if(MCID.Opcode == ARM::MOVTi16) {
 | |
|       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
 | |
|                        ARM::reloc_arm_movt) >> 16);
 | |
|       Binary |= Hi16 & 0xFFF;
 | |
|       Binary |= ((Hi16 >> 12) & 0xF) << 16;
 | |
|       emitWordLE(Binary);
 | |
|       return;
 | |
|   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
 | |
|       uint32_t v = ~MI.getOperand(2).getImm();
 | |
|       int32_t lsb = CountTrailingZeros_32(v);
 | |
|       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
 | |
|       // Instr{20-16} = msb, Instr{11-7} = lsb
 | |
|       Binary |= (msb & 0x1F) << 16;
 | |
|       Binary |= (lsb & 0x1F) << 7;
 | |
|       emitWordLE(Binary);
 | |
|       return;
 | |
|   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
 | |
|       // Encode Rn in Instr{0-3}
 | |
|       Binary |= getMachineOpValue(MI, OpIdx++);
 | |
| 
 | |
|       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
 | |
|       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
 | |
| 
 | |
|       // Instr{20-16} = widthm1, Instr{11-7} = lsb
 | |
|       Binary |= (widthm1 & 0x1F) << 16;
 | |
|       Binary |= (lsb & 0x1F) << 7;
 | |
|       emitWordLE(Binary);
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
 | |
|   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   // Encode first non-shifter register operand if there is one.
 | |
|   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
 | |
|   if (!isUnary) {
 | |
|     if (ImplicitRn)
 | |
|       // Special handling for implicit use (e.g. PC).
 | |
|       Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
 | |
|     else {
 | |
|       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
 | |
|       ++OpIdx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Encode shifter operand.
 | |
|   const MachineOperand &MO = MI.getOperand(OpIdx);
 | |
|   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
 | |
|     // Encode SoReg.
 | |
|     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (MO.isReg()) {
 | |
|     // Encode register Rm.
 | |
|     emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Encode so_imm.
 | |
|   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
 | |
|                                               unsigned ImplicitRd,
 | |
|                                               unsigned ImplicitRn) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   unsigned Form = MCID.TSFlags & ARMII::FormMask;
 | |
|   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
 | |
|   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
 | |
|       MI.getOpcode() == ARM::STRi12) {
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
| 
 | |
|   // Operand 0 of a pre- and post-indexed store is the address base
 | |
|   // writeback. Skip it.
 | |
|   bool Skipped = false;
 | |
|   if (IsPrePost && Form == ARMII::StFrm) {
 | |
|     ++OpIdx;
 | |
|     Skipped = true;
 | |
|   }
 | |
| 
 | |
|   // Set first operand
 | |
|   if (ImplicitRd)
 | |
|     // Special handling for implicit use (e.g. PC).
 | |
|     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
 | |
|   else
 | |
|     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Set second operand
 | |
|   if (ImplicitRn)
 | |
|     // Special handling for implicit use (e.g. PC).
 | |
|     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
 | |
|   else
 | |
|     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | |
| 
 | |
|   // If this is a two-address operand, skip it. e.g. LDR_PRE.
 | |
|   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | |
|   unsigned AM2Opc = (ImplicitRn == ARM::PC)
 | |
|     ? 0 : MI.getOperand(OpIdx+1).getImm();
 | |
| 
 | |
|   // Set bit U(23) according to sign of immed value (positive or negative).
 | |
|   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
 | |
|              ARMII::U_BitShift);
 | |
|   if (!MO2.getReg()) { // is immediate
 | |
|     if (ARM_AM::getAM2Offset(AM2Opc))
 | |
|       // Set the value of offset_12 field
 | |
|       Binary |= ARM_AM::getAM2Offset(AM2Opc);
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Set bit I(25), because this is not in immediate encoding.
 | |
|   Binary |= 1 << ARMII::I_BitShift;
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
 | |
|   // Set bit[3:0] to the corresponding Rm register
 | |
|   Binary |= getARMRegisterNumbering(MO2.getReg());
 | |
| 
 | |
|   // If this instr is in scaled register offset/index instruction, set
 | |
|   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
 | |
|   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
 | |
|     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
 | |
|     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
 | |
|   }
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
 | |
|                                                   unsigned ImplicitRn) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   unsigned Form = MCID.TSFlags & ARMII::FormMask;
 | |
|   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
| 
 | |
|   // Operand 0 of a pre- and post-indexed store is the address base
 | |
|   // writeback. Skip it.
 | |
|   bool Skipped = false;
 | |
|   if (IsPrePost && Form == ARMII::StMiscFrm) {
 | |
|     ++OpIdx;
 | |
|     Skipped = true;
 | |
|   }
 | |
| 
 | |
|   // Set first operand
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Skip LDRD and STRD's second operand.
 | |
|   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   // Set second operand
 | |
|   if (ImplicitRn)
 | |
|     // Special handling for implicit use (e.g. PC).
 | |
|     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
 | |
|   else
 | |
|     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | |
| 
 | |
|   // If this is a two-address operand, skip it. e.g. LDRH_POST.
 | |
|   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | |
|   unsigned AM3Opc = (ImplicitRn == ARM::PC)
 | |
|     ? 0 : MI.getOperand(OpIdx+1).getImm();
 | |
| 
 | |
|   // Set bit U(23) according to sign of immed value (positive or negative)
 | |
|   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
 | |
|              ARMII::U_BitShift);
 | |
| 
 | |
|   // If this instr is in register offset/index encoding, set bit[3:0]
 | |
|   // to the corresponding Rm register.
 | |
|   if (MO2.getReg()) {
 | |
|     Binary |= getARMRegisterNumbering(MO2.getReg());
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // This instr is in immediate offset/index encoding, set bit 22 to 1.
 | |
|   Binary |= 1 << ARMII::AM3_I_BitShift;
 | |
|   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
 | |
|     // Set operands
 | |
|     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
 | |
|     Binary |= (ImmOffs & 0xF);                      // immedL
 | |
|   }
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| static unsigned getAddrModeUPBits(unsigned Mode) {
 | |
|   unsigned Binary = 0;
 | |
| 
 | |
|   // Set addressing mode by modifying bits U(23) and P(24)
 | |
|   // IA - Increment after  - bit U = 1 and bit P = 0
 | |
|   // IB - Increment before - bit U = 1 and bit P = 1
 | |
|   // DA - Decrement after  - bit U = 0 and bit P = 0
 | |
|   // DB - Decrement before - bit U = 0 and bit P = 1
 | |
|   switch (Mode) {
 | |
|   default: llvm_unreachable("Unknown addressing sub-mode!");
 | |
|   case ARM_AM::da:                                     break;
 | |
|   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
 | |
|   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
 | |
|   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
 | |
|   }
 | |
| 
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Skip operand 0 of an instruction with base register update.
 | |
|   unsigned OpIdx = 0;
 | |
|   if (IsUpdating)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   // Set base address operand
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | |
| 
 | |
|   // Set addressing mode by modifying bits U(23) and P(24)
 | |
|   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
 | |
|   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
 | |
| 
 | |
|   // Set bit W(21)
 | |
|   if (IsUpdating)
 | |
|     Binary |= 0x1 << ARMII::W_BitShift;
 | |
| 
 | |
|   // Set registers
 | |
|   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || MO.isImplicit())
 | |
|       break;
 | |
|     unsigned RegNum = getARMRegisterNumbering(MO.getReg());
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
 | |
|            RegNum < 16);
 | |
|     Binary |= 0x1 << RegNum;
 | |
|   }
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode S bit if MI modifies CPSR.
 | |
|   Binary |= getAddrModeSBit(MI, MCID);
 | |
| 
 | |
|   // 32x32->64bit operations have two destination registers. The number
 | |
|   // of register definitions will tell us if that's what we're dealing with.
 | |
|   unsigned OpIdx = 0;
 | |
|   if (MCID.getNumDefs() == 2)
 | |
|     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
 | |
| 
 | |
|   // Encode Rd
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
 | |
| 
 | |
|   // Encode Rm
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++);
 | |
| 
 | |
|   // Encode Rs
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
 | |
| 
 | |
|   // Many multiple instructions (e.g. MLA) have three src operands. Encode
 | |
|   // it as Rn (for multiply, that's in the same offset as RdLo.
 | |
|   if (MCID.getNumOperands() > OpIdx &&
 | |
|       !MCID.OpInfo[OpIdx].isPredicate() &&
 | |
|       !MCID.OpInfo[OpIdx].isOptionalDef())
 | |
|     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
| 
 | |
|   // Encode Rd
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | |
| 
 | |
|   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
 | |
|   const MachineOperand &MO2 = MI.getOperand(OpIdx);
 | |
|   if (MO2.isReg()) {
 | |
|     // Two register operand form.
 | |
|     // Encode Rn.
 | |
|     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
 | |
| 
 | |
|     // Encode Rm.
 | |
|     Binary |= getMachineOpValue(MI, MO2);
 | |
|     ++OpIdx;
 | |
|   } else {
 | |
|     Binary |= getMachineOpValue(MI, MO1);
 | |
|   }
 | |
| 
 | |
|   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
 | |
|   if (MI.getOperand(OpIdx).isImm() &&
 | |
|       !MCID.OpInfo[OpIdx].isPredicate() &&
 | |
|       !MCID.OpInfo[OpIdx].isOptionalDef())
 | |
|     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // PKH instructions are finished at this point
 | |
|   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
| 
 | |
|   // Encode Rd
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
 | |
| 
 | |
|   const MachineOperand &MO = MI.getOperand(OpIdx++);
 | |
|   if (OpIdx == MCID.getNumOperands() ||
 | |
|       MCID.OpInfo[OpIdx].isPredicate() ||
 | |
|       MCID.OpInfo[OpIdx].isOptionalDef()) {
 | |
|     // Encode Rm and it's done.
 | |
|     Binary |= getMachineOpValue(MI, MO);
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Encode Rn.
 | |
|   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
 | |
| 
 | |
|   // Encode Rm.
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++);
 | |
| 
 | |
|   // Encode shift_imm.
 | |
|   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
 | |
|   if (MCID.Opcode == ARM::PKHTB) {
 | |
|     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
 | |
|     if (ShiftAmt == 32)
 | |
|       ShiftAmt = 0;
 | |
|   }
 | |
|   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
 | |
|   Binary |= ShiftAmt << ARMII::ShiftShift;
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGen.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Encode Rd
 | |
|   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
 | |
| 
 | |
|   // Encode saturate bit position.
 | |
|   unsigned Pos = MI.getOperand(1).getImm();
 | |
|   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
 | |
|     Pos -= 1;
 | |
|   assert((Pos < 16 || (Pos < 32 &&
 | |
|                        MCID.Opcode != ARM::SSAT16 &&
 | |
|                        MCID.Opcode != ARM::USAT16)) &&
 | |
|          "saturate bit position out of range");
 | |
|   Binary |= Pos << 16;
 | |
| 
 | |
|   // Encode Rm
 | |
|   Binary |= getMachineOpValue(MI, 2);
 | |
| 
 | |
|   // Encode shift_imm.
 | |
|   if (MCID.getNumOperands() == 4) {
 | |
|     unsigned ShiftOp = MI.getOperand(3).getImm();
 | |
|     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
 | |
|     if (Opc == ARM_AM::asr)
 | |
|       Binary |= (1 << 6);
 | |
|     unsigned ShiftAmt = MI.getOperand(3).getImm();
 | |
|     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
 | |
|       ShiftAmt = 0;
 | |
|     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
 | |
|     Binary |= ShiftAmt << ARMII::ShiftShift;
 | |
|   }
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   if (MCID.Opcode == ARM::TPsoft) {
 | |
|     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
 | |
|   }
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Set signed_immed_24 field
 | |
|   Binary |= getMachineOpValue(MI, 0);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
 | |
|   // Remember the base address of the inline jump table.
 | |
|   uintptr_t JTBase = MCE.getCurrentPCValue();
 | |
|   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
 | |
|   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
 | |
|                << '\n');
 | |
| 
 | |
|   // Now emit the jump table entries.
 | |
|   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
 | |
|   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
 | |
|     if (IsPIC)
 | |
|       // DestBB address - JT base.
 | |
|       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
 | |
|     else
 | |
|       // Absolute DestBB address.
 | |
|       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
 | |
|     emitWordLE(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Handle jump tables.
 | |
|   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
 | |
|     // First emit a ldr pc, [] instruction.
 | |
|     emitDataProcessingInstruction(MI, ARM::PC);
 | |
| 
 | |
|     // Then emit the inline jump table.
 | |
|     unsigned JTIndex =
 | |
|       (MCID.Opcode == ARM::BR_JTr)
 | |
|       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
 | |
|     emitInlineJumpTable(JTIndex);
 | |
|     return;
 | |
|   } else if (MCID.Opcode == ARM::BR_JTm) {
 | |
|     // First emit a ldr pc, [] instruction.
 | |
|     emitLoadStoreInstruction(MI, ARM::PC);
 | |
| 
 | |
|     // Then emit the inline jump table.
 | |
|     emitInlineJumpTable(MI.getOperand(3).getIndex());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
 | |
|     // The return register is LR.
 | |
|     Binary |= getARMRegisterNumbering(ARM::LR);
 | |
|   else
 | |
|     // otherwise, set the return register
 | |
|     Binary |= getMachineOpValue(MI, 0);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegD = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
 | |
|   RegD = getARMRegisterNumbering(RegD);
 | |
|   if (!isSPVFP)
 | |
|     Binary |=   RegD               << ARMII::RegRdShift;
 | |
|   else {
 | |
|     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
 | |
|     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
 | |
|   }
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegN = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
 | |
|   RegN = getARMRegisterNumbering(RegN);
 | |
|   if (!isSPVFP)
 | |
|     Binary |=   RegN               << ARMII::RegRnShift;
 | |
|   else {
 | |
|     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
 | |
|     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
 | |
|   }
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegM = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
 | |
|   RegM = getARMRegisterNumbering(RegM);
 | |
|   if (!isSPVFP)
 | |
|     Binary |=   RegM;
 | |
|   else {
 | |
|     Binary |= ((RegM & 0x1E) >> 1);
 | |
|     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
 | |
|   }
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
|   assert((Binary & ARMII::D_BitShift) == 0 &&
 | |
|          (Binary & ARMII::N_BitShift) == 0 &&
 | |
|          (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
 | |
| 
 | |
|   // Encode Dd / Sd.
 | |
|   Binary |= encodeVFPRd(MI, OpIdx++);
 | |
| 
 | |
|   // If this is a two-address operand, skip it, e.g. FMACD.
 | |
|   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   // Encode Dn / Sn.
 | |
|   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
 | |
|     Binary |= encodeVFPRn(MI, OpIdx++);
 | |
| 
 | |
|   if (OpIdx == MCID.getNumOperands() ||
 | |
|       MCID.OpInfo[OpIdx].isPredicate() ||
 | |
|       MCID.OpInfo[OpIdx].isOptionalDef()) {
 | |
|     // FCMPEZD etc. has only one operand.
 | |
|     emitWordLE(Binary);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Encode Dm / Sm.
 | |
|   Binary |= encodeVFPRm(MI, OpIdx);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   unsigned Form = MCID.TSFlags & ARMII::FormMask;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   switch (Form) {
 | |
|   default: break;
 | |
|   case ARMII::VFPConv1Frm:
 | |
|   case ARMII::VFPConv2Frm:
 | |
|   case ARMII::VFPConv3Frm:
 | |
|     // Encode Dd / Sd.
 | |
|     Binary |= encodeVFPRd(MI, 0);
 | |
|     break;
 | |
|   case ARMII::VFPConv4Frm:
 | |
|     // Encode Dn / Sn.
 | |
|     Binary |= encodeVFPRn(MI, 0);
 | |
|     break;
 | |
|   case ARMII::VFPConv5Frm:
 | |
|     // Encode Dm / Sm.
 | |
|     Binary |= encodeVFPRm(MI, 0);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (Form) {
 | |
|   default: break;
 | |
|   case ARMII::VFPConv1Frm:
 | |
|     // Encode Dm / Sm.
 | |
|     Binary |= encodeVFPRm(MI, 1);
 | |
|     break;
 | |
|   case ARMII::VFPConv2Frm:
 | |
|   case ARMII::VFPConv3Frm:
 | |
|     // Encode Dn / Sn.
 | |
|     Binary |= encodeVFPRn(MI, 1);
 | |
|     break;
 | |
|   case ARMII::VFPConv4Frm:
 | |
|   case ARMII::VFPConv5Frm:
 | |
|     // Encode Dd / Sd.
 | |
|     Binary |= encodeVFPRd(MI, 1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Form == ARMII::VFPConv5Frm)
 | |
|     // Encode Dn / Sn.
 | |
|     Binary |= encodeVFPRn(MI, 2);
 | |
|   else if (Form == ARMII::VFPConv3Frm)
 | |
|     // Encode Dm / Sm.
 | |
|     Binary |= encodeVFPRm(MI, 2);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
| 
 | |
|   // Encode Dd / Sd.
 | |
|   Binary |= encodeVFPRd(MI, OpIdx++);
 | |
| 
 | |
|   // Encode address base.
 | |
|   const MachineOperand &Base = MI.getOperand(OpIdx++);
 | |
|   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
 | |
| 
 | |
|   // If there is a non-zero immediate offset, encode it.
 | |
|   if (Base.isReg()) {
 | |
|     const MachineOperand &Offset = MI.getOperand(OpIdx);
 | |
|     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
 | |
|       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
 | |
|         Binary |= 1 << ARMII::U_BitShift;
 | |
|       Binary |= ImmOffs;
 | |
|       emitWordLE(Binary);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If immediate offset is omitted, default to +0.
 | |
|   Binary |= 1 << ARMII::U_BitShift;
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void
 | |
| ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
 | |
| 
 | |
|   // Part of binary is determined by TableGn.
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
 | |
| 
 | |
|   // Skip operand 0 of an instruction with base register update.
 | |
|   unsigned OpIdx = 0;
 | |
|   if (IsUpdating)
 | |
|     ++OpIdx;
 | |
| 
 | |
|   // Set base address operand
 | |
|   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
 | |
| 
 | |
|   // Set addressing mode by modifying bits U(23) and P(24)
 | |
|   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
 | |
|   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
 | |
| 
 | |
|   // Set bit W(21)
 | |
|   if (IsUpdating)
 | |
|     Binary |= 0x1 << ARMII::W_BitShift;
 | |
| 
 | |
|   // First register is encoded in Dd.
 | |
|   Binary |= encodeVFPRd(MI, OpIdx+2);
 | |
| 
 | |
|   // Count the number of registers.
 | |
|   unsigned NumRegs = 1;
 | |
|   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || MO.isImplicit())
 | |
|       break;
 | |
|     ++NumRegs;
 | |
|   }
 | |
|   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
 | |
|   // Otherwise, it will be 0, in the case of 32-bit registers.
 | |
|   if(Binary & 0x100)
 | |
|     Binary |= NumRegs * 2;
 | |
|   else
 | |
|     Binary |= NumRegs;
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegD = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   RegD = getARMRegisterNumbering(RegD);
 | |
|   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
 | |
|   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegN = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   RegN = getARMRegisterNumbering(RegN);
 | |
|   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
 | |
|   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
 | |
|   unsigned RegM = MI.getOperand(OpIdx).getReg();
 | |
|   unsigned Binary = 0;
 | |
|   RegM = getARMRegisterNumbering(RegM);
 | |
|   Binary |= (RegM & 0xf);
 | |
|   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
 | |
|   return Binary;
 | |
| }
 | |
| 
 | |
| /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
 | |
| /// data-processing instruction to the corresponding Thumb encoding.
 | |
| static unsigned convertNEONDataProcToThumb(unsigned Binary) {
 | |
|   assert((Binary & 0xfe000000) == 0xf2000000 &&
 | |
|          "not an ARM NEON data-processing instruction");
 | |
|   unsigned UBit = (Binary >> 24) & 1;
 | |
|   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
 | |
|     RegTOpIdx = 0;
 | |
|     RegNOpIdx = 1;
 | |
|     LnOpIdx = 2;
 | |
|   } else { // ARMII::NSetLnFrm
 | |
|     RegTOpIdx = 2;
 | |
|     RegNOpIdx = 0;
 | |
|     LnOpIdx = 3;
 | |
|   }
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
 | |
|   RegT = getARMRegisterNumbering(RegT);
 | |
|   Binary |= (RegT << ARMII::RegRdShift);
 | |
|   Binary |= encodeNEONRn(MI, RegNOpIdx);
 | |
| 
 | |
|   unsigned LaneShift;
 | |
|   if ((Binary & (1 << 22)) != 0)
 | |
|     LaneShift = 0; // 8-bit elements
 | |
|   else if ((Binary & (1 << 5)) != 0)
 | |
|     LaneShift = 1; // 16-bit elements
 | |
|   else
 | |
|     LaneShift = 2; // 32-bit elements
 | |
| 
 | |
|   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
 | |
|   unsigned Opc1 = Lane >> 2;
 | |
|   unsigned Opc2 = Lane & 3;
 | |
|   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
 | |
|   Binary |= (Opc1 << 21);
 | |
|   Binary |= (Opc2 << 5);
 | |
| 
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
| 
 | |
|   // Set the conditional execution predicate
 | |
|   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
 | |
| 
 | |
|   unsigned RegT = MI.getOperand(1).getReg();
 | |
|   RegT = getARMRegisterNumbering(RegT);
 | |
|   Binary |= (RegT << ARMII::RegRdShift);
 | |
|   Binary |= encodeNEONRn(MI, 0);
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
|   // Destination register is encoded in Dd.
 | |
|   Binary |= encodeNEONRd(MI, 0);
 | |
|   // Immediate fields: Op, Cmode, I, Imm3, Imm4
 | |
|   unsigned Imm = MI.getOperand(1).getImm();
 | |
|   unsigned Op = (Imm >> 12) & 1;
 | |
|   unsigned Cmode = (Imm >> 8) & 0xf;
 | |
|   unsigned I = (Imm >> 7) & 1;
 | |
|   unsigned Imm3 = (Imm >> 4) & 0x7;
 | |
|   unsigned Imm4 = Imm & 0xf;
 | |
|   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
 | |
|   if (IsThumb)
 | |
|     Binary = convertNEONDataProcToThumb(Binary);
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
|   // Destination register is encoded in Dd; source register in Dm.
 | |
|   unsigned OpIdx = 0;
 | |
|   Binary |= encodeNEONRd(MI, OpIdx++);
 | |
|   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
|   Binary |= encodeNEONRm(MI, OpIdx);
 | |
|   if (IsThumb)
 | |
|     Binary = convertNEONDataProcToThumb(Binary);
 | |
|   // FIXME: This does not handle VDUPfdf or VDUPfqf.
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   unsigned Binary = getBinaryCodeForInstr(MI);
 | |
|   // Destination register is encoded in Dd; source registers in Dn and Dm.
 | |
|   unsigned OpIdx = 0;
 | |
|   Binary |= encodeNEONRd(MI, OpIdx++);
 | |
|   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
|   Binary |= encodeNEONRn(MI, OpIdx++);
 | |
|   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
 | |
|     ++OpIdx;
 | |
|   Binary |= encodeNEONRm(MI, OpIdx);
 | |
|   if (IsThumb)
 | |
|     Binary = convertNEONDataProcToThumb(Binary);
 | |
|   // FIXME: This does not handle VMOVDneon or VMOVQ.
 | |
|   emitWordLE(Binary);
 | |
| }
 | |
| 
 | |
| #include "ARMGenCodeEmitter.inc"
 |