forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1710 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1710 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass which converts floating point instructions from
 | |
| // pseudo registers into register stack instructions.  This pass uses live
 | |
| // variable information to indicate where the FPn registers are used and their
 | |
| // lifetimes.
 | |
| //
 | |
| // The x87 hardware tracks liveness of the stack registers, so it is necessary
 | |
| // to implement exact liveness tracking between basic blocks. The CFG edges are
 | |
| // partitioned into bundles where the same FP registers must be live in
 | |
| // identical stack positions. Instructions are inserted at the end of each basic
 | |
| // block to rearrange the live registers to match the outgoing bundle.
 | |
| //
 | |
| // This approach avoids splitting critical edges at the potential cost of more
 | |
| // live register shuffling instructions when critical edges are present.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-codegen"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/EdgeBundles.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFXCH, "Number of fxch instructions inserted");
 | |
| STATISTIC(NumFP  , "Number of floating point instructions");
 | |
| 
 | |
| namespace {
 | |
|   struct FPS : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     FPS() : MachineFunctionPass(ID) {
 | |
|       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | |
|       // This is really only to keep valgrind quiet.
 | |
|       // The logic in isLive() is too much for it.
 | |
|       memset(Stack, 0, sizeof(Stack));
 | |
|       memset(RegMap, 0, sizeof(RegMap));
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<EdgeBundles>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
 | |
| 
 | |
|   private:
 | |
|     const TargetInstrInfo *TII; // Machine instruction info.
 | |
| 
 | |
|     // Two CFG edges are related if they leave the same block, or enter the same
 | |
|     // block. The transitive closure of an edge under this relation is a
 | |
|     // LiveBundle. It represents a set of CFG edges where the live FP stack
 | |
|     // registers must be allocated identically in the x87 stack.
 | |
|     //
 | |
|     // A LiveBundle is usually all the edges leaving a block, or all the edges
 | |
|     // entering a block, but it can contain more edges if critical edges are
 | |
|     // present.
 | |
|     //
 | |
|     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
 | |
|     // but the exact mapping of FP registers to stack slots is fixed later.
 | |
|     struct LiveBundle {
 | |
|       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
 | |
|       unsigned Mask;
 | |
| 
 | |
|       // Number of pre-assigned live registers in FixStack. This is 0 when the
 | |
|       // stack order has not yet been fixed.
 | |
|       unsigned FixCount;
 | |
| 
 | |
|       // Assigned stack order for live-in registers.
 | |
|       // FixStack[i] == getStackEntry(i) for all i < FixCount.
 | |
|       unsigned char FixStack[8];
 | |
| 
 | |
|       LiveBundle() : Mask(0), FixCount(0) {}
 | |
| 
 | |
|       // Have the live registers been assigned a stack order yet?
 | |
|       bool isFixed() const { return !Mask || FixCount; }
 | |
|     };
 | |
| 
 | |
|     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
 | |
|     // with no live FP registers.
 | |
|     SmallVector<LiveBundle, 8> LiveBundles;
 | |
| 
 | |
|     // The edge bundle analysis provides indices into the LiveBundles vector.
 | |
|     EdgeBundles *Bundles;
 | |
| 
 | |
|     // Return a bitmask of FP registers in block's live-in list.
 | |
|     unsigned calcLiveInMask(MachineBasicBlock *MBB) {
 | |
|       unsigned Mask = 0;
 | |
|       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
 | |
|            E = MBB->livein_end(); I != E; ++I) {
 | |
|         unsigned Reg = *I - X86::FP0;
 | |
|         if (Reg < 8)
 | |
|           Mask |= 1 << Reg;
 | |
|       }
 | |
|       return Mask;
 | |
|     }
 | |
| 
 | |
|     // Partition all the CFG edges into LiveBundles.
 | |
|     void bundleCFG(MachineFunction &MF);
 | |
| 
 | |
|     MachineBasicBlock *MBB;     // Current basic block
 | |
| 
 | |
|     // The hardware keeps track of how many FP registers are live, so we have
 | |
|     // to model that exactly. Usually, each live register corresponds to an
 | |
|     // FP<n> register, but when dealing with calls, returns, and inline
 | |
|     // assembly, it is sometimes neccesary to have live scratch registers.
 | |
|     unsigned Stack[8];          // FP<n> Registers in each stack slot...
 | |
|     unsigned StackTop;          // The current top of the FP stack.
 | |
| 
 | |
|     enum {
 | |
|       NumFPRegs = 16            // Including scratch pseudo-registers.
 | |
|     };
 | |
| 
 | |
|     // For each live FP<n> register, point to its Stack[] entry.
 | |
|     // The first entries correspond to FP0-FP6, the rest are scratch registers
 | |
|     // used when we need slightly different live registers than what the
 | |
|     // register allocator thinks.
 | |
|     unsigned RegMap[NumFPRegs];
 | |
| 
 | |
|     // Pending fixed registers - Inline assembly needs FP registers to appear
 | |
|     // in fixed stack slot positions. This is handled by copying FP registers
 | |
|     // to ST registers before the instruction, and copying back after the
 | |
|     // instruction.
 | |
|     //
 | |
|     // This is modeled with pending ST registers. NumPendingSTs is the number
 | |
|     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
 | |
|     // register that holds the ST value. The ST registers are not moved into
 | |
|     // place until immediately before the instruction that needs them.
 | |
|     //
 | |
|     // It can happen that we need an ST register to be live when no FP register
 | |
|     // holds the value:
 | |
|     //
 | |
|     //   %ST0 = COPY %FP4<kill>
 | |
|     //
 | |
|     // When that happens, we allocate a scratch FP register to hold the ST
 | |
|     // value. That means every register in PendingST must be live.
 | |
| 
 | |
|     unsigned NumPendingSTs;
 | |
|     unsigned char PendingST[8];
 | |
| 
 | |
|     // Set up our stack model to match the incoming registers to MBB.
 | |
|     void setupBlockStack();
 | |
| 
 | |
|     // Shuffle live registers to match the expectations of successor blocks.
 | |
|     void finishBlockStack();
 | |
| 
 | |
|     void dumpStack() const {
 | |
|       dbgs() << "Stack contents:";
 | |
|       for (unsigned i = 0; i != StackTop; ++i) {
 | |
|         dbgs() << " FP" << Stack[i];
 | |
|         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
 | |
|       }
 | |
|       for (unsigned i = 0; i != NumPendingSTs; ++i)
 | |
|         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
| 
 | |
|     /// getSlot - Return the stack slot number a particular register number is
 | |
|     /// in.
 | |
|     unsigned getSlot(unsigned RegNo) const {
 | |
|       assert(RegNo < NumFPRegs && "Regno out of range!");
 | |
|       return RegMap[RegNo];
 | |
|     }
 | |
| 
 | |
|     /// isLive - Is RegNo currently live in the stack?
 | |
|     bool isLive(unsigned RegNo) const {
 | |
|       unsigned Slot = getSlot(RegNo);
 | |
|       return Slot < StackTop && Stack[Slot] == RegNo;
 | |
|     }
 | |
| 
 | |
|     /// getScratchReg - Return an FP register that is not currently in use.
 | |
|     unsigned getScratchReg() {
 | |
|       for (int i = NumFPRegs - 1; i >= 8; --i)
 | |
|         if (!isLive(i))
 | |
|           return i;
 | |
|       llvm_unreachable("Ran out of scratch FP registers");
 | |
|     }
 | |
| 
 | |
|     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
 | |
|     bool isScratchReg(unsigned RegNo) {
 | |
|       return RegNo > 8 && RegNo < NumFPRegs;
 | |
|     }
 | |
| 
 | |
|     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
 | |
|     unsigned getStackEntry(unsigned STi) const {
 | |
|       if (STi >= StackTop)
 | |
|         report_fatal_error("Access past stack top!");
 | |
|       return Stack[StackTop-1-STi];
 | |
|     }
 | |
| 
 | |
|     /// getSTReg - Return the X86::ST(i) register which contains the specified
 | |
|     /// FP<RegNo> register.
 | |
|     unsigned getSTReg(unsigned RegNo) const {
 | |
|       return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
 | |
|     }
 | |
| 
 | |
|     // pushReg - Push the specified FP<n> register onto the stack.
 | |
|     void pushReg(unsigned Reg) {
 | |
|       assert(Reg < NumFPRegs && "Register number out of range!");
 | |
|       if (StackTop >= 8)
 | |
|         report_fatal_error("Stack overflow!");
 | |
|       Stack[StackTop] = Reg;
 | |
|       RegMap[Reg] = StackTop++;
 | |
|     }
 | |
| 
 | |
|     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
 | |
|     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
 | |
|       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
 | |
|       if (isAtTop(RegNo)) return;
 | |
| 
 | |
|       unsigned STReg = getSTReg(RegNo);
 | |
|       unsigned RegOnTop = getStackEntry(0);
 | |
| 
 | |
|       // Swap the slots the regs are in.
 | |
|       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
 | |
| 
 | |
|       // Swap stack slot contents.
 | |
|       if (RegMap[RegOnTop] >= StackTop)
 | |
|         report_fatal_error("Access past stack top!");
 | |
|       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
 | |
| 
 | |
|       // Emit an fxch to update the runtime processors version of the state.
 | |
|       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
 | |
|       ++NumFXCH;
 | |
|     }
 | |
| 
 | |
|     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
 | |
|       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
 | |
|       unsigned STReg = getSTReg(RegNo);
 | |
|       pushReg(AsReg);   // New register on top of stack
 | |
| 
 | |
|       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
 | |
|     }
 | |
| 
 | |
|     /// popStackAfter - Pop the current value off of the top of the FP stack
 | |
|     /// after the specified instruction.
 | |
|     void popStackAfter(MachineBasicBlock::iterator &I);
 | |
| 
 | |
|     /// freeStackSlotAfter - Free the specified register from the register
 | |
|     /// stack, so that it is no longer in a register.  If the register is
 | |
|     /// currently at the top of the stack, we just pop the current instruction,
 | |
|     /// otherwise we store the current top-of-stack into the specified slot,
 | |
|     /// then pop the top of stack.
 | |
|     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
 | |
| 
 | |
|     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
 | |
|     /// instruction.
 | |
|     MachineBasicBlock::iterator
 | |
|     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
 | |
| 
 | |
|     /// Adjust the live registers to be the set in Mask.
 | |
|     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
 | |
| 
 | |
|     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
 | |
|     /// st(0), FP reg FixStack[1] is st(1) etc.
 | |
|     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
 | |
|                          MachineBasicBlock::iterator I);
 | |
| 
 | |
|     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
| 
 | |
|     void handleZeroArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleOneArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
 | |
|     void handleTwoArgFP(MachineBasicBlock::iterator &I);
 | |
|     void handleCompareFP(MachineBasicBlock::iterator &I);
 | |
|     void handleCondMovFP(MachineBasicBlock::iterator &I);
 | |
|     void handleSpecialFP(MachineBasicBlock::iterator &I);
 | |
| 
 | |
|     // Check if a COPY instruction is using FP registers.
 | |
|     bool isFPCopy(MachineInstr *MI) {
 | |
|       unsigned DstReg = MI->getOperand(0).getReg();
 | |
|       unsigned SrcReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|       return X86::RFP80RegClass.contains(DstReg) ||
 | |
|         X86::RFP80RegClass.contains(SrcReg);
 | |
|     }
 | |
|   };
 | |
|   char FPS::ID = 0;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
 | |
| 
 | |
| /// getFPReg - Return the X86::FPx register number for the specified operand.
 | |
| /// For example, this returns 3 for X86::FP3.
 | |
| static unsigned getFPReg(const MachineOperand &MO) {
 | |
|   assert(MO.isReg() && "Expected an FP register!");
 | |
|   unsigned Reg = MO.getReg();
 | |
|   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
 | |
|   return Reg - X86::FP0;
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
 | |
| /// register references into FP stack references.
 | |
| ///
 | |
| bool FPS::runOnMachineFunction(MachineFunction &MF) {
 | |
|   // We only need to run this pass if there are any FP registers used in this
 | |
|   // function.  If it is all integer, there is nothing for us to do!
 | |
|   bool FPIsUsed = false;
 | |
| 
 | |
|   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
 | |
|   for (unsigned i = 0; i <= 6; ++i)
 | |
|     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
 | |
|       FPIsUsed = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Early exit.
 | |
|   if (!FPIsUsed) return false;
 | |
| 
 | |
|   Bundles = &getAnalysis<EdgeBundles>();
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
| 
 | |
|   // Prepare cross-MBB liveness.
 | |
|   bundleCFG(MF);
 | |
| 
 | |
|   StackTop = 0;
 | |
| 
 | |
|   // Process the function in depth first order so that we process at least one
 | |
|   // of the predecessors for every reachable block in the function.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> Processed;
 | |
|   MachineBasicBlock *Entry = MF.begin();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
 | |
|          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
 | |
|        I != E; ++I)
 | |
|     Changed |= processBasicBlock(MF, **I);
 | |
| 
 | |
|   // Process any unreachable blocks in arbitrary order now.
 | |
|   if (MF.size() != Processed.size())
 | |
|     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
 | |
|       if (Processed.insert(BB))
 | |
|         Changed |= processBasicBlock(MF, *BB);
 | |
| 
 | |
|   LiveBundles.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
 | |
| /// live-out sets for the FP registers. Consistent means that the set of
 | |
| /// registers live-out from a block is identical to the live-in set of all
 | |
| /// successors. This is not enforced by the normal live-in lists since
 | |
| /// registers may be implicitly defined, or not used by all successors.
 | |
| void FPS::bundleCFG(MachineFunction &MF) {
 | |
|   assert(LiveBundles.empty() && "Stale data in LiveBundles");
 | |
|   LiveBundles.resize(Bundles->getNumBundles());
 | |
| 
 | |
|   // Gather the actual live-in masks for all MBBs.
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *MBB = I;
 | |
|     const unsigned Mask = calcLiveInMask(MBB);
 | |
|     if (!Mask)
 | |
|       continue;
 | |
|     // Update MBB ingoing bundle mask.
 | |
|     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// processBasicBlock - Loop over all of the instructions in the basic block,
 | |
| /// transforming FP instructions into their stack form.
 | |
| ///
 | |
| bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
 | |
|   bool Changed = false;
 | |
|   MBB = &BB;
 | |
|   NumPendingSTs = 0;
 | |
| 
 | |
|   setupBlockStack();
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
 | |
|     MachineInstr *MI = I;
 | |
|     uint64_t Flags = MI->getDesc().TSFlags;
 | |
| 
 | |
|     unsigned FPInstClass = Flags & X86II::FPTypeMask;
 | |
|     if (MI->isInlineAsm())
 | |
|       FPInstClass = X86II::SpecialFP;
 | |
| 
 | |
|     if (MI->isCopy() && isFPCopy(MI))
 | |
|       FPInstClass = X86II::SpecialFP;
 | |
| 
 | |
|     if (FPInstClass == X86II::NotFP)
 | |
|       continue;  // Efficiently ignore non-fp insts!
 | |
| 
 | |
|     MachineInstr *PrevMI = 0;
 | |
|     if (I != BB.begin())
 | |
|       PrevMI = prior(I);
 | |
| 
 | |
|     ++NumFP;  // Keep track of # of pseudo instrs
 | |
|     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
 | |
| 
 | |
|     // Get dead variables list now because the MI pointer may be deleted as part
 | |
|     // of processing!
 | |
|     SmallVector<unsigned, 8> DeadRegs;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDead())
 | |
|         DeadRegs.push_back(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     switch (FPInstClass) {
 | |
|     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
 | |
|     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
 | |
|     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
 | |
|     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
 | |
|     case X86II::CompareFP:  handleCompareFP(I); break;
 | |
|     case X86II::CondMovFP:  handleCondMovFP(I); break;
 | |
|     case X86II::SpecialFP:  handleSpecialFP(I); break;
 | |
|     default: llvm_unreachable("Unknown FP Type!");
 | |
|     }
 | |
| 
 | |
|     // Check to see if any of the values defined by this instruction are dead
 | |
|     // after definition.  If so, pop them.
 | |
|     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
 | |
|       unsigned Reg = DeadRegs[i];
 | |
|       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
 | |
|         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
 | |
|         freeStackSlotAfter(I, Reg-X86::FP0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Print out all of the instructions expanded to if -debug
 | |
|     DEBUG(
 | |
|       MachineBasicBlock::iterator PrevI(PrevMI);
 | |
|       if (I == PrevI) {
 | |
|         dbgs() << "Just deleted pseudo instruction\n";
 | |
|       } else {
 | |
|         MachineBasicBlock::iterator Start = I;
 | |
|         // Rewind to first instruction newly inserted.
 | |
|         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
 | |
|         dbgs() << "Inserted instructions:\n\t";
 | |
|         Start->print(dbgs(), &MF.getTarget());
 | |
|         while (++Start != llvm::next(I)) {}
 | |
|       }
 | |
|       dumpStack();
 | |
|     );
 | |
| 
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   finishBlockStack();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// setupBlockStack - Use the live bundles to set up our model of the stack
 | |
| /// to match predecessors' live out stack.
 | |
| void FPS::setupBlockStack() {
 | |
|   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
 | |
|                << " derived from " << MBB->getName() << ".\n");
 | |
|   StackTop = 0;
 | |
|   // Get the live-in bundle for MBB.
 | |
|   const LiveBundle &Bundle =
 | |
|     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
 | |
| 
 | |
|   if (!Bundle.Mask) {
 | |
|     DEBUG(dbgs() << "Block has no FP live-ins.\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Depth-first iteration should ensure that we always have an assigned stack.
 | |
|   assert(Bundle.isFixed() && "Reached block before any predecessors");
 | |
| 
 | |
|   // Push the fixed live-in registers.
 | |
|   for (unsigned i = Bundle.FixCount; i > 0; --i) {
 | |
|     MBB->addLiveIn(X86::ST0+i-1);
 | |
|     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
 | |
|                  << unsigned(Bundle.FixStack[i-1]) << '\n');
 | |
|     pushReg(Bundle.FixStack[i-1]);
 | |
|   }
 | |
| 
 | |
|   // Kill off unwanted live-ins. This can happen with a critical edge.
 | |
|   // FIXME: We could keep these live registers around as zombies. They may need
 | |
|   // to be revived at the end of a short block. It might save a few instrs.
 | |
|   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
 | |
|   DEBUG(MBB->dump());
 | |
| }
 | |
| 
 | |
| /// finishBlockStack - Revive live-outs that are implicitly defined out of
 | |
| /// MBB. Shuffle live registers to match the expected fixed stack of any
 | |
| /// predecessors, and ensure that all predecessors are expecting the same
 | |
| /// stack.
 | |
| void FPS::finishBlockStack() {
 | |
|   // The RET handling below takes care of return blocks for us.
 | |
|   if (MBB->succ_empty())
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
 | |
|                << " derived from " << MBB->getName() << ".\n");
 | |
| 
 | |
|   // Get MBB's live-out bundle.
 | |
|   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
 | |
|   LiveBundle &Bundle = LiveBundles[BundleIdx];
 | |
| 
 | |
|   // We may need to kill and define some registers to match successors.
 | |
|   // FIXME: This can probably be combined with the shuffle below.
 | |
|   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
 | |
|   adjustLiveRegs(Bundle.Mask, Term);
 | |
| 
 | |
|   if (!Bundle.Mask) {
 | |
|     DEBUG(dbgs() << "No live-outs.\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Has the stack order been fixed yet?
 | |
|   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
 | |
|   if (Bundle.isFixed()) {
 | |
|     DEBUG(dbgs() << "Shuffling stack to match.\n");
 | |
|     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
 | |
|   } else {
 | |
|     // Not fixed yet, we get to choose.
 | |
|     DEBUG(dbgs() << "Fixing stack order now.\n");
 | |
|     Bundle.FixCount = StackTop;
 | |
|     for (unsigned i = 0; i < StackTop; ++i)
 | |
|       Bundle.FixStack[i] = getStackEntry(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Efficient Lookup Table Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   struct TableEntry {
 | |
|     unsigned from;
 | |
|     unsigned to;
 | |
|     bool operator<(const TableEntry &TE) const { return from < TE.from; }
 | |
|     friend bool operator<(const TableEntry &TE, unsigned V) {
 | |
|       return TE.from < V;
 | |
|     }
 | |
|     friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
 | |
|                                               const TableEntry &TE) {
 | |
|       return V < TE.from;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
 | |
|   for (unsigned i = 0; i != NumEntries-1; ++i)
 | |
|     if (!(Table[i] < Table[i+1])) return false;
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
 | |
|   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
 | |
|   if (I != Table+N && I->from == Opcode)
 | |
|     return I->to;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| #ifdef NDEBUG
 | |
| #define ASSERT_SORTED(TABLE)
 | |
| #else
 | |
| #define ASSERT_SORTED(TABLE)                                              \
 | |
|   { static bool TABLE##Checked = false;                                   \
 | |
|     if (!TABLE##Checked) {                                                \
 | |
|        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
 | |
|               "All lookup tables must be sorted for efficient access!");  \
 | |
|        TABLE##Checked = true;                                             \
 | |
|     }                                                                     \
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register File -> Register Stack Mapping Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // OpcodeTable - Sorted map of register instructions to their stack version.
 | |
| // The first element is an register file pseudo instruction, the second is the
 | |
| // concrete X86 instruction which uses the register stack.
 | |
| //
 | |
| static const TableEntry OpcodeTable[] = {
 | |
|   { X86::ABS_Fp32     , X86::ABS_F     },
 | |
|   { X86::ABS_Fp64     , X86::ABS_F     },
 | |
|   { X86::ABS_Fp80     , X86::ABS_F     },
 | |
|   { X86::ADD_Fp32m    , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp64m    , X86::ADD_F64m  },
 | |
|   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
 | |
|   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
 | |
|   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
 | |
|   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
 | |
|   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
 | |
|   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
 | |
|   { X86::CHS_Fp32     , X86::CHS_F     },
 | |
|   { X86::CHS_Fp64     , X86::CHS_F     },
 | |
|   { X86::CHS_Fp80     , X86::CHS_F     },
 | |
|   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
 | |
|   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
 | |
|   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
 | |
|   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
 | |
|   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
 | |
|   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
 | |
|   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
 | |
|   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
 | |
|   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
 | |
|   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
 | |
|   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
 | |
|   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
 | |
|   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
 | |
|   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
 | |
|   { X86::COS_Fp32     , X86::COS_F     },
 | |
|   { X86::COS_Fp64     , X86::COS_F     },
 | |
|   { X86::COS_Fp80     , X86::COS_F     },
 | |
|   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
 | |
|   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
 | |
|   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
 | |
|   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
 | |
|   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
 | |
|   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
 | |
|   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
 | |
|   { X86::DIV_Fp32m    , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp64m    , X86::DIV_F64m  },
 | |
|   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
 | |
|   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
 | |
|   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
 | |
|   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
 | |
|   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
 | |
|   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
 | |
|   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
 | |
|   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
 | |
|   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
 | |
|   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
 | |
|   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
 | |
|   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
 | |
|   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
 | |
|   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
 | |
|   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
 | |
|   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
 | |
|   { X86::IST_Fp16m32  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp16m64  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp16m80  , X86::IST_F16m  },
 | |
|   { X86::IST_Fp32m32  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp32m64  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp32m80  , X86::IST_F32m  },
 | |
|   { X86::IST_Fp64m32  , X86::IST_FP64m },
 | |
|   { X86::IST_Fp64m64  , X86::IST_FP64m },
 | |
|   { X86::IST_Fp64m80  , X86::IST_FP64m },
 | |
|   { X86::LD_Fp032     , X86::LD_F0     },
 | |
|   { X86::LD_Fp064     , X86::LD_F0     },
 | |
|   { X86::LD_Fp080     , X86::LD_F0     },
 | |
|   { X86::LD_Fp132     , X86::LD_F1     },
 | |
|   { X86::LD_Fp164     , X86::LD_F1     },
 | |
|   { X86::LD_Fp180     , X86::LD_F1     },
 | |
|   { X86::LD_Fp32m     , X86::LD_F32m   },
 | |
|   { X86::LD_Fp32m64   , X86::LD_F32m   },
 | |
|   { X86::LD_Fp32m80   , X86::LD_F32m   },
 | |
|   { X86::LD_Fp64m     , X86::LD_F64m   },
 | |
|   { X86::LD_Fp64m80   , X86::LD_F64m   },
 | |
|   { X86::LD_Fp80m     , X86::LD_F80m   },
 | |
|   { X86::MUL_Fp32m    , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp64m    , X86::MUL_F64m  },
 | |
|   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
 | |
|   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
 | |
|   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
 | |
|   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
 | |
|   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
 | |
|   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
 | |
|   { X86::SIN_Fp32     , X86::SIN_F     },
 | |
|   { X86::SIN_Fp64     , X86::SIN_F     },
 | |
|   { X86::SIN_Fp80     , X86::SIN_F     },
 | |
|   { X86::SQRT_Fp32    , X86::SQRT_F    },
 | |
|   { X86::SQRT_Fp64    , X86::SQRT_F    },
 | |
|   { X86::SQRT_Fp80    , X86::SQRT_F    },
 | |
|   { X86::ST_Fp32m     , X86::ST_F32m   },
 | |
|   { X86::ST_Fp64m     , X86::ST_F64m   },
 | |
|   { X86::ST_Fp64m32   , X86::ST_F32m   },
 | |
|   { X86::ST_Fp80m32   , X86::ST_F32m   },
 | |
|   { X86::ST_Fp80m64   , X86::ST_F64m   },
 | |
|   { X86::ST_FpP80m    , X86::ST_FP80m  },
 | |
|   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
 | |
|   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
 | |
|   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
 | |
|   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
 | |
|   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
 | |
|   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
 | |
|   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
 | |
|   { X86::SUB_Fp32m    , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp64m    , X86::SUB_F64m  },
 | |
|   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
 | |
|   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
 | |
|   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
 | |
|   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
 | |
|   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
 | |
|   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
 | |
|   { X86::TST_Fp32     , X86::TST_F     },
 | |
|   { X86::TST_Fp64     , X86::TST_F     },
 | |
|   { X86::TST_Fp80     , X86::TST_F     },
 | |
|   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
 | |
|   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
 | |
|   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
 | |
|   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
 | |
| };
 | |
| 
 | |
| static unsigned getConcreteOpcode(unsigned Opcode) {
 | |
|   ASSERT_SORTED(OpcodeTable);
 | |
|   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
 | |
|   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // PopTable - Sorted map of instructions to their popping version.  The first
 | |
| // element is an instruction, the second is the version which pops.
 | |
| //
 | |
| static const TableEntry PopTable[] = {
 | |
|   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
 | |
| 
 | |
|   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
 | |
|   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
 | |
| 
 | |
|   { X86::IST_F16m  , X86::IST_FP16m   },
 | |
|   { X86::IST_F32m  , X86::IST_FP32m   },
 | |
| 
 | |
|   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
 | |
| 
 | |
|   { X86::ST_F32m   , X86::ST_FP32m    },
 | |
|   { X86::ST_F64m   , X86::ST_FP64m    },
 | |
|   { X86::ST_Frr    , X86::ST_FPrr     },
 | |
| 
 | |
|   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
 | |
|   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
 | |
| 
 | |
|   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
 | |
| 
 | |
|   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
 | |
|   { X86::UCOM_Fr   , X86::UCOM_FPr    },
 | |
| };
 | |
| 
 | |
| /// popStackAfter - Pop the current value off of the top of the FP stack after
 | |
| /// the specified instruction.  This attempts to be sneaky and combine the pop
 | |
| /// into the instruction itself if possible.  The iterator is left pointing to
 | |
| /// the last instruction, be it a new pop instruction inserted, or the old
 | |
| /// instruction if it was modified in place.
 | |
| ///
 | |
| void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr* MI = I;
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   ASSERT_SORTED(PopTable);
 | |
|   if (StackTop == 0)
 | |
|     report_fatal_error("Cannot pop empty stack!");
 | |
|   RegMap[Stack[--StackTop]] = ~0;     // Update state
 | |
| 
 | |
|   // Check to see if there is a popping version of this instruction...
 | |
|   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
 | |
|   if (Opcode != -1) {
 | |
|     I->setDesc(TII->get(Opcode));
 | |
|     if (Opcode == X86::UCOM_FPPr)
 | |
|       I->RemoveOperand(0);
 | |
|   } else {    // Insert an explicit pop
 | |
|     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// freeStackSlotAfter - Free the specified register from the register stack, so
 | |
| /// that it is no longer in a register.  If the register is currently at the top
 | |
| /// of the stack, we just pop the current instruction, otherwise we store the
 | |
| /// current top-of-stack into the specified slot, then pop the top of stack.
 | |
| void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
 | |
|   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
 | |
|     popStackAfter(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, store the top of stack into the dead slot, killing the operand
 | |
|   // without having to add in an explicit xchg then pop.
 | |
|   //
 | |
|   I = freeStackSlotBefore(++I, FPRegNo);
 | |
| }
 | |
| 
 | |
| /// freeStackSlotBefore - Free the specified register without trying any
 | |
| /// folding.
 | |
| MachineBasicBlock::iterator
 | |
| FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
 | |
|   unsigned STReg    = getSTReg(FPRegNo);
 | |
|   unsigned OldSlot  = getSlot(FPRegNo);
 | |
|   unsigned TopReg   = Stack[StackTop-1];
 | |
|   Stack[OldSlot]    = TopReg;
 | |
|   RegMap[TopReg]    = OldSlot;
 | |
|   RegMap[FPRegNo]   = ~0;
 | |
|   Stack[--StackTop] = ~0;
 | |
|   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
 | |
| }
 | |
| 
 | |
| /// adjustLiveRegs - Kill and revive registers such that exactly the FP
 | |
| /// registers with a bit in Mask are live.
 | |
| void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
 | |
|   unsigned Defs = Mask;
 | |
|   unsigned Kills = 0;
 | |
|   for (unsigned i = 0; i < StackTop; ++i) {
 | |
|     unsigned RegNo = Stack[i];
 | |
|     if (!(Defs & (1 << RegNo)))
 | |
|       // This register is live, but we don't want it.
 | |
|       Kills |= (1 << RegNo);
 | |
|     else
 | |
|       // We don't need to imp-def this live register.
 | |
|       Defs &= ~(1 << RegNo);
 | |
|   }
 | |
|   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
 | |
| 
 | |
|   // Produce implicit-defs for free by using killed registers.
 | |
|   while (Kills && Defs) {
 | |
|     unsigned KReg = CountTrailingZeros_32(Kills);
 | |
|     unsigned DReg = CountTrailingZeros_32(Defs);
 | |
|     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
 | |
|     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
 | |
|     std::swap(RegMap[KReg], RegMap[DReg]);
 | |
|     Kills &= ~(1 << KReg);
 | |
|     Defs &= ~(1 << DReg);
 | |
|   }
 | |
| 
 | |
|   // Kill registers by popping.
 | |
|   if (Kills && I != MBB->begin()) {
 | |
|     MachineBasicBlock::iterator I2 = llvm::prior(I);
 | |
|     while (StackTop) {
 | |
|       unsigned KReg = getStackEntry(0);
 | |
|       if (!(Kills & (1 << KReg)))
 | |
|         break;
 | |
|       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
 | |
|       popStackAfter(I2);
 | |
|       Kills &= ~(1 << KReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Manually kill the rest.
 | |
|   while (Kills) {
 | |
|     unsigned KReg = CountTrailingZeros_32(Kills);
 | |
|     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
 | |
|     freeStackSlotBefore(I, KReg);
 | |
|     Kills &= ~(1 << KReg);
 | |
|   }
 | |
| 
 | |
|   // Load zeros for all the imp-defs.
 | |
|   while(Defs) {
 | |
|     unsigned DReg = CountTrailingZeros_32(Defs);
 | |
|     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
 | |
|     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
 | |
|     pushReg(DReg);
 | |
|     Defs &= ~(1 << DReg);
 | |
|   }
 | |
| 
 | |
|   // Now we should have the correct registers live.
 | |
|   DEBUG(dumpStack());
 | |
|   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
 | |
| }
 | |
| 
 | |
| /// shuffleStackTop - emit fxch instructions before I to shuffle the top
 | |
| /// FixCount entries into the order given by FixStack.
 | |
| /// FIXME: Is there a better algorithm than insertion sort?
 | |
| void FPS::shuffleStackTop(const unsigned char *FixStack,
 | |
|                           unsigned FixCount,
 | |
|                           MachineBasicBlock::iterator I) {
 | |
|   // Move items into place, starting from the desired stack bottom.
 | |
|   while (FixCount--) {
 | |
|     // Old register at position FixCount.
 | |
|     unsigned OldReg = getStackEntry(FixCount);
 | |
|     // Desired register at position FixCount.
 | |
|     unsigned Reg = FixStack[FixCount];
 | |
|     if (Reg == OldReg)
 | |
|       continue;
 | |
|     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
 | |
|     moveToTop(Reg, I);
 | |
|     if (FixCount > 0)
 | |
|       moveToTop(OldReg, I);
 | |
|   }
 | |
|   DEBUG(dumpStack());
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction transformation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
 | |
| ///
 | |
| void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   unsigned DestReg = getFPReg(MI->getOperand(0));
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
|   
 | |
|   // Result gets pushed on the stack.
 | |
|   pushReg(DestReg);
 | |
| }
 | |
| 
 | |
| /// handleOneArgFP - fst <mem>, ST(0)
 | |
| ///
 | |
| void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
 | |
|          "Can only handle fst* & ftst instructions!");
 | |
| 
 | |
|   // Is this the last use of the source register?
 | |
|   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
 | |
|   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | |
| 
 | |
|   // FISTP64m is strange because there isn't a non-popping versions.
 | |
|   // If we have one _and_ we don't want to pop the operand, duplicate the value
 | |
|   // on the stack instead of moving it.  This ensure that popping the value is
 | |
|   // always ok.
 | |
|   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
 | |
|   //
 | |
|   if (!KillsSrc &&
 | |
|       (MI->getOpcode() == X86::IST_Fp64m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m32 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m32 ||
 | |
|        MI->getOpcode() == X86::IST_Fp64m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m64 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m64 ||
 | |
|        MI->getOpcode() == X86::IST_Fp64m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp16m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp32m80 ||
 | |
|        MI->getOpcode() == X86::ISTT_Fp64m80 ||
 | |
|        MI->getOpcode() == X86::ST_FpP80m)) {
 | |
|     duplicateToTop(Reg, getScratchReg(), I);
 | |
|   } else {
 | |
|     moveToTop(Reg, I);            // Move to the top of the stack...
 | |
|   }
 | |
|   
 | |
|   // Convert from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| 
 | |
|   if (MI->getOpcode() == X86::IST_FP64m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP16m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP32m ||
 | |
|       MI->getOpcode() == X86::ISTT_FP64m ||
 | |
|       MI->getOpcode() == X86::ST_FP80m) {
 | |
|     if (StackTop == 0)
 | |
|       report_fatal_error("Stack empty??");
 | |
|     --StackTop;
 | |
|   } else if (KillsSrc) { // Last use of operand?
 | |
|     popStackAfter(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// handleOneArgFPRW: Handle instructions that read from the top of stack and
 | |
| /// replace the value with a newly computed value.  These instructions may have
 | |
| /// non-fp operands after their FP operands.
 | |
| ///
 | |
| ///  Examples:
 | |
| ///     R1 = fchs R2
 | |
| ///     R1 = fadd R2, [mem]
 | |
| ///
 | |
| void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
| #ifndef NDEBUG
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
 | |
| #endif
 | |
| 
 | |
|   // Is this the last use of the source register?
 | |
|   unsigned Reg = getFPReg(MI->getOperand(1));
 | |
|   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
 | |
| 
 | |
|   if (KillsSrc) {
 | |
|     // If this is the last use of the source register, just make sure it's on
 | |
|     // the top of the stack.
 | |
|     moveToTop(Reg, I);
 | |
|     if (StackTop == 0)
 | |
|       report_fatal_error("Stack cannot be empty!");
 | |
|     --StackTop;
 | |
|     pushReg(getFPReg(MI->getOperand(0)));
 | |
|   } else {
 | |
|     // If this is not the last use of the source register, _copy_ it to the top
 | |
|     // of the stack.
 | |
|     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
 | |
|   }
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(1);   // Drop the source operand.
 | |
|   MI->RemoveOperand(0);   // Drop the destination operand.
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Define tables of various ways to map pseudo instructions
 | |
| //
 | |
| 
 | |
| // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
 | |
| static const TableEntry ForwardST0Table[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FST0r },
 | |
|   { X86::ADD_Fp64  , X86::ADD_FST0r },
 | |
|   { X86::ADD_Fp80  , X86::ADD_FST0r },
 | |
|   { X86::DIV_Fp32  , X86::DIV_FST0r },
 | |
|   { X86::DIV_Fp64  , X86::DIV_FST0r },
 | |
|   { X86::DIV_Fp80  , X86::DIV_FST0r },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FST0r },
 | |
|   { X86::MUL_Fp64  , X86::MUL_FST0r },
 | |
|   { X86::MUL_Fp80  , X86::MUL_FST0r },
 | |
|   { X86::SUB_Fp32  , X86::SUB_FST0r },
 | |
|   { X86::SUB_Fp64  , X86::SUB_FST0r },
 | |
|   { X86::SUB_Fp80  , X86::SUB_FST0r },
 | |
| };
 | |
| 
 | |
| // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
 | |
| static const TableEntry ReverseST0Table[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
 | |
|   { X86::DIV_Fp32  , X86::DIVR_FST0r },
 | |
|   { X86::DIV_Fp64  , X86::DIVR_FST0r },
 | |
|   { X86::DIV_Fp80  , X86::DIVR_FST0r },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
 | |
|   { X86::SUB_Fp32  , X86::SUBR_FST0r },
 | |
|   { X86::SUB_Fp64  , X86::SUBR_FST0r },
 | |
|   { X86::SUB_Fp80  , X86::SUBR_FST0r },
 | |
| };
 | |
| 
 | |
| // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
 | |
| static const TableEntry ForwardSTiTable[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
 | |
|   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
 | |
|   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
 | |
|   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
 | |
|   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
 | |
|   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
 | |
|   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
 | |
| };
 | |
| 
 | |
| // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
 | |
| static const TableEntry ReverseSTiTable[] = {
 | |
|   { X86::ADD_Fp32  , X86::ADD_FrST0 },
 | |
|   { X86::ADD_Fp64  , X86::ADD_FrST0 },
 | |
|   { X86::ADD_Fp80  , X86::ADD_FrST0 },
 | |
|   { X86::DIV_Fp32  , X86::DIV_FrST0 },
 | |
|   { X86::DIV_Fp64  , X86::DIV_FrST0 },
 | |
|   { X86::DIV_Fp80  , X86::DIV_FrST0 },
 | |
|   { X86::MUL_Fp32  , X86::MUL_FrST0 },
 | |
|   { X86::MUL_Fp64  , X86::MUL_FrST0 },
 | |
|   { X86::MUL_Fp80  , X86::MUL_FrST0 },
 | |
|   { X86::SUB_Fp32  , X86::SUB_FrST0 },
 | |
|   { X86::SUB_Fp64  , X86::SUB_FrST0 },
 | |
|   { X86::SUB_Fp80  , X86::SUB_FrST0 },
 | |
| };
 | |
| 
 | |
| 
 | |
| /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
 | |
| /// instructions which need to be simplified and possibly transformed.
 | |
| ///
 | |
| /// Result: ST(0) = fsub  ST(0), ST(i)
 | |
| ///         ST(i) = fsub  ST(0), ST(i)
 | |
| ///         ST(0) = fsubr ST(0), ST(i)
 | |
| ///         ST(i) = fsubr ST(0), ST(i)
 | |
| ///
 | |
| void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
 | |
|   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | |
|   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned NumOperands = MI->getDesc().getNumOperands();
 | |
|   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
 | |
|   unsigned Dest = getFPReg(MI->getOperand(0));
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | |
|   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   unsigned TOS = getStackEntry(0);
 | |
| 
 | |
|   // One of our operands must be on the top of the stack.  If neither is yet, we
 | |
|   // need to move one.
 | |
|   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
 | |
|     // We can choose to move either operand to the top of the stack.  If one of
 | |
|     // the operands is killed by this instruction, we want that one so that we
 | |
|     // can update right on top of the old version.
 | |
|     if (KillsOp0) {
 | |
|       moveToTop(Op0, I);         // Move dead operand to TOS.
 | |
|       TOS = Op0;
 | |
|     } else if (KillsOp1) {
 | |
|       moveToTop(Op1, I);
 | |
|       TOS = Op1;
 | |
|     } else {
 | |
|       // All of the operands are live after this instruction executes, so we
 | |
|       // cannot update on top of any operand.  Because of this, we must
 | |
|       // duplicate one of the stack elements to the top.  It doesn't matter
 | |
|       // which one we pick.
 | |
|       //
 | |
|       duplicateToTop(Op0, Dest, I);
 | |
|       Op0 = TOS = Dest;
 | |
|       KillsOp0 = true;
 | |
|     }
 | |
|   } else if (!KillsOp0 && !KillsOp1) {
 | |
|     // If we DO have one of our operands at the top of the stack, but we don't
 | |
|     // have a dead operand, we must duplicate one of the operands to a new slot
 | |
|     // on the stack.
 | |
|     duplicateToTop(Op0, Dest, I);
 | |
|     Op0 = TOS = Dest;
 | |
|     KillsOp0 = true;
 | |
|   }
 | |
| 
 | |
|   // Now we know that one of our operands is on the top of the stack, and at
 | |
|   // least one of our operands is killed by this instruction.
 | |
|   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
 | |
|          "Stack conditions not set up right!");
 | |
| 
 | |
|   // We decide which form to use based on what is on the top of the stack, and
 | |
|   // which operand is killed by this instruction.
 | |
|   const TableEntry *InstTable;
 | |
|   bool isForward = TOS == Op0;
 | |
|   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
 | |
|   if (updateST0) {
 | |
|     if (isForward)
 | |
|       InstTable = ForwardST0Table;
 | |
|     else
 | |
|       InstTable = ReverseST0Table;
 | |
|   } else {
 | |
|     if (isForward)
 | |
|       InstTable = ForwardSTiTable;
 | |
|     else
 | |
|       InstTable = ReverseSTiTable;
 | |
|   }
 | |
| 
 | |
|   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
 | |
|                       MI->getOpcode());
 | |
|   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
 | |
| 
 | |
|   // NotTOS - The register which is not on the top of stack...
 | |
|   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
 | |
| 
 | |
|   // Replace the old instruction with a new instruction
 | |
|   MBB->remove(I++);
 | |
|   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
 | |
| 
 | |
|   // If both operands are killed, pop one off of the stack in addition to
 | |
|   // overwriting the other one.
 | |
|   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
 | |
|     assert(!updateST0 && "Should have updated other operand!");
 | |
|     popStackAfter(I);   // Pop the top of stack
 | |
|   }
 | |
| 
 | |
|   // Update stack information so that we know the destination register is now on
 | |
|   // the stack.
 | |
|   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
 | |
|   assert(UpdatedSlot < StackTop && Dest < 7);
 | |
|   Stack[UpdatedSlot]   = Dest;
 | |
|   RegMap[Dest]         = UpdatedSlot;
 | |
|   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
 | |
| }
 | |
| 
 | |
| /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
 | |
| /// register arguments and no explicit destinations.
 | |
| ///
 | |
| void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
 | |
|   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | |
|   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned NumOperands = MI->getDesc().getNumOperands();
 | |
|   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | |
|   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
| 
 | |
|   // Make sure the first operand is on the top of stack, the other one can be
 | |
|   // anywhere.
 | |
|   moveToTop(Op0, I);
 | |
| 
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->getOperand(0).setReg(getSTReg(Op1));
 | |
|   MI->RemoveOperand(1);
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
| 
 | |
|   // If any of the operands are killed by this instruction, free them.
 | |
|   if (KillsOp0) freeStackSlotAfter(I, Op0);
 | |
|   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
 | |
| }
 | |
| 
 | |
| /// handleCondMovFP - Handle two address conditional move instructions.  These
 | |
| /// instructions move a st(i) register to st(0) iff a condition is true.  These
 | |
| /// instructions require that the first operand is at the top of the stack, but
 | |
| /// otherwise don't modify the stack at all.
 | |
| void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   unsigned Op0 = getFPReg(MI->getOperand(0));
 | |
|   unsigned Op1 = getFPReg(MI->getOperand(2));
 | |
|   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
 | |
| 
 | |
|   // The first operand *must* be on the top of the stack.
 | |
|   moveToTop(Op0, I);
 | |
| 
 | |
|   // Change the second operand to the stack register that the operand is in.
 | |
|   // Change from the pseudo instruction to the concrete instruction.
 | |
|   MI->RemoveOperand(0);
 | |
|   MI->RemoveOperand(1);
 | |
|   MI->getOperand(0).setReg(getSTReg(Op1));
 | |
|   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
 | |
|   
 | |
|   // If we kill the second operand, make sure to pop it from the stack.
 | |
|   if (Op0 != Op1 && KillsOp1) {
 | |
|     // Get this value off of the register stack.
 | |
|     freeStackSlotAfter(I, Op1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// handleSpecialFP - Handle special instructions which behave unlike other
 | |
| /// floating point instructions.  This is primarily intended for use by pseudo
 | |
| /// instructions.
 | |
| ///
 | |
| void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
 | |
|   MachineInstr *MI = I;
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown SpecialFP instruction!");
 | |
|   case TargetOpcode::COPY: {
 | |
|     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
 | |
|     const MachineOperand &MO1 = MI->getOperand(1);
 | |
|     const MachineOperand &MO0 = MI->getOperand(0);
 | |
|     unsigned DstST = MO0.getReg() - X86::ST0;
 | |
|     unsigned SrcST = MO1.getReg() - X86::ST0;
 | |
|     bool KillsSrc = MI->killsRegister(MO1.getReg());
 | |
| 
 | |
|     // ST = COPY FP. Set up a pending ST register.
 | |
|     if (DstST < 8) {
 | |
|       unsigned SrcFP = getFPReg(MO1);
 | |
|       assert(isLive(SrcFP) && "Cannot copy dead register");
 | |
|       assert(!MO0.isDead() && "Cannot copy to dead ST register");
 | |
| 
 | |
|       // Unallocated STs are marked as the nonexistent FP255.
 | |
|       while (NumPendingSTs <= DstST)
 | |
|         PendingST[NumPendingSTs++] = NumFPRegs;
 | |
| 
 | |
|       // STi could still be live from a previous inline asm.
 | |
|       if (isScratchReg(PendingST[DstST])) {
 | |
|         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
 | |
|                      << '\n');
 | |
|         freeStackSlotBefore(MI, PendingST[DstST]);
 | |
|       }
 | |
| 
 | |
|       // When the source is killed, allocate a scratch FP register.
 | |
|       if (KillsSrc) {
 | |
|         unsigned Slot = getSlot(SrcFP);
 | |
|         unsigned SR = getScratchReg();
 | |
|         PendingST[DstST] = SR;
 | |
|         Stack[Slot] = SR;
 | |
|         RegMap[SR] = Slot;
 | |
|       } else
 | |
|         PendingST[DstST] = SrcFP;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // FP = COPY ST. Extract fixed stack value.
 | |
|     // Any instruction defining ST registers must have assigned them to a
 | |
|     // scratch register.
 | |
|     if (SrcST < 8) {
 | |
|       unsigned DstFP = getFPReg(MO0);
 | |
|       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
 | |
|       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
 | |
|       unsigned SrcFP = PendingST[SrcST];
 | |
|       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
 | |
|       assert(isLive(SrcFP) && "Scratch holding ST is dead");
 | |
| 
 | |
|       // DstFP steals the stack slot from SrcFP.
 | |
|       unsigned Slot = getSlot(SrcFP);
 | |
|       Stack[Slot] = DstFP;
 | |
|       RegMap[DstFP] = Slot;
 | |
| 
 | |
|       // Always treat the ST as killed.
 | |
|       PendingST[SrcST] = NumFPRegs;
 | |
|       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
 | |
|         --NumPendingSTs;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // FP <- FP copy.
 | |
|     unsigned DstFP = getFPReg(MO0);
 | |
|     unsigned SrcFP = getFPReg(MO1);
 | |
|     assert(isLive(SrcFP) && "Cannot copy dead register");
 | |
|     if (KillsSrc) {
 | |
|       // If the input operand is killed, we can just change the owner of the
 | |
|       // incoming stack slot into the result.
 | |
|       unsigned Slot = getSlot(SrcFP);
 | |
|       Stack[Slot] = DstFP;
 | |
|       RegMap[DstFP] = Slot;
 | |
|     } else {
 | |
|       // For COPY we just duplicate the specified value to a new stack slot.
 | |
|       // This could be made better, but would require substantial changes.
 | |
|       duplicateToTop(SrcFP, DstFP, I);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::FpPOP_RETVAL: {
 | |
|     // The FpPOP_RETVAL instruction is used after calls that return a value on
 | |
|     // the floating point stack. We cannot model this with ST defs since CALL
 | |
|     // instructions have fixed clobber lists. This instruction is interpreted
 | |
|     // to mean that there is one more live register on the stack than we
 | |
|     // thought.
 | |
|     //
 | |
|     // This means that StackTop does not match the hardware stack between a
 | |
|     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
 | |
|     // between CALL and FpPOP_RETVAL as long as they don't overflow the
 | |
|     // hardware stack.
 | |
|     unsigned DstFP = getFPReg(MI->getOperand(0));
 | |
| 
 | |
|     // Move existing stack elements up to reflect reality.
 | |
|     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
 | |
|     if (StackTop) {
 | |
|       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
 | |
|       for (unsigned i = 0; i != NumFPRegs; ++i)
 | |
|         ++RegMap[i];
 | |
|     }
 | |
|     ++StackTop;
 | |
| 
 | |
|     // DstFP is the new bottom of the stack.
 | |
|     Stack[0] = DstFP;
 | |
|     RegMap[DstFP] = 0;
 | |
| 
 | |
|     // DstFP will be killed by processBasicBlock if this was a dead def.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::INLINEASM: {
 | |
|     // The inline asm MachineInstr currently only *uses* FP registers for the
 | |
|     // 'f' constraint.  These should be turned into the current ST(x) register
 | |
|     // in the machine instr.
 | |
|     //
 | |
|     // There are special rules for x87 inline assembly. The compiler must know
 | |
|     // exactly how many registers are popped and pushed implicitly by the asm.
 | |
|     // Otherwise it is not possible to restore the stack state after the inline
 | |
|     // asm.
 | |
|     //
 | |
|     // There are 3 kinds of input operands:
 | |
|     //
 | |
|     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
 | |
|     //    popped input operand must be in a fixed stack slot, and it is either
 | |
|     //    tied to an output operand, or in the clobber list. The MI has ST use
 | |
|     //    and def operands for these inputs.
 | |
|     //
 | |
|     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
 | |
|     //    preserved by the inline asm. The fixed stack slots must be STn-STm
 | |
|     //    following the popped inputs. A fixed input operand cannot be tied to
 | |
|     //    an output or appear in the clobber list. The MI has ST use operands
 | |
|     //    and no defs for these inputs.
 | |
|     //
 | |
|     // 3. Preserved inputs. These inputs use the "f" constraint which is
 | |
|     //    represented as an FP register. The inline asm won't change these
 | |
|     //    stack slots.
 | |
|     //
 | |
|     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
 | |
|     // registers do not count as output operands. The inline asm changes the
 | |
|     // stack as if it popped all the popped inputs and then pushed all the
 | |
|     // output operands.
 | |
| 
 | |
|     // Scan the assembly for ST registers used, defined and clobbered. We can
 | |
|     // only tell clobbers from defs by looking at the asm descriptor.
 | |
|     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
 | |
|     unsigned NumOps = 0;
 | |
|     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
 | |
|          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
 | |
|       unsigned Flags = MI->getOperand(i).getImm();
 | |
|       NumOps = InlineAsm::getNumOperandRegisters(Flags);
 | |
|       if (NumOps != 1)
 | |
|         continue;
 | |
|       const MachineOperand &MO = MI->getOperand(i + 1);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned STReg = MO.getReg() - X86::ST0;
 | |
|       if (STReg >= 8)
 | |
|         continue;
 | |
| 
 | |
|       switch (InlineAsm::getKind(Flags)) {
 | |
|       case InlineAsm::Kind_RegUse:
 | |
|         STUses |= (1u << STReg);
 | |
|         break;
 | |
|       case InlineAsm::Kind_RegDef:
 | |
|       case InlineAsm::Kind_RegDefEarlyClobber:
 | |
|         STDefs |= (1u << STReg);
 | |
|         if (MO.isDead())
 | |
|           STDeadDefs |= (1u << STReg);
 | |
|         break;
 | |
|       case InlineAsm::Kind_Clobber:
 | |
|         STClobbers |= (1u << STReg);
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (STUses && !isMask_32(STUses))
 | |
|       MI->emitError("fixed input regs must be last on the x87 stack");
 | |
|     unsigned NumSTUses = CountTrailingOnes_32(STUses);
 | |
| 
 | |
|     // Defs must be contiguous from the stack top. ST0-STn.
 | |
|     if (STDefs && !isMask_32(STDefs)) {
 | |
|       MI->emitError("output regs must be last on the x87 stack");
 | |
|       STDefs = NextPowerOf2(STDefs) - 1;
 | |
|     }
 | |
|     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
 | |
| 
 | |
|     // So must the clobbered stack slots. ST0-STm, m >= n.
 | |
|     if (STClobbers && !isMask_32(STDefs | STClobbers))
 | |
|       MI->emitError("clobbers must be last on the x87 stack");
 | |
| 
 | |
|     // Popped inputs are the ones that are also clobbered or defined.
 | |
|     unsigned STPopped = STUses & (STDefs | STClobbers);
 | |
|     if (STPopped && !isMask_32(STPopped))
 | |
|       MI->emitError("implicitly popped regs must be last on the x87 stack");
 | |
|     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
 | |
| 
 | |
|     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
 | |
|                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
 | |
| 
 | |
|     // Scan the instruction for FP uses corresponding to "f" constraints.
 | |
|     // Collect FP registers to kill afer the instruction.
 | |
|     // Always kill all the scratch regs.
 | |
|     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
 | |
|     unsigned FPUsed = 0;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | |
|         continue;
 | |
|       if (!Op.isUse())
 | |
|         MI->emitError("illegal \"f\" output constraint");
 | |
|       unsigned FPReg = getFPReg(Op);
 | |
|       FPUsed |= 1U << FPReg;
 | |
| 
 | |
|       // If we kill this operand, make sure to pop it from the stack after the
 | |
|       // asm.  We just remember it for now, and pop them all off at the end in
 | |
|       // a batch.
 | |
|       if (Op.isKill())
 | |
|         FPKills |= 1U << FPReg;
 | |
|     }
 | |
| 
 | |
|     // The popped inputs will be killed by the instruction, so duplicate them
 | |
|     // if the FP register needs to be live after the instruction, or if it is
 | |
|     // used in the instruction itself. We effectively treat the popped inputs
 | |
|     // as early clobbers.
 | |
|     for (unsigned i = 0; i < NumSTPopped; ++i) {
 | |
|       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
 | |
|         continue;
 | |
|       unsigned SR = getScratchReg();
 | |
|       duplicateToTop(PendingST[i], SR, I);
 | |
|       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
 | |
|                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
 | |
|       PendingST[i] = SR;
 | |
|     }
 | |
| 
 | |
|     // Make sure we have a unique live register for every fixed use. Some of
 | |
|     // them could be undef uses, and we need to emit LD_F0 instructions.
 | |
|     for (unsigned i = 0; i < NumSTUses; ++i) {
 | |
|       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
 | |
|         // Check for shared assignments.
 | |
|         for (unsigned j = 0; j < i; ++j) {
 | |
|           if (PendingST[j] != PendingST[i])
 | |
|             continue;
 | |
|           // STi and STj are inn the same register, create a copy.
 | |
|           unsigned SR = getScratchReg();
 | |
|           duplicateToTop(PendingST[i], SR, I);
 | |
|           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
 | |
|                        << unsigned(PendingST[i])
 | |
|                        << " to avoid collision with ST" << j << '\n');
 | |
|           PendingST[i] = SR;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       unsigned SR = getScratchReg();
 | |
|       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
 | |
|       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
 | |
|       pushReg(SR);
 | |
|       PendingST[i] = SR;
 | |
|       if (NumPendingSTs == i)
 | |
|         ++NumPendingSTs;
 | |
|     }
 | |
|     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
 | |
| 
 | |
|     // Now we can rearrange the live registers to match what was requested.
 | |
|     shuffleStackTop(PendingST, NumPendingSTs, I);
 | |
|     DEBUG({dbgs() << "Before asm: "; dumpStack();});
 | |
| 
 | |
|     // With the stack layout fixed, rewrite the FP registers.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | |
|         continue;
 | |
|       unsigned FPReg = getFPReg(Op);
 | |
|       Op.setReg(getSTReg(FPReg));
 | |
|     }
 | |
| 
 | |
|     // Simulate the inline asm popping its inputs and pushing its outputs.
 | |
|     StackTop -= NumSTPopped;
 | |
| 
 | |
|     // Hold the fixed output registers in scratch FP registers. They will be
 | |
|     // transferred to real FP registers by copies.
 | |
|     NumPendingSTs = 0;
 | |
|     for (unsigned i = 0; i < NumSTDefs; ++i) {
 | |
|       unsigned SR = getScratchReg();
 | |
|       pushReg(SR);
 | |
|       FPKills &= ~(1u << SR);
 | |
|     }
 | |
|     for (unsigned i = 0; i < NumSTDefs; ++i)
 | |
|       PendingST[NumPendingSTs++] = getStackEntry(i);
 | |
|     DEBUG({dbgs() << "After asm: "; dumpStack();});
 | |
| 
 | |
|     // If any of the ST defs were dead, pop them immediately. Our caller only
 | |
|     // handles dead FP defs.
 | |
|     MachineBasicBlock::iterator InsertPt = MI;
 | |
|     for (unsigned i = 0; STDefs & (1u << i); ++i) {
 | |
|       if (!(STDeadDefs & (1u << i)))
 | |
|         continue;
 | |
|       freeStackSlotAfter(InsertPt, PendingST[i]);
 | |
|       PendingST[i] = NumFPRegs;
 | |
|     }
 | |
|     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
 | |
|       --NumPendingSTs;
 | |
| 
 | |
|     // If this asm kills any FP registers (is the last use of them) we must
 | |
|     // explicitly emit pop instructions for them.  Do this now after the asm has
 | |
|     // executed so that the ST(x) numbers are not off (which would happen if we
 | |
|     // did this inline with operand rewriting).
 | |
|     //
 | |
|     // Note: this might be a non-optimal pop sequence.  We might be able to do
 | |
|     // better by trying to pop in stack order or something.
 | |
|     while (FPKills) {
 | |
|       unsigned FPReg = CountTrailingZeros_32(FPKills);
 | |
|       if (isLive(FPReg))
 | |
|         freeStackSlotAfter(InsertPt, FPReg);
 | |
|       FPKills &= ~(1U << FPReg);
 | |
|     }
 | |
|     // Don't delete the inline asm!
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86::RET:
 | |
|   case X86::RETI:
 | |
|     // If RET has an FP register use operand, pass the first one in ST(0) and
 | |
|     // the second one in ST(1).
 | |
| 
 | |
|     // Find the register operands.
 | |
|     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
 | |
|     unsigned LiveMask = 0;
 | |
| 
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
 | |
|         continue;
 | |
|       // FP Register uses must be kills unless there are two uses of the same
 | |
|       // register, in which case only one will be a kill.
 | |
|       assert(Op.isUse() &&
 | |
|              (Op.isKill() ||                        // Marked kill.
 | |
|               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
 | |
|               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
 | |
|              "Ret only defs operands, and values aren't live beyond it");
 | |
| 
 | |
|       if (FirstFPRegOp == ~0U)
 | |
|         FirstFPRegOp = getFPReg(Op);
 | |
|       else {
 | |
|         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
 | |
|         SecondFPRegOp = getFPReg(Op);
 | |
|       }
 | |
|       LiveMask |= (1 << getFPReg(Op));
 | |
| 
 | |
|       // Remove the operand so that later passes don't see it.
 | |
|       MI->RemoveOperand(i);
 | |
|       --i, --e;
 | |
|     }
 | |
| 
 | |
|     // We may have been carrying spurious live-ins, so make sure only the returned
 | |
|     // registers are left live.
 | |
|     adjustLiveRegs(LiveMask, MI);
 | |
|     if (!LiveMask) return;  // Quick check to see if any are possible.
 | |
| 
 | |
|     // There are only four possibilities here:
 | |
|     // 1) we are returning a single FP value.  In this case, it has to be in
 | |
|     //    ST(0) already, so just declare success by removing the value from the
 | |
|     //    FP Stack.
 | |
|     if (SecondFPRegOp == ~0U) {
 | |
|       // Assert that the top of stack contains the right FP register.
 | |
|       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
 | |
|              "Top of stack not the right register for RET!");
 | |
|       
 | |
|       // Ok, everything is good, mark the value as not being on the stack
 | |
|       // anymore so that our assertion about the stack being empty at end of
 | |
|       // block doesn't fire.
 | |
|       StackTop = 0;
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we are returning two values:
 | |
|     // 2) If returning the same value for both, we only have one thing in the FP
 | |
|     //    stack.  Consider:  RET FP1, FP1
 | |
|     if (StackTop == 1) {
 | |
|       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
 | |
|              "Stack misconfiguration for RET!");
 | |
|       
 | |
|       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
 | |
|       // register to hold it.
 | |
|       unsigned NewReg = getScratchReg();
 | |
|       duplicateToTop(FirstFPRegOp, NewReg, MI);
 | |
|       FirstFPRegOp = NewReg;
 | |
|     }
 | |
|     
 | |
|     /// Okay we know we have two different FPx operands now:
 | |
|     assert(StackTop == 2 && "Must have two values live!");
 | |
|     
 | |
|     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
 | |
|     ///    in ST(1).  In this case, emit an fxch.
 | |
|     if (getStackEntry(0) == SecondFPRegOp) {
 | |
|       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
 | |
|       moveToTop(FirstFPRegOp, MI);
 | |
|     }
 | |
|     
 | |
|     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
 | |
|     /// ST(1).  Just remove both from our understanding of the stack and return.
 | |
|     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
 | |
|     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
 | |
|     StackTop = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   I = MBB->erase(I);  // Remove the pseudo instruction
 | |
| 
 | |
|   // We want to leave I pointing to the previous instruction, but what if we
 | |
|   // just erased the first instruction?
 | |
|   if (I == MBB->begin()) {
 | |
|     DEBUG(dbgs() << "Inserting dummy KILL\n");
 | |
|     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
 | |
|   } else
 | |
|     --I;
 | |
| }
 |