forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3222 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3222 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include <limits>
 | |
| 
 | |
| #define GET_INSTRINFO_CTOR
 | |
| #include "X86GenInstrInfo.inc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFusing("disable-spill-fusing",
 | |
|          cl::desc("Disable fusing of spill code into instructions"));
 | |
| static cl::opt<bool>
 | |
| PrintFailedFusing("print-failed-fuse-candidates",
 | |
|                   cl::desc("Print instructions that the allocator wants to"
 | |
|                            " fuse, but the X86 backend currently can't"),
 | |
|                   cl::Hidden);
 | |
| static cl::opt<bool>
 | |
| ReMatPICStubLoad("remat-pic-stub-load",
 | |
|                  cl::desc("Re-materialize load from stub in PIC mode"),
 | |
|                  cl::init(false), cl::Hidden);
 | |
| 
 | |
| X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 | |
|   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
 | |
|                      ? X86::ADJCALLSTACKDOWN64
 | |
|                      : X86::ADJCALLSTACKDOWN32),
 | |
|                     (tm.getSubtarget<X86Subtarget>().is64Bit()
 | |
|                      ? X86::ADJCALLSTACKUP64
 | |
|                      : X86::ADJCALLSTACKUP32)),
 | |
|     TM(tm), RI(tm, *this) {
 | |
|   enum {
 | |
|     TB_NOT_REVERSABLE = 1U << 31,
 | |
|     TB_FLAGS = TB_NOT_REVERSABLE
 | |
|   };
 | |
| 
 | |
|   static const unsigned OpTbl2Addr[][2] = {
 | |
|     { X86::ADC32ri,     X86::ADC32mi },
 | |
|     { X86::ADC32ri8,    X86::ADC32mi8 },
 | |
|     { X86::ADC32rr,     X86::ADC32mr },
 | |
|     { X86::ADC64ri32,   X86::ADC64mi32 },
 | |
|     { X86::ADC64ri8,    X86::ADC64mi8 },
 | |
|     { X86::ADC64rr,     X86::ADC64mr },
 | |
|     { X86::ADD16ri,     X86::ADD16mi },
 | |
|     { X86::ADD16ri8,    X86::ADD16mi8 },
 | |
|     { X86::ADD16ri_DB,  X86::ADD16mi  | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD16rr,     X86::ADD16mr },
 | |
|     { X86::ADD16rr_DB,  X86::ADD16mr | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD32ri,     X86::ADD32mi },
 | |
|     { X86::ADD32ri8,    X86::ADD32mi8 },
 | |
|     { X86::ADD32ri_DB,  X86::ADD32mi | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD32rr,     X86::ADD32mr },
 | |
|     { X86::ADD32rr_DB,  X86::ADD32mr | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD64ri32,   X86::ADD64mi32 },
 | |
|     { X86::ADD64ri8,    X86::ADD64mi8 },
 | |
|     { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD64rr,     X86::ADD64mr },
 | |
|     { X86::ADD64rr_DB,  X86::ADD64mr | TB_NOT_REVERSABLE },
 | |
|     { X86::ADD8ri,      X86::ADD8mi },
 | |
|     { X86::ADD8rr,      X86::ADD8mr },
 | |
|     { X86::AND16ri,     X86::AND16mi },
 | |
|     { X86::AND16ri8,    X86::AND16mi8 },
 | |
|     { X86::AND16rr,     X86::AND16mr },
 | |
|     { X86::AND32ri,     X86::AND32mi },
 | |
|     { X86::AND32ri8,    X86::AND32mi8 },
 | |
|     { X86::AND32rr,     X86::AND32mr },
 | |
|     { X86::AND64ri32,   X86::AND64mi32 },
 | |
|     { X86::AND64ri8,    X86::AND64mi8 },
 | |
|     { X86::AND64rr,     X86::AND64mr },
 | |
|     { X86::AND8ri,      X86::AND8mi },
 | |
|     { X86::AND8rr,      X86::AND8mr },
 | |
|     { X86::DEC16r,      X86::DEC16m },
 | |
|     { X86::DEC32r,      X86::DEC32m },
 | |
|     { X86::DEC64_16r,   X86::DEC64_16m },
 | |
|     { X86::DEC64_32r,   X86::DEC64_32m },
 | |
|     { X86::DEC64r,      X86::DEC64m },
 | |
|     { X86::DEC8r,       X86::DEC8m },
 | |
|     { X86::INC16r,      X86::INC16m },
 | |
|     { X86::INC32r,      X86::INC32m },
 | |
|     { X86::INC64_16r,   X86::INC64_16m },
 | |
|     { X86::INC64_32r,   X86::INC64_32m },
 | |
|     { X86::INC64r,      X86::INC64m },
 | |
|     { X86::INC8r,       X86::INC8m },
 | |
|     { X86::NEG16r,      X86::NEG16m },
 | |
|     { X86::NEG32r,      X86::NEG32m },
 | |
|     { X86::NEG64r,      X86::NEG64m },
 | |
|     { X86::NEG8r,       X86::NEG8m },
 | |
|     { X86::NOT16r,      X86::NOT16m },
 | |
|     { X86::NOT32r,      X86::NOT32m },
 | |
|     { X86::NOT64r,      X86::NOT64m },
 | |
|     { X86::NOT8r,       X86::NOT8m },
 | |
|     { X86::OR16ri,      X86::OR16mi },
 | |
|     { X86::OR16ri8,     X86::OR16mi8 },
 | |
|     { X86::OR16rr,      X86::OR16mr },
 | |
|     { X86::OR32ri,      X86::OR32mi },
 | |
|     { X86::OR32ri8,     X86::OR32mi8 },
 | |
|     { X86::OR32rr,      X86::OR32mr },
 | |
|     { X86::OR64ri32,    X86::OR64mi32 },
 | |
|     { X86::OR64ri8,     X86::OR64mi8 },
 | |
|     { X86::OR64rr,      X86::OR64mr },
 | |
|     { X86::OR8ri,       X86::OR8mi },
 | |
|     { X86::OR8rr,       X86::OR8mr },
 | |
|     { X86::ROL16r1,     X86::ROL16m1 },
 | |
|     { X86::ROL16rCL,    X86::ROL16mCL },
 | |
|     { X86::ROL16ri,     X86::ROL16mi },
 | |
|     { X86::ROL32r1,     X86::ROL32m1 },
 | |
|     { X86::ROL32rCL,    X86::ROL32mCL },
 | |
|     { X86::ROL32ri,     X86::ROL32mi },
 | |
|     { X86::ROL64r1,     X86::ROL64m1 },
 | |
|     { X86::ROL64rCL,    X86::ROL64mCL },
 | |
|     { X86::ROL64ri,     X86::ROL64mi },
 | |
|     { X86::ROL8r1,      X86::ROL8m1 },
 | |
|     { X86::ROL8rCL,     X86::ROL8mCL },
 | |
|     { X86::ROL8ri,      X86::ROL8mi },
 | |
|     { X86::ROR16r1,     X86::ROR16m1 },
 | |
|     { X86::ROR16rCL,    X86::ROR16mCL },
 | |
|     { X86::ROR16ri,     X86::ROR16mi },
 | |
|     { X86::ROR32r1,     X86::ROR32m1 },
 | |
|     { X86::ROR32rCL,    X86::ROR32mCL },
 | |
|     { X86::ROR32ri,     X86::ROR32mi },
 | |
|     { X86::ROR64r1,     X86::ROR64m1 },
 | |
|     { X86::ROR64rCL,    X86::ROR64mCL },
 | |
|     { X86::ROR64ri,     X86::ROR64mi },
 | |
|     { X86::ROR8r1,      X86::ROR8m1 },
 | |
|     { X86::ROR8rCL,     X86::ROR8mCL },
 | |
|     { X86::ROR8ri,      X86::ROR8mi },
 | |
|     { X86::SAR16r1,     X86::SAR16m1 },
 | |
|     { X86::SAR16rCL,    X86::SAR16mCL },
 | |
|     { X86::SAR16ri,     X86::SAR16mi },
 | |
|     { X86::SAR32r1,     X86::SAR32m1 },
 | |
|     { X86::SAR32rCL,    X86::SAR32mCL },
 | |
|     { X86::SAR32ri,     X86::SAR32mi },
 | |
|     { X86::SAR64r1,     X86::SAR64m1 },
 | |
|     { X86::SAR64rCL,    X86::SAR64mCL },
 | |
|     { X86::SAR64ri,     X86::SAR64mi },
 | |
|     { X86::SAR8r1,      X86::SAR8m1 },
 | |
|     { X86::SAR8rCL,     X86::SAR8mCL },
 | |
|     { X86::SAR8ri,      X86::SAR8mi },
 | |
|     { X86::SBB32ri,     X86::SBB32mi },
 | |
|     { X86::SBB32ri8,    X86::SBB32mi8 },
 | |
|     { X86::SBB32rr,     X86::SBB32mr },
 | |
|     { X86::SBB64ri32,   X86::SBB64mi32 },
 | |
|     { X86::SBB64ri8,    X86::SBB64mi8 },
 | |
|     { X86::SBB64rr,     X86::SBB64mr },
 | |
|     { X86::SHL16rCL,    X86::SHL16mCL },
 | |
|     { X86::SHL16ri,     X86::SHL16mi },
 | |
|     { X86::SHL32rCL,    X86::SHL32mCL },
 | |
|     { X86::SHL32ri,     X86::SHL32mi },
 | |
|     { X86::SHL64rCL,    X86::SHL64mCL },
 | |
|     { X86::SHL64ri,     X86::SHL64mi },
 | |
|     { X86::SHL8rCL,     X86::SHL8mCL },
 | |
|     { X86::SHL8ri,      X86::SHL8mi },
 | |
|     { X86::SHLD16rrCL,  X86::SHLD16mrCL },
 | |
|     { X86::SHLD16rri8,  X86::SHLD16mri8 },
 | |
|     { X86::SHLD32rrCL,  X86::SHLD32mrCL },
 | |
|     { X86::SHLD32rri8,  X86::SHLD32mri8 },
 | |
|     { X86::SHLD64rrCL,  X86::SHLD64mrCL },
 | |
|     { X86::SHLD64rri8,  X86::SHLD64mri8 },
 | |
|     { X86::SHR16r1,     X86::SHR16m1 },
 | |
|     { X86::SHR16rCL,    X86::SHR16mCL },
 | |
|     { X86::SHR16ri,     X86::SHR16mi },
 | |
|     { X86::SHR32r1,     X86::SHR32m1 },
 | |
|     { X86::SHR32rCL,    X86::SHR32mCL },
 | |
|     { X86::SHR32ri,     X86::SHR32mi },
 | |
|     { X86::SHR64r1,     X86::SHR64m1 },
 | |
|     { X86::SHR64rCL,    X86::SHR64mCL },
 | |
|     { X86::SHR64ri,     X86::SHR64mi },
 | |
|     { X86::SHR8r1,      X86::SHR8m1 },
 | |
|     { X86::SHR8rCL,     X86::SHR8mCL },
 | |
|     { X86::SHR8ri,      X86::SHR8mi },
 | |
|     { X86::SHRD16rrCL,  X86::SHRD16mrCL },
 | |
|     { X86::SHRD16rri8,  X86::SHRD16mri8 },
 | |
|     { X86::SHRD32rrCL,  X86::SHRD32mrCL },
 | |
|     { X86::SHRD32rri8,  X86::SHRD32mri8 },
 | |
|     { X86::SHRD64rrCL,  X86::SHRD64mrCL },
 | |
|     { X86::SHRD64rri8,  X86::SHRD64mri8 },
 | |
|     { X86::SUB16ri,     X86::SUB16mi },
 | |
|     { X86::SUB16ri8,    X86::SUB16mi8 },
 | |
|     { X86::SUB16rr,     X86::SUB16mr },
 | |
|     { X86::SUB32ri,     X86::SUB32mi },
 | |
|     { X86::SUB32ri8,    X86::SUB32mi8 },
 | |
|     { X86::SUB32rr,     X86::SUB32mr },
 | |
|     { X86::SUB64ri32,   X86::SUB64mi32 },
 | |
|     { X86::SUB64ri8,    X86::SUB64mi8 },
 | |
|     { X86::SUB64rr,     X86::SUB64mr },
 | |
|     { X86::SUB8ri,      X86::SUB8mi },
 | |
|     { X86::SUB8rr,      X86::SUB8mr },
 | |
|     { X86::XOR16ri,     X86::XOR16mi },
 | |
|     { X86::XOR16ri8,    X86::XOR16mi8 },
 | |
|     { X86::XOR16rr,     X86::XOR16mr },
 | |
|     { X86::XOR32ri,     X86::XOR32mi },
 | |
|     { X86::XOR32ri8,    X86::XOR32mi8 },
 | |
|     { X86::XOR32rr,     X86::XOR32mr },
 | |
|     { X86::XOR64ri32,   X86::XOR64mi32 },
 | |
|     { X86::XOR64ri8,    X86::XOR64mi8 },
 | |
|     { X86::XOR64rr,     X86::XOR64mr },
 | |
|     { X86::XOR8ri,      X86::XOR8mi },
 | |
|     { X86::XOR8rr,      X86::XOR8mr }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2Addr[i][0];
 | |
|     unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
 | |
|     assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
 | |
|     RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
 | |
| 
 | |
|     // If this is not a reversible operation (because there is a many->one)
 | |
|     // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
 | |
|     if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
 | |
|       continue;
 | |
| 
 | |
|     // Index 0, folded load and store, no alignment requirement.
 | |
|     unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
 | |
| 
 | |
|     assert(!MemOp2RegOpTable.count(MemOp) &&
 | |
|             "Duplicated entries in unfolding maps?");
 | |
|     MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
 | |
|   }
 | |
| 
 | |
|   // If the third value is 1, then it's folding either a load or a store.
 | |
|   static const unsigned OpTbl0[][4] = {
 | |
|     { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
 | |
|     { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
 | |
|     { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
 | |
|     { X86::CALL32r,     X86::CALL32m, 1, 0 },
 | |
|     { X86::CALL64r,     X86::CALL64m, 1, 0 },
 | |
|     { X86::WINCALL64r,  X86::WINCALL64m, 1, 0 },
 | |
|     { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
 | |
|     { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
 | |
|     { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
 | |
|     { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
 | |
|     { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
 | |
|     { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
 | |
|     { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
 | |
|     { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
 | |
|     { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
 | |
|     { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
 | |
|     { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
 | |
|     { X86::DIV16r,      X86::DIV16m, 1, 0 },
 | |
|     { X86::DIV32r,      X86::DIV32m, 1, 0 },
 | |
|     { X86::DIV64r,      X86::DIV64m, 1, 0 },
 | |
|     { X86::DIV8r,       X86::DIV8m, 1, 0 },
 | |
|     { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
 | |
|     { X86::FsMOVAPDrr,  X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
 | |
|     { X86::FsMOVAPSrr,  X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
 | |
|     { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
 | |
|     { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
 | |
|     { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
 | |
|     { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
 | |
|     { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
 | |
|     { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
 | |
|     { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
 | |
|     { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
 | |
|     { X86::JMP32r,      X86::JMP32m, 1, 0 },
 | |
|     { X86::JMP64r,      X86::JMP64m, 1, 0 },
 | |
|     { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
 | |
|     { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
 | |
|     { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
 | |
|     { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
 | |
|     { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
 | |
|     { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
 | |
|     { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
 | |
|     { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
 | |
|     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
 | |
|     { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
 | |
|     { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
 | |
|     { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
 | |
|     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr, 0, 32 },
 | |
|     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr, 0, 32 },
 | |
|     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr, 0, 32 },
 | |
|     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
 | |
|     { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
 | |
|     { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
 | |
|     { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
 | |
|     { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
 | |
|     { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
 | |
|     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr, 0, 0 },
 | |
|     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr, 0, 0 },
 | |
|     { X86::MUL16r,      X86::MUL16m, 1, 0 },
 | |
|     { X86::MUL32r,      X86::MUL32m, 1, 0 },
 | |
|     { X86::MUL64r,      X86::MUL64m, 1, 0 },
 | |
|     { X86::MUL8r,       X86::MUL8m, 1, 0 },
 | |
|     { X86::SETAEr,      X86::SETAEm, 0, 0 },
 | |
|     { X86::SETAr,       X86::SETAm, 0, 0 },
 | |
|     { X86::SETBEr,      X86::SETBEm, 0, 0 },
 | |
|     { X86::SETBr,       X86::SETBm, 0, 0 },
 | |
|     { X86::SETEr,       X86::SETEm, 0, 0 },
 | |
|     { X86::SETGEr,      X86::SETGEm, 0, 0 },
 | |
|     { X86::SETGr,       X86::SETGm, 0, 0 },
 | |
|     { X86::SETLEr,      X86::SETLEm, 0, 0 },
 | |
|     { X86::SETLr,       X86::SETLm, 0, 0 },
 | |
|     { X86::SETNEr,      X86::SETNEm, 0, 0 },
 | |
|     { X86::SETNOr,      X86::SETNOm, 0, 0 },
 | |
|     { X86::SETNPr,      X86::SETNPm, 0, 0 },
 | |
|     { X86::SETNSr,      X86::SETNSm, 0, 0 },
 | |
|     { X86::SETOr,       X86::SETOm, 0, 0 },
 | |
|     { X86::SETPr,       X86::SETPm, 0, 0 },
 | |
|     { X86::SETSr,       X86::SETSm, 0, 0 },
 | |
|     { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
 | |
|     { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
 | |
|     { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
 | |
|     { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
 | |
|     { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
 | |
|     { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
 | |
|     unsigned RegOp      = OpTbl0[i][0];
 | |
|     unsigned MemOp      = OpTbl0[i][1] & ~TB_FLAGS;
 | |
|     unsigned FoldedLoad = OpTbl0[i][2];
 | |
|     unsigned Align      = OpTbl0[i][3];
 | |
|     assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
 | |
|     RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
 | |
| 
 | |
|     // If this is not a reversible operation (because there is a many->one)
 | |
|     // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
 | |
|     if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
 | |
|       continue;
 | |
| 
 | |
|     // Index 0, folded load or store.
 | |
|     unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
 | |
|     assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
 | |
|     MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
 | |
|   }
 | |
| 
 | |
|   static const unsigned OpTbl1[][3] = {
 | |
|     { X86::CMP16rr,         X86::CMP16rm, 0 },
 | |
|     { X86::CMP32rr,         X86::CMP32rm, 0 },
 | |
|     { X86::CMP64rr,         X86::CMP64rm, 0 },
 | |
|     { X86::CMP8rr,          X86::CMP8rm, 0 },
 | |
|     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
 | |
|     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
 | |
|     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
 | |
|     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
 | |
|     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
 | |
|     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
 | |
|     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
 | |
|     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
 | |
|     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
 | |
|     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
 | |
|     { X86::FsMOVAPDrr,      X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
 | |
|     { X86::FsMOVAPSrr,      X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
 | |
|     { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
 | |
|     { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
 | |
|     { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
 | |
|     { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
 | |
|     { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
 | |
|     { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
 | |
|     { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
 | |
|     { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
 | |
|     { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
 | |
|     { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
 | |
|     { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
 | |
|     { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
 | |
|     { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
 | |
|     { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
 | |
|     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm, 0 },
 | |
|     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm, 0 },
 | |
|     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
 | |
|     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
 | |
|     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
 | |
|     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
 | |
|     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
 | |
|     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
 | |
|     { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
 | |
|     { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
 | |
|     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm, 16 },
 | |
|     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm, 16 },
 | |
|     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
 | |
|     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
 | |
|     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
 | |
|     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
 | |
|     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
 | |
|     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
 | |
|     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm, 0 },
 | |
|     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm, 0 },
 | |
|     { X86::MOV16rr,         X86::MOV16rm, 0 },
 | |
|     { X86::MOV32rr,         X86::MOV32rm, 0 },
 | |
|     { X86::MOV64rr,         X86::MOV64rm, 0 },
 | |
|     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
 | |
|     { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
 | |
|     { X86::MOV8rr,          X86::MOV8rm, 0 },
 | |
|     { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
 | |
|     { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
 | |
|     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm, 32 },
 | |
|     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm, 32 },
 | |
|     { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
 | |
|     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
 | |
|     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
 | |
|     { X86::MOVDQArr,        X86::MOVDQArm, 16 },
 | |
|     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm, 16 },
 | |
|     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
 | |
|     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
 | |
|     { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
 | |
|     { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
 | |
|     { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
 | |
|     { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
 | |
|     { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
 | |
|     { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
 | |
|     { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
 | |
|     { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
 | |
|     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm, 0 },
 | |
|     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm, 0 },
 | |
|     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
 | |
|     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
 | |
|     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
 | |
|     { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
 | |
|     { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
 | |
|     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
 | |
|     { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
 | |
|     { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
 | |
|     { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
 | |
|     { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
 | |
|     { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
 | |
|     { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
 | |
|     { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
 | |
|     { X86::RCPPSr,          X86::RCPPSm, 16 },
 | |
|     { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
 | |
|     { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
 | |
|     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
 | |
|     { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
 | |
|     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
 | |
|     { X86::SQRTPDr,         X86::SQRTPDm, 16 },
 | |
|     { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
 | |
|     { X86::SQRTPSr,         X86::SQRTPSm, 16 },
 | |
|     { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
 | |
|     { X86::SQRTSDr,         X86::SQRTSDm, 0 },
 | |
|     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
 | |
|     { X86::SQRTSSr,         X86::SQRTSSm, 0 },
 | |
|     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
 | |
|     { X86::TEST16rr,        X86::TEST16rm, 0 },
 | |
|     { X86::TEST32rr,        X86::TEST32rm, 0 },
 | |
|     { X86::TEST64rr,        X86::TEST64rm, 0 },
 | |
|     { X86::TEST8rr,         X86::TEST8rm, 0 },
 | |
|     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
 | |
|     { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
 | |
|     { X86::UCOMISSrr,       X86::UCOMISSrm, 0 },
 | |
|     { X86::VUCOMISDrr,      X86::VUCOMISDrm, 0 },
 | |
|     { X86::VUCOMISSrr,      X86::VUCOMISSrm, 0 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl1[i][0];
 | |
|     unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
 | |
|     unsigned Align = OpTbl1[i][2];
 | |
|     assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
 | |
|     RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
 | |
| 
 | |
|     // If this is not a reversible operation (because there is a many->one)
 | |
|     // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
 | |
|     if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
 | |
|       continue;
 | |
| 
 | |
|     // Index 1, folded load
 | |
|     unsigned AuxInfo = 1 | (1 << 4);
 | |
|     assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
 | |
|     MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
 | |
|   }
 | |
| 
 | |
|   static const unsigned OpTbl2[][3] = {
 | |
|     { X86::ADC32rr,         X86::ADC32rm, 0 },
 | |
|     { X86::ADC64rr,         X86::ADC64rm, 0 },
 | |
|     { X86::ADD16rr,         X86::ADD16rm, 0 },
 | |
|     { X86::ADD16rr_DB,      X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
 | |
|     { X86::ADD32rr,         X86::ADD32rm, 0 },
 | |
|     { X86::ADD32rr_DB,      X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
 | |
|     { X86::ADD64rr,         X86::ADD64rm, 0 },
 | |
|     { X86::ADD64rr_DB,      X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
 | |
|     { X86::ADD8rr,          X86::ADD8rm, 0 },
 | |
|     { X86::ADDPDrr,         X86::ADDPDrm, 16 },
 | |
|     { X86::ADDPSrr,         X86::ADDPSrm, 16 },
 | |
|     { X86::ADDSDrr,         X86::ADDSDrm, 0 },
 | |
|     { X86::ADDSSrr,         X86::ADDSSrm, 0 },
 | |
|     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
 | |
|     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
 | |
|     { X86::AND16rr,         X86::AND16rm, 0 },
 | |
|     { X86::AND32rr,         X86::AND32rm, 0 },
 | |
|     { X86::AND64rr,         X86::AND64rm, 0 },
 | |
|     { X86::AND8rr,          X86::AND8rm, 0 },
 | |
|     { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
 | |
|     { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
 | |
|     { X86::ANDPDrr,         X86::ANDPDrm, 16 },
 | |
|     { X86::ANDPSrr,         X86::ANDPSrm, 16 },
 | |
|     { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
 | |
|     { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
 | |
|     { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
 | |
|     { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
 | |
|     { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
 | |
|     { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
 | |
|     { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
 | |
|     { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
 | |
|     { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
 | |
|     { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
 | |
|     { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
 | |
|     { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
 | |
|     { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
 | |
|     { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
 | |
|     { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
 | |
|     { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
 | |
|     { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
 | |
|     { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
 | |
|     { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
 | |
|     { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
 | |
|     { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
 | |
|     { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
 | |
|     { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
 | |
|     { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
 | |
|     { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
 | |
|     { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
 | |
|     { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
 | |
|     { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
 | |
|     { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
 | |
|     { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
 | |
|     { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
 | |
|     { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
 | |
|     { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
 | |
|     { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
 | |
|     { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
 | |
|     { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
 | |
|     { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
 | |
|     { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
 | |
|     { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
 | |
|     { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
 | |
|     { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
 | |
|     { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
 | |
|     { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
 | |
|     { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
 | |
|     { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
 | |
|     { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
 | |
|     { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
 | |
|     { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
 | |
|     { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
 | |
|     { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
 | |
|     { X86::CMPSDrr,         X86::CMPSDrm, 0 },
 | |
|     { X86::CMPSSrr,         X86::CMPSSrm, 0 },
 | |
|     { X86::DIVPDrr,         X86::DIVPDrm, 16 },
 | |
|     { X86::DIVPSrr,         X86::DIVPSrm, 16 },
 | |
|     { X86::DIVSDrr,         X86::DIVSDrm, 0 },
 | |
|     { X86::DIVSSrr,         X86::DIVSSrm, 0 },
 | |
|     { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
 | |
|     { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
 | |
|     { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
 | |
|     { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
 | |
|     { X86::FsORPDrr,        X86::FsORPDrm, 16 },
 | |
|     { X86::FsORPSrr,        X86::FsORPSrm, 16 },
 | |
|     { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
 | |
|     { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
 | |
|     { X86::HADDPDrr,        X86::HADDPDrm, 16 },
 | |
|     { X86::HADDPSrr,        X86::HADDPSrm, 16 },
 | |
|     { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
 | |
|     { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
 | |
|     { X86::IMUL16rr,        X86::IMUL16rm, 0 },
 | |
|     { X86::IMUL32rr,        X86::IMUL32rm, 0 },
 | |
|     { X86::IMUL64rr,        X86::IMUL64rm, 0 },
 | |
|     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
 | |
|     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
 | |
|     { X86::MAXPDrr,         X86::MAXPDrm, 16 },
 | |
|     { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
 | |
|     { X86::MAXPSrr,         X86::MAXPSrm, 16 },
 | |
|     { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
 | |
|     { X86::MAXSDrr,         X86::MAXSDrm, 0 },
 | |
|     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
 | |
|     { X86::MAXSSrr,         X86::MAXSSrm, 0 },
 | |
|     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
 | |
|     { X86::MINPDrr,         X86::MINPDrm, 16 },
 | |
|     { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
 | |
|     { X86::MINPSrr,         X86::MINPSrm, 16 },
 | |
|     { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
 | |
|     { X86::MINSDrr,         X86::MINSDrm, 0 },
 | |
|     { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
 | |
|     { X86::MINSSrr,         X86::MINSSrm, 0 },
 | |
|     { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
 | |
|     { X86::MULPDrr,         X86::MULPDrm, 16 },
 | |
|     { X86::MULPSrr,         X86::MULPSrm, 16 },
 | |
|     { X86::MULSDrr,         X86::MULSDrm, 0 },
 | |
|     { X86::MULSSrr,         X86::MULSSrm, 0 },
 | |
|     { X86::OR16rr,          X86::OR16rm, 0 },
 | |
|     { X86::OR32rr,          X86::OR32rm, 0 },
 | |
|     { X86::OR64rr,          X86::OR64rm, 0 },
 | |
|     { X86::OR8rr,           X86::OR8rm, 0 },
 | |
|     { X86::ORPDrr,          X86::ORPDrm, 16 },
 | |
|     { X86::ORPSrr,          X86::ORPSrm, 16 },
 | |
|     { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
 | |
|     { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
 | |
|     { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
 | |
|     { X86::PADDBrr,         X86::PADDBrm, 16 },
 | |
|     { X86::PADDDrr,         X86::PADDDrm, 16 },
 | |
|     { X86::PADDQrr,         X86::PADDQrm, 16 },
 | |
|     { X86::PADDSBrr,        X86::PADDSBrm, 16 },
 | |
|     { X86::PADDSWrr,        X86::PADDSWrm, 16 },
 | |
|     { X86::PADDWrr,         X86::PADDWrm, 16 },
 | |
|     { X86::PANDNrr,         X86::PANDNrm, 16 },
 | |
|     { X86::PANDrr,          X86::PANDrm, 16 },
 | |
|     { X86::PAVGBrr,         X86::PAVGBrm, 16 },
 | |
|     { X86::PAVGWrr,         X86::PAVGWrm, 16 },
 | |
|     { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
 | |
|     { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
 | |
|     { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
 | |
|     { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
 | |
|     { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
 | |
|     { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
 | |
|     { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
 | |
|     { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
 | |
|     { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
 | |
|     { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
 | |
|     { X86::PMINSWrr,        X86::PMINSWrm, 16 },
 | |
|     { X86::PMINUBrr,        X86::PMINUBrm, 16 },
 | |
|     { X86::PMULDQrr,        X86::PMULDQrm, 16 },
 | |
|     { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
 | |
|     { X86::PMULHWrr,        X86::PMULHWrm, 16 },
 | |
|     { X86::PMULLDrr,        X86::PMULLDrm, 16 },
 | |
|     { X86::PMULLWrr,        X86::PMULLWrm, 16 },
 | |
|     { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
 | |
|     { X86::PORrr,           X86::PORrm, 16 },
 | |
|     { X86::PSADBWrr,        X86::PSADBWrm, 16 },
 | |
|     { X86::PSLLDrr,         X86::PSLLDrm, 16 },
 | |
|     { X86::PSLLQrr,         X86::PSLLQrm, 16 },
 | |
|     { X86::PSLLWrr,         X86::PSLLWrm, 16 },
 | |
|     { X86::PSRADrr,         X86::PSRADrm, 16 },
 | |
|     { X86::PSRAWrr,         X86::PSRAWrm, 16 },
 | |
|     { X86::PSRLDrr,         X86::PSRLDrm, 16 },
 | |
|     { X86::PSRLQrr,         X86::PSRLQrm, 16 },
 | |
|     { X86::PSRLWrr,         X86::PSRLWrm, 16 },
 | |
|     { X86::PSUBBrr,         X86::PSUBBrm, 16 },
 | |
|     { X86::PSUBDrr,         X86::PSUBDrm, 16 },
 | |
|     { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
 | |
|     { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
 | |
|     { X86::PSUBWrr,         X86::PSUBWrm, 16 },
 | |
|     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
 | |
|     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
 | |
|     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
 | |
|     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
 | |
|     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
 | |
|     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
 | |
|     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
 | |
|     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
 | |
|     { X86::PXORrr,          X86::PXORrm, 16 },
 | |
|     { X86::SBB32rr,         X86::SBB32rm, 0 },
 | |
|     { X86::SBB64rr,         X86::SBB64rm, 0 },
 | |
|     { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
 | |
|     { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
 | |
|     { X86::SUB16rr,         X86::SUB16rm, 0 },
 | |
|     { X86::SUB32rr,         X86::SUB32rm, 0 },
 | |
|     { X86::SUB64rr,         X86::SUB64rm, 0 },
 | |
|     { X86::SUB8rr,          X86::SUB8rm, 0 },
 | |
|     { X86::SUBPDrr,         X86::SUBPDrm, 16 },
 | |
|     { X86::SUBPSrr,         X86::SUBPSrm, 16 },
 | |
|     { X86::SUBSDrr,         X86::SUBSDrm, 0 },
 | |
|     { X86::SUBSSrr,         X86::SUBSSrm, 0 },
 | |
|     // FIXME: TEST*rr -> swapped operand of TEST*mr.
 | |
|     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
 | |
|     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
 | |
|     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
 | |
|     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
 | |
|     { X86::XOR16rr,         X86::XOR16rm, 0 },
 | |
|     { X86::XOR32rr,         X86::XOR32rm, 0 },
 | |
|     { X86::XOR64rr,         X86::XOR64rm, 0 },
 | |
|     { X86::XOR8rr,          X86::XOR8rm, 0 },
 | |
|     { X86::XORPDrr,         X86::XORPDrm, 16 },
 | |
|     { X86::XORPSrr,         X86::XORPSrm, 16 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2[i][0];
 | |
|     unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
 | |
|     unsigned Align = OpTbl2[i][2];
 | |
| 
 | |
|     assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
 | |
|     RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
 | |
| 
 | |
|     // If this is not a reversible operation (because there is a many->one)
 | |
|     // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
 | |
|     if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
 | |
|       continue;
 | |
| 
 | |
|     // Index 2, folded load
 | |
|     unsigned AuxInfo = 2 | (1 << 4);
 | |
|     assert(!MemOp2RegOpTable.count(MemOp) &&
 | |
|            "Duplicated entries in unfolding maps?");
 | |
|     MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                     unsigned &SrcReg, unsigned &DstReg,
 | |
|                                     unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::MOVSX16rr8:
 | |
|   case X86::MOVZX16rr8:
 | |
|   case X86::MOVSX32rr8:
 | |
|   case X86::MOVZX32rr8:
 | |
|   case X86::MOVSX64rr8:
 | |
|   case X86::MOVZX64rr8:
 | |
|     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       // It's not always legal to reference the low 8-bit of the larger
 | |
|       // register in 32-bit mode.
 | |
|       return false;
 | |
|   case X86::MOVSX32rr16:
 | |
|   case X86::MOVZX32rr16:
 | |
|   case X86::MOVSX64rr16:
 | |
|   case X86::MOVZX64rr16:
 | |
|   case X86::MOVSX64rr32:
 | |
|   case X86::MOVZX64rr32: {
 | |
|     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
 | |
|       // Be conservative.
 | |
|       return false;
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     switch (MI.getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable(0);
 | |
|       break;
 | |
|     case X86::MOVSX16rr8:
 | |
|     case X86::MOVZX16rr8:
 | |
|     case X86::MOVSX32rr8:
 | |
|     case X86::MOVZX32rr8:
 | |
|     case X86::MOVSX64rr8:
 | |
|     case X86::MOVZX64rr8:
 | |
|       SubIdx = X86::sub_8bit;
 | |
|       break;
 | |
|     case X86::MOVSX32rr16:
 | |
|     case X86::MOVZX32rr16:
 | |
|     case X86::MOVSX64rr16:
 | |
|     case X86::MOVZX64rr16:
 | |
|       SubIdx = X86::sub_16bit;
 | |
|       break;
 | |
|     case X86::MOVSX64rr32:
 | |
|     case X86::MOVZX64rr32:
 | |
|       SubIdx = X86::sub_32bit;
 | |
|       break;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isFrameOperand - Return true and the FrameIndex if the specified
 | |
| /// operand and follow operands form a reference to the stack frame.
 | |
| bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
 | |
|                                   int &FrameIndex) const {
 | |
|   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
 | |
|       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
 | |
|       MI->getOperand(Op+1).getImm() == 1 &&
 | |
|       MI->getOperand(Op+2).getReg() == 0 &&
 | |
|       MI->getOperand(Op+3).getImm() == 0) {
 | |
|     FrameIndex = MI->getOperand(Op).getIndex();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFrameLoadOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return true;
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFrameStoreOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86::MOV8mr:
 | |
|   case X86::MOV16mr:
 | |
|   case X86::MOV32mr:
 | |
|   case X86::MOV64mr:
 | |
|   case X86::ST_FpP64m:
 | |
|   case X86::MOVSSmr:
 | |
|   case X86::MOVSDmr:
 | |
|   case X86::MOVAPSmr:
 | |
|   case X86::MOVAPDmr:
 | |
|   case X86::MOVDQAmr:
 | |
|   case X86::VMOVAPSYmr:
 | |
|   case X86::VMOVAPDYmr:
 | |
|   case X86::VMOVDQAYmr:
 | |
|   case X86::MMX_MOVD64mr:
 | |
|   case X86::MMX_MOVQ64mr:
 | |
|   case X86::MMX_MOVNTQmr:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                            int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode()))
 | |
|     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
 | |
|       return MI->getOperand(0).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                  int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                         const MachineMemOperand *&MMO,
 | |
|                                         int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end();
 | |
|        o != oe;
 | |
|        ++o) {
 | |
|     if ((*o)->isLoad() && (*o)->getValue())
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode()))
 | |
|     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
 | |
|         isFrameOperand(MI, 0, FrameIndex))
 | |
|       return MI->getOperand(X86::AddrNumOperands).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                 int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
 | |
|                                        const MachineMemOperand *&MMO,
 | |
|                                        int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end();
 | |
|        o != oe;
 | |
|        ++o) {
 | |
|     if ((*o)->isStore() && (*o)->getValue())
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
 | |
| /// X86::MOVPC32r.
 | |
| static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
 | |
|   bool isPICBase = false;
 | |
|   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|          E = MRI.def_end(); I != E; ++I) {
 | |
|     MachineInstr *DefMI = I.getOperand().getParent();
 | |
|     if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|       return false;
 | |
|     assert(!isPICBase && "More than one PIC base?");
 | |
|     isPICBase = true;
 | |
|   }
 | |
|   return isPICBase;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
 | |
|                                                 AliasAnalysis *AA) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|     case X86::MOV8rm:
 | |
|     case X86::MOV16rm:
 | |
|     case X86::MOV32rm:
 | |
|     case X86::MOV64rm:
 | |
|     case X86::LD_Fp64m:
 | |
|     case X86::MOVSSrm:
 | |
|     case X86::MOVSDrm:
 | |
|     case X86::MOVAPSrm:
 | |
|     case X86::MOVUPSrm:
 | |
|     case X86::MOVAPDrm:
 | |
|     case X86::MOVDQArm:
 | |
|     case X86::VMOVAPSYrm:
 | |
|     case X86::VMOVUPSYrm:
 | |
|     case X86::VMOVAPDYrm:
 | |
|     case X86::VMOVDQAYrm:
 | |
|     case X86::MMX_MOVD64rm:
 | |
|     case X86::MMX_MOVQ64rm:
 | |
|     case X86::FsMOVAPSrm:
 | |
|     case X86::FsMOVAPDrm: {
 | |
|       // Loads from constant pools are trivially rematerializable.
 | |
|       if (MI->getOperand(1).isReg() &&
 | |
|           MI->getOperand(2).isImm() &&
 | |
|           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|           MI->isInvariantLoad(AA)) {
 | |
|         unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|         if (BaseReg == 0 || BaseReg == X86::RIP)
 | |
|           return true;
 | |
|         // Allow re-materialization of PIC load.
 | |
|         if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
 | |
|           return false;
 | |
|         const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|         const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|         bool isPICBase = false;
 | |
|         for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|                E = MRI.def_end(); I != E; ++I) {
 | |
|           MachineInstr *DefMI = I.getOperand().getParent();
 | |
|           if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|             return false;
 | |
|           assert(!isPICBase && "More than one PIC base?");
 | |
|           isPICBase = true;
 | |
|         }
 | |
|         return isPICBase;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|      case X86::LEA32r:
 | |
|      case X86::LEA64r: {
 | |
|        if (MI->getOperand(2).isImm() &&
 | |
|            MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|            !MI->getOperand(4).isReg()) {
 | |
|          // lea fi#, lea GV, etc. are all rematerializable.
 | |
|          if (!MI->getOperand(1).isReg())
 | |
|            return true;
 | |
|          unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|          if (BaseReg == 0)
 | |
|            return true;
 | |
|          // Allow re-materialization of lea PICBase + x.
 | |
|          const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|          const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|          return regIsPICBase(BaseReg, MRI);
 | |
|        }
 | |
|        return false;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   // All other instructions marked M_REMATERIALIZABLE are always trivially
 | |
|   // rematerializable.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
 | |
| /// would clobber the EFLAGS condition register. Note the result may be
 | |
| /// conservative. If it cannot definitely determine the safety after visiting
 | |
| /// a few instructions in each direction it assumes it's not safe.
 | |
| static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator I) {
 | |
|   MachineBasicBlock::iterator E = MBB.end();
 | |
| 
 | |
|   // It's always safe to clobber EFLAGS at the end of a block.
 | |
|   if (I == E)
 | |
|     return true;
 | |
| 
 | |
|   // For compile time consideration, if we are not able to determine the
 | |
|   // safety after visiting 4 instructions in each direction, we will assume
 | |
|   // it's not safe.
 | |
|   MachineBasicBlock::iterator Iter = I;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       if (MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isUse())
 | |
|           return false;
 | |
|         SeenDef = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SeenDef)
 | |
|       // This instruction defines EFLAGS, no need to look any further.
 | |
|       return true;
 | |
|     ++Iter;
 | |
|     // Skip over DBG_VALUE.
 | |
|     while (Iter != E && Iter->isDebugValue())
 | |
|       ++Iter;
 | |
| 
 | |
|     // If we make it to the end of the block, it's safe to clobber EFLAGS.
 | |
|     if (Iter == E)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator B = MBB.begin();
 | |
|   Iter = I;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     // If we make it to the beginning of the block, it's safe to clobber
 | |
|     // EFLAGS iff EFLAGS is not live-in.
 | |
|     if (Iter == B)
 | |
|       return !MBB.isLiveIn(X86::EFLAGS);
 | |
| 
 | |
|     --Iter;
 | |
|     // Skip over DBG_VALUE.
 | |
|     while (Iter != B && Iter->isDebugValue())
 | |
|       --Iter;
 | |
| 
 | |
|     bool SawKill = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isDef()) return MO.isDead();
 | |
|         if (MO.isKill()) SawKill = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SawKill)
 | |
|       // This instruction kills EFLAGS and doesn't redefine it, so
 | |
|       // there's no need to look further.
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Conservative answer.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator I,
 | |
|                                  unsigned DestReg, unsigned SubIdx,
 | |
|                                  const MachineInstr *Orig,
 | |
|                                  const TargetRegisterInfo &TRI) const {
 | |
|   DebugLoc DL = Orig->getDebugLoc();
 | |
| 
 | |
|   // MOV32r0 etc. are implemented with xor which clobbers condition code.
 | |
|   // Re-materialize them as movri instructions to avoid side effects.
 | |
|   bool Clone = true;
 | |
|   unsigned Opc = Orig->getOpcode();
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86::MOV8r0:
 | |
|   case X86::MOV16r0:
 | |
|   case X86::MOV32r0:
 | |
|   case X86::MOV64r0: {
 | |
|     if (!isSafeToClobberEFLAGS(MBB, I)) {
 | |
|       switch (Opc) {
 | |
|       default: break;
 | |
|       case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
 | |
|       case X86::MOV16r0: Opc = X86::MOV16ri; break;
 | |
|       case X86::MOV32r0: Opc = X86::MOV32ri; break;
 | |
|       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
 | |
|       }
 | |
|       Clone = false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Clone) {
 | |
|     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | |
|     MBB.insert(I, MI);
 | |
|   } else {
 | |
|     BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = prior(I);
 | |
|   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | |
| }
 | |
| 
 | |
| /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
 | |
| /// is not marked dead.
 | |
| static bool hasLiveCondCodeDef(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() &&
 | |
|         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
 | |
| /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
 | |
| /// to a 32-bit superregister and then truncating back down to a 16-bit
 | |
| /// subregister.
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
 | |
|                                            MachineFunction::iterator &MFI,
 | |
|                                            MachineBasicBlock::iterator &MBBI,
 | |
|                                            LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
 | |
|     ? X86::LEA64_32r : X86::LEA32r;
 | |
|   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
 | |
|   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
 | |
|   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
| 
 | |
|   // Build and insert into an implicit UNDEF value. This is OK because
 | |
|   // well be shifting and then extracting the lower 16-bits.
 | |
|   // This has the potential to cause partial register stall. e.g.
 | |
|   //   movw    (%rbp,%rcx,2), %dx
 | |
|   //   leal    -65(%rdx), %esi
 | |
|   // But testing has shown this *does* help performance in 64-bit mode (at
 | |
|   // least on modern x86 machines).
 | |
|   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
 | |
|   MachineInstr *InsMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
 | |
|     .addReg(Src, getKillRegState(isKill));
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
 | |
|                                     get(Opc), leaOutReg);
 | |
|   switch (MIOpc) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
|     break;
 | |
|   case X86::SHL16ri: {
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     MIB.addReg(0).addImm(1 << ShAmt)
 | |
|        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::INC16r:
 | |
|   case X86::INC64_16r:
 | |
|     addRegOffset(MIB, leaInReg, true, 1);
 | |
|     break;
 | |
|   case X86::DEC16r:
 | |
|   case X86::DEC64_16r:
 | |
|     addRegOffset(MIB, leaInReg, true, -1);
 | |
|     break;
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|   case X86::ADD16ri_DB:
 | |
|   case X86::ADD16ri8_DB:
 | |
|     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|   case X86::ADD16rr_DB: {
 | |
|     unsigned Src2 = MI->getOperand(2).getReg();
 | |
|     bool isKill2 = MI->getOperand(2).isKill();
 | |
|     unsigned leaInReg2 = 0;
 | |
|     MachineInstr *InsMI2 = 0;
 | |
|     if (Src == Src2) {
 | |
|       // ADD16rr %reg1028<kill>, %reg1028
 | |
|       // just a single insert_subreg.
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg, false);
 | |
|     } else {
 | |
|       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
 | |
|       // Build and insert into an implicit UNDEF value. This is OK because
 | |
|       // well be shifting and then extracting the lower 16-bits.
 | |
|       BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
 | |
|       InsMI2 =
 | |
|         BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
 | |
|         .addReg(Src2, getKillRegState(isKill2));
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg2, true);
 | |
|     }
 | |
|     if (LV && isKill2 && InsMI2)
 | |
|       LV->replaceKillInstruction(Src2, MI, InsMI2);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = MIB;
 | |
|   MachineInstr *ExtMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
 | |
| 
 | |
|   if (LV) {
 | |
|     // Update live variables
 | |
|     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
 | |
|     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, InsMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, ExtMI);
 | |
|   }
 | |
| 
 | |
|   return ExtMI;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddress - This method must be implemented by targets that
 | |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | |
| /// may be able to convert a two-address instruction into a true
 | |
| /// three-address instruction on demand.  This allows the X86 target (for
 | |
| /// example) to convert ADD and SHL instructions into LEA instructions if they
 | |
| /// would require register copies due to two-addressness.
 | |
| ///
 | |
| /// This method returns a null pointer if the transformation cannot be
 | |
| /// performed, otherwise it returns the new instruction.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                     MachineBasicBlock::iterator &MBBI,
 | |
|                                     LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   // All instructions input are two-addr instructions.  Get the known operands.
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
 | |
|   // we have better subtarget support, enable the 16-bit LEA generation here.
 | |
|   // 16-bit LEA is also slow on Core2.
 | |
|   bool DisableLEA16 = true;
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
| 
 | |
|   unsigned MIOpc = MI->getOpcode();
 | |
|   switch (MIOpc) {
 | |
|   case X86::SHUFPSrri: {
 | |
|     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
 | |
|     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | |
| 
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     if (B != C) return 0;
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned M = MI->getOperand(3).getImm();
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
 | |
|       .addReg(A, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(B, getKillRegState(isKill)).addImm(M);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL64ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     // LEA can't handle RSP.
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|         !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
 | |
|       return 0;
 | |
| 
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL32ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     // LEA can't handle ESP.
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|         !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
 | |
|       return 0;
 | |
| 
 | |
|     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL16ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     if (DisableLEA16)
 | |
|       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // The following opcodes also sets the condition code register(s). Only
 | |
|     // convert them to equivalent lea if the condition code register def's
 | |
|     // are dead!
 | |
|     if (hasLiveCondCodeDef(MI))
 | |
|       return 0;
 | |
| 
 | |
|     switch (MIOpc) {
 | |
|     default: return 0;
 | |
|     case X86::INC64r:
 | |
|     case X86::INC32r:
 | |
|     case X86::INC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
| 
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src,
 | |
|                             MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
 | |
|                                                    X86::GR32_NOSPRegisterClass))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, 1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::INC16r:
 | |
|     case X86::INC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, 1);
 | |
|       break;
 | |
|     case X86::DEC64r:
 | |
|     case X86::DEC32r:
 | |
|     case X86::DEC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src,
 | |
|                             MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
 | |
|                                                    X86::GR32_NOSPRegisterClass))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, -1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::DEC16r:
 | |
|     case X86::DEC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, -1);
 | |
|       break;
 | |
|     case X86::ADD64rr:
 | |
|     case X86::ADD64rr_DB:
 | |
|     case X86::ADD32rr:
 | |
|     case X86::ADD32rr_DB: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc;
 | |
|       TargetRegisterClass *RC;
 | |
|       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
 | |
|         Opc = X86::LEA64r;
 | |
|         RC = X86::GR64_NOSPRegisterClass;
 | |
|       } else {
 | |
|         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|         RC = X86::GR32_NOSPRegisterClass;
 | |
|       }
 | |
| 
 | |
| 
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
| 
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src2) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src2, RC))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16rr:
 | |
|     case X86::ADD16rr_DB: {
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD64ri32:
 | |
|     case X86::ADD64ri8:
 | |
|     case X86::ADD64ri32_DB:
 | |
|     case X86::ADD64ri8_DB:
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     case X86::ADD32ri:
 | |
|     case X86::ADD32ri8:
 | |
|     case X86::ADD32ri_DB:
 | |
|     case X86::ADD32ri8_DB: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                                 Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16ri:
 | |
|     case X86::ADD16ri8:
 | |
|     case X86::ADD16ri_DB:
 | |
|     case X86::ADD16ri8_DB:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (!NewMI) return 0;
 | |
| 
 | |
|   if (LV) {  // Update live variables
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, NewMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, NewMI);
 | |
|   }
 | |
| 
 | |
|   MFI->insert(MBBI, NewMI);          // Insert the new inst
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// commuteInstruction - We have a few instructions that must be hacked on to
 | |
| /// commute them.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
 | |
|   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
 | |
|   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
 | |
|   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
 | |
|   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
 | |
|   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
 | |
|     unsigned Opc;
 | |
|     unsigned Size;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("Unreachable!");
 | |
|     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
 | |
|     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
 | |
|     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
 | |
|     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
 | |
|     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
 | |
|     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
 | |
|     }
 | |
|     unsigned Amt = MI->getOperand(3).getImm();
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     MI->getOperand(3).setImm(Size-Amt);
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
|   case X86::CMOVB16rr:
 | |
|   case X86::CMOVB32rr:
 | |
|   case X86::CMOVB64rr:
 | |
|   case X86::CMOVAE16rr:
 | |
|   case X86::CMOVAE32rr:
 | |
|   case X86::CMOVAE64rr:
 | |
|   case X86::CMOVE16rr:
 | |
|   case X86::CMOVE32rr:
 | |
|   case X86::CMOVE64rr:
 | |
|   case X86::CMOVNE16rr:
 | |
|   case X86::CMOVNE32rr:
 | |
|   case X86::CMOVNE64rr:
 | |
|   case X86::CMOVBE16rr:
 | |
|   case X86::CMOVBE32rr:
 | |
|   case X86::CMOVBE64rr:
 | |
|   case X86::CMOVA16rr:
 | |
|   case X86::CMOVA32rr:
 | |
|   case X86::CMOVA64rr:
 | |
|   case X86::CMOVL16rr:
 | |
|   case X86::CMOVL32rr:
 | |
|   case X86::CMOVL64rr:
 | |
|   case X86::CMOVGE16rr:
 | |
|   case X86::CMOVGE32rr:
 | |
|   case X86::CMOVGE64rr:
 | |
|   case X86::CMOVLE16rr:
 | |
|   case X86::CMOVLE32rr:
 | |
|   case X86::CMOVLE64rr:
 | |
|   case X86::CMOVG16rr:
 | |
|   case X86::CMOVG32rr:
 | |
|   case X86::CMOVG64rr:
 | |
|   case X86::CMOVS16rr:
 | |
|   case X86::CMOVS32rr:
 | |
|   case X86::CMOVS64rr:
 | |
|   case X86::CMOVNS16rr:
 | |
|   case X86::CMOVNS32rr:
 | |
|   case X86::CMOVNS64rr:
 | |
|   case X86::CMOVP16rr:
 | |
|   case X86::CMOVP32rr:
 | |
|   case X86::CMOVP64rr:
 | |
|   case X86::CMOVNP16rr:
 | |
|   case X86::CMOVNP32rr:
 | |
|   case X86::CMOVNP64rr:
 | |
|   case X86::CMOVO16rr:
 | |
|   case X86::CMOVO32rr:
 | |
|   case X86::CMOVO64rr:
 | |
|   case X86::CMOVNO16rr:
 | |
|   case X86::CMOVNO32rr:
 | |
|   case X86::CMOVNO64rr: {
 | |
|     unsigned Opc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: break;
 | |
|     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
 | |
|     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
 | |
|     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
 | |
|     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
 | |
|     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
 | |
|     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
 | |
|     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
 | |
|     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
 | |
|     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
 | |
|     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
 | |
|     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
 | |
|     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
 | |
|     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
 | |
|     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
 | |
|     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
 | |
|     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
 | |
|     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
 | |
|     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
 | |
|     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
 | |
|     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
 | |
|     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
 | |
|     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
 | |
|     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
 | |
|     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
 | |
|     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
 | |
|     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
 | |
|     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
 | |
|     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
 | |
|     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
 | |
|     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
 | |
|     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
 | |
|     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
 | |
|     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
 | |
|     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
 | |
|     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
 | |
|     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
 | |
|     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
 | |
|     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
 | |
|     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
 | |
|     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
 | |
|     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
 | |
|     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
 | |
|     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
 | |
|     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
 | |
|     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
 | |
|     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
 | |
|     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
 | |
|     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
 | |
|     }
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     // Fallthrough intended.
 | |
|   }
 | |
|   default:
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
 | |
|   switch (BrOpc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::JE_4:  return X86::COND_E;
 | |
|   case X86::JNE_4: return X86::COND_NE;
 | |
|   case X86::JL_4:  return X86::COND_L;
 | |
|   case X86::JLE_4: return X86::COND_LE;
 | |
|   case X86::JG_4:  return X86::COND_G;
 | |
|   case X86::JGE_4: return X86::COND_GE;
 | |
|   case X86::JB_4:  return X86::COND_B;
 | |
|   case X86::JBE_4: return X86::COND_BE;
 | |
|   case X86::JA_4:  return X86::COND_A;
 | |
|   case X86::JAE_4: return X86::COND_AE;
 | |
|   case X86::JS_4:  return X86::COND_S;
 | |
|   case X86::JNS_4: return X86::COND_NS;
 | |
|   case X86::JP_4:  return X86::COND_P;
 | |
|   case X86::JNP_4: return X86::COND_NP;
 | |
|   case X86::JO_4:  return X86::COND_O;
 | |
|   case X86::JNO_4: return X86::COND_NO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::JE_4;
 | |
|   case X86::COND_NE: return X86::JNE_4;
 | |
|   case X86::COND_L:  return X86::JL_4;
 | |
|   case X86::COND_LE: return X86::JLE_4;
 | |
|   case X86::COND_G:  return X86::JG_4;
 | |
|   case X86::COND_GE: return X86::JGE_4;
 | |
|   case X86::COND_B:  return X86::JB_4;
 | |
|   case X86::COND_BE: return X86::JBE_4;
 | |
|   case X86::COND_A:  return X86::JA_4;
 | |
|   case X86::COND_AE: return X86::JAE_4;
 | |
|   case X86::COND_S:  return X86::JS_4;
 | |
|   case X86::COND_NS: return X86::JNS_4;
 | |
|   case X86::COND_P:  return X86::JP_4;
 | |
|   case X86::COND_NP: return X86::JNP_4;
 | |
|   case X86::COND_O:  return X86::JO_4;
 | |
|   case X86::COND_NO: return X86::JNO_4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetOppositeBranchCondition - Return the inverse of the specified condition,
 | |
| /// e.g. turning COND_E to COND_NE.
 | |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::COND_NE;
 | |
|   case X86::COND_NE: return X86::COND_E;
 | |
|   case X86::COND_L:  return X86::COND_GE;
 | |
|   case X86::COND_LE: return X86::COND_G;
 | |
|   case X86::COND_G:  return X86::COND_LE;
 | |
|   case X86::COND_GE: return X86::COND_L;
 | |
|   case X86::COND_B:  return X86::COND_AE;
 | |
|   case X86::COND_BE: return X86::COND_A;
 | |
|   case X86::COND_A:  return X86::COND_BE;
 | |
|   case X86::COND_AE: return X86::COND_B;
 | |
|   case X86::COND_S:  return X86::COND_NS;
 | |
|   case X86::COND_NS: return X86::COND_S;
 | |
|   case X86::COND_P:  return X86::COND_NP;
 | |
|   case X86::COND_NP: return X86::COND_P;
 | |
|   case X86::COND_O:  return X86::COND_NO;
 | |
|   case X86::COND_NO: return X86::COND_O;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (!MCID.isTerminator()) return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MCID.isBranch() && !MCID.isBarrier())
 | |
|     return true;
 | |
|   if (!MCID.isPredicable())
 | |
|     return true;
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   // Start from the bottom of the block and work up, examining the
 | |
|   // terminator instructions.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     // Working from the bottom, when we see a non-terminator instruction, we're
 | |
|     // done.
 | |
|     if (!isUnpredicatedTerminator(I))
 | |
|       break;
 | |
| 
 | |
|     // A terminator that isn't a branch can't easily be handled by this
 | |
|     // analysis.
 | |
|     if (!I->getDesc().isBranch())
 | |
|       return true;
 | |
| 
 | |
|     // Handle unconditional branches.
 | |
|     if (I->getOpcode() == X86::JMP_4) {
 | |
|       UnCondBrIter = I;
 | |
| 
 | |
|       if (!AllowModify) {
 | |
|         TBB = I->getOperand(0).getMBB();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the block has any instructions after a JMP, delete them.
 | |
|       while (llvm::next(I) != MBB.end())
 | |
|         llvm::next(I)->eraseFromParent();
 | |
| 
 | |
|       Cond.clear();
 | |
|       FBB = 0;
 | |
| 
 | |
|       // Delete the JMP if it's equivalent to a fall-through.
 | |
|       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | |
|         TBB = 0;
 | |
|         I->eraseFromParent();
 | |
|         I = MBB.end();
 | |
|         UnCondBrIter = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // TBB is used to indicate the unconditional destination.
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle conditional branches.
 | |
|     X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
 | |
|     if (BranchCode == X86::COND_INVALID)
 | |
|       return true;  // Can't handle indirect branch.
 | |
| 
 | |
|     // Working from the bottom, handle the first conditional branch.
 | |
|     if (Cond.empty()) {
 | |
|       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
 | |
|       if (AllowModify && UnCondBrIter != MBB.end() &&
 | |
|           MBB.isLayoutSuccessor(TargetBB)) {
 | |
|         // If we can modify the code and it ends in something like:
 | |
|         //
 | |
|         //     jCC L1
 | |
|         //     jmp L2
 | |
|         //   L1:
 | |
|         //     ...
 | |
|         //   L2:
 | |
|         //
 | |
|         // Then we can change this to:
 | |
|         //
 | |
|         //     jnCC L2
 | |
|         //   L1:
 | |
|         //     ...
 | |
|         //   L2:
 | |
|         //
 | |
|         // Which is a bit more efficient.
 | |
|         // We conditionally jump to the fall-through block.
 | |
|         BranchCode = GetOppositeBranchCondition(BranchCode);
 | |
|         unsigned JNCC = GetCondBranchFromCond(BranchCode);
 | |
|         MachineBasicBlock::iterator OldInst = I;
 | |
| 
 | |
|         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
 | |
|           .addMBB(UnCondBrIter->getOperand(0).getMBB());
 | |
|         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
 | |
|           .addMBB(TargetBB);
 | |
| 
 | |
|         OldInst->eraseFromParent();
 | |
|         UnCondBrIter->eraseFromParent();
 | |
| 
 | |
|         // Restart the analysis.
 | |
|         UnCondBrIter = MBB.end();
 | |
|         I = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       FBB = TBB;
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle subsequent conditional branches. Only handle the case where all
 | |
|     // conditional branches branch to the same destination and their condition
 | |
|     // opcodes fit one of the special multi-branch idioms.
 | |
|     assert(Cond.size() == 1);
 | |
|     assert(TBB);
 | |
| 
 | |
|     // Only handle the case where all conditional branches branch to the same
 | |
|     // destination.
 | |
|     if (TBB != I->getOperand(0).getMBB())
 | |
|       return true;
 | |
| 
 | |
|     // If the conditions are the same, we can leave them alone.
 | |
|     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
 | |
|     if (OldBranchCode == BranchCode)
 | |
|       continue;
 | |
| 
 | |
|     // If they differ, see if they fit one of the known patterns. Theoretically,
 | |
|     // we could handle more patterns here, but we shouldn't expect to see them
 | |
|     // if instruction selection has done a reasonable job.
 | |
|     if ((OldBranchCode == X86::COND_NP &&
 | |
|          BranchCode == X86::COND_E) ||
 | |
|         (OldBranchCode == X86::COND_E &&
 | |
|          BranchCode == X86::COND_NP))
 | |
|       BranchCode = X86::COND_NP_OR_E;
 | |
|     else if ((OldBranchCode == X86::COND_P &&
 | |
|               BranchCode == X86::COND_NE) ||
 | |
|              (OldBranchCode == X86::COND_NE &&
 | |
|               BranchCode == X86::COND_P))
 | |
|       BranchCode = X86::COND_NE_OR_P;
 | |
|     else
 | |
|       return true;
 | |
| 
 | |
|     // Update the MachineOperand.
 | |
|     Cond[0].setImm(BranchCode);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
|     if (I->getOpcode() != X86::JMP_4 &&
 | |
|         GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | |
|       break;
 | |
|     // Remove the branch.
 | |
|     I->eraseFromParent();
 | |
|     I = MBB.end();
 | |
|     ++Count;
 | |
|   }
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                            MachineBasicBlock *FBB,
 | |
|                            const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                            DebugLoc DL) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 1 || Cond.size() == 0) &&
 | |
|          "X86 branch conditions have one component!");
 | |
| 
 | |
|   if (Cond.empty()) {
 | |
|     // Unconditional branch?
 | |
|     assert(!FBB && "Unconditional branch with multiple successors!");
 | |
|     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Conditional branch.
 | |
|   unsigned Count = 0;
 | |
|   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
 | |
|   switch (CC) {
 | |
|   case X86::COND_NP_OR_E:
 | |
|     // Synthesize NP_OR_E with two branches.
 | |
|     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   case X86::COND_NE_OR_P:
 | |
|     // Synthesize NE_OR_P with two branches.
 | |
|     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   default: {
 | |
|     unsigned Opc = GetCondBranchFromCond(CC);
 | |
|     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   }
 | |
|   if (FBB) {
 | |
|     // Two-way Conditional branch. Insert the second branch.
 | |
|     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// isHReg - Test if the given register is a physical h register.
 | |
| static bool isHReg(unsigned Reg) {
 | |
|   return X86::GR8_ABCD_HRegClass.contains(Reg);
 | |
| }
 | |
| 
 | |
| // Try and copy between VR128/VR64 and GR64 registers.
 | |
| static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
 | |
|   // SrcReg(VR128) -> DestReg(GR64)
 | |
|   // SrcReg(VR64)  -> DestReg(GR64)
 | |
|   // SrcReg(GR64)  -> DestReg(VR128)
 | |
|   // SrcReg(GR64)  -> DestReg(VR64)
 | |
| 
 | |
|   if (X86::GR64RegClass.contains(DestReg)) {
 | |
|     if (X86::VR128RegClass.contains(SrcReg)) {
 | |
|       // Copy from a VR128 register to a GR64 register.
 | |
|       return X86::MOVPQIto64rr;
 | |
|     } else if (X86::VR64RegClass.contains(SrcReg)) {
 | |
|       // Copy from a VR64 register to a GR64 register.
 | |
|       return X86::MOVSDto64rr;
 | |
|     }
 | |
|   } else if (X86::GR64RegClass.contains(SrcReg)) {
 | |
|     // Copy from a GR64 register to a VR128 register.
 | |
|     if (X86::VR128RegClass.contains(DestReg))
 | |
|       return X86::MOV64toPQIrr;
 | |
|     // Copy from a GR64 register to a VR64 register.
 | |
|     else if (X86::VR64RegClass.contains(DestReg))
 | |
|       return X86::MOV64toSDrr;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator MI, DebugLoc DL,
 | |
|                                unsigned DestReg, unsigned SrcReg,
 | |
|                                bool KillSrc) const {
 | |
|   // First deal with the normal symmetric copies.
 | |
|   unsigned Opc = 0;
 | |
|   if (X86::GR64RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV64rr;
 | |
|   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV32rr;
 | |
|   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV16rr;
 | |
|   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
 | |
|     // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|     // move.  Otherwise use a normal move.
 | |
|     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
 | |
|         TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       Opc = X86::MOV8rr_NOREX;
 | |
|     else
 | |
|       Opc = X86::MOV8rr;
 | |
|   } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOVAPSrr;
 | |
|   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::VMOVAPSYrr;
 | |
|   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MMX_MOVQ64rr;
 | |
|   else
 | |
|     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
 | |
| 
 | |
|   if (Opc) {
 | |
|     BuildMI(MBB, MI, DL, get(Opc), DestReg)
 | |
|       .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Moving EFLAGS to / from another register requires a push and a pop.
 | |
|   if (SrcReg == X86::EFLAGS) {
 | |
|     if (X86::GR64RegClass.contains(DestReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
 | |
|       return;
 | |
|     } else if (X86::GR32RegClass.contains(DestReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if (DestReg == X86::EFLAGS) {
 | |
|     if (X86::GR64RegClass.contains(SrcReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
 | |
|         .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPF64));
 | |
|       return;
 | |
|     } else if (X86::GR32RegClass.contains(SrcReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
 | |
|         .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPF32));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
 | |
|                << " to " << RI.getName(DestReg) << '\n');
 | |
|   llvm_unreachable("Cannot emit physreg copy instruction");
 | |
| }
 | |
| 
 | |
| static unsigned getLoadStoreRegOpcode(unsigned Reg,
 | |
|                                       const TargetRegisterClass *RC,
 | |
|                                       bool isStackAligned,
 | |
|                                       const TargetMachine &TM,
 | |
|                                       bool load) {
 | |
|   switch (RC->getSize()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown spill size");
 | |
|   case 1:
 | |
|     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
 | |
|     if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|       // move.  Otherwise use a normal move.
 | |
|       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
 | |
|         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
 | |
|     return load ? X86::MOV8rm : X86::MOV8mr;
 | |
|   case 2:
 | |
|     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
 | |
|     return load ? X86::MOV16rm : X86::MOV16mr;
 | |
|   case 4:
 | |
|     if (X86::GR32RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOV32rm : X86::MOV32mr;
 | |
|     if (X86::FR32RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOVSSrm : X86::MOVSSmr;
 | |
|     if (X86::RFP32RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
 | |
|     llvm_unreachable("Unknown 4-byte regclass");
 | |
|   case 8:
 | |
|     if (X86::GR64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOV64rm : X86::MOV64mr;
 | |
|     if (X86::FR64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOVSDrm : X86::MOVSDmr;
 | |
|     if (X86::VR64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
 | |
|     if (X86::RFP64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
 | |
|     llvm_unreachable("Unknown 8-byte regclass");
 | |
|   case 10:
 | |
|     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
 | |
|     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
 | |
|   case 16:
 | |
|     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
 | |
|     // If stack is realigned we can use aligned stores.
 | |
|     if (isStackAligned)
 | |
|       return load ? X86::MOVAPSrm : X86::MOVAPSmr;
 | |
|     else
 | |
|       return load ? X86::MOVUPSrm : X86::MOVUPSmr;
 | |
|   case 32:
 | |
|     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
 | |
|     // If stack is realigned we can use aligned stores.
 | |
|     if (isStackAligned)
 | |
|       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
 | |
|     else
 | |
|       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getStoreRegOpcode(unsigned SrcReg,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   bool isStackAligned,
 | |
|                                   TargetMachine &TM) {
 | |
|   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned getLoadRegOpcode(unsigned DestReg,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  bool isStackAligned,
 | |
|                                  const TargetMachine &TM) {
 | |
|   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                        MachineBasicBlock::iterator MI,
 | |
|                                        unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|                                        const TargetRegisterClass *RC,
 | |
|                                        const TargetRegisterInfo *TRI) const {
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
 | |
|          "Stack slot too small for store");
 | |
|   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
 | |
|     RI.canRealignStack(MF);
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
 | |
|     .addReg(SrcReg, getKillRegState(isKill));
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
 | |
|                                   bool isKill,
 | |
|                                   SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   MachineInstr::mmo_iterator MMOBegin,
 | |
|                                   MachineInstr::mmo_iterator MMOEnd,
 | |
|                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   MIB.addReg(SrcReg, getKillRegState(isKill));
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| 
 | |
| void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                         MachineBasicBlock::iterator MI,
 | |
|                                         unsigned DestReg, int FrameIdx,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                         const TargetRegisterInfo *TRI) const {
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
 | |
|     RI.canRealignStack(MF);
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | |
|                                  SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  MachineInstr::mmo_iterator MMOBegin,
 | |
|                                  MachineInstr::mmo_iterator MMOEnd,
 | |
|                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
 | |
|                                        int FrameIx, uint64_t Offset,
 | |
|                                        const MDNode *MDPtr,
 | |
|                                        DebugLoc DL) const {
 | |
|   X86AddressMode AM;
 | |
|   AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|   AM.Base.FrameIndex = FrameIx;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
 | |
|   addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
 | |
|                                      const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                      MachineInstr *MI,
 | |
|                                      const TargetInstrInfo &TII) {
 | |
|   // Create the base instruction with the memory operand as the first part.
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
| 
 | |
|   // Loop over the rest of the ri operands, converting them over.
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands()-2;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i+2);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseInst(MachineFunction &MF,
 | |
|                               unsigned Opcode, unsigned OpNo,
 | |
|                               const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                               MachineInstr *MI, const TargetInstrInfo &TII) {
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (i == OpNo) {
 | |
|       assert(MO.isReg() && "Expected to fold into reg operand!");
 | |
|       unsigned NumAddrOps = MOs.size();
 | |
|       for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|         MIB.addOperand(MOs[i]);
 | |
|       if (NumAddrOps < 4)  // FrameIndex only
 | |
|         addOffset(MIB, 0);
 | |
|     } else {
 | |
|       MIB.addOperand(MO);
 | |
|     }
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
 | |
|                                 const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                 MachineInstr *MI) {
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
 | |
| 
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
|   return MIB.addImm(0);
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                     MachineInstr *MI, unsigned i,
 | |
|                                     const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                     unsigned Size, unsigned Align) const {
 | |
|   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
 | |
|   bool isTwoAddrFold = false;
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
 | |
| 
 | |
|   // FIXME: AsmPrinter doesn't know how to handle
 | |
|   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
 | |
|   if (MI->getOpcode() == X86::ADD32ri &&
 | |
|       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   if (isTwoAddr && NumOps >= 2 && i < 2 &&
 | |
|       MI->getOperand(0).isReg() &&
 | |
|       MI->getOperand(1).isReg() &&
 | |
|       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|     isTwoAddrFold = true;
 | |
|   } else if (i == 0) { // If operand 0
 | |
|     if (MI->getOpcode() == X86::MOV64r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV32r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV16r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV8r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
 | |
|     if (NewMI)
 | |
|       return NewMI;
 | |
| 
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (i == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (i == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
| 
 | |
|   // If table selected...
 | |
|   if (OpcodeTablePtr) {
 | |
|     // Find the Opcode to fuse
 | |
|     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|       OpcodeTablePtr->find(MI->getOpcode());
 | |
|     if (I != OpcodeTablePtr->end()) {
 | |
|       unsigned Opcode = I->second.first;
 | |
|       unsigned MinAlign = I->second.second;
 | |
|       if (Align < MinAlign)
 | |
|         return NULL;
 | |
|       bool NarrowToMOV32rm = false;
 | |
|       if (Size) {
 | |
|         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
 | |
|         if (Size < RCSize) {
 | |
|           // Check if it's safe to fold the load. If the size of the object is
 | |
|           // narrower than the load width, then it's not.
 | |
|           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
 | |
|             return NULL;
 | |
|           // If this is a 64-bit load, but the spill slot is 32, then we can do
 | |
|           // a 32-bit load which is implicitly zero-extended. This likely is due
 | |
|           // to liveintervalanalysis remat'ing a load from stack slot.
 | |
|           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
 | |
|             return NULL;
 | |
|           Opcode = X86::MOV32rm;
 | |
|           NarrowToMOV32rm = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (isTwoAddrFold)
 | |
|         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
 | |
|       else
 | |
|         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
 | |
| 
 | |
|       if (NarrowToMOV32rm) {
 | |
|         // If this is the special case where we use a MOV32rm to load a 32-bit
 | |
|         // value and zero-extend the top bits. Change the destination register
 | |
|         // to a 32-bit one.
 | |
|         unsigned DstReg = NewMI->getOperand(0).getReg();
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
 | |
|           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
 | |
|                                                    X86::sub_32bit));
 | |
|         else
 | |
|           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
 | |
|       }
 | |
|       return NewMI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No fusion
 | |
|   if (PrintFailedFusing && !MI->isCopy())
 | |
|     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   int FrameIndex) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     switch (MI->getOpcode()) {
 | |
|     case X86::CVTSD2SSrr:
 | |
|     case X86::Int_CVTSD2SSrr:
 | |
|     case X86::CVTSS2SDrr:
 | |
|     case X86::Int_CVTSS2SDrr:
 | |
|     case X86::RCPSSr:
 | |
|     case X86::RCPSSr_Int:
 | |
|     case X86::ROUNDSDr:
 | |
|     case X86::ROUNDSSr:
 | |
|     case X86::RSQRTSSr:
 | |
|     case X86::RSQRTSSr_Int:
 | |
|     case X86::SQRTSSr:
 | |
|     case X86::SQRTSSr_Int:
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   const MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   unsigned Size = MFI->getObjectSize(FrameIndex);
 | |
|   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned RCSize = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
 | |
|     }
 | |
|     // Check if it's safe to fold the load. If the size of the object is
 | |
|     // narrower than the load width, then it's not.
 | |
|     if (Size < RCSize)
 | |
|       return NULL;
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,4> MOs;
 | |
|   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
 | |
| }
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   MachineInstr *LoadMI) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     switch (MI->getOpcode()) {
 | |
|     case X86::CVTSD2SSrr:
 | |
|     case X86::Int_CVTSD2SSrr:
 | |
|     case X86::CVTSS2SDrr:
 | |
|     case X86::Int_CVTSS2SDrr:
 | |
|     case X86::RCPSSr:
 | |
|     case X86::RCPSSr_Int:
 | |
|     case X86::ROUNDSDr:
 | |
|     case X86::ROUNDSSr:
 | |
|     case X86::RSQRTSSr:
 | |
|     case X86::RSQRTSSr_Int:
 | |
|     case X86::SQRTSSr:
 | |
|     case X86::SQRTSSr_Int:
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   // Determine the alignment of the load.
 | |
|   unsigned Alignment = 0;
 | |
|   if (LoadMI->hasOneMemOperand())
 | |
|     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
 | |
|   else
 | |
|     switch (LoadMI->getOpcode()) {
 | |
|     case X86::AVX_SET0PSY:
 | |
|     case X86::AVX_SET0PDY:
 | |
|       Alignment = 32;
 | |
|       break;
 | |
|     case X86::V_SET0PS:
 | |
|     case X86::V_SET0PD:
 | |
|     case X86::V_SET0PI:
 | |
|     case X86::V_SETALLONES:
 | |
|     case X86::AVX_SET0PS:
 | |
|     case X86::AVX_SET0PD:
 | |
|     case X86::AVX_SET0PI:
 | |
|       Alignment = 16;
 | |
|       break;
 | |
|     case X86::FsFLD0SD:
 | |
|     case X86::VFsFLD0SD:
 | |
|       Alignment = 8;
 | |
|       break;
 | |
|     case X86::FsFLD0SS:
 | |
|     case X86::VFsFLD0SS:
 | |
|       Alignment = 4;
 | |
|       break;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
 | |
|     }
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   // Make sure the subregisters match.
 | |
|   // Otherwise we risk changing the size of the load.
 | |
|   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
 | |
|   switch (LoadMI->getOpcode()) {
 | |
|   case X86::V_SET0PS:
 | |
|   case X86::V_SET0PD:
 | |
|   case X86::V_SET0PI:
 | |
|   case X86::V_SETALLONES:
 | |
|   case X86::AVX_SET0PS:
 | |
|   case X86::AVX_SET0PD:
 | |
|   case X86::AVX_SET0PI:
 | |
|   case X86::AVX_SET0PSY:
 | |
|   case X86::AVX_SET0PDY:
 | |
|   case X86::FsFLD0SD:
 | |
|   case X86::FsFLD0SS:
 | |
|   case X86::VFsFLD0SD:
 | |
|   case X86::VFsFLD0SS: {
 | |
|     // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
 | |
|     // Create a constant-pool entry and operands to load from it.
 | |
| 
 | |
|     // Medium and large mode can't fold loads this way.
 | |
|     if (TM.getCodeModel() != CodeModel::Small &&
 | |
|         TM.getCodeModel() != CodeModel::Kernel)
 | |
|       return NULL;
 | |
| 
 | |
|     // x86-32 PIC requires a PIC base register for constant pools.
 | |
|     unsigned PICBase = 0;
 | |
|     if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|       if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|         PICBase = X86::RIP;
 | |
|       else
 | |
|         // FIXME: PICBase = getGlobalBaseReg(&MF);
 | |
|         // This doesn't work for several reasons.
 | |
|         // 1. GlobalBaseReg may have been spilled.
 | |
|         // 2. It may not be live at MI.
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // Create a constant-pool entry.
 | |
|     MachineConstantPool &MCP = *MF.getConstantPool();
 | |
|     Type *Ty;
 | |
|     unsigned Opc = LoadMI->getOpcode();
 | |
|     if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
 | |
|       Ty = Type::getFloatTy(MF.getFunction()->getContext());
 | |
|     else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
 | |
|       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
 | |
|     else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
 | |
|       Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
 | |
|     else
 | |
|       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
 | |
|     const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
 | |
|                     Constant::getAllOnesValue(Ty) :
 | |
|                     Constant::getNullValue(Ty);
 | |
|     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
 | |
| 
 | |
|     // Create operands to load from the constant pool entry.
 | |
|     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
 | |
|     MOs.push_back(MachineOperand::CreateImm(1));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // Folding a normal load. Just copy the load's address operands.
 | |
|     unsigned NumOps = LoadMI->getDesc().getNumOperands();
 | |
|     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
 | |
|       MOs.push_back(LoadMI->getOperand(i));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
 | |
|                                   const SmallVectorImpl<unsigned> &Ops) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return 0;
 | |
| 
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case X86::TEST8rr:
 | |
|     case X86::TEST16rr:
 | |
|     case X86::TEST32rr:
 | |
|     case X86::TEST64rr:
 | |
|       return true;
 | |
|     case X86::ADD32ri:
 | |
|       // FIXME: AsmPrinter doesn't know how to handle
 | |
|       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
 | |
|       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned OpNum = Ops[0];
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
 | |
| 
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
 | |
|   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|   } else if (OpNum == 0) { // If operand 0
 | |
|     switch (Opc) {
 | |
|     case X86::MOV8r0:
 | |
|     case X86::MOV16r0:
 | |
|     case X86::MOV32r0:
 | |
|     case X86::MOV64r0: return true;
 | |
|     default: break;
 | |
|     }
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (OpNum == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (OpNum == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
| 
 | |
|   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
 | |
|     return true;
 | |
|   return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
 | |
|                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
 | |
|                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(MI->getOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & 0xf;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return false;
 | |
|   UnfoldLoad &= FoldedLoad;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return false;
 | |
|   UnfoldStore &= FoldedStore;
 | |
| 
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
 | |
|   if (!MI->hasOneMemOperand() &&
 | |
|       RC == &X86::VR128RegClass &&
 | |
|       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
 | |
|     // conservatively assume the address is unaligned. That's bad for
 | |
|     // performance.
 | |
|     return false;
 | |
|   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
 | |
|   SmallVector<MachineOperand,2> BeforeOps;
 | |
|   SmallVector<MachineOperand,2> AfterOps;
 | |
|   SmallVector<MachineOperand,4> ImpOps;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &Op = MI->getOperand(i);
 | |
|     if (i >= Index && i < Index + X86::AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (Op.isReg() && Op.isImplicit())
 | |
|       ImpOps.push_back(Op);
 | |
|     else if (i < Index)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   if (UnfoldLoad) {
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(MI->memoperands_begin(),
 | |
|                             MI->memoperands_end());
 | |
|     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
 | |
|     if (UnfoldStore) {
 | |
|       // Address operands cannot be marked isKill.
 | |
|       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
 | |
|         MachineOperand &MO = NewMIs[0]->getOperand(i);
 | |
|         if (MO.isReg())
 | |
|           MO.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(DataMI);
 | |
| 
 | |
|   if (FoldedStore)
 | |
|     MIB.addReg(Reg, RegState::Define);
 | |
|   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(BeforeOps[i]);
 | |
|   if (FoldedLoad)
 | |
|     MIB.addReg(Reg);
 | |
|   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(AfterOps[i]);
 | |
|   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
 | |
|     MachineOperand &MO = ImpOps[i];
 | |
|     MIB.addReg(MO.getReg(),
 | |
|                getDefRegState(MO.isDef()) |
 | |
|                RegState::Implicit |
 | |
|                getKillRegState(MO.isKill()) |
 | |
|                getDeadRegState(MO.isDead()) |
 | |
|                getUndefRegState(MO.isUndef()));
 | |
|   }
 | |
|   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
 | |
|   unsigned NewOpc = 0;
 | |
|   switch (DataMI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::CMP64ri32:
 | |
|   case X86::CMP64ri8:
 | |
|   case X86::CMP32ri:
 | |
|   case X86::CMP32ri8:
 | |
|   case X86::CMP16ri:
 | |
|   case X86::CMP16ri8:
 | |
|   case X86::CMP8ri: {
 | |
|     MachineOperand &MO0 = DataMI->getOperand(0);
 | |
|     MachineOperand &MO1 = DataMI->getOperand(1);
 | |
|     if (MO1.getImm() == 0) {
 | |
|       switch (DataMI->getOpcode()) {
 | |
|       default: break;
 | |
|       case X86::CMP64ri8:
 | |
|       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
 | |
|       case X86::CMP32ri8:
 | |
|       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
 | |
|       case X86::CMP16ri8:
 | |
|       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
 | |
|       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
 | |
|       }
 | |
|       DataMI->setDesc(get(NewOpc));
 | |
|       MO1.ChangeToRegister(MO0.getReg(), false);
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   NewMIs.push_back(DataMI);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (UnfoldStore) {
 | |
|     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(MI->memoperands_begin(),
 | |
|                              MI->memoperands_end());
 | |
|     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 | |
|                                   SmallVectorImpl<SDNode*> &NewNodes) const {
 | |
|   if (!N->isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(N->getMachineOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & 0xf;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
 | |
|   unsigned NumDefs = MCID.NumDefs;
 | |
|   std::vector<SDValue> AddrOps;
 | |
|   std::vector<SDValue> BeforeOps;
 | |
|   std::vector<SDValue> AfterOps;
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   unsigned NumOps = N->getNumOperands();
 | |
|   for (unsigned i = 0; i != NumOps-1; ++i) {
 | |
|     SDValue Op = N->getOperand(i);
 | |
|     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (i < Index-NumDefs)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index-NumDefs)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
|   SDValue Chain = N->getOperand(NumOps-1);
 | |
|   AddrOps.push_back(Chain);
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   SDNode *Load = 0;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   if (FoldedLoad) {
 | |
|     EVT VT = *RC->vt_begin();
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                             cast<MachineSDNode>(N)->memoperands_end());
 | |
|     if (!(*MMOs.first) &&
 | |
|         RC == &X86::VR128RegClass &&
 | |
|         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|       // Do not introduce a slow unaligned load.
 | |
|       return false;
 | |
|     bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
 | |
|     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
 | |
|                               VT, MVT::Other, &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Load);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   std::vector<EVT> VTs;
 | |
|   const TargetRegisterClass *DstRC = 0;
 | |
|   if (MCID.getNumDefs() > 0) {
 | |
|     DstRC = getRegClass(MCID, 0, &RI);
 | |
|     VTs.push_back(*DstRC->vt_begin());
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
 | |
|       VTs.push_back(VT);
 | |
|   }
 | |
|   if (Load)
 | |
|     BeforeOps.push_back(SDValue(Load, 0));
 | |
|   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
 | |
|   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
 | |
|                                       BeforeOps.size());
 | |
|   NewNodes.push_back(NewNode);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (FoldedStore) {
 | |
|     AddrOps.pop_back();
 | |
|     AddrOps.push_back(SDValue(NewNode, 0));
 | |
|     AddrOps.push_back(Chain);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                              cast<MachineSDNode>(N)->memoperands_end());
 | |
|     if (!(*MMOs.first) &&
 | |
|         RC == &X86::VR128RegClass &&
 | |
|         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|       // Do not introduce a slow unaligned store.
 | |
|       return false;
 | |
|     bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
 | |
|     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
 | |
|                                                          isAligned, TM),
 | |
|                                        dl, MVT::Other,
 | |
|                                        &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Store);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
 | |
|                                       bool UnfoldLoad, bool UnfoldStore,
 | |
|                                       unsigned *LoadRegIndex) const {
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(Opc);
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return 0;
 | |
|   bool FoldedLoad = I->second.second & (1 << 4);
 | |
|   bool FoldedStore = I->second.second & (1 << 5);
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return 0;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return 0;
 | |
|   if (LoadRegIndex)
 | |
|     *LoadRegIndex = I->second.second & 0xf;
 | |
|   return I->second.first;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
 | |
|                                      int64_t &Offset1, int64_t &Offset2) const {
 | |
|   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
 | |
|     return false;
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   switch (Opc1) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVUPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::VMOVDQUYrm:
 | |
|     break;
 | |
|   }
 | |
|   switch (Opc2) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVUPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::VMOVDQUYrm:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check if chain operands and base addresses match.
 | |
|   if (Load1->getOperand(0) != Load2->getOperand(0) ||
 | |
|       Load1->getOperand(5) != Load2->getOperand(5))
 | |
|     return false;
 | |
|   // Segment operands should match as well.
 | |
|   if (Load1->getOperand(4) != Load2->getOperand(4))
 | |
|     return false;
 | |
|   // Scale should be 1, Index should be Reg0.
 | |
|   if (Load1->getOperand(1) == Load2->getOperand(1) &&
 | |
|       Load1->getOperand(2) == Load2->getOperand(2)) {
 | |
|     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
 | |
|       return false;
 | |
| 
 | |
|     // Now let's examine the displacements.
 | |
|     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
 | |
|         isa<ConstantSDNode>(Load2->getOperand(3))) {
 | |
|       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
 | |
|       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
 | |
|                                            int64_t Offset1, int64_t Offset2,
 | |
|                                            unsigned NumLoads) const {
 | |
|   assert(Offset2 > Offset1);
 | |
|   if ((Offset2 - Offset1) / 8 > 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   if (Opc1 != Opc2)
 | |
|     return false;  // FIXME: overly conservative?
 | |
| 
 | |
|   switch (Opc1) {
 | |
|   default: break;
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EVT VT = Load1->getValueType(0);
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
 | |
|     // have 16 of them to play with.
 | |
|     if (TM.getSubtargetImpl()->is64Bit()) {
 | |
|       if (NumLoads >= 3)
 | |
|         return false;
 | |
|     } else if (NumLoads) {
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|   case MVT::i64:
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (NumLoads)
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
 | |
|   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
 | |
|   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
 | |
|     return true;
 | |
|   Cond[0].setImm(GetOppositeBranchCondition(CC));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
 | |
|   // FIXME: Return false for x87 stack register classes for now. We can't
 | |
|   // allow any loads of these registers before FpGet_ST0_80.
 | |
|   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
 | |
|            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Return a virtual register initialized with the
 | |
| /// the global base register value. Output instructions required to
 | |
| /// initialize the register in the function entry block, if necessary.
 | |
| ///
 | |
| /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
 | |
| ///
 | |
| unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
 | |
|   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
 | |
|          "X86-64 PIC uses RIP relative addressing");
 | |
| 
 | |
|   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
 | |
|   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | |
|   if (GlobalBaseReg != 0)
 | |
|     return GlobalBaseReg;
 | |
| 
 | |
|   // Create the register. The code to initialize it is inserted
 | |
|   // later, by the CGBR pass (below).
 | |
|   MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|   GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | |
|   X86FI->setGlobalBaseReg(GlobalBaseReg);
 | |
|   return GlobalBaseReg;
 | |
| }
 | |
| 
 | |
| // These are the replaceable SSE instructions. Some of these have Int variants
 | |
| // that we don't include here. We don't want to replace instructions selected
 | |
| // by intrinsics.
 | |
| static const unsigned ReplaceableInstrs[][3] = {
 | |
|   //PackedSingle     PackedDouble    PackedInt
 | |
|   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
 | |
|   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
 | |
|   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
 | |
|   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
 | |
|   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
 | |
|   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
 | |
|   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
 | |
|   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
 | |
|   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
 | |
|   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
 | |
|   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
 | |
|   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
 | |
|   { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
 | |
|   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
 | |
|   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
 | |
|   // AVX 128-bit support
 | |
|   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
 | |
|   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
 | |
|   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
 | |
|   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
 | |
|   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
 | |
|   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
 | |
|   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
 | |
|   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
 | |
|   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
 | |
|   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
 | |
|   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
 | |
|   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
 | |
|   { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
 | |
|   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
 | |
|   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
 | |
|   // AVX 256-bit support
 | |
|   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
 | |
|   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
 | |
|   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
 | |
|   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
 | |
|   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
 | |
|   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
 | |
| };
 | |
| 
 | |
| // FIXME: Some shuffle and unpack instructions have equivalents in different
 | |
| // domains, but they require a bit more work than just switching opcodes.
 | |
| 
 | |
| static const unsigned *lookup(unsigned opcode, unsigned domain) {
 | |
|   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
 | |
|     if (ReplaceableInstrs[i][domain-1] == opcode)
 | |
|       return ReplaceableInstrs[i];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| std::pair<uint16_t, uint16_t>
 | |
| X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
 | |
|   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
 | |
|   return std::make_pair(domain,
 | |
|                         domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
 | |
|   assert(Domain>0 && Domain<4 && "Invalid execution domain");
 | |
|   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
 | |
|   assert(dom && "Not an SSE instruction");
 | |
|   const unsigned *table = lookup(MI->getOpcode(), dom);
 | |
|   assert(table && "Cannot change domain");
 | |
|   MI->setDesc(get(table[Domain-1]));
 | |
| }
 | |
| 
 | |
| /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
 | |
| void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
 | |
|   NopInst.setOpcode(X86::NOOP);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isHighLatencyDef(int opc) const {
 | |
|   switch (opc) {
 | |
|   default: return false;
 | |
|   case X86::DIVSDrm:
 | |
|   case X86::DIVSDrm_Int:
 | |
|   case X86::DIVSDrr:
 | |
|   case X86::DIVSDrr_Int:
 | |
|   case X86::DIVSSrm:
 | |
|   case X86::DIVSSrm_Int:
 | |
|   case X86::DIVSSrr:
 | |
|   case X86::DIVSSrr_Int:
 | |
|   case X86::SQRTPDm:
 | |
|   case X86::SQRTPDm_Int:
 | |
|   case X86::SQRTPDr:
 | |
|   case X86::SQRTPDr_Int:
 | |
|   case X86::SQRTPSm:
 | |
|   case X86::SQRTPSm_Int:
 | |
|   case X86::SQRTPSr:
 | |
|   case X86::SQRTPSr_Int:
 | |
|   case X86::SQRTSDm:
 | |
|   case X86::SQRTSDm_Int:
 | |
|   case X86::SQRTSDr:
 | |
|   case X86::SQRTSDr_Int:
 | |
|   case X86::SQRTSSm:
 | |
|   case X86::SQRTSSm_Int:
 | |
|   case X86::SQRTSSr:
 | |
|   case X86::SQRTSSr_Int:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| hasHighOperandLatency(const InstrItineraryData *ItinData,
 | |
|                       const MachineRegisterInfo *MRI,
 | |
|                       const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                       const MachineInstr *UseMI, unsigned UseIdx) const {
 | |
|   return isHighLatencyDef(DefMI->getOpcode());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// CGBR - Create Global Base Reg pass. This initializes the PIC
 | |
|   /// global base register for x86-32.
 | |
|   struct CGBR : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     CGBR() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       const X86TargetMachine *TM =
 | |
|         static_cast<const X86TargetMachine *>(&MF.getTarget());
 | |
| 
 | |
|       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
 | |
|              "X86-64 PIC uses RIP relative addressing");
 | |
| 
 | |
|       // Only emit a global base reg in PIC mode.
 | |
|       if (TM->getRelocationModel() != Reloc::PIC_)
 | |
|         return false;
 | |
| 
 | |
|       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | |
| 
 | |
|       // If we didn't need a GlobalBaseReg, don't insert code.
 | |
|       if (GlobalBaseReg == 0)
 | |
|         return false;
 | |
| 
 | |
|       // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|       MachineBasicBlock &FirstMBB = MF.front();
 | |
|       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
 | |
|       MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|       const X86InstrInfo *TII = TM->getInstrInfo();
 | |
| 
 | |
|       unsigned PC;
 | |
|       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
 | |
|         PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | |
|       else
 | |
|         PC = GlobalBaseReg;
 | |
| 
 | |
|       // Operand of MovePCtoStack is completely ignored by asm printer. It's
 | |
|       // only used in JIT code emission as displacement to pc.
 | |
|       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
 | |
| 
 | |
|       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
 | |
|       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
 | |
|       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
 | |
|         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
 | |
|         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
 | |
|           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
 | |
|                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 PIC Global Base Reg Initialization";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CGBR::ID = 0;
 | |
| FunctionPass*
 | |
| llvm::createGlobalBaseRegPass() { return new CGBR(); }
 |