forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			566 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			566 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops that contain branches on loop-invariant conditions
 | 
						|
// to have multiple loops.  For example, it turns the left into the right code:
 | 
						|
//
 | 
						|
//  for (...)                  if (lic)
 | 
						|
//    A                          for (...)
 | 
						|
//    if (lic)                     A; B; C
 | 
						|
//      B                      else
 | 
						|
//    C                          for (...)
 | 
						|
//                                 A; C
 | 
						|
//
 | 
						|
// This can increase the size of the code exponentially (doubling it every time
 | 
						|
// a loop is unswitched) so we only unswitch if the resultant code will be
 | 
						|
// smaller than a threshold.
 | 
						|
//
 | 
						|
// This pass expects LICM to be run before it to hoist invariant conditions out
 | 
						|
// of the loop, to make the unswitching opportunity obvious.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unswitch"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumUnswitched("loop-unswitch", "Number of loops unswitched");
 | 
						|
  cl::opt<unsigned>
 | 
						|
  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
 | 
						|
            cl::init(10), cl::Hidden);
 | 
						|
  
 | 
						|
  class LoopUnswitch : public FunctionPass {
 | 
						|
    LoopInfo *LI;  // Loop information
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    bool visitLoop(Loop *L);
 | 
						|
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG...
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
 | 
						|
    void VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2);
 | 
						|
    BasicBlock *SplitBlock(BasicBlock *BB, bool SplitAtTop);
 | 
						|
    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, bool Val);
 | 
						|
    void UnswitchTrivialCondition(Loop *L, Value *Cond, bool EntersLoopOnCond,
 | 
						|
                                  BasicBlock *ExitBlock);
 | 
						|
  };
 | 
						|
  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
 | 
						|
 | 
						|
bool LoopUnswitch::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  // Transform all the top-level loops.  Copy the loop list so that the child
 | 
						|
  // can update the loop tree if it needs to delete the loop.
 | 
						|
  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
 | 
						|
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
 | 
						|
    Changed |= visitLoop(SubLoops[i]);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
 | 
						|
/// the loop that are used by instructions outside of it.
 | 
						|
static bool LoopValuesUsedOutsideLoop(Loop *L) {
 | 
						|
  // We will be doing lots of "loop contains block" queries.  Loop::contains is
 | 
						|
  // linear time, use a set to speed this up.
 | 
						|
  std::set<BasicBlock*> LoopBlocks;
 | 
						|
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | 
						|
       BB != E; ++BB)
 | 
						|
    LoopBlocks.insert(*BB);
 | 
						|
  
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
        if (!LoopBlocks.count(UserBB))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindTrivialLoopExitBlock - We know that we have a branch from the loop
 | 
						|
/// header to the specified latch block.   See if one of the successors of the
 | 
						|
/// latch block is an exit, and if so what block it is.
 | 
						|
static BasicBlock *FindTrivialLoopExitBlock(Loop *L, BasicBlock *Latch) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BranchInst *LatchBranch = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!LatchBranch || !LatchBranch->isConditional()) return 0;
 | 
						|
  
 | 
						|
  // Simple case, the latch block is a conditional branch.  The target that
 | 
						|
  // doesn't go to the loop header is our block if it is not in the loop.
 | 
						|
  if (LatchBranch->getSuccessor(0) == Header) {
 | 
						|
    if (L->contains(LatchBranch->getSuccessor(1))) return false;
 | 
						|
    return LatchBranch->getSuccessor(1);
 | 
						|
  } else {
 | 
						|
    assert(LatchBranch->getSuccessor(1) == Header);
 | 
						|
    if (L->contains(LatchBranch->getSuccessor(0))) return false;
 | 
						|
    return LatchBranch->getSuccessor(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
 | 
						|
/// trivial: that is, that the condition controls whether or not the loop does
 | 
						|
/// anything at all.  If this is a trivial condition, unswitching produces no
 | 
						|
/// code duplications (equivalently, it produces a simpler loop and a new empty
 | 
						|
/// loop, which gets deleted).
 | 
						|
///
 | 
						|
/// If this is a trivial condition, return ConstantBool::True if the loop body
 | 
						|
/// runs when the condition is true, False if the loop body executes when the
 | 
						|
/// condition is false.  Otherwise, return null to indicate a complex condition.
 | 
						|
static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
 | 
						|
                                       bool *CondEntersLoop = 0,
 | 
						|
                                       BasicBlock **LoopExit = 0) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
 | 
						|
  
 | 
						|
  // If the header block doesn't end with a conditional branch on Cond, we can't
 | 
						|
  // handle it.
 | 
						|
  if (!HeaderTerm || !HeaderTerm->isConditional() ||
 | 
						|
      HeaderTerm->getCondition() != Cond)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Check to see if the conditional branch goes to the latch block.  If not,
 | 
						|
  // it's not trivial.  This also determines the value of Cond that will execute
 | 
						|
  // the loop.
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (HeaderTerm->getSuccessor(1) == Latch) {
 | 
						|
    if (CondEntersLoop) *CondEntersLoop = true;
 | 
						|
  } else if (HeaderTerm->getSuccessor(0) == Latch)
 | 
						|
    if (CondEntersLoop) *CondEntersLoop = false;
 | 
						|
  else
 | 
						|
    return false;  // Doesn't branch to latch block.
 | 
						|
  
 | 
						|
  // The latch block must end with a conditional branch where one edge goes to
 | 
						|
  // the header (this much we know) and one edge goes OUT of the loop.
 | 
						|
  BasicBlock *LoopExitBlock = FindTrivialLoopExitBlock(L, Latch);
 | 
						|
  if (!LoopExitBlock) return 0;
 | 
						|
  if (LoopExit) *LoopExit = LoopExitBlock;
 | 
						|
  
 | 
						|
  // We already know that nothing uses any scalar values defined inside of this
 | 
						|
  // loop.  As such, we just have to check to see if this loop will execute any
 | 
						|
  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
 | 
						|
  // part of the loop that the code *would* execute.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
 | 
						|
    if (I->mayWriteToMemory())
 | 
						|
      return false;
 | 
						|
  for (BasicBlock::iterator I = Latch->begin(), E = Latch->end(); I != E; ++I)
 | 
						|
    if (I->mayWriteToMemory())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
 | 
						|
/// we choose to unswitch the specified loop on the specified value.
 | 
						|
///
 | 
						|
unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
 | 
						|
  // If the condition is trivial, always unswitch.  There is no code growth for
 | 
						|
  // this case.
 | 
						|
  if (IsTrivialUnswitchCondition(L, LIC))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  unsigned Cost = 0;
 | 
						|
  // FIXME: this is brain dead.  It should take into consideration code
 | 
						|
  // shrinkage.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BasicBlock *BB = *I;
 | 
						|
    // Do not include empty blocks in the cost calculation.  This happen due to
 | 
						|
    // loop canonicalization and will be removed.
 | 
						|
    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Count basic blocks.
 | 
						|
    ++Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
 | 
						|
/// invariant in the loop, or has an invariant piece, return the invariant.
 | 
						|
/// Otherwise, return null.
 | 
						|
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
 | 
						|
  // Constants should be folded, not unswitched on!
 | 
						|
  if (isa<Constant>(Cond)) return false;
 | 
						|
  
 | 
						|
  // TODO: Handle: br (VARIANT|INVARIANT).
 | 
						|
  // TODO: Hoist simple expressions out of loops.
 | 
						|
  if (L->isLoopInvariant(Cond)) return Cond;
 | 
						|
  
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
 | 
						|
    if (BO->getOpcode() == Instruction::And ||
 | 
						|
        BO->getOpcode() == Instruction::Or) {
 | 
						|
      // If either the left or right side is invariant, we can unswitch on this,
 | 
						|
      // which will cause the branch to go away in one loop and the condition to
 | 
						|
      // simplify in the other one.
 | 
						|
      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
 | 
						|
        return LHS;
 | 
						|
      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
 | 
						|
        return RHS;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopUnswitch::visitLoop(Loop *L) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Recurse through all subloops before we process this loop.  Copy the loop
 | 
						|
  // list so that the child can update the loop tree if it needs to delete the
 | 
						|
  // loop.
 | 
						|
  std::vector<Loop*> SubLoops(L->begin(), L->end());
 | 
						|
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
 | 
						|
    Changed |= visitLoop(SubLoops[i]);
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the loop.  If we find an interior
 | 
						|
  // block that is branching on a loop-invariant condition, we can unswitch this
 | 
						|
  // loop.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 
 | 
						|
         BBI != E; ++BBI)
 | 
						|
    TerminatorInst *TI = (*I)->getTerminator();
 | 
						|
    // FIXME: Handle invariant select instructions.
 | 
						|
    
 | 
						|
    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      if (!isa<Constant>(SI) && L->isLoopInvariant(SI->getCondition()))
 | 
						|
        DEBUG(std::cerr << "TODO: Implement unswitching 'switch' loop %"
 | 
						|
              << L->getHeader()->getName() << ", cost = "
 | 
						|
              << L->getBlocks().size() << "\n" << **I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(TI);
 | 
						|
    if (!BI) continue;
 | 
						|
    
 | 
						|
    // If this isn't branching on an invariant condition, we can't unswitch it.
 | 
						|
    if (!BI->isConditional())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // See if this, or some part of it, is loop invariant.  If so, we can
 | 
						|
    // unswitch on it if we desire.
 | 
						|
    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
 | 
						|
    if (LoopCond == 0) continue;
 | 
						|
    
 | 
						|
    // Check to see if it would be profitable to unswitch this loop.
 | 
						|
    if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
 | 
						|
      // FIXME: this should estimate growth by the amount of code shared by the
 | 
						|
      // resultant unswitched loops.  This should have no code growth:
 | 
						|
      //    for () { if (iv) {...} }
 | 
						|
      // as one copy of the loop will be empty.
 | 
						|
      //
 | 
						|
      DEBUG(std::cerr << "NOT unswitching loop %"
 | 
						|
            << L->getHeader()->getName() << ", cost too high: "
 | 
						|
            << L->getBlocks().size() << "\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this loop has live-out values, we can't unswitch it. We need something
 | 
						|
    // like loop-closed SSA form in order to know how to insert PHI nodes for
 | 
						|
    // these values.
 | 
						|
    if (LoopValuesUsedOutsideLoop(L)) {
 | 
						|
      DEBUG(std::cerr << "NOT unswitching loop %"
 | 
						|
                      << L->getHeader()->getName()
 | 
						|
                      << ", a loop value is used outside loop!\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    //std::cerr << "BEFORE:\n"; LI->dump();
 | 
						|
    Loop *NewLoop1 = 0, *NewLoop2 = 0;
 | 
						|
 
 | 
						|
    // If this is a trivial condition to unswitch (which results in no code
 | 
						|
    // duplication), do it now.
 | 
						|
    bool EntersLoopOnCond;
 | 
						|
    BasicBlock *ExitBlock;
 | 
						|
    if (IsTrivialUnswitchCondition(L, LoopCond, &EntersLoopOnCond, &ExitBlock)){
 | 
						|
      UnswitchTrivialCondition(L, LoopCond, EntersLoopOnCond, ExitBlock);
 | 
						|
      NewLoop1 = L;
 | 
						|
    } else {
 | 
						|
      VersionLoop(LoopCond, L, NewLoop1, NewLoop2);
 | 
						|
    }
 | 
						|
    
 | 
						|
    //std::cerr << "AFTER:\n"; LI->dump();
 | 
						|
    
 | 
						|
    // Try to unswitch each of our new loops now!
 | 
						|
    if (NewLoop1) visitLoop(NewLoop1);
 | 
						|
    if (NewLoop2) visitLoop(NewLoop2);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlock - Split the specified basic block into two pieces.  If SplitAtTop
 | 
						|
/// is false, this splits the block so the second half only has an unconditional
 | 
						|
/// branch.  If SplitAtTop is true, it makes it so the first half of the block
 | 
						|
/// only has an unconditional branch in it.
 | 
						|
///
 | 
						|
/// This method updates the LoopInfo for this function to correctly reflect the
 | 
						|
/// CFG changes made.
 | 
						|
///
 | 
						|
/// This routine returns the new basic block that was inserted, which is always
 | 
						|
/// the later part of the block.
 | 
						|
BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *BB, bool SplitAtTop) {
 | 
						|
  BasicBlock::iterator SplitPoint;
 | 
						|
  if (!SplitAtTop)
 | 
						|
    SplitPoint = BB->getTerminator();
 | 
						|
  else {
 | 
						|
    SplitPoint = BB->begin();
 | 
						|
    while (isa<PHINode>(SplitPoint)) ++SplitPoint;
 | 
						|
  }
 | 
						|
  
 | 
						|
  BasicBlock *New = BB->splitBasicBlock(SplitPoint, BB->getName()+".tail");
 | 
						|
  // New now lives in whichever loop that BB used to.
 | 
						|
  if (Loop *L = LI->getLoopFor(BB))
 | 
						|
    L->addBasicBlockToLoop(New, *LI);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// RemapInstruction - Convert the instruction operands from referencing the
 | 
						|
// current values into those specified by ValueMap.
 | 
						|
//
 | 
						|
static inline void RemapInstruction(Instruction *I,
 | 
						|
                                    std::map<const Value *, Value*> &ValueMap) {
 | 
						|
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | 
						|
    Value *Op = I->getOperand(op);
 | 
						|
    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
 | 
						|
    if (It != ValueMap.end()) Op = It->second;
 | 
						|
    I->setOperand(op, Op);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CloneLoop - Recursively clone the specified loop and all of its children,
 | 
						|
/// mapping the blocks with the specified map.
 | 
						|
static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
 | 
						|
                       LoopInfo *LI) {
 | 
						|
  Loop *New = new Loop();
 | 
						|
 | 
						|
  if (PL)
 | 
						|
    PL->addChildLoop(New);
 | 
						|
  else
 | 
						|
    LI->addTopLevelLoop(New);
 | 
						|
 | 
						|
  // Add all of the blocks in L to the new loop.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (LI->getLoopFor(*I) == L)
 | 
						|
      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | 
						|
 | 
						|
  // Add all of the subloops to the new loop.
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    CloneLoop(*I, New, VM, LI);
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
 | 
						|
/// condition in it (a cond branch from its header block to its latch block,
 | 
						|
/// where the path through the loop that doesn't execute its body has no 
 | 
						|
/// side-effects), unswitch it.  This doesn't involve any code duplication, just
 | 
						|
/// moving the conditional branch outside of the loop and updating loop info.
 | 
						|
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 
 | 
						|
                                            bool EnterOnCond,
 | 
						|
                                            BasicBlock *ExitBlock) {
 | 
						|
  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
 | 
						|
        << L->getHeader()->getName() << " [" << L->getBlocks().size()
 | 
						|
        << " blocks] in Function " << L->getHeader()->getParent()->getName()
 | 
						|
        << " on cond:" << *Cond << "\n");
 | 
						|
  
 | 
						|
  // First step, split the preahder, so that we know that there is a safe place
 | 
						|
  // to insert the conditional branch.  We will change 'OrigPH' to have a
 | 
						|
  // conditional branch on Cond.
 | 
						|
  BasicBlock *OrigPH = L->getLoopPreheader();
 | 
						|
  BasicBlock *NewPH = SplitBlock(OrigPH, false);
 | 
						|
 | 
						|
  // Now that we have a place to insert the conditional branch, create a place
 | 
						|
  // to branch to: this is the exit block out of the loop that we should
 | 
						|
  // short-circuit to.
 | 
						|
  
 | 
						|
  // Split this block now, so that the loop maintains its exit block.
 | 
						|
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
 | 
						|
  BasicBlock *NewExit;
 | 
						|
  if (BasicBlock *SinglePred = ExitBlock->getSinglePredecessor()) {
 | 
						|
    assert(SinglePred == L->getLoopLatch() && "Unexpected case");
 | 
						|
    NewExit = SplitBlock(ExitBlock, true);
 | 
						|
  } else {
 | 
						|
    // Otherwise, this is a critical edge.  Split block would split the wrong
 | 
						|
    // edge here, so we use SplitCriticalEdge, which allows us to specify the
 | 
						|
    // edge to split, not just the block.
 | 
						|
    TerminatorInst *LatchTerm = L->getLoopLatch()->getTerminator();
 | 
						|
    unsigned SuccNum = 0;
 | 
						|
    for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
 | 
						|
      assert(i != e && "Didn't find edge?");
 | 
						|
      if (LatchTerm->getSuccessor(i) == ExitBlock) {
 | 
						|
        SuccNum = i;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SplitCriticalEdge(LatchTerm, SuccNum, this);
 | 
						|
    NewExit = LatchTerm->getSuccessor(SuccNum);
 | 
						|
    assert(NewExit != ExitBlock && "Edge not split!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now we have a position to branch from and a position to branch to, 
 | 
						|
  // insert the new conditional branch.
 | 
						|
  new BranchInst(EnterOnCond ? NewPH : NewExit, EnterOnCond ? NewExit : NewPH,
 | 
						|
                 Cond, OrigPH->getTerminator());
 | 
						|
  OrigPH->getTerminator()->eraseFromParent();
 | 
						|
 | 
						|
  // Now that we know that the loop is never entered when this condition is a
 | 
						|
  // particular value, rewrite the loop with this info.  We know that this will
 | 
						|
  // at least eliminate the old branch.
 | 
						|
  RewriteLoopBodyWithConditionConstant(L, Cond, EnterOnCond);
 | 
						|
  
 | 
						|
  ++NumUnswitched;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// VersionLoop - We determined that the loop is profitable to unswitch and
 | 
						|
/// contains a branch on a loop invariant condition.  Split it into loop
 | 
						|
/// versions and test the condition outside of either loop.  Return the loops
 | 
						|
/// created as Out1/Out2.
 | 
						|
void LoopUnswitch::VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2) {
 | 
						|
  Function *F = L->getHeader()->getParent();
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
 | 
						|
        << L->getHeader()->getName() << " [" << L->getBlocks().size()
 | 
						|
        << " blocks] in Function " << F->getName()
 | 
						|
        << " on cond:" << *LIC << "\n");
 | 
						|
 | 
						|
  std::vector<BasicBlock*> LoopBlocks;
 | 
						|
 | 
						|
  // First step, split the preheader and exit blocks, and add these blocks to
 | 
						|
  // the LoopBlocks list.
 | 
						|
  BasicBlock *OrigPreheader = L->getLoopPreheader();
 | 
						|
  LoopBlocks.push_back(SplitBlock(OrigPreheader, false));
 | 
						|
 | 
						|
  // We want the loop to come after the preheader, but before the exit blocks.
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | 
						|
 | 
						|
  std::vector<BasicBlock*> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  std::sort(ExitBlocks.begin(), ExitBlocks.end());
 | 
						|
  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
 | 
						|
                   ExitBlocks.end());
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    SplitBlock(ExitBlocks[i], true);
 | 
						|
    LoopBlocks.push_back(ExitBlocks[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Next step, clone all of the basic blocks that make up the loop (including
 | 
						|
  // the loop preheader and exit blocks), keeping track of the mapping between
 | 
						|
  // the instructions and blocks.
 | 
						|
  std::vector<BasicBlock*> NewBlocks;
 | 
						|
  NewBlocks.reserve(LoopBlocks.size());
 | 
						|
  std::map<const Value*, Value*> ValueMap;
 | 
						|
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | 
						|
    NewBlocks.push_back(CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F));
 | 
						|
    ValueMap[LoopBlocks[i]] = NewBlocks.back();  // Keep the BB mapping.
 | 
						|
  }
 | 
						|
 | 
						|
  // Splice the newly inserted blocks into the function right before the
 | 
						|
  // original preheader.
 | 
						|
  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
 | 
						|
                                NewBlocks[0], F->end());
 | 
						|
 | 
						|
  // Now we create the new Loop object for the versioned loop.
 | 
						|
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
 | 
						|
  if (Loop *Parent = L->getParentLoop()) {
 | 
						|
    // Make sure to add the cloned preheader and exit blocks to the parent loop
 | 
						|
    // as well.
 | 
						|
    Parent->addBasicBlockToLoop(NewBlocks[0], *LI);
 | 
						|
    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
      Parent->addBasicBlockToLoop(cast<BasicBlock>(ValueMap[ExitBlocks[i]]),
 | 
						|
                                  *LI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the code to refer to itself.
 | 
						|
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
 | 
						|
    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | 
						|
           E = NewBlocks[i]->end(); I != E; ++I)
 | 
						|
      RemapInstruction(I, ValueMap);
 | 
						|
  
 | 
						|
  // Rewrite the original preheader to select between versions of the loop.
 | 
						|
  assert(isa<BranchInst>(OrigPreheader->getTerminator()) &&
 | 
						|
         cast<BranchInst>(OrigPreheader->getTerminator())->isUnconditional() &&
 | 
						|
         OrigPreheader->getTerminator()->getSuccessor(0) == LoopBlocks[0] &&
 | 
						|
         "Preheader splitting did not work correctly!");
 | 
						|
  // Remove the unconditional branch to LoopBlocks[0].
 | 
						|
  OrigPreheader->getInstList().pop_back();
 | 
						|
 | 
						|
  // Insert a conditional branch on LIC to the two preheaders.  The original
 | 
						|
  // code is the true version and the new code is the false version.
 | 
						|
  new BranchInst(LoopBlocks[0], NewBlocks[0], LIC, OrigPreheader);
 | 
						|
 | 
						|
  // Now we rewrite the original code to know that the condition is true and the
 | 
						|
  // new code to know that the condition is false.
 | 
						|
  RewriteLoopBodyWithConditionConstant(L, LIC, true);
 | 
						|
  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, false);
 | 
						|
  ++NumUnswitched;
 | 
						|
  Out1 = L;
 | 
						|
  Out2 = NewLoop;
 | 
						|
}
 | 
						|
 | 
						|
// RewriteLoopBodyWithConditionConstant - We know that the boolean value LIC has
 | 
						|
// the value specified by Val in the specified loop.  Rewrite any uses of LIC or
 | 
						|
// of properties correlated to it.
 | 
						|
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | 
						|
                                                        bool Val) {
 | 
						|
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
 | 
						|
  // FIXME: Support correlated properties, like:
 | 
						|
  //  for (...)
 | 
						|
  //    if (li1 < li2)
 | 
						|
  //      ...
 | 
						|
  //    if (li1 > li2)
 | 
						|
  //      ...
 | 
						|
  ConstantBool *BoolVal = ConstantBool::get(Val);
 | 
						|
 | 
						|
  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
 | 
						|
  // selects, switches.
 | 
						|
  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
 | 
						|
  for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | 
						|
    if (Instruction *U = cast<Instruction>(Users[i]))
 | 
						|
      if (L->contains(U->getParent()))
 | 
						|
        U->replaceUsesOfWith(LIC, BoolVal);
 | 
						|
}
 |