forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5015 lines
		
	
	
		
			202 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5015 lines
		
	
	
		
			202 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ templates.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
 | 
						|
#include "Sema.h"
 | 
						|
#include "Lookup.h"
 | 
						|
#include "TreeTransform.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/Parse/DeclSpec.h"
 | 
						|
#include "clang/Parse/Template.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// \brief Determine whether the declaration found is acceptable as the name
 | 
						|
/// of a template and, if so, return that template declaration. Otherwise,
 | 
						|
/// returns NULL.
 | 
						|
static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
 | 
						|
  if (!D)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (isa<TemplateDecl>(D))
 | 
						|
    return D;
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    // C++ [temp.local]p1:
 | 
						|
    //   Like normal (non-template) classes, class templates have an
 | 
						|
    //   injected-class-name (Clause 9). The injected-class-name
 | 
						|
    //   can be used with or without a template-argument-list. When
 | 
						|
    //   it is used without a template-argument-list, it is
 | 
						|
    //   equivalent to the injected-class-name followed by the
 | 
						|
    //   template-parameters of the class template enclosed in
 | 
						|
    //   <>. When it is used with a template-argument-list, it
 | 
						|
    //   refers to the specified class template specialization,
 | 
						|
    //   which could be the current specialization or another
 | 
						|
    //   specialization.
 | 
						|
    if (Record->isInjectedClassName()) {
 | 
						|
      Record = cast<CXXRecordDecl>(Record->getDeclContext());
 | 
						|
      if (Record->getDescribedClassTemplate())
 | 
						|
        return Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
 | 
						|
        return Spec->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
 | 
						|
  if (!Ovl)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
 | 
						|
                                              FEnd = Ovl->function_end();
 | 
						|
       F != FEnd; ++F) {
 | 
						|
    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
 | 
						|
      // We've found a function template. Determine whether there are
 | 
						|
      // any other function templates we need to bundle together in an
 | 
						|
      // OverloadedFunctionDecl
 | 
						|
      for (++F; F != FEnd; ++F) {
 | 
						|
        if (isa<FunctionTemplateDecl>(*F))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (F != FEnd) {
 | 
						|
        // Build an overloaded function decl containing only the
 | 
						|
        // function templates in Ovl.
 | 
						|
        OverloadedFunctionDecl *OvlTemplate
 | 
						|
          = OverloadedFunctionDecl::Create(Context,
 | 
						|
                                           Ovl->getDeclContext(),
 | 
						|
                                           Ovl->getDeclName());
 | 
						|
        OvlTemplate->addOverload(FuncTmpl);
 | 
						|
        OvlTemplate->addOverload(*F);
 | 
						|
        for (++F; F != FEnd; ++F) {
 | 
						|
          if (isa<FunctionTemplateDecl>(*F))
 | 
						|
            OvlTemplate->addOverload(*F);
 | 
						|
        }
 | 
						|
 | 
						|
        return OvlTemplate;
 | 
						|
      }
 | 
						|
 | 
						|
      return FuncTmpl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
 | 
						|
  LookupResult::Filter filter = R.makeFilter();
 | 
						|
  while (filter.hasNext()) {
 | 
						|
    NamedDecl *Orig = filter.next();
 | 
						|
    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
 | 
						|
    if (!Repl)
 | 
						|
      filter.erase();
 | 
						|
    else if (Repl != Orig)
 | 
						|
      filter.replace(Repl);
 | 
						|
  }
 | 
						|
  filter.done();
 | 
						|
}
 | 
						|
 | 
						|
TemplateNameKind Sema::isTemplateName(Scope *S,
 | 
						|
                                      const CXXScopeSpec &SS,
 | 
						|
                                      UnqualifiedId &Name,
 | 
						|
                                      TypeTy *ObjectTypePtr,
 | 
						|
                                      bool EnteringContext,
 | 
						|
                                      TemplateTy &TemplateResult) {
 | 
						|
  DeclarationName TName;
 | 
						|
  
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedId::IK_Identifier:
 | 
						|
    TName = DeclarationName(Name.Identifier);
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case UnqualifiedId::IK_OperatorFunctionId:
 | 
						|
    TName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                              Name.OperatorFunctionId.Operator);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    return TNK_Non_template;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
 | 
						|
 | 
						|
  LookupResult R(*this, TName, SourceLocation(), LookupOrdinaryName);
 | 
						|
  R.suppressDiagnostics();
 | 
						|
  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
 | 
						|
  if (R.empty())
 | 
						|
    return TNK_Non_template;
 | 
						|
 | 
						|
  NamedDecl *Template = R.getAsSingleDecl(Context);
 | 
						|
 | 
						|
  if (SS.isSet() && !SS.isInvalid()) {
 | 
						|
    NestedNameSpecifier *Qualifier
 | 
						|
      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
    if (OverloadedFunctionDecl *Ovl
 | 
						|
          = dyn_cast<OverloadedFunctionDecl>(Template))
 | 
						|
      TemplateResult
 | 
						|
        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
 | 
						|
                                                            Ovl));
 | 
						|
    else
 | 
						|
      TemplateResult
 | 
						|
        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
 | 
						|
                                                 cast<TemplateDecl>(Template)));
 | 
						|
  } else if (OverloadedFunctionDecl *Ovl
 | 
						|
               = dyn_cast<OverloadedFunctionDecl>(Template)) {
 | 
						|
    TemplateResult = TemplateTy::make(TemplateName(Ovl));
 | 
						|
  } else {
 | 
						|
    TemplateResult = TemplateTy::make(
 | 
						|
                                  TemplateName(cast<TemplateDecl>(Template)));
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ClassTemplateDecl>(Template) ||
 | 
						|
      isa<TemplateTemplateParmDecl>(Template))
 | 
						|
    return TNK_Type_template;
 | 
						|
 | 
						|
  assert((isa<FunctionTemplateDecl>(Template) ||
 | 
						|
          isa<OverloadedFunctionDecl>(Template)) &&
 | 
						|
         "Unhandled template kind in Sema::isTemplateName");
 | 
						|
  return TNK_Function_template;  
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupTemplateName(LookupResult &Found,
 | 
						|
                              Scope *S, const CXXScopeSpec &SS,
 | 
						|
                              QualType ObjectType,
 | 
						|
                              bool EnteringContext) {
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (!ObjectType.isNull()) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
    assert((isDependent || !ObjectType->isIncompleteType()) && 
 | 
						|
           "Caller should have completed object type");
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so long into the context associated with the prior nested-name-specifier.
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
    isDependent = isDependentScopeSpecifier(SS);
 | 
						|
    
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (LookupCtx && RequireCompleteDeclContext(SS))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ObjectTypeSearchedInScope = false;
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    LookupQualifiedName(Found, LookupCtx);
 | 
						|
 | 
						|
    if (!ObjectType.isNull() && Found.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p1:
 | 
						|
      //   In a class member access expression (5.2.5), if the . or -> token is
 | 
						|
      //   immediately followed by an identifier followed by a <, the
 | 
						|
      //   identifier must be looked up to determine whether the < is the
 | 
						|
      //   beginning of a template argument list (14.2) or a less-than operator.
 | 
						|
      //   The identifier is first looked up in the class of the object
 | 
						|
      //   expression. If the identifier is not found, it is then looked up in
 | 
						|
      //   the context of the entire postfix-expression and shall name a class
 | 
						|
      //   or function template.
 | 
						|
      //
 | 
						|
      // FIXME: When we're instantiating a template, do we actually have to
 | 
						|
      // look in the scope of the template? Seems fishy...
 | 
						|
      if (S) LookupName(Found, S);
 | 
						|
      ObjectTypeSearchedInScope = true;
 | 
						|
    }
 | 
						|
  } else if (isDependent) {
 | 
						|
    // We cannot look into a dependent object type or
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup in the current scope.
 | 
						|
    LookupName(Found, S);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Cope with ambiguous name-lookup results.
 | 
						|
  assert(!Found.isAmbiguous() &&
 | 
						|
         "Cannot handle template name-lookup ambiguities");
 | 
						|
 | 
						|
  FilterAcceptableTemplateNames(Context, Found);
 | 
						|
  if (Found.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
 | 
						|
    // C++ [basic.lookup.classref]p1:
 | 
						|
    //   [...] If the lookup in the class of the object expression finds a
 | 
						|
    //   template, the name is also looked up in the context of the entire
 | 
						|
    //   postfix-expression and [...]
 | 
						|
    //
 | 
						|
    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
 | 
						|
                            LookupOrdinaryName);
 | 
						|
    LookupName(FoundOuter, S);
 | 
						|
    FilterAcceptableTemplateNames(Context, FoundOuter);
 | 
						|
    // FIXME: Handle ambiguities in this lookup better
 | 
						|
 | 
						|
    if (FoundOuter.empty()) {
 | 
						|
      //   - if the name is not found, the name found in the class of the
 | 
						|
      //     object expression is used, otherwise
 | 
						|
    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
 | 
						|
      //   - if the name is found in the context of the entire
 | 
						|
      //     postfix-expression and does not name a class template, the name
 | 
						|
      //     found in the class of the object expression is used, otherwise
 | 
						|
    } else {
 | 
						|
      //   - if the name found is a class template, it must refer to the same
 | 
						|
      //     entity as the one found in the class of the object expression,
 | 
						|
      //     otherwise the program is ill-formed.
 | 
						|
      if (!Found.isSingleResult() ||
 | 
						|
          Found.getFoundDecl()->getCanonicalDecl()
 | 
						|
            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
 | 
						|
        Diag(Found.getNameLoc(), 
 | 
						|
             diag::err_nested_name_member_ref_lookup_ambiguous)
 | 
						|
          << Found.getLookupName();
 | 
						|
        Diag(Found.getRepresentativeDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_object_type)
 | 
						|
          << ObjectType;
 | 
						|
        Diag(FoundOuter.getFoundDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_scope);
 | 
						|
 | 
						|
        // Recover by taking the template that we found in the object
 | 
						|
        // expression's type.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Constructs a full type for the given nested-name-specifier.
 | 
						|
static QualType GetTypeForQualifier(ASTContext &Context,
 | 
						|
                                    NestedNameSpecifier *Qualifier) {
 | 
						|
  // Three possibilities:
 | 
						|
 | 
						|
  // 1.  A namespace (global or not).
 | 
						|
  assert(!Qualifier->getAsNamespace() && "can't construct type for namespace");
 | 
						|
 | 
						|
  // 2.  A type (templated or not).
 | 
						|
  Type *Ty = Qualifier->getAsType();
 | 
						|
  if (Ty) return QualType(Ty, 0);
 | 
						|
 | 
						|
  // 3.  A dependent identifier.
 | 
						|
  assert(Qualifier->getAsIdentifier());
 | 
						|
  return Context.getTypenameType(Qualifier->getPrefix(),
 | 
						|
                                 Qualifier->getAsIdentifier());
 | 
						|
}
 | 
						|
 | 
						|
static bool HasDependentTypeAsBase(ASTContext &Context,
 | 
						|
                                   CXXRecordDecl *Record,
 | 
						|
                                   CanQualType T) {
 | 
						|
  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
 | 
						|
         E = Record->bases_end(); I != E; ++I) {
 | 
						|
    CanQualType BaseT = Context.getCanonicalType((*I).getType());
 | 
						|
    if (BaseT == T)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // We have to recurse here to cover some really bizarre cases.
 | 
						|
    // Obviously, we can only have the dependent type as an indirect
 | 
						|
    // base class through a dependent base class, and usually it's
 | 
						|
    // impossible to know which instantiation a dependent base class
 | 
						|
    // will have.  But!  If we're actually *inside* the dependent base
 | 
						|
    // class, then we know its instantiation and can therefore be
 | 
						|
    // reasonably expected to look into it.
 | 
						|
 | 
						|
    // template <class T> class A : Base<T> {
 | 
						|
    //   class Inner : A<T> {
 | 
						|
    //     void foo() {
 | 
						|
    //       Base<T>::foo(); // statically known to be an implicit member
 | 
						|
    //                          reference
 | 
						|
    //     }
 | 
						|
    //   };
 | 
						|
    // };
 | 
						|
 | 
						|
    CanQual<RecordType> RT = BaseT->getAs<RecordType>();
 | 
						|
 | 
						|
    // Base might be a dependent member type, in which case we
 | 
						|
    // obviously can't look into it.
 | 
						|
    if (!RT) continue;
 | 
						|
 | 
						|
    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    if (BaseRecord->isDefinition() &&
 | 
						|
        HasDependentTypeAsBase(Context, BaseRecord, T))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks whether the given dependent nested-name specifier
 | 
						|
/// introduces an implicit member reference.  This is only true if the
 | 
						|
/// nested-name specifier names a type identical to one of the current
 | 
						|
/// instance method's context's (possibly indirect) base classes.
 | 
						|
static bool IsImplicitDependentMemberReference(Sema &SemaRef,
 | 
						|
                                               NestedNameSpecifier *Qualifier,
 | 
						|
                                               QualType &ThisType) {
 | 
						|
  // If the context isn't a C++ method, then it isn't an implicit
 | 
						|
  // member reference.
 | 
						|
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext);
 | 
						|
  if (!MD || MD->isStatic())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ASTContext &Context = SemaRef.Context;
 | 
						|
 | 
						|
  // We want to check whether the method's context is known to inherit
 | 
						|
  // from the type named by the nested name specifier.  The trivial
 | 
						|
  // case here is:
 | 
						|
  //   template <class T> class Base { ... };
 | 
						|
  //   template <class T> class Derived : Base<T> {
 | 
						|
  //     void foo() {
 | 
						|
  //       Base<T>::foo();
 | 
						|
  //     }
 | 
						|
  //   };
 | 
						|
 | 
						|
  QualType QT = GetTypeForQualifier(Context, Qualifier);
 | 
						|
  CanQualType T = Context.getCanonicalType(QT);
 | 
						|
 | 
						|
  // And now, just walk the non-dependent type hierarchy, trying to
 | 
						|
  // find the given type as a literal base class.
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(MD->getParent());
 | 
						|
  if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T || 
 | 
						|
      HasDependentTypeAsBase(Context, Record, T)) {
 | 
						|
    ThisType = MD->getThisType(Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnDependentIdExpression - Handle a dependent declaration name
 | 
						|
/// that was just parsed.
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
 | 
						|
                                 DeclarationName Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 bool CheckForImplicitMember,
 | 
						|
                           const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  NestedNameSpecifier *Qualifier
 | 
						|
    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | 
						|
    
 | 
						|
  QualType ThisType;
 | 
						|
  if (CheckForImplicitMember &&
 | 
						|
      IsImplicitDependentMemberReference(*this, Qualifier, ThisType)) {
 | 
						|
    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
 | 
						|
 | 
						|
    // Since the 'this' expression is synthesized, we don't need to
 | 
						|
    // perform the double-lookup check.
 | 
						|
    NamedDecl *FirstQualifierInScope = 0;
 | 
						|
 | 
						|
    return Owned(CXXDependentScopeMemberExpr::Create(Context, This, true,
 | 
						|
                                                     /*Op*/ SourceLocation(),
 | 
						|
                                                     Qualifier, SS.getRange(),
 | 
						|
                                                     FirstQualifierInScope,
 | 
						|
                                                     Name, NameLoc,
 | 
						|
                                                     TemplateArgs));
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
 | 
						|
                                DeclarationName Name,
 | 
						|
                                SourceLocation NameLoc,
 | 
						|
                                const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  return Owned(DependentScopeDeclRefExpr::Create(Context,
 | 
						|
               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
 | 
						|
                                                 SS.getRange(),
 | 
						|
                                                 Name, NameLoc,
 | 
						|
                                                 TemplateArgs));
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
 | 
						|
/// that the template parameter 'PrevDecl' is being shadowed by a new
 | 
						|
/// declaration at location Loc. Returns true to indicate that this is
 | 
						|
/// an error, and false otherwise.
 | 
						|
bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
 | 
						|
  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
 | 
						|
 | 
						|
  // Microsoft Visual C++ permits template parameters to be shadowed.
 | 
						|
  if (getLangOptions().Microsoft)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.local]p4:
 | 
						|
  //   A template-parameter shall not be redeclared within its
 | 
						|
  //   scope (including nested scopes).
 | 
						|
  Diag(Loc, diag::err_template_param_shadow)
 | 
						|
    << cast<NamedDecl>(PrevDecl)->getDeclName();
 | 
						|
  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
 | 
						|
/// the parameter D to reference the templated declaration and return a pointer
 | 
						|
/// to the template declaration. Otherwise, do nothing to D and return null.
 | 
						|
TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
 | 
						|
  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
 | 
						|
    D = DeclPtrTy::make(Temp->getTemplatedDecl());
 | 
						|
    return Temp;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
 | 
						|
                                            const ParsedTemplateArgument &Arg) {
 | 
						|
  
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
  case ParsedTemplateArgument::Type: {
 | 
						|
    DeclaratorInfo *DI;
 | 
						|
    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
 | 
						|
    if (!DI) 
 | 
						|
      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(T), DI);
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ParsedTemplateArgument::NonType: {
 | 
						|
    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(E), E);
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ParsedTemplateArgument::Template: {
 | 
						|
    TemplateName Template
 | 
						|
      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(Template),
 | 
						|
                               Arg.getScopeSpec().getRange(),
 | 
						|
                               Arg.getLocation());
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::llvm_unreachable("Unhandled parsed template argument");
 | 
						|
  return TemplateArgumentLoc();
 | 
						|
}
 | 
						|
                                                     
 | 
						|
/// \brief Translates template arguments as provided by the parser
 | 
						|
/// into template arguments used by semantic analysis.
 | 
						|
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
 | 
						|
                                      TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
 | 
						|
   TemplateArgs.addArgument(translateTemplateArgument(*this,
 | 
						|
                                                      TemplateArgsIn[I]));
 | 
						|
}
 | 
						|
                                                     
 | 
						|
/// ActOnTypeParameter - Called when a C++ template type parameter
 | 
						|
/// (e.g., "typename T") has been parsed. Typename specifies whether
 | 
						|
/// the keyword "typename" was used to declare the type parameter
 | 
						|
/// (otherwise, "class" was used), and KeyLoc is the location of the
 | 
						|
/// "class" or "typename" keyword. ParamName is the name of the
 | 
						|
/// parameter (NULL indicates an unnamed template parameter) and
 | 
						|
/// ParamName is the location of the parameter name (if any).
 | 
						|
/// If the type parameter has a default argument, it will be added
 | 
						|
/// later via ActOnTypeParameterDefault.
 | 
						|
Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
 | 
						|
                                         SourceLocation EllipsisLoc,
 | 
						|
                                         SourceLocation KeyLoc,
 | 
						|
                                         IdentifierInfo *ParamName,
 | 
						|
                                         SourceLocation ParamNameLoc,
 | 
						|
                                         unsigned Depth, unsigned Position) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template type parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter())
 | 
						|
      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
 | 
						|
                                                           PrevDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation Loc = ParamNameLoc;
 | 
						|
  if (!ParamName)
 | 
						|
    Loc = KeyLoc;
 | 
						|
 | 
						|
  TemplateTypeParmDecl *Param
 | 
						|
    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
 | 
						|
                                   Depth, Position, ParamName, Typename,
 | 
						|
                                   Ellipsis);
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypeParameterDefault - Adds a default argument (the type
 | 
						|
/// Default) to the given template type parameter (TypeParam).
 | 
						|
void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
 | 
						|
                                     SourceLocation EqualLoc,
 | 
						|
                                     SourceLocation DefaultLoc,
 | 
						|
                                     TypeTy *DefaultT) {
 | 
						|
  TemplateTypeParmDecl *Parm
 | 
						|
    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
 | 
						|
 | 
						|
  DeclaratorInfo *DefaultDInfo;
 | 
						|
  GetTypeFromParser(DefaultT, &DefaultDInfo);
 | 
						|
 | 
						|
  assert(DefaultDInfo && "expected source information for type");
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  // A default template-argument may be specified for any kind of
 | 
						|
  // template-parameter that is not a template parameter pack.
 | 
						|
  if (Parm->isParameterPack()) {
 | 
						|
    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
 | 
						|
  // Check the template argument itself.
 | 
						|
  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
 | 
						|
    Parm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Parm->setDefaultArgument(DefaultDInfo, false);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the type of a non-type template parameter is
 | 
						|
/// well-formed.
 | 
						|
///
 | 
						|
/// \returns the (possibly-promoted) parameter type if valid;
 | 
						|
/// otherwise, produces a diagnostic and returns a NULL type.
 | 
						|
QualType
 | 
						|
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
 | 
						|
  // C++ [temp.param]p4:
 | 
						|
  //
 | 
						|
  // A non-type template-parameter shall have one of the following
 | 
						|
  // (optionally cv-qualified) types:
 | 
						|
  //
 | 
						|
  //       -- integral or enumeration type,
 | 
						|
  if (T->isIntegralType() || T->isEnumeralType() ||
 | 
						|
      //   -- pointer to object or pointer to function,
 | 
						|
      (T->isPointerType() &&
 | 
						|
       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
 | 
						|
        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
 | 
						|
      //   -- reference to object or reference to function,
 | 
						|
      T->isReferenceType() ||
 | 
						|
      //   -- pointer to member.
 | 
						|
      T->isMemberPointerType() ||
 | 
						|
      // If T is a dependent type, we can't do the check now, so we
 | 
						|
      // assume that it is well-formed.
 | 
						|
      T->isDependentType())
 | 
						|
    return T;
 | 
						|
  // C++ [temp.param]p8:
 | 
						|
  //
 | 
						|
  //   A non-type template-parameter of type "array of T" or
 | 
						|
  //   "function returning T" is adjusted to be of type "pointer to
 | 
						|
  //   T" or "pointer to function returning T", respectively.
 | 
						|
  else if (T->isArrayType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getArrayDecayedType(T);
 | 
						|
  else if (T->isFunctionType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getPointerType(T);
 | 
						|
 | 
						|
  Diag(Loc, diag::err_template_nontype_parm_bad_type)
 | 
						|
    << T;
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
 | 
						|
/// template parameter (e.g., "int Size" in "template<int Size>
 | 
						|
/// class Array") has been parsed. S is the current scope and D is
 | 
						|
/// the parsed declarator.
 | 
						|
Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
 | 
						|
                                                    unsigned Depth,
 | 
						|
                                                    unsigned Position) {
 | 
						|
  DeclaratorInfo *DInfo = 0;
 | 
						|
  QualType T = GetTypeForDeclarator(D, S, &DInfo);
 | 
						|
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Non-type template parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  IdentifierInfo *ParamName = D.getIdentifier();
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter())
 | 
						|
      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | 
						|
                                                           PrevDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
 | 
						|
  if (T.isNull()) {
 | 
						|
    T = Context.IntTy; // Recover with an 'int' type.
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  NonTypeTemplateParmDecl *Param
 | 
						|
    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
 | 
						|
                                      Depth, Position, ParamName, T, DInfo);
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getIdentifier()) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a default argument to the given non-type template
 | 
						|
/// parameter.
 | 
						|
void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
 | 
						|
                                                SourceLocation EqualLoc,
 | 
						|
                                                ExprArg DefaultE) {
 | 
						|
  NonTypeTemplateParmDecl *TemplateParm
 | 
						|
    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
 | 
						|
  Expr *Default = static_cast<Expr *>(DefaultE.get());
 | 
						|
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
 | 
						|
  // Check the well-formedness of the default template argument.
 | 
						|
  TemplateArgument Converted;
 | 
						|
  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
 | 
						|
                            Converted)) {
 | 
						|
    TemplateParm->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
 | 
						|
/// parameter (e.g. T in template <template <typename> class T> class array)
 | 
						|
/// has been parsed. S is the current scope.
 | 
						|
Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
 | 
						|
                                                     SourceLocation TmpLoc,
 | 
						|
                                                     TemplateParamsTy *Params,
 | 
						|
                                                     IdentifierInfo *Name,
 | 
						|
                                                     SourceLocation NameLoc,
 | 
						|
                                                     unsigned Depth,
 | 
						|
                                                     unsigned Position) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template template parameter not in template parameter scope!");
 | 
						|
 | 
						|
  // Construct the parameter object.
 | 
						|
  TemplateTemplateParmDecl *Param =
 | 
						|
    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
 | 
						|
                                     Position, Name,
 | 
						|
                                     (TemplateParameterList*)Params);
 | 
						|
 | 
						|
  // Make sure the parameter is valid.
 | 
						|
  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
 | 
						|
  // do anything yet. However, if the template parameter list or (eventual)
 | 
						|
  // default value is ever invalidated, that will propagate here.
 | 
						|
  bool Invalid = false;
 | 
						|
  if (Invalid) {
 | 
						|
    Param->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the tt-param has a name, then link the identifier into the scope
 | 
						|
  // and lookup mechanisms.
 | 
						|
  if (Name) {
 | 
						|
    S->AddDecl(DeclPtrTy::make(Param));
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclPtrTy::make(Param);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a default argument to the given template template
 | 
						|
/// parameter.
 | 
						|
void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
 | 
						|
                                                 SourceLocation EqualLoc,
 | 
						|
                                        const ParsedTemplateArgument &Default) {
 | 
						|
  TemplateTemplateParmDecl *TemplateParm
 | 
						|
    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
 | 
						|
  
 | 
						|
  // C++ [temp.param]p14:
 | 
						|
  //   A template-parameter shall not be used in its own default argument.
 | 
						|
  // FIXME: Implement this check! Needs a recursive walk over the types.
 | 
						|
 | 
						|
  // Check only that we have a template template argument. We don't want to
 | 
						|
  // try to check well-formedness now, because our template template parameter
 | 
						|
  // might have dependent types in its template parameters, which we wouldn't
 | 
						|
  // be able to match now.
 | 
						|
  //
 | 
						|
  // If none of the template template parameter's template arguments mention
 | 
						|
  // other template parameters, we could actually perform more checking here.
 | 
						|
  // However, it isn't worth doing.
 | 
						|
  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
 | 
						|
  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
 | 
						|
    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
 | 
						|
      << DefaultArg.getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  TemplateParm->setDefaultArgument(DefaultArg);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateParameterList - Builds a TemplateParameterList that
 | 
						|
/// contains the template parameters in Params/NumParams.
 | 
						|
Sema::TemplateParamsTy *
 | 
						|
Sema::ActOnTemplateParameterList(unsigned Depth,
 | 
						|
                                 SourceLocation ExportLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 DeclPtrTy *Params, unsigned NumParams,
 | 
						|
                                 SourceLocation RAngleLoc) {
 | 
						|
  if (ExportLoc.isValid())
 | 
						|
    Diag(ExportLoc, diag::note_template_export_unsupported);
 | 
						|
 | 
						|
  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
 | 
						|
                                       (NamedDecl**)Params, NumParams, 
 | 
						|
                                       RAngleLoc);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclResult
 | 
						|
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                         SourceLocation KWLoc, const CXXScopeSpec &SS,
 | 
						|
                         IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                         AttributeList *Attr,
 | 
						|
                         TemplateParameterList *TemplateParams,
 | 
						|
                         AccessSpecifier AS) {
 | 
						|
  assert(TemplateParams && TemplateParams->size() > 0 &&
 | 
						|
         "No template parameters");
 | 
						|
  assert(TUK != TUK_Reference && "Can only declare or define class templates");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Check that we can declare a template here.
 | 
						|
  if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
 | 
						|
 | 
						|
  // There is no such thing as an unnamed class template.
 | 
						|
  if (!Name) {
 | 
						|
    Diag(KWLoc, diag::err_template_unnamed_class);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find any previous declaration with this name.
 | 
						|
  DeclContext *SemanticContext;
 | 
						|
  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
 | 
						|
                        ForRedeclaration);
 | 
						|
  if (SS.isNotEmpty() && !SS.isInvalid()) {
 | 
						|
    if (RequireCompleteDeclContext(SS))
 | 
						|
      return true;
 | 
						|
 | 
						|
    SemanticContext = computeDeclContext(SS, true);
 | 
						|
    if (!SemanticContext) {
 | 
						|
      // FIXME: Produce a reasonable diagnostic here
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    LookupQualifiedName(Previous, SemanticContext);
 | 
						|
  } else {
 | 
						|
    SemanticContext = CurContext;
 | 
						|
    LookupName(Previous, S);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
 | 
						|
  NamedDecl *PrevDecl = 0;
 | 
						|
  if (Previous.begin() != Previous.end())
 | 
						|
    PrevDecl = *Previous.begin();
 | 
						|
 | 
						|
  if (PrevDecl && TUK == TUK_Friend) {
 | 
						|
    // C++ [namespace.memdef]p3:
 | 
						|
    //   [...] When looking for a prior declaration of a class or a function 
 | 
						|
    //   declared as a friend, and when the name of the friend class or 
 | 
						|
    //   function is neither a qualified name nor a template-id, scopes outside
 | 
						|
    //   the innermost enclosing namespace scope are not considered.
 | 
						|
    DeclContext *OutermostContext = CurContext;
 | 
						|
    while (!OutermostContext->isFileContext())
 | 
						|
      OutermostContext = OutermostContext->getLookupParent();
 | 
						|
    
 | 
						|
    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
 | 
						|
        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
 | 
						|
      SemanticContext = PrevDecl->getDeclContext();
 | 
						|
    } else {
 | 
						|
      // Declarations in outer scopes don't matter. However, the outermost
 | 
						|
      // context we computed is the semantic context for our new 
 | 
						|
      // declaration.
 | 
						|
      PrevDecl = 0;
 | 
						|
      SemanticContext = OutermostContext;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CurContext->isDependentContext()) {
 | 
						|
      // If this is a dependent context, we don't want to link the friend
 | 
						|
      // class template to the template in scope, because that would perform
 | 
						|
      // checking of the template parameter lists that can't be performed
 | 
						|
      // until the outer context is instantiated.
 | 
						|
      PrevDecl = 0;
 | 
						|
    }
 | 
						|
  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
 | 
						|
    PrevDecl = 0;
 | 
						|
 | 
						|
  // If there is a previous declaration with the same name, check
 | 
						|
  // whether this is a valid redeclaration.
 | 
						|
  ClassTemplateDecl *PrevClassTemplate
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
 | 
						|
 | 
						|
  // We may have found the injected-class-name of a class template,
 | 
						|
  // class template partial specialization, or class template specialization. 
 | 
						|
  // In these cases, grab the template that is being defined or specialized.
 | 
						|
  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 
 | 
						|
      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
 | 
						|
    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
 | 
						|
    PrevClassTemplate 
 | 
						|
      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
 | 
						|
    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
 | 
						|
      PrevClassTemplate
 | 
						|
        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
 | 
						|
            ->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevClassTemplate) {
 | 
						|
    // Ensure that the template parameter lists are compatible.
 | 
						|
    if (!TemplateParameterListsAreEqual(TemplateParams,
 | 
						|
                                   PrevClassTemplate->getTemplateParameters(),
 | 
						|
                                        /*Complain=*/true,
 | 
						|
                                        TPL_TemplateMatch))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // C++ [temp.class]p4:
 | 
						|
    //   In a redeclaration, partial specialization, explicit
 | 
						|
    //   specialization or explicit instantiation of a class template,
 | 
						|
    //   the class-key shall agree in kind with the original class
 | 
						|
    //   template declaration (7.1.5.3).
 | 
						|
    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
 | 
						|
    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
 | 
						|
      Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Name
 | 
						|
        << CodeModificationHint::CreateReplacement(KWLoc,
 | 
						|
                            PrevRecordDecl->getKindName());
 | 
						|
      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
 | 
						|
      Kind = PrevRecordDecl->getTagKind();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for redefinition of this class template.
 | 
						|
    if (TUK == TUK_Definition) {
 | 
						|
      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
 | 
						|
        Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
        // FIXME: Would it make sense to try to "forget" the previous
 | 
						|
        // definition, as part of error recovery?
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = 0;
 | 
						|
  } else if (PrevDecl) {
 | 
						|
    // C++ [temp]p5:
 | 
						|
    //   A class template shall not have the same name as any other
 | 
						|
    //   template, class, function, object, enumeration, enumerator,
 | 
						|
    //   namespace, or type in the same scope (3.3), except as specified
 | 
						|
    //   in (14.5.4).
 | 
						|
    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the template parameter list of this declaration, possibly
 | 
						|
  // merging in the template parameter list from the previous class
 | 
						|
  // template declaration.
 | 
						|
  if (CheckTemplateParameterList(TemplateParams,
 | 
						|
            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
 | 
						|
                                 TPC_ClassTemplate))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  // FIXME: If we had a scope specifier, we better have a previous template
 | 
						|
  // declaration!
 | 
						|
 | 
						|
  CXXRecordDecl *NewClass =
 | 
						|
    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
 | 
						|
                          PrevClassTemplate?
 | 
						|
                            PrevClassTemplate->getTemplatedDecl() : 0,
 | 
						|
                          /*DelayTypeCreation=*/true);
 | 
						|
 | 
						|
  ClassTemplateDecl *NewTemplate
 | 
						|
    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
 | 
						|
                                DeclarationName(Name), TemplateParams,
 | 
						|
                                NewClass, PrevClassTemplate);
 | 
						|
  NewClass->setDescribedClassTemplate(NewTemplate);
 | 
						|
 | 
						|
  // Build the type for the class template declaration now.
 | 
						|
  QualType T =
 | 
						|
    Context.getTypeDeclType(NewClass,
 | 
						|
                            PrevClassTemplate?
 | 
						|
                              PrevClassTemplate->getTemplatedDecl() : 0);
 | 
						|
  assert(T->isDependentType() && "Class template type is not dependent?");
 | 
						|
  (void)T;
 | 
						|
 | 
						|
  // If we are providing an explicit specialization of a member that is a 
 | 
						|
  // class template, make a note of that.
 | 
						|
  if (PrevClassTemplate && 
 | 
						|
      PrevClassTemplate->getInstantiatedFromMemberTemplate())
 | 
						|
    PrevClassTemplate->setMemberSpecialization();
 | 
						|
  
 | 
						|
  // Set the access specifier.
 | 
						|
  if (!Invalid && TUK != TUK_Friend)
 | 
						|
    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
 | 
						|
 | 
						|
  // Set the lexical context of these templates
 | 
						|
  NewClass->setLexicalDeclContext(CurContext);
 | 
						|
  NewTemplate->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    NewClass->startDefinition();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, NewClass, Attr);
 | 
						|
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    PushOnScopeChains(NewTemplate, S);
 | 
						|
  else {
 | 
						|
    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
 | 
						|
      NewTemplate->setAccess(PrevClassTemplate->getAccess());
 | 
						|
      NewClass->setAccess(PrevClassTemplate->getAccess());
 | 
						|
    }
 | 
						|
 | 
						|
    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
 | 
						|
                                       PrevClassTemplate != NULL);
 | 
						|
    
 | 
						|
    // Friend templates are visible in fairly strange ways.
 | 
						|
    if (!CurContext->isDependentContext()) {
 | 
						|
      DeclContext *DC = SemanticContext->getLookupContext();
 | 
						|
      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
 | 
						|
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | 
						|
        PushOnScopeChains(NewTemplate, EnclosingScope,
 | 
						|
                          /* AddToContext = */ false);      
 | 
						|
    }
 | 
						|
    
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | 
						|
                                            NewClass->getLocation(),
 | 
						|
                                            NewTemplate,
 | 
						|
                                    /*FIXME:*/NewClass->getLocation());
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid) {
 | 
						|
    NewTemplate->setInvalidDecl();
 | 
						|
    NewClass->setInvalidDecl();
 | 
						|
  }
 | 
						|
  return DeclPtrTy::make(NewTemplate);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose the presence of a default template argument on a
 | 
						|
/// template parameter, which is ill-formed in certain contexts.
 | 
						|
///
 | 
						|
/// \returns true if the default template argument should be dropped.
 | 
						|
static bool DiagnoseDefaultTemplateArgument(Sema &S, 
 | 
						|
                                            Sema::TemplateParamListContext TPC,
 | 
						|
                                            SourceLocation ParamLoc,
 | 
						|
                                            SourceRange DefArgRange) {
 | 
						|
  switch (TPC) {
 | 
						|
  case Sema::TPC_ClassTemplate:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_FunctionTemplate:
 | 
						|
    // C++ [temp.param]p9: 
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   function template declaration or a function template
 | 
						|
    //   definition [...]
 | 
						|
    // (This sentence is not in C++0x, per DR226).
 | 
						|
    if (!S.getLangOptions().CPlusPlus0x)
 | 
						|
      S.Diag(ParamLoc, 
 | 
						|
             diag::err_template_parameter_default_in_function_template)
 | 
						|
        << DefArgRange;
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_ClassTemplateMember:
 | 
						|
    // C++0x [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in the
 | 
						|
    //   template-parameter-lists of the definition of a member of a
 | 
						|
    //   class template that appears outside of the member's class.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Sema::TPC_FriendFunctionTemplate:
 | 
						|
    // C++ [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   friend template declaration.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
    // FIXME: C++0x [temp.param]p9 allows default template-arguments
 | 
						|
    // for friend function templates if there is only a single
 | 
						|
    // declaration (and it is a definition). Strange!
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks the validity of a template parameter list, possibly
 | 
						|
/// considering the template parameter list from a previous
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// If an "old" template parameter list is provided, it must be
 | 
						|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param NewParams Template parameter list for a new template
 | 
						|
/// declaration. This template parameter list will be updated with any
 | 
						|
/// default arguments that are carried through from the previous
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param OldParams If provided, template parameter list from a
 | 
						|
/// previous declaration of the same template. Default template
 | 
						|
/// arguments will be merged from the old template parameter list to
 | 
						|
/// the new template parameter list.
 | 
						|
///
 | 
						|
/// \param TPC Describes the context in which we are checking the given
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \returns true if an error occurred, false otherwise.
 | 
						|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
 | 
						|
                                      TemplateParameterList *OldParams,
 | 
						|
                                      TemplateParamListContext TPC) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // C++ [temp.param]p10:
 | 
						|
  //   The set of default template-arguments available for use with a
 | 
						|
  //   template declaration or definition is obtained by merging the
 | 
						|
  //   default arguments from the definition (if in scope) and all
 | 
						|
  //   declarations in scope in the same way default function
 | 
						|
  //   arguments are (8.3.6).
 | 
						|
  bool SawDefaultArgument = false;
 | 
						|
  SourceLocation PreviousDefaultArgLoc;
 | 
						|
 | 
						|
  bool SawParameterPack = false;
 | 
						|
  SourceLocation ParameterPackLoc;
 | 
						|
 | 
						|
  // Dummy initialization to avoid warnings.
 | 
						|
  TemplateParameterList::iterator OldParam = NewParams->end();
 | 
						|
  if (OldParams)
 | 
						|
    OldParam = OldParams->begin();
 | 
						|
 | 
						|
  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                    NewParamEnd = NewParams->end();
 | 
						|
       NewParam != NewParamEnd; ++NewParam) {
 | 
						|
    // Variables used to diagnose redundant default arguments
 | 
						|
    bool RedundantDefaultArg = false;
 | 
						|
    SourceLocation OldDefaultLoc;
 | 
						|
    SourceLocation NewDefaultLoc;
 | 
						|
 | 
						|
    // Variables used to diagnose missing default arguments
 | 
						|
    bool MissingDefaultArg = false;
 | 
						|
 | 
						|
    // C++0x [temp.param]p11:
 | 
						|
    // If a template parameter of a class template is a template parameter pack,
 | 
						|
    // it must be the last template parameter.
 | 
						|
    if (SawParameterPack) {
 | 
						|
      Diag(ParameterPackLoc,
 | 
						|
           diag::err_template_param_pack_must_be_last_template_parameter);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TemplateTypeParmDecl *NewTypeParm
 | 
						|
          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewTypeParm->hasDefaultArgument() && 
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC, 
 | 
						|
                                          NewTypeParm->getLocation(), 
 | 
						|
               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
 | 
						|
                                                       .getFullSourceRange()))
 | 
						|
        NewTypeParm->removeDefaultArgument();
 | 
						|
 | 
						|
      // Merge default arguments for template type parameters.
 | 
						|
      TemplateTypeParmDecl *OldTypeParm
 | 
						|
          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
 | 
						|
 | 
						|
      if (NewTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
        ParameterPackLoc = NewTypeParm->getLocation();
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
 | 
						|
                 NewTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
 | 
						|
                                        true);
 | 
						|
        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
 | 
						|
               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewNonTypeParm->hasDefaultArgument() && 
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC, 
 | 
						|
                                          NewNonTypeParm->getLocation(), 
 | 
						|
                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
 | 
						|
        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
 | 
						|
        NewNonTypeParm->setDefaultArgument(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Merge default arguments for non-type template parameters
 | 
						|
      NonTypeTemplateParmDecl *OldNonTypeParm
 | 
						|
        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
 | 
						|
          NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument"
 | 
						|
        // expression that points to a previous template template
 | 
						|
        // parameter.
 | 
						|
        NewNonTypeParm->setDefaultArgument(
 | 
						|
                                        OldNonTypeParm->getDefaultArgument());
 | 
						|
        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else {
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      TemplateTemplateParmDecl *NewTemplateParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParam);
 | 
						|
      if (NewTemplateParm->hasDefaultArgument() && 
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC, 
 | 
						|
                                          NewTemplateParm->getLocation(), 
 | 
						|
                     NewTemplateParm->getDefaultArgument().getSourceRange()))
 | 
						|
        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
 | 
						|
 | 
						|
      // Merge default arguments for template template parameters
 | 
						|
      TemplateTemplateParmDecl *OldTemplateParm
 | 
						|
        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
 | 
						|
          NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument" expression
 | 
						|
        // that points to a previous template template parameter.
 | 
						|
        NewTemplateParm->setDefaultArgument(
 | 
						|
                                        OldTemplateParm->getDefaultArgument());
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RedundantDefaultArg) {
 | 
						|
      // C++ [temp.param]p12:
 | 
						|
      //   A template-parameter shall not be given default arguments
 | 
						|
      //   by two different declarations in the same scope.
 | 
						|
      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
 | 
						|
      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    } else if (MissingDefaultArg) {
 | 
						|
      // C++ [temp.param]p11:
 | 
						|
      //   If a template-parameter has a default template-argument,
 | 
						|
      //   all subsequent template-parameters shall have a default
 | 
						|
      //   template-argument supplied.
 | 
						|
      Diag((*NewParam)->getLocation(),
 | 
						|
           diag::err_template_param_default_arg_missing);
 | 
						|
      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an old template parameter list that we're merging
 | 
						|
    // in, move on to the next parameter.
 | 
						|
    if (OldParams)
 | 
						|
      ++OldParam;
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match the given template parameter lists to the given scope
 | 
						|
/// specifier, returning the template parameter list that applies to the
 | 
						|
/// name.
 | 
						|
///
 | 
						|
/// \param DeclStartLoc the start of the declaration that has a scope
 | 
						|
/// specifier or a template parameter list.
 | 
						|
///
 | 
						|
/// \param SS the scope specifier that will be matched to the given template
 | 
						|
/// parameter lists. This scope specifier precedes a qualified name that is
 | 
						|
/// being declared.
 | 
						|
///
 | 
						|
/// \param ParamLists the template parameter lists, from the outermost to the
 | 
						|
/// innermost template parameter lists.
 | 
						|
///
 | 
						|
/// \param NumParamLists the number of template parameter lists in ParamLists.
 | 
						|
///
 | 
						|
/// \param IsExplicitSpecialization will be set true if the entity being
 | 
						|
/// declared is an explicit specialization, false otherwise.
 | 
						|
///
 | 
						|
/// \returns the template parameter list, if any, that corresponds to the
 | 
						|
/// name that is preceded by the scope specifier @p SS. This template
 | 
						|
/// parameter list may be have template parameters (if we're declaring a
 | 
						|
/// template) or may have no template parameters (if we're declaring a
 | 
						|
/// template specialization), or may be NULL (if we were's declaring isn't
 | 
						|
/// itself a template).
 | 
						|
TemplateParameterList *
 | 
						|
Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
 | 
						|
                                              const CXXScopeSpec &SS,
 | 
						|
                                          TemplateParameterList **ParamLists,
 | 
						|
                                              unsigned NumParamLists,
 | 
						|
                                              bool &IsExplicitSpecialization) {
 | 
						|
  IsExplicitSpecialization = false;
 | 
						|
  
 | 
						|
  // Find the template-ids that occur within the nested-name-specifier. These
 | 
						|
  // template-ids will match up with the template parameter lists.
 | 
						|
  llvm::SmallVector<const TemplateSpecializationType *, 4>
 | 
						|
    TemplateIdsInSpecifier;
 | 
						|
  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
 | 
						|
    ExplicitSpecializationsInSpecifier;
 | 
						|
  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | 
						|
       NNS; NNS = NNS->getPrefix()) {
 | 
						|
    if (const TemplateSpecializationType *SpecType
 | 
						|
          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
 | 
						|
      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
 | 
						|
      if (!Template)
 | 
						|
        continue; // FIXME: should this be an error? probably...
 | 
						|
 | 
						|
      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
 | 
						|
        ClassTemplateSpecializationDecl *SpecDecl
 | 
						|
          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
 | 
						|
        // If the nested name specifier refers to an explicit specialization,
 | 
						|
        // we don't need a template<> header.
 | 
						|
        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
 | 
						|
          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      TemplateIdsInSpecifier.push_back(SpecType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the list of template-ids in the scope specifier, so that we can
 | 
						|
  // more easily match up the template-ids and the template parameter lists.
 | 
						|
  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
 | 
						|
 | 
						|
  SourceLocation FirstTemplateLoc = DeclStartLoc;
 | 
						|
  if (NumParamLists)
 | 
						|
    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
 | 
						|
 | 
						|
  // Match the template-ids found in the specifier to the template parameter
 | 
						|
  // lists.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
 | 
						|
       Idx != NumTemplateIds; ++Idx) {
 | 
						|
    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
 | 
						|
    bool DependentTemplateId = TemplateId->isDependentType();
 | 
						|
    if (Idx >= NumParamLists) {
 | 
						|
      // We have a template-id without a corresponding template parameter
 | 
						|
      // list.
 | 
						|
      if (DependentTemplateId) {
 | 
						|
        // FIXME: the location information here isn't great.
 | 
						|
        Diag(SS.getRange().getBegin(),
 | 
						|
             diag::err_template_spec_needs_template_parameters)
 | 
						|
          << TemplateId
 | 
						|
          << SS.getRange();
 | 
						|
      } else {
 | 
						|
        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
 | 
						|
          << SS.getRange()
 | 
						|
          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
 | 
						|
                                                   "template<> ");
 | 
						|
        IsExplicitSpecialization = true;
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the template parameter list against its corresponding template-id.
 | 
						|
    if (DependentTemplateId) {
 | 
						|
      TemplateDecl *Template
 | 
						|
        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
 | 
						|
 | 
						|
      if (ClassTemplateDecl *ClassTemplate
 | 
						|
            = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
        TemplateParameterList *ExpectedTemplateParams = 0;
 | 
						|
        // Is this template-id naming the primary template?
 | 
						|
        if (Context.hasSameType(TemplateId,
 | 
						|
                             ClassTemplate->getInjectedClassNameType(Context)))
 | 
						|
          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
 | 
						|
        // ... or a partial specialization?
 | 
						|
        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | 
						|
                   = ClassTemplate->findPartialSpecialization(TemplateId))
 | 
						|
          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
 | 
						|
 | 
						|
        if (ExpectedTemplateParams)
 | 
						|
          TemplateParameterListsAreEqual(ParamLists[Idx],
 | 
						|
                                         ExpectedTemplateParams,
 | 
						|
                                         true, TPL_TemplateMatch);
 | 
						|
      }
 | 
						|
 | 
						|
      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
 | 
						|
    } else if (ParamLists[Idx]->size() > 0)
 | 
						|
      Diag(ParamLists[Idx]->getTemplateLoc(),
 | 
						|
           diag::err_template_param_list_matches_nontemplate)
 | 
						|
        << TemplateId
 | 
						|
        << ParamLists[Idx]->getSourceRange();
 | 
						|
    else
 | 
						|
      IsExplicitSpecialization = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were at least as many template-ids as there were template
 | 
						|
  // parameter lists, then there are no template parameter lists remaining for
 | 
						|
  // the declaration itself.
 | 
						|
  if (Idx >= NumParamLists)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If there were too many template parameter lists, complain about that now.
 | 
						|
  if (Idx != NumParamLists - 1) {
 | 
						|
    while (Idx < NumParamLists - 1) {
 | 
						|
      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
 | 
						|
      Diag(ParamLists[Idx]->getTemplateLoc(),
 | 
						|
           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
 | 
						|
                               : diag::err_template_spec_extra_headers)
 | 
						|
        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
 | 
						|
                       ParamLists[Idx]->getRAngleLoc());
 | 
						|
 | 
						|
      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
 | 
						|
        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
 | 
						|
             diag::note_explicit_template_spec_does_not_need_header)
 | 
						|
          << ExplicitSpecializationsInSpecifier.back();
 | 
						|
        ExplicitSpecializationsInSpecifier.pop_back();
 | 
						|
      }
 | 
						|
        
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the last template parameter list, which corresponds to the
 | 
						|
  // entity being declared.
 | 
						|
  return ParamLists[NumParamLists - 1];
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckTemplateIdType(TemplateName Name,
 | 
						|
                                   SourceLocation TemplateLoc,
 | 
						|
                              const TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template) {
 | 
						|
    // The template name does not resolve to a template, so we just
 | 
						|
    // build a dependent template-id type.
 | 
						|
    return Context.getTemplateSpecializationType(Name, TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
 | 
						|
                                        TemplateArgs.size());
 | 
						|
  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
 | 
						|
                                false, Converted))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  assert((Converted.structuredSize() ==
 | 
						|
            Template->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
 | 
						|
  QualType CanonType;
 | 
						|
 | 
						|
  if (Name.isDependent() ||
 | 
						|
      TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
                                                      TemplateArgs)) {
 | 
						|
    // This class template specialization is a dependent
 | 
						|
    // type. Therefore, its canonical type is another class template
 | 
						|
    // specialization type that contains all of the converted
 | 
						|
    // arguments in canonical form. This ensures that, e.g., A<T> and
 | 
						|
    // A<T, T> have identical types when A is declared as:
 | 
						|
    //
 | 
						|
    //   template<typename T, typename U = T> struct A;
 | 
						|
    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
 | 
						|
    CanonType = Context.getTemplateSpecializationType(CanonName,
 | 
						|
                                                   Converted.getFlatArguments(),
 | 
						|
                                                   Converted.flatSize());
 | 
						|
 | 
						|
    // FIXME: CanonType is not actually the canonical type, and unfortunately
 | 
						|
    // it is a TemplateSpecializationType that we will never use again.
 | 
						|
    // In the future, we need to teach getTemplateSpecializationType to only
 | 
						|
    // build the canonical type and return that to us.
 | 
						|
    CanonType = Context.getCanonicalType(CanonType);
 | 
						|
  } else if (ClassTemplateDecl *ClassTemplate
 | 
						|
               = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
    // Find the class template specialization declaration that
 | 
						|
    // corresponds to these arguments.
 | 
						|
    llvm::FoldingSetNodeID ID;
 | 
						|
    ClassTemplateSpecializationDecl::Profile(ID,
 | 
						|
                                             Converted.getFlatArguments(),
 | 
						|
                                             Converted.flatSize(),
 | 
						|
                                             Context);
 | 
						|
    void *InsertPos = 0;
 | 
						|
    ClassTemplateSpecializationDecl *Decl
 | 
						|
      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    if (!Decl) {
 | 
						|
      // This is the first time we have referenced this class template
 | 
						|
      // specialization. Create the canonical declaration and add it to
 | 
						|
      // the set of specializations.
 | 
						|
      Decl = ClassTemplateSpecializationDecl::Create(Context,
 | 
						|
                                    ClassTemplate->getDeclContext(),
 | 
						|
                                    ClassTemplate->getLocation(),
 | 
						|
                                    ClassTemplate,
 | 
						|
                                    Converted, 0);
 | 
						|
      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
 | 
						|
      Decl->setLexicalDeclContext(CurContext);
 | 
						|
    }
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Decl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization, which refers back to the class template
 | 
						|
  // specialization we created or found.
 | 
						|
  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
 | 
						|
}
 | 
						|
 | 
						|
Action::TypeResult
 | 
						|
Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
 | 
						|
                          SourceLocation LAngleLoc,
 | 
						|
                          ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                          SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  if (Result.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
 | 
						|
  TemplateSpecializationTypeLoc TL
 | 
						|
    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
 | 
						|
  TL.setTemplateNameLoc(TemplateLoc);
 | 
						|
  TL.setLAngleLoc(LAngleLoc);
 | 
						|
  TL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
 | 
						|
    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | 
						|
 | 
						|
  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
 | 
						|
                                              TagUseKind TUK,
 | 
						|
                                              DeclSpec::TST TagSpec,
 | 
						|
                                              SourceLocation TagLoc) {
 | 
						|
  if (TypeResult.isInvalid())
 | 
						|
    return Sema::TypeResult();
 | 
						|
 | 
						|
  // FIXME: preserve source info, ideally without copying the DI.
 | 
						|
  DeclaratorInfo *DI;
 | 
						|
  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
 | 
						|
 | 
						|
  // Verify the tag specifier.
 | 
						|
  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
 | 
						|
 | 
						|
  if (const RecordType *RT = Type->getAs<RecordType>()) {
 | 
						|
    RecordDecl *D = RT->getDecl();
 | 
						|
 | 
						|
    IdentifierInfo *Id = D->getIdentifier();
 | 
						|
    assert(Id && "templated class must have an identifier");
 | 
						|
 | 
						|
    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
 | 
						|
      Diag(TagLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Type
 | 
						|
        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
 | 
						|
                                                   D->getKindName());
 | 
						|
      Diag(D->getLocation(), diag::note_previous_use);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElabType = Context.getElaboratedType(Type, TagKind);
 | 
						|
 | 
						|
  return ElabType.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
 | 
						|
                                                 LookupResult &R,
 | 
						|
                                                 bool RequiresADL,
 | 
						|
                                 const TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  // FIXME: Can we do any checking at this point? I guess we could check the
 | 
						|
  // template arguments that we have against the template name, if the template
 | 
						|
  // name refers to a single template. That's not a terribly common case,
 | 
						|
  // though.
 | 
						|
 | 
						|
  // These should be filtered out by our callers.
 | 
						|
  assert(!R.empty() && "empty lookup results when building templateid");
 | 
						|
  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
 | 
						|
 | 
						|
  NestedNameSpecifier *Qualifier = 0;
 | 
						|
  SourceRange QualifierRange;
 | 
						|
  if (SS.isSet()) {
 | 
						|
    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | 
						|
    QualifierRange = SS.getRange();
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool Dependent
 | 
						|
    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
 | 
						|
                                              &TemplateArgs);
 | 
						|
  UnresolvedLookupExpr *ULE
 | 
						|
    = UnresolvedLookupExpr::Create(Context, Dependent,
 | 
						|
                                   Qualifier, QualifierRange,
 | 
						|
                                   R.getLookupName(), R.getNameLoc(),
 | 
						|
                                   RequiresADL, TemplateArgs);
 | 
						|
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | 
						|
    ULE->addDecl(*I);
 | 
						|
 | 
						|
  return Owned(ULE);
 | 
						|
}
 | 
						|
 | 
						|
// We actually only call this from template instantiation.
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
 | 
						|
                                   DeclarationName Name,
 | 
						|
                                   SourceLocation NameLoc,
 | 
						|
                             const TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  DeclContext *DC;
 | 
						|
  if (!(DC = computeDeclContext(SS, false)) ||
 | 
						|
      DC->isDependentContext() ||
 | 
						|
      RequireCompleteDeclContext(SS))
 | 
						|
    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
 | 
						|
 | 
						|
  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  if (R.empty()) {
 | 
						|
    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
 | 
						|
      << Name << SS.getRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
 | 
						|
    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
 | 
						|
      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
 | 
						|
    Diag(Temp->getLocation(), diag::note_referenced_class_template);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a dependent template name.
 | 
						|
///
 | 
						|
/// This action forms a dependent template name given the template
 | 
						|
/// name and its (presumably dependent) scope specifier. For
 | 
						|
/// example, given "MetaFun::template apply", the scope specifier \p
 | 
						|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
 | 
						|
/// of the "template" keyword, and "apply" is the \p Name.
 | 
						|
Sema::TemplateTy
 | 
						|
Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 UnqualifiedId &Name,
 | 
						|
                                 TypeTy *ObjectType,
 | 
						|
                                 bool EnteringContext) {
 | 
						|
  if ((ObjectType &&
 | 
						|
       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
 | 
						|
      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
 | 
						|
    // C++0x [temp.names]p5:
 | 
						|
    //   If a name prefixed by the keyword template is not the name of
 | 
						|
    //   a template, the program is ill-formed. [Note: the keyword
 | 
						|
    //   template may not be applied to non-template members of class
 | 
						|
    //   templates. -end note ] [ Note: as is the case with the
 | 
						|
    //   typename prefix, the template prefix is allowed in cases
 | 
						|
    //   where it is not strictly necessary; i.e., when the
 | 
						|
    //   nested-name-specifier or the expression on the left of the ->
 | 
						|
    //   or . is not dependent on a template-parameter, or the use
 | 
						|
    //   does not appear in the scope of a template. -end note]
 | 
						|
    //
 | 
						|
    // Note: C++03 was more strict here, because it banned the use of
 | 
						|
    // the "template" keyword prior to a template-name that was not a
 | 
						|
    // dependent name. C++ DR468 relaxed this requirement (the
 | 
						|
    // "template" keyword is now permitted). We follow the C++0x
 | 
						|
    // rules, even in C++03 mode, retroactively applying the DR.
 | 
						|
    TemplateTy Template;
 | 
						|
    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
 | 
						|
                                          EnteringContext, Template);
 | 
						|
    if (TNK == TNK_Non_template) {
 | 
						|
      Diag(Name.getSourceRange().getBegin(), 
 | 
						|
           diag::err_template_kw_refers_to_non_template)
 | 
						|
        << GetNameFromUnqualifiedId(Name)
 | 
						|
        << Name.getSourceRange();
 | 
						|
      return TemplateTy();
 | 
						|
    }
 | 
						|
 | 
						|
    return Template;
 | 
						|
  }
 | 
						|
 | 
						|
  NestedNameSpecifier *Qualifier
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedId::IK_Identifier:
 | 
						|
    return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 
 | 
						|
                                                             Name.Identifier));
 | 
						|
    
 | 
						|
  case UnqualifiedId::IK_OperatorFunctionId:
 | 
						|
    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | 
						|
                                             Name.OperatorFunctionId.Operator));
 | 
						|
      
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Diag(Name.getSourceRange().getBegin(), 
 | 
						|
       diag::err_template_kw_refers_to_non_template)
 | 
						|
    << GetNameFromUnqualifiedId(Name)
 | 
						|
    << Name.getSourceRange();
 | 
						|
  return TemplateTy();
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                     const TemplateArgumentLoc &AL,
 | 
						|
                                     TemplateArgumentListBuilder &Converted) {
 | 
						|
  const TemplateArgument &Arg = AL.getArgument();
 | 
						|
 | 
						|
  // Check template type parameter.
 | 
						|
  if (Arg.getKind() != TemplateArgument::Type) {
 | 
						|
    // C++ [temp.arg.type]p1:
 | 
						|
    //   A template-argument for a template-parameter which is a
 | 
						|
    //   type shall be a type-id.
 | 
						|
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is not a type.
 | 
						|
    SourceRange SR = AL.getSourceRange();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Add the converted template type argument.
 | 
						|
  Converted.Append(
 | 
						|
                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template type parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments 
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static DeclaratorInfo *
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTypeParmDecl *Param,
 | 
						|
                             TemplateArgumentListBuilder &Converted) {
 | 
						|
  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
 | 
						|
 | 
						|
  // If the argument type is dependent, instantiate it now based
 | 
						|
  // on the previously-computed template arguments.
 | 
						|
  if (ArgType->getType()->isDependentType()) {
 | 
						|
    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
 | 
						|
                                      /*TakeArgs=*/false);
 | 
						|
    
 | 
						|
    MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
 | 
						|
    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                     Template, Converted.getFlatArguments(),
 | 
						|
                                     Converted.flatSize(),
 | 
						|
                                     SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    
 | 
						|
    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
 | 
						|
                                Param->getDefaultArgumentLoc(),
 | 
						|
                                Param->getDeclName());
 | 
						|
  }
 | 
						|
 | 
						|
  return ArgType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given non-type template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments 
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the non-type template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static Sema::OwningExprResult
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             NonTypeTemplateParmDecl *Param,
 | 
						|
                             TemplateArgumentListBuilder &Converted) {
 | 
						|
  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
 | 
						|
                                    /*TakeArgs=*/false);
 | 
						|
    
 | 
						|
  MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
    
 | 
						|
  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                   Template, Converted.getFlatArguments(),
 | 
						|
                                   Converted.flatSize(),
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
 | 
						|
  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments 
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static TemplateName
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTemplateParmDecl *Param,
 | 
						|
                             TemplateArgumentListBuilder &Converted) {
 | 
						|
  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
 | 
						|
                                    /*TakeArgs=*/false);
 | 
						|
  
 | 
						|
  MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
  
 | 
						|
  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                   Template, Converted.getFlatArguments(),
 | 
						|
                                   Converted.flatSize(),
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
  
 | 
						|
  return SemaRef.SubstTemplateName(
 | 
						|
                      Param->getDefaultArgument().getArgument().getAsTemplate(),
 | 
						|
                              Param->getDefaultArgument().getTemplateNameLoc(), 
 | 
						|
                                   AllTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument corresponds to the given
 | 
						|
/// template parameter.
 | 
						|
bool Sema::CheckTemplateArgument(NamedDecl *Param,
 | 
						|
                                 const TemplateArgumentLoc &Arg,
 | 
						|
                                 TemplateDecl *Template,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 TemplateArgumentListBuilder &Converted) {
 | 
						|
  // Check template type parameters.
 | 
						|
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
 | 
						|
    return CheckTemplateTypeArgument(TTP, Arg, Converted);
 | 
						|
  
 | 
						|
  // Check non-type template parameters.
 | 
						|
  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {    
 | 
						|
    // Do substitution on the type of the non-type template parameter
 | 
						|
    // with the template arguments we've seen thus far.
 | 
						|
    QualType NTTPType = NTTP->getType();
 | 
						|
    if (NTTPType->isDependentType()) {
 | 
						|
      // Do substitution on the type of the non-type template parameter.
 | 
						|
      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                                 NTTP, Converted.getFlatArguments(),
 | 
						|
                                 Converted.flatSize(),
 | 
						|
                                 SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
      
 | 
						|
      TemplateArgumentList TemplateArgs(Context, Converted,
 | 
						|
                                        /*TakeArgs=*/false);
 | 
						|
      NTTPType = SubstType(NTTPType,
 | 
						|
                           MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                           NTTP->getLocation(),
 | 
						|
                           NTTP->getDeclName());
 | 
						|
      // If that worked, check the non-type template parameter type
 | 
						|
      // for validity.
 | 
						|
      if (!NTTPType.isNull())
 | 
						|
        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
 | 
						|
                                                     NTTP->getLocation());
 | 
						|
      if (NTTPType.isNull())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    switch (Arg.getArgument().getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      assert(false && "Should never see a NULL template argument here");
 | 
						|
      return true;
 | 
						|
      
 | 
						|
    case TemplateArgument::Expression: {
 | 
						|
      Expr *E = Arg.getArgument().getAsExpr();
 | 
						|
      TemplateArgument Result;
 | 
						|
      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      Converted.Append(Result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
      // We've already checked this template argument, so just copy
 | 
						|
      // it to the list of converted arguments.
 | 
						|
      Converted.Append(Arg.getArgument());
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case TemplateArgument::Template:
 | 
						|
      // We were given a template template argument. It may not be ill-formed;
 | 
						|
      // see below.
 | 
						|
      if (DependentTemplateName *DTN
 | 
						|
            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
 | 
						|
        // We have a template argument such as \c T::template X, which we
 | 
						|
        // parsed as a template template argument. However, since we now
 | 
						|
        // know that we need a non-type template argument, convert this
 | 
						|
        // template name into an expression.          
 | 
						|
        Expr *E = DependentScopeDeclRefExpr::Create(Context,
 | 
						|
                                                    DTN->getQualifier(),
 | 
						|
                                               Arg.getTemplateQualifierRange(),
 | 
						|
                                                    DTN->getIdentifier(),
 | 
						|
                                                    Arg.getTemplateNameLoc());
 | 
						|
        
 | 
						|
        TemplateArgument Result;
 | 
						|
        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
 | 
						|
          return true;
 | 
						|
        
 | 
						|
        Converted.Append(Result);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We have a template argument that actually does refer to a class
 | 
						|
      // template, template alias, or template template parameter, and
 | 
						|
      // therefore cannot be a non-type template argument.
 | 
						|
      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
 | 
						|
        << Arg.getSourceRange();
 | 
						|
      
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
      
 | 
						|
    case TemplateArgument::Type: {
 | 
						|
      // We have a non-type template parameter but the template
 | 
						|
      // argument is a type.
 | 
						|
      
 | 
						|
      // C++ [temp.arg]p2:
 | 
						|
      //   In a template-argument, an ambiguity between a type-id and
 | 
						|
      //   an expression is resolved to a type-id, regardless of the
 | 
						|
      //   form of the corresponding template-parameter.
 | 
						|
      //
 | 
						|
      // We warn specifically about this case, since it can be rather
 | 
						|
      // confusing for users.
 | 
						|
      QualType T = Arg.getArgument().getAsType();
 | 
						|
      SourceRange SR = Arg.getSourceRange();
 | 
						|
      if (T->isFunctionType())
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
 | 
						|
      else
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
      llvm::llvm_unreachable("Caller must expand template argument packs");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return false;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  
 | 
						|
  // Check template template parameters.
 | 
						|
  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
    
 | 
						|
  // Substitute into the template parameter list of the template
 | 
						|
  // template parameter, since previously-supplied template arguments
 | 
						|
  // may appear within the template template parameter.
 | 
						|
  {
 | 
						|
    // Set up a template instantiation context.
 | 
						|
    LocalInstantiationScope Scope(*this);
 | 
						|
    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                               TempParm, Converted.getFlatArguments(),
 | 
						|
                               Converted.flatSize(),
 | 
						|
                               SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    
 | 
						|
    TemplateArgumentList TemplateArgs(Context, Converted,
 | 
						|
                                      /*TakeArgs=*/false);
 | 
						|
    TempParm = cast_or_null<TemplateTemplateParmDecl>(
 | 
						|
                      SubstDecl(TempParm, CurContext, 
 | 
						|
                                MultiLevelTemplateArgumentList(TemplateArgs)));
 | 
						|
    if (!TempParm)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // FIXME: TempParam is leaked.
 | 
						|
  }
 | 
						|
    
 | 
						|
  switch (Arg.getArgument().getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    assert(false && "Should never see a NULL template argument here");
 | 
						|
    return true;
 | 
						|
    
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    if (CheckTemplateArgument(TempParm, Arg))
 | 
						|
      return true;
 | 
						|
      
 | 
						|
    Converted.Append(Arg.getArgument());
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // We have a template template parameter but the template
 | 
						|
    // argument does not refer to a template.
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
 | 
						|
    return true;
 | 
						|
      
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    llvm::llvm_unreachable(
 | 
						|
                       "Declaration argument with template template parameter");
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    llvm::llvm_unreachable(
 | 
						|
                          "Integral argument with template template parameter");
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    llvm::llvm_unreachable("Caller must expand template argument packs");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument list is well-formed
 | 
						|
/// for specializing the given template.
 | 
						|
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
 | 
						|
                                     SourceLocation TemplateLoc,
 | 
						|
                                const TemplateArgumentListInfo &TemplateArgs,
 | 
						|
                                     bool PartialTemplateArgs,
 | 
						|
                                     TemplateArgumentListBuilder &Converted) {
 | 
						|
  TemplateParameterList *Params = Template->getTemplateParameters();
 | 
						|
  unsigned NumParams = Params->size();
 | 
						|
  unsigned NumArgs = TemplateArgs.size();
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
 | 
						|
 | 
						|
  bool HasParameterPack =
 | 
						|
    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
 | 
						|
 | 
						|
  if ((NumArgs > NumParams && !HasParameterPack) ||
 | 
						|
      (NumArgs < Params->getMinRequiredArguments() &&
 | 
						|
       !PartialTemplateArgs)) {
 | 
						|
    // FIXME: point at either the first arg beyond what we can handle,
 | 
						|
    // or the '>', depending on whether we have too many or too few
 | 
						|
    // arguments.
 | 
						|
    SourceRange Range;
 | 
						|
    if (NumArgs > NumParams)
 | 
						|
      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
 | 
						|
    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
      << (NumArgs > NumParams)
 | 
						|
      << (isa<ClassTemplateDecl>(Template)? 0 :
 | 
						|
          isa<FunctionTemplateDecl>(Template)? 1 :
 | 
						|
          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
 | 
						|
      << Template << Range;
 | 
						|
    Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
      << Params->getSourceRange();
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg]p1:
 | 
						|
  //   [...] The type and form of each template-argument specified in
 | 
						|
  //   a template-id shall match the type and form specified for the
 | 
						|
  //   corresponding parameter declared by the template in its
 | 
						|
  //   template-parameter-list.
 | 
						|
  unsigned ArgIdx = 0;
 | 
						|
  for (TemplateParameterList::iterator Param = Params->begin(),
 | 
						|
                                       ParamEnd = Params->end();
 | 
						|
       Param != ParamEnd; ++Param, ++ArgIdx) {
 | 
						|
    if (ArgIdx > NumArgs && PartialTemplateArgs)
 | 
						|
      break;
 | 
						|
 | 
						|
    // If we have a template parameter pack, check every remaining template
 | 
						|
    // argument against that template parameter pack.
 | 
						|
    if ((*Param)->isTemplateParameterPack()) {
 | 
						|
      Converted.BeginPack();
 | 
						|
      for (; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
 | 
						|
                                  TemplateLoc, RAngleLoc, Converted)) {
 | 
						|
          Invalid = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Converted.EndPack();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ArgIdx < NumArgs) {
 | 
						|
      // Check the template argument we were given.
 | 
						|
      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 
 | 
						|
                                TemplateLoc, RAngleLoc, Converted))
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We have a default template argument that we will use.
 | 
						|
    TemplateArgumentLoc Arg;
 | 
						|
    
 | 
						|
    // Retrieve the default template argument from the template
 | 
						|
    // parameter. For each kind of template parameter, we substitute the
 | 
						|
    // template arguments provided thus far and any "outer" template arguments
 | 
						|
    // (when the template parameter was part of a nested template) into 
 | 
						|
    // the default argument.
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | 
						|
      if (!TTP->hasDefaultArgument()) {
 | 
						|
        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this, 
 | 
						|
                                                             Template,
 | 
						|
                                                             TemplateLoc,
 | 
						|
                                                             RAngleLoc,
 | 
						|
                                                             TTP,
 | 
						|
                                                             Converted);
 | 
						|
      if (!ArgType)
 | 
						|
        return true;
 | 
						|
                                                             
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
 | 
						|
                                ArgType);
 | 
						|
    } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
      if (!NTTP->hasDefaultArgument()) {
 | 
						|
        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                              TemplateLoc, 
 | 
						|
                                                              RAngleLoc, 
 | 
						|
                                                              NTTP, 
 | 
						|
                                                              Converted);
 | 
						|
      if (E.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Expr *Ex = E.takeAs<Expr>();
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
 | 
						|
    } else {
 | 
						|
      TemplateTemplateParmDecl *TempParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*Param);
 | 
						|
 | 
						|
      if (!TempParm->hasDefaultArgument()) {
 | 
						|
        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                       TemplateLoc, 
 | 
						|
                                                       RAngleLoc, 
 | 
						|
                                                       TempParm,
 | 
						|
                                                       Converted);
 | 
						|
      if (Name.isNull())
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Name), 
 | 
						|
                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
 | 
						|
                  TempParm->getDefaultArgument().getTemplateNameLoc());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Introduce an instantiation record that describes where we are using
 | 
						|
    // the default template argument.
 | 
						|
    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
 | 
						|
                                        Converted.getFlatArguments(),
 | 
						|
                                        Converted.flatSize(),
 | 
						|
                                        SourceRange(TemplateLoc, RAngleLoc));    
 | 
						|
    
 | 
						|
    // Check the default template argument.
 | 
						|
    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
 | 
						|
                              RAngleLoc, Converted))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template type parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.type]. It
 | 
						|
/// returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                 DeclaratorInfo *ArgInfo) {
 | 
						|
  assert(ArgInfo && "invalid DeclaratorInfo");
 | 
						|
  QualType Arg = ArgInfo->getType();
 | 
						|
 | 
						|
  // C++ [temp.arg.type]p2:
 | 
						|
  //   A local type, a type with no linkage, an unnamed type or a type
 | 
						|
  //   compounded from any of these types shall not be used as a
 | 
						|
  //   template-argument for a template type-parameter.
 | 
						|
  //
 | 
						|
  // FIXME: Perform the recursive and no-linkage type checks.
 | 
						|
  const TagType *Tag = 0;
 | 
						|
  if (const EnumType *EnumT = Arg->getAs<EnumType>())
 | 
						|
    Tag = EnumT;
 | 
						|
  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
 | 
						|
    Tag = RecordT;
 | 
						|
  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
 | 
						|
    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
 | 
						|
    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
 | 
						|
      << QualType(Tag, 0) << SR;
 | 
						|
  } else if (Tag && !Tag->getDecl()->getDeclName() &&
 | 
						|
           !Tag->getDecl()->getTypedefForAnonDecl()) {
 | 
						|
    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
 | 
						|
    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is the address
 | 
						|
/// of an object or function according to C++ [temp.arg.nontype]p1.
 | 
						|
bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
 | 
						|
                                                          NamedDecl *&Entity) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
    Arg = Cast->getSubExpr();
 | 
						|
 | 
						|
  // C++0x allows nullptr, and there's no further checking to be done for that.
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  //
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- the address of an object or function with external
 | 
						|
  //        linkage, including function templates and function
 | 
						|
  //        template-ids but excluding non-static class members,
 | 
						|
  //        expressed as & id-expression where the & is optional if
 | 
						|
  //        the name refers to a function or array, or if the
 | 
						|
  //        corresponding template-parameter is a reference; or
 | 
						|
  DeclRefExpr *DRE = 0;
 | 
						|
 | 
						|
  // Ignore (and complain about) any excess parentheses.
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
 | 
						|
      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | 
						|
  } else
 | 
						|
    DRE = dyn_cast<DeclRefExpr>(Arg);
 | 
						|
 | 
						|
  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(),
 | 
						|
                diag::err_template_arg_not_object_or_func_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Cannot refer to non-static data members
 | 
						|
  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
 | 
						|
      << Field << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Cannot refer to non-static member functions
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
 | 
						|
    if (!Method->isStatic())
 | 
						|
      return Diag(Arg->getSourceRange().getBegin(),
 | 
						|
                  diag::err_template_arg_method)
 | 
						|
        << Method << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Functions must have external linkage.
 | 
						|
  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | 
						|
    if (Func->getStorageClass() == FunctionDecl::Static) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_function_not_extern)
 | 
						|
        << Func << Arg->getSourceRange();
 | 
						|
      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
        << true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay: we've named a function with external linkage.
 | 
						|
    Entity = Func;
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
 | 
						|
    if (!Var->hasGlobalStorage()) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_object_not_extern)
 | 
						|
        << Var << Arg->getSourceRange();
 | 
						|
      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
        << true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay: we've named an object with external linkage
 | 
						|
    Entity = Var;
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  Diag(Arg->getSourceRange().getBegin(),
 | 
						|
       diag::err_template_arg_not_object_or_func)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
  Diag(DRE->getDecl()->getLocation(),
 | 
						|
       diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is a pointer to
 | 
						|
/// member constant according to C++ [temp.arg.nontype]p1.
 | 
						|
bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 
 | 
						|
                                                TemplateArgument &Converted) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
    Arg = Cast->getSubExpr();
 | 
						|
 | 
						|
  // C++0x allows nullptr, and there's no further checking to be done for that.
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  //
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- a pointer to member expressed as described in 5.3.1.
 | 
						|
  DeclRefExpr *DRE = 0;
 | 
						|
 | 
						|
  // Ignore (and complain about) any excess parentheses.
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  // A pointer-to-member constant written &Class::member.
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
 | 
						|
      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | 
						|
      if (DRE && !DRE->getQualifier())
 | 
						|
        DRE = 0;
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  // A constant of pointer-to-member type.
 | 
						|
  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
 | 
						|
    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
 | 
						|
      if (VD->getType()->isMemberPointerType()) {
 | 
						|
        if (isa<NonTypeTemplateParmDecl>(VD) ||
 | 
						|
            (isa<VarDecl>(VD) && 
 | 
						|
             Context.getCanonicalType(VD->getType()).isConstQualified())) {
 | 
						|
          if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
            Converted = TemplateArgument(Arg->Retain());
 | 
						|
          else
 | 
						|
            Converted = TemplateArgument(VD->getCanonicalDecl());
 | 
						|
          return Invalid;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    DRE = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!DRE)
 | 
						|
    return Diag(Arg->getSourceRange().getBegin(),
 | 
						|
                diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
 | 
						|
    assert((isa<FieldDecl>(DRE->getDecl()) ||
 | 
						|
            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
 | 
						|
           "Only non-static member pointers can make it here");
 | 
						|
 | 
						|
    // Okay: this is the address of a non-static member, and therefore
 | 
						|
    // a member pointer constant.
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
      Converted = TemplateArgument(Arg->Retain());
 | 
						|
    else
 | 
						|
      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  Diag(Arg->getSourceRange().getBegin(),
 | 
						|
       diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
  Diag(DRE->getDecl()->getLocation(),
 | 
						|
       diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// non-type template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.nontype].
 | 
						|
/// It returns true if an error occurred, and false otherwise. \p
 | 
						|
/// InstantiatedParamType is the type of the non-type template
 | 
						|
/// parameter after it has been instantiated.
 | 
						|
///
 | 
						|
/// If no error was detected, Converted receives the converted template argument.
 | 
						|
bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
 | 
						|
                                 QualType InstantiatedParamType, Expr *&Arg,
 | 
						|
                                 TemplateArgument &Converted) {
 | 
						|
  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
 | 
						|
 | 
						|
  // If either the parameter has a dependent type or the argument is
 | 
						|
  // type-dependent, there's nothing we can check now.
 | 
						|
  // FIXME: Add template argument to Converted!
 | 
						|
  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
 | 
						|
    // FIXME: Produce a cloned, canonical expression?
 | 
						|
    Converted = TemplateArgument(Arg);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p5:
 | 
						|
  //   The following conversions are performed on each expression used
 | 
						|
  //   as a non-type template-argument. If a non-type
 | 
						|
  //   template-argument cannot be converted to the type of the
 | 
						|
  //   corresponding template-parameter then the program is
 | 
						|
  //   ill-formed.
 | 
						|
  //
 | 
						|
  //     -- for a non-type template-parameter of integral or
 | 
						|
  //        enumeration type, integral promotions (4.5) and integral
 | 
						|
  //        conversions (4.7) are applied.
 | 
						|
  QualType ParamType = InstantiatedParamType;
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
 | 
						|
    // C++ [temp.arg.nontype]p1:
 | 
						|
    //   A template-argument for a non-type, non-template
 | 
						|
    //   template-parameter shall be one of:
 | 
						|
    //
 | 
						|
    //     -- an integral constant-expression of integral or enumeration
 | 
						|
    //        type; or
 | 
						|
    //     -- the name of a non-type template-parameter; or
 | 
						|
    SourceLocation NonConstantLoc;
 | 
						|
    llvm::APSInt Value;
 | 
						|
    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_not_integral_or_enumeral)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    } else if (!Arg->isValueDependent() &&
 | 
						|
               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
 | 
						|
      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: We need some way to more easily get the unqualified form
 | 
						|
    // of the types without going all the way to the
 | 
						|
    // canonical type.
 | 
						|
    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
 | 
						|
      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
 | 
						|
    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
 | 
						|
      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
 | 
						|
 | 
						|
    // Try to convert the argument to the parameter's type.
 | 
						|
    if (Context.hasSameType(ParamType, ArgType)) {
 | 
						|
      // Okay: no conversion necessary
 | 
						|
    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
 | 
						|
               !ParamType->isEnumeralType()) {
 | 
						|
      // This is an integral promotion or conversion.
 | 
						|
      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
 | 
						|
    } else {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType IntegerType = Context.getCanonicalType(ParamType);
 | 
						|
    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | 
						|
      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
 | 
						|
 | 
						|
    if (!Arg->isValueDependent()) {
 | 
						|
      // Check that an unsigned parameter does not receive a negative
 | 
						|
      // value.
 | 
						|
      if (IntegerType->isUnsignedIntegerType()
 | 
						|
          && (Value.isSigned() && Value.isNegative())) {
 | 
						|
        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
 | 
						|
          << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check that we don't overflow the template parameter type.
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getActiveBits() > AllowedBits) {
 | 
						|
        Diag(Arg->getSourceRange().getBegin(),
 | 
						|
             diag::err_template_arg_too_large)
 | 
						|
          << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerType());
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the value of this argument to the list of converted
 | 
						|
    // arguments. We use the bitwidth and signedness of the template
 | 
						|
    // parameter.
 | 
						|
    if (Arg->isValueDependent()) {
 | 
						|
      // The argument is value-dependent. Create a new
 | 
						|
      // TemplateArgument with the converted expression.
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Converted = TemplateArgument(Value,
 | 
						|
                                 ParamType->isEnumeralType() ? ParamType
 | 
						|
                                                             : IntegerType);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle pointer-to-function, reference-to-function, and
 | 
						|
  // pointer-to-member-function all in (roughly) the same way.
 | 
						|
  if (// -- For a non-type template-parameter of type pointer to
 | 
						|
      //    function, only the function-to-pointer conversion (4.3) is
 | 
						|
      //    applied. If the template-argument represents a set of
 | 
						|
      //    overloaded functions (or a pointer to such), the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      // In C++0x, any std::nullptr_t value can be converted.
 | 
						|
      (ParamType->isPointerType() &&
 | 
						|
       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type reference to
 | 
						|
      //    function, no conversions apply. If the template-argument
 | 
						|
      //    represents a set of overloaded functions, the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isReferenceType() &&
 | 
						|
       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type pointer to
 | 
						|
      //    member function, no conversions apply. If the
 | 
						|
      //    template-argument represents a set of overloaded member
 | 
						|
      //    functions, the matching member function is selected from
 | 
						|
      //    the set (13.4).
 | 
						|
      // Again, C++0x allows a std::nullptr_t value.
 | 
						|
      (ParamType->isMemberPointerType() &&
 | 
						|
       ParamType->getAs<MemberPointerType>()->getPointeeType()
 | 
						|
         ->isFunctionType())) {
 | 
						|
    if (Context.hasSameUnqualifiedType(ArgType,
 | 
						|
                                       ParamType.getNonReferenceType())) {
 | 
						|
      // We don't have to do anything: the types already match.
 | 
						|
    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
 | 
						|
                 ParamType->isMemberPointerType())) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      if (ParamType->isMemberPointerType())
 | 
						|
        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
 | 
						|
      else
 | 
						|
        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
 | 
						|
    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
 | 
						|
      ArgType = Context.getPointerType(ArgType);
 | 
						|
      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
 | 
						|
    } else if (FunctionDecl *Fn
 | 
						|
                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
 | 
						|
      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = FixOverloadedFunctionReference(Arg, Fn);
 | 
						|
      ArgType = Arg->getType();
 | 
						|
      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
 | 
						|
        ArgType = Context.getPointerType(Arg->getType());
 | 
						|
        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ArgType,
 | 
						|
                                        ParamType.getNonReferenceType())) {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ParamType->isMemberPointerType())
 | 
						|
      return CheckTemplateArgumentPointerToMember(Arg, Converted);
 | 
						|
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Entity)
 | 
						|
      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    //   -- for a non-type template-parameter of type pointer to
 | 
						|
    //      object, qualification conversions (4.4) and the
 | 
						|
    //      array-to-pointer conversion (4.2) are applied.
 | 
						|
    // C++0x also allows a value of std::nullptr_t.
 | 
						|
    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
 | 
						|
           "Only object pointers allowed here");
 | 
						|
 | 
						|
    if (ArgType->isNullPtrType()) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
 | 
						|
    } else if (ArgType->isArrayType()) {
 | 
						|
      ArgType = Context.getArrayDecayedType(ArgType);
 | 
						|
      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsQualificationConversion(ArgType, ParamType)) {
 | 
						|
      ArgType = ParamType;
 | 
						|
      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Entity)
 | 
						|
      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
 | 
						|
    //   -- For a non-type template-parameter of type reference to
 | 
						|
    //      object, no conversions apply. The type referred to by the
 | 
						|
    //      reference may be more cv-qualified than the (otherwise
 | 
						|
    //      identical) type of the template-argument. The
 | 
						|
    //      template-parameter is bound directly to the
 | 
						|
    //      template-argument, which must be an lvalue.
 | 
						|
    assert(ParamRefType->getPointeeType()->isObjectType() &&
 | 
						|
           "Only object references allowed here");
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_no_ref_bind)
 | 
						|
        << InstantiatedParamType << Arg->getType()
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ParamQuals
 | 
						|
      = Context.getCanonicalType(ParamType).getCVRQualifiers();
 | 
						|
    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
 | 
						|
 | 
						|
    if ((ParamQuals | ArgQuals) != ParamQuals) {
 | 
						|
      Diag(Arg->getSourceRange().getBegin(),
 | 
						|
           diag::err_template_arg_ref_bind_ignores_quals)
 | 
						|
        << InstantiatedParamType << Arg->getType()
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NamedDecl *Entity = 0;
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
 | 
						|
    Converted = TemplateArgument(Entity);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- For a non-type template-parameter of type pointer to data
 | 
						|
  //        member, qualification conversions (4.4) are applied.
 | 
						|
  // C++0x allows std::nullptr_t values.
 | 
						|
  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
 | 
						|
 | 
						|
  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
 | 
						|
    // Types match exactly: nothing more to do here.
 | 
						|
  } else if (ArgType->isNullPtrType()) {
 | 
						|
    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
 | 
						|
  } else if (IsQualificationConversion(ArgType, ParamType)) {
 | 
						|
    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
 | 
						|
  } else {
 | 
						|
    // We can't perform this conversion.
 | 
						|
    Diag(Arg->getSourceRange().getBegin(),
 | 
						|
         diag::err_template_arg_not_convertible)
 | 
						|
      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return CheckTemplateArgumentPointerToMember(Arg, Converted);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.template].
 | 
						|
/// It returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
 | 
						|
                                 const TemplateArgumentLoc &Arg) {
 | 
						|
  TemplateName Name = Arg.getArgument().getAsTemplate();
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template) {
 | 
						|
    // Any dependent template name is fine.
 | 
						|
    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.template]p1:
 | 
						|
  //   A template-argument for a template template-parameter shall be
 | 
						|
  //   the name of a class template, expressed as id-expression. Only
 | 
						|
  //   primary class templates are considered when matching the
 | 
						|
  //   template template argument with the corresponding parameter;
 | 
						|
  //   partial specializations are not considered even if their
 | 
						|
  //   parameter lists match that of the template template parameter.
 | 
						|
  //
 | 
						|
  // Note that we also allow template template parameters here, which
 | 
						|
  // will happen when we are dealing with, e.g., class template
 | 
						|
  // partial specializations.
 | 
						|
  if (!isa<ClassTemplateDecl>(Template) &&
 | 
						|
      !isa<TemplateTemplateParmDecl>(Template)) {
 | 
						|
    assert(isa<FunctionTemplateDecl>(Template) &&
 | 
						|
           "Only function templates are possible here");
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
 | 
						|
    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
 | 
						|
      << Template;
 | 
						|
  }
 | 
						|
 | 
						|
  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
 | 
						|
                                         Param->getTemplateParameters(),
 | 
						|
                                         true, 
 | 
						|
                                         TPL_TemplateTemplateArgumentMatch,
 | 
						|
                                         Arg.getLocation());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given template parameter lists are
 | 
						|
/// equivalent.
 | 
						|
///
 | 
						|
/// \param New  The new template parameter list, typically written in the
 | 
						|
/// source code as part of a new template declaration.
 | 
						|
///
 | 
						|
/// \param Old  The old template parameter list, typically found via
 | 
						|
/// name lookup of the template declared with this template parameter
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// \param Complain  If true, this routine will produce a diagnostic if
 | 
						|
/// the template parameter lists are not equivalent.
 | 
						|
///
 | 
						|
/// \param Kind describes how we are to match the template parameter lists.
 | 
						|
///
 | 
						|
/// \param TemplateArgLoc If this source location is valid, then we
 | 
						|
/// are actually checking the template parameter list of a template
 | 
						|
/// argument (New) against the template parameter list of its
 | 
						|
/// corresponding template template parameter (Old). We produce
 | 
						|
/// slightly different diagnostics in this scenario.
 | 
						|
///
 | 
						|
/// \returns True if the template parameter lists are equal, false
 | 
						|
/// otherwise.
 | 
						|
bool
 | 
						|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
 | 
						|
                                     TemplateParameterList *Old,
 | 
						|
                                     bool Complain,
 | 
						|
                                     TemplateParameterListEqualKind Kind,
 | 
						|
                                     SourceLocation TemplateArgLoc) {
 | 
						|
  if (Old->size() != New->size()) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_param_list_different_arity;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_param_list_different_arity;
 | 
						|
      }
 | 
						|
      Diag(New->getTemplateLoc(), NextDiag)
 | 
						|
          << (New->size() > Old->size())
 | 
						|
          << (Kind != TPL_TemplateMatch)
 | 
						|
          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
 | 
						|
      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
 | 
						|
        << (Kind != TPL_TemplateMatch)
 | 
						|
        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (TemplateParameterList::iterator OldParm = Old->begin(),
 | 
						|
         OldParmEnd = Old->end(), NewParm = New->begin();
 | 
						|
       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
 | 
						|
    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
 | 
						|
      if (Complain) {
 | 
						|
        unsigned NextDiag = diag::err_template_param_different_kind;
 | 
						|
        if (TemplateArgLoc.isValid()) {
 | 
						|
          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
          NextDiag = diag::note_template_param_different_kind;
 | 
						|
        }
 | 
						|
        Diag((*NewParm)->getLocation(), NextDiag)
 | 
						|
          << (Kind != TPL_TemplateMatch);
 | 
						|
        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
 | 
						|
          << (Kind != TPL_TemplateMatch);
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<TemplateTypeParmDecl>(*OldParm)) {
 | 
						|
      // Okay; all template type parameters are equivalent (since we
 | 
						|
      // know we're at the same index).
 | 
						|
    } else if (NonTypeTemplateParmDecl *OldNTTP
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
 | 
						|
      // The types of non-type template parameters must agree.
 | 
						|
      NonTypeTemplateParmDecl *NewNTTP
 | 
						|
        = cast<NonTypeTemplateParmDecl>(*NewParm);
 | 
						|
      
 | 
						|
      // If we are matching a template template argument to a template
 | 
						|
      // template parameter and one of the non-type template parameter types
 | 
						|
      // is dependent, then we must wait until template instantiation time
 | 
						|
      // to actually compare the arguments.
 | 
						|
      if (Kind == TPL_TemplateTemplateArgumentMatch &&
 | 
						|
          (OldNTTP->getType()->isDependentType() ||
 | 
						|
           NewNTTP->getType()->isDependentType()))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      if (Context.getCanonicalType(OldNTTP->getType()) !=
 | 
						|
            Context.getCanonicalType(NewNTTP->getType())) {
 | 
						|
        if (Complain) {
 | 
						|
          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
 | 
						|
          if (TemplateArgLoc.isValid()) {
 | 
						|
            Diag(TemplateArgLoc,
 | 
						|
                 diag::err_template_arg_template_params_mismatch);
 | 
						|
            NextDiag = diag::note_template_nontype_parm_different_type;
 | 
						|
          }
 | 
						|
          Diag(NewNTTP->getLocation(), NextDiag)
 | 
						|
            << NewNTTP->getType()
 | 
						|
            << (Kind != TPL_TemplateMatch);
 | 
						|
          Diag(OldNTTP->getLocation(),
 | 
						|
               diag::note_template_nontype_parm_prev_declaration)
 | 
						|
            << OldNTTP->getType();
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // The template parameter lists of template template
 | 
						|
      // parameters must agree.
 | 
						|
      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
 | 
						|
             "Only template template parameters handled here");
 | 
						|
      TemplateTemplateParmDecl *OldTTP
 | 
						|
        = cast<TemplateTemplateParmDecl>(*OldParm);
 | 
						|
      TemplateTemplateParmDecl *NewTTP
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParm);
 | 
						|
      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
 | 
						|
                                          OldTTP->getTemplateParameters(),
 | 
						|
                                          Complain,
 | 
						|
              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
 | 
						|
                                          TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a template can be declared within this scope.
 | 
						|
///
 | 
						|
/// If the template declaration is valid in this scope, returns
 | 
						|
/// false. Otherwise, issues a diagnostic and returns true.
 | 
						|
bool
 | 
						|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
 | 
						|
  // Find the nearest enclosing declaration scope.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // C++ [temp]p2:
 | 
						|
  //   A template-declaration can appear only as a namespace scope or
 | 
						|
  //   class scope declaration.
 | 
						|
  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
 | 
						|
  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
 | 
						|
      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
 | 
						|
    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
 | 
						|
             << TemplateParams->getSourceRange();
 | 
						|
 | 
						|
  while (Ctx && isa<LinkageSpecDecl>(Ctx))
 | 
						|
    Ctx = Ctx->getParent();
 | 
						|
 | 
						|
  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TemplateParams->getTemplateLoc(),
 | 
						|
              diag::err_template_outside_namespace_or_class_scope)
 | 
						|
    << TemplateParams->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine what kind of template specialization the given declaration
 | 
						|
/// is.
 | 
						|
static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
 | 
						|
  if (!D)
 | 
						|
    return TSK_Undeclared;
 | 
						|
  
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
 | 
						|
    return Record->getTemplateSpecializationKind();
 | 
						|
  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | 
						|
    return Function->getTemplateSpecializationKind();
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(D))
 | 
						|
    return Var->getTemplateSpecializationKind();
 | 
						|
  
 | 
						|
  return TSK_Undeclared;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a specialization is well-formed in the current 
 | 
						|
/// context.
 | 
						|
///
 | 
						|
/// This routine determines whether a template specialization can be declared
 | 
						|
/// in the current context (C++ [temp.expl.spec]p2).
 | 
						|
///
 | 
						|
/// \param S the semantic analysis object for which this check is being
 | 
						|
/// performed.
 | 
						|
///
 | 
						|
/// \param Specialized the entity being specialized or instantiated, which
 | 
						|
/// may be a kind of template (class template, function template, etc.) or
 | 
						|
/// a member of a class template (member function, static data member, 
 | 
						|
/// member class).
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of this entity, if any.
 | 
						|
///
 | 
						|
/// \param Loc the location of the explicit specialization or instantiation of
 | 
						|
/// this entity.
 | 
						|
///
 | 
						|
/// \param IsPartialSpecialization whether this is a partial specialization of
 | 
						|
/// a class template.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that we cannot recover from, false
 | 
						|
/// otherwise.
 | 
						|
static bool CheckTemplateSpecializationScope(Sema &S,
 | 
						|
                                             NamedDecl *Specialized,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             SourceLocation Loc,
 | 
						|
                                             bool IsPartialSpecialization) {
 | 
						|
  // Keep these "kind" numbers in sync with the %select statements in the
 | 
						|
  // various diagnostics emitted by this routine.
 | 
						|
  int EntityKind = 0;
 | 
						|
  bool isTemplateSpecialization = false;
 | 
						|
  if (isa<ClassTemplateDecl>(Specialized)) {
 | 
						|
    EntityKind = IsPartialSpecialization? 1 : 0;
 | 
						|
    isTemplateSpecialization = true;
 | 
						|
  } else if (isa<FunctionTemplateDecl>(Specialized)) {
 | 
						|
    EntityKind = 2;
 | 
						|
    isTemplateSpecialization = true;
 | 
						|
  } else if (isa<CXXMethodDecl>(Specialized))
 | 
						|
    EntityKind = 3;
 | 
						|
  else if (isa<VarDecl>(Specialized))
 | 
						|
    EntityKind = 4;
 | 
						|
  else if (isa<RecordDecl>(Specialized))
 | 
						|
    EntityKind = 5;
 | 
						|
  else {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_unknown_kind);
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p2:
 | 
						|
  //   An explicit specialization shall be declared in the namespace
 | 
						|
  //   of which the template is a member, or, for member templates, in
 | 
						|
  //   the namespace of which the enclosing class or enclosing class
 | 
						|
  //   template is a member. An explicit specialization of a member
 | 
						|
  //   function, member class or static data member of a class
 | 
						|
  //   template shall be declared in the namespace of which the class
 | 
						|
  //   template is a member. Such a declaration may also be a
 | 
						|
  //   definition. If the declaration is not a definition, the
 | 
						|
  //   specialization may be defined later in the name- space in which
 | 
						|
  //   the explicit specialization was declared, or in a namespace
 | 
						|
  //   that encloses the one in which the explicit specialization was
 | 
						|
  //   declared.
 | 
						|
  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
 | 
						|
      << Specialized;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
 | 
						|
      << Specialized;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [temp.class.spec]p6:
 | 
						|
  //   A class template partial specialization may be declared or redeclared
 | 
						|
  //   in any namespace scope in which its definition may be defined (14.5.1 
 | 
						|
  //   and 14.5.2).  
 | 
						|
  bool ComplainedAboutScope = false;
 | 
						|
  DeclContext *SpecializedContext 
 | 
						|
    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
 | 
						|
  if ((!PrevDecl || 
 | 
						|
       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
 | 
						|
       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
 | 
						|
    // There is no prior declaration of this entity, so this
 | 
						|
    // specialization must be in the same context as the template
 | 
						|
    // itself.
 | 
						|
    if (!DC->Equals(SpecializedContext)) {
 | 
						|
      if (isa<TranslationUnitDecl>(SpecializedContext))
 | 
						|
        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
 | 
						|
        << EntityKind << Specialized;
 | 
						|
      else if (isa<NamespaceDecl>(SpecializedContext))
 | 
						|
        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
 | 
						|
        << EntityKind << Specialized
 | 
						|
        << cast<NamedDecl>(SpecializedContext);
 | 
						|
      
 | 
						|
      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
      ComplainedAboutScope = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Make sure that this redeclaration (or definition) occurs in an enclosing 
 | 
						|
  // namespace.
 | 
						|
  // Note that HandleDeclarator() performs this check for explicit 
 | 
						|
  // specializations of function templates, static data members, and member
 | 
						|
  // functions, so we skip the check here for those kinds of entities.
 | 
						|
  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
 | 
						|
  // Should we refactor that check, so that it occurs later?
 | 
						|
  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
 | 
						|
      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
 | 
						|
        isa<FunctionDecl>(Specialized))) {
 | 
						|
    if (isa<TranslationUnitDecl>(SpecializedContext))
 | 
						|
      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
 | 
						|
        << EntityKind << Specialized;
 | 
						|
    else if (isa<NamespaceDecl>(SpecializedContext))
 | 
						|
      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
 | 
						|
        << EntityKind << Specialized
 | 
						|
        << cast<NamedDecl>(SpecializedContext);
 | 
						|
  
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: check for specialization-after-instantiation errors and such.
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
                                             
 | 
						|
/// \brief Check the non-type template arguments of a class template
 | 
						|
/// partial specialization according to C++ [temp.class.spec]p9.
 | 
						|
///
 | 
						|
/// \param TemplateParams the template parameters of the primary class
 | 
						|
/// template.
 | 
						|
///
 | 
						|
/// \param TemplateArg the template arguments of the class template
 | 
						|
/// partial specialization.
 | 
						|
///
 | 
						|
/// \param MirrorsPrimaryTemplate will be set true if the class
 | 
						|
/// template partial specialization arguments are identical to the
 | 
						|
/// implicit template arguments of the primary template. This is not
 | 
						|
/// necessarily an error (C++0x), and it is left to the caller to diagnose
 | 
						|
/// this condition when it is an error.
 | 
						|
///
 | 
						|
/// \returns true if there was an error, false otherwise.
 | 
						|
bool Sema::CheckClassTemplatePartialSpecializationArgs(
 | 
						|
                                        TemplateParameterList *TemplateParams,
 | 
						|
                             const TemplateArgumentListBuilder &TemplateArgs,
 | 
						|
                                        bool &MirrorsPrimaryTemplate) {
 | 
						|
  // FIXME: the interface to this function will have to change to
 | 
						|
  // accommodate variadic templates.
 | 
						|
  MirrorsPrimaryTemplate = true;
 | 
						|
 | 
						|
  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
    // Determine whether the template argument list of the partial
 | 
						|
    // specialization is identical to the implicit argument list of
 | 
						|
    // the primary template. The caller may need to diagnostic this as
 | 
						|
    // an error per C++ [temp.class.spec]p9b3.
 | 
						|
    if (MirrorsPrimaryTemplate) {
 | 
						|
      if (TemplateTypeParmDecl *TTP
 | 
						|
            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
 | 
						|
        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
 | 
						|
              Context.getCanonicalType(ArgList[I].getAsType()))
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
      } else if (TemplateTemplateParmDecl *TTP
 | 
						|
                   = dyn_cast<TemplateTemplateParmDecl>(
 | 
						|
                                                 TemplateParams->getParam(I))) {
 | 
						|
        TemplateName Name = ArgList[I].getAsTemplate();
 | 
						|
        TemplateTemplateParmDecl *ArgDecl
 | 
						|
          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
 | 
						|
        if (!ArgDecl ||
 | 
						|
            ArgDecl->getIndex() != TTP->getIndex() ||
 | 
						|
            ArgDecl->getDepth() != TTP->getDepth())
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NonTypeTemplateParmDecl *Param
 | 
						|
      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
 | 
						|
    if (!Param) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *ArgExpr = ArgList[I].getAsExpr();
 | 
						|
    if (!ArgExpr) {
 | 
						|
      MirrorsPrimaryTemplate = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p8:
 | 
						|
    //   A non-type argument is non-specialized if it is the name of a
 | 
						|
    //   non-type parameter. All other non-type arguments are
 | 
						|
    //   specialized.
 | 
						|
    //
 | 
						|
    // Below, we check the two conditions that only apply to
 | 
						|
    // specialized non-type arguments, so skip any non-specialized
 | 
						|
    // arguments.
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
 | 
						|
      if (NonTypeTemplateParmDecl *NTTP
 | 
						|
            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
 | 
						|
        if (MirrorsPrimaryTemplate &&
 | 
						|
            (Param->getIndex() != NTTP->getIndex() ||
 | 
						|
             Param->getDepth() != NTTP->getDepth()))
 | 
						|
          MirrorsPrimaryTemplate = false;
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p9:
 | 
						|
    //   Within the argument list of a class template partial
 | 
						|
    //   specialization, the following restrictions apply:
 | 
						|
    //     -- A partially specialized non-type argument expression
 | 
						|
    //        shall not involve a template parameter of the partial
 | 
						|
    //        specialization except when the argument expression is a
 | 
						|
    //        simple identifier.
 | 
						|
    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
 | 
						|
      Diag(ArgExpr->getLocStart(),
 | 
						|
           diag::err_dependent_non_type_arg_in_partial_spec)
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- The type of a template parameter corresponding to a
 | 
						|
    //        specialized non-type argument shall not be dependent on a
 | 
						|
    //        parameter of the specialization.
 | 
						|
    if (Param->getType()->isDependentType()) {
 | 
						|
      Diag(ArgExpr->getLocStart(),
 | 
						|
           diag::err_dependent_typed_non_type_arg_in_partial_spec)
 | 
						|
        << Param->getType()
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    MirrorsPrimaryTemplate = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
 | 
						|
                                       TagUseKind TUK,
 | 
						|
                                       SourceLocation KWLoc,
 | 
						|
                                       const CXXScopeSpec &SS,
 | 
						|
                                       TemplateTy TemplateD,
 | 
						|
                                       SourceLocation TemplateNameLoc,
 | 
						|
                                       SourceLocation LAngleLoc,
 | 
						|
                                       ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                       SourceLocation RAngleLoc,
 | 
						|
                                       AttributeList *Attr,
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists) {
 | 
						|
  assert(TUK != TUK_Reference && "References are not specializations");
 | 
						|
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  if (!ClassTemplate) {
 | 
						|
    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
 | 
						|
      << (Name.getAsTemplateDecl() && 
 | 
						|
          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExplicitSpecialization = false;
 | 
						|
  bool isPartialSpecialization = false;
 | 
						|
 | 
						|
  // Check the validity of the template headers that introduce this
 | 
						|
  // template.
 | 
						|
  // FIXME: We probably shouldn't complain about these headers for
 | 
						|
  // friend declarations.
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
 | 
						|
                        (TemplateParameterList**)TemplateParameterLists.get(),
 | 
						|
                                              TemplateParameterLists.size(),
 | 
						|
                                              isExplicitSpecialization);
 | 
						|
  if (TemplateParams && TemplateParams->size() > 0) {
 | 
						|
    isPartialSpecialization = true;
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p10:
 | 
						|
    //   The template parameter list of a specialization shall not
 | 
						|
    //   contain default template argument values.
 | 
						|
    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
      Decl *Param = TemplateParams->getParam(I);
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec);
 | 
						|
          TTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
        if (Expr *DefArg = NTTP->getDefaultArgument()) {
 | 
						|
          Diag(NTTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << DefArg->getSourceRange();
 | 
						|
          NTTP->setDefaultArgument(0);
 | 
						|
          DefArg->Destroy(Context);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgument().getLocation(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << TTP->getDefaultArgument().getSourceRange();
 | 
						|
          TTP->setDefaultArgument(TemplateArgumentLoc());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (TemplateParams) {
 | 
						|
    if (TUK == TUK_Friend)
 | 
						|
      Diag(KWLoc, diag::err_template_spec_friend)
 | 
						|
        << CodeModificationHint::CreateRemoval(
 | 
						|
                                SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                                            TemplateParams->getRAngleLoc()))
 | 
						|
        << SourceRange(LAngleLoc, RAngleLoc);
 | 
						|
    else
 | 
						|
      isExplicitSpecialization = true;
 | 
						|
  } else if (TUK != TUK_Friend) {
 | 
						|
    Diag(KWLoc, diag::err_template_spec_needs_header)
 | 
						|
      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
 | 
						|
    isExplicitSpecialization = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagDecl::TagKind Kind;
 | 
						|
  switch (TagSpec) {
 | 
						|
  default: assert(0 && "Unknown tag type!");
 | 
						|
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
 | 
						|
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
 | 
						|
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
 | 
						|
  }
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, KWLoc,
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << CodeModificationHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
  TemplateArgs.setLAngleLoc(LAngleLoc);
 | 
						|
  TemplateArgs.setRAngleLoc(RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
 | 
						|
                                        TemplateArgs.size());
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert((Converted.structuredSize() ==
 | 
						|
            ClassTemplate->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
 | 
						|
  // Find the class template (partial) specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  if (isPartialSpecialization) {
 | 
						|
    bool MirrorsPrimaryTemplate;
 | 
						|
    if (CheckClassTemplatePartialSpecializationArgs(
 | 
						|
                                         ClassTemplate->getTemplateParameters(),
 | 
						|
                                         Converted, MirrorsPrimaryTemplate))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (MirrorsPrimaryTemplate) {
 | 
						|
      // C++ [temp.class.spec]p9b3:
 | 
						|
      //
 | 
						|
      //   -- The argument list of the specialization shall not be identical
 | 
						|
      //      to the implicit argument list of the primary template.
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | 
						|
        << (TUK == TUK_Definition)
 | 
						|
        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
 | 
						|
                                                           RAngleLoc));
 | 
						|
      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
 | 
						|
                                ClassTemplate->getIdentifier(),
 | 
						|
                                TemplateNameLoc,
 | 
						|
                                Attr,
 | 
						|
                                TemplateParams,
 | 
						|
                                AS_none);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Diagnose friend partial specializations
 | 
						|
 | 
						|
    // FIXME: Template parameter list matters, too
 | 
						|
    ClassTemplatePartialSpecializationDecl::Profile(ID,
 | 
						|
                                                   Converted.getFlatArguments(),
 | 
						|
                                                   Converted.flatSize(),
 | 
						|
                                                    Context);
 | 
						|
  } else
 | 
						|
    ClassTemplateSpecializationDecl::Profile(ID,
 | 
						|
                                             Converted.getFlatArguments(),
 | 
						|
                                             Converted.flatSize(),
 | 
						|
                                             Context);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl = 0;
 | 
						|
 | 
						|
  if (isPartialSpecialization)
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
 | 
						|
                                                                    InsertPos);
 | 
						|
  else
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  // Check whether we can declare a class template specialization in
 | 
						|
  // the current scope.
 | 
						|
  if (TUK != TUK_Friend &&
 | 
						|
      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 
 | 
						|
                                       TemplateNameLoc, 
 | 
						|
                                       isPartialSpecialization))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // The canonical type
 | 
						|
  QualType CanonType;
 | 
						|
  if (PrevDecl && 
 | 
						|
      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
 | 
						|
       TUK == TUK_Friend)) {
 | 
						|
    // Since the only prior class template specialization with these
 | 
						|
    // arguments was referenced but not declared, or we're only
 | 
						|
    // referencing this specialization as a friend, reuse that
 | 
						|
    // declaration node as our own, updating its source location to
 | 
						|
    // reflect our new declaration.
 | 
						|
    Specialization = PrevDecl;
 | 
						|
    Specialization->setLocation(TemplateNameLoc);
 | 
						|
    PrevDecl = 0;
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  } else if (isPartialSpecialization) {
 | 
						|
    // Build the canonical type that describes the converted template
 | 
						|
    // arguments of the class template partial specialization.
 | 
						|
    CanonType = Context.getTemplateSpecializationType(
 | 
						|
                                                  TemplateName(ClassTemplate),
 | 
						|
                                                  Converted.getFlatArguments(),
 | 
						|
                                                  Converted.flatSize());
 | 
						|
 | 
						|
    // Create a new class template partial specialization declaration node.
 | 
						|
    ClassTemplatePartialSpecializationDecl *PrevPartial
 | 
						|
      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
 | 
						|
    ClassTemplatePartialSpecializationDecl *Partial
 | 
						|
      = ClassTemplatePartialSpecializationDecl::Create(Context,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                       TemplateNameLoc,
 | 
						|
                                                       TemplateParams,
 | 
						|
                                                       ClassTemplate,
 | 
						|
                                                       Converted,
 | 
						|
                                                       TemplateArgs,
 | 
						|
                                                       PrevPartial);
 | 
						|
 | 
						|
    if (PrevPartial) {
 | 
						|
      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
 | 
						|
      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
 | 
						|
    } else {
 | 
						|
      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
 | 
						|
    }
 | 
						|
    Specialization = Partial;
 | 
						|
 | 
						|
    // If we are providing an explicit specialization of a member class 
 | 
						|
    // template specialization, make a note of that.
 | 
						|
    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | 
						|
      PrevPartial->setMemberSpecialization();
 | 
						|
    
 | 
						|
    // Check that all of the template parameters of the class template
 | 
						|
    // partial specialization are deducible from the template
 | 
						|
    // arguments. If not, this class template partial specialization
 | 
						|
    // will never be used.
 | 
						|
    llvm::SmallVector<bool, 8> DeducibleParams;
 | 
						|
    DeducibleParams.resize(TemplateParams->size());
 | 
						|
    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 
 | 
						|
                               TemplateParams->getDepth(),
 | 
						|
                               DeducibleParams);
 | 
						|
    unsigned NumNonDeducible = 0;
 | 
						|
    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
 | 
						|
      if (!DeducibleParams[I])
 | 
						|
        ++NumNonDeducible;
 | 
						|
 | 
						|
    if (NumNonDeducible) {
 | 
						|
      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
 | 
						|
        << (NumNonDeducible > 1)
 | 
						|
        << SourceRange(TemplateNameLoc, RAngleLoc);
 | 
						|
      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
 | 
						|
        if (!DeducibleParams[I]) {
 | 
						|
          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
 | 
						|
          if (Param->getDeclName())
 | 
						|
            Diag(Param->getLocation(),
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << Param->getDeclName();
 | 
						|
          else
 | 
						|
            Diag(Param->getLocation(),
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << std::string("<anonymous>");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization or friend declaration.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted,
 | 
						|
                                                PrevDecl);
 | 
						|
 | 
						|
    if (PrevDecl) {
 | 
						|
      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
 | 
						|
      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
 | 
						|
    } else {
 | 
						|
      ClassTemplate->getSpecializations().InsertNode(Specialization,
 | 
						|
                                                     InsertPos);
 | 
						|
    }
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared 
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a 
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | 
						|
    SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | 
						|
      << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
 | 
						|
    Diag(PrevDecl->getPointOfInstantiation(), 
 | 
						|
         diag::note_instantiation_required_here)
 | 
						|
      << (PrevDecl->getTemplateSpecializationKind() 
 | 
						|
                                                != TSK_ImplicitInstantiation);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is not a friend, note that this is an explicit specialization.
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
 | 
						|
  // Check that this isn't a redefinition of this specialization.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_redefinition)
 | 
						|
        << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      Specialization->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization as the user wrote in the specialization
 | 
						|
  // itself. This means that we'll pretty-print the type retrieved
 | 
						|
  // from the specialization's declaration the way that the user
 | 
						|
  // actually wrote the specialization, rather than formatting the
 | 
						|
  // name based on the "canonical" representation used to store the
 | 
						|
  // template arguments in the specialization.
 | 
						|
  QualType WrittenTy
 | 
						|
    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p9:
 | 
						|
  //   A template explicit specialization is in the scope of the
 | 
						|
  //   namespace in which the template was defined.
 | 
						|
  //
 | 
						|
  // We actually implement this paragraph where we set the semantic
 | 
						|
  // context (in the creation of the ClassTemplateSpecializationDecl),
 | 
						|
  // but we also maintain the lexical context where the actual
 | 
						|
  // definition occurs.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // We may be starting the definition of this specialization.
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    Specialization->startDefinition();
 | 
						|
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | 
						|
                                            TemplateNameLoc,
 | 
						|
                                            WrittenTy.getTypePtr(),
 | 
						|
                                            /*FIXME:*/KWLoc);
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  } else {
 | 
						|
    // Add the specialization into its lexical context, so that it can
 | 
						|
    // be seen when iterating through the list of declarations in that
 | 
						|
    // context. However, specializations are not found by name lookup.
 | 
						|
    CurContext->addDecl(Specialization);
 | 
						|
  }
 | 
						|
  return DeclPtrTy::make(Specialization);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclPtrTy
 | 
						|
Sema::ActOnTemplateDeclarator(Scope *S,
 | 
						|
                              MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                              Declarator &D) {
 | 
						|
  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclPtrTy
 | 
						|
Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                                      Declarator &D) {
 | 
						|
  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | 
						|
  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
 | 
						|
         "Not a function declarator!");
 | 
						|
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
 | 
						|
 | 
						|
  if (FTI.hasPrototype) {
 | 
						|
    // FIXME: Diagnose arguments without names in C.
 | 
						|
  }
 | 
						|
 | 
						|
  Scope *ParentScope = FnBodyScope->getParent();
 | 
						|
 | 
						|
  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
 | 
						|
                                  move(TemplateParameterLists),
 | 
						|
                                  /*IsFunctionDefinition=*/true);
 | 
						|
  if (FunctionTemplateDecl *FunctionTemplate
 | 
						|
        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope,
 | 
						|
                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
 | 
						|
  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
 | 
						|
  return DeclPtrTy();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose cases where we have an explicit template specialization 
 | 
						|
/// before/after an explicit template instantiation, producing diagnostics
 | 
						|
/// for those cases where they are required and determining whether the 
 | 
						|
/// new specialization/instantiation will have any effect.
 | 
						|
///
 | 
						|
/// \param NewLoc the location of the new explicit specialization or 
 | 
						|
/// instantiation.
 | 
						|
///
 | 
						|
/// \param NewTSK the kind of the new explicit specialization or instantiation.
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of the entity.
 | 
						|
///
 | 
						|
/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
 | 
						|
///
 | 
						|
/// \param PrevPointOfInstantiation if valid, indicates where the previus 
 | 
						|
/// declaration was instantiated (either implicitly or explicitly).
 | 
						|
///
 | 
						|
/// \param SuppressNew will be set to true to indicate that the new 
 | 
						|
/// specialization or instantiation has no effect and should be ignored.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that should prevent the introduction of
 | 
						|
/// the new declaration into the AST, false otherwise.
 | 
						|
bool
 | 
						|
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
 | 
						|
                                             TemplateSpecializationKind NewTSK,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             TemplateSpecializationKind PrevTSK,
 | 
						|
                                        SourceLocation PrevPointOfInstantiation,
 | 
						|
                                             bool &SuppressNew) {
 | 
						|
  SuppressNew = false;
 | 
						|
  
 | 
						|
  switch (NewTSK) {
 | 
						|
  case TSK_Undeclared:
 | 
						|
  case TSK_ImplicitInstantiation:
 | 
						|
    assert(false && "Don't check implicit instantiations here");
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  case TSK_ExplicitSpecialization:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // Okay, we're just specializing something that is either already 
 | 
						|
      // explicitly specialized or has merely been mentioned without any
 | 
						|
      // instantiation.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      if (PrevPointOfInstantiation.isInvalid()) {
 | 
						|
        // The declaration itself has not actually been instantiated, so it is
 | 
						|
        // still okay to specialize it.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // Fall through
 | 
						|
        
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      assert((PrevTSK == TSK_ImplicitInstantiation || 
 | 
						|
              PrevPointOfInstantiation.isValid()) && 
 | 
						|
             "Explicit instantiation without point of instantiation?");
 | 
						|
        
 | 
						|
      // C++ [temp.expl.spec]p6:
 | 
						|
      //   If a template, a member template or the member of a class template 
 | 
						|
      //   is explicitly specialized then that specialization shall be declared
 | 
						|
      //   before the first use of that specialization that would cause an 
 | 
						|
      //   implicit instantiation to take place, in every translation unit in
 | 
						|
      //   which such a use occurs; no diagnostic is required.
 | 
						|
      Diag(NewLoc, diag::err_specialization_after_instantiation)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
 | 
						|
        << (PrevTSK != TSK_ImplicitInstantiation);
 | 
						|
      
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // This explicit instantiation declaration is redundant (that's okay).
 | 
						|
      SuppressNew = true;
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit instantiation
 | 
						|
      //   of a template appears after a declaration of an explicit 
 | 
						|
      //   specialization for that template, the explicit instantiation has no
 | 
						|
      //   effect.
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.explicit]p10:
 | 
						|
      //   If an entity is the subject of both an explicit instantiation 
 | 
						|
      //   declaration and an explicit instantiation definition in the same 
 | 
						|
      //   translation unit, the definition shall follow the declaration.
 | 
						|
      Diag(NewLoc, 
 | 
						|
           diag::err_explicit_instantiation_declaration_after_definition);
 | 
						|
      Diag(PrevPointOfInstantiation, 
 | 
						|
           diag::note_explicit_instantiation_definition_here);
 | 
						|
      assert(PrevPointOfInstantiation.isValid() &&
 | 
						|
             "Explicit instantiation without point of instantiation?");
 | 
						|
      SuppressNew = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case TSK_ExplicitInstantiationDefinition:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++ DR 259, C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit
 | 
						|
      //   instantiation of a template appears after a declaration of
 | 
						|
      //   an explicit specialization for that template, the explicit
 | 
						|
      //   instantiation has no effect.
 | 
						|
      //
 | 
						|
      // In C++98/03 mode, we only give an extension warning here, because it 
 | 
						|
      // is not not harmful to try to explicitly instantiate something that
 | 
						|
      // has been explicitly specialized.
 | 
						|
      if (!getLangOptions().CPlusPlus0x) {
 | 
						|
        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
 | 
						|
          << PrevDecl;
 | 
						|
        Diag(PrevDecl->getLocation(),
 | 
						|
             diag::note_previous_template_specialization);
 | 
						|
      }
 | 
						|
      SuppressNew = true;
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // We're explicity instantiating a definition for something for which we
 | 
						|
      // were previously asked to suppress instantiations. That's fine. 
 | 
						|
      return false;
 | 
						|
        
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.spec]p5:
 | 
						|
      //   For a given template and a given set of template-arguments,
 | 
						|
      //     - an explicit instantiation definition shall appear at most once
 | 
						|
      //       in a program,
 | 
						|
      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevPointOfInstantiation, 
 | 
						|
           diag::note_previous_explicit_instantiation);
 | 
						|
      SuppressNew = true;
 | 
						|
      return false;        
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(false && "Missing specialization/instantiation case?");
 | 
						|
         
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given function template 
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an 
 | 
						|
/// explicit function template specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param FD the function declaration, which will be updated to become a
 | 
						|
/// function template specialization.
 | 
						|
///
 | 
						|
/// \param HasExplicitTemplateArgs whether any template arguments were
 | 
						|
/// explicitly provided.
 | 
						|
///
 | 
						|
/// \param LAngleLoc the location of the left angle bracket ('<'), if
 | 
						|
/// template arguments were explicitly provided.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 
 | 
						|
/// if any.
 | 
						|
///
 | 
						|
/// \param NumExplicitTemplateArgs the number of explicitly-provided template
 | 
						|
/// arguments. This number may be zero even when HasExplicitTemplateArgs is
 | 
						|
/// true as in, e.g., \c void sort<>(char*, char*);
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>'), if
 | 
						|
/// template arguments were explicitly provided.
 | 
						|
/// 
 | 
						|
/// \param PrevDecl the set of declarations that 
 | 
						|
bool 
 | 
						|
Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
 | 
						|
                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                          LookupResult &Previous) {
 | 
						|
  // The set of function template specializations that could match this
 | 
						|
  // explicit function template specialization.
 | 
						|
  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
 | 
						|
  CandidateSet Candidates;
 | 
						|
  
 | 
						|
  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
 | 
						|
  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
 | 
						|
    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
 | 
						|
      // Only consider templates found within the same semantic lookup scope as 
 | 
						|
      // FD.
 | 
						|
      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // C++ [temp.expl.spec]p11:
 | 
						|
      //   A trailing template-argument can be left unspecified in the 
 | 
						|
      //   template-id naming an explicit function template specialization 
 | 
						|
      //   provided it can be deduced from the function argument type.
 | 
						|
      // Perform template argument deduction to determine whether we may be
 | 
						|
      // specializing this template.
 | 
						|
      // FIXME: It is somewhat wasteful to build
 | 
						|
      TemplateDeductionInfo Info(Context);
 | 
						|
      FunctionDecl *Specialization = 0;
 | 
						|
      if (TemplateDeductionResult TDK
 | 
						|
            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
 | 
						|
                                      FD->getType(),
 | 
						|
                                      Specialization,
 | 
						|
                                      Info)) {
 | 
						|
        // FIXME: Template argument deduction failed; record why it failed, so
 | 
						|
        // that we can provide nifty diagnostics.
 | 
						|
        (void)TDK;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Record this candidate.
 | 
						|
      Candidates.push_back(Specialization);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Find the most specialized function template.
 | 
						|
  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
 | 
						|
                                                    Candidates.size(),
 | 
						|
                                                    TPOC_Other,
 | 
						|
                                                    FD->getLocation(),
 | 
						|
                  PartialDiagnostic(diag::err_function_template_spec_no_match) 
 | 
						|
                    << FD->getDeclName(),
 | 
						|
                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
 | 
						|
                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
 | 
						|
                  PartialDiagnostic(diag::note_function_template_spec_matched));
 | 
						|
  if (!Specialization)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // FIXME: Check if the prior specialization has a point of instantiation.
 | 
						|
  // If so, we have run afoul of .
 | 
						|
  
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (CheckTemplateSpecializationScope(*this, 
 | 
						|
                                       Specialization->getPrimaryTemplate(),
 | 
						|
                                       Specialization, FD->getLocation(), 
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared 
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a 
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  FunctionTemplateSpecializationInfo *SpecInfo
 | 
						|
    = Specialization->getTemplateSpecializationInfo();
 | 
						|
  assert(SpecInfo && "Function template specialization info missing?");
 | 
						|
  if (SpecInfo->getPointOfInstantiation().isValid()) {
 | 
						|
    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
 | 
						|
      << FD;
 | 
						|
    Diag(SpecInfo->getPointOfInstantiation(), 
 | 
						|
         diag::note_instantiation_required_here)
 | 
						|
      << (Specialization->getTemplateSpecializationKind() 
 | 
						|
                                                != TSK_ImplicitInstantiation);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Mark the prior declaration as an explicit specialization, so that later
 | 
						|
  // clients know that this is an explicit specialization.
 | 
						|
  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
  
 | 
						|
  // Turn the given function declaration into a function template
 | 
						|
  // specialization, with the template arguments from the previous
 | 
						|
  // specialization.
 | 
						|
  FD->setFunctionTemplateSpecialization(Context, 
 | 
						|
                                        Specialization->getPrimaryTemplate(),
 | 
						|
                         new (Context) TemplateArgumentList(
 | 
						|
                             *Specialization->getTemplateSpecializationArgs()), 
 | 
						|
                                        /*InsertPos=*/0, 
 | 
						|
                                        TSK_ExplicitSpecialization);
 | 
						|
  
 | 
						|
  // The "previous declaration" for this function template specialization is
 | 
						|
  // the prior function template specialization.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(Specialization);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given non-template member
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an 
 | 
						|
/// explicit member function specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a member function
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Member the member declaration, which will be updated to become a
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Previous the set of declarations, one of which may be specialized
 | 
						|
/// by this function specialization;  the set will be modified to contain the
 | 
						|
/// redeclared member.
 | 
						|
bool 
 | 
						|
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
 | 
						|
  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
 | 
						|
         
 | 
						|
  // Try to find the member we are instantiating.
 | 
						|
  NamedDecl *Instantiation = 0;
 | 
						|
  NamedDecl *InstantiatedFrom = 0;
 | 
						|
  MemberSpecializationInfo *MSInfo = 0;
 | 
						|
 | 
						|
  if (Previous.empty()) {
 | 
						|
    // Nowhere to look anyway.
 | 
						|
  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
 | 
						|
    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
           I != E; ++I) {
 | 
						|
      NamedDecl *D = (*I)->getUnderlyingDecl();
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
        if (Context.hasSameType(Function->getType(), Method->getType())) {
 | 
						|
          Instantiation = Method;
 | 
						|
          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
 | 
						|
          MSInfo = Method->getMemberSpecializationInfo();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<VarDecl>(Member)) {
 | 
						|
    VarDecl *PrevVar;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
 | 
						|
      if (PrevVar->isStaticDataMember()) {
 | 
						|
        Instantiation = PrevVar;
 | 
						|
        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
 | 
						|
        MSInfo = PrevVar->getMemberSpecializationInfo();
 | 
						|
      }
 | 
						|
  } else if (isa<RecordDecl>(Member)) {
 | 
						|
    CXXRecordDecl *PrevRecord;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
 | 
						|
      Instantiation = PrevRecord;
 | 
						|
      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
 | 
						|
      MSInfo = PrevRecord->getMemberSpecializationInfo();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!Instantiation) {
 | 
						|
    // There is no previous declaration that matches. Since member
 | 
						|
    // specializations are always out-of-line, the caller will complain about
 | 
						|
    // this mismatch later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Make sure that this is a specialization of a member.
 | 
						|
  if (!InstantiatedFrom) {
 | 
						|
    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
 | 
						|
      << Member;
 | 
						|
    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that spe- cialization shall be declared 
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a 
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  assert(MSInfo && "Member specialization info missing?");
 | 
						|
  if (MSInfo->getPointOfInstantiation().isValid()) {
 | 
						|
    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
 | 
						|
      << Member;
 | 
						|
    Diag(MSInfo->getPointOfInstantiation(), 
 | 
						|
         diag::note_instantiation_required_here)
 | 
						|
      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (CheckTemplateSpecializationScope(*this, 
 | 
						|
                                       InstantiatedFrom,
 | 
						|
                                       Instantiation, Member->getLocation(), 
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Note that this is an explicit instantiation of a member.
 | 
						|
  // the original declaration to note that it is an explicit specialization
 | 
						|
  // (if it was previously an implicit instantiation). This latter step
 | 
						|
  // makes bookkeeping easier.
 | 
						|
  if (isa<FunctionDecl>(Member)) {
 | 
						|
    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
 | 
						|
    if (InstantiationFunction->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationFunction->setTemplateSpecializationKind(
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
      InstantiationFunction->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
    
 | 
						|
    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
 | 
						|
                                        cast<CXXMethodDecl>(InstantiatedFrom),
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
  } else if (isa<VarDecl>(Member)) {
 | 
						|
    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
 | 
						|
    if (InstantiationVar->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationVar->setTemplateSpecializationKind(
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
      InstantiationVar->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
    
 | 
						|
    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
 | 
						|
                                                cast<VarDecl>(InstantiatedFrom),
 | 
						|
                                                TSK_ExplicitSpecialization);
 | 
						|
  } else {
 | 
						|
    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
 | 
						|
    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
 | 
						|
    if (InstantiationClass->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationClass->setTemplateSpecializationKind(
 | 
						|
                                                   TSK_ExplicitSpecialization);
 | 
						|
      InstantiationClass->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
    
 | 
						|
    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
 | 
						|
                                        cast<CXXRecordDecl>(InstantiatedFrom),
 | 
						|
                                                   TSK_ExplicitSpecialization);
 | 
						|
  }
 | 
						|
             
 | 
						|
  // Save the caller the trouble of having to figure out which declaration
 | 
						|
  // this specialization matches.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(Instantiation);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the scope of an explicit instantiation.
 | 
						|
static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
 | 
						|
                                            SourceLocation InstLoc,
 | 
						|
                                            bool WasQualifiedName) {
 | 
						|
  DeclContext *ExpectedContext
 | 
						|
    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
 | 
						|
  DeclContext *CurContext = S.CurContext->getLookupContext();
 | 
						|
  
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   An explicit instantiation shall appear in an enclosing namespace of its 
 | 
						|
  //   template.
 | 
						|
  //
 | 
						|
  // This is DR275, which we do not retroactively apply to C++98/03.
 | 
						|
  if (S.getLangOptions().CPlusPlus0x && 
 | 
						|
      !CurContext->Encloses(ExpectedContext)) {
 | 
						|
    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
 | 
						|
      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
 | 
						|
        << D << NS;
 | 
						|
    else
 | 
						|
      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
 | 
						|
        << D;
 | 
						|
    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the name declared in the explicit instantiation is an unqualified 
 | 
						|
  //   name, the explicit instantiation shall appear in the namespace where 
 | 
						|
  //   its template is declared or, if that namespace is inline (7.3.1), any
 | 
						|
  //   namespace from its enclosing namespace set.
 | 
						|
  if (WasQualifiedName)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  if (CurContext->Equals(ExpectedContext))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
 | 
						|
    << D << ExpectedContext;
 | 
						|
  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given scope specifier has a template-id in it.
 | 
						|
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
 | 
						|
  if (!SS.isSet())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class 
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | 
						|
       NNS; NNS = NNS->getPrefix())
 | 
						|
    if (Type *T = NNS->getAsType())
 | 
						|
      if (isa<TemplateSpecializationType>(T))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a class template specialization
 | 
						|
// FIXME: Implement extern template semantics
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 TemplateTy TemplateD,
 | 
						|
                                 SourceLocation TemplateNameLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate
 | 
						|
    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagDecl::TagKind Kind;
 | 
						|
  switch (TagSpec) {
 | 
						|
  default: assert(0 && "Unknown tag type!");
 | 
						|
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
 | 
						|
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
 | 
						|
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
 | 
						|
  }
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, KWLoc,
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << CodeModificationHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit 
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]  
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
 | 
						|
                                        TemplateArgs.size());
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert((Converted.structuredSize() ==
 | 
						|
            ClassTemplate->getTemplateParameters()->size()) &&
 | 
						|
         "Converted template argument list is too short!");
 | 
						|
 | 
						|
  // Find the class template specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ClassTemplateSpecializationDecl::Profile(ID,
 | 
						|
                                           Converted.getFlatArguments(),
 | 
						|
                                           Converted.flatSize(),
 | 
						|
                                           Context);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl
 | 
						|
    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
 | 
						|
                                  SS.isSet());
 | 
						|
  
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  bool ReusedDecl = false;
 | 
						|
  if (PrevDecl) {
 | 
						|
    bool SuppressNew = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
 | 
						|
                                               PrevDecl, 
 | 
						|
                                              PrevDecl->getSpecializationKind(), 
 | 
						|
                                            PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               SuppressNew))
 | 
						|
      return DeclPtrTy::make(PrevDecl);
 | 
						|
 | 
						|
    if (SuppressNew)
 | 
						|
      return DeclPtrTy::make(PrevDecl);
 | 
						|
    
 | 
						|
    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
 | 
						|
        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
 | 
						|
      // Since the only prior class template specialization with these
 | 
						|
      // arguments was referenced but not declared, reuse that
 | 
						|
      // declaration node as our own, updating its source location to
 | 
						|
      // reflect our new declaration.
 | 
						|
      Specialization = PrevDecl;
 | 
						|
      Specialization->setLocation(TemplateNameLoc);
 | 
						|
      PrevDecl = 0;
 | 
						|
      ReusedDecl = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!Specialization) {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted, PrevDecl);
 | 
						|
 | 
						|
    if (PrevDecl) {
 | 
						|
      // Remove the previous declaration from the folding set, since we want
 | 
						|
      // to introduce a new declaration.
 | 
						|
      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
 | 
						|
      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    } 
 | 
						|
    
 | 
						|
    // Insert the new specialization.
 | 
						|
    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this explicit instantiation as
 | 
						|
  // the user wrote in the explicit instantiation itself. This means
 | 
						|
  // that we'll pretty-print the type retrieved from the
 | 
						|
  // specialization's declaration the way that the user actually wrote
 | 
						|
  // the explicit instantiation, rather than formatting the name based
 | 
						|
  // on the "canonical" representation used to store the template
 | 
						|
  // arguments in the specialization.
 | 
						|
  QualType WrittenTy
 | 
						|
    = Context.getTemplateSpecializationType(Name, TemplateArgs,
 | 
						|
                                  Context.getTypeDeclType(Specialization));
 | 
						|
  Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
  TemplateArgsIn.release();
 | 
						|
 | 
						|
  if (!ReusedDecl) {
 | 
						|
    // Add the explicit instantiation into its lexical context. However,
 | 
						|
    // since explicit instantiations are never found by name lookup, we
 | 
						|
    // just put it into the declaration context directly.
 | 
						|
    Specialization->setLexicalDeclContext(CurContext);
 | 
						|
    CurContext->addDecl(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.explicit]p3:
 | 
						|
  //   A definition of a class template or class member template
 | 
						|
  //   shall be in scope at the point of the explicit instantiation of
 | 
						|
  //   the class template or class member template.
 | 
						|
  //
 | 
						|
  // This check comes when we actually try to perform the
 | 
						|
  // instantiation.
 | 
						|
  ClassTemplateSpecializationDecl *Def
 | 
						|
    = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                        Specialization->getDefinition(Context));
 | 
						|
  if (!Def)
 | 
						|
    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
 | 
						|
  
 | 
						|
  // Instantiate the members of this class template specialization.
 | 
						|
  Def = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                       Specialization->getDefinition(Context));
 | 
						|
  if (Def)
 | 
						|
    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
 | 
						|
 | 
						|
  return DeclPtrTy::make(Specialization);
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a member class of a class template.
 | 
						|
Sema::DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 IdentifierInfo *Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
 | 
						|
  bool Owned = false;
 | 
						|
  bool IsDependent = false;
 | 
						|
  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
 | 
						|
                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
 | 
						|
                            MultiTemplateParamsArg(*this, 0, 0),
 | 
						|
                            Owned, IsDependent);
 | 
						|
  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
 | 
						|
 | 
						|
  if (!TagD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
 | 
						|
  if (Tag->isEnum()) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
 | 
						|
      << Context.getTypeDeclType(Tag);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Tag->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
    
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
 | 
						|
  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
 | 
						|
  if (!Pattern) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
 | 
						|
      << Context.getTypeDeclType(Record);
 | 
						|
    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a class or member class, the 
 | 
						|
  //   elaborated-type-specifier in the declaration shall include a 
 | 
						|
  //   simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  if (!ScopeSpecifierHasTemplateId(SS))
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
 | 
						|
      << Record << SS.getRange();
 | 
						|
           
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit 
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
  
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
 | 
						|
  
 | 
						|
  // Verify that it is okay to explicitly instantiate here.
 | 
						|
  CXXRecordDecl *PrevDecl 
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
 | 
						|
  if (!PrevDecl && Record->getDefinition(Context))
 | 
						|
    PrevDecl = Record;
 | 
						|
  if (PrevDecl) {
 | 
						|
    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
 | 
						|
    bool SuppressNew = false;
 | 
						|
    assert(MSInfo && "No member specialization information?");
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 
 | 
						|
                                               PrevDecl,
 | 
						|
                                        MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                             MSInfo->getPointOfInstantiation(), 
 | 
						|
                                               SuppressNew))
 | 
						|
      return true;
 | 
						|
    if (SuppressNew)
 | 
						|
      return TagD;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CXXRecordDecl *RecordDef
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
 | 
						|
  if (!RecordDef) {
 | 
						|
    // C++ [temp.explicit]p3:
 | 
						|
    //   A definition of a member class of a class template shall be in scope 
 | 
						|
    //   at the point of an explicit instantiation of the member class.
 | 
						|
    CXXRecordDecl *Def 
 | 
						|
      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
 | 
						|
    if (!Def) {
 | 
						|
      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
 | 
						|
        << 0 << Record->getDeclName() << Record->getDeclContext();
 | 
						|
      Diag(Pattern->getLocation(), diag::note_forward_declaration)
 | 
						|
        << Pattern;
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      if (InstantiateClass(NameLoc, Record, Def,
 | 
						|
                           getTemplateInstantiationArgs(Record),
 | 
						|
                           TSK))
 | 
						|
        return true;
 | 
						|
 | 
						|
      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
 | 
						|
      if (!RecordDef)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  } 
 | 
						|
  
 | 
						|
  // Instantiate all of the members of the class.
 | 
						|
  InstantiateClassMembers(NameLoc, RecordDef,
 | 
						|
                          getTemplateInstantiationArgs(Record), TSK);
 | 
						|
 | 
						|
  // FIXME: We don't have any representation for explicit instantiations of
 | 
						|
  // member classes. Such a representation is not needed for compilation, but it
 | 
						|
  // should be available for clients that want to see all of the declarations in
 | 
						|
  // the source code.
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                                  SourceLocation ExternLoc,
 | 
						|
                                                  SourceLocation TemplateLoc,
 | 
						|
                                                  Declarator &D) {
 | 
						|
  // Explicit instantiations always require a name.
 | 
						|
  DeclarationName Name = GetNameForDeclarator(D);
 | 
						|
  if (!Name) {
 | 
						|
    if (!D.isInvalidType())
 | 
						|
      Diag(D.getDeclSpec().getSourceRange().getBegin(),
 | 
						|
           diag::err_explicit_instantiation_requires_name)
 | 
						|
        << D.getDeclSpec().getSourceRange()
 | 
						|
        << D.getSourceRange();
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // Determine the type of the declaration.
 | 
						|
  QualType R = GetTypeForDeclarator(D, S, 0);
 | 
						|
  if (R.isNull())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | 
						|
    // Cannot explicitly instantiate a typedef.
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
 | 
						|
      << Name;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p1:
 | 
						|
  //   [...] An explicit instantiation of a function template shall not use the
 | 
						|
  //   inline or constexpr specifiers.
 | 
						|
  // Presumably, this also applies to member functions of class templates as
 | 
						|
  // well.
 | 
						|
  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(), 
 | 
						|
         diag::err_explicit_instantiation_inline)
 | 
						|
      << CodeModificationHint::CreateRemoval(
 | 
						|
                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
 | 
						|
  
 | 
						|
  // FIXME: check for constexpr specifier.
 | 
						|
  
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit 
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]  
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
    
 | 
						|
  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
 | 
						|
  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
 | 
						|
 | 
						|
  if (!R->isFunctionType()) {
 | 
						|
    // C++ [temp.explicit]p1:
 | 
						|
    //   A [...] static data member of a class template can be explicitly 
 | 
						|
    //   instantiated from the member definition associated with its class 
 | 
						|
    //   template.
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
 | 
						|
        Previous.getAsSingleDecl(Context));
 | 
						|
    if (!Prev || !Prev->isStaticDataMember()) {
 | 
						|
      // We expect to see a data data member here.
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
 | 
						|
        << Name;
 | 
						|
      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
           P != PEnd; ++P)
 | 
						|
        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!Prev->getInstantiatedFromStaticDataMember()) {
 | 
						|
      // FIXME: Check for explicit specialization?
 | 
						|
      Diag(D.getIdentifierLoc(), 
 | 
						|
           diag::err_explicit_instantiation_data_member_not_instantiated)
 | 
						|
        << Prev;
 | 
						|
      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
      // FIXME: Can we provide a note showing where this was declared?
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // C++0x [temp.explicit]p2:
 | 
						|
    //   If the explicit instantiation is for a member function, a member class 
 | 
						|
    //   or a static data member of a class template specialization, the name of
 | 
						|
    //   the class template specialization in the qualified-id for the member
 | 
						|
    //   name shall be a simple-template-id.
 | 
						|
    //
 | 
						|
    // C++98 has the same restriction, just worded differently.
 | 
						|
    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | 
						|
      Diag(D.getIdentifierLoc(), 
 | 
						|
           diag::err_explicit_instantiation_without_qualified_id)
 | 
						|
        << Prev << D.getCXXScopeSpec().getRange();
 | 
						|
    
 | 
						|
    // Check the scope of this explicit instantiation.
 | 
						|
    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
 | 
						|
    
 | 
						|
    // Verify that it is okay to explicitly instantiate here.
 | 
						|
    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
 | 
						|
    assert(MSInfo && "Missing static data member specialization info?");
 | 
						|
    bool SuppressNew = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
 | 
						|
                                        MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                              MSInfo->getPointOfInstantiation(), 
 | 
						|
                                               SuppressNew))
 | 
						|
      return true;
 | 
						|
    if (SuppressNew)
 | 
						|
      return DeclPtrTy();
 | 
						|
    
 | 
						|
    // Instantiate static data member.
 | 
						|
    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
    if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
 | 
						|
                                            /*DefinitionRequired=*/true);
 | 
						|
    
 | 
						|
    // FIXME: Create an ExplicitInstantiation node?
 | 
						|
    return DeclPtrTy();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the declarator is a template-id, translate the parser's template 
 | 
						|
  // argument list into our AST format.
 | 
						|
  bool HasExplicitTemplateArgs = false;
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | 
						|
    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | 
						|
    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | 
						|
    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | 
						|
    ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | 
						|
                                       TemplateId->getTemplateArgs(),
 | 
						|
                                       TemplateId->NumArgs);
 | 
						|
    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
 | 
						|
    HasExplicitTemplateArgs = true;
 | 
						|
    TemplateArgsPtr.release();
 | 
						|
  }
 | 
						|
    
 | 
						|
  // C++ [temp.explicit]p1:
 | 
						|
  //   A [...] function [...] can be explicitly instantiated from its template. 
 | 
						|
  //   A member function [...] of a class template can be explicitly 
 | 
						|
  //  instantiated from the member definition associated with its class 
 | 
						|
  //  template.
 | 
						|
  llvm::SmallVector<FunctionDecl *, 8> Matches;
 | 
						|
  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    NamedDecl *Prev = *P;
 | 
						|
    if (!HasExplicitTemplateArgs) {
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
 | 
						|
        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
 | 
						|
          Matches.clear();
 | 
						|
          Matches.push_back(Method);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
 | 
						|
    if (!FunTmpl)
 | 
						|
      continue;
 | 
						|
 | 
						|
    TemplateDeductionInfo Info(Context);
 | 
						|
    FunctionDecl *Specialization = 0;
 | 
						|
    if (TemplateDeductionResult TDK
 | 
						|
          = DeduceTemplateArguments(FunTmpl,
 | 
						|
                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
 | 
						|
                                    R, Specialization, Info)) {
 | 
						|
      // FIXME: Keep track of almost-matches?
 | 
						|
      (void)TDK;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Matches.push_back(Specialization);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Find the most specialized function template specialization.
 | 
						|
  FunctionDecl *Specialization
 | 
						|
    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 
 | 
						|
                         D.getIdentifierLoc(), 
 | 
						|
          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
 | 
						|
          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
 | 
						|
                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
 | 
						|
 | 
						|
  if (!Specialization)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
 | 
						|
    Diag(D.getIdentifierLoc(), 
 | 
						|
         diag::err_explicit_instantiation_member_function_not_instantiated)
 | 
						|
      << Specialization
 | 
						|
      << (Specialization->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ExplicitSpecialization);
 | 
						|
    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
    return true;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
 | 
						|
  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
 | 
						|
    PrevDecl = Specialization;
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    bool SuppressNew = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
 | 
						|
                                               PrevDecl, 
 | 
						|
                                     PrevDecl->getTemplateSpecializationKind(), 
 | 
						|
                                          PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               SuppressNew))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // FIXME: We may still want to build some representation of this
 | 
						|
    // explicit specialization.
 | 
						|
    if (SuppressNew)
 | 
						|
      return DeclPtrTy();
 | 
						|
  }
 | 
						|
 | 
						|
  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
  
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 
 | 
						|
                                  false, /*DefinitionRequired=*/true);
 | 
						|
 
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class 
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
 | 
						|
  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
 | 
						|
      D.getCXXScopeSpec().isSet() && 
 | 
						|
      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | 
						|
    Diag(D.getIdentifierLoc(), 
 | 
						|
         diag::err_explicit_instantiation_without_qualified_id)
 | 
						|
    << Specialization << D.getCXXScopeSpec().getRange();
 | 
						|
  
 | 
						|
  CheckExplicitInstantiationScope(*this,
 | 
						|
                   FunTmpl? (NamedDecl *)FunTmpl 
 | 
						|
                          : Specialization->getInstantiatedFromMemberFunction(),
 | 
						|
                                  D.getIdentifierLoc(), 
 | 
						|
                                  D.getCXXScopeSpec().isSet());
 | 
						|
  
 | 
						|
  // FIXME: Create some kind of ExplicitInstantiationDecl here.
 | 
						|
  return DeclPtrTy();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult
 | 
						|
Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                        const CXXScopeSpec &SS, IdentifierInfo *Name,
 | 
						|
                        SourceLocation TagLoc, SourceLocation NameLoc) {
 | 
						|
  // This has to hold, because SS is expected to be defined.
 | 
						|
  assert(Name && "Expected a name in a dependent tag");
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  if (!NNS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
 | 
						|
  QualType ElabType = Context.getElaboratedType(T, TagKind);
 | 
						|
 | 
						|
  return ElabType.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult
 | 
						|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
 | 
						|
                        const IdentifierInfo &II, SourceLocation IdLoc) {
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  if (!NNS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
  return T.getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
Sema::TypeResult
 | 
						|
Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
 | 
						|
                        SourceLocation TemplateLoc, TypeTy *Ty) {
 | 
						|
  QualType T = GetTypeFromParser(Ty);
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  const TemplateSpecializationType *TemplateId
 | 
						|
    = T->getAs<TemplateSpecializationType>();
 | 
						|
  assert(TemplateId && "Expected a template specialization type");
 | 
						|
 | 
						|
  if (computeDeclContext(SS, false)) {
 | 
						|
    // If we can compute a declaration context, then the "typename"
 | 
						|
    // keyword was superfluous. Just build a QualifiedNameType to keep
 | 
						|
    // track of the nested-name-specifier.
 | 
						|
 | 
						|
    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
 | 
						|
    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
 | 
						|
  }
 | 
						|
 | 
						|
  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build the type that describes a C++ typename specifier,
 | 
						|
/// e.g., "typename T::type".
 | 
						|
QualType
 | 
						|
Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
 | 
						|
                        SourceRange Range) {
 | 
						|
  CXXRecordDecl *CurrentInstantiation = 0;
 | 
						|
  if (NNS->isDependent()) {
 | 
						|
    CurrentInstantiation = getCurrentInstantiationOf(NNS);
 | 
						|
 | 
						|
    // If the nested-name-specifier does not refer to the current
 | 
						|
    // instantiation, then build a typename type.
 | 
						|
    if (!CurrentInstantiation)
 | 
						|
      return Context.getTypenameType(NNS, &II);
 | 
						|
 | 
						|
    // The nested-name-specifier refers to the current instantiation, so the
 | 
						|
    // "typename" keyword itself is superfluous. In C++03, the program is
 | 
						|
    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
 | 
						|
    // extraneous "typename" keywords, and we retroactively apply this DR to
 | 
						|
    // C++03 code.
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *Ctx = 0;
 | 
						|
 | 
						|
  if (CurrentInstantiation)
 | 
						|
    Ctx = CurrentInstantiation;
 | 
						|
  else {
 | 
						|
    CXXScopeSpec SS;
 | 
						|
    SS.setScopeRep(NNS);
 | 
						|
    SS.setRange(Range);
 | 
						|
    if (RequireCompleteDeclContext(SS))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    Ctx = computeDeclContext(SS);
 | 
						|
  }
 | 
						|
  assert(Ctx && "No declaration context?");
 | 
						|
 | 
						|
  DeclarationName Name(&II);
 | 
						|
  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(Result, Ctx);
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  Decl *Referenced = 0;
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
    DiagID = diag::err_typename_nested_not_found;
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
 | 
						|
      // We found a type. Build a QualifiedNameType, since the
 | 
						|
      // typename-specifier was just sugar. FIXME: Tell
 | 
						|
      // QualifiedNameType that it has a "typename" prefix.
 | 
						|
      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = Result.getFoundDecl();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::FoundUnresolvedValue:
 | 
						|
    llvm::llvm_unreachable("unresolved using decl in non-dependent context");
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = *Result.begin();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, it's because name lookup did not find a
 | 
						|
  // type. Emit an appropriate diagnostic and return an error.
 | 
						|
  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
 | 
						|
  if (Referenced)
 | 
						|
    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
 | 
						|
      << Name;
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // See Sema::RebuildTypeInCurrentInstantiation
 | 
						|
  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
 | 
						|
    : public TreeTransform<CurrentInstantiationRebuilder> {
 | 
						|
    SourceLocation Loc;
 | 
						|
    DeclarationName Entity;
 | 
						|
 | 
						|
  public:
 | 
						|
    CurrentInstantiationRebuilder(Sema &SemaRef,
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  DeclarationName Entity)
 | 
						|
    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
 | 
						|
      Loc(Loc), Entity(Entity) { }
 | 
						|
 | 
						|
    /// \brief Determine whether the given type \p T has already been
 | 
						|
    /// transformed.
 | 
						|
    ///
 | 
						|
    /// For the purposes of type reconstruction, a type has already been
 | 
						|
    /// transformed if it is NULL or if it is not dependent.
 | 
						|
    bool AlreadyTransformed(QualType T) {
 | 
						|
      return T.isNull() || !T->isDependentType();
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Returns the location of the entity whose type is being
 | 
						|
    /// rebuilt.
 | 
						|
    SourceLocation getBaseLocation() { return Loc; }
 | 
						|
 | 
						|
    /// \brief Returns the name of the entity whose type is being rebuilt.
 | 
						|
    DeclarationName getBaseEntity() { return Entity; }
 | 
						|
 | 
						|
    /// \brief Sets the "base" location and entity when that
 | 
						|
    /// information is known based on another transformation.
 | 
						|
    void setBase(SourceLocation Loc, DeclarationName Entity) {
 | 
						|
      this->Loc = Loc;
 | 
						|
      this->Entity = Entity;
 | 
						|
    }
 | 
						|
      
 | 
						|
    /// \brief Transforms an expression by returning the expression itself
 | 
						|
    /// (an identity function).
 | 
						|
    ///
 | 
						|
    /// FIXME: This is completely unsafe; we will need to actually clone the
 | 
						|
    /// expressions.
 | 
						|
    Sema::OwningExprResult TransformExpr(Expr *E) {
 | 
						|
      return getSema().Owned(E);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Transforms a typename type by determining whether the type now
 | 
						|
    /// refers to a member of the current instantiation, and then
 | 
						|
    /// type-checking and building a QualifiedNameType (when possible).
 | 
						|
    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
 | 
						|
                                                     TypenameTypeLoc TL) {
 | 
						|
  TypenameType *T = TL.getTypePtr();
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = TransformNestedNameSpecifier(T->getQualifier(),
 | 
						|
                              /*FIXME:*/SourceRange(getBaseLocation()));
 | 
						|
  if (!NNS)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // If the nested-name-specifier did not change, and we cannot compute the
 | 
						|
  // context corresponding to the nested-name-specifier, then this
 | 
						|
  // typename type will not change; exit early.
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.setRange(SourceRange(getBaseLocation()));
 | 
						|
  SS.setScopeRep(NNS);
 | 
						|
 | 
						|
  QualType Result;
 | 
						|
  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
 | 
						|
    Result = QualType(T, 0);
 | 
						|
 | 
						|
  // Rebuild the typename type, which will probably turn into a
 | 
						|
  // QualifiedNameType.
 | 
						|
  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
 | 
						|
    QualType NewTemplateId
 | 
						|
      = TransformType(QualType(TemplateId, 0));
 | 
						|
    if (NewTemplateId.isNull())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    if (NNS == T->getQualifier() &&
 | 
						|
        NewTemplateId == QualType(TemplateId, 0))
 | 
						|
      Result = QualType(T, 0);
 | 
						|
    else
 | 
						|
      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
 | 
						|
  } else
 | 
						|
    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
 | 
						|
                                              SourceRange(TL.getNameLoc()));
 | 
						|
 | 
						|
  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
 | 
						|
  NewTL.setNameLoc(TL.getNameLoc());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Rebuilds a type within the context of the current instantiation.
 | 
						|
///
 | 
						|
/// The type \p T is part of the type of an out-of-line member definition of
 | 
						|
/// a class template (or class template partial specialization) that was parsed
 | 
						|
/// and constructed before we entered the scope of the class template (or
 | 
						|
/// partial specialization thereof). This routine will rebuild that type now
 | 
						|
/// that we have entered the declarator's scope, which may produce different
 | 
						|
/// canonical types, e.g.,
 | 
						|
///
 | 
						|
/// \code
 | 
						|
/// template<typename T>
 | 
						|
/// struct X {
 | 
						|
///   typedef T* pointer;
 | 
						|
///   pointer data();
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// template<typename T>
 | 
						|
/// typename X<T>::pointer X<T>::data() { ... }
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
 | 
						|
/// since we do not know that we can look into X<T> when we parsed the type.
 | 
						|
/// This function will rebuild the type, performing the lookup of "pointer"
 | 
						|
/// in X<T> and returning a QualifiedNameType whose canonical type is the same
 | 
						|
/// as the canonical type of T*, allowing the return types of the out-of-line
 | 
						|
/// definition and the declaration to match.
 | 
						|
QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
 | 
						|
                                                 DeclarationName Name) {
 | 
						|
  if (T.isNull() || !T->isDependentType())
 | 
						|
    return T;
 | 
						|
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
 | 
						|
  return Rebuilder.TransformType(T);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Produces a formatted string that describes the binding of
 | 
						|
/// template parameters to template arguments.
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgumentList &Args) {
 | 
						|
  // FIXME: For variadic templates, we'll need to get the structured list.
 | 
						|
  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
 | 
						|
                                         Args.flat_size());
 | 
						|
}
 | 
						|
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgument *Args,
 | 
						|
                                      unsigned NumArgs) {
 | 
						|
  std::string Result;
 | 
						|
 | 
						|
  if (!Params || Params->size() == 0 || NumArgs == 0)
 | 
						|
    return Result;
 | 
						|
  
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    if (I >= NumArgs)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    if (I == 0)
 | 
						|
      Result += "[with ";
 | 
						|
    else
 | 
						|
      Result += ", ";
 | 
						|
    
 | 
						|
    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
 | 
						|
      Result += Id->getName();
 | 
						|
    } else {
 | 
						|
      Result += '$';
 | 
						|
      Result += llvm::utostr(I);
 | 
						|
    }
 | 
						|
    
 | 
						|
    Result += " = ";
 | 
						|
    
 | 
						|
    switch (Args[I].getKind()) {
 | 
						|
      case TemplateArgument::Null:
 | 
						|
        Result += "<no value>";
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case TemplateArgument::Type: {
 | 
						|
        std::string TypeStr;
 | 
						|
        Args[I].getAsType().getAsStringInternal(TypeStr, 
 | 
						|
                                                Context.PrintingPolicy);
 | 
						|
        Result += TypeStr;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case TemplateArgument::Declaration: {
 | 
						|
        bool Unnamed = true;
 | 
						|
        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
 | 
						|
          if (ND->getDeclName()) {
 | 
						|
            Unnamed = false;
 | 
						|
            Result += ND->getNameAsString();
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (Unnamed) {
 | 
						|
          Result += "<anonymous>";
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case TemplateArgument::Template: {
 | 
						|
        std::string Str;
 | 
						|
        llvm::raw_string_ostream OS(Str);
 | 
						|
        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
 | 
						|
        Result += OS.str();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case TemplateArgument::Integral: {
 | 
						|
        Result += Args[I].getAsIntegral()->toString(10);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case TemplateArgument::Expression: {
 | 
						|
        assert(false && "No expressions in deduced template arguments!");
 | 
						|
        Result += "<expression>";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case TemplateArgument::Pack:
 | 
						|
        // FIXME: Format template argument packs
 | 
						|
        Result += "<template argument pack>";
 | 
						|
        break;        
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Result += ']';
 | 
						|
  return Result;
 | 
						|
}
 |