forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			415 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			415 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "lldb/Target/Memory.h"
 | 
						|
#include "lldb/Target/Process.h"
 | 
						|
#include "lldb/Utility/DataBufferHeap.h"
 | 
						|
#include "lldb/Utility/Log.h"
 | 
						|
#include "lldb/Utility/RangeMap.h"
 | 
						|
#include "lldb/Utility/State.h"
 | 
						|
 | 
						|
#include <cinttypes>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace lldb;
 | 
						|
using namespace lldb_private;
 | 
						|
 | 
						|
// MemoryCache constructor
 | 
						|
MemoryCache::MemoryCache(Process &process)
 | 
						|
    : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
 | 
						|
      m_process(process),
 | 
						|
      m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}
 | 
						|
 | 
						|
// Destructor
 | 
						|
MemoryCache::~MemoryCache() {}
 | 
						|
 | 
						|
void MemoryCache::Clear(bool clear_invalid_ranges) {
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
  m_L1_cache.clear();
 | 
						|
  m_L2_cache.clear();
 | 
						|
  if (clear_invalid_ranges)
 | 
						|
    m_invalid_ranges.Clear();
 | 
						|
  m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
 | 
						|
}
 | 
						|
 | 
						|
void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
 | 
						|
                                 size_t src_len) {
 | 
						|
  AddL1CacheData(
 | 
						|
      addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
 | 
						|
}
 | 
						|
 | 
						|
void MemoryCache::AddL1CacheData(lldb::addr_t addr,
 | 
						|
                                 const DataBufferSP &data_buffer_sp) {
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
  m_L1_cache[addr] = data_buffer_sp;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryCache::Flush(addr_t addr, size_t size) {
 | 
						|
  if (size == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
 | 
						|
  // Erase any blocks from the L1 cache that intersect with the flush range
 | 
						|
  if (!m_L1_cache.empty()) {
 | 
						|
    AddrRange flush_range(addr, size);
 | 
						|
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
 | 
						|
    if (pos != m_L1_cache.begin()) {
 | 
						|
      --pos;
 | 
						|
    }
 | 
						|
    while (pos != m_L1_cache.end()) {
 | 
						|
      AddrRange chunk_range(pos->first, pos->second->GetByteSize());
 | 
						|
      if (!chunk_range.DoesIntersect(flush_range))
 | 
						|
        break;
 | 
						|
      pos = m_L1_cache.erase(pos);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!m_L2_cache.empty()) {
 | 
						|
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
 | 
						|
    const addr_t end_addr = (addr + size - 1);
 | 
						|
    const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
 | 
						|
    const addr_t last_cache_line_addr =
 | 
						|
        end_addr - (end_addr % cache_line_byte_size);
 | 
						|
    // Watch for overflow where size will cause us to go off the end of the
 | 
						|
    // 64 bit address space
 | 
						|
    uint32_t num_cache_lines;
 | 
						|
    if (last_cache_line_addr >= first_cache_line_addr)
 | 
						|
      num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
 | 
						|
                         cache_line_byte_size) +
 | 
						|
                        1;
 | 
						|
    else
 | 
						|
      num_cache_lines =
 | 
						|
          (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;
 | 
						|
 | 
						|
    uint32_t cache_idx = 0;
 | 
						|
    for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
 | 
						|
         curr_addr += cache_line_byte_size, ++cache_idx) {
 | 
						|
      BlockMap::iterator pos = m_L2_cache.find(curr_addr);
 | 
						|
      if (pos != m_L2_cache.end())
 | 
						|
        m_L2_cache.erase(pos);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
 | 
						|
                                  lldb::addr_t byte_size) {
 | 
						|
  if (byte_size > 0) {
 | 
						|
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
    InvalidRanges::Entry range(base_addr, byte_size);
 | 
						|
    m_invalid_ranges.Append(range);
 | 
						|
    m_invalid_ranges.Sort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
 | 
						|
                                     lldb::addr_t byte_size) {
 | 
						|
  if (byte_size > 0) {
 | 
						|
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
    const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
 | 
						|
    if (idx != UINT32_MAX) {
 | 
						|
      const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
 | 
						|
      if (entry->GetRangeBase() == base_addr &&
 | 
						|
          entry->GetByteSize() == byte_size)
 | 
						|
        return m_invalid_ranges.RemoveEntrtAtIndex(idx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
 | 
						|
                         Status &error) {
 | 
						|
  size_t bytes_left = dst_len;
 | 
						|
 | 
						|
  // Check the L1 cache for a range that contain the entire memory read. If we
 | 
						|
  // find a range in the L1 cache that does, we use it. Else we fall back to
 | 
						|
  // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1
 | 
						|
  // cache contains chunks of memory that are not required to be
 | 
						|
  // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky
 | 
						|
  // when reading from them (no partial reads from the L1 cache).
 | 
						|
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
  if (!m_L1_cache.empty()) {
 | 
						|
    AddrRange read_range(addr, dst_len);
 | 
						|
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
 | 
						|
    if (pos != m_L1_cache.begin()) {
 | 
						|
      --pos;
 | 
						|
    }
 | 
						|
    AddrRange chunk_range(pos->first, pos->second->GetByteSize());
 | 
						|
    if (chunk_range.Contains(read_range)) {
 | 
						|
      memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()),
 | 
						|
             dst_len);
 | 
						|
      return dst_len;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this memory read request is larger than the cache line size, then we
 | 
						|
  // (1) try to read as much of it at once as possible, and (2) don't add the
 | 
						|
  // data to the memory cache.  We don't want to split a big read up into more
 | 
						|
  // separate reads than necessary, and with a large memory read request, it is
 | 
						|
  // unlikely that the caller function will ask for the next
 | 
						|
  // 4 bytes after the large memory read - so there's little benefit to saving
 | 
						|
  // it in the cache.
 | 
						|
  if (dst && dst_len > m_L2_cache_line_byte_size) {
 | 
						|
    size_t bytes_read =
 | 
						|
        m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
 | 
						|
    // Add this non block sized range to the L1 cache if we actually read
 | 
						|
    // anything
 | 
						|
    if (bytes_read > 0)
 | 
						|
      AddL1CacheData(addr, dst, bytes_read);
 | 
						|
    return bytes_read;
 | 
						|
  }
 | 
						|
 | 
						|
  if (dst && bytes_left > 0) {
 | 
						|
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
 | 
						|
    uint8_t *dst_buf = (uint8_t *)dst;
 | 
						|
    addr_t curr_addr = addr - (addr % cache_line_byte_size);
 | 
						|
    addr_t cache_offset = addr - curr_addr;
 | 
						|
 | 
						|
    while (bytes_left > 0) {
 | 
						|
      if (m_invalid_ranges.FindEntryThatContains(curr_addr)) {
 | 
						|
        error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
 | 
						|
                                       curr_addr);
 | 
						|
        return dst_len - bytes_left;
 | 
						|
      }
 | 
						|
 | 
						|
      BlockMap::const_iterator pos = m_L2_cache.find(curr_addr);
 | 
						|
      BlockMap::const_iterator end = m_L2_cache.end();
 | 
						|
 | 
						|
      if (pos != end) {
 | 
						|
        size_t curr_read_size = cache_line_byte_size - cache_offset;
 | 
						|
        if (curr_read_size > bytes_left)
 | 
						|
          curr_read_size = bytes_left;
 | 
						|
 | 
						|
        memcpy(dst_buf + dst_len - bytes_left,
 | 
						|
               pos->second->GetBytes() + cache_offset, curr_read_size);
 | 
						|
 | 
						|
        bytes_left -= curr_read_size;
 | 
						|
        curr_addr += curr_read_size + cache_offset;
 | 
						|
        cache_offset = 0;
 | 
						|
 | 
						|
        if (bytes_left > 0) {
 | 
						|
          // Get sequential cache page hits
 | 
						|
          for (++pos; (pos != end) && (bytes_left > 0); ++pos) {
 | 
						|
            assert((curr_addr % cache_line_byte_size) == 0);
 | 
						|
 | 
						|
            if (pos->first != curr_addr)
 | 
						|
              break;
 | 
						|
 | 
						|
            curr_read_size = pos->second->GetByteSize();
 | 
						|
            if (curr_read_size > bytes_left)
 | 
						|
              curr_read_size = bytes_left;
 | 
						|
 | 
						|
            memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(),
 | 
						|
                   curr_read_size);
 | 
						|
 | 
						|
            bytes_left -= curr_read_size;
 | 
						|
            curr_addr += curr_read_size;
 | 
						|
 | 
						|
            // We have a cache page that succeeded to read some bytes but not
 | 
						|
            // an entire page. If this happens, we must cap off how much data
 | 
						|
            // we are able to read...
 | 
						|
            if (pos->second->GetByteSize() != cache_line_byte_size)
 | 
						|
              return dst_len - bytes_left;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We need to read from the process
 | 
						|
 | 
						|
      if (bytes_left > 0) {
 | 
						|
        assert((curr_addr % cache_line_byte_size) == 0);
 | 
						|
        std::unique_ptr<DataBufferHeap> data_buffer_heap_up(
 | 
						|
            new DataBufferHeap(cache_line_byte_size, 0));
 | 
						|
        size_t process_bytes_read = m_process.ReadMemoryFromInferior(
 | 
						|
            curr_addr, data_buffer_heap_up->GetBytes(),
 | 
						|
            data_buffer_heap_up->GetByteSize(), error);
 | 
						|
        if (process_bytes_read == 0)
 | 
						|
          return dst_len - bytes_left;
 | 
						|
 | 
						|
        if (process_bytes_read != cache_line_byte_size)
 | 
						|
          data_buffer_heap_up->SetByteSize(process_bytes_read);
 | 
						|
        m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_up.release());
 | 
						|
        // We have read data and put it into the cache, continue through the
 | 
						|
        // loop again to get the data out of the cache...
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return dst_len - bytes_left;
 | 
						|
}
 | 
						|
 | 
						|
AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
 | 
						|
                               uint32_t permissions, uint32_t chunk_size)
 | 
						|
    : m_range(addr, byte_size), m_permissions(permissions),
 | 
						|
      m_chunk_size(chunk_size)
 | 
						|
{
 | 
						|
  // The entire address range is free to start with.
 | 
						|
  m_free_blocks.Append(m_range);
 | 
						|
  assert(byte_size > chunk_size);
 | 
						|
}
 | 
						|
 | 
						|
AllocatedBlock::~AllocatedBlock() {}
 | 
						|
 | 
						|
lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
 | 
						|
  // We must return something valid for zero bytes.
 | 
						|
  if (size == 0)
 | 
						|
    size = 1;
 | 
						|
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
 | 
						|
  
 | 
						|
  const size_t free_count = m_free_blocks.GetSize();
 | 
						|
  for (size_t i=0; i<free_count; ++i)
 | 
						|
  {
 | 
						|
    auto &free_block = m_free_blocks.GetEntryRef(i);
 | 
						|
    const lldb::addr_t range_size = free_block.GetByteSize();
 | 
						|
    if (range_size >= size)
 | 
						|
    {
 | 
						|
      // We found a free block that is big enough for our data. Figure out how
 | 
						|
      // many chunks we will need and calculate the resulting block size we
 | 
						|
      // will reserve.
 | 
						|
      addr_t addr = free_block.GetRangeBase();
 | 
						|
      size_t num_chunks = CalculateChunksNeededForSize(size);
 | 
						|
      lldb::addr_t block_size = num_chunks * m_chunk_size;
 | 
						|
      lldb::addr_t bytes_left = range_size - block_size;
 | 
						|
      if (bytes_left == 0)
 | 
						|
      {
 | 
						|
        // The newly allocated block will take all of the bytes in this
 | 
						|
        // available block, so we can just add it to the allocated ranges and
 | 
						|
        // remove the range from the free ranges.
 | 
						|
        m_reserved_blocks.Insert(free_block, false);
 | 
						|
        m_free_blocks.RemoveEntryAtIndex(i);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // Make the new allocated range and add it to the allocated ranges.
 | 
						|
        Range<lldb::addr_t, uint32_t> reserved_block(free_block);
 | 
						|
        reserved_block.SetByteSize(block_size);
 | 
						|
        // Insert the reserved range and don't combine it with other blocks in
 | 
						|
        // the reserved blocks list.
 | 
						|
        m_reserved_blocks.Insert(reserved_block, false);
 | 
						|
        // Adjust the free range in place since we won't change the sorted
 | 
						|
        // ordering of the m_free_blocks list.
 | 
						|
        free_block.SetRangeBase(reserved_block.GetRangeEnd());
 | 
						|
        free_block.SetByteSize(bytes_left);
 | 
						|
      }
 | 
						|
      LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
 | 
						|
      return addr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
 | 
						|
            LLDB_INVALID_ADDRESS);
 | 
						|
  return LLDB_INVALID_ADDRESS;
 | 
						|
}
 | 
						|
 | 
						|
bool AllocatedBlock::FreeBlock(addr_t addr) {
 | 
						|
  bool success = false;
 | 
						|
  auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
 | 
						|
  if (entry_idx != UINT32_MAX)
 | 
						|
  {
 | 
						|
    m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
 | 
						|
    m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
 | 
						|
    success = true;
 | 
						|
  }
 | 
						|
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
 | 
						|
  LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
 | 
						|
  return success;
 | 
						|
}
 | 
						|
 | 
						|
AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
 | 
						|
    : m_process(process), m_mutex(), m_memory_map() {}
 | 
						|
 | 
						|
AllocatedMemoryCache::~AllocatedMemoryCache() {}
 | 
						|
 | 
						|
void AllocatedMemoryCache::Clear() {
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
  if (m_process.IsAlive()) {
 | 
						|
    PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
 | 
						|
    for (pos = m_memory_map.begin(); pos != end; ++pos)
 | 
						|
      m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
 | 
						|
  }
 | 
						|
  m_memory_map.clear();
 | 
						|
}
 | 
						|
 | 
						|
AllocatedMemoryCache::AllocatedBlockSP
 | 
						|
AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
 | 
						|
                                   uint32_t chunk_size, Status &error) {
 | 
						|
  AllocatedBlockSP block_sp;
 | 
						|
  const size_t page_size = 4096;
 | 
						|
  const size_t num_pages = (byte_size + page_size - 1) / page_size;
 | 
						|
  const size_t page_byte_size = num_pages * page_size;
 | 
						|
 | 
						|
  addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
 | 
						|
 | 
						|
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
 | 
						|
  if (log) {
 | 
						|
    LLDB_LOGF(log,
 | 
						|
              "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
 | 
						|
              ", permissions = %s) => 0x%16.16" PRIx64,
 | 
						|
              (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
 | 
						|
              (uint64_t)addr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (addr != LLDB_INVALID_ADDRESS) {
 | 
						|
    block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
 | 
						|
                                                permissions, chunk_size);
 | 
						|
    m_memory_map.insert(std::make_pair(permissions, block_sp));
 | 
						|
  }
 | 
						|
  return block_sp;
 | 
						|
}
 | 
						|
 | 
						|
lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
 | 
						|
                                                  uint32_t permissions,
 | 
						|
                                                  Status &error) {
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
 | 
						|
  addr_t addr = LLDB_INVALID_ADDRESS;
 | 
						|
  std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
 | 
						|
      range = m_memory_map.equal_range(permissions);
 | 
						|
 | 
						|
  for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
 | 
						|
       ++pos) {
 | 
						|
    addr = (*pos).second->ReserveBlock(byte_size);
 | 
						|
    if (addr != LLDB_INVALID_ADDRESS)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (addr == LLDB_INVALID_ADDRESS) {
 | 
						|
    AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));
 | 
						|
 | 
						|
    if (block_sp)
 | 
						|
      addr = block_sp->ReserveBlock(byte_size);
 | 
						|
  }
 | 
						|
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
 | 
						|
  LLDB_LOGF(log,
 | 
						|
            "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
 | 
						|
            ", permissions = %s) => 0x%16.16" PRIx64,
 | 
						|
            (uint32_t)byte_size, GetPermissionsAsCString(permissions),
 | 
						|
            (uint64_t)addr);
 | 
						|
  return addr;
 | 
						|
}
 | 
						|
 | 
						|
bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
 | 
						|
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
 | 
						|
 | 
						|
  PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
 | 
						|
  bool success = false;
 | 
						|
  for (pos = m_memory_map.begin(); pos != end; ++pos) {
 | 
						|
    if (pos->second->Contains(addr)) {
 | 
						|
      success = pos->second->FreeBlock(addr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
 | 
						|
  LLDB_LOGF(log,
 | 
						|
            "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
 | 
						|
            ") => %i",
 | 
						|
            (uint64_t)addr, success);
 | 
						|
  return success;
 | 
						|
}
 |