forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1058 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1058 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loops should be simplified before this analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "branch-prob"
 | 
						|
 | 
						|
static cl::opt<bool> PrintBranchProb(
 | 
						|
    "print-bpi", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Print the branch probability info."));
 | 
						|
 | 
						|
cl::opt<std::string> PrintBranchProbFuncName(
 | 
						|
    "print-bpi-func-name", cl::Hidden,
 | 
						|
    cl::desc("The option to specify the name of the function "
 | 
						|
             "whose branch probability info is printed."));
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
 | 
						|
                      "Branch Probability Analysis", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
 | 
						|
                    "Branch Probability Analysis", false, true)
 | 
						|
 | 
						|
char BranchProbabilityInfoWrapperPass::ID = 0;
 | 
						|
 | 
						|
// Weights are for internal use only. They are used by heuristics to help to
 | 
						|
// estimate edges' probability. Example:
 | 
						|
//
 | 
						|
// Using "Loop Branch Heuristics" we predict weights of edges for the
 | 
						|
// block BB2.
 | 
						|
//         ...
 | 
						|
//          |
 | 
						|
//          V
 | 
						|
//         BB1<-+
 | 
						|
//          |   |
 | 
						|
//          |   | (Weight = 124)
 | 
						|
//          V   |
 | 
						|
//         BB2--+
 | 
						|
//          |
 | 
						|
//          | (Weight = 4)
 | 
						|
//          V
 | 
						|
//         BB3
 | 
						|
//
 | 
						|
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
 | 
						|
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
 | 
						|
static const uint32_t LBH_TAKEN_WEIGHT = 124;
 | 
						|
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
 | 
						|
// Unlikely edges within a loop are half as likely as other edges
 | 
						|
static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
 | 
						|
 | 
						|
/// Unreachable-terminating branch taken probability.
 | 
						|
///
 | 
						|
/// This is the probability for a branch being taken to a block that terminates
 | 
						|
/// (eventually) in unreachable. These are predicted as unlikely as possible.
 | 
						|
/// All reachable probability will equally share the remaining part.
 | 
						|
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
 | 
						|
 | 
						|
/// Weight for a branch taken going into a cold block.
 | 
						|
///
 | 
						|
/// This is the weight for a branch taken toward a block marked
 | 
						|
/// cold.  A block is marked cold if it's postdominated by a
 | 
						|
/// block containing a call to a cold function.  Cold functions
 | 
						|
/// are those marked with attribute 'cold'.
 | 
						|
static const uint32_t CC_TAKEN_WEIGHT = 4;
 | 
						|
 | 
						|
/// Weight for a branch not-taken into a cold block.
 | 
						|
///
 | 
						|
/// This is the weight for a branch not taken toward a block marked
 | 
						|
/// cold.
 | 
						|
static const uint32_t CC_NONTAKEN_WEIGHT = 64;
 | 
						|
 | 
						|
static const uint32_t PH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
 | 
						|
 | 
						|
static const uint32_t ZH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
 | 
						|
 | 
						|
static const uint32_t FPH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
 | 
						|
 | 
						|
/// This is the probability for an ordered floating point comparison.
 | 
						|
static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
 | 
						|
/// This is the probability for an unordered floating point comparison, it means
 | 
						|
/// one or two of the operands are NaN. Usually it is used to test for an
 | 
						|
/// exceptional case, so the result is unlikely.
 | 
						|
static const uint32_t FPH_UNO_WEIGHT = 1;
 | 
						|
 | 
						|
/// Invoke-terminating normal branch taken weight
 | 
						|
///
 | 
						|
/// This is the weight for branching to the normal destination of an invoke
 | 
						|
/// instruction. We expect this to happen most of the time. Set the weight to an
 | 
						|
/// absurdly high value so that nested loops subsume it.
 | 
						|
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
 | 
						|
 | 
						|
/// Invoke-terminating normal branch not-taken weight.
 | 
						|
///
 | 
						|
/// This is the weight for branching to the unwind destination of an invoke
 | 
						|
/// instruction. This is essentially never taken.
 | 
						|
static const uint32_t IH_NONTAKEN_WEIGHT = 1;
 | 
						|
 | 
						|
/// Add \p BB to PostDominatedByUnreachable set if applicable.
 | 
						|
void
 | 
						|
BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  if (TI->getNumSuccessors() == 0) {
 | 
						|
    if (isa<UnreachableInst>(TI) ||
 | 
						|
        // If this block is terminated by a call to
 | 
						|
        // @llvm.experimental.deoptimize then treat it like an unreachable since
 | 
						|
        // the @llvm.experimental.deoptimize call is expected to practically
 | 
						|
        // never execute.
 | 
						|
        BB->getTerminatingDeoptimizeCall())
 | 
						|
      PostDominatedByUnreachable.insert(BB);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator is an InvokeInst, check only the normal destination block
 | 
						|
  // as the unwind edge of InvokeInst is also very unlikely taken.
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | 
						|
    if (PostDominatedByUnreachable.count(II->getNormalDest()))
 | 
						|
      PostDominatedByUnreachable.insert(BB);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *I : successors(BB))
 | 
						|
    // If any of successor is not post dominated then BB is also not.
 | 
						|
    if (!PostDominatedByUnreachable.count(I))
 | 
						|
      return;
 | 
						|
 | 
						|
  PostDominatedByUnreachable.insert(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// Add \p BB to PostDominatedByColdCall set if applicable.
 | 
						|
void
 | 
						|
BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
 | 
						|
  assert(!PostDominatedByColdCall.count(BB));
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  if (TI->getNumSuccessors() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If all of successor are post dominated then BB is also done.
 | 
						|
  if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
 | 
						|
        return PostDominatedByColdCall.count(SuccBB);
 | 
						|
      })) {
 | 
						|
    PostDominatedByColdCall.insert(BB);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator is an InvokeInst, check only the normal destination
 | 
						|
  // block as the unwind edge of InvokeInst is also very unlikely taken.
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(TI))
 | 
						|
    if (PostDominatedByColdCall.count(II->getNormalDest())) {
 | 
						|
      PostDominatedByColdCall.insert(BB);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // Otherwise, if the block itself contains a cold function, add it to the
 | 
						|
  // set of blocks post-dominated by a cold call.
 | 
						|
  for (auto &I : *BB)
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
      if (CI->hasFnAttr(Attribute::Cold)) {
 | 
						|
        PostDominatedByColdCall.insert(BB);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate edge weights for successors lead to unreachable.
 | 
						|
///
 | 
						|
/// Predict that a successor which leads necessarily to an
 | 
						|
/// unreachable-terminated block as extremely unlikely.
 | 
						|
bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  (void) TI;
 | 
						|
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | 
						|
  assert(!isa<InvokeInst>(TI) &&
 | 
						|
         "Invokes should have already been handled by calcInvokeHeuristics");
 | 
						|
 | 
						|
  SmallVector<unsigned, 4> UnreachableEdges;
 | 
						|
  SmallVector<unsigned, 4> ReachableEdges;
 | 
						|
 | 
						|
  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
 | 
						|
    if (PostDominatedByUnreachable.count(*I))
 | 
						|
      UnreachableEdges.push_back(I.getSuccessorIndex());
 | 
						|
    else
 | 
						|
      ReachableEdges.push_back(I.getSuccessorIndex());
 | 
						|
 | 
						|
  // Skip probabilities if all were reachable.
 | 
						|
  if (UnreachableEdges.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ReachableEdges.empty()) {
 | 
						|
    BranchProbability Prob(1, UnreachableEdges.size());
 | 
						|
    for (unsigned SuccIdx : UnreachableEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto UnreachableProb = UR_TAKEN_PROB;
 | 
						|
  auto ReachableProb =
 | 
						|
      (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
 | 
						|
      ReachableEdges.size();
 | 
						|
 | 
						|
  for (unsigned SuccIdx : UnreachableEdges)
 | 
						|
    setEdgeProbability(BB, SuccIdx, UnreachableProb);
 | 
						|
  for (unsigned SuccIdx : ReachableEdges)
 | 
						|
    setEdgeProbability(BB, SuccIdx, ReachableProb);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Propagate existing explicit probabilities from either profile data or
 | 
						|
// 'expect' intrinsic processing. Examine metadata against unreachable
 | 
						|
// heuristic. The probability of the edge coming to unreachable block is
 | 
						|
// set to min of metadata and unreachable heuristic.
 | 
						|
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | 
						|
  if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
 | 
						|
  if (!WeightsNode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the number of successors is manageable.
 | 
						|
  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
 | 
						|
 | 
						|
  // Ensure there are weights for all of the successors. Note that the first
 | 
						|
  // operand to the metadata node is a name, not a weight.
 | 
						|
  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Build up the final weights that will be used in a temporary buffer.
 | 
						|
  // Compute the sum of all weights to later decide whether they need to
 | 
						|
  // be scaled to fit in 32 bits.
 | 
						|
  uint64_t WeightSum = 0;
 | 
						|
  SmallVector<uint32_t, 2> Weights;
 | 
						|
  SmallVector<unsigned, 2> UnreachableIdxs;
 | 
						|
  SmallVector<unsigned, 2> ReachableIdxs;
 | 
						|
  Weights.reserve(TI->getNumSuccessors());
 | 
						|
  for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
 | 
						|
    ConstantInt *Weight =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
 | 
						|
    if (!Weight)
 | 
						|
      return false;
 | 
						|
    assert(Weight->getValue().getActiveBits() <= 32 &&
 | 
						|
           "Too many bits for uint32_t");
 | 
						|
    Weights.push_back(Weight->getZExtValue());
 | 
						|
    WeightSum += Weights.back();
 | 
						|
    if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
 | 
						|
      UnreachableIdxs.push_back(i - 1);
 | 
						|
    else
 | 
						|
      ReachableIdxs.push_back(i - 1);
 | 
						|
  }
 | 
						|
  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
 | 
						|
 | 
						|
  // If the sum of weights does not fit in 32 bits, scale every weight down
 | 
						|
  // accordingly.
 | 
						|
  uint64_t ScalingFactor =
 | 
						|
      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
 | 
						|
 | 
						|
  if (ScalingFactor > 1) {
 | 
						|
    WeightSum = 0;
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      Weights[i] /= ScalingFactor;
 | 
						|
      WeightSum += Weights[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(WeightSum <= UINT32_MAX &&
 | 
						|
         "Expected weights to scale down to 32 bits");
 | 
						|
 | 
						|
  if (WeightSum == 0 || ReachableIdxs.size() == 0) {
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
      Weights[i] = 1;
 | 
						|
    WeightSum = TI->getNumSuccessors();
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the probability.
 | 
						|
  SmallVector<BranchProbability, 2> BP;
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
    BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
 | 
						|
 | 
						|
  // Examine the metadata against unreachable heuristic.
 | 
						|
  // If the unreachable heuristic is more strong then we use it for this edge.
 | 
						|
  if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
 | 
						|
    auto ToDistribute = BranchProbability::getZero();
 | 
						|
    auto UnreachableProb = UR_TAKEN_PROB;
 | 
						|
    for (auto i : UnreachableIdxs)
 | 
						|
      if (UnreachableProb < BP[i]) {
 | 
						|
        ToDistribute += BP[i] - UnreachableProb;
 | 
						|
        BP[i] = UnreachableProb;
 | 
						|
      }
 | 
						|
 | 
						|
    // If we modified the probability of some edges then we must distribute
 | 
						|
    // the difference between reachable blocks.
 | 
						|
    if (ToDistribute > BranchProbability::getZero()) {
 | 
						|
      BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
 | 
						|
      for (auto i : ReachableIdxs)
 | 
						|
        BP[i] += PerEdge;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
    setEdgeProbability(BB, i, BP[i]);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate edge weights for edges leading to cold blocks.
 | 
						|
///
 | 
						|
/// A cold block is one post-dominated by  a block with a call to a
 | 
						|
/// cold function.  Those edges are unlikely to be taken, so we give
 | 
						|
/// them relatively low weight.
 | 
						|
///
 | 
						|
/// Return true if we could compute the weights for cold edges.
 | 
						|
/// Return false, otherwise.
 | 
						|
bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  (void) TI;
 | 
						|
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | 
						|
  assert(!isa<InvokeInst>(TI) &&
 | 
						|
         "Invokes should have already been handled by calcInvokeHeuristics");
 | 
						|
 | 
						|
  // Determine which successors are post-dominated by a cold block.
 | 
						|
  SmallVector<unsigned, 4> ColdEdges;
 | 
						|
  SmallVector<unsigned, 4> NormalEdges;
 | 
						|
  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
 | 
						|
    if (PostDominatedByColdCall.count(*I))
 | 
						|
      ColdEdges.push_back(I.getSuccessorIndex());
 | 
						|
    else
 | 
						|
      NormalEdges.push_back(I.getSuccessorIndex());
 | 
						|
 | 
						|
  // Skip probabilities if no cold edges.
 | 
						|
  if (ColdEdges.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (NormalEdges.empty()) {
 | 
						|
    BranchProbability Prob(1, ColdEdges.size());
 | 
						|
    for (unsigned SuccIdx : ColdEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto ColdProb = BranchProbability::getBranchProbability(
 | 
						|
      CC_TAKEN_WEIGHT,
 | 
						|
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
 | 
						|
  auto NormalProb = BranchProbability::getBranchProbability(
 | 
						|
      CC_NONTAKEN_WEIGHT,
 | 
						|
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
 | 
						|
 | 
						|
  for (unsigned SuccIdx : ColdEdges)
 | 
						|
    setEdgeProbability(BB, SuccIdx, ColdProb);
 | 
						|
  for (unsigned SuccIdx : NormalEdges)
 | 
						|
    setEdgeProbability(BB, SuccIdx, NormalProb);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
 | 
						|
// between two pointer or pointer and NULL will fail.
 | 
						|
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | 
						|
  if (!CI || !CI->isEquality())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *LHS = CI->getOperand(0);
 | 
						|
 | 
						|
  if (!LHS->getType()->isPointerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(CI->getOperand(1)->getType()->isPointerTy());
 | 
						|
 | 
						|
  // p != 0   ->   isProb = true
 | 
						|
  // p == 0   ->   isProb = false
 | 
						|
  // p != q   ->   isProb = true
 | 
						|
  // p == q   ->   isProb = false;
 | 
						|
  unsigned TakenIdx = 0, NonTakenIdx = 1;
 | 
						|
  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
  if (!isProb)
 | 
						|
    std::swap(TakenIdx, NonTakenIdx);
 | 
						|
 | 
						|
  BranchProbability TakenProb(PH_TAKEN_WEIGHT,
 | 
						|
                              PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | 
						|
  setEdgeProbability(BB, TakenIdx, TakenProb);
 | 
						|
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static int getSCCNum(const BasicBlock *BB,
 | 
						|
                     const BranchProbabilityInfo::SccInfo &SccI) {
 | 
						|
  auto SccIt = SccI.SccNums.find(BB);
 | 
						|
  if (SccIt == SccI.SccNums.end())
 | 
						|
    return -1;
 | 
						|
  return SccIt->second;
 | 
						|
}
 | 
						|
 | 
						|
// Consider any block that is an entry point to the SCC as a header.
 | 
						|
static bool isSCCHeader(const BasicBlock *BB, int SccNum,
 | 
						|
                        BranchProbabilityInfo::SccInfo &SccI) {
 | 
						|
  assert(getSCCNum(BB, SccI) == SccNum);
 | 
						|
 | 
						|
  // Lazily compute the set of headers for a given SCC and cache the results
 | 
						|
  // in the SccHeaderMap.
 | 
						|
  if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
 | 
						|
    SccI.SccHeaders.resize(SccNum + 1);
 | 
						|
  auto &HeaderMap = SccI.SccHeaders[SccNum];
 | 
						|
  bool Inserted;
 | 
						|
  BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
 | 
						|
  std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
 | 
						|
  if (Inserted) {
 | 
						|
    bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
 | 
						|
                                 [&](const BasicBlock *Pred) {
 | 
						|
                                   return getSCCNum(Pred, SccI) != SccNum;
 | 
						|
                                 });
 | 
						|
    HeaderMapIt->second = IsHeader;
 | 
						|
    return IsHeader;
 | 
						|
  } else
 | 
						|
    return HeaderMapIt->second;
 | 
						|
}
 | 
						|
 | 
						|
// Compute the unlikely successors to the block BB in the loop L, specifically
 | 
						|
// those that are unlikely because this is a loop, and add them to the
 | 
						|
// UnlikelyBlocks set.
 | 
						|
static void
 | 
						|
computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
 | 
						|
                          SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
 | 
						|
  // Sometimes in a loop we have a branch whose condition is made false by
 | 
						|
  // taking it. This is typically something like
 | 
						|
  //  int n = 0;
 | 
						|
  //  while (...) {
 | 
						|
  //    if (++n >= MAX) {
 | 
						|
  //      n = 0;
 | 
						|
  //    }
 | 
						|
  //  }
 | 
						|
  // In this sort of situation taking the branch means that at the very least it
 | 
						|
  // won't be taken again in the next iteration of the loop, so we should
 | 
						|
  // consider it less likely than a typical branch.
 | 
						|
  //
 | 
						|
  // We detect this by looking back through the graph of PHI nodes that sets the
 | 
						|
  // value that the condition depends on, and seeing if we can reach a successor
 | 
						|
  // block which can be determined to make the condition false.
 | 
						|
  //
 | 
						|
  // FIXME: We currently consider unlikely blocks to be half as likely as other
 | 
						|
  // blocks, but if we consider the example above the likelyhood is actually
 | 
						|
  // 1/MAX. We could therefore be more precise in how unlikely we consider
 | 
						|
  // blocks to be, but it would require more careful examination of the form
 | 
						|
  // of the comparison expression.
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if the branch is based on an instruction compared with a constant
 | 
						|
  CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
 | 
						|
  if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
 | 
						|
      !isa<Constant>(CI->getOperand(1)))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Either the instruction must be a PHI, or a chain of operations involving
 | 
						|
  // constants that ends in a PHI which we can then collapse into a single value
 | 
						|
  // if the PHI value is known.
 | 
						|
  Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
 | 
						|
  PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | 
						|
  Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
 | 
						|
  // Collect the instructions until we hit a PHI
 | 
						|
  SmallVector<BinaryOperator *, 1> InstChain;
 | 
						|
  while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
 | 
						|
         isa<Constant>(CmpLHS->getOperand(1))) {
 | 
						|
    // Stop if the chain extends outside of the loop
 | 
						|
    if (!L->contains(CmpLHS))
 | 
						|
      return;
 | 
						|
    InstChain.push_back(cast<BinaryOperator>(CmpLHS));
 | 
						|
    CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
 | 
						|
    if (CmpLHS)
 | 
						|
      CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | 
						|
  }
 | 
						|
  if (!CmpPHI || !L->contains(CmpPHI))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Trace the phi node to find all values that come from successors of BB
 | 
						|
  SmallPtrSet<PHINode*, 8> VisitedInsts;
 | 
						|
  SmallVector<PHINode*, 8> WorkList;
 | 
						|
  WorkList.push_back(CmpPHI);
 | 
						|
  VisitedInsts.insert(CmpPHI);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    PHINode *P = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    for (BasicBlock *B : P->blocks()) {
 | 
						|
      // Skip blocks that aren't part of the loop
 | 
						|
      if (!L->contains(B))
 | 
						|
        continue;
 | 
						|
      Value *V = P->getIncomingValueForBlock(B);
 | 
						|
      // If the source is a PHI add it to the work list if we haven't
 | 
						|
      // already visited it.
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
        if (VisitedInsts.insert(PN).second)
 | 
						|
          WorkList.push_back(PN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // If this incoming value is a constant and B is a successor of BB, then
 | 
						|
      // we can constant-evaluate the compare to see if it makes the branch be
 | 
						|
      // taken or not.
 | 
						|
      Constant *CmpLHSConst = dyn_cast<Constant>(V);
 | 
						|
      if (!CmpLHSConst ||
 | 
						|
          std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB))
 | 
						|
        continue;
 | 
						|
      // First collapse InstChain
 | 
						|
      for (Instruction *I : llvm::reverse(InstChain)) {
 | 
						|
        CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
 | 
						|
                                        cast<Constant>(I->getOperand(1)), true);
 | 
						|
        if (!CmpLHSConst)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (!CmpLHSConst)
 | 
						|
        continue;
 | 
						|
      // Now constant-evaluate the compare
 | 
						|
      Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
 | 
						|
                                                  CmpLHSConst, CmpConst, true);
 | 
						|
      // If the result means we don't branch to the block then that block is
 | 
						|
      // unlikely.
 | 
						|
      if (Result &&
 | 
						|
          ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
 | 
						|
           (Result->isOneValue() && B == BI->getSuccessor(1))))
 | 
						|
        UnlikelyBlocks.insert(B);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
 | 
						|
// as taken, exiting edges as not-taken.
 | 
						|
bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
 | 
						|
                                                     const LoopInfo &LI,
 | 
						|
                                                     SccInfo &SccI) {
 | 
						|
  int SccNum;
 | 
						|
  Loop *L = LI.getLoopFor(BB);
 | 
						|
  if (!L) {
 | 
						|
    SccNum = getSCCNum(BB, SccI);
 | 
						|
    if (SccNum < 0)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
 | 
						|
  if (L)
 | 
						|
    computeUnlikelySuccessors(BB, L, UnlikelyBlocks);
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> BackEdges;
 | 
						|
  SmallVector<unsigned, 8> ExitingEdges;
 | 
						|
  SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
 | 
						|
  SmallVector<unsigned, 8> UnlikelyEdges;
 | 
						|
 | 
						|
  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
 | 
						|
    // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
 | 
						|
    // irreducible loops.
 | 
						|
    if (L) {
 | 
						|
      if (UnlikelyBlocks.count(*I) != 0)
 | 
						|
        UnlikelyEdges.push_back(I.getSuccessorIndex());
 | 
						|
      else if (!L->contains(*I))
 | 
						|
        ExitingEdges.push_back(I.getSuccessorIndex());
 | 
						|
      else if (L->getHeader() == *I)
 | 
						|
        BackEdges.push_back(I.getSuccessorIndex());
 | 
						|
      else
 | 
						|
        InEdges.push_back(I.getSuccessorIndex());
 | 
						|
    } else {
 | 
						|
      if (getSCCNum(*I, SccI) != SccNum)
 | 
						|
        ExitingEdges.push_back(I.getSuccessorIndex());
 | 
						|
      else if (isSCCHeader(*I, SccNum, SccI))
 | 
						|
        BackEdges.push_back(I.getSuccessorIndex());
 | 
						|
      else
 | 
						|
        InEdges.push_back(I.getSuccessorIndex());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
 | 
						|
  // normalize them so that they sum up to one.
 | 
						|
  unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
 | 
						|
                   (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
 | 
						|
                   (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
 | 
						|
                   (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
 | 
						|
 | 
						|
  if (uint32_t numBackEdges = BackEdges.size()) {
 | 
						|
    BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
 | 
						|
    auto Prob = TakenProb / numBackEdges;
 | 
						|
    for (unsigned SuccIdx : BackEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint32_t numInEdges = InEdges.size()) {
 | 
						|
    BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
 | 
						|
    auto Prob = TakenProb / numInEdges;
 | 
						|
    for (unsigned SuccIdx : InEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint32_t numExitingEdges = ExitingEdges.size()) {
 | 
						|
    BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
 | 
						|
                                                       Denom);
 | 
						|
    auto Prob = NotTakenProb / numExitingEdges;
 | 
						|
    for (unsigned SuccIdx : ExitingEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
 | 
						|
    BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
 | 
						|
                                                       Denom);
 | 
						|
    auto Prob = UnlikelyProb / numUnlikelyEdges;
 | 
						|
    for (unsigned SuccIdx : UnlikelyEdges)
 | 
						|
      setEdgeProbability(BB, SuccIdx, Prob);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
 | 
						|
                                               const TargetLibraryInfo *TLI) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | 
						|
  if (!CI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto GetConstantInt = [](Value *V) {
 | 
						|
    if (auto *I = dyn_cast<BitCastInst>(V))
 | 
						|
      return dyn_cast<ConstantInt>(I->getOperand(0));
 | 
						|
    return dyn_cast<ConstantInt>(V);
 | 
						|
  };
 | 
						|
 | 
						|
  Value *RHS = CI->getOperand(1);
 | 
						|
  ConstantInt *CV = GetConstantInt(RHS);
 | 
						|
  if (!CV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the LHS is the result of AND'ing a value with a single bit bitmask,
 | 
						|
  // we don't have information about probabilities.
 | 
						|
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
 | 
						|
    if (LHS->getOpcode() == Instruction::And)
 | 
						|
      if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
 | 
						|
        if (AndRHS->getValue().isPowerOf2())
 | 
						|
          return false;
 | 
						|
 | 
						|
  // Check if the LHS is the return value of a library function
 | 
						|
  LibFunc Func = NumLibFuncs;
 | 
						|
  if (TLI)
 | 
						|
    if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
 | 
						|
      if (Function *CalledFn = Call->getCalledFunction())
 | 
						|
        TLI->getLibFunc(*CalledFn, Func);
 | 
						|
 | 
						|
  bool isProb;
 | 
						|
  if (Func == LibFunc_strcasecmp ||
 | 
						|
      Func == LibFunc_strcmp ||
 | 
						|
      Func == LibFunc_strncasecmp ||
 | 
						|
      Func == LibFunc_strncmp ||
 | 
						|
      Func == LibFunc_memcmp) {
 | 
						|
    // strcmp and similar functions return zero, negative, or positive, if the
 | 
						|
    // first string is equal, less, or greater than the second. We consider it
 | 
						|
    // likely that the strings are not equal, so a comparison with zero is
 | 
						|
    // probably false, but also a comparison with any other number is also
 | 
						|
    // probably false given that what exactly is returned for nonzero values is
 | 
						|
    // not specified. Any kind of comparison other than equality we know
 | 
						|
    // nothing about.
 | 
						|
    switch (CI->getPredicate()) {
 | 
						|
    case CmpInst::ICMP_EQ:
 | 
						|
      isProb = false;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_NE:
 | 
						|
      isProb = true;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (CV->isZero()) {
 | 
						|
    switch (CI->getPredicate()) {
 | 
						|
    case CmpInst::ICMP_EQ:
 | 
						|
      // X == 0   ->  Unlikely
 | 
						|
      isProb = false;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_NE:
 | 
						|
      // X != 0   ->  Likely
 | 
						|
      isProb = true;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_SLT:
 | 
						|
      // X < 0   ->  Unlikely
 | 
						|
      isProb = false;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_SGT:
 | 
						|
      // X > 0   ->  Likely
 | 
						|
      isProb = true;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
 | 
						|
    // InstCombine canonicalizes X <= 0 into X < 1.
 | 
						|
    // X <= 0   ->  Unlikely
 | 
						|
    isProb = false;
 | 
						|
  } else if (CV->isMinusOne()) {
 | 
						|
    switch (CI->getPredicate()) {
 | 
						|
    case CmpInst::ICMP_EQ:
 | 
						|
      // X == -1  ->  Unlikely
 | 
						|
      isProb = false;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_NE:
 | 
						|
      // X != -1  ->  Likely
 | 
						|
      isProb = true;
 | 
						|
      break;
 | 
						|
    case CmpInst::ICMP_SGT:
 | 
						|
      // InstCombine canonicalizes X >= 0 into X > -1.
 | 
						|
      // X >= 0   ->  Likely
 | 
						|
      isProb = true;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TakenIdx = 0, NonTakenIdx = 1;
 | 
						|
 | 
						|
  if (!isProb)
 | 
						|
    std::swap(TakenIdx, NonTakenIdx);
 | 
						|
 | 
						|
  BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
 | 
						|
                              ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | 
						|
  setEdgeProbability(BB, TakenIdx, TakenProb);
 | 
						|
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
 | 
						|
  if (!FCmp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
 | 
						|
  uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
 | 
						|
  bool isProb;
 | 
						|
  if (FCmp->isEquality()) {
 | 
						|
    // f1 == f2 -> Unlikely
 | 
						|
    // f1 != f2 -> Likely
 | 
						|
    isProb = !FCmp->isTrueWhenEqual();
 | 
						|
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
 | 
						|
    // !isnan -> Likely
 | 
						|
    isProb = true;
 | 
						|
    TakenWeight = FPH_ORD_WEIGHT;
 | 
						|
    NontakenWeight = FPH_UNO_WEIGHT;
 | 
						|
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
 | 
						|
    // isnan -> Unlikely
 | 
						|
    isProb = false;
 | 
						|
    TakenWeight = FPH_ORD_WEIGHT;
 | 
						|
    NontakenWeight = FPH_UNO_WEIGHT;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TakenIdx = 0, NonTakenIdx = 1;
 | 
						|
 | 
						|
  if (!isProb)
 | 
						|
    std::swap(TakenIdx, NonTakenIdx);
 | 
						|
 | 
						|
  BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
 | 
						|
  setEdgeProbability(BB, TakenIdx, TakenProb);
 | 
						|
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
 | 
						|
  const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
 | 
						|
  if (!II)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchProbability TakenProb(IH_TAKEN_WEIGHT,
 | 
						|
                              IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
 | 
						|
  setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
 | 
						|
  setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::releaseMemory() {
 | 
						|
  Probs.clear();
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::print(raw_ostream &OS) const {
 | 
						|
  OS << "---- Branch Probabilities ----\n";
 | 
						|
  // We print the probabilities from the last function the analysis ran over,
 | 
						|
  // or the function it is currently running over.
 | 
						|
  assert(LastF && "Cannot print prior to running over a function");
 | 
						|
  for (const auto &BI : *LastF) {
 | 
						|
    for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
 | 
						|
         ++SI) {
 | 
						|
      printEdgeProbability(OS << "  ", &BI, *SI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::
 | 
						|
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
 | 
						|
  // Hot probability is at least 4/5 = 80%
 | 
						|
  // FIXME: Compare against a static "hot" BranchProbability.
 | 
						|
  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
 | 
						|
}
 | 
						|
 | 
						|
const BasicBlock *
 | 
						|
BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
 | 
						|
  auto MaxProb = BranchProbability::getZero();
 | 
						|
  const BasicBlock *MaxSucc = nullptr;
 | 
						|
 | 
						|
  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
 | 
						|
    const BasicBlock *Succ = *I;
 | 
						|
    auto Prob = getEdgeProbability(BB, Succ);
 | 
						|
    if (Prob > MaxProb) {
 | 
						|
      MaxProb = Prob;
 | 
						|
      MaxSucc = Succ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Hot probability is at least 4/5 = 80%
 | 
						|
  if (MaxProb > BranchProbability(4, 5))
 | 
						|
    return MaxSucc;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the raw edge probability for the edge. If can't find it, return a
 | 
						|
/// default probability 1/N where N is the number of successors. Here an edge is
 | 
						|
/// specified using PredBlock and an
 | 
						|
/// index to the successors.
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          unsigned IndexInSuccessors) const {
 | 
						|
  auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
 | 
						|
 | 
						|
  if (I != Probs.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  return {1, static_cast<uint32_t>(succ_size(Src))};
 | 
						|
}
 | 
						|
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          succ_const_iterator Dst) const {
 | 
						|
  return getEdgeProbability(Src, Dst.getSuccessorIndex());
 | 
						|
}
 | 
						|
 | 
						|
/// Get the raw edge probability calculated for the block pair. This returns the
 | 
						|
/// sum of all raw edge probabilities from Src to Dst.
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          const BasicBlock *Dst) const {
 | 
						|
  auto Prob = BranchProbability::getZero();
 | 
						|
  bool FoundProb = false;
 | 
						|
  for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
 | 
						|
    if (*I == Dst) {
 | 
						|
      auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
 | 
						|
      if (MapI != Probs.end()) {
 | 
						|
        FoundProb = true;
 | 
						|
        Prob += MapI->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
 | 
						|
  return FoundProb ? Prob : BranchProbability(1, succ_num);
 | 
						|
}
 | 
						|
 | 
						|
/// Set the edge probability for a given edge specified by PredBlock and an
 | 
						|
/// index to the successors.
 | 
						|
void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
 | 
						|
                                               unsigned IndexInSuccessors,
 | 
						|
                                               BranchProbability Prob) {
 | 
						|
  Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
 | 
						|
  Handles.insert(BasicBlockCallbackVH(Src, this));
 | 
						|
  LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
 | 
						|
                    << IndexInSuccessors << " successor probability to " << Prob
 | 
						|
                    << "\n");
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
 | 
						|
                                            const BasicBlock *Src,
 | 
						|
                                            const BasicBlock *Dst) const {
 | 
						|
  const BranchProbability Prob = getEdgeProbability(Src, Dst);
 | 
						|
  OS << "edge " << Src->getName() << " -> " << Dst->getName()
 | 
						|
     << " probability is " << Prob
 | 
						|
     << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
 | 
						|
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
 | 
						|
  for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
 | 
						|
    auto Key = I->first;
 | 
						|
    if (Key.first == BB)
 | 
						|
      Probs.erase(Key);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
 | 
						|
                                      const TargetLibraryInfo *TLI) {
 | 
						|
  LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
 | 
						|
                    << " ----\n\n");
 | 
						|
  LastF = &F; // Store the last function we ran on for printing.
 | 
						|
  assert(PostDominatedByUnreachable.empty());
 | 
						|
  assert(PostDominatedByColdCall.empty());
 | 
						|
 | 
						|
  // Record SCC numbers of blocks in the CFG to identify irreducible loops.
 | 
						|
  // FIXME: We could only calculate this if the CFG is known to be irreducible
 | 
						|
  // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
 | 
						|
  int SccNum = 0;
 | 
						|
  SccInfo SccI;
 | 
						|
  for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
 | 
						|
       ++It, ++SccNum) {
 | 
						|
    // Ignore single-block SCCs since they either aren't loops or LoopInfo will
 | 
						|
    // catch them.
 | 
						|
    const std::vector<const BasicBlock *> &Scc = *It;
 | 
						|
    if (Scc.size() == 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
 | 
						|
    for (auto *BB : Scc) {
 | 
						|
      LLVM_DEBUG(dbgs() << " " << BB->getName());
 | 
						|
      SccI.SccNums[BB] = SccNum;
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk the basic blocks in post-order so that we can build up state about
 | 
						|
  // the successors of a block iteratively.
 | 
						|
  for (auto BB : post_order(&F.getEntryBlock())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
 | 
						|
                      << "\n");
 | 
						|
    updatePostDominatedByUnreachable(BB);
 | 
						|
    updatePostDominatedByColdCall(BB);
 | 
						|
    // If there is no at least two successors, no sense to set probability.
 | 
						|
    if (BB->getTerminator()->getNumSuccessors() < 2)
 | 
						|
      continue;
 | 
						|
    if (calcMetadataWeights(BB))
 | 
						|
      continue;
 | 
						|
    if (calcInvokeHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcUnreachableHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcColdCallHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcLoopBranchHeuristics(BB, LI, SccI))
 | 
						|
      continue;
 | 
						|
    if (calcPointerHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcZeroHeuristics(BB, TLI))
 | 
						|
      continue;
 | 
						|
    if (calcFloatingPointHeuristics(BB))
 | 
						|
      continue;
 | 
						|
  }
 | 
						|
 | 
						|
  PostDominatedByUnreachable.clear();
 | 
						|
  PostDominatedByColdCall.clear();
 | 
						|
 | 
						|
  if (PrintBranchProb &&
 | 
						|
      (PrintBranchProbFuncName.empty() ||
 | 
						|
       F.getName().equals(PrintBranchProbFuncName))) {
 | 
						|
    print(dbgs());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
 | 
						|
    AnalysisUsage &AU) const {
 | 
						|
  // We require DT so it's available when LI is available. The LI updating code
 | 
						|
  // asserts that DT is also present so if we don't make sure that we have DT
 | 
						|
  // here, that assert will trigger.
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
 | 
						|
  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  const TargetLibraryInfo &TLI =
 | 
						|
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  BPI.calculate(F, LI, &TLI);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
 | 
						|
                                             const Module *) const {
 | 
						|
  BPI.print(OS);
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey BranchProbabilityAnalysis::Key;
 | 
						|
BranchProbabilityInfo
 | 
						|
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  BranchProbabilityInfo BPI;
 | 
						|
  BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
 | 
						|
  return BPI;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  OS << "Printing analysis results of BPI for function "
 | 
						|
     << "'" << F.getName() << "':"
 | 
						|
     << "\n";
 | 
						|
  AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |