forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1383 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1383 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "tti"
 | 
						|
 | 
						|
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
 | 
						|
                                     cl::Hidden,
 | 
						|
                                     cl::desc("Recognize reduction patterns."));
 | 
						|
 | 
						|
namespace {
 | 
						|
/// No-op implementation of the TTI interface using the utility base
 | 
						|
/// classes.
 | 
						|
///
 | 
						|
/// This is used when no target specific information is available.
 | 
						|
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
 | 
						|
  explicit NoTTIImpl(const DataLayout &DL)
 | 
						|
      : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
 | 
						|
  // If the loop has irreducible control flow, it can not be converted to
 | 
						|
  // Hardware loop.
 | 
						|
  LoopBlocksRPO RPOT(L);  
 | 
						|
  RPOT.perform(&LI);
 | 
						|
  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
 | 
						|
                                               LoopInfo &LI, DominatorTree &DT,
 | 
						|
                                               bool ForceNestedLoop,
 | 
						|
                                               bool ForceHardwareLoopPHI) {
 | 
						|
  SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
 | 
						|
                                               IE = ExitingBlocks.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    BasicBlock *BB = *I;
 | 
						|
 | 
						|
    // If we pass the updated counter back through a phi, we need to know
 | 
						|
    // which latch the updated value will be coming from.
 | 
						|
    if (!L->isLoopLatch(BB)) {
 | 
						|
      if (ForceHardwareLoopPHI || CounterInReg)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const SCEV *EC = SE.getExitCount(L, BB);
 | 
						|
    if (isa<SCEVCouldNotCompute>(EC))
 | 
						|
      continue;
 | 
						|
    if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
 | 
						|
      if (ConstEC->getValue()->isZero())
 | 
						|
        continue;
 | 
						|
    } else if (!SE.isLoopInvariant(EC, L))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this exiting block is contained in a nested loop, it is not eligible
 | 
						|
    // for insertion of the branch-and-decrement since the inner loop would
 | 
						|
    // end up messing up the value in the CTR.
 | 
						|
    if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We now have a loop-invariant count of loop iterations (which is not the
 | 
						|
    // constant zero) for which we know that this loop will not exit via this
 | 
						|
    // existing block.
 | 
						|
 | 
						|
    // We need to make sure that this block will run on every loop iteration.
 | 
						|
    // For this to be true, we must dominate all blocks with backedges. Such
 | 
						|
    // blocks are in-loop predecessors to the header block.
 | 
						|
    bool NotAlways = false;
 | 
						|
    for (pred_iterator PI = pred_begin(L->getHeader()),
 | 
						|
                       PIE = pred_end(L->getHeader());
 | 
						|
         PI != PIE; ++PI) {
 | 
						|
      if (!L->contains(*PI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!DT.dominates(*I, *PI)) {
 | 
						|
        NotAlways = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NotAlways)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure this blocks ends with a conditional branch.
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    if (!TI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (!BI->isConditional())
 | 
						|
        continue;
 | 
						|
 | 
						|
      ExitBranch = BI;
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Note that this block may not be the loop latch block, even if the loop
 | 
						|
    // has a latch block.
 | 
						|
    ExitBlock = *I;
 | 
						|
    ExitCount = EC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ExitBlock)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
 | 
						|
    : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
 | 
						|
 | 
						|
TargetTransformInfo::~TargetTransformInfo() {}
 | 
						|
 | 
						|
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
 | 
						|
    : TTIImpl(std::move(Arg.TTIImpl)) {}
 | 
						|
 | 
						|
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
 | 
						|
  TTIImpl = std::move(RHS.TTIImpl);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
 | 
						|
                                          Type *OpTy) const {
 | 
						|
  int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
 | 
						|
                                     const User *U) const {
 | 
						|
  int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCallCost(const Function *F,
 | 
						|
                                     ArrayRef<const Value *> Arguments,
 | 
						|
                                     const User *U) const {
 | 
						|
  int Cost = TTIImpl->getCallCost(F, Arguments, U);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
 | 
						|
  return TTIImpl->getInliningThresholdMultiplier();
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getInlinerVectorBonusPercent() const {
 | 
						|
  return TTIImpl->getInlinerVectorBonusPercent();
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
 | 
						|
                                    ArrayRef<const Value *> Operands) const {
 | 
						|
  return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getExtCost(const Instruction *I,
 | 
						|
                                    const Value *Src) const {
 | 
						|
  return TTIImpl->getExtCost(I, Src);
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntrinsicCost(
 | 
						|
    Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
 | 
						|
    const User *U) const {
 | 
						|
  int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
 | 
						|
                                                      unsigned &JTSize) const {
 | 
						|
  return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getUserCost(const User *U,
 | 
						|
    ArrayRef<const Value *> Operands) const {
 | 
						|
  int Cost = TTIImpl->getUserCost(U, Operands);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::hasBranchDivergence() const {
 | 
						|
  return TTIImpl->hasBranchDivergence();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
 | 
						|
  return TTIImpl->isSourceOfDivergence(V);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
 | 
						|
  return TTIImpl->isAlwaysUniform(V);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getFlatAddressSpace() const {
 | 
						|
  return TTIImpl->getFlatAddressSpace();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::collectFlatAddressOperands(
 | 
						|
  SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const  {
 | 
						|
  return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
 | 
						|
  IntrinsicInst *II, Value *OldV, Value *NewV) const {
 | 
						|
  return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
 | 
						|
  return TTIImpl->isLoweredToCall(F);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isHardwareLoopProfitable(
 | 
						|
  Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
 | 
						|
  TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
 | 
						|
  return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
 | 
						|
}
 | 
						|
 | 
						|
void TargetTransformInfo::getUnrollingPreferences(
 | 
						|
    Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
 | 
						|
  return TTIImpl->getUnrollingPreferences(L, SE, UP);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
 | 
						|
  return TTIImpl->isLegalAddImmediate(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return TTIImpl->isLegalICmpImmediate(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
 | 
						|
                                                int64_t BaseOffset,
 | 
						|
                                                bool HasBaseReg,
 | 
						|
                                                int64_t Scale,
 | 
						|
                                                unsigned AddrSpace,
 | 
						|
                                                Instruction *I) const {
 | 
						|
  return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
 | 
						|
                                        Scale, AddrSpace, I);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
 | 
						|
  return TTIImpl->isLSRCostLess(C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::canMacroFuseCmp() const {
 | 
						|
  return TTIImpl->canMacroFuseCmp();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
 | 
						|
                                     ScalarEvolution *SE, LoopInfo *LI,
 | 
						|
                                     DominatorTree *DT, AssumptionCache *AC,
 | 
						|
                                     TargetLibraryInfo *LibInfo) const {
 | 
						|
  return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldFavorPostInc() const {
 | 
						|
  return TTIImpl->shouldFavorPostInc();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
 | 
						|
  return TTIImpl->shouldFavorBackedgeIndex(L);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedStore(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedLoad(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalNTStore(Type *DataType,
 | 
						|
                                         llvm::Align Alignment) const {
 | 
						|
  return TTIImpl->isLegalNTStore(DataType, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalNTLoad(Type *DataType,
 | 
						|
                                        llvm::Align Alignment) const {
 | 
						|
  return TTIImpl->isLegalNTLoad(DataType, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedGather(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedScatter(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedCompressStore(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
 | 
						|
  return TTIImpl->isLegalMaskedExpandLoad(DataType);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
 | 
						|
  return TTIImpl->hasDivRemOp(DataType, IsSigned);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
 | 
						|
                                             unsigned AddrSpace) const {
 | 
						|
  return TTIImpl->hasVolatileVariant(I, AddrSpace);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::prefersVectorizedAddressing() const {
 | 
						|
  return TTIImpl->prefersVectorizedAddressing();
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 | 
						|
                                              int64_t BaseOffset,
 | 
						|
                                              bool HasBaseReg,
 | 
						|
                                              int64_t Scale,
 | 
						|
                                              unsigned AddrSpace) const {
 | 
						|
  int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
 | 
						|
                                           Scale, AddrSpace);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::LSRWithInstrQueries() const {
 | 
						|
  return TTIImpl->LSRWithInstrQueries();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  return TTIImpl->isTruncateFree(Ty1, Ty2);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
 | 
						|
  return TTIImpl->isProfitableToHoist(I);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
 | 
						|
 | 
						|
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
 | 
						|
  return TTIImpl->isTypeLegal(Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldBuildLookupTables() const {
 | 
						|
  return TTIImpl->shouldBuildLookupTables();
 | 
						|
}
 | 
						|
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
 | 
						|
  return TTIImpl->shouldBuildLookupTablesForConstant(C);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
 | 
						|
  return TTIImpl->useColdCCForColdCall(F);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::
 | 
						|
getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
 | 
						|
  return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::
 | 
						|
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
 | 
						|
                                 unsigned VF) const {
 | 
						|
  return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
 | 
						|
  return TTIImpl->supportsEfficientVectorElementLoadStore();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
 | 
						|
  return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::MemCmpExpansionOptions
 | 
						|
TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
 | 
						|
  return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
 | 
						|
  return TTIImpl->enableInterleavedAccessVectorization();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
 | 
						|
  return TTIImpl->enableMaskedInterleavedAccessVectorization();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
 | 
						|
  return TTIImpl->isFPVectorizationPotentiallyUnsafe();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
 | 
						|
                                                         unsigned BitWidth,
 | 
						|
                                                         unsigned AddressSpace,
 | 
						|
                                                         unsigned Alignment,
 | 
						|
                                                         bool *Fast) const {
 | 
						|
  return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
 | 
						|
                                                 Alignment, Fast);
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::PopcntSupportKind
 | 
						|
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
 | 
						|
  return TTIImpl->getPopcntSupport(IntTyWidthInBit);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
 | 
						|
  return TTIImpl->haveFastSqrt(Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
 | 
						|
  return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
 | 
						|
  int Cost = TTIImpl->getFPOpCost(Ty);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
 | 
						|
                                               const APInt &Imm,
 | 
						|
                                               Type *Ty) const {
 | 
						|
  int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
 | 
						|
  int Cost = TTIImpl->getIntImmCost(Imm, Ty);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
 | 
						|
                                       const APInt &Imm, Type *Ty) const {
 | 
						|
  int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | 
						|
                                       const APInt &Imm, Type *Ty) const {
 | 
						|
  int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
 | 
						|
  return TTIImpl->getNumberOfRegisters(Vector);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
 | 
						|
  return TTIImpl->getRegisterBitWidth(Vector);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
 | 
						|
  return TTIImpl->getMinVectorRegisterBitWidth();
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
 | 
						|
  return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
 | 
						|
  return TTIImpl->getMinimumVF(ElemWidth);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
 | 
						|
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
 | 
						|
  return TTIImpl->shouldConsiderAddressTypePromotion(
 | 
						|
      I, AllowPromotionWithoutCommonHeader);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getCacheLineSize() const {
 | 
						|
  return TTIImpl->getCacheLineSize();
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
 | 
						|
  const {
 | 
						|
  return TTIImpl->getCacheSize(Level);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
 | 
						|
  CacheLevel Level) const {
 | 
						|
  return TTIImpl->getCacheAssociativity(Level);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getPrefetchDistance() const {
 | 
						|
  return TTIImpl->getPrefetchDistance();
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getMinPrefetchStride() const {
 | 
						|
  return TTIImpl->getMinPrefetchStride();
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
 | 
						|
  return TTIImpl->getMaxPrefetchIterationsAhead();
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
 | 
						|
  return TTIImpl->getMaxInterleaveFactor(VF);
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::OperandValueKind
 | 
						|
TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
 | 
						|
  OperandValueKind OpInfo = OK_AnyValue;
 | 
						|
  OpProps = OP_None;
 | 
						|
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    if (CI->getValue().isPowerOf2())
 | 
						|
      OpProps = OP_PowerOf2;
 | 
						|
    return OK_UniformConstantValue;
 | 
						|
  }
 | 
						|
 | 
						|
  // A broadcast shuffle creates a uniform value.
 | 
						|
  // TODO: Add support for non-zero index broadcasts.
 | 
						|
  // TODO: Add support for different source vector width.
 | 
						|
  if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
 | 
						|
    if (ShuffleInst->isZeroEltSplat())
 | 
						|
      OpInfo = OK_UniformValue;
 | 
						|
 | 
						|
  const Value *Splat = getSplatValue(V);
 | 
						|
 | 
						|
  // Check for a splat of a constant or for a non uniform vector of constants
 | 
						|
  // and check if the constant(s) are all powers of two.
 | 
						|
  if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
 | 
						|
    OpInfo = OK_NonUniformConstantValue;
 | 
						|
    if (Splat) {
 | 
						|
      OpInfo = OK_UniformConstantValue;
 | 
						|
      if (auto *CI = dyn_cast<ConstantInt>(Splat))
 | 
						|
        if (CI->getValue().isPowerOf2())
 | 
						|
          OpProps = OP_PowerOf2;
 | 
						|
    } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
 | 
						|
      OpProps = OP_PowerOf2;
 | 
						|
      for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
 | 
						|
        if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
 | 
						|
          if (CI->getValue().isPowerOf2())
 | 
						|
            continue;
 | 
						|
        OpProps = OP_None;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for a splat of a uniform value. This is not loop aware, so return
 | 
						|
  // true only for the obviously uniform cases (argument, globalvalue)
 | 
						|
  if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
 | 
						|
    OpInfo = OK_UniformValue;
 | 
						|
 | 
						|
  return OpInfo;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
 | 
						|
    OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
 | 
						|
    OperandValueProperties Opd2PropInfo,
 | 
						|
    ArrayRef<const Value *> Args) const {
 | 
						|
  int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
 | 
						|
                                             Opd1PropInfo, Opd2PropInfo, Args);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
 | 
						|
                                        Type *SubTp) const {
 | 
						|
  int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
 | 
						|
                                 Type *Src, const Instruction *I) const {
 | 
						|
  assert ((I == nullptr || I->getOpcode() == Opcode) &&
 | 
						|
          "Opcode should reflect passed instruction.");
 | 
						|
  int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 | 
						|
                                                  VectorType *VecTy,
 | 
						|
                                                  unsigned Index) const {
 | 
						|
  int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
 | 
						|
  int Cost = TTIImpl->getCFInstrCost(Opcode);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                 Type *CondTy, const Instruction *I) const {
 | 
						|
  assert ((I == nullptr || I->getOpcode() == Opcode) &&
 | 
						|
          "Opcode should reflect passed instruction.");
 | 
						|
  int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                            unsigned Index) const {
 | 
						|
  int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                         unsigned Alignment,
 | 
						|
                                         unsigned AddressSpace,
 | 
						|
                                         const Instruction *I) const {
 | 
						|
  assert ((I == nullptr || I->getOpcode() == Opcode) &&
 | 
						|
          "Opcode should reflect passed instruction.");
 | 
						|
  int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                               unsigned Alignment,
 | 
						|
                                               unsigned AddressSpace) const {
 | 
						|
  int Cost =
 | 
						|
      TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
 | 
						|
                                                Value *Ptr, bool VariableMask,
 | 
						|
                                                unsigned Alignment) const {
 | 
						|
  int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
 | 
						|
                                             Alignment);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getInterleavedMemoryOpCost(
 | 
						|
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 | 
						|
    unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
 | 
						|
    bool UseMaskForGaps) const {
 | 
						|
  int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | 
						|
                                                 Alignment, AddressSpace,
 | 
						|
                                                 UseMaskForCond,
 | 
						|
                                                 UseMaskForGaps);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
 | 
						|
                                    ArrayRef<Type *> Tys, FastMathFlags FMF,
 | 
						|
                                    unsigned ScalarizationCostPassed) const {
 | 
						|
  int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
 | 
						|
                                            ScalarizationCostPassed);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
 | 
						|
           ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
 | 
						|
  int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
 | 
						|
                                          ArrayRef<Type *> Tys) const {
 | 
						|
  int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
 | 
						|
  return TTIImpl->getNumberOfParts(Tp);
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
 | 
						|
                                                   ScalarEvolution *SE,
 | 
						|
                                                   const SCEV *Ptr) const {
 | 
						|
  int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
 | 
						|
  int Cost = TTIImpl->getMemcpyCost(I);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
 | 
						|
                                                    bool IsPairwiseForm) const {
 | 
						|
  int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
 | 
						|
                                                bool IsPairwiseForm,
 | 
						|
                                                bool IsUnsigned) const {
 | 
						|
  int Cost =
 | 
						|
      TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
 | 
						|
  assert(Cost >= 0 && "TTI should not produce negative costs!");
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
 | 
						|
  return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
 | 
						|
                                             MemIntrinsicInfo &Info) const {
 | 
						|
  return TTIImpl->getTgtMemIntrinsic(Inst, Info);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
 | 
						|
  return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
 | 
						|
}
 | 
						|
 | 
						|
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
 | 
						|
    IntrinsicInst *Inst, Type *ExpectedType) const {
 | 
						|
  return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
 | 
						|
}
 | 
						|
 | 
						|
Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
 | 
						|
                                                     Value *Length,
 | 
						|
                                                     unsigned SrcAlign,
 | 
						|
                                                     unsigned DestAlign) const {
 | 
						|
  return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
 | 
						|
                                            DestAlign);
 | 
						|
}
 | 
						|
 | 
						|
void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
 | 
						|
    SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 | 
						|
    unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
 | 
						|
  TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
 | 
						|
                                             SrcAlign, DestAlign);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
 | 
						|
                                              const Function *Callee) const {
 | 
						|
  return TTIImpl->areInlineCompatible(Caller, Callee);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::areFunctionArgsABICompatible(
 | 
						|
    const Function *Caller, const Function *Callee,
 | 
						|
    SmallPtrSetImpl<Argument *> &Args) const {
 | 
						|
  return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
 | 
						|
                                             Type *Ty) const {
 | 
						|
  return TTIImpl->isIndexedLoadLegal(Mode, Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
 | 
						|
                                              Type *Ty) const {
 | 
						|
  return TTIImpl->isIndexedStoreLegal(Mode, Ty);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
 | 
						|
  return TTIImpl->getLoadStoreVecRegBitWidth(AS);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
 | 
						|
  return TTIImpl->isLegalToVectorizeLoad(LI);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
 | 
						|
  return TTIImpl->isLegalToVectorizeStore(SI);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
 | 
						|
    unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
 | 
						|
  return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
 | 
						|
                                              AddrSpace);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
 | 
						|
    unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
 | 
						|
  return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
 | 
						|
                                               AddrSpace);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
 | 
						|
                                                  unsigned LoadSize,
 | 
						|
                                                  unsigned ChainSizeInBytes,
 | 
						|
                                                  VectorType *VecTy) const {
 | 
						|
  return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
 | 
						|
                                                   unsigned StoreSize,
 | 
						|
                                                   unsigned ChainSizeInBytes,
 | 
						|
                                                   VectorType *VecTy) const {
 | 
						|
  return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
 | 
						|
                                                Type *Ty, ReductionFlags Flags) const {
 | 
						|
  return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
 | 
						|
}
 | 
						|
 | 
						|
bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
 | 
						|
  return TTIImpl->shouldExpandReduction(II);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
 | 
						|
  return TTIImpl->getGISelRematGlobalCost();
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
 | 
						|
  return TTIImpl->getInstructionLatency(I);
 | 
						|
}
 | 
						|
 | 
						|
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
 | 
						|
                                     unsigned Level) {
 | 
						|
  // We don't need a shuffle if we just want to have element 0 in position 0 of
 | 
						|
  // the vector.
 | 
						|
  if (!SI && Level == 0 && IsLeft)
 | 
						|
    return true;
 | 
						|
  else if (!SI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
 | 
						|
 | 
						|
  // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
 | 
						|
  // we look at the left or right side.
 | 
						|
  for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
 | 
						|
    Mask[i] = val;
 | 
						|
 | 
						|
  SmallVector<int, 16> ActualMask = SI->getShuffleMask();
 | 
						|
  return Mask == ActualMask;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Kind of the reduction data.
 | 
						|
enum ReductionKind {
 | 
						|
  RK_None,           /// Not a reduction.
 | 
						|
  RK_Arithmetic,     /// Binary reduction data.
 | 
						|
  RK_MinMax,         /// Min/max reduction data.
 | 
						|
  RK_UnsignedMinMax, /// Unsigned min/max reduction data.
 | 
						|
};
 | 
						|
/// Contains opcode + LHS/RHS parts of the reduction operations.
 | 
						|
struct ReductionData {
 | 
						|
  ReductionData() = delete;
 | 
						|
  ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
 | 
						|
      : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
 | 
						|
    assert(Kind != RK_None && "expected binary or min/max reduction only.");
 | 
						|
  }
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  Value *LHS = nullptr;
 | 
						|
  Value *RHS = nullptr;
 | 
						|
  ReductionKind Kind = RK_None;
 | 
						|
  bool hasSameData(ReductionData &RD) const {
 | 
						|
    return Kind == RD.Kind && Opcode == RD.Opcode;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static Optional<ReductionData> getReductionData(Instruction *I) {
 | 
						|
  Value *L, *R;
 | 
						|
  if (m_BinOp(m_Value(L), m_Value(R)).match(I))
 | 
						|
    return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
 | 
						|
  if (auto *SI = dyn_cast<SelectInst>(I)) {
 | 
						|
    if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_SMax(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
 | 
						|
      auto *CI = cast<CmpInst>(SI->getCondition());
 | 
						|
      return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
 | 
						|
    }
 | 
						|
    if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
 | 
						|
        m_UMax(m_Value(L), m_Value(R)).match(SI)) {
 | 
						|
      auto *CI = cast<CmpInst>(SI->getCondition());
 | 
						|
      return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return llvm::None;
 | 
						|
}
 | 
						|
 | 
						|
static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
 | 
						|
                                                   unsigned Level,
 | 
						|
                                                   unsigned NumLevels) {
 | 
						|
  // Match one level of pairwise operations.
 | 
						|
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | 
						|
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | 
						|
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | 
						|
  if (!I)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  assert(I->getType()->isVectorTy() && "Expecting a vector type");
 | 
						|
 | 
						|
  Optional<ReductionData> RD = getReductionData(I);
 | 
						|
  if (!RD)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
 | 
						|
  if (!LS && Level)
 | 
						|
    return RK_None;
 | 
						|
  ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
 | 
						|
  if (!RS && Level)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // On level 0 we can omit one shufflevector instruction.
 | 
						|
  if (!Level && !RS && !LS)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // Shuffle inputs must match.
 | 
						|
  Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
 | 
						|
  Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
 | 
						|
  Value *NextLevelOp = nullptr;
 | 
						|
  if (NextLevelOpR && NextLevelOpL) {
 | 
						|
    // If we have two shuffles their operands must match.
 | 
						|
    if (NextLevelOpL != NextLevelOpR)
 | 
						|
      return RK_None;
 | 
						|
 | 
						|
    NextLevelOp = NextLevelOpL;
 | 
						|
  } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
 | 
						|
    // On the first level we can omit the shufflevector <0, undef,...>. So the
 | 
						|
    // input to the other shufflevector <1, undef> must match with one of the
 | 
						|
    // inputs to the current binary operation.
 | 
						|
    // Example:
 | 
						|
    //  %NextLevelOpL = shufflevector %R, <1, undef ...>
 | 
						|
    //  %BinOp        = fadd          %NextLevelOpL, %R
 | 
						|
    if (NextLevelOpL && NextLevelOpL != RD->RHS)
 | 
						|
      return RK_None;
 | 
						|
    else if (NextLevelOpR && NextLevelOpR != RD->LHS)
 | 
						|
      return RK_None;
 | 
						|
 | 
						|
    NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
 | 
						|
  } else
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // Check that the next levels binary operation exists and matches with the
 | 
						|
  // current one.
 | 
						|
  if (Level + 1 != NumLevels) {
 | 
						|
    Optional<ReductionData> NextLevelRD =
 | 
						|
        getReductionData(cast<Instruction>(NextLevelOp));
 | 
						|
    if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
 | 
						|
      return RK_None;
 | 
						|
  }
 | 
						|
 | 
						|
  // Shuffle mask for pairwise operation must match.
 | 
						|
  if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
 | 
						|
    if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
 | 
						|
      return RK_None;
 | 
						|
  } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
 | 
						|
    if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
 | 
						|
      return RK_None;
 | 
						|
  } else {
 | 
						|
    return RK_None;
 | 
						|
  }
 | 
						|
 | 
						|
  if (++Level == NumLevels)
 | 
						|
    return RD->Kind;
 | 
						|
 | 
						|
  // Match next level.
 | 
						|
  return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
 | 
						|
                                       NumLevels);
 | 
						|
}
 | 
						|
 | 
						|
static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
 | 
						|
                                            unsigned &Opcode, Type *&Ty) {
 | 
						|
  if (!EnableReduxCost)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // Need to extract the first element.
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | 
						|
  unsigned Idx = ~0u;
 | 
						|
  if (CI)
 | 
						|
    Idx = CI->getZExtValue();
 | 
						|
  if (Idx != 0)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
 | 
						|
  if (!RdxStart)
 | 
						|
    return RK_None;
 | 
						|
  Optional<ReductionData> RD = getReductionData(RdxStart);
 | 
						|
  if (!RD)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  Type *VecTy = RdxStart->getType();
 | 
						|
  unsigned NumVecElems = VecTy->getVectorNumElements();
 | 
						|
  if (!isPowerOf2_32(NumVecElems))
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // We look for a sequence of shuffle,shuffle,add triples like the following
 | 
						|
  // that builds a pairwise reduction tree.
 | 
						|
  //
 | 
						|
  //  (X0, X1, X2, X3)
 | 
						|
  //   (X0 + X1, X2 + X3, undef, undef)
 | 
						|
  //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
 | 
						|
  //
 | 
						|
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | 
						|
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | 
						|
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | 
						|
  // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
 | 
						|
  // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | 
						|
  //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | 
						|
  // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
 | 
						|
  // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | 
						|
  if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
 | 
						|
      RK_None)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  Opcode = RD->Opcode;
 | 
						|
  Ty = VecTy;
 | 
						|
 | 
						|
  return RD->Kind;
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<Value *, ShuffleVectorInst *>
 | 
						|
getShuffleAndOtherOprd(Value *L, Value *R) {
 | 
						|
  ShuffleVectorInst *S = nullptr;
 | 
						|
 | 
						|
  if ((S = dyn_cast<ShuffleVectorInst>(L)))
 | 
						|
    return std::make_pair(R, S);
 | 
						|
 | 
						|
  S = dyn_cast<ShuffleVectorInst>(R);
 | 
						|
  return std::make_pair(L, S);
 | 
						|
}
 | 
						|
 | 
						|
static ReductionKind
 | 
						|
matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
 | 
						|
                              unsigned &Opcode, Type *&Ty) {
 | 
						|
  if (!EnableReduxCost)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // Need to extract the first element.
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | 
						|
  unsigned Idx = ~0u;
 | 
						|
  if (CI)
 | 
						|
    Idx = CI->getZExtValue();
 | 
						|
  if (Idx != 0)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
 | 
						|
  if (!RdxStart)
 | 
						|
    return RK_None;
 | 
						|
  Optional<ReductionData> RD = getReductionData(RdxStart);
 | 
						|
  if (!RD)
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  Type *VecTy = ReduxRoot->getOperand(0)->getType();
 | 
						|
  unsigned NumVecElems = VecTy->getVectorNumElements();
 | 
						|
  if (!isPowerOf2_32(NumVecElems))
 | 
						|
    return RK_None;
 | 
						|
 | 
						|
  // We look for a sequence of shuffles and adds like the following matching one
 | 
						|
  // fadd, shuffle vector pair at a time.
 | 
						|
  //
 | 
						|
  // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
 | 
						|
  //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
 | 
						|
  // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
 | 
						|
  // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
 | 
						|
  //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | 
						|
  // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
 | 
						|
  // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | 
						|
 | 
						|
  unsigned MaskStart = 1;
 | 
						|
  Instruction *RdxOp = RdxStart;
 | 
						|
  SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
 | 
						|
  unsigned NumVecElemsRemain = NumVecElems;
 | 
						|
  while (NumVecElemsRemain - 1) {
 | 
						|
    // Check for the right reduction operation.
 | 
						|
    if (!RdxOp)
 | 
						|
      return RK_None;
 | 
						|
    Optional<ReductionData> RDLevel = getReductionData(RdxOp);
 | 
						|
    if (!RDLevel || !RDLevel->hasSameData(*RD))
 | 
						|
      return RK_None;
 | 
						|
 | 
						|
    Value *NextRdxOp;
 | 
						|
    ShuffleVectorInst *Shuffle;
 | 
						|
    std::tie(NextRdxOp, Shuffle) =
 | 
						|
        getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
 | 
						|
 | 
						|
    // Check the current reduction operation and the shuffle use the same value.
 | 
						|
    if (Shuffle == nullptr)
 | 
						|
      return RK_None;
 | 
						|
    if (Shuffle->getOperand(0) != NextRdxOp)
 | 
						|
      return RK_None;
 | 
						|
 | 
						|
    // Check that shuffle masks matches.
 | 
						|
    for (unsigned j = 0; j != MaskStart; ++j)
 | 
						|
      ShuffleMask[j] = MaskStart + j;
 | 
						|
    // Fill the rest of the mask with -1 for undef.
 | 
						|
    std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
 | 
						|
 | 
						|
    SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
 | 
						|
    if (ShuffleMask != Mask)
 | 
						|
      return RK_None;
 | 
						|
 | 
						|
    RdxOp = dyn_cast<Instruction>(NextRdxOp);
 | 
						|
    NumVecElemsRemain /= 2;
 | 
						|
    MaskStart *= 2;
 | 
						|
  }
 | 
						|
 | 
						|
  Opcode = RD->Opcode;
 | 
						|
  Ty = VecTy;
 | 
						|
  return RD->Kind;
 | 
						|
}
 | 
						|
 | 
						|
int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return getUserCost(I);
 | 
						|
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::PHI:
 | 
						|
  case Instruction::Br: {
 | 
						|
    return getCFInstrCost(I->getOpcode());
 | 
						|
  }
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::FAdd:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::FMul:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::FDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::FRem:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor: {
 | 
						|
    TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
 | 
						|
    TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
 | 
						|
    Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
 | 
						|
    Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
 | 
						|
    SmallVector<const Value *, 2> Operands(I->operand_values());
 | 
						|
    return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
 | 
						|
                                  Op1VP, Op2VP, Operands);
 | 
						|
  }
 | 
						|
  case Instruction::FNeg: {
 | 
						|
    TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
 | 
						|
    TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
 | 
						|
    Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
 | 
						|
    Op2VK = OK_AnyValue;
 | 
						|
    Op2VP = OP_None;
 | 
						|
    SmallVector<const Value *, 2> Operands(I->operand_values());
 | 
						|
    return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
 | 
						|
                                  Op1VP, Op2VP, Operands);
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    const SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    Type *CondTy = SI->getCondition()->getType();
 | 
						|
    return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
 | 
						|
  }
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp: {
 | 
						|
    Type *ValTy = I->getOperand(0)->getType();
 | 
						|
    return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
 | 
						|
  }
 | 
						|
  case Instruction::Store: {
 | 
						|
    const StoreInst *SI = cast<StoreInst>(I);
 | 
						|
    Type *ValTy = SI->getValueOperand()->getType();
 | 
						|
    return getMemoryOpCost(I->getOpcode(), ValTy,
 | 
						|
                                SI->getAlignment(),
 | 
						|
                                SI->getPointerAddressSpace(), I);
 | 
						|
  }
 | 
						|
  case Instruction::Load: {
 | 
						|
    const LoadInst *LI = cast<LoadInst>(I);
 | 
						|
    return getMemoryOpCost(I->getOpcode(), I->getType(),
 | 
						|
                                LI->getAlignment(),
 | 
						|
                                LI->getPointerAddressSpace(), I);
 | 
						|
  }
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast: {
 | 
						|
    Type *SrcTy = I->getOperand(0)->getType();
 | 
						|
    return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
 | 
						|
  }
 | 
						|
  case Instruction::ExtractElement: {
 | 
						|
    const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    unsigned Idx = -1;
 | 
						|
    if (CI)
 | 
						|
      Idx = CI->getZExtValue();
 | 
						|
 | 
						|
    // Try to match a reduction sequence (series of shufflevector and vector
 | 
						|
    // adds followed by a extractelement).
 | 
						|
    unsigned ReduxOpCode;
 | 
						|
    Type *ReduxType;
 | 
						|
 | 
						|
    switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
 | 
						|
    case RK_Arithmetic:
 | 
						|
      return getArithmeticReductionCost(ReduxOpCode, ReduxType,
 | 
						|
                                             /*IsPairwiseForm=*/false);
 | 
						|
    case RK_MinMax:
 | 
						|
      return getMinMaxReductionCost(
 | 
						|
          ReduxType, CmpInst::makeCmpResultType(ReduxType),
 | 
						|
          /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
 | 
						|
    case RK_UnsignedMinMax:
 | 
						|
      return getMinMaxReductionCost(
 | 
						|
          ReduxType, CmpInst::makeCmpResultType(ReduxType),
 | 
						|
          /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
 | 
						|
    case RK_None:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
 | 
						|
    case RK_Arithmetic:
 | 
						|
      return getArithmeticReductionCost(ReduxOpCode, ReduxType,
 | 
						|
                                             /*IsPairwiseForm=*/true);
 | 
						|
    case RK_MinMax:
 | 
						|
      return getMinMaxReductionCost(
 | 
						|
          ReduxType, CmpInst::makeCmpResultType(ReduxType),
 | 
						|
          /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
 | 
						|
    case RK_UnsignedMinMax:
 | 
						|
      return getMinMaxReductionCost(
 | 
						|
          ReduxType, CmpInst::makeCmpResultType(ReduxType),
 | 
						|
          /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
 | 
						|
    case RK_None:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return getVectorInstrCost(I->getOpcode(),
 | 
						|
                                   EEI->getOperand(0)->getType(), Idx);
 | 
						|
  }
 | 
						|
  case Instruction::InsertElement: {
 | 
						|
    const InsertElementInst * IE = cast<InsertElementInst>(I);
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
 | 
						|
    unsigned Idx = -1;
 | 
						|
    if (CI)
 | 
						|
      Idx = CI->getZExtValue();
 | 
						|
    return getVectorInstrCost(I->getOpcode(),
 | 
						|
                                   IE->getType(), Idx);
 | 
						|
  }
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    return 0; // Model all ExtractValue nodes as free.
 | 
						|
  case Instruction::ShuffleVector: {
 | 
						|
    const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | 
						|
    Type *Ty = Shuffle->getType();
 | 
						|
    Type *SrcTy = Shuffle->getOperand(0)->getType();
 | 
						|
 | 
						|
    // TODO: Identify and add costs for insert subvector, etc.
 | 
						|
    int SubIndex;
 | 
						|
    if (Shuffle->isExtractSubvectorMask(SubIndex))
 | 
						|
      return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
 | 
						|
 | 
						|
    if (Shuffle->changesLength())
 | 
						|
      return -1;
 | 
						|
 | 
						|
    if (Shuffle->isIdentity())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (Shuffle->isReverse())
 | 
						|
      return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
 | 
						|
 | 
						|
    if (Shuffle->isSelect())
 | 
						|
      return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
 | 
						|
 | 
						|
    if (Shuffle->isTranspose())
 | 
						|
      return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
 | 
						|
 | 
						|
    if (Shuffle->isZeroEltSplat())
 | 
						|
      return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
 | 
						|
 | 
						|
    if (Shuffle->isSingleSource())
 | 
						|
      return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
 | 
						|
 | 
						|
    return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
 | 
						|
  }
 | 
						|
  case Instruction::Call:
 | 
						|
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      SmallVector<Value *, 4> Args(II->arg_operands());
 | 
						|
 | 
						|
      FastMathFlags FMF;
 | 
						|
      if (auto *FPMO = dyn_cast<FPMathOperator>(II))
 | 
						|
        FMF = FPMO->getFastMathFlags();
 | 
						|
 | 
						|
      return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
 | 
						|
                                        Args, FMF);
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
  default:
 | 
						|
    // We don't have any information on this instruction.
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::Concept::~Concept() {}
 | 
						|
 | 
						|
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
 | 
						|
 | 
						|
TargetIRAnalysis::TargetIRAnalysis(
 | 
						|
    std::function<Result(const Function &)> TTICallback)
 | 
						|
    : TTICallback(std::move(TTICallback)) {}
 | 
						|
 | 
						|
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
 | 
						|
                                               FunctionAnalysisManager &) {
 | 
						|
  return TTICallback(F);
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey TargetIRAnalysis::Key;
 | 
						|
 | 
						|
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
 | 
						|
  return Result(F.getParent()->getDataLayout());
 | 
						|
}
 | 
						|
 | 
						|
// Register the basic pass.
 | 
						|
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
 | 
						|
                "Target Transform Information", false, true)
 | 
						|
char TargetTransformInfoWrapperPass::ID = 0;
 | 
						|
 | 
						|
void TargetTransformInfoWrapperPass::anchor() {}
 | 
						|
 | 
						|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
 | 
						|
    : ImmutablePass(ID) {
 | 
						|
  initializeTargetTransformInfoWrapperPassPass(
 | 
						|
      *PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
 | 
						|
    TargetIRAnalysis TIRA)
 | 
						|
    : ImmutablePass(ID), TIRA(std::move(TIRA)) {
 | 
						|
  initializeTargetTransformInfoWrapperPassPass(
 | 
						|
      *PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
 | 
						|
  FunctionAnalysisManager DummyFAM;
 | 
						|
  TTI = TIRA.run(F, DummyFAM);
 | 
						|
  return *TTI;
 | 
						|
}
 | 
						|
 | 
						|
ImmutablePass *
 | 
						|
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
 | 
						|
  return new TargetTransformInfoWrapperPass(std::move(TIRA));
 | 
						|
}
 |