forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1283 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1283 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstrProf.cpp - Instrumented profiling format support --------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains support for clang's instrumentation based PGO and
 | 
						|
// coverage.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ProfileData/InstrProf.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/ProfileData/InstrProfReader.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Compression.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/LEB128.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Path.h"
 | 
						|
#include "llvm/Support/SwapByteOrder.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <system_error>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> StaticFuncFullModulePrefix(
 | 
						|
    "static-func-full-module-prefix", cl::init(true), cl::Hidden,
 | 
						|
    cl::desc("Use full module build paths in the profile counter names for "
 | 
						|
             "static functions."));
 | 
						|
 | 
						|
// This option is tailored to users that have different top-level directory in
 | 
						|
// profile-gen and profile-use compilation. Users need to specific the number
 | 
						|
// of levels to strip. A value larger than the number of directories in the
 | 
						|
// source file will strip all the directory names and only leave the basename.
 | 
						|
//
 | 
						|
// Note current ThinLTO module importing for the indirect-calls assumes
 | 
						|
// the source directory name not being stripped. A non-zero option value here
 | 
						|
// can potentially prevent some inter-module indirect-call-promotions.
 | 
						|
static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
 | 
						|
    "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
 | 
						|
    cl::desc("Strip specified level of directory name from source path in "
 | 
						|
             "the profile counter name for static functions."));
 | 
						|
 | 
						|
static std::string getInstrProfErrString(instrprof_error Err) {
 | 
						|
  switch (Err) {
 | 
						|
  case instrprof_error::success:
 | 
						|
    return "Success";
 | 
						|
  case instrprof_error::eof:
 | 
						|
    return "End of File";
 | 
						|
  case instrprof_error::unrecognized_format:
 | 
						|
    return "Unrecognized instrumentation profile encoding format";
 | 
						|
  case instrprof_error::bad_magic:
 | 
						|
    return "Invalid instrumentation profile data (bad magic)";
 | 
						|
  case instrprof_error::bad_header:
 | 
						|
    return "Invalid instrumentation profile data (file header is corrupt)";
 | 
						|
  case instrprof_error::unsupported_version:
 | 
						|
    return "Unsupported instrumentation profile format version";
 | 
						|
  case instrprof_error::unsupported_hash_type:
 | 
						|
    return "Unsupported instrumentation profile hash type";
 | 
						|
  case instrprof_error::too_large:
 | 
						|
    return "Too much profile data";
 | 
						|
  case instrprof_error::truncated:
 | 
						|
    return "Truncated profile data";
 | 
						|
  case instrprof_error::malformed:
 | 
						|
    return "Malformed instrumentation profile data";
 | 
						|
  case instrprof_error::unknown_function:
 | 
						|
    return "No profile data available for function";
 | 
						|
  case instrprof_error::hash_mismatch:
 | 
						|
    return "Function control flow change detected (hash mismatch)";
 | 
						|
  case instrprof_error::count_mismatch:
 | 
						|
    return "Function basic block count change detected (counter mismatch)";
 | 
						|
  case instrprof_error::counter_overflow:
 | 
						|
    return "Counter overflow";
 | 
						|
  case instrprof_error::value_site_count_mismatch:
 | 
						|
    return "Function value site count change detected (counter mismatch)";
 | 
						|
  case instrprof_error::compress_failed:
 | 
						|
    return "Failed to compress data (zlib)";
 | 
						|
  case instrprof_error::uncompress_failed:
 | 
						|
    return "Failed to uncompress data (zlib)";
 | 
						|
  case instrprof_error::empty_raw_profile:
 | 
						|
    return "Empty raw profile file";
 | 
						|
  case instrprof_error::zlib_unavailable:
 | 
						|
    return "Profile uses zlib compression but the profile reader was built without zlib support";
 | 
						|
  }
 | 
						|
  llvm_unreachable("A value of instrprof_error has no message.");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// FIXME: This class is only here to support the transition to llvm::Error. It
 | 
						|
// will be removed once this transition is complete. Clients should prefer to
 | 
						|
// deal with the Error value directly, rather than converting to error_code.
 | 
						|
class InstrProfErrorCategoryType : public std::error_category {
 | 
						|
  const char *name() const noexcept override { return "llvm.instrprof"; }
 | 
						|
 | 
						|
  std::string message(int IE) const override {
 | 
						|
    return getInstrProfErrString(static_cast<instrprof_error>(IE));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
 | 
						|
 | 
						|
const std::error_category &llvm::instrprof_category() {
 | 
						|
  return *ErrorCategory;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
const char *InstrProfSectNameCommon[] = {
 | 
						|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | 
						|
  SectNameCommon,
 | 
						|
#include "llvm/ProfileData/InstrProfData.inc"
 | 
						|
};
 | 
						|
 | 
						|
const char *InstrProfSectNameCoff[] = {
 | 
						|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | 
						|
  SectNameCoff,
 | 
						|
#include "llvm/ProfileData/InstrProfData.inc"
 | 
						|
};
 | 
						|
 | 
						|
const char *InstrProfSectNamePrefix[] = {
 | 
						|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
 | 
						|
  Prefix,
 | 
						|
#include "llvm/ProfileData/InstrProfData.inc"
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
std::string getInstrProfSectionName(InstrProfSectKind IPSK,
 | 
						|
                                    Triple::ObjectFormatType OF,
 | 
						|
                                    bool AddSegmentInfo) {
 | 
						|
  std::string SectName;
 | 
						|
 | 
						|
  if (OF == Triple::MachO && AddSegmentInfo)
 | 
						|
    SectName = InstrProfSectNamePrefix[IPSK];
 | 
						|
 | 
						|
  if (OF == Triple::COFF)
 | 
						|
    SectName += InstrProfSectNameCoff[IPSK];
 | 
						|
  else
 | 
						|
    SectName += InstrProfSectNameCommon[IPSK];
 | 
						|
 | 
						|
  if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
 | 
						|
    SectName += ",regular,live_support";
 | 
						|
 | 
						|
  return SectName;
 | 
						|
}
 | 
						|
 | 
						|
void SoftInstrProfErrors::addError(instrprof_error IE) {
 | 
						|
  if (IE == instrprof_error::success)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (FirstError == instrprof_error::success)
 | 
						|
    FirstError = IE;
 | 
						|
 | 
						|
  switch (IE) {
 | 
						|
  case instrprof_error::hash_mismatch:
 | 
						|
    ++NumHashMismatches;
 | 
						|
    break;
 | 
						|
  case instrprof_error::count_mismatch:
 | 
						|
    ++NumCountMismatches;
 | 
						|
    break;
 | 
						|
  case instrprof_error::counter_overflow:
 | 
						|
    ++NumCounterOverflows;
 | 
						|
    break;
 | 
						|
  case instrprof_error::value_site_count_mismatch:
 | 
						|
    ++NumValueSiteCountMismatches;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not a soft error");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::string InstrProfError::message() const {
 | 
						|
  return getInstrProfErrString(Err);
 | 
						|
}
 | 
						|
 | 
						|
char InstrProfError::ID = 0;
 | 
						|
 | 
						|
std::string getPGOFuncName(StringRef RawFuncName,
 | 
						|
                           GlobalValue::LinkageTypes Linkage,
 | 
						|
                           StringRef FileName,
 | 
						|
                           uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
 | 
						|
  return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
 | 
						|
}
 | 
						|
 | 
						|
// Strip NumPrefix level of directory name from PathNameStr. If the number of
 | 
						|
// directory separators is less than NumPrefix, strip all the directories and
 | 
						|
// leave base file name only.
 | 
						|
static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
 | 
						|
  uint32_t Count = NumPrefix;
 | 
						|
  uint32_t Pos = 0, LastPos = 0;
 | 
						|
  for (auto & CI : PathNameStr) {
 | 
						|
    ++Pos;
 | 
						|
    if (llvm::sys::path::is_separator(CI)) {
 | 
						|
      LastPos = Pos;
 | 
						|
      --Count;
 | 
						|
    }
 | 
						|
    if (Count == 0)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return PathNameStr.substr(LastPos);
 | 
						|
}
 | 
						|
 | 
						|
// Return the PGOFuncName. This function has some special handling when called
 | 
						|
// in LTO optimization. The following only applies when calling in LTO passes
 | 
						|
// (when \c InLTO is true): LTO's internalization privatizes many global linkage
 | 
						|
// symbols. This happens after value profile annotation, but those internal
 | 
						|
// linkage functions should not have a source prefix.
 | 
						|
// Additionally, for ThinLTO mode, exported internal functions are promoted
 | 
						|
// and renamed. We need to ensure that the original internal PGO name is
 | 
						|
// used when computing the GUID that is compared against the profiled GUIDs.
 | 
						|
// To differentiate compiler generated internal symbols from original ones,
 | 
						|
// PGOFuncName meta data are created and attached to the original internal
 | 
						|
// symbols in the value profile annotation step
 | 
						|
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
 | 
						|
// data, its original linkage must be non-internal.
 | 
						|
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
 | 
						|
  if (!InLTO) {
 | 
						|
    StringRef FileName(F.getParent()->getSourceFileName());
 | 
						|
    uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
 | 
						|
    if (StripLevel < StaticFuncStripDirNamePrefix)
 | 
						|
      StripLevel = StaticFuncStripDirNamePrefix;
 | 
						|
    if (StripLevel)
 | 
						|
      FileName = stripDirPrefix(FileName, StripLevel);
 | 
						|
    return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
 | 
						|
  }
 | 
						|
 | 
						|
  // In LTO mode (when InLTO is true), first check if there is a meta data.
 | 
						|
  if (MDNode *MD = getPGOFuncNameMetadata(F)) {
 | 
						|
    StringRef S = cast<MDString>(MD->getOperand(0))->getString();
 | 
						|
    return S.str();
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is no meta data, the function must be a global before the value
 | 
						|
  // profile annotation pass. Its current linkage may be internal if it is
 | 
						|
  // internalized in LTO mode.
 | 
						|
  return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
 | 
						|
}
 | 
						|
 | 
						|
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
 | 
						|
  if (FileName.empty())
 | 
						|
    return PGOFuncName;
 | 
						|
  // Drop the file name including ':'. See also getPGOFuncName.
 | 
						|
  if (PGOFuncName.startswith(FileName))
 | 
						|
    PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
 | 
						|
  return PGOFuncName;
 | 
						|
}
 | 
						|
 | 
						|
// \p FuncName is the string used as profile lookup key for the function. A
 | 
						|
// symbol is created to hold the name. Return the legalized symbol name.
 | 
						|
std::string getPGOFuncNameVarName(StringRef FuncName,
 | 
						|
                                  GlobalValue::LinkageTypes Linkage) {
 | 
						|
  std::string VarName = getInstrProfNameVarPrefix();
 | 
						|
  VarName += FuncName;
 | 
						|
 | 
						|
  if (!GlobalValue::isLocalLinkage(Linkage))
 | 
						|
    return VarName;
 | 
						|
 | 
						|
  // Now fix up illegal chars in local VarName that may upset the assembler.
 | 
						|
  const char *InvalidChars = "-:<>/\"'";
 | 
						|
  size_t found = VarName.find_first_of(InvalidChars);
 | 
						|
  while (found != std::string::npos) {
 | 
						|
    VarName[found] = '_';
 | 
						|
    found = VarName.find_first_of(InvalidChars, found + 1);
 | 
						|
  }
 | 
						|
  return VarName;
 | 
						|
}
 | 
						|
 | 
						|
GlobalVariable *createPGOFuncNameVar(Module &M,
 | 
						|
                                     GlobalValue::LinkageTypes Linkage,
 | 
						|
                                     StringRef PGOFuncName) {
 | 
						|
  // We generally want to match the function's linkage, but available_externally
 | 
						|
  // and extern_weak both have the wrong semantics, and anything that doesn't
 | 
						|
  // need to link across compilation units doesn't need to be visible at all.
 | 
						|
  if (Linkage == GlobalValue::ExternalWeakLinkage)
 | 
						|
    Linkage = GlobalValue::LinkOnceAnyLinkage;
 | 
						|
  else if (Linkage == GlobalValue::AvailableExternallyLinkage)
 | 
						|
    Linkage = GlobalValue::LinkOnceODRLinkage;
 | 
						|
  else if (Linkage == GlobalValue::InternalLinkage ||
 | 
						|
           Linkage == GlobalValue::ExternalLinkage)
 | 
						|
    Linkage = GlobalValue::PrivateLinkage;
 | 
						|
 | 
						|
  auto *Value =
 | 
						|
      ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
 | 
						|
  auto FuncNameVar =
 | 
						|
      new GlobalVariable(M, Value->getType(), true, Linkage, Value,
 | 
						|
                         getPGOFuncNameVarName(PGOFuncName, Linkage));
 | 
						|
 | 
						|
  // Hide the symbol so that we correctly get a copy for each executable.
 | 
						|
  if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
 | 
						|
    FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
 | 
						|
  return FuncNameVar;
 | 
						|
}
 | 
						|
 | 
						|
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
 | 
						|
  return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
 | 
						|
}
 | 
						|
 | 
						|
Error InstrProfSymtab::create(Module &M, bool InLTO) {
 | 
						|
  for (Function &F : M) {
 | 
						|
    // Function may not have a name: like using asm("") to overwrite the name.
 | 
						|
    // Ignore in this case.
 | 
						|
    if (!F.hasName())
 | 
						|
      continue;
 | 
						|
    const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
 | 
						|
    if (Error E = addFuncName(PGOFuncName))
 | 
						|
      return E;
 | 
						|
    MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
 | 
						|
    // In ThinLTO, local function may have been promoted to global and have
 | 
						|
    // suffix added to the function name. We need to add the stripped function
 | 
						|
    // name to the symbol table so that we can find a match from profile.
 | 
						|
    if (InLTO) {
 | 
						|
      auto pos = PGOFuncName.find('.');
 | 
						|
      if (pos != std::string::npos) {
 | 
						|
        const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
 | 
						|
        if (Error E = addFuncName(OtherFuncName))
 | 
						|
          return E;
 | 
						|
        MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Sorted = false;
 | 
						|
  finalizeSymtab();
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
 | 
						|
  finalizeSymtab();
 | 
						|
  auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
 | 
						|
    return A.first < Address;
 | 
						|
  });
 | 
						|
  // Raw function pointer collected by value profiler may be from
 | 
						|
  // external functions that are not instrumented. They won't have
 | 
						|
  // mapping data to be used by the deserializer. Force the value to
 | 
						|
  // be 0 in this case.
 | 
						|
  if (It != AddrToMD5Map.end() && It->first == Address)
 | 
						|
    return (uint64_t)It->second;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
 | 
						|
                                bool doCompression, std::string &Result) {
 | 
						|
  assert(!NameStrs.empty() && "No name data to emit");
 | 
						|
 | 
						|
  uint8_t Header[16], *P = Header;
 | 
						|
  std::string UncompressedNameStrings =
 | 
						|
      join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
 | 
						|
 | 
						|
  assert(StringRef(UncompressedNameStrings)
 | 
						|
                 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
 | 
						|
         "PGO name is invalid (contains separator token)");
 | 
						|
 | 
						|
  unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
 | 
						|
  P += EncLen;
 | 
						|
 | 
						|
  auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
 | 
						|
    EncLen = encodeULEB128(CompressedLen, P);
 | 
						|
    P += EncLen;
 | 
						|
    char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
 | 
						|
    unsigned HeaderLen = P - &Header[0];
 | 
						|
    Result.append(HeaderStr, HeaderLen);
 | 
						|
    Result += InputStr;
 | 
						|
    return Error::success();
 | 
						|
  };
 | 
						|
 | 
						|
  if (!doCompression) {
 | 
						|
    return WriteStringToResult(0, UncompressedNameStrings);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallString<128> CompressedNameStrings;
 | 
						|
  Error E = zlib::compress(StringRef(UncompressedNameStrings),
 | 
						|
                           CompressedNameStrings, zlib::BestSizeCompression);
 | 
						|
  if (E) {
 | 
						|
    consumeError(std::move(E));
 | 
						|
    return make_error<InstrProfError>(instrprof_error::compress_failed);
 | 
						|
  }
 | 
						|
 | 
						|
  return WriteStringToResult(CompressedNameStrings.size(),
 | 
						|
                             CompressedNameStrings);
 | 
						|
}
 | 
						|
 | 
						|
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
 | 
						|
  auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
 | 
						|
  StringRef NameStr =
 | 
						|
      Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
 | 
						|
  return NameStr;
 | 
						|
}
 | 
						|
 | 
						|
Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
 | 
						|
                                std::string &Result, bool doCompression) {
 | 
						|
  std::vector<std::string> NameStrs;
 | 
						|
  for (auto *NameVar : NameVars) {
 | 
						|
    NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
 | 
						|
  }
 | 
						|
  return collectPGOFuncNameStrings(
 | 
						|
      NameStrs, zlib::isAvailable() && doCompression, Result);
 | 
						|
}
 | 
						|
 | 
						|
Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
 | 
						|
  const uint8_t *P = NameStrings.bytes_begin();
 | 
						|
  const uint8_t *EndP = NameStrings.bytes_end();
 | 
						|
  while (P < EndP) {
 | 
						|
    uint32_t N;
 | 
						|
    uint64_t UncompressedSize = decodeULEB128(P, &N);
 | 
						|
    P += N;
 | 
						|
    uint64_t CompressedSize = decodeULEB128(P, &N);
 | 
						|
    P += N;
 | 
						|
    bool isCompressed = (CompressedSize != 0);
 | 
						|
    SmallString<128> UncompressedNameStrings;
 | 
						|
    StringRef NameStrings;
 | 
						|
    if (isCompressed) {
 | 
						|
      if (!llvm::zlib::isAvailable())
 | 
						|
        return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
 | 
						|
 | 
						|
      StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
 | 
						|
                                      CompressedSize);
 | 
						|
      if (Error E =
 | 
						|
              zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
 | 
						|
                               UncompressedSize)) {
 | 
						|
        consumeError(std::move(E));
 | 
						|
        return make_error<InstrProfError>(instrprof_error::uncompress_failed);
 | 
						|
      }
 | 
						|
      P += CompressedSize;
 | 
						|
      NameStrings = StringRef(UncompressedNameStrings.data(),
 | 
						|
                              UncompressedNameStrings.size());
 | 
						|
    } else {
 | 
						|
      NameStrings =
 | 
						|
          StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
 | 
						|
      P += UncompressedSize;
 | 
						|
    }
 | 
						|
    // Now parse the name strings.
 | 
						|
    SmallVector<StringRef, 0> Names;
 | 
						|
    NameStrings.split(Names, getInstrProfNameSeparator());
 | 
						|
    for (StringRef &Name : Names)
 | 
						|
      if (Error E = Symtab.addFuncName(Name))
 | 
						|
        return E;
 | 
						|
 | 
						|
    while (P < EndP && *P == 0)
 | 
						|
      P++;
 | 
						|
  }
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::accumuateCounts(CountSumOrPercent &Sum) const {
 | 
						|
  uint64_t FuncSum = 0;
 | 
						|
  Sum.NumEntries += Counts.size();
 | 
						|
  for (size_t F = 0, E = Counts.size(); F < E; ++F)
 | 
						|
    FuncSum += Counts[F];
 | 
						|
  Sum.CountSum += FuncSum;
 | 
						|
 | 
						|
  for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
 | 
						|
    uint64_t KindSum = 0;
 | 
						|
    uint32_t NumValueSites = getNumValueSites(VK);
 | 
						|
    for (size_t I = 0; I < NumValueSites; ++I) {
 | 
						|
      uint32_t NV = getNumValueDataForSite(VK, I);
 | 
						|
      std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
 | 
						|
      for (uint32_t V = 0; V < NV; V++)
 | 
						|
        KindSum += VD[V].Count;
 | 
						|
    }
 | 
						|
    Sum.ValueCounts[VK] += KindSum;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
 | 
						|
                                       uint32_t ValueKind,
 | 
						|
                                       OverlapStats &Overlap,
 | 
						|
                                       OverlapStats &FuncLevelOverlap) {
 | 
						|
  this->sortByTargetValues();
 | 
						|
  Input.sortByTargetValues();
 | 
						|
  double Score = 0.0f, FuncLevelScore = 0.0f;
 | 
						|
  auto I = ValueData.begin();
 | 
						|
  auto IE = ValueData.end();
 | 
						|
  auto J = Input.ValueData.begin();
 | 
						|
  auto JE = Input.ValueData.end();
 | 
						|
  while (I != IE && J != JE) {
 | 
						|
    if (I->Value == J->Value) {
 | 
						|
      Score += OverlapStats::score(I->Count, J->Count,
 | 
						|
                                   Overlap.Base.ValueCounts[ValueKind],
 | 
						|
                                   Overlap.Test.ValueCounts[ValueKind]);
 | 
						|
      FuncLevelScore += OverlapStats::score(
 | 
						|
          I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
 | 
						|
          FuncLevelOverlap.Test.ValueCounts[ValueKind]);
 | 
						|
      ++I;
 | 
						|
    } else if (I->Value < J->Value) {
 | 
						|
      ++I;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ++J;
 | 
						|
  }
 | 
						|
  Overlap.Overlap.ValueCounts[ValueKind] += Score;
 | 
						|
  FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
 | 
						|
}
 | 
						|
 | 
						|
// Return false on mismatch.
 | 
						|
void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
 | 
						|
                                           InstrProfRecord &Other,
 | 
						|
                                           OverlapStats &Overlap,
 | 
						|
                                           OverlapStats &FuncLevelOverlap) {
 | 
						|
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
 | 
						|
  assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
 | 
						|
  if (!ThisNumValueSites)
 | 
						|
    return;
 | 
						|
 | 
						|
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
 | 
						|
      getOrCreateValueSitesForKind(ValueKind);
 | 
						|
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
 | 
						|
      Other.getValueSitesForKind(ValueKind);
 | 
						|
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
 | 
						|
    ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
 | 
						|
                               FuncLevelOverlap);
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
 | 
						|
                              OverlapStats &FuncLevelOverlap,
 | 
						|
                              uint64_t ValueCutoff) {
 | 
						|
  // FuncLevel CountSum for other should already computed and nonzero.
 | 
						|
  assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
 | 
						|
  accumuateCounts(FuncLevelOverlap.Base);
 | 
						|
  bool Mismatch = (Counts.size() != Other.Counts.size());
 | 
						|
 | 
						|
  // Check if the value profiles mismatch.
 | 
						|
  if (!Mismatch) {
 | 
						|
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
 | 
						|
      uint32_t ThisNumValueSites = getNumValueSites(Kind);
 | 
						|
      uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
 | 
						|
      if (ThisNumValueSites != OtherNumValueSites) {
 | 
						|
        Mismatch = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Mismatch) {
 | 
						|
    Overlap.addOneMismatch(FuncLevelOverlap.Test);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute overlap for value counts.
 | 
						|
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 | 
						|
    overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
 | 
						|
 | 
						|
  double Score = 0.0;
 | 
						|
  uint64_t MaxCount = 0;
 | 
						|
  // Compute overlap for edge counts.
 | 
						|
  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
 | 
						|
    Score += OverlapStats::score(Counts[I], Other.Counts[I],
 | 
						|
                                 Overlap.Base.CountSum, Overlap.Test.CountSum);
 | 
						|
    MaxCount = std::max(Other.Counts[I], MaxCount);
 | 
						|
  }
 | 
						|
  Overlap.Overlap.CountSum += Score;
 | 
						|
  Overlap.Overlap.NumEntries += 1;
 | 
						|
 | 
						|
  if (MaxCount >= ValueCutoff) {
 | 
						|
    double FuncScore = 0.0;
 | 
						|
    for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
 | 
						|
      FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
 | 
						|
                                       FuncLevelOverlap.Base.CountSum,
 | 
						|
                                       FuncLevelOverlap.Test.CountSum);
 | 
						|
    FuncLevelOverlap.Overlap.CountSum = FuncScore;
 | 
						|
    FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
 | 
						|
    FuncLevelOverlap.Valid = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
 | 
						|
                                     uint64_t Weight,
 | 
						|
                                     function_ref<void(instrprof_error)> Warn) {
 | 
						|
  this->sortByTargetValues();
 | 
						|
  Input.sortByTargetValues();
 | 
						|
  auto I = ValueData.begin();
 | 
						|
  auto IE = ValueData.end();
 | 
						|
  for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
 | 
						|
       ++J) {
 | 
						|
    while (I != IE && I->Value < J->Value)
 | 
						|
      ++I;
 | 
						|
    if (I != IE && I->Value == J->Value) {
 | 
						|
      bool Overflowed;
 | 
						|
      I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
 | 
						|
      if (Overflowed)
 | 
						|
        Warn(instrprof_error::counter_overflow);
 | 
						|
      ++I;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ValueData.insert(I, *J);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfValueSiteRecord::scale(uint64_t Weight,
 | 
						|
                                     function_ref<void(instrprof_error)> Warn) {
 | 
						|
  for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
 | 
						|
    bool Overflowed;
 | 
						|
    I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
 | 
						|
    if (Overflowed)
 | 
						|
      Warn(instrprof_error::counter_overflow);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Merge Value Profile data from Src record to this record for ValueKind.
 | 
						|
// Scale merged value counts by \p Weight.
 | 
						|
void InstrProfRecord::mergeValueProfData(
 | 
						|
    uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
 | 
						|
    function_ref<void(instrprof_error)> Warn) {
 | 
						|
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
 | 
						|
  uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
 | 
						|
  if (ThisNumValueSites != OtherNumValueSites) {
 | 
						|
    Warn(instrprof_error::value_site_count_mismatch);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!ThisNumValueSites)
 | 
						|
    return;
 | 
						|
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
 | 
						|
      getOrCreateValueSitesForKind(ValueKind);
 | 
						|
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
 | 
						|
      Src.getValueSitesForKind(ValueKind);
 | 
						|
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
 | 
						|
    ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
 | 
						|
                            function_ref<void(instrprof_error)> Warn) {
 | 
						|
  // If the number of counters doesn't match we either have bad data
 | 
						|
  // or a hash collision.
 | 
						|
  if (Counts.size() != Other.Counts.size()) {
 | 
						|
    Warn(instrprof_error::count_mismatch);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
 | 
						|
    bool Overflowed;
 | 
						|
    Counts[I] =
 | 
						|
        SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
 | 
						|
    if (Overflowed)
 | 
						|
      Warn(instrprof_error::counter_overflow);
 | 
						|
  }
 | 
						|
 | 
						|
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 | 
						|
    mergeValueProfData(Kind, Other, Weight, Warn);
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::scaleValueProfData(
 | 
						|
    uint32_t ValueKind, uint64_t Weight,
 | 
						|
    function_ref<void(instrprof_error)> Warn) {
 | 
						|
  for (auto &R : getValueSitesForKind(ValueKind))
 | 
						|
    R.scale(Weight, Warn);
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::scale(uint64_t Weight,
 | 
						|
                            function_ref<void(instrprof_error)> Warn) {
 | 
						|
  for (auto &Count : this->Counts) {
 | 
						|
    bool Overflowed;
 | 
						|
    Count = SaturatingMultiply(Count, Weight, &Overflowed);
 | 
						|
    if (Overflowed)
 | 
						|
      Warn(instrprof_error::counter_overflow);
 | 
						|
  }
 | 
						|
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
 | 
						|
    scaleValueProfData(Kind, Weight, Warn);
 | 
						|
}
 | 
						|
 | 
						|
// Map indirect call target name hash to name string.
 | 
						|
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
 | 
						|
                                     InstrProfSymtab *SymTab) {
 | 
						|
  if (!SymTab)
 | 
						|
    return Value;
 | 
						|
 | 
						|
  if (ValueKind == IPVK_IndirectCallTarget)
 | 
						|
    return SymTab->getFunctionHashFromAddress(Value);
 | 
						|
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
 | 
						|
                                   InstrProfValueData *VData, uint32_t N,
 | 
						|
                                   InstrProfSymtab *ValueMap) {
 | 
						|
  for (uint32_t I = 0; I < N; I++) {
 | 
						|
    VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
 | 
						|
  }
 | 
						|
  std::vector<InstrProfValueSiteRecord> &ValueSites =
 | 
						|
      getOrCreateValueSitesForKind(ValueKind);
 | 
						|
  if (N == 0)
 | 
						|
    ValueSites.emplace_back();
 | 
						|
  else
 | 
						|
    ValueSites.emplace_back(VData, VData + N);
 | 
						|
}
 | 
						|
 | 
						|
#define INSTR_PROF_COMMON_API_IMPL
 | 
						|
#include "llvm/ProfileData/InstrProfData.inc"
 | 
						|
 | 
						|
/*!
 | 
						|
 * ValueProfRecordClosure Interface implementation for  InstrProfRecord
 | 
						|
 *  class. These C wrappers are used as adaptors so that C++ code can be
 | 
						|
 *  invoked as callbacks.
 | 
						|
 */
 | 
						|
uint32_t getNumValueKindsInstrProf(const void *Record) {
 | 
						|
  return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
 | 
						|
}
 | 
						|
 | 
						|
uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
 | 
						|
  return reinterpret_cast<const InstrProfRecord *>(Record)
 | 
						|
      ->getNumValueSites(VKind);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
 | 
						|
  return reinterpret_cast<const InstrProfRecord *>(Record)
 | 
						|
      ->getNumValueData(VKind);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
 | 
						|
                                         uint32_t S) {
 | 
						|
  return reinterpret_cast<const InstrProfRecord *>(R)
 | 
						|
      ->getNumValueDataForSite(VK, S);
 | 
						|
}
 | 
						|
 | 
						|
void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
 | 
						|
                              uint32_t K, uint32_t S) {
 | 
						|
  reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
 | 
						|
}
 | 
						|
 | 
						|
ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
 | 
						|
  ValueProfData *VD =
 | 
						|
      (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
 | 
						|
  memset(VD, 0, TotalSizeInBytes);
 | 
						|
  return VD;
 | 
						|
}
 | 
						|
 | 
						|
static ValueProfRecordClosure InstrProfRecordClosure = {
 | 
						|
    nullptr,
 | 
						|
    getNumValueKindsInstrProf,
 | 
						|
    getNumValueSitesInstrProf,
 | 
						|
    getNumValueDataInstrProf,
 | 
						|
    getNumValueDataForSiteInstrProf,
 | 
						|
    nullptr,
 | 
						|
    getValueForSiteInstrProf,
 | 
						|
    allocValueProfDataInstrProf};
 | 
						|
 | 
						|
// Wrapper implementation using the closure mechanism.
 | 
						|
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
 | 
						|
  auto Closure = InstrProfRecordClosure;
 | 
						|
  Closure.Record = &Record;
 | 
						|
  return getValueProfDataSize(&Closure);
 | 
						|
}
 | 
						|
 | 
						|
// Wrapper implementation using the closure mechanism.
 | 
						|
std::unique_ptr<ValueProfData>
 | 
						|
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
 | 
						|
  InstrProfRecordClosure.Record = &Record;
 | 
						|
 | 
						|
  std::unique_ptr<ValueProfData> VPD(
 | 
						|
      serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
 | 
						|
  return VPD;
 | 
						|
}
 | 
						|
 | 
						|
void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
 | 
						|
                                    InstrProfSymtab *SymTab) {
 | 
						|
  Record.reserveSites(Kind, NumValueSites);
 | 
						|
 | 
						|
  InstrProfValueData *ValueData = getValueProfRecordValueData(this);
 | 
						|
  for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
 | 
						|
    uint8_t ValueDataCount = this->SiteCountArray[VSite];
 | 
						|
    Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
 | 
						|
    ValueData += ValueDataCount;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For writing/serializing,  Old is the host endianness, and  New is
 | 
						|
// byte order intended on disk. For Reading/deserialization, Old
 | 
						|
// is the on-disk source endianness, and New is the host endianness.
 | 
						|
void ValueProfRecord::swapBytes(support::endianness Old,
 | 
						|
                                support::endianness New) {
 | 
						|
  using namespace support;
 | 
						|
 | 
						|
  if (Old == New)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (getHostEndianness() != Old) {
 | 
						|
    sys::swapByteOrder<uint32_t>(NumValueSites);
 | 
						|
    sys::swapByteOrder<uint32_t>(Kind);
 | 
						|
  }
 | 
						|
  uint32_t ND = getValueProfRecordNumValueData(this);
 | 
						|
  InstrProfValueData *VD = getValueProfRecordValueData(this);
 | 
						|
 | 
						|
  // No need to swap byte array: SiteCountArrray.
 | 
						|
  for (uint32_t I = 0; I < ND; I++) {
 | 
						|
    sys::swapByteOrder<uint64_t>(VD[I].Value);
 | 
						|
    sys::swapByteOrder<uint64_t>(VD[I].Count);
 | 
						|
  }
 | 
						|
  if (getHostEndianness() == Old) {
 | 
						|
    sys::swapByteOrder<uint32_t>(NumValueSites);
 | 
						|
    sys::swapByteOrder<uint32_t>(Kind);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueProfData::deserializeTo(InstrProfRecord &Record,
 | 
						|
                                  InstrProfSymtab *SymTab) {
 | 
						|
  if (NumValueKinds == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  ValueProfRecord *VR = getFirstValueProfRecord(this);
 | 
						|
  for (uint32_t K = 0; K < NumValueKinds; K++) {
 | 
						|
    VR->deserializeTo(Record, SymTab);
 | 
						|
    VR = getValueProfRecordNext(VR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
 | 
						|
  using namespace support;
 | 
						|
 | 
						|
  if (Orig == little)
 | 
						|
    return endian::readNext<T, little, unaligned>(D);
 | 
						|
  else
 | 
						|
    return endian::readNext<T, big, unaligned>(D);
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
 | 
						|
  return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
 | 
						|
                                            ValueProfData());
 | 
						|
}
 | 
						|
 | 
						|
Error ValueProfData::checkIntegrity() {
 | 
						|
  if (NumValueKinds > IPVK_Last + 1)
 | 
						|
    return make_error<InstrProfError>(instrprof_error::malformed);
 | 
						|
  // Total size needs to be mulltiple of quadword size.
 | 
						|
  if (TotalSize % sizeof(uint64_t))
 | 
						|
    return make_error<InstrProfError>(instrprof_error::malformed);
 | 
						|
 | 
						|
  ValueProfRecord *VR = getFirstValueProfRecord(this);
 | 
						|
  for (uint32_t K = 0; K < this->NumValueKinds; K++) {
 | 
						|
    if (VR->Kind > IPVK_Last)
 | 
						|
      return make_error<InstrProfError>(instrprof_error::malformed);
 | 
						|
    VR = getValueProfRecordNext(VR);
 | 
						|
    if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
 | 
						|
      return make_error<InstrProfError>(instrprof_error::malformed);
 | 
						|
  }
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
Expected<std::unique_ptr<ValueProfData>>
 | 
						|
ValueProfData::getValueProfData(const unsigned char *D,
 | 
						|
                                const unsigned char *const BufferEnd,
 | 
						|
                                support::endianness Endianness) {
 | 
						|
  using namespace support;
 | 
						|
 | 
						|
  if (D + sizeof(ValueProfData) > BufferEnd)
 | 
						|
    return make_error<InstrProfError>(instrprof_error::truncated);
 | 
						|
 | 
						|
  const unsigned char *Header = D;
 | 
						|
  uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
 | 
						|
  if (D + TotalSize > BufferEnd)
 | 
						|
    return make_error<InstrProfError>(instrprof_error::too_large);
 | 
						|
 | 
						|
  std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
 | 
						|
  memcpy(VPD.get(), D, TotalSize);
 | 
						|
  // Byte swap.
 | 
						|
  VPD->swapBytesToHost(Endianness);
 | 
						|
 | 
						|
  Error E = VPD->checkIntegrity();
 | 
						|
  if (E)
 | 
						|
    return std::move(E);
 | 
						|
 | 
						|
  return std::move(VPD);
 | 
						|
}
 | 
						|
 | 
						|
void ValueProfData::swapBytesToHost(support::endianness Endianness) {
 | 
						|
  using namespace support;
 | 
						|
 | 
						|
  if (Endianness == getHostEndianness())
 | 
						|
    return;
 | 
						|
 | 
						|
  sys::swapByteOrder<uint32_t>(TotalSize);
 | 
						|
  sys::swapByteOrder<uint32_t>(NumValueKinds);
 | 
						|
 | 
						|
  ValueProfRecord *VR = getFirstValueProfRecord(this);
 | 
						|
  for (uint32_t K = 0; K < NumValueKinds; K++) {
 | 
						|
    VR->swapBytes(Endianness, getHostEndianness());
 | 
						|
    VR = getValueProfRecordNext(VR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
 | 
						|
  using namespace support;
 | 
						|
 | 
						|
  if (Endianness == getHostEndianness())
 | 
						|
    return;
 | 
						|
 | 
						|
  ValueProfRecord *VR = getFirstValueProfRecord(this);
 | 
						|
  for (uint32_t K = 0; K < NumValueKinds; K++) {
 | 
						|
    ValueProfRecord *NVR = getValueProfRecordNext(VR);
 | 
						|
    VR->swapBytes(getHostEndianness(), Endianness);
 | 
						|
    VR = NVR;
 | 
						|
  }
 | 
						|
  sys::swapByteOrder<uint32_t>(TotalSize);
 | 
						|
  sys::swapByteOrder<uint32_t>(NumValueKinds);
 | 
						|
}
 | 
						|
 | 
						|
void annotateValueSite(Module &M, Instruction &Inst,
 | 
						|
                       const InstrProfRecord &InstrProfR,
 | 
						|
                       InstrProfValueKind ValueKind, uint32_t SiteIdx,
 | 
						|
                       uint32_t MaxMDCount) {
 | 
						|
  uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
 | 
						|
  if (!NV)
 | 
						|
    return;
 | 
						|
 | 
						|
  uint64_t Sum = 0;
 | 
						|
  std::unique_ptr<InstrProfValueData[]> VD =
 | 
						|
      InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
 | 
						|
 | 
						|
  ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
 | 
						|
  annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
 | 
						|
}
 | 
						|
 | 
						|
void annotateValueSite(Module &M, Instruction &Inst,
 | 
						|
                       ArrayRef<InstrProfValueData> VDs,
 | 
						|
                       uint64_t Sum, InstrProfValueKind ValueKind,
 | 
						|
                       uint32_t MaxMDCount) {
 | 
						|
  LLVMContext &Ctx = M.getContext();
 | 
						|
  MDBuilder MDHelper(Ctx);
 | 
						|
  SmallVector<Metadata *, 3> Vals;
 | 
						|
  // Tag
 | 
						|
  Vals.push_back(MDHelper.createString("VP"));
 | 
						|
  // Value Kind
 | 
						|
  Vals.push_back(MDHelper.createConstant(
 | 
						|
      ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
 | 
						|
  // Total Count
 | 
						|
  Vals.push_back(
 | 
						|
      MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
 | 
						|
 | 
						|
  // Value Profile Data
 | 
						|
  uint32_t MDCount = MaxMDCount;
 | 
						|
  for (auto &VD : VDs) {
 | 
						|
    Vals.push_back(MDHelper.createConstant(
 | 
						|
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
 | 
						|
    Vals.push_back(MDHelper.createConstant(
 | 
						|
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
 | 
						|
    if (--MDCount == 0)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
 | 
						|
}
 | 
						|
 | 
						|
bool getValueProfDataFromInst(const Instruction &Inst,
 | 
						|
                              InstrProfValueKind ValueKind,
 | 
						|
                              uint32_t MaxNumValueData,
 | 
						|
                              InstrProfValueData ValueData[],
 | 
						|
                              uint32_t &ActualNumValueData, uint64_t &TotalC) {
 | 
						|
  MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
 | 
						|
  if (!MD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NOps = MD->getNumOperands();
 | 
						|
 | 
						|
  if (NOps < 5)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Operand 0 is a string tag "VP":
 | 
						|
  MDString *Tag = cast<MDString>(MD->getOperand(0));
 | 
						|
  if (!Tag)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Tag->getString().equals("VP"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now check kind:
 | 
						|
  ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | 
						|
  if (!KindInt)
 | 
						|
    return false;
 | 
						|
  if (KindInt->getZExtValue() != ValueKind)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get total count
 | 
						|
  ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | 
						|
  if (!TotalCInt)
 | 
						|
    return false;
 | 
						|
  TotalC = TotalCInt->getZExtValue();
 | 
						|
 | 
						|
  ActualNumValueData = 0;
 | 
						|
 | 
						|
  for (unsigned I = 3; I < NOps; I += 2) {
 | 
						|
    if (ActualNumValueData >= MaxNumValueData)
 | 
						|
      break;
 | 
						|
    ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
 | 
						|
    ConstantInt *Count =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
 | 
						|
    if (!Value || !Count)
 | 
						|
      return false;
 | 
						|
    ValueData[ActualNumValueData].Value = Value->getZExtValue();
 | 
						|
    ValueData[ActualNumValueData].Count = Count->getZExtValue();
 | 
						|
    ActualNumValueData++;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MDNode *getPGOFuncNameMetadata(const Function &F) {
 | 
						|
  return F.getMetadata(getPGOFuncNameMetadataName());
 | 
						|
}
 | 
						|
 | 
						|
void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
 | 
						|
  // Only for internal linkage functions.
 | 
						|
  if (PGOFuncName == F.getName())
 | 
						|
      return;
 | 
						|
  // Don't create duplicated meta-data.
 | 
						|
  if (getPGOFuncNameMetadata(F))
 | 
						|
    return;
 | 
						|
  LLVMContext &C = F.getContext();
 | 
						|
  MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
 | 
						|
  F.setMetadata(getPGOFuncNameMetadataName(), N);
 | 
						|
}
 | 
						|
 | 
						|
bool needsComdatForCounter(const Function &F, const Module &M) {
 | 
						|
  if (F.hasComdat())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Triple(M.getTargetTriple()).supportsCOMDAT())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // See createPGOFuncNameVar for more details. To avoid link errors, profile
 | 
						|
  // counters for function with available_externally linkage needs to be changed
 | 
						|
  // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
 | 
						|
  // created. Without using comdat, duplicate entries won't be removed by the
 | 
						|
  // linker leading to increased data segement size and raw profile size. Even
 | 
						|
  // worse, since the referenced counter from profile per-function data object
 | 
						|
  // will be resolved to the common strong definition, the profile counts for
 | 
						|
  // available_externally functions will end up being duplicated in raw profile
 | 
						|
  // data. This can result in distorted profile as the counts of those dups
 | 
						|
  // will be accumulated by the profile merger.
 | 
						|
  GlobalValue::LinkageTypes Linkage = F.getLinkage();
 | 
						|
  if (Linkage != GlobalValue::ExternalWeakLinkage &&
 | 
						|
      Linkage != GlobalValue::AvailableExternallyLinkage)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
 | 
						|
bool isIRPGOFlagSet(const Module *M) {
 | 
						|
  auto IRInstrVar =
 | 
						|
      M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
 | 
						|
  if (!IRInstrVar || IRInstrVar->isDeclaration() ||
 | 
						|
      IRInstrVar->hasLocalLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the flag is set.
 | 
						|
  if (!IRInstrVar->hasInitializer())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Constant *InitVal = IRInstrVar->getInitializer();
 | 
						|
  if (!InitVal)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (dyn_cast<ConstantInt>(InitVal)->getZExtValue() &
 | 
						|
          VARIANT_MASK_IR_PROF) != 0;
 | 
						|
}
 | 
						|
 | 
						|
// Check if we can safely rename this Comdat function.
 | 
						|
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
 | 
						|
  if (F.getName().empty())
 | 
						|
    return false;
 | 
						|
  if (!needsComdatForCounter(F, *(F.getParent())))
 | 
						|
    return false;
 | 
						|
  // Unsafe to rename the address-taken function (which can be used in
 | 
						|
  // function comparison).
 | 
						|
  if (CheckAddressTaken && F.hasAddressTaken())
 | 
						|
    return false;
 | 
						|
  // Only safe to do if this function may be discarded if it is not used
 | 
						|
  // in the compilation unit.
 | 
						|
  if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // For AvailableExternallyLinkage functions.
 | 
						|
  if (!F.hasComdat()) {
 | 
						|
    assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Parse the value profile options.
 | 
						|
void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
 | 
						|
                                 int64_t &RangeLast) {
 | 
						|
  static const int64_t DefaultMemOPSizeRangeStart = 0;
 | 
						|
  static const int64_t DefaultMemOPSizeRangeLast = 8;
 | 
						|
  RangeStart = DefaultMemOPSizeRangeStart;
 | 
						|
  RangeLast = DefaultMemOPSizeRangeLast;
 | 
						|
 | 
						|
  if (!MemOPSizeRange.empty()) {
 | 
						|
    auto Pos = MemOPSizeRange.find(':');
 | 
						|
    if (Pos != std::string::npos) {
 | 
						|
      if (Pos > 0)
 | 
						|
        MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
 | 
						|
      if (Pos < MemOPSizeRange.size() - 1)
 | 
						|
        MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
 | 
						|
    } else
 | 
						|
      MemOPSizeRange.getAsInteger(10, RangeLast);
 | 
						|
  }
 | 
						|
  assert(RangeLast >= RangeStart);
 | 
						|
}
 | 
						|
 | 
						|
// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
 | 
						|
// aware this is an ir_level profile so it can set the version flag.
 | 
						|
void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
 | 
						|
  const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
 | 
						|
  Type *IntTy64 = Type::getInt64Ty(M.getContext());
 | 
						|
  uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
 | 
						|
  if (IsCS)
 | 
						|
    ProfileVersion |= VARIANT_MASK_CSIR_PROF;
 | 
						|
  auto IRLevelVersionVariable = new GlobalVariable(
 | 
						|
      M, IntTy64, true, GlobalValue::WeakAnyLinkage,
 | 
						|
      Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
 | 
						|
  IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
 | 
						|
  Triple TT(M.getTargetTriple());
 | 
						|
  if (TT.supportsCOMDAT()) {
 | 
						|
    IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
    IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Create the variable for the profile file name.
 | 
						|
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
 | 
						|
  if (InstrProfileOutput.empty())
 | 
						|
    return;
 | 
						|
  Constant *ProfileNameConst =
 | 
						|
      ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
 | 
						|
  GlobalVariable *ProfileNameVar = new GlobalVariable(
 | 
						|
      M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
 | 
						|
      ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
 | 
						|
  Triple TT(M.getTargetTriple());
 | 
						|
  if (TT.supportsCOMDAT()) {
 | 
						|
    ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
    ProfileNameVar->setComdat(M.getOrInsertComdat(
 | 
						|
        StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Error OverlapStats::accumuateCounts(const std::string &BaseFilename,
 | 
						|
                                    const std::string &TestFilename,
 | 
						|
                                    bool IsCS) {
 | 
						|
  auto getProfileSum = [IsCS](const std::string &Filename,
 | 
						|
                              CountSumOrPercent &Sum) -> Error {
 | 
						|
    auto ReaderOrErr = InstrProfReader::create(Filename);
 | 
						|
    if (Error E = ReaderOrErr.takeError()) {
 | 
						|
      return E;
 | 
						|
    }
 | 
						|
    auto Reader = std::move(ReaderOrErr.get());
 | 
						|
    Reader->accumuateCounts(Sum, IsCS);
 | 
						|
    return Error::success();
 | 
						|
  };
 | 
						|
  auto Ret = getProfileSum(BaseFilename, Base);
 | 
						|
  if (Ret)
 | 
						|
    return Ret;
 | 
						|
  Ret = getProfileSum(TestFilename, Test);
 | 
						|
  if (Ret)
 | 
						|
    return Ret;
 | 
						|
  this->BaseFilename = &BaseFilename;
 | 
						|
  this->TestFilename = &TestFilename;
 | 
						|
  Valid = true;
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
 | 
						|
  Mismatch.NumEntries += 1;
 | 
						|
  Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
 | 
						|
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
 | 
						|
    if (Test.ValueCounts[I] >= 1.0f)
 | 
						|
      Mismatch.ValueCounts[I] +=
 | 
						|
          MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
 | 
						|
  Unique.NumEntries += 1;
 | 
						|
  Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
 | 
						|
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
 | 
						|
    if (Test.ValueCounts[I] >= 1.0f)
 | 
						|
      Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void OverlapStats::dump(raw_fd_ostream &OS) const {
 | 
						|
  if (!Valid)
 | 
						|
    return;
 | 
						|
 | 
						|
  const char *EntryName =
 | 
						|
      (Level == ProgramLevel ? "functions" : "edge counters");
 | 
						|
  if (Level == ProgramLevel) {
 | 
						|
    OS << "Profile overlap infomation for base_profile: " << *BaseFilename
 | 
						|
       << " and test_profile: " << *TestFilename << "\nProgram level:\n";
 | 
						|
  } else {
 | 
						|
    OS << "Function level:\n"
 | 
						|
       << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
 | 
						|
  if (Mismatch.NumEntries)
 | 
						|
    OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
 | 
						|
       << "\n";
 | 
						|
  if (Unique.NumEntries)
 | 
						|
    OS << "  # of " << EntryName
 | 
						|
       << " only in test_profile: " << Unique.NumEntries << "\n";
 | 
						|
 | 
						|
  OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
 | 
						|
     << "\n";
 | 
						|
  if (Mismatch.NumEntries)
 | 
						|
    OS << "  Mismatched count percentage (Edge): "
 | 
						|
       << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
 | 
						|
  if (Unique.NumEntries)
 | 
						|
    OS << "  Percentage of Edge profile only in test_profile: "
 | 
						|
       << format("%.3f%%", Unique.CountSum * 100) << "\n";
 | 
						|
  OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
 | 
						|
     << "\n"
 | 
						|
     << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
 | 
						|
     << "\n";
 | 
						|
 | 
						|
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
 | 
						|
    if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
 | 
						|
      continue;
 | 
						|
    char ProfileKindName[20];
 | 
						|
    switch (I) {
 | 
						|
    case IPVK_IndirectCallTarget:
 | 
						|
      strncpy(ProfileKindName, "IndirectCall", 19);
 | 
						|
      break;
 | 
						|
    case IPVK_MemOPSize:
 | 
						|
      strncpy(ProfileKindName, "MemOP", 19);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      snprintf(ProfileKindName, 19, "VP[%d]", I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    OS << "  " << ProfileKindName
 | 
						|
       << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
 | 
						|
       << "\n";
 | 
						|
    if (Mismatch.NumEntries)
 | 
						|
      OS << "  Mismatched count percentage (" << ProfileKindName
 | 
						|
         << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
 | 
						|
    if (Unique.NumEntries)
 | 
						|
      OS << "  Percentage of " << ProfileKindName
 | 
						|
         << " profile only in test_profile: "
 | 
						|
         << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
 | 
						|
    OS << "  " << ProfileKindName
 | 
						|
       << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
 | 
						|
       << "\n"
 | 
						|
       << "  " << ProfileKindName
 | 
						|
       << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
 | 
						|
       << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 |