forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions determines the possibility of performing constant
 | 
						|
// folding.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cerrno>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding internal helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
 | 
						|
/// from a global, return the global and the constant.  Because of
 | 
						|
/// constantexprs, this function is recursive.
 | 
						|
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | 
						|
                                       int64_t &Offset, const TargetData &TD) {
 | 
						|
  // Trivial case, constant is the global.
 | 
						|
  if ((GV = dyn_cast<GlobalValue>(C))) {
 | 
						|
    Offset = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, if this isn't a constant expr, bail out.
 | 
						|
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE) return false;
 | 
						|
  
 | 
						|
  // Look through ptr->int and ptr->ptr casts.
 | 
						|
  if (CE->getOpcode() == Instruction::PtrToInt ||
 | 
						|
      CE->getOpcode() == Instruction::BitCast)
 | 
						|
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
 | 
						|
  
 | 
						|
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
 | 
						|
  if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    // Cannot compute this if the element type of the pointer is missing size
 | 
						|
    // info.
 | 
						|
    if (!cast<PointerType>(CE->getOperand(0)->getType())
 | 
						|
                 ->getElementType()->isSized())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // If the base isn't a global+constant, we aren't either.
 | 
						|
    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Otherwise, add any offset that our operands provide.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(CE);
 | 
						|
    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
 | 
						|
         i != e; ++i, ++GTI) {
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
 | 
						|
      if (!CI) return false;  // Index isn't a simple constant?
 | 
						|
      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
 | 
						|
      
 | 
						|
      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
 | 
						|
        // N = N + Offset
 | 
						|
        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
 | 
						|
      } else {
 | 
						|
        const SequentialType *SQT = cast<SequentialType>(*GTI);
 | 
						|
        Offset += TD.getTypePaddedSize(SQT->getElementType())*CI->getSExtValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
 | 
						|
/// Attempt to symbolically evaluate the result of a binary operator merging
 | 
						|
/// these together.  If target data info is available, it is provided as TD, 
 | 
						|
/// otherwise TD is null.
 | 
						|
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 | 
						|
                                           Constant *Op1, const TargetData *TD){
 | 
						|
  // SROA
 | 
						|
  
 | 
						|
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | 
						|
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | 
						|
  // bits.
 | 
						|
  
 | 
						|
  
 | 
						|
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | 
						|
  // constant.  This happens frequently when iterating over a global array.
 | 
						|
  if (Opc == Instruction::Sub && TD) {
 | 
						|
    GlobalValue *GV1, *GV2;
 | 
						|
    int64_t Offs1, Offs2;
 | 
						|
    
 | 
						|
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
 | 
						|
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
 | 
						|
          GV1 == GV2) {
 | 
						|
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | 
						|
        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
 | 
						|
      }
 | 
						|
  }
 | 
						|
    
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
 | 
						|
/// constant expression, do so.
 | 
						|
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
 | 
						|
                                         const Type *ResultTy,
 | 
						|
                                         const TargetData *TD) {
 | 
						|
  Constant *Ptr = Ops[0];
 | 
						|
  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  uint64_t BasePtr = 0;
 | 
						|
  if (!Ptr->isNullValue()) {
 | 
						|
    // If this is a inttoptr from a constant int, we can fold this as the base,
 | 
						|
    // otherwise we can't.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | 
						|
      if (CE->getOpcode() == Instruction::IntToPtr)
 | 
						|
        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | 
						|
          BasePtr = Base->getZExtValue();
 | 
						|
    
 | 
						|
    if (BasePtr == 0)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a constant expr gep that is effectively computing an
 | 
						|
  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | 
						|
  for (unsigned i = 1; i != NumOps; ++i)
 | 
						|
    if (!isa<ConstantInt>(Ops[i]))
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
 | 
						|
                                         (Value**)Ops+1, NumOps-1);
 | 
						|
  Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
 | 
						|
  return ConstantExpr::getIntToPtr(C, ResultTy);
 | 
						|
}
 | 
						|
 | 
						|
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
 | 
						|
/// targetdata.  Return 0 if unfoldable.
 | 
						|
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
 | 
						|
                             const TargetData &TD) {
 | 
						|
  // If this is a bitcast from constant vector -> vector, fold it.
 | 
						|
  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
 | 
						|
    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | 
						|
      // If the element types match, VMCore can fold it.
 | 
						|
      unsigned NumDstElt = DestVTy->getNumElements();
 | 
						|
      unsigned NumSrcElt = CV->getNumOperands();
 | 
						|
      if (NumDstElt == NumSrcElt)
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      const Type *SrcEltTy = CV->getType()->getElementType();
 | 
						|
      const Type *DstEltTy = DestVTy->getElementType();
 | 
						|
      
 | 
						|
      // Otherwise, we're changing the number of elements in a vector, which 
 | 
						|
      // requires endianness information to do the right thing.  For example,
 | 
						|
      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
      // folds to (little endian):
 | 
						|
      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | 
						|
      // and to (big endian):
 | 
						|
      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | 
						|
      
 | 
						|
      // First thing is first.  We only want to think about integer here, so if
 | 
						|
      // we have something in FP form, recast it as integer.
 | 
						|
      if (DstEltTy->isFloatingPoint()) {
 | 
						|
        // Fold to an vector of integers with same size as our FP type.
 | 
						|
        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
        const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
 | 
						|
                                               NumDstElt);
 | 
						|
        // Recursively handle this integer conversion, if possible.
 | 
						|
        C = FoldBitCast(C, DestIVTy, TD);
 | 
						|
        if (!C) return 0;
 | 
						|
        
 | 
						|
        // Finally, VMCore can handle this now that #elts line up.
 | 
						|
        return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Okay, we know the destination is integer, if the input is FP, convert
 | 
						|
      // it to integer first.
 | 
						|
      if (SrcEltTy->isFloatingPoint()) {
 | 
						|
        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
        const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
 | 
						|
                                              NumSrcElt);
 | 
						|
        // Ask VMCore to do the conversion now that #elts line up.
 | 
						|
        C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
        CV = dyn_cast<ConstantVector>(C);
 | 
						|
        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now we know that the input and output vectors are both integer vectors
 | 
						|
      // of the same size, and that their #elements is not the same.  Do the
 | 
						|
      // conversion here, which depends on whether the input or output has
 | 
						|
      // more elements.
 | 
						|
      bool isLittleEndian = TD.isLittleEndian();
 | 
						|
      
 | 
						|
      SmallVector<Constant*, 32> Result;
 | 
						|
      if (NumDstElt < NumSrcElt) {
 | 
						|
        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | 
						|
        Constant *Zero = Constant::getNullValue(DstEltTy);
 | 
						|
        unsigned Ratio = NumSrcElt/NumDstElt;
 | 
						|
        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
        unsigned SrcElt = 0;
 | 
						|
        for (unsigned i = 0; i != NumDstElt; ++i) {
 | 
						|
          // Build each element of the result.
 | 
						|
          Constant *Elt = Zero;
 | 
						|
          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | 
						|
          for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
 | 
						|
            if (!Src) return 0;  // Reject constantexpr elements.
 | 
						|
            
 | 
						|
            // Zero extend the element to the right size.
 | 
						|
            Src = ConstantExpr::getZExt(Src, Elt->getType());
 | 
						|
            
 | 
						|
            // Shift it to the right place, depending on endianness.
 | 
						|
            Src = ConstantExpr::getShl(Src, 
 | 
						|
                                    ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | 
						|
            
 | 
						|
            // Mix it in.
 | 
						|
            Elt = ConstantExpr::getOr(Elt, Src);
 | 
						|
          }
 | 
						|
          Result.push_back(Elt);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
        unsigned Ratio = NumDstElt/NumSrcElt;
 | 
						|
        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
        
 | 
						|
        // Loop over each source value, expanding into multiple results.
 | 
						|
        for (unsigned i = 0; i != NumSrcElt; ++i) {
 | 
						|
          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
 | 
						|
          if (!Src) return 0;  // Reject constantexpr elements.
 | 
						|
 | 
						|
          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | 
						|
          for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
            // Shift the piece of the value into the right place, depending on
 | 
						|
            // endianness.
 | 
						|
            Constant *Elt = ConstantExpr::getLShr(Src, 
 | 
						|
                                ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | 
						|
 | 
						|
            // Truncate and remember this piece.
 | 
						|
            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      return ConstantVector::get(&Result[0], Result.size());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding public APIs
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
/// ConstantFoldInstruction - Attempt to constant fold the specified
 | 
						|
/// instruction.  If successful, the constant result is returned, if not, null
 | 
						|
/// is returned.  Note that this function can only fail when attempting to fold
 | 
						|
/// instructions like loads and stores, which have no constant expression form.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    if (PN->getNumIncomingValues() == 0)
 | 
						|
      return UndefValue::get(PN->getType());
 | 
						|
 | 
						|
    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
 | 
						|
    if (Result == 0) return 0;
 | 
						|
 | 
						|
    // Handle PHI nodes specially here...
 | 
						|
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
 | 
						|
        return 0;   // Not all the same incoming constants...
 | 
						|
 | 
						|
    // If we reach here, all incoming values are the same constant.
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the operand list, checking to see if they are all constants, if so,
 | 
						|
  // hand off to ConstantFoldInstOperands.
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | 
						|
    if (Constant *Op = dyn_cast<Constant>(*i))
 | 
						|
      Ops.push_back(Op);
 | 
						|
    else
 | 
						|
      return 0;  // All operands not constant!
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | 
						|
                                           &Ops[0], Ops.size(), TD);
 | 
						|
  else
 | 
						|
    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                    &Ops[0], Ops.size(), TD);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
 | 
						|
/// using the specified TargetData.  If successful, the constant result is
 | 
						|
/// result is returned, if not, null is returned.
 | 
						|
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
 | 
						|
                                               const TargetData *TD) {
 | 
						|
  assert(TD && "ConstantFoldConstantExpression requires a valid TargetData.");
 | 
						|
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
 | 
						|
    Ops.push_back(cast<Constant>(*i));
 | 
						|
 | 
						|
  if (CE->isCompare())
 | 
						|
    return ConstantFoldCompareInstOperands(CE->getPredicate(),
 | 
						|
                                           &Ops[0], Ops.size(), TD);
 | 
						|
  else 
 | 
						|
    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
 | 
						|
                                    &Ops[0], Ops.size(), TD);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
 | 
						|
/// specified opcode and operands.  If successful, the constant result is
 | 
						|
/// returned, if not, null is returned.  Note that this function can fail when
 | 
						|
/// attempting to fold instructions like loads and stores, which have no
 | 
						|
/// constant expression form.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, 
 | 
						|
                                         Constant* const* Ops, unsigned NumOps,
 | 
						|
                                         const TargetData *TD) {
 | 
						|
  // Handle easy binops first.
 | 
						|
  if (Instruction::isBinaryOp(Opcode)) {
 | 
						|
    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
 | 
						|
      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
 | 
						|
        return C;
 | 
						|
    
 | 
						|
    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return 0;
 | 
						|
  case Instruction::Call:
 | 
						|
    if (Function *F = dyn_cast<Function>(Ops[0]))
 | 
						|
      if (canConstantFoldCallTo(F))
 | 
						|
        return ConstantFoldCall(F, Ops+1, NumOps-1);
 | 
						|
    return 0;
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
  case Instruction::VICmp:
 | 
						|
  case Instruction::VFCmp:
 | 
						|
    assert(0 &&"This function is invalid for compares: no predicate specified");
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | 
						|
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        Constant *Input = CE->getOperand(0);
 | 
						|
        unsigned InWidth = Input->getType()->getPrimitiveSizeInBits();
 | 
						|
        if (TD->getPointerSizeInBits() < InWidth) {
 | 
						|
          Constant *Mask = 
 | 
						|
            ConstantInt::get(APInt::getLowBitsSet(InWidth,
 | 
						|
                                                  TD->getPointerSizeInBits()));
 | 
						|
          Input = ConstantExpr::getAnd(Input, Mask);
 | 
						|
        }
 | 
						|
        // Do a zext or trunc to get to the dest size.
 | 
						|
        return ConstantExpr::getIntegerCast(Input, DestTy, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | 
						|
    // the int size is >= the ptr size.  This requires knowing the width of a
 | 
						|
    // pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
      if (TD && CE->getOpcode() == Instruction::PtrToInt &&
 | 
						|
          TD->getPointerSizeInBits() <=
 | 
						|
          CE->getType()->getPrimitiveSizeInBits()) {
 | 
						|
        Constant *Input = CE->getOperand(0);
 | 
						|
        Constant *C = FoldBitCast(Input, DestTy, *TD);
 | 
						|
        return C ? C : ConstantExpr::getBitCast(Input, DestTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (TD)
 | 
						|
      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
 | 
						|
        return C;
 | 
						|
    return ConstantExpr::getBitCast(Ops[0], DestTy);
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
 | 
						|
      return C;
 | 
						|
    
 | 
						|
    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
 | 
						|
/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
 | 
						|
/// returns a constant expression of the specified operands.
 | 
						|
///
 | 
						|
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | 
						|
                                                Constant*const * Ops, 
 | 
						|
                                                unsigned NumOps,
 | 
						|
                                                const TargetData *TD) {
 | 
						|
  // fold: icmp (inttoptr x), null         -> icmp x, 0
 | 
						|
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | 
						|
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | 
						|
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | 
						|
  //
 | 
						|
  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
 | 
						|
  // around to know if bit truncation is happening.
 | 
						|
  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
 | 
						|
    if (TD && Ops[1]->isNullValue()) {
 | 
						|
      const Type *IntPtrTy = TD->getIntPtrType();
 | 
						|
      if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        // Convert the integer value to the right size to ensure we get the
 | 
						|
        // proper extension or truncation.
 | 
						|
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                   IntPtrTy, false);
 | 
						|
        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
      // there is a truncation or extension that we aren't modeling.
 | 
						|
      if (CE0->getOpcode() == Instruction::PtrToInt && 
 | 
						|
          CE0->getType() == IntPtrTy) {
 | 
						|
        Constant *C = CE0->getOperand(0);
 | 
						|
        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
 | 
						|
        // FIXME!
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
 | 
						|
      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
 | 
						|
        const Type *IntPtrTy = TD->getIntPtrType();
 | 
						|
 | 
						|
        if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
          // Convert the integer value to the right size to ensure we get the
 | 
						|
          // proper extension or truncation.
 | 
						|
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          Constant *NewOps[] = { C0, C1 };
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
        // there is a truncation or extension that we aren't modeling.
 | 
						|
        if ((CE0->getOpcode() == Instruction::PtrToInt &&
 | 
						|
             CE0->getType() == IntPtrTy &&
 | 
						|
             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
 | 
						|
          Constant *NewOps[] = { 
 | 
						|
            CE0->getOperand(0), CE1->getOperand(0) 
 | 
						|
          };
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
 | 
						|
/// getelementptr constantexpr, return the constant value being addressed by the
 | 
						|
/// constant expression, or null if something is funny and we can't decide.
 | 
						|
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
 | 
						|
                                                       ConstantExpr *CE) {
 | 
						|
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
 | 
						|
    return 0;  // Do not allow stepping over the value!
 | 
						|
  
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing...
 | 
						|
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | 
						|
  for (++I; I != E; ++I)
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | 
						|
      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
 | 
						|
      assert(CU->getZExtValue() < STy->getNumElements() &&
 | 
						|
             "Struct index out of range!");
 | 
						|
      unsigned El = (unsigned)CU->getZExtValue();
 | 
						|
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
        C = CS->getOperand(El);
 | 
						|
      } else if (isa<ConstantAggregateZero>(C)) {
 | 
						|
        C = Constant::getNullValue(STy->getElementType(El));
 | 
						|
      } else if (isa<UndefValue>(C)) {
 | 
						|
        C = UndefValue::get(STy->getElementType(El));
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | 
						|
      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
 | 
						|
        if (CI->getZExtValue() >= ATy->getNumElements())
 | 
						|
         return 0;
 | 
						|
        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | 
						|
          C = CA->getOperand(CI->getZExtValue());
 | 
						|
        else if (isa<ConstantAggregateZero>(C))
 | 
						|
          C = Constant::getNullValue(ATy->getElementType());
 | 
						|
        else if (isa<UndefValue>(C))
 | 
						|
          C = UndefValue::get(ATy->getElementType());
 | 
						|
        else
 | 
						|
          return 0;
 | 
						|
      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
 | 
						|
        if (CI->getZExtValue() >= PTy->getNumElements())
 | 
						|
          return 0;
 | 
						|
        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
 | 
						|
          C = CP->getOperand(CI->getZExtValue());
 | 
						|
        else if (isa<ConstantAggregateZero>(C))
 | 
						|
          C = Constant::getNullValue(PTy->getElementType());
 | 
						|
        else if (isa<UndefValue>(C))
 | 
						|
          C = UndefValue::get(PTy->getElementType());
 | 
						|
        else
 | 
						|
          return 0;
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Constant Folding for Calls
 | 
						|
//
 | 
						|
 | 
						|
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
 | 
						|
/// the specified function.
 | 
						|
bool
 | 
						|
llvm::canConstantFoldCallTo(const Function *F) {
 | 
						|
  switch (F->getIntrinsicID()) {
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::powi:
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
    return true;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F->hasName()) return false;
 | 
						|
  const char *Str = F->getNameStart();
 | 
						|
  unsigned Len = F->getNameLen();
 | 
						|
  
 | 
						|
  // In these cases, the check of the length is required.  We don't want to
 | 
						|
  // return true for a name like "cos\0blah" which strcmp would return equal to
 | 
						|
  // "cos", but has length 8.
 | 
						|
  switch (Str[0]) {
 | 
						|
  default: return false;
 | 
						|
  case 'a':
 | 
						|
    if (Len == 4)
 | 
						|
      return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
 | 
						|
             !strcmp(Str, "atan");
 | 
						|
    else if (Len == 5)
 | 
						|
      return !strcmp(Str, "atan2");
 | 
						|
    return false;
 | 
						|
  case 'c':
 | 
						|
    if (Len == 3)
 | 
						|
      return !strcmp(Str, "cos");
 | 
						|
    else if (Len == 4)
 | 
						|
      return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
 | 
						|
             !strcmp(Str, "cosh");
 | 
						|
    return false;
 | 
						|
  case 'e':
 | 
						|
    if (Len == 3)
 | 
						|
      return !strcmp(Str, "exp");
 | 
						|
    return false;
 | 
						|
  case 'f':
 | 
						|
    if (Len == 4)
 | 
						|
      return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
 | 
						|
    else if (Len == 5)
 | 
						|
      return !strcmp(Str, "floor");
 | 
						|
    return false;
 | 
						|
    break;
 | 
						|
  case 'l':
 | 
						|
    if (Len == 3 && !strcmp(Str, "log"))
 | 
						|
      return true;
 | 
						|
    if (Len == 5 && !strcmp(Str, "log10"))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  case 'p':
 | 
						|
    if (Len == 3 && !strcmp(Str, "pow"))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  case 's':
 | 
						|
    if (Len == 3)
 | 
						|
      return !strcmp(Str, "sin");
 | 
						|
    if (Len == 4)
 | 
						|
      return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
 | 
						|
             !strcmp(Str, "sinf");
 | 
						|
    if (Len == 5)
 | 
						|
      return !strcmp(Str, "sqrtf");
 | 
						|
    return false;
 | 
						|
  case 't':
 | 
						|
    if (Len == 3 && !strcmp(Str, "tan"))
 | 
						|
      return true;
 | 
						|
    else if (Len == 4 && !strcmp(Str, "tanh"))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
 | 
						|
                                const Type *Ty) {
 | 
						|
  errno = 0;
 | 
						|
  V = NativeFP(V);
 | 
						|
  if (errno != 0) {
 | 
						|
    errno = 0;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Ty == Type::FloatTy)
 | 
						|
    return ConstantFP::get(APFloat((float)V));
 | 
						|
  if (Ty == Type::DoubleTy)
 | 
						|
    return ConstantFP::get(APFloat(V));
 | 
						|
  assert(0 && "Can only constant fold float/double");
 | 
						|
  return 0; // dummy return to suppress warning
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | 
						|
                                      double V, double W,
 | 
						|
                                      const Type *Ty) {
 | 
						|
  errno = 0;
 | 
						|
  V = NativeFP(V, W);
 | 
						|
  if (errno != 0) {
 | 
						|
    errno = 0;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Ty == Type::FloatTy)
 | 
						|
    return ConstantFP::get(APFloat((float)V));
 | 
						|
  if (Ty == Type::DoubleTy)
 | 
						|
    return ConstantFP::get(APFloat(V));
 | 
						|
  assert(0 && "Can only constant fold float/double");
 | 
						|
  return 0; // dummy return to suppress warning
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
 | 
						|
/// with the specified arguments, returning null if unsuccessful.
 | 
						|
 | 
						|
Constant *
 | 
						|
llvm::ConstantFoldCall(Function *F, 
 | 
						|
                       Constant* const* Operands, unsigned NumOperands) {
 | 
						|
  if (!F->hasName()) return 0;
 | 
						|
  const char *Str = F->getNameStart();
 | 
						|
  unsigned Len = F->getNameLen();
 | 
						|
  
 | 
						|
  const Type *Ty = F->getReturnType();
 | 
						|
  if (NumOperands == 1) {
 | 
						|
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
 | 
						|
        return 0;
 | 
						|
      /// Currently APFloat versions of these functions do not exist, so we use
 | 
						|
      /// the host native double versions.  Float versions are not called
 | 
						|
      /// directly but for all these it is true (float)(f((double)arg)) ==
 | 
						|
      /// f(arg).  Long double not supported yet.
 | 
						|
      double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
 | 
						|
                                     Op->getValueAPF().convertToDouble();
 | 
						|
      switch (Str[0]) {
 | 
						|
      case 'a':
 | 
						|
        if (Len == 4 && !strcmp(Str, "acos"))
 | 
						|
          return ConstantFoldFP(acos, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "asin"))
 | 
						|
          return ConstantFoldFP(asin, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "atan"))
 | 
						|
          return ConstantFoldFP(atan, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'c':
 | 
						|
        if (Len == 4 && !strcmp(Str, "ceil"))
 | 
						|
          return ConstantFoldFP(ceil, V, Ty);
 | 
						|
        else if (Len == 3 && !strcmp(Str, "cos"))
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "cosh"))
 | 
						|
          return ConstantFoldFP(cosh, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "cosf"))
 | 
						|
          return ConstantFoldFP(cos, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'e':
 | 
						|
        if (Len == 3 && !strcmp(Str, "exp"))
 | 
						|
          return ConstantFoldFP(exp, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'f':
 | 
						|
        if (Len == 4 && !strcmp(Str, "fabs"))
 | 
						|
          return ConstantFoldFP(fabs, V, Ty);
 | 
						|
        else if (Len == 5 && !strcmp(Str, "floor"))
 | 
						|
          return ConstantFoldFP(floor, V, Ty);
 | 
						|
        break;
 | 
						|
      case 'l':
 | 
						|
        if (Len == 3 && !strcmp(Str, "log") && V > 0)
 | 
						|
          return ConstantFoldFP(log, V, Ty);
 | 
						|
        else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
 | 
						|
          return ConstantFoldFP(log10, V, Ty);
 | 
						|
        else if (!strcmp(Str, "llvm.sqrt.f32") ||
 | 
						|
                 !strcmp(Str, "llvm.sqrt.f64")) {
 | 
						|
          if (V >= -0.0)
 | 
						|
            return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
          else // Undefined
 | 
						|
            return Constant::getNullValue(Ty);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 's':
 | 
						|
        if (Len == 3 && !strcmp(Str, "sin"))
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "sinh"))
 | 
						|
          return ConstantFoldFP(sinh, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
 | 
						|
          return ConstantFoldFP(sqrt, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "sinf"))
 | 
						|
          return ConstantFoldFP(sin, V, Ty);
 | 
						|
        break;
 | 
						|
      case 't':
 | 
						|
        if (Len == 3 && !strcmp(Str, "tan"))
 | 
						|
          return ConstantFoldFP(tan, V, Ty);
 | 
						|
        else if (Len == 4 && !strcmp(Str, "tanh"))
 | 
						|
          return ConstantFoldFP(tanh, V, Ty);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
 | 
						|
        return ConstantInt::get(Op->getValue().byteSwap());
 | 
						|
      else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | 
						|
      else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
 | 
						|
      else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
 | 
						|
        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
 | 
						|
    }
 | 
						|
  } else if (NumOperands == 2) {
 | 
						|
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
 | 
						|
        return 0;
 | 
						|
      double Op1V = Ty==Type::FloatTy ? 
 | 
						|
                      (double)Op1->getValueAPF().convertToFloat():
 | 
						|
                      Op1->getValueAPF().convertToDouble();
 | 
						|
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
        double Op2V = Ty==Type::FloatTy ? 
 | 
						|
                      (double)Op2->getValueAPF().convertToFloat():
 | 
						|
                      Op2->getValueAPF().convertToDouble();
 | 
						|
 | 
						|
        if (Len == 3 && !strcmp(Str, "pow")) {
 | 
						|
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
        } else if (Len == 4 && !strcmp(Str, "fmod")) {
 | 
						|
          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
 | 
						|
        } else if (Len == 5 && !strcmp(Str, "atan2")) {
 | 
						|
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | 
						|
        }
 | 
						|
      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
        if (!strcmp(Str, "llvm.powi.f32")) {
 | 
						|
          return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
 | 
						|
                                                 (int)Op2C->getZExtValue())));
 | 
						|
        } else if (!strcmp(Str, "llvm.powi.f64")) {
 | 
						|
          return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
 | 
						|
                                                 (int)Op2C->getZExtValue())));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 |