forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3476 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3476 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the implementation of the scalar evolution analysis
 | 
						|
// engine, which is used primarily to analyze expressions involving induction
 | 
						|
// variables in loops.
 | 
						|
//
 | 
						|
// There are several aspects to this library.  First is the representation of
 | 
						|
// scalar expressions, which are represented as subclasses of the SCEV class.
 | 
						|
// These classes are used to represent certain types of subexpressions that we
 | 
						|
// can handle.  These classes are reference counted, managed by the SCEVHandle
 | 
						|
// class.  We only create one SCEV of a particular shape, so pointer-comparisons
 | 
						|
// for equality are legal.
 | 
						|
//
 | 
						|
// One important aspect of the SCEV objects is that they are never cyclic, even
 | 
						|
// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | 
						|
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | 
						|
// recurrence) then we represent it directly as a recurrence node, otherwise we
 | 
						|
// represent it as a SCEVUnknown node.
 | 
						|
//
 | 
						|
// In addition to being able to represent expressions of various types, we also
 | 
						|
// have folders that are used to build the *canonical* representation for a
 | 
						|
// particular expression.  These folders are capable of using a variety of
 | 
						|
// rewrite rules to simplify the expressions.
 | 
						|
//
 | 
						|
// Once the folders are defined, we can implement the more interesting
 | 
						|
// higher-level code, such as the code that recognizes PHI nodes of various
 | 
						|
// types, computes the execution count of a loop, etc.
 | 
						|
//
 | 
						|
// TODO: We should use these routines and value representations to implement
 | 
						|
// dependence analysis!
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// There are several good references for the techniques used in this analysis.
 | 
						|
//
 | 
						|
//  Chains of recurrences -- a method to expedite the evaluation
 | 
						|
//  of closed-form functions
 | 
						|
//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | 
						|
//
 | 
						|
//  On computational properties of chains of recurrences
 | 
						|
//  Eugene V. Zima
 | 
						|
//
 | 
						|
//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | 
						|
//  Robert A. van Engelen
 | 
						|
//
 | 
						|
//  Efficient Symbolic Analysis for Optimizing Compilers
 | 
						|
//  Robert A. van Engelen
 | 
						|
//
 | 
						|
//  Using the chains of recurrences algebra for data dependence testing and
 | 
						|
//  induction variable substitution
 | 
						|
//  MS Thesis, Johnie Birch
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalar-evolution"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <ostream>
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumArrayLenItCounts,
 | 
						|
          "Number of trip counts computed with array length");
 | 
						|
STATISTIC(NumTripCountsComputed,
 | 
						|
          "Number of loops with predictable loop counts");
 | 
						|
STATISTIC(NumTripCountsNotComputed,
 | 
						|
          "Number of loops without predictable loop counts");
 | 
						|
STATISTIC(NumBruteForceTripCountsComputed,
 | 
						|
          "Number of loops with trip counts computed by force");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | 
						|
                        cl::desc("Maximum number of iterations SCEV will "
 | 
						|
                                 "symbolically execute a constant derived loop"),
 | 
						|
                        cl::init(100));
 | 
						|
 | 
						|
static RegisterPass<ScalarEvolution>
 | 
						|
R("scalar-evolution", "Scalar Evolution Analysis", false, true);
 | 
						|
char ScalarEvolution::ID = 0;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           SCEV class definitions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Implementation of the SCEV class.
 | 
						|
//
 | 
						|
SCEV::~SCEV() {}
 | 
						|
void SCEV::dump() const {
 | 
						|
  print(errs());
 | 
						|
  errs() << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void SCEV::print(std::ostream &o) const {
 | 
						|
  raw_os_ostream OS(o);
 | 
						|
  print(OS);
 | 
						|
}
 | 
						|
 | 
						|
bool SCEV::isZero() const {
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | 
						|
    return SC->getValue()->isZero();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
 | 
						|
SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
 | 
						|
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVCouldNotCompute::getType() const {
 | 
						|
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
 | 
						|
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle SCEVCouldNotCompute::
 | 
						|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | 
						|
                                  const SCEVHandle &Conc,
 | 
						|
                                  ScalarEvolution &SE) const {
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
void SCEVCouldNotCompute::print(raw_ostream &OS) const {
 | 
						|
  OS << "***COULDNOTCOMPUTE***";
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | 
						|
  return S->getSCEVType() == scCouldNotCompute;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// SCEVConstants - Only allow the creation of one SCEVConstant for any
 | 
						|
// particular value.  Don't use a SCEVHandle here, or else the object will
 | 
						|
// never be deleted!
 | 
						|
static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
 | 
						|
 | 
						|
 | 
						|
SCEVConstant::~SCEVConstant() {
 | 
						|
  SCEVConstants->erase(V);
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
 | 
						|
  SCEVConstant *&R = (*SCEVConstants)[V];
 | 
						|
  if (R == 0) R = new SCEVConstant(V);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
 | 
						|
  return getConstant(ConstantInt::get(Val));
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVConstant::getType() const { return V->getType(); }
 | 
						|
 | 
						|
void SCEVConstant::print(raw_ostream &OS) const {
 | 
						|
  WriteAsOperand(OS, V, false);
 | 
						|
}
 | 
						|
 | 
						|
SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
 | 
						|
                           const SCEVHandle &op, const Type *ty)
 | 
						|
  : SCEV(SCEVTy), Op(op), Ty(ty) {}
 | 
						|
 | 
						|
SCEVCastExpr::~SCEVCastExpr() {}
 | 
						|
 | 
						|
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return Op->dominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
 | 
						|
// particular input.  Don't use a SCEVHandle here, or else the object will
 | 
						|
// never be deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 
 | 
						|
                     SCEVTruncateExpr*> > SCEVTruncates;
 | 
						|
 | 
						|
SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
 | 
						|
  : SCEVCastExpr(scTruncate, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot truncate non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
SCEVTruncateExpr::~SCEVTruncateExpr() {
 | 
						|
  SCEVTruncates->erase(std::make_pair(Op, Ty));
 | 
						|
}
 | 
						|
 | 
						|
void SCEVTruncateExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
 | 
						|
// particular input.  Don't use a SCEVHandle here, or else the object will never
 | 
						|
// be deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
 | 
						|
                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
 | 
						|
 | 
						|
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
 | 
						|
  : SCEVCastExpr(scZeroExtend, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot zero extend non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
 | 
						|
  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
 | 
						|
}
 | 
						|
 | 
						|
void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
 | 
						|
// particular input.  Don't use a SCEVHandle here, or else the object will never
 | 
						|
// be deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
 | 
						|
                     SCEVSignExtendExpr*> > SCEVSignExtends;
 | 
						|
 | 
						|
SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
 | 
						|
  : SCEVCastExpr(scSignExtend, op, ty) {
 | 
						|
  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
 | 
						|
         (Ty->isInteger() || isa<PointerType>(Ty)) &&
 | 
						|
         "Cannot sign extend non-integer value!");
 | 
						|
}
 | 
						|
 | 
						|
SCEVSignExtendExpr::~SCEVSignExtendExpr() {
 | 
						|
  SCEVSignExtends->erase(std::make_pair(Op, Ty));
 | 
						|
}
 | 
						|
 | 
						|
void SCEVSignExtendExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
 | 
						|
}
 | 
						|
 | 
						|
// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
 | 
						|
// particular input.  Don't use a SCEVHandle here, or else the object will never
 | 
						|
// be deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
 | 
						|
                     SCEVCommutativeExpr*> > SCEVCommExprs;
 | 
						|
 | 
						|
SCEVCommutativeExpr::~SCEVCommutativeExpr() {
 | 
						|
  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
 | 
						|
  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
 | 
						|
}
 | 
						|
 | 
						|
void SCEVCommutativeExpr::print(raw_ostream &OS) const {
 | 
						|
  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
 | 
						|
  const char *OpStr = getOperationStr();
 | 
						|
  OS << "(" << *Operands[0];
 | 
						|
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | 
						|
    OS << OpStr << *Operands[i];
 | 
						|
  OS << ")";
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle SCEVCommutativeExpr::
 | 
						|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | 
						|
                                  const SCEVHandle &Conc,
 | 
						|
                                  ScalarEvolution &SE) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    SCEVHandle H =
 | 
						|
      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
 | 
						|
    if (H != getOperand(i)) {
 | 
						|
      std::vector<SCEVHandle> NewOps;
 | 
						|
      NewOps.reserve(getNumOperands());
 | 
						|
      for (unsigned j = 0; j != i; ++j)
 | 
						|
        NewOps.push_back(getOperand(j));
 | 
						|
      NewOps.push_back(H);
 | 
						|
      for (++i; i != e; ++i)
 | 
						|
        NewOps.push_back(getOperand(i)->
 | 
						|
                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
 | 
						|
 | 
						|
      if (isa<SCEVAddExpr>(this))
 | 
						|
        return SE.getAddExpr(NewOps);
 | 
						|
      else if (isa<SCEVMulExpr>(this))
 | 
						|
        return SE.getMulExpr(NewOps);
 | 
						|
      else if (isa<SCEVSMaxExpr>(this))
 | 
						|
        return SE.getSMaxExpr(NewOps);
 | 
						|
      else if (isa<SCEVUMaxExpr>(this))
 | 
						|
        return SE.getUMaxExpr(NewOps);
 | 
						|
      else
 | 
						|
        assert(0 && "Unknown commutative expr!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (!getOperand(i)->dominates(BB, DT))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
 | 
						|
// input.  Don't use a SCEVHandle here, or else the object will never be
 | 
						|
// deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
 | 
						|
                     SCEVUDivExpr*> > SCEVUDivs;
 | 
						|
 | 
						|
SCEVUDivExpr::~SCEVUDivExpr() {
 | 
						|
  SCEVUDivs->erase(std::make_pair(LHS, RHS));
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
 | 
						|
}
 | 
						|
 | 
						|
void SCEVUDivExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "(" << *LHS << " /u " << *RHS << ")";
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVUDivExpr::getType() const {
 | 
						|
  return LHS->getType();
 | 
						|
}
 | 
						|
 | 
						|
// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
 | 
						|
// particular input.  Don't use a SCEVHandle here, or else the object will never
 | 
						|
// be deleted!
 | 
						|
static ManagedStatic<std::map<std::pair<const Loop *,
 | 
						|
                                        std::vector<const SCEV*> >,
 | 
						|
                     SCEVAddRecExpr*> > SCEVAddRecExprs;
 | 
						|
 | 
						|
SCEVAddRecExpr::~SCEVAddRecExpr() {
 | 
						|
  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
 | 
						|
  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    if (!getOperand(i)->dominates(BB, DT))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SCEVHandle SCEVAddRecExpr::
 | 
						|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | 
						|
                                  const SCEVHandle &Conc,
 | 
						|
                                  ScalarEvolution &SE) const {
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    SCEVHandle H =
 | 
						|
      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
 | 
						|
    if (H != getOperand(i)) {
 | 
						|
      std::vector<SCEVHandle> NewOps;
 | 
						|
      NewOps.reserve(getNumOperands());
 | 
						|
      for (unsigned j = 0; j != i; ++j)
 | 
						|
        NewOps.push_back(getOperand(j));
 | 
						|
      NewOps.push_back(H);
 | 
						|
      for (++i; i != e; ++i)
 | 
						|
        NewOps.push_back(getOperand(i)->
 | 
						|
                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
 | 
						|
 | 
						|
      return SE.getAddRecExpr(NewOps, L);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
 | 
						|
  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
 | 
						|
  // contain L and if the start is invariant.
 | 
						|
  return !QueryLoop->contains(L->getHeader()) &&
 | 
						|
         getOperand(0)->isLoopInvariant(QueryLoop);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SCEVAddRecExpr::print(raw_ostream &OS) const {
 | 
						|
  OS << "{" << *Operands[0];
 | 
						|
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | 
						|
    OS << ",+," << *Operands[i];
 | 
						|
  OS << "}<" << L->getHeader()->getName() + ">";
 | 
						|
}
 | 
						|
 | 
						|
// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
 | 
						|
// value.  Don't use a SCEVHandle here, or else the object will never be
 | 
						|
// deleted!
 | 
						|
static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
 | 
						|
 | 
						|
SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
 | 
						|
 | 
						|
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
 | 
						|
  // All non-instruction values are loop invariant.  All instructions are loop
 | 
						|
  // invariant if they are not contained in the specified loop.
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return !L->contains(I->getParent());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(getValue()))
 | 
						|
    return DT->dominates(I->getParent(), BB);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const Type *SCEVUnknown::getType() const {
 | 
						|
  return V->getType();
 | 
						|
}
 | 
						|
 | 
						|
void SCEVUnknown::print(raw_ostream &OS) const {
 | 
						|
  WriteAsOperand(OS, V, false);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               SCEV Utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
 | 
						|
  /// than the complexity of the RHS.  This comparator is used to canonicalize
 | 
						|
  /// expressions.
 | 
						|
  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
 | 
						|
    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
 | 
						|
      return LHS->getSCEVType() < RHS->getSCEVType();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// GroupByComplexity - Given a list of SCEV objects, order them by their
 | 
						|
/// complexity, and group objects of the same complexity together by value.
 | 
						|
/// When this routine is finished, we know that any duplicates in the vector are
 | 
						|
/// consecutive and that complexity is monotonically increasing.
 | 
						|
///
 | 
						|
/// Note that we go take special precautions to ensure that we get determinstic
 | 
						|
/// results from this routine.  In other words, we don't want the results of
 | 
						|
/// this to depend on where the addresses of various SCEV objects happened to
 | 
						|
/// land in memory.
 | 
						|
///
 | 
						|
static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
 | 
						|
  if (Ops.size() < 2) return;  // Noop
 | 
						|
  if (Ops.size() == 2) {
 | 
						|
    // This is the common case, which also happens to be trivially simple.
 | 
						|
    // Special case it.
 | 
						|
    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
 | 
						|
      std::swap(Ops[0], Ops[1]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the rough sort by complexity.
 | 
						|
  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
 | 
						|
 | 
						|
  // Now that we are sorted by complexity, group elements of the same
 | 
						|
  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | 
						|
  // be extremely short in practice.  Note that we take this approach because we
 | 
						|
  // do not want to depend on the addresses of the objects we are grouping.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | 
						|
    const SCEV *S = Ops[i];
 | 
						|
    unsigned Complexity = S->getSCEVType();
 | 
						|
 | 
						|
    // If there are any objects of the same complexity and same value as this
 | 
						|
    // one, group them.
 | 
						|
    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | 
						|
      if (Ops[j] == S) { // Found a duplicate.
 | 
						|
        // Move it to immediately after i'th element.
 | 
						|
        std::swap(Ops[i+1], Ops[j]);
 | 
						|
        ++i;   // no need to rescan it.
 | 
						|
        if (i == e-2) return;  // Done!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Simple SCEV method implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
 | 
						|
// Assume, K > 0.
 | 
						|
static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
 | 
						|
                                      ScalarEvolution &SE,
 | 
						|
                                      const Type* ResultTy) {
 | 
						|
  // Handle the simplest case efficiently.
 | 
						|
  if (K == 1)
 | 
						|
    return SE.getTruncateOrZeroExtend(It, ResultTy);
 | 
						|
 | 
						|
  // We are using the following formula for BC(It, K):
 | 
						|
  //
 | 
						|
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
 | 
						|
  //
 | 
						|
  // Suppose, W is the bitwidth of the return value.  We must be prepared for
 | 
						|
  // overflow.  Hence, we must assure that the result of our computation is
 | 
						|
  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
 | 
						|
  // safe in modular arithmetic.
 | 
						|
  //
 | 
						|
  // However, this code doesn't use exactly that formula; the formula it uses
 | 
						|
  // is something like the following, where T is the number of factors of 2 in 
 | 
						|
  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
 | 
						|
  // exponentiation:
 | 
						|
  //
 | 
						|
  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
 | 
						|
  //
 | 
						|
  // This formula is trivially equivalent to the previous formula.  However,
 | 
						|
  // this formula can be implemented much more efficiently.  The trick is that
 | 
						|
  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
 | 
						|
  // arithmetic.  To do exact division in modular arithmetic, all we have
 | 
						|
  // to do is multiply by the inverse.  Therefore, this step can be done at
 | 
						|
  // width W.
 | 
						|
  // 
 | 
						|
  // The next issue is how to safely do the division by 2^T.  The way this
 | 
						|
  // is done is by doing the multiplication step at a width of at least W + T
 | 
						|
  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
 | 
						|
  // when we perform the division by 2^T (which is equivalent to a right shift
 | 
						|
  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
 | 
						|
  // truncated out after the division by 2^T.
 | 
						|
  //
 | 
						|
  // In comparison to just directly using the first formula, this technique
 | 
						|
  // is much more efficient; using the first formula requires W * K bits,
 | 
						|
  // but this formula less than W + K bits. Also, the first formula requires
 | 
						|
  // a division step, whereas this formula only requires multiplies and shifts.
 | 
						|
  //
 | 
						|
  // It doesn't matter whether the subtraction step is done in the calculation
 | 
						|
  // width or the input iteration count's width; if the subtraction overflows,
 | 
						|
  // the result must be zero anyway.  We prefer here to do it in the width of
 | 
						|
  // the induction variable because it helps a lot for certain cases; CodeGen
 | 
						|
  // isn't smart enough to ignore the overflow, which leads to much less
 | 
						|
  // efficient code if the width of the subtraction is wider than the native
 | 
						|
  // register width.
 | 
						|
  //
 | 
						|
  // (It's possible to not widen at all by pulling out factors of 2 before
 | 
						|
  // the multiplication; for example, K=2 can be calculated as
 | 
						|
  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
 | 
						|
  // extra arithmetic, so it's not an obvious win, and it gets
 | 
						|
  // much more complicated for K > 3.)
 | 
						|
 | 
						|
  // Protection from insane SCEVs; this bound is conservative,
 | 
						|
  // but it probably doesn't matter.
 | 
						|
  if (K > 1000)
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  unsigned W = SE.getTypeSizeInBits(ResultTy);
 | 
						|
 | 
						|
  // Calculate K! / 2^T and T; we divide out the factors of two before
 | 
						|
  // multiplying for calculating K! / 2^T to avoid overflow.
 | 
						|
  // Other overflow doesn't matter because we only care about the bottom
 | 
						|
  // W bits of the result.
 | 
						|
  APInt OddFactorial(W, 1);
 | 
						|
  unsigned T = 1;
 | 
						|
  for (unsigned i = 3; i <= K; ++i) {
 | 
						|
    APInt Mult(W, i);
 | 
						|
    unsigned TwoFactors = Mult.countTrailingZeros();
 | 
						|
    T += TwoFactors;
 | 
						|
    Mult = Mult.lshr(TwoFactors);
 | 
						|
    OddFactorial *= Mult;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need at least W + T bits for the multiplication step
 | 
						|
  unsigned CalculationBits = W + T;
 | 
						|
 | 
						|
  // Calcuate 2^T, at width T+W.
 | 
						|
  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
 | 
						|
 | 
						|
  // Calculate the multiplicative inverse of K! / 2^T;
 | 
						|
  // this multiplication factor will perform the exact division by
 | 
						|
  // K! / 2^T.
 | 
						|
  APInt Mod = APInt::getSignedMinValue(W+1);
 | 
						|
  APInt MultiplyFactor = OddFactorial.zext(W+1);
 | 
						|
  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
 | 
						|
  MultiplyFactor = MultiplyFactor.trunc(W);
 | 
						|
 | 
						|
  // Calculate the product, at width T+W
 | 
						|
  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
 | 
						|
  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
 | 
						|
  for (unsigned i = 1; i != K; ++i) {
 | 
						|
    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
 | 
						|
    Dividend = SE.getMulExpr(Dividend,
 | 
						|
                             SE.getTruncateOrZeroExtend(S, CalculationTy));
 | 
						|
  }
 | 
						|
 | 
						|
  // Divide by 2^T
 | 
						|
  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
 | 
						|
 | 
						|
  // Truncate the result, and divide by K! / 2^T.
 | 
						|
 | 
						|
  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
 | 
						|
                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
 | 
						|
}
 | 
						|
 | 
						|
/// evaluateAtIteration - Return the value of this chain of recurrences at
 | 
						|
/// the specified iteration number.  We can evaluate this recurrence by
 | 
						|
/// multiplying each element in the chain by the binomial coefficient
 | 
						|
/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 | 
						|
///
 | 
						|
///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 | 
						|
///
 | 
						|
/// where BC(It, k) stands for binomial coefficient.
 | 
						|
///
 | 
						|
SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
 | 
						|
                                               ScalarEvolution &SE) const {
 | 
						|
  SCEVHandle Result = getStart();
 | 
						|
  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
    // The computation is correct in the face of overflow provided that the
 | 
						|
    // multiplication is performed _after_ the evaluation of the binomial
 | 
						|
    // coefficient.
 | 
						|
    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
 | 
						|
    if (isa<SCEVCouldNotCompute>(Coeff))
 | 
						|
      return Coeff;
 | 
						|
 | 
						|
    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    SCEV Expression folder implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
 | 
						|
                                            const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not a truncating conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | 
						|
    return getUnknown(
 | 
						|
        ConstantExpr::getTrunc(SC->getValue(), Ty));
 | 
						|
 | 
						|
  // trunc(trunc(x)) --> trunc(x)
 | 
						|
  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
 | 
						|
    return getTruncateExpr(ST->getOperand(), Ty);
 | 
						|
 | 
						|
  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
 | 
						|
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | 
						|
    return getTruncateOrSignExtend(SS->getOperand(), Ty);
 | 
						|
 | 
						|
  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
 | 
						|
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | 
						|
    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
 | 
						|
 | 
						|
  // If the input value is a chrec scev made out of constants, truncate
 | 
						|
  // all of the constants.
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | 
						|
    std::vector<SCEVHandle> Operands;
 | 
						|
    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | 
						|
      // FIXME: This should allow truncation of other expression types!
 | 
						|
      if (isa<SCEVConstant>(AddRec->getOperand(i)))
 | 
						|
        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
 | 
						|
      else
 | 
						|
        break;
 | 
						|
    if (Operands.size() == AddRec->getNumOperands())
 | 
						|
      return getAddRecExpr(Operands, AddRec->getLoop());
 | 
						|
  }
 | 
						|
 | 
						|
  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
 | 
						|
  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
 | 
						|
                                              const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not an extending conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
 | 
						|
    const Type *IntTy = getEffectiveSCEVType(Ty);
 | 
						|
    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
 | 
						|
    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
 | 
						|
    return getUnknown(C);
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(zext(x)) --> zext(x)
 | 
						|
  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | 
						|
    return getZeroExtendExpr(SZ->getOperand(), Ty);
 | 
						|
 | 
						|
  // If the input value is a chrec scev, and we can prove that the value
 | 
						|
  // did not overflow the old, smaller, value, we can zero extend all of the
 | 
						|
  // operands (often constants).  This allows analysis of something like
 | 
						|
  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | 
						|
    if (AR->isAffine()) {
 | 
						|
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | 
						|
      // Note that this serves two purposes: It filters out loops that are
 | 
						|
      // simply not analyzable, and it covers the case where this code is
 | 
						|
      // being called from within backedge-taken count analysis, such that
 | 
						|
      // attempting to ask for the backedge-taken count would likely result
 | 
						|
      // in infinite recursion. In the later case, the analysis code will
 | 
						|
      // cope with a conservative value, and it will take care to purge
 | 
						|
      // that value once it has finished.
 | 
						|
      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
 | 
						|
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | 
						|
        // Manually compute the final value for AR, checking for
 | 
						|
        // overflow.
 | 
						|
        SCEVHandle Start = AR->getStart();
 | 
						|
        SCEVHandle Step = AR->getStepRecurrence(*this);
 | 
						|
 | 
						|
        // Check whether the backedge-taken count can be losslessly casted to
 | 
						|
        // the addrec's type. The count is always unsigned.
 | 
						|
        SCEVHandle CastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | 
						|
        if (MaxBECount ==
 | 
						|
            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
 | 
						|
          const Type *WideTy =
 | 
						|
            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
 | 
						|
          // Check whether Start+Step*MaxBECount has no unsigned overflow.
 | 
						|
          SCEVHandle ZMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrZeroExtend(Step, Start->getType()));
 | 
						|
          SCEVHandle Add = getAddExpr(Start, ZMul);
 | 
						|
          if (getZeroExtendExpr(Add, WideTy) ==
 | 
						|
              getAddExpr(getZeroExtendExpr(Start, WideTy),
 | 
						|
                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                    getZeroExtendExpr(Step, WideTy))))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getZeroExtendExpr(Step, Ty),
 | 
						|
                                 AR->getLoop());
 | 
						|
 | 
						|
          // Similar to above, only this time treat the step value as signed.
 | 
						|
          // This covers loops that count down.
 | 
						|
          SCEVHandle SMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrSignExtend(Step, Start->getType()));
 | 
						|
          Add = getAddExpr(Start, SMul);
 | 
						|
          if (getZeroExtendExpr(Add, WideTy) ==
 | 
						|
              getAddExpr(getZeroExtendExpr(Start, WideTy),
 | 
						|
                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                    getSignExtendExpr(Step, WideTy))))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 AR->getLoop());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
 | 
						|
  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
 | 
						|
                                              const Type *Ty) {
 | 
						|
  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | 
						|
         "This is not an extending conversion!");
 | 
						|
  assert(isSCEVable(Ty) &&
 | 
						|
         "This is not a conversion to a SCEVable type!");
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
 | 
						|
    const Type *IntTy = getEffectiveSCEVType(Ty);
 | 
						|
    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
 | 
						|
    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
 | 
						|
    return getUnknown(C);
 | 
						|
  }
 | 
						|
 | 
						|
  // sext(sext(x)) --> sext(x)
 | 
						|
  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | 
						|
    return getSignExtendExpr(SS->getOperand(), Ty);
 | 
						|
 | 
						|
  // If the input value is a chrec scev, and we can prove that the value
 | 
						|
  // did not overflow the old, smaller, value, we can sign extend all of the
 | 
						|
  // operands (often constants).  This allows analysis of something like
 | 
						|
  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | 
						|
    if (AR->isAffine()) {
 | 
						|
      // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | 
						|
      // Note that this serves two purposes: It filters out loops that are
 | 
						|
      // simply not analyzable, and it covers the case where this code is
 | 
						|
      // being called from within backedge-taken count analysis, such that
 | 
						|
      // attempting to ask for the backedge-taken count would likely result
 | 
						|
      // in infinite recursion. In the later case, the analysis code will
 | 
						|
      // cope with a conservative value, and it will take care to purge
 | 
						|
      // that value once it has finished.
 | 
						|
      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
 | 
						|
      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | 
						|
        // Manually compute the final value for AR, checking for
 | 
						|
        // overflow.
 | 
						|
        SCEVHandle Start = AR->getStart();
 | 
						|
        SCEVHandle Step = AR->getStepRecurrence(*this);
 | 
						|
 | 
						|
        // Check whether the backedge-taken count can be losslessly casted to
 | 
						|
        // the addrec's type. The count is always unsigned.
 | 
						|
        SCEVHandle CastedMaxBECount =
 | 
						|
          getTruncateOrZeroExtend(MaxBECount, Start->getType());
 | 
						|
        if (MaxBECount ==
 | 
						|
            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
 | 
						|
          const Type *WideTy =
 | 
						|
            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
 | 
						|
          // Check whether Start+Step*MaxBECount has no signed overflow.
 | 
						|
          SCEVHandle SMul =
 | 
						|
            getMulExpr(CastedMaxBECount,
 | 
						|
                       getTruncateOrSignExtend(Step, Start->getType()));
 | 
						|
          SCEVHandle Add = getAddExpr(Start, SMul);
 | 
						|
          if (getSignExtendExpr(Add, WideTy) ==
 | 
						|
              getAddExpr(getSignExtendExpr(Start, WideTy),
 | 
						|
                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
 | 
						|
                                    getSignExtendExpr(Step, WideTy))))
 | 
						|
            // Return the expression with the addrec on the outside.
 | 
						|
            return getAddRecExpr(getSignExtendExpr(Start, Ty),
 | 
						|
                                 getSignExtendExpr(Step, Ty),
 | 
						|
                                 AR->getLoop());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
 | 
						|
  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// get - Get a canonical add expression, or something simpler if possible.
 | 
						|
SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty add!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 
 | 
						|
                                           RHSC->getValue()->getValue());
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant zero being added, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, merge them together into an multiply expression.  Since we sorted the
 | 
						|
  // list, these values are required to be adjacent.
 | 
						|
  const Type *Ty = Ops[0]->getType();
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | 
						|
      // Found a match, merge the two values into a multiply, and add any
 | 
						|
      // remaining values to the result.
 | 
						|
      SCEVHandle Two = getIntegerSCEV(2, Ty);
 | 
						|
      SCEVHandle Mul = getMulExpr(Ops[i], Two);
 | 
						|
      if (Ops.size() == 2)
 | 
						|
        return Mul;
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | 
						|
      Ops.push_back(Mul);
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
 | 
						|
  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // If there are add operands they would be next.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedAdd = false;
 | 
						|
    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | 
						|
      // If we have an add, expand the add operands onto the end of the operands
 | 
						|
      // list.
 | 
						|
      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedAdd = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we deleted at least one add, we added operands to the end of the list,
 | 
						|
    // and they are not necessarily sorted.  Recurse to resort and resimplify
 | 
						|
    // any operands we just aquired.
 | 
						|
    if (DeletedAdd)
 | 
						|
      return getAddExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the add expression until we get to a multiply.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // If we are adding something to a multiply expression, make sure the
 | 
						|
  // something is not already an operand of the multiply.  If so, merge it into
 | 
						|
  // the multiply.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | 
						|
    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | 
						|
      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | 
						|
      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | 
						|
        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
 | 
						|
          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | 
						|
          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
 | 
						|
          if (Mul->getNumOperands() != 2) {
 | 
						|
            // If the multiply has more than two operands, we must get the
 | 
						|
            // Y*Z term.
 | 
						|
            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | 
						|
            MulOps.erase(MulOps.begin()+MulOp);
 | 
						|
            InnerMul = getMulExpr(MulOps);
 | 
						|
          }
 | 
						|
          SCEVHandle One = getIntegerSCEV(1, Ty);
 | 
						|
          SCEVHandle AddOne = getAddExpr(InnerMul, One);
 | 
						|
          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
 | 
						|
          if (Ops.size() == 2) return OuterMul;
 | 
						|
          if (AddOp < Idx) {
 | 
						|
            Ops.erase(Ops.begin()+AddOp);
 | 
						|
            Ops.erase(Ops.begin()+Idx-1);
 | 
						|
          } else {
 | 
						|
            Ops.erase(Ops.begin()+Idx);
 | 
						|
            Ops.erase(Ops.begin()+AddOp-1);
 | 
						|
          }
 | 
						|
          Ops.push_back(OuterMul);
 | 
						|
          return getAddExpr(Ops);
 | 
						|
        }
 | 
						|
 | 
						|
      // Check this multiply against other multiplies being added together.
 | 
						|
      for (unsigned OtherMulIdx = Idx+1;
 | 
						|
           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | 
						|
           ++OtherMulIdx) {
 | 
						|
        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | 
						|
        // If MulOp occurs in OtherMul, we can fold the two multiplies
 | 
						|
        // together.
 | 
						|
        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | 
						|
             OMulOp != e; ++OMulOp)
 | 
						|
          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | 
						|
            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | 
						|
            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
 | 
						|
            if (Mul->getNumOperands() != 2) {
 | 
						|
              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | 
						|
              MulOps.erase(MulOps.begin()+MulOp);
 | 
						|
              InnerMul1 = getMulExpr(MulOps);
 | 
						|
            }
 | 
						|
            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | 
						|
            if (OtherMul->getNumOperands() != 2) {
 | 
						|
              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
 | 
						|
                                             OtherMul->op_end());
 | 
						|
              MulOps.erase(MulOps.begin()+OMulOp);
 | 
						|
              InnerMul2 = getMulExpr(MulOps);
 | 
						|
            }
 | 
						|
            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
 | 
						|
            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
 | 
						|
            if (Ops.size() == 2) return OuterMul;
 | 
						|
            Ops.erase(Ops.begin()+Idx);
 | 
						|
            Ops.erase(Ops.begin()+OtherMulIdx-1);
 | 
						|
            Ops.push_back(OuterMul);
 | 
						|
            return getAddExpr(Ops);
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any add recurrences in the operands list, see if any other
 | 
						|
  // added values are loop invariant.  If so, we can fold them into the
 | 
						|
  // recurrence.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Scan over all recurrences, trying to fold loop invariants into them.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    // Scan all of the other operands to this add and add them to the vector if
 | 
						|
    // they are loop invariant w.r.t. the recurrence.
 | 
						|
    std::vector<SCEVHandle> LIOps;
 | 
						|
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | 
						|
        LIOps.push_back(Ops[i]);
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
      }
 | 
						|
 | 
						|
    // If we found some loop invariants, fold them into the recurrence.
 | 
						|
    if (!LIOps.empty()) {
 | 
						|
      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
 | 
						|
      LIOps.push_back(AddRec->getStart());
 | 
						|
 | 
						|
      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
 | 
						|
      AddRecOps[0] = getAddExpr(LIOps);
 | 
						|
 | 
						|
      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
 | 
						|
      // If all of the other operands were loop invariant, we are done.
 | 
						|
      if (Ops.size() == 1) return NewRec;
 | 
						|
 | 
						|
      // Otherwise, add the folded AddRec by the non-liv parts.
 | 
						|
      for (unsigned i = 0;; ++i)
 | 
						|
        if (Ops[i] == AddRec) {
 | 
						|
          Ops[i] = NewRec;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if there weren't any loop invariants to be folded, check to see if
 | 
						|
    // there are multiple AddRec's with the same loop induction variable being
 | 
						|
    // added together.  If so, we can fold them.
 | 
						|
    for (unsigned OtherIdx = Idx+1;
 | 
						|
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | 
						|
      if (OtherIdx != Idx) {
 | 
						|
        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | 
						|
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | 
						|
          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
 | 
						|
          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
 | 
						|
          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
 | 
						|
            if (i >= NewOps.size()) {
 | 
						|
              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
 | 
						|
                            OtherAddRec->op_end());
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
 | 
						|
          }
 | 
						|
          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | 
						|
 | 
						|
          if (Ops.size() == 2) return NewAddRec;
 | 
						|
 | 
						|
          Ops.erase(Ops.begin()+Idx);
 | 
						|
          Ops.erase(Ops.begin()+OtherIdx-1);
 | 
						|
          Ops.push_back(NewAddRec);
 | 
						|
          return getAddExpr(Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | 
						|
    // next one.
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an add expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | 
						|
  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
 | 
						|
                                                                 SCEVOps)];
 | 
						|
  if (Result == 0) Result = new SCEVAddExpr(Ops);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty mul!");
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
 | 
						|
    // C1*(C2+V) -> C1*C2 + C1*V
 | 
						|
    if (Ops.size() == 2)
 | 
						|
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | 
						|
        if (Add->getNumOperands() == 2 &&
 | 
						|
            isa<SCEVConstant>(Add->getOperand(0)))
 | 
						|
          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
 | 
						|
                            getMulExpr(LHSC, Add->getOperand(1)));
 | 
						|
 | 
						|
 | 
						|
    ++Idx;
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 
 | 
						|
                                           RHSC->getValue()->getValue());
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant one being multiplied, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | 
						|
      // If we have a multiply of zero, it will always be zero.
 | 
						|
      return Ops[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the add expression until we get to a multiply.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  if (Ops.size() == 1)
 | 
						|
    return Ops[0];
 | 
						|
 | 
						|
  // If there are mul operands inline them all into this expression.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedMul = false;
 | 
						|
    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | 
						|
      // If we have an mul, expand the mul operands onto the end of the operands
 | 
						|
      // list.
 | 
						|
      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedMul = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we deleted at least one mul, we added operands to the end of the list,
 | 
						|
    // and they are not necessarily sorted.  Recurse to resort and resimplify
 | 
						|
    // any operands we just aquired.
 | 
						|
    if (DeletedMul)
 | 
						|
      return getMulExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any add recurrences in the operands list, see if any other
 | 
						|
  // added values are loop invariant.  If so, we can fold them into the
 | 
						|
  // recurrence.
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Scan over all recurrences, trying to fold loop invariants into them.
 | 
						|
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | 
						|
    // Scan all of the other operands to this mul and add them to the vector if
 | 
						|
    // they are loop invariant w.r.t. the recurrence.
 | 
						|
    std::vector<SCEVHandle> LIOps;
 | 
						|
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | 
						|
        LIOps.push_back(Ops[i]);
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
      }
 | 
						|
 | 
						|
    // If we found some loop invariants, fold them into the recurrence.
 | 
						|
    if (!LIOps.empty()) {
 | 
						|
      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
 | 
						|
      std::vector<SCEVHandle> NewOps;
 | 
						|
      NewOps.reserve(AddRec->getNumOperands());
 | 
						|
      if (LIOps.size() == 1) {
 | 
						|
        const SCEV *Scale = LIOps[0];
 | 
						|
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | 
						|
          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | 
						|
          std::vector<SCEVHandle> MulOps(LIOps);
 | 
						|
          MulOps.push_back(AddRec->getOperand(i));
 | 
						|
          NewOps.push_back(getMulExpr(MulOps));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | 
						|
 | 
						|
      // If all of the other operands were loop invariant, we are done.
 | 
						|
      if (Ops.size() == 1) return NewRec;
 | 
						|
 | 
						|
      // Otherwise, multiply the folded AddRec by the non-liv parts.
 | 
						|
      for (unsigned i = 0;; ++i)
 | 
						|
        if (Ops[i] == AddRec) {
 | 
						|
          Ops[i] = NewRec;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      return getMulExpr(Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if there weren't any loop invariants to be folded, check to see if
 | 
						|
    // there are multiple AddRec's with the same loop induction variable being
 | 
						|
    // multiplied together.  If so, we can fold them.
 | 
						|
    for (unsigned OtherIdx = Idx+1;
 | 
						|
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | 
						|
      if (OtherIdx != Idx) {
 | 
						|
        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | 
						|
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | 
						|
          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
 | 
						|
          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
 | 
						|
          SCEVHandle NewStart = getMulExpr(F->getStart(),
 | 
						|
                                                 G->getStart());
 | 
						|
          SCEVHandle B = F->getStepRecurrence(*this);
 | 
						|
          SCEVHandle D = G->getStepRecurrence(*this);
 | 
						|
          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
 | 
						|
                                          getMulExpr(G, B),
 | 
						|
                                          getMulExpr(B, D));
 | 
						|
          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
 | 
						|
                                               F->getLoop());
 | 
						|
          if (Ops.size() == 2) return NewAddRec;
 | 
						|
 | 
						|
          Ops.erase(Ops.begin()+Idx);
 | 
						|
          Ops.erase(Ops.begin()+OtherIdx-1);
 | 
						|
          Ops.push_back(NewAddRec);
 | 
						|
          return getMulExpr(Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | 
						|
    // next one.
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | 
						|
  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
 | 
						|
                                                                 SCEVOps)];
 | 
						|
  if (Result == 0)
 | 
						|
    Result = new SCEVMulExpr(Ops);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
 | 
						|
                                        const SCEVHandle &RHS) {
 | 
						|
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | 
						|
    if (RHSC->getValue()->equalsInt(1))
 | 
						|
      return LHS;                            // X udiv 1 --> x
 | 
						|
 | 
						|
    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | 
						|
      Constant *LHSCV = LHSC->getValue();
 | 
						|
      Constant *RHSCV = RHSC->getValue();
 | 
						|
      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
 | 
						|
 | 
						|
  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
 | 
						|
  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | 
						|
/// specified loop.  Simplify the expression as much as possible.
 | 
						|
SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
 | 
						|
                               const SCEVHandle &Step, const Loop *L) {
 | 
						|
  std::vector<SCEVHandle> Operands;
 | 
						|
  Operands.push_back(Start);
 | 
						|
  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | 
						|
    if (StepChrec->getLoop() == L) {
 | 
						|
      Operands.insert(Operands.end(), StepChrec->op_begin(),
 | 
						|
                      StepChrec->op_end());
 | 
						|
      return getAddRecExpr(Operands, L);
 | 
						|
    }
 | 
						|
 | 
						|
  Operands.push_back(Step);
 | 
						|
  return getAddRecExpr(Operands, L);
 | 
						|
}
 | 
						|
 | 
						|
/// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | 
						|
/// specified loop.  Simplify the expression as much as possible.
 | 
						|
SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
 | 
						|
                                          const Loop *L) {
 | 
						|
  if (Operands.size() == 1) return Operands[0];
 | 
						|
 | 
						|
  if (Operands.back()->isZero()) {
 | 
						|
    Operands.pop_back();
 | 
						|
    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
 | 
						|
  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
 | 
						|
    const Loop* NestedLoop = NestedAR->getLoop();
 | 
						|
    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
 | 
						|
      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
 | 
						|
                                             NestedAR->op_end());
 | 
						|
      SCEVHandle NestedARHandle(NestedAR);
 | 
						|
      Operands[0] = NestedAR->getStart();
 | 
						|
      NestedOperands[0] = getAddRecExpr(Operands, L);
 | 
						|
      return getAddRecExpr(NestedOperands, NestedLoop);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
 | 
						|
  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
 | 
						|
  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
 | 
						|
                                        const SCEVHandle &RHS) {
 | 
						|
  std::vector<SCEVHandle> Ops;
 | 
						|
  Ops.push_back(LHS);
 | 
						|
  Ops.push_back(RHS);
 | 
						|
  return getSMaxExpr(Ops);
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty smax!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(
 | 
						|
                              APIntOps::smax(LHSC->getValue()->getValue(),
 | 
						|
                                             RHSC->getValue()->getValue()));
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant -inf, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Find the first SMax
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Check to see if one of the operands is an SMax. If so, expand its operands
 | 
						|
  // onto our operand list, and recurse to simplify.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedSMax = false;
 | 
						|
    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
 | 
						|
      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedSMax = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeletedSMax)
 | 
						|
      return getSMaxExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, delete one.  Since we sorted the list, these values are required to
 | 
						|
  // be adjacent.
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | 
						|
      --i; --e;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  assert(!Ops.empty() && "Reduced smax down to nothing!");
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need an smax expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | 
						|
  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
 | 
						|
                                                                 SCEVOps)];
 | 
						|
  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
 | 
						|
                                        const SCEVHandle &RHS) {
 | 
						|
  std::vector<SCEVHandle> Ops;
 | 
						|
  Ops.push_back(LHS);
 | 
						|
  Ops.push_back(RHS);
 | 
						|
  return getUMaxExpr(Ops);
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
 | 
						|
  assert(!Ops.empty() && "Cannot get empty umax!");
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Sort by complexity, this groups all similar expression types together.
 | 
						|
  GroupByComplexity(Ops);
 | 
						|
 | 
						|
  // If there are any constants, fold them together.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | 
						|
    ++Idx;
 | 
						|
    assert(Idx < Ops.size());
 | 
						|
    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | 
						|
      // We found two constants, fold them together!
 | 
						|
      ConstantInt *Fold = ConstantInt::get(
 | 
						|
                              APIntOps::umax(LHSC->getValue()->getValue(),
 | 
						|
                                             RHSC->getValue()->getValue()));
 | 
						|
      Ops[0] = getConstant(Fold);
 | 
						|
      Ops.erase(Ops.begin()+1);  // Erase the folded element
 | 
						|
      if (Ops.size() == 1) return Ops[0];
 | 
						|
      LHSC = cast<SCEVConstant>(Ops[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are left with a constant zero, strip it off.
 | 
						|
    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
 | 
						|
      Ops.erase(Ops.begin());
 | 
						|
      --Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  // Find the first UMax
 | 
						|
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
 | 
						|
    ++Idx;
 | 
						|
 | 
						|
  // Check to see if one of the operands is a UMax. If so, expand its operands
 | 
						|
  // onto our operand list, and recurse to simplify.
 | 
						|
  if (Idx < Ops.size()) {
 | 
						|
    bool DeletedUMax = false;
 | 
						|
    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
 | 
						|
      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
 | 
						|
      Ops.erase(Ops.begin()+Idx);
 | 
						|
      DeletedUMax = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeletedUMax)
 | 
						|
      return getUMaxExpr(Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, check to see if the same value occurs in the operand list twice.  If
 | 
						|
  // so, delete one.  Since we sorted the list, these values are required to
 | 
						|
  // be adjacent.
 | 
						|
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | 
						|
    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | 
						|
      --i; --e;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Ops.size() == 1) return Ops[0];
 | 
						|
 | 
						|
  assert(!Ops.empty() && "Reduced umax down to nothing!");
 | 
						|
 | 
						|
  // Okay, it looks like we really DO need a umax expr.  Check to see if we
 | 
						|
  // already have one, otherwise create a new one.
 | 
						|
  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | 
						|
  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
 | 
						|
                                                                 SCEVOps)];
 | 
						|
  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getUnknown(Value *V) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
    return getConstant(CI);
 | 
						|
  if (isa<ConstantPointerNull>(V))
 | 
						|
    return getIntegerSCEV(0, V->getType());
 | 
						|
  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
 | 
						|
  if (Result == 0) Result = new SCEVUnknown(V);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Basic SCEV Analysis and PHI Idiom Recognition Code
 | 
						|
//
 | 
						|
 | 
						|
/// isSCEVable - Test if values of the given type are analyzable within
 | 
						|
/// the SCEV framework. This primarily includes integer types, and it
 | 
						|
/// can optionally include pointer types if the ScalarEvolution class
 | 
						|
/// has access to target-specific information.
 | 
						|
bool ScalarEvolution::isSCEVable(const Type *Ty) const {
 | 
						|
  // Integers are always SCEVable.
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Pointers are SCEVable if TargetData information is available
 | 
						|
  // to provide pointer size information.
 | 
						|
  if (isa<PointerType>(Ty))
 | 
						|
    return TD != NULL;
 | 
						|
 | 
						|
  // Otherwise it's not SCEVable.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeSizeInBits - Return the size in bits of the specified type,
 | 
						|
/// for which isSCEVable must return true.
 | 
						|
uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
 | 
						|
  assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | 
						|
 | 
						|
  // If we have a TargetData, use it!
 | 
						|
  if (TD)
 | 
						|
    return TD->getTypeSizeInBits(Ty);
 | 
						|
 | 
						|
  // Otherwise, we support only integer types.
 | 
						|
  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
 | 
						|
  return Ty->getPrimitiveSizeInBits();
 | 
						|
}
 | 
						|
 | 
						|
/// getEffectiveSCEVType - Return a type with the same bitwidth as
 | 
						|
/// the given type and which represents how SCEV will treat the given
 | 
						|
/// type, for which isSCEVable must return true. For pointer types,
 | 
						|
/// this is the pointer-sized integer type.
 | 
						|
const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
 | 
						|
  assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | 
						|
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return Ty;
 | 
						|
 | 
						|
  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
 | 
						|
  return TD->getIntPtrType();
 | 
						|
}
 | 
						|
 | 
						|
SCEVHandle ScalarEvolution::getCouldNotCompute() {
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
/// hasSCEV - Return true if the SCEV for this value has already been
 | 
						|
/// computed.
 | 
						|
bool ScalarEvolution::hasSCEV(Value *V) const {
 | 
						|
  return Scalars.count(V);
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | 
						|
/// expression and create a new one.
 | 
						|
SCEVHandle ScalarEvolution::getSCEV(Value *V) {
 | 
						|
  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
 | 
						|
 | 
						|
  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
 | 
						|
  if (I != Scalars.end()) return I->second;
 | 
						|
  SCEVHandle S = createSCEV(V);
 | 
						|
  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// getIntegerSCEV - Given an integer or FP type, create a constant for the
 | 
						|
/// specified signed integer value and return a SCEV for the constant.
 | 
						|
SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
  Constant *C;
 | 
						|
  if (Val == 0)
 | 
						|
    C = Constant::getNullValue(Ty);
 | 
						|
  else if (Ty->isFloatingPoint())
 | 
						|
    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
 | 
						|
                                APFloat::IEEEdouble, Val));
 | 
						|
  else
 | 
						|
    C = ConstantInt::get(Ty, Val);
 | 
						|
  return getUnknown(C);
 | 
						|
}
 | 
						|
 | 
						|
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
 | 
						|
///
 | 
						|
SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
 | 
						|
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | 
						|
    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
 | 
						|
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
 | 
						|
}
 | 
						|
 | 
						|
/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
 | 
						|
SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
 | 
						|
  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | 
						|
    return getUnknown(ConstantExpr::getNot(VC->getValue()));
 | 
						|
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  Ty = getEffectiveSCEVType(Ty);
 | 
						|
  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
 | 
						|
  return getMinusSCEV(AllOnes, V);
 | 
						|
}
 | 
						|
 | 
						|
/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
 | 
						|
///
 | 
						|
SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
 | 
						|
                                         const SCEVHandle &RHS) {
 | 
						|
  // X - Y --> X + -Y
 | 
						|
  return getAddExpr(LHS, getNegativeSCEV(RHS));
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is zero
 | 
						|
/// extended.
 | 
						|
SCEVHandle
 | 
						|
ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
 | 
						|
                                         const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
 | 
						|
         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
 | 
						|
         "Cannot truncate or zero extend with non-integer arguments!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | 
						|
    return getTruncateExpr(V, Ty);
 | 
						|
  return getZeroExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
 | 
						|
/// input value to the specified type.  If the type must be extended, it is sign
 | 
						|
/// extended.
 | 
						|
SCEVHandle
 | 
						|
ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
 | 
						|
                                         const Type *Ty) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
 | 
						|
         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
 | 
						|
         "Cannot truncate or zero extend with non-integer arguments!");
 | 
						|
  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | 
						|
    return V;  // No conversion
 | 
						|
  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | 
						|
    return getTruncateExpr(V, Ty);
 | 
						|
  return getSignExtendExpr(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
 | 
						|
/// the specified instruction and replaces any references to the symbolic value
 | 
						|
/// SymName with the specified value.  This is used during PHI resolution.
 | 
						|
void ScalarEvolution::
 | 
						|
ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
 | 
						|
                                 const SCEVHandle &NewVal) {
 | 
						|
  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
 | 
						|
    Scalars.find(SCEVCallbackVH(I, this));
 | 
						|
  if (SI == Scalars.end()) return;
 | 
						|
 | 
						|
  SCEVHandle NV =
 | 
						|
    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
 | 
						|
  if (NV == SI->second) return;  // No change.
 | 
						|
 | 
						|
  SI->second = NV;       // Update the scalars map!
 | 
						|
 | 
						|
  // Any instruction values that use this instruction might also need to be
 | 
						|
  // updated!
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
 | 
						|
}
 | 
						|
 | 
						|
/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
 | 
						|
/// a loop header, making it a potential recurrence, or it doesn't.
 | 
						|
///
 | 
						|
SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
 | 
						|
  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
 | 
						|
    if (const Loop *L = LI->getLoopFor(PN->getParent()))
 | 
						|
      if (L->getHeader() == PN->getParent()) {
 | 
						|
        // If it lives in the loop header, it has two incoming values, one
 | 
						|
        // from outside the loop, and one from inside.
 | 
						|
        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | 
						|
        unsigned BackEdge     = IncomingEdge^1;
 | 
						|
 | 
						|
        // While we are analyzing this PHI node, handle its value symbolically.
 | 
						|
        SCEVHandle SymbolicName = getUnknown(PN);
 | 
						|
        assert(Scalars.find(PN) == Scalars.end() &&
 | 
						|
               "PHI node already processed?");
 | 
						|
        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
 | 
						|
 | 
						|
        // Using this symbolic name for the PHI, analyze the value coming around
 | 
						|
        // the back-edge.
 | 
						|
        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
 | 
						|
 | 
						|
        // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | 
						|
        // has a special value for the first iteration of the loop.
 | 
						|
 | 
						|
        // If the value coming around the backedge is an add with the symbolic
 | 
						|
        // value we just inserted, then we found a simple induction variable!
 | 
						|
        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | 
						|
          // If there is a single occurrence of the symbolic value, replace it
 | 
						|
          // with a recurrence.
 | 
						|
          unsigned FoundIndex = Add->getNumOperands();
 | 
						|
          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
            if (Add->getOperand(i) == SymbolicName)
 | 
						|
              if (FoundIndex == e) {
 | 
						|
                FoundIndex = i;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
 | 
						|
          if (FoundIndex != Add->getNumOperands()) {
 | 
						|
            // Create an add with everything but the specified operand.
 | 
						|
            std::vector<SCEVHandle> Ops;
 | 
						|
            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | 
						|
              if (i != FoundIndex)
 | 
						|
                Ops.push_back(Add->getOperand(i));
 | 
						|
            SCEVHandle Accum = getAddExpr(Ops);
 | 
						|
 | 
						|
            // This is not a valid addrec if the step amount is varying each
 | 
						|
            // loop iteration, but is not itself an addrec in this loop.
 | 
						|
            if (Accum->isLoopInvariant(L) ||
 | 
						|
                (isa<SCEVAddRecExpr>(Accum) &&
 | 
						|
                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | 
						|
              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | 
						|
              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
 | 
						|
 | 
						|
              // Okay, for the entire analysis of this edge we assumed the PHI
 | 
						|
              // to be symbolic.  We now need to go back and update all of the
 | 
						|
              // entries for the scalars that use the PHI (except for the PHI
 | 
						|
              // itself) to use the new analyzed value instead of the "symbolic"
 | 
						|
              // value.
 | 
						|
              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
 | 
						|
              return PHISCEV;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (const SCEVAddRecExpr *AddRec =
 | 
						|
                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
 | 
						|
          // Otherwise, this could be a loop like this:
 | 
						|
          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
 | 
						|
          // In this case, j = {1,+,1}  and BEValue is j.
 | 
						|
          // Because the other in-value of i (0) fits the evolution of BEValue
 | 
						|
          // i really is an addrec evolution.
 | 
						|
          if (AddRec->getLoop() == L && AddRec->isAffine()) {
 | 
						|
            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | 
						|
 | 
						|
            // If StartVal = j.start - j.stride, we can use StartVal as the
 | 
						|
            // initial step of the addrec evolution.
 | 
						|
            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
 | 
						|
                                            AddRec->getOperand(1))) {
 | 
						|
              SCEVHandle PHISCEV = 
 | 
						|
                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
 | 
						|
 | 
						|
              // Okay, for the entire analysis of this edge we assumed the PHI
 | 
						|
              // to be symbolic.  We now need to go back and update all of the
 | 
						|
              // entries for the scalars that use the PHI (except for the PHI
 | 
						|
              // itself) to use the new analyzed value instead of the "symbolic"
 | 
						|
              // value.
 | 
						|
              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
 | 
						|
              return PHISCEV;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        return SymbolicName;
 | 
						|
      }
 | 
						|
 | 
						|
  // If it's not a loop phi, we can't handle it yet.
 | 
						|
  return getUnknown(PN);
 | 
						|
}
 | 
						|
 | 
						|
/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
 | 
						|
/// guaranteed to end in (at every loop iteration).  It is, at the same time,
 | 
						|
/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
 | 
						|
/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
 | 
						|
static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | 
						|
    return C->getValue()->getValue().countTrailingZeros();
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
 | 
						|
    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
 | 
						|
                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | 
						|
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
 | 
						|
    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
 | 
						|
             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
 | 
						|
    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
 | 
						|
    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
 | 
						|
             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
 | 
						|
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    // The result is the sum of all operands results.
 | 
						|
    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
 | 
						|
    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands();
 | 
						|
         SumOpRes != BitWidth && i != e; ++i)
 | 
						|
      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
 | 
						|
                          BitWidth);
 | 
						|
    return SumOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
 | 
						|
    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
 | 
						|
    // The result is the min of all operands results.
 | 
						|
    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
 | 
						|
    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | 
						|
      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
 | 
						|
    return MinOpRes;
 | 
						|
  }
 | 
						|
 | 
						|
  // SCEVUDivExpr, SCEVUnknown
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// createSCEV - We know that there is no SCEV for the specified value.
 | 
						|
/// Analyze the expression.
 | 
						|
///
 | 
						|
SCEVHandle ScalarEvolution::createSCEV(Value *V) {
 | 
						|
  if (!isSCEVable(V->getType()))
 | 
						|
    return getUnknown(V);
 | 
						|
 | 
						|
  unsigned Opcode = Instruction::UserOp1;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    Opcode = I->getOpcode();
 | 
						|
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    Opcode = CE->getOpcode();
 | 
						|
  else
 | 
						|
    return getUnknown(V);
 | 
						|
 | 
						|
  User *U = cast<User>(V);
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return getAddExpr(getSCEV(U->getOperand(0)),
 | 
						|
                      getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::Mul:
 | 
						|
    return getMulExpr(getSCEV(U->getOperand(0)),
 | 
						|
                      getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::UDiv:
 | 
						|
    return getUDivExpr(getSCEV(U->getOperand(0)),
 | 
						|
                       getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::Sub:
 | 
						|
    return getMinusSCEV(getSCEV(U->getOperand(0)),
 | 
						|
                        getSCEV(U->getOperand(1)));
 | 
						|
  case Instruction::And:
 | 
						|
    // For an expression like x&255 that merely masks off the high bits,
 | 
						|
    // use zext(trunc(x)) as the SCEV expression.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      if (CI->isNullValue())
 | 
						|
        return getSCEV(U->getOperand(1));
 | 
						|
      if (CI->isAllOnesValue())
 | 
						|
        return getSCEV(U->getOperand(0));
 | 
						|
      const APInt &A = CI->getValue();
 | 
						|
      unsigned Ones = A.countTrailingOnes();
 | 
						|
      if (APIntOps::isMask(Ones, A))
 | 
						|
        return
 | 
						|
          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
 | 
						|
                                            IntegerType::get(Ones)),
 | 
						|
                            U->getType());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    // If the RHS of the Or is a constant, we may have something like:
 | 
						|
    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
 | 
						|
    // optimizations will transparently handle this case.
 | 
						|
    //
 | 
						|
    // In order for this transformation to be safe, the LHS must be of the
 | 
						|
    // form X*(2^n) and the Or constant must be less than 2^n.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      SCEVHandle LHS = getSCEV(U->getOperand(0));
 | 
						|
      const APInt &CIVal = CI->getValue();
 | 
						|
      if (GetMinTrailingZeros(LHS, *this) >=
 | 
						|
          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
 | 
						|
        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      // If the RHS of the xor is a signbit, then this is just an add.
 | 
						|
      // Instcombine turns add of signbit into xor as a strength reduction step.
 | 
						|
      if (CI->getValue().isSignBit())
 | 
						|
        return getAddExpr(getSCEV(U->getOperand(0)),
 | 
						|
                          getSCEV(U->getOperand(1)));
 | 
						|
 | 
						|
      // If the RHS of xor is -1, then this is a not operation.
 | 
						|
      else if (CI->isAllOnesValue())
 | 
						|
        return getNotSCEV(getSCEV(U->getOperand(0)));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Turn shift left of a constant amount into a multiply.
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
      Constant *X = ConstantInt::get(
 | 
						|
        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | 
						|
      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::LShr:
 | 
						|
    // Turn logical shift right of a constant into a unsigned divide.
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
      Constant *X = ConstantInt::get(
 | 
						|
        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | 
						|
      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::AShr:
 | 
						|
    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
 | 
						|
      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
 | 
						|
        if (L->getOpcode() == Instruction::Shl &&
 | 
						|
            L->getOperand(1) == U->getOperand(1)) {
 | 
						|
          unsigned BitWidth = getTypeSizeInBits(U->getType());
 | 
						|
          uint64_t Amt = BitWidth - CI->getZExtValue();
 | 
						|
          if (Amt == BitWidth)
 | 
						|
            return getSCEV(L->getOperand(0));       // shift by zero --> noop
 | 
						|
          if (Amt > BitWidth)
 | 
						|
            return getIntegerSCEV(0, U->getType()); // value is undefined
 | 
						|
          return
 | 
						|
            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
 | 
						|
                                                      IntegerType::get(Amt)),
 | 
						|
                                 U->getType());
 | 
						|
        }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::SExt:
 | 
						|
    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | 
						|
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // BitCasts are no-op casts so we just eliminate the cast.
 | 
						|
    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
 | 
						|
      return getSCEV(U->getOperand(0));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    if (!TD) break; // Without TD we can't analyze pointers.
 | 
						|
    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
 | 
						|
                                   TD->getIntPtrType());
 | 
						|
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    if (!TD) break; // Without TD we can't analyze pointers.
 | 
						|
    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
 | 
						|
                                   U->getType());
 | 
						|
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    if (!TD) break; // Without TD we can't analyze pointers.
 | 
						|
    const Type *IntPtrTy = TD->getIntPtrType();
 | 
						|
    Value *Base = U->getOperand(0);
 | 
						|
    SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
 | 
						|
    gep_type_iterator GTI = gep_type_begin(U);
 | 
						|
    for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
 | 
						|
                                        E = U->op_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      Value *Index = *I;
 | 
						|
      // Compute the (potentially symbolic) offset in bytes for this index.
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | 
						|
        // For a struct, add the member offset.
 | 
						|
        const StructLayout &SL = *TD->getStructLayout(STy);
 | 
						|
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | 
						|
        uint64_t Offset = SL.getElementOffset(FieldNo);
 | 
						|
        TotalOffset = getAddExpr(TotalOffset,
 | 
						|
                                    getIntegerSCEV(Offset, IntPtrTy));
 | 
						|
      } else {
 | 
						|
        // For an array, add the element offset, explicitly scaled.
 | 
						|
        SCEVHandle LocalOffset = getSCEV(Index);
 | 
						|
        if (!isa<PointerType>(LocalOffset->getType()))
 | 
						|
          // Getelementptr indicies are signed.
 | 
						|
          LocalOffset = getTruncateOrSignExtend(LocalOffset,
 | 
						|
                                                IntPtrTy);
 | 
						|
        LocalOffset =
 | 
						|
          getMulExpr(LocalOffset,
 | 
						|
                     getIntegerSCEV(TD->getTypePaddedSize(*GTI),
 | 
						|
                                    IntPtrTy));
 | 
						|
        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return getAddExpr(getSCEV(Base), TotalOffset);
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::PHI:
 | 
						|
    return createNodeForPHI(cast<PHINode>(U));
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    // This could be a smax or umax that was lowered earlier.
 | 
						|
    // Try to recover it.
 | 
						|
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
 | 
						|
      Value *LHS = ICI->getOperand(0);
 | 
						|
      Value *RHS = ICI->getOperand(1);
 | 
						|
      switch (ICI->getPredicate()) {
 | 
						|
      case ICmpInst::ICMP_SLT:
 | 
						|
      case ICmpInst::ICMP_SLE:
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
        // fall through
 | 
						|
      case ICmpInst::ICMP_SGT:
 | 
						|
      case ICmpInst::ICMP_SGE:
 | 
						|
        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | 
						|
          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | 
						|
          // ~smax(~x, ~y) == smin(x, y).
 | 
						|
          return getNotSCEV(getSMaxExpr(
 | 
						|
                                   getNotSCEV(getSCEV(LHS)),
 | 
						|
                                   getNotSCEV(getSCEV(RHS))));
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_ULT:
 | 
						|
      case ICmpInst::ICMP_ULE:
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
        // fall through
 | 
						|
      case ICmpInst::ICMP_UGT:
 | 
						|
      case ICmpInst::ICMP_UGE:
 | 
						|
        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | 
						|
          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | 
						|
        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | 
						|
          // ~umax(~x, ~y) == umin(x, y)
 | 
						|
          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
 | 
						|
                                        getNotSCEV(getSCEV(RHS))));
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  default: // We cannot analyze this expression.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return getUnknown(V);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   Iteration Count Computation Code
 | 
						|
//
 | 
						|
 | 
						|
/// getBackedgeTakenCount - If the specified loop has a predictable
 | 
						|
/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | 
						|
/// object. The backedge-taken count is the number of times the loop header
 | 
						|
/// will be branched to from within the loop. This is one less than the
 | 
						|
/// trip count of the loop, since it doesn't count the first iteration,
 | 
						|
/// when the header is branched to from outside the loop.
 | 
						|
///
 | 
						|
/// Note that it is not valid to call this method on a loop without a
 | 
						|
/// loop-invariant backedge-taken count (see
 | 
						|
/// hasLoopInvariantBackedgeTakenCount).
 | 
						|
///
 | 
						|
SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
 | 
						|
  return getBackedgeTakenInfo(L).Exact;
 | 
						|
}
 | 
						|
 | 
						|
/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | 
						|
/// return the least SCEV value that is known never to be less than the
 | 
						|
/// actual backedge taken count.
 | 
						|
SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
 | 
						|
  return getBackedgeTakenInfo(L).Max;
 | 
						|
}
 | 
						|
 | 
						|
const ScalarEvolution::BackedgeTakenInfo &
 | 
						|
ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
 | 
						|
  // Initially insert a CouldNotCompute for this loop. If the insertion
 | 
						|
  // succeeds, procede to actually compute a backedge-taken count and
 | 
						|
  // update the value. The temporary CouldNotCompute value tells SCEV
 | 
						|
  // code elsewhere that it shouldn't attempt to request a new
 | 
						|
  // backedge-taken count, which could result in infinite recursion.
 | 
						|
  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
 | 
						|
    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
 | 
						|
  if (Pair.second) {
 | 
						|
    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
 | 
						|
    if (ItCount.Exact != UnknownValue) {
 | 
						|
      assert(ItCount.Exact->isLoopInvariant(L) &&
 | 
						|
             ItCount.Max->isLoopInvariant(L) &&
 | 
						|
             "Computed trip count isn't loop invariant for loop!");
 | 
						|
      ++NumTripCountsComputed;
 | 
						|
 | 
						|
      // Update the value in the map.
 | 
						|
      Pair.first->second = ItCount;
 | 
						|
    } else if (isa<PHINode>(L->getHeader()->begin())) {
 | 
						|
      // Only count loops that have phi nodes as not being computable.
 | 
						|
      ++NumTripCountsNotComputed;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we know more about the trip count for this loop, forget any
 | 
						|
    // existing SCEV values for PHI nodes in this loop since they are only
 | 
						|
    // conservative estimates made without the benefit
 | 
						|
    // of trip count information.
 | 
						|
    if (ItCount.hasAnyInfo())
 | 
						|
      forgetLoopPHIs(L);
 | 
						|
  }
 | 
						|
  return Pair.first->second;
 | 
						|
}
 | 
						|
 | 
						|
/// forgetLoopBackedgeTakenCount - This method should be called by the
 | 
						|
/// client when it has changed a loop in a way that may effect
 | 
						|
/// ScalarEvolution's ability to compute a trip count, or if the loop
 | 
						|
/// is deleted.
 | 
						|
void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
 | 
						|
  BackedgeTakenCounts.erase(L);
 | 
						|
  forgetLoopPHIs(L);
 | 
						|
}
 | 
						|
 | 
						|
/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
 | 
						|
/// PHI nodes in the given loop. This is used when the trip count of
 | 
						|
/// the loop may have changed.
 | 
						|
void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  SmallVector<Instruction *, 16> Worklist;
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    Worklist.push_back(PN);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.pop_back_val();
 | 
						|
    if (Scalars.erase(I))
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        Worklist.push_back(cast<Instruction>(UI));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCount - Compute the number of times the backedge
 | 
						|
/// of the specified loop will execute.
 | 
						|
ScalarEvolution::BackedgeTakenInfo
 | 
						|
ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
 | 
						|
  // If the loop has a non-one exit block count, we can't analyze it.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1) return UnknownValue;
 | 
						|
 | 
						|
  // Okay, there is one exit block.  Try to find the condition that causes the
 | 
						|
  // loop to be exited.
 | 
						|
  BasicBlock *ExitBlock = ExitBlocks[0];
 | 
						|
 | 
						|
  BasicBlock *ExitingBlock = 0;
 | 
						|
  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
 | 
						|
       PI != E; ++PI)
 | 
						|
    if (L->contains(*PI)) {
 | 
						|
      if (ExitingBlock == 0)
 | 
						|
        ExitingBlock = *PI;
 | 
						|
      else
 | 
						|
        return UnknownValue;   // More than one block exiting!
 | 
						|
    }
 | 
						|
  assert(ExitingBlock && "No exits from loop, something is broken!");
 | 
						|
 | 
						|
  // Okay, we've computed the exiting block.  See what condition causes us to
 | 
						|
  // exit.
 | 
						|
  //
 | 
						|
  // FIXME: we should be able to handle switch instructions (with a single exit)
 | 
						|
  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
  if (ExitBr == 0) return UnknownValue;
 | 
						|
  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
 | 
						|
  
 | 
						|
  // At this point, we know we have a conditional branch that determines whether
 | 
						|
  // the loop is exited.  However, we don't know if the branch is executed each
 | 
						|
  // time through the loop.  If not, then the execution count of the branch will
 | 
						|
  // not be equal to the trip count of the loop.
 | 
						|
  //
 | 
						|
  // Currently we check for this by checking to see if the Exit branch goes to
 | 
						|
  // the loop header.  If so, we know it will always execute the same number of
 | 
						|
  // times as the loop.  We also handle the case where the exit block *is* the
 | 
						|
  // loop header.  This is common for un-rotated loops.  More extensive analysis
 | 
						|
  // could be done to handle more cases here.
 | 
						|
  if (ExitBr->getSuccessor(0) != L->getHeader() &&
 | 
						|
      ExitBr->getSuccessor(1) != L->getHeader() &&
 | 
						|
      ExitBr->getParent() != L->getHeader())
 | 
						|
    return UnknownValue;
 | 
						|
  
 | 
						|
  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
 | 
						|
 | 
						|
  // If it's not an integer comparison then compute it the hard way. 
 | 
						|
  // Note that ICmpInst deals with pointer comparisons too so we must check
 | 
						|
  // the type of the operand.
 | 
						|
  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
 | 
						|
    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
 | 
						|
                                          ExitBr->getSuccessor(0) == ExitBlock);
 | 
						|
 | 
						|
  // If the condition was exit on true, convert the condition to exit on false
 | 
						|
  ICmpInst::Predicate Cond;
 | 
						|
  if (ExitBr->getSuccessor(1) == ExitBlock)
 | 
						|
    Cond = ExitCond->getPredicate();
 | 
						|
  else
 | 
						|
    Cond = ExitCond->getInversePredicate();
 | 
						|
 | 
						|
  // Handle common loops like: for (X = "string"; *X; ++X)
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | 
						|
    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | 
						|
      SCEVHandle ItCnt =
 | 
						|
        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
 | 
						|
      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
 | 
						|
    }
 | 
						|
 | 
						|
  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
 | 
						|
  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
 | 
						|
 | 
						|
  // Try to evaluate any dependencies out of the loop.
 | 
						|
  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
 | 
						|
  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
 | 
						|
  Tmp = getSCEVAtScope(RHS, L);
 | 
						|
  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
 | 
						|
 | 
						|
  // At this point, we would like to compute how many iterations of the 
 | 
						|
  // loop the predicate will return true for these inputs.
 | 
						|
  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
 | 
						|
    // If there is a loop-invariant, force it into the RHS.
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Cond = ICmpInst::getSwappedPredicate(Cond);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a comparison of a chrec against a constant, try to use value
 | 
						|
  // ranges to answer this query.
 | 
						|
  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | 
						|
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | 
						|
      if (AddRec->getLoop() == L) {
 | 
						|
        // Form the comparison range using the constant of the correct type so
 | 
						|
        // that the ConstantRange class knows to do a signed or unsigned
 | 
						|
        // comparison.
 | 
						|
        ConstantInt *CompVal = RHSC->getValue();
 | 
						|
        const Type *RealTy = ExitCond->getOperand(0)->getType();
 | 
						|
        CompVal = dyn_cast<ConstantInt>(
 | 
						|
          ConstantExpr::getBitCast(CompVal, RealTy));
 | 
						|
        if (CompVal) {
 | 
						|
          // Form the constant range.
 | 
						|
          ConstantRange CompRange(
 | 
						|
              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
 | 
						|
 | 
						|
          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
 | 
						|
          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  switch (Cond) {
 | 
						|
  case ICmpInst::ICMP_NE: {                     // while (X != Y)
 | 
						|
    // Convert to: while (X-Y != 0)
 | 
						|
    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
 | 
						|
    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_EQ: {
 | 
						|
    // Convert to: while (X-Y == 0)           // while (X == Y)
 | 
						|
    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
 | 
						|
    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SLT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SGT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
 | 
						|
                                             getNotSCEV(RHS), L, true);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_ULT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_UGT: {
 | 
						|
    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
 | 
						|
                                             getNotSCEV(RHS), L, false);
 | 
						|
    if (BTI.hasAnyInfo()) return BTI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
#if 0
 | 
						|
    errs() << "ComputeBackedgeTakenCount ";
 | 
						|
    if (ExitCond->getOperand(0)->getType()->isUnsigned())
 | 
						|
      errs() << "[unsigned] ";
 | 
						|
    errs() << *LHS << "   "
 | 
						|
         << Instruction::getOpcodeName(Instruction::ICmp) 
 | 
						|
         << "   " << *RHS << "\n";
 | 
						|
#endif
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return
 | 
						|
    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
 | 
						|
                                          ExitBr->getSuccessor(0) == ExitBlock);
 | 
						|
}
 | 
						|
 | 
						|
static ConstantInt *
 | 
						|
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
 | 
						|
                                ScalarEvolution &SE) {
 | 
						|
  SCEVHandle InVal = SE.getConstant(C);
 | 
						|
  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
 | 
						|
  assert(isa<SCEVConstant>(Val) &&
 | 
						|
         "Evaluation of SCEV at constant didn't fold correctly?");
 | 
						|
  return cast<SCEVConstant>(Val)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddressedElementFromGlobal - Given a global variable with an initializer
 | 
						|
/// and a GEP expression (missing the pointer index) indexing into it, return
 | 
						|
/// the addressed element of the initializer or null if the index expression is
 | 
						|
/// invalid.
 | 
						|
static Constant *
 | 
						|
GetAddressedElementFromGlobal(GlobalVariable *GV,
 | 
						|
                              const std::vector<ConstantInt*> &Indices) {
 | 
						|
  Constant *Init = GV->getInitializer();
 | 
						|
  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | 
						|
    uint64_t Idx = Indices[i]->getZExtValue();
 | 
						|
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
 | 
						|
      assert(Idx < CS->getNumOperands() && "Bad struct index!");
 | 
						|
      Init = cast<Constant>(CS->getOperand(Idx));
 | 
						|
    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
 | 
						|
      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
 | 
						|
      Init = cast<Constant>(CA->getOperand(Idx));
 | 
						|
    } else if (isa<ConstantAggregateZero>(Init)) {
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
 | 
						|
        assert(Idx < STy->getNumElements() && "Bad struct index!");
 | 
						|
        Init = Constant::getNullValue(STy->getElementType(Idx));
 | 
						|
      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
 | 
						|
        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
 | 
						|
        Init = Constant::getNullValue(ATy->getElementType());
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown constant aggregate type!");
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    } else {
 | 
						|
      return 0; // Unknown initializer type
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Init;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
 | 
						|
/// 'icmp op load X, cst', try to see if we can compute the backedge
 | 
						|
/// execution count.
 | 
						|
SCEVHandle ScalarEvolution::
 | 
						|
ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
 | 
						|
                                             const Loop *L,
 | 
						|
                                             ICmpInst::Predicate predicate) {
 | 
						|
  if (LI->isVolatile()) return UnknownValue;
 | 
						|
 | 
						|
  // Check to see if the loaded pointer is a getelementptr of a global.
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | 
						|
  if (!GEP) return UnknownValue;
 | 
						|
 | 
						|
  // Make sure that it is really a constant global we are gepping, with an
 | 
						|
  // initializer, and make sure the first IDX is really 0.
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | 
						|
  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
 | 
						|
      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | 
						|
      !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | 
						|
    return UnknownValue;
 | 
						|
 | 
						|
  // Okay, we allow one non-constant index into the GEP instruction.
 | 
						|
  Value *VarIdx = 0;
 | 
						|
  std::vector<ConstantInt*> Indexes;
 | 
						|
  unsigned VarIdxNum = 0;
 | 
						|
  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | 
						|
      Indexes.push_back(CI);
 | 
						|
    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | 
						|
      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
 | 
						|
      VarIdx = GEP->getOperand(i);
 | 
						|
      VarIdxNum = i-2;
 | 
						|
      Indexes.push_back(0);
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | 
						|
  // Check to see if X is a loop variant variable value now.
 | 
						|
  SCEVHandle Idx = getSCEV(VarIdx);
 | 
						|
  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
 | 
						|
  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
 | 
						|
 | 
						|
  // We can only recognize very limited forms of loop index expressions, in
 | 
						|
  // particular, only affine AddRec's like {C1,+,C2}.
 | 
						|
  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | 
						|
  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
 | 
						|
      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | 
						|
      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | 
						|
    return UnknownValue;
 | 
						|
 | 
						|
  unsigned MaxSteps = MaxBruteForceIterations;
 | 
						|
  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | 
						|
    ConstantInt *ItCst =
 | 
						|
      ConstantInt::get(IdxExpr->getType(), IterationNum);
 | 
						|
    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
 | 
						|
 | 
						|
    // Form the GEP offset.
 | 
						|
    Indexes[VarIdxNum] = Val;
 | 
						|
 | 
						|
    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
 | 
						|
    if (Result == 0) break;  // Cannot compute!
 | 
						|
 | 
						|
    // Evaluate the condition for this iteration.
 | 
						|
    Result = ConstantExpr::getICmp(predicate, Result, RHS);
 | 
						|
    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
 | 
						|
    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
 | 
						|
#if 0
 | 
						|
      errs() << "\n***\n*** Computed loop count " << *ItCst
 | 
						|
             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
 | 
						|
             << "***\n";
 | 
						|
#endif
 | 
						|
      ++NumArrayLenItCounts;
 | 
						|
      return getConstant(ItCst);   // Found terminating iteration!
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CanConstantFold - Return true if we can constant fold an instruction of the
 | 
						|
/// specified type, assuming that all operands were constants.
 | 
						|
static bool CanConstantFold(const Instruction *I) {
 | 
						|
  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
 | 
						|
      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(I))
 | 
						|
    if (const Function *F = CI->getCalledFunction())
 | 
						|
      return canConstantFoldCallTo(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | 
						|
/// in the loop that V is derived from.  We allow arbitrary operations along the
 | 
						|
/// way, but the operands of an operation must either be constants or a value
 | 
						|
/// derived from a constant PHI.  If this expression does not fit with these
 | 
						|
/// constraints, return null.
 | 
						|
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | 
						|
  // If this is not an instruction, or if this is an instruction outside of the
 | 
						|
  // loop, it can't be derived from a loop PHI.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0 || !L->contains(I->getParent())) return 0;
 | 
						|
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    if (L->getHeader() == I->getParent())
 | 
						|
      return PN;
 | 
						|
    else
 | 
						|
      // We don't currently keep track of the control flow needed to evaluate
 | 
						|
      // PHIs, so we cannot handle PHIs inside of loops.
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we won't be able to constant fold this expression even if the operands
 | 
						|
  // are constants, return early.
 | 
						|
  if (!CanConstantFold(I)) return 0;
 | 
						|
 | 
						|
  // Otherwise, we can evaluate this instruction if all of its operands are
 | 
						|
  // constant or derived from a PHI node themselves.
 | 
						|
  PHINode *PHI = 0;
 | 
						|
  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
 | 
						|
    if (!(isa<Constant>(I->getOperand(Op)) ||
 | 
						|
          isa<GlobalValue>(I->getOperand(Op)))) {
 | 
						|
      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
 | 
						|
      if (P == 0) return 0;  // Not evolving from PHI
 | 
						|
      if (PHI == 0)
 | 
						|
        PHI = P;
 | 
						|
      else if (PHI != P)
 | 
						|
        return 0;  // Evolving from multiple different PHIs.
 | 
						|
    }
 | 
						|
 | 
						|
  // This is a expression evolving from a constant PHI!
 | 
						|
  return PHI;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateExpression - Given an expression that passes the
 | 
						|
/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | 
						|
/// in the loop has the value PHIVal.  If we can't fold this expression for some
 | 
						|
/// reason, return null.
 | 
						|
static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
 | 
						|
  if (isa<PHINode>(V)) return PHIVal;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) return C;
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
 | 
						|
  std::vector<Constant*> Operands;
 | 
						|
  Operands.resize(I->getNumOperands());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
 | 
						|
    if (Operands[i] == 0) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | 
						|
                                           &Operands[0], Operands.size());
 | 
						|
  else
 | 
						|
    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                    &Operands[0], Operands.size());
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | 
						|
/// in the header of its containing loop, we know the loop executes a
 | 
						|
/// constant number of times, and the PHI node is just a recurrence
 | 
						|
/// involving constants, fold it.
 | 
						|
Constant *ScalarEvolution::
 | 
						|
getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
 | 
						|
  std::map<PHINode*, Constant*>::iterator I =
 | 
						|
    ConstantEvolutionLoopExitValue.find(PN);
 | 
						|
  if (I != ConstantEvolutionLoopExitValue.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
 | 
						|
    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
 | 
						|
 | 
						|
  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | 
						|
 | 
						|
  // Since the loop is canonicalized, the PHI node must have two entries.  One
 | 
						|
  // entry must be a constant (coming in from outside of the loop), and the
 | 
						|
  // second must be derived from the same PHI.
 | 
						|
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | 
						|
  Constant *StartCST =
 | 
						|
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | 
						|
  if (StartCST == 0)
 | 
						|
    return RetVal = 0;  // Must be a constant.
 | 
						|
 | 
						|
  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | 
						|
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | 
						|
  if (PN2 != PN)
 | 
						|
    return RetVal = 0;  // Not derived from same PHI.
 | 
						|
 | 
						|
  // Execute the loop symbolically to determine the exit value.
 | 
						|
  if (BEs.getActiveBits() >= 32)
 | 
						|
    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
 | 
						|
 | 
						|
  unsigned NumIterations = BEs.getZExtValue(); // must be in range
 | 
						|
  unsigned IterationNum = 0;
 | 
						|
  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
 | 
						|
    if (IterationNum == NumIterations)
 | 
						|
      return RetVal = PHIVal;  // Got exit value!
 | 
						|
 | 
						|
    // Compute the value of the PHI node for the next iteration.
 | 
						|
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | 
						|
    if (NextPHI == PHIVal)
 | 
						|
      return RetVal = NextPHI;  // Stopped evolving!
 | 
						|
    if (NextPHI == 0)
 | 
						|
      return 0;        // Couldn't evaluate!
 | 
						|
    PHIVal = NextPHI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
 | 
						|
/// constant number of times (the condition evolves only from constants),
 | 
						|
/// try to evaluate a few iterations of the loop until we get the exit
 | 
						|
/// condition gets a value of ExitWhen (true or false).  If we cannot
 | 
						|
/// evaluate the trip count of the loop, return UnknownValue.
 | 
						|
SCEVHandle ScalarEvolution::
 | 
						|
ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
 | 
						|
  PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | 
						|
  if (PN == 0) return UnknownValue;
 | 
						|
 | 
						|
  // Since the loop is canonicalized, the PHI node must have two entries.  One
 | 
						|
  // entry must be a constant (coming in from outside of the loop), and the
 | 
						|
  // second must be derived from the same PHI.
 | 
						|
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | 
						|
  Constant *StartCST =
 | 
						|
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | 
						|
  if (StartCST == 0) return UnknownValue;  // Must be a constant.
 | 
						|
 | 
						|
  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | 
						|
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | 
						|
  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
 | 
						|
 | 
						|
  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | 
						|
  // the loop symbolically to determine when the condition gets a value of
 | 
						|
  // "ExitWhen".
 | 
						|
  unsigned IterationNum = 0;
 | 
						|
  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | 
						|
  for (Constant *PHIVal = StartCST;
 | 
						|
       IterationNum != MaxIterations; ++IterationNum) {
 | 
						|
    ConstantInt *CondVal =
 | 
						|
      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
 | 
						|
 | 
						|
    // Couldn't symbolically evaluate.
 | 
						|
    if (!CondVal) return UnknownValue;
 | 
						|
 | 
						|
    if (CondVal->getValue() == uint64_t(ExitWhen)) {
 | 
						|
      ConstantEvolutionLoopExitValue[PN] = PHIVal;
 | 
						|
      ++NumBruteForceTripCountsComputed;
 | 
						|
      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the value of the PHI node for the next iteration.
 | 
						|
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | 
						|
    if (NextPHI == 0 || NextPHI == PHIVal)
 | 
						|
      return UnknownValue;  // Couldn't evaluate or not making progress...
 | 
						|
    PHIVal = NextPHI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Too many iterations were needed to evaluate.
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEVAtScope - Compute the value of the specified expression within the
 | 
						|
/// indicated loop (which may be null to indicate in no loop).  If the
 | 
						|
/// expression cannot be evaluated, return UnknownValue.
 | 
						|
SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
 | 
						|
  // FIXME: this should be turned into a virtual method on SCEV!
 | 
						|
 | 
						|
  if (isa<SCEVConstant>(V)) return V;
 | 
						|
 | 
						|
  // If this instruction is evolved from a constant-evolving PHI, compute the
 | 
						|
  // exit value from the loop without using SCEVs.
 | 
						|
  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | 
						|
      const Loop *LI = (*this->LI)[I->getParent()];
 | 
						|
      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
          if (PN->getParent() == LI->getHeader()) {
 | 
						|
            // Okay, there is no closed form solution for the PHI node.  Check
 | 
						|
            // to see if the loop that contains it has a known backedge-taken
 | 
						|
            // count.  If so, we may be able to force computation of the exit
 | 
						|
            // value.
 | 
						|
            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
 | 
						|
            if (const SCEVConstant *BTCC =
 | 
						|
                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
 | 
						|
              // Okay, we know how many times the containing loop executes.  If
 | 
						|
              // this is a constant evolving PHI node, get the final value at
 | 
						|
              // the specified iteration number.
 | 
						|
              Constant *RV = getConstantEvolutionLoopExitValue(PN,
 | 
						|
                                                   BTCC->getValue()->getValue(),
 | 
						|
                                                               LI);
 | 
						|
              if (RV) return getUnknown(RV);
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
      // Okay, this is an expression that we cannot symbolically evaluate
 | 
						|
      // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | 
						|
      // the arguments into constants, and if so, try to constant propagate the
 | 
						|
      // result.  This is particularly useful for computing loop exit values.
 | 
						|
      if (CanConstantFold(I)) {
 | 
						|
        std::vector<Constant*> Operands;
 | 
						|
        Operands.reserve(I->getNumOperands());
 | 
						|
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
          Value *Op = I->getOperand(i);
 | 
						|
          if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
            Operands.push_back(C);
 | 
						|
          } else {
 | 
						|
            // If any of the operands is non-constant and if they are
 | 
						|
            // non-integer and non-pointer, don't even try to analyze them
 | 
						|
            // with scev techniques.
 | 
						|
            if (!isSCEVable(Op->getType()))
 | 
						|
              return V;
 | 
						|
 | 
						|
            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
 | 
						|
            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
 | 
						|
              Constant *C = SC->getValue();
 | 
						|
              if (C->getType() != Op->getType())
 | 
						|
                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | 
						|
                                                                  Op->getType(),
 | 
						|
                                                                  false),
 | 
						|
                                          C, Op->getType());
 | 
						|
              Operands.push_back(C);
 | 
						|
            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
 | 
						|
              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
 | 
						|
                if (C->getType() != Op->getType())
 | 
						|
                  C =
 | 
						|
                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | 
						|
                                                                  Op->getType(),
 | 
						|
                                                                  false),
 | 
						|
                                          C, Op->getType());
 | 
						|
                Operands.push_back(C);
 | 
						|
              } else
 | 
						|
                return V;
 | 
						|
            } else {
 | 
						|
              return V;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        Constant *C;
 | 
						|
        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
 | 
						|
                                              &Operands[0], Operands.size());
 | 
						|
        else
 | 
						|
          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | 
						|
                                       &Operands[0], Operands.size());
 | 
						|
        return getUnknown(C);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // This is some other type of SCEVUnknown, just return it.
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | 
						|
    // Avoid performing the look-up in the common case where the specified
 | 
						|
    // expression has no loop-variant portions.
 | 
						|
    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | 
						|
      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | 
						|
      if (OpAtScope != Comm->getOperand(i)) {
 | 
						|
        if (OpAtScope == UnknownValue) return UnknownValue;
 | 
						|
        // Okay, at least one of these operands is loop variant but might be
 | 
						|
        // foldable.  Build a new instance of the folded commutative expression.
 | 
						|
        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
 | 
						|
        NewOps.push_back(OpAtScope);
 | 
						|
 | 
						|
        for (++i; i != e; ++i) {
 | 
						|
          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | 
						|
          if (OpAtScope == UnknownValue) return UnknownValue;
 | 
						|
          NewOps.push_back(OpAtScope);
 | 
						|
        }
 | 
						|
        if (isa<SCEVAddExpr>(Comm))
 | 
						|
          return getAddExpr(NewOps);
 | 
						|
        if (isa<SCEVMulExpr>(Comm))
 | 
						|
          return getMulExpr(NewOps);
 | 
						|
        if (isa<SCEVSMaxExpr>(Comm))
 | 
						|
          return getSMaxExpr(NewOps);
 | 
						|
        if (isa<SCEVUMaxExpr>(Comm))
 | 
						|
          return getUMaxExpr(NewOps);
 | 
						|
        assert(0 && "Unknown commutative SCEV type!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we got here, all operands are loop invariant.
 | 
						|
    return Comm;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
 | 
						|
    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
 | 
						|
    if (LHS == UnknownValue) return LHS;
 | 
						|
    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
 | 
						|
    if (RHS == UnknownValue) return RHS;
 | 
						|
    if (LHS == Div->getLHS() && RHS == Div->getRHS())
 | 
						|
      return Div;   // must be loop invariant
 | 
						|
    return getUDivExpr(LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a loop recurrence for a loop that does not contain L, then we
 | 
						|
  // are dealing with the final value computed by the loop.
 | 
						|
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | 
						|
    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
 | 
						|
      // To evaluate this recurrence, we need to know how many times the AddRec
 | 
						|
      // loop iterates.  Compute this now.
 | 
						|
      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
 | 
						|
      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
 | 
						|
 | 
						|
      // Then, evaluate the AddRec.
 | 
						|
      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
 | 
						|
    }
 | 
						|
    return UnknownValue;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
 | 
						|
    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == UnknownValue) return Op;
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getZeroExtendExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
 | 
						|
    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == UnknownValue) return Op;
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getSignExtendExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
 | 
						|
    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
 | 
						|
    if (Op == UnknownValue) return Op;
 | 
						|
    if (Op == Cast->getOperand())
 | 
						|
      return Cast;  // must be loop invariant
 | 
						|
    return getTruncateExpr(Op, Cast->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(0 && "Unknown SCEV type!");
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEVAtScope - Return a SCEV expression handle for the specified value
 | 
						|
/// at the specified scope in the program.  The L value specifies a loop
 | 
						|
/// nest to evaluate the expression at, where null is the top-level or a
 | 
						|
/// specified loop is immediately inside of the loop.
 | 
						|
///
 | 
						|
/// This method can be used to compute the exit value for a variable defined
 | 
						|
/// in a loop by querying what the value will hold in the parent loop.
 | 
						|
///
 | 
						|
/// If this value is not computable at this scope, a SCEVCouldNotCompute
 | 
						|
/// object is returned.
 | 
						|
SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
 | 
						|
  return getSCEVAtScope(getSCEV(V), L);
 | 
						|
}
 | 
						|
 | 
						|
/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
 | 
						|
/// following equation:
 | 
						|
///
 | 
						|
///     A * X = B (mod N)
 | 
						|
///
 | 
						|
/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 | 
						|
/// A and B isn't important.
 | 
						|
///
 | 
						|
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 | 
						|
static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
 | 
						|
                                               ScalarEvolution &SE) {
 | 
						|
  uint32_t BW = A.getBitWidth();
 | 
						|
  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
 | 
						|
  assert(A != 0 && "A must be non-zero.");
 | 
						|
 | 
						|
  // 1. D = gcd(A, N)
 | 
						|
  //
 | 
						|
  // The gcd of A and N may have only one prime factor: 2. The number of
 | 
						|
  // trailing zeros in A is its multiplicity
 | 
						|
  uint32_t Mult2 = A.countTrailingZeros();
 | 
						|
  // D = 2^Mult2
 | 
						|
 | 
						|
  // 2. Check if B is divisible by D.
 | 
						|
  //
 | 
						|
  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
 | 
						|
  // is not less than multiplicity of this prime factor for D.
 | 
						|
  if (B.countTrailingZeros() < Mult2)
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
 | 
						|
  // modulo (N / D).
 | 
						|
  //
 | 
						|
  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
 | 
						|
  // bit width during computations.
 | 
						|
  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
 | 
						|
  APInt Mod(BW + 1, 0);
 | 
						|
  Mod.set(BW - Mult2);  // Mod = N / D
 | 
						|
  APInt I = AD.multiplicativeInverse(Mod);
 | 
						|
 | 
						|
  // 4. Compute the minimum unsigned root of the equation:
 | 
						|
  // I * (B / D) mod (N / D)
 | 
						|
  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
 | 
						|
 | 
						|
  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
 | 
						|
  // bits.
 | 
						|
  return SE.getConstant(Result.trunc(BW));
 | 
						|
}
 | 
						|
 | 
						|
/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
 | 
						|
/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
 | 
						|
/// might be the same) or two SCEVCouldNotCompute objects.
 | 
						|
///
 | 
						|
static std::pair<SCEVHandle,SCEVHandle>
 | 
						|
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
 | 
						|
  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | 
						|
  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | 
						|
  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | 
						|
  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | 
						|
 | 
						|
  // We currently can only solve this if the coefficients are constants.
 | 
						|
  if (!LC || !MC || !NC) {
 | 
						|
    const SCEV *CNC = SE.getCouldNotCompute();
 | 
						|
    return std::make_pair(CNC, CNC);
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
 | 
						|
  const APInt &L = LC->getValue()->getValue();
 | 
						|
  const APInt &M = MC->getValue()->getValue();
 | 
						|
  const APInt &N = NC->getValue()->getValue();
 | 
						|
  APInt Two(BitWidth, 2);
 | 
						|
  APInt Four(BitWidth, 4);
 | 
						|
 | 
						|
  { 
 | 
						|
    using namespace APIntOps;
 | 
						|
    const APInt& C = L;
 | 
						|
    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
 | 
						|
    // The B coefficient is M-N/2
 | 
						|
    APInt B(M);
 | 
						|
    B -= sdiv(N,Two);
 | 
						|
 | 
						|
    // The A coefficient is N/2
 | 
						|
    APInt A(N.sdiv(Two));
 | 
						|
 | 
						|
    // Compute the B^2-4ac term.
 | 
						|
    APInt SqrtTerm(B);
 | 
						|
    SqrtTerm *= B;
 | 
						|
    SqrtTerm -= Four * (A * C);
 | 
						|
 | 
						|
    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
 | 
						|
    // integer value or else APInt::sqrt() will assert.
 | 
						|
    APInt SqrtVal(SqrtTerm.sqrt());
 | 
						|
 | 
						|
    // Compute the two solutions for the quadratic formula. 
 | 
						|
    // The divisions must be performed as signed divisions.
 | 
						|
    APInt NegB(-B);
 | 
						|
    APInt TwoA( A << 1 );
 | 
						|
    if (TwoA.isMinValue()) {
 | 
						|
      const SCEV *CNC = SE.getCouldNotCompute();
 | 
						|
      return std::make_pair(CNC, CNC);
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
 | 
						|
    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
 | 
						|
 | 
						|
    return std::make_pair(SE.getConstant(Solution1), 
 | 
						|
                          SE.getConstant(Solution2));
 | 
						|
    } // end APIntOps namespace
 | 
						|
}
 | 
						|
 | 
						|
/// HowFarToZero - Return the number of times a backedge comparing the specified
 | 
						|
/// value to zero will execute.  If not computable, return UnknownValue
 | 
						|
SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
 | 
						|
  // If the value is a constant
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    // If the value is already zero, the branch will execute zero times.
 | 
						|
    if (C->getValue()->isZero()) return C;
 | 
						|
    return UnknownValue;  // Otherwise it will loop infinitely.
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return UnknownValue;
 | 
						|
 | 
						|
  if (AddRec->isAffine()) {
 | 
						|
    // If this is an affine expression, the execution count of this branch is
 | 
						|
    // the minimum unsigned root of the following equation:
 | 
						|
    //
 | 
						|
    //     Start + Step*N = 0 (mod 2^BW)
 | 
						|
    //
 | 
						|
    // equivalent to:
 | 
						|
    //
 | 
						|
    //             Step*N = -Start (mod 2^BW)
 | 
						|
    //
 | 
						|
    // where BW is the common bit width of Start and Step.
 | 
						|
 | 
						|
    // Get the initial value for the loop.
 | 
						|
    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
 | 
						|
    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
 | 
						|
 | 
						|
    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
 | 
						|
 | 
						|
    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
 | 
						|
      // For now we handle only constant steps.
 | 
						|
 | 
						|
      // First, handle unitary steps.
 | 
						|
      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
 | 
						|
        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
 | 
						|
      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
 | 
						|
        return Start;                           //    N = Start (as unsigned)
 | 
						|
 | 
						|
      // Then, try to solve the above equation provided that Start is constant.
 | 
						|
      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
 | 
						|
        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
 | 
						|
                                            -StartC->getValue()->getValue(),
 | 
						|
                                            *this);
 | 
						|
    }
 | 
						|
  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
 | 
						|
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | 
						|
    // the quadratic equation to solve it.
 | 
						|
    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
 | 
						|
                                                                    *this);
 | 
						|
    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | 
						|
    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | 
						|
    if (R1) {
 | 
						|
#if 0
 | 
						|
      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
 | 
						|
             << "  sol#2: " << *R2 << "\n";
 | 
						|
#endif
 | 
						|
      // Pick the smallest positive root value.
 | 
						|
      if (ConstantInt *CB =
 | 
						|
          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
 | 
						|
                                   R1->getValue(), R2->getValue()))) {
 | 
						|
        if (CB->getZExtValue() == false)
 | 
						|
          std::swap(R1, R2);   // R1 is the minimum root now.
 | 
						|
 | 
						|
        // We can only use this value if the chrec ends up with an exact zero
 | 
						|
        // value at this index.  When solving for "X*X != 5", for example, we
 | 
						|
        // should not accept a root of 2.
 | 
						|
        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
 | 
						|
        if (Val->isZero())
 | 
						|
          return R1;  // We found a quadratic root!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
/// HowFarToNonZero - Return the number of times a backedge checking the
 | 
						|
/// specified value for nonzero will execute.  If not computable, return
 | 
						|
/// UnknownValue
 | 
						|
SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
 | 
						|
  // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | 
						|
  // handle them yet except for the trivial case.  This could be expanded in the
 | 
						|
  // future as needed.
 | 
						|
 | 
						|
  // If the value is a constant, check to see if it is known to be non-zero
 | 
						|
  // already.  If so, the backedge will execute zero times.
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    if (!C->getValue()->isNullValue())
 | 
						|
      return getIntegerSCEV(0, C->getType());
 | 
						|
    return UnknownValue;  // Otherwise it will loop infinitely.
 | 
						|
  }
 | 
						|
 | 
						|
  // We could implement others, but I really doubt anyone writes loops like
 | 
						|
  // this, and if they did, they would already be constant folded.
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | 
						|
/// (which may not be an immediate predecessor) which has exactly one
 | 
						|
/// successor from which BB is reachable, or null if no such block is
 | 
						|
/// found.
 | 
						|
///
 | 
						|
BasicBlock *
 | 
						|
ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
 | 
						|
  // If the block has a unique predecessor, then there is no path from the
 | 
						|
  // predecessor to the block that does not go through the direct edge
 | 
						|
  // from the predecessor to the block.
 | 
						|
  if (BasicBlock *Pred = BB->getSinglePredecessor())
 | 
						|
    return Pred;
 | 
						|
 | 
						|
  // A loop's header is defined to be a block that dominates the loop.
 | 
						|
  // If the loop has a preheader, it must be a block that has exactly
 | 
						|
  // one successor that can reach BB. This is slightly more strict
 | 
						|
  // than necessary, but works if critical edges are split.
 | 
						|
  if (Loop *L = LI->getLoopFor(BB))
 | 
						|
    return L->getLoopPreheader();
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopGuardedByCond - Test whether entry to the loop is protected by
 | 
						|
/// a conditional between LHS and RHS.  This is used to help avoid max
 | 
						|
/// expressions in loop trip counts.
 | 
						|
bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
 | 
						|
                                          ICmpInst::Predicate Pred,
 | 
						|
                                          const SCEV *LHS, const SCEV *RHS) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *PreheaderDest = L->getHeader();
 | 
						|
 | 
						|
  // Starting at the preheader, climb up the predecessor chain, as long as
 | 
						|
  // there are predecessors that can be found that have unique successors
 | 
						|
  // leading to the original header.
 | 
						|
  for (; Preheader;
 | 
						|
       PreheaderDest = Preheader,
 | 
						|
       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
 | 
						|
 | 
						|
    BranchInst *LoopEntryPredicate =
 | 
						|
      dyn_cast<BranchInst>(Preheader->getTerminator());
 | 
						|
    if (!LoopEntryPredicate ||
 | 
						|
        LoopEntryPredicate->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
 | 
						|
    if (!ICI) continue;
 | 
						|
 | 
						|
    // Now that we found a conditional branch that dominates the loop, check to
 | 
						|
    // see if it is the comparison we are looking for.
 | 
						|
    Value *PreCondLHS = ICI->getOperand(0);
 | 
						|
    Value *PreCondRHS = ICI->getOperand(1);
 | 
						|
    ICmpInst::Predicate Cond;
 | 
						|
    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
 | 
						|
      Cond = ICI->getPredicate();
 | 
						|
    else
 | 
						|
      Cond = ICI->getInversePredicate();
 | 
						|
 | 
						|
    if (Cond == Pred)
 | 
						|
      ; // An exact match.
 | 
						|
    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
 | 
						|
      ; // The actual condition is beyond sufficient.
 | 
						|
    else
 | 
						|
      // Check a few special cases.
 | 
						|
      switch (Cond) {
 | 
						|
      case ICmpInst::ICMP_UGT:
 | 
						|
        if (Pred == ICmpInst::ICMP_ULT) {
 | 
						|
          std::swap(PreCondLHS, PreCondRHS);
 | 
						|
          Cond = ICmpInst::ICMP_ULT;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      case ICmpInst::ICMP_SGT:
 | 
						|
        if (Pred == ICmpInst::ICMP_SLT) {
 | 
						|
          std::swap(PreCondLHS, PreCondRHS);
 | 
						|
          Cond = ICmpInst::ICMP_SLT;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      case ICmpInst::ICMP_NE:
 | 
						|
        // Expressions like (x >u 0) are often canonicalized to (x != 0),
 | 
						|
        // so check for this case by checking if the NE is comparing against
 | 
						|
        // a minimum or maximum constant.
 | 
						|
        if (!ICmpInst::isTrueWhenEqual(Pred))
 | 
						|
          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
 | 
						|
            const APInt &A = CI->getValue();
 | 
						|
            switch (Pred) {
 | 
						|
            case ICmpInst::ICMP_SLT:
 | 
						|
              if (A.isMaxSignedValue()) break;
 | 
						|
              continue;
 | 
						|
            case ICmpInst::ICMP_SGT:
 | 
						|
              if (A.isMinSignedValue()) break;
 | 
						|
              continue;
 | 
						|
            case ICmpInst::ICMP_ULT:
 | 
						|
              if (A.isMaxValue()) break;
 | 
						|
              continue;
 | 
						|
            case ICmpInst::ICMP_UGT:
 | 
						|
              if (A.isMinValue()) break;
 | 
						|
              continue;
 | 
						|
            default:
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            Cond = ICmpInst::ICMP_NE;
 | 
						|
            // NE is symmetric but the original comparison may not be. Swap
 | 
						|
            // the operands if necessary so that they match below.
 | 
						|
            if (isa<SCEVConstant>(LHS))
 | 
						|
              std::swap(PreCondLHS, PreCondRHS);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        continue;
 | 
						|
      default:
 | 
						|
        // We weren't able to reconcile the condition.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    if (!PreCondLHS->getType()->isInteger()) continue;
 | 
						|
 | 
						|
    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
 | 
						|
    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
 | 
						|
    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
 | 
						|
        (LHS == getNotSCEV(PreCondRHSSCEV) &&
 | 
						|
         RHS == getNotSCEV(PreCondLHSSCEV)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// HowManyLessThans - Return the number of times a backedge containing the
 | 
						|
/// specified less-than comparison will execute.  If not computable, return
 | 
						|
/// UnknownValue.
 | 
						|
ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
 | 
						|
HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                 const Loop *L, bool isSigned) {
 | 
						|
  // Only handle:  "ADDREC < LoopInvariant".
 | 
						|
  if (!RHS->isLoopInvariant(L)) return UnknownValue;
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return UnknownValue;
 | 
						|
 | 
						|
  if (AddRec->isAffine()) {
 | 
						|
    // FORNOW: We only support unit strides.
 | 
						|
    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
 | 
						|
    SCEVHandle Step = AddRec->getStepRecurrence(*this);
 | 
						|
    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
 | 
						|
 | 
						|
    // TODO: handle non-constant strides.
 | 
						|
    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
 | 
						|
    if (!CStep || CStep->isZero())
 | 
						|
      return UnknownValue;
 | 
						|
    if (CStep->getValue()->getValue() == 1) {
 | 
						|
      // With unit stride, the iteration never steps past the limit value.
 | 
						|
    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
 | 
						|
      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
 | 
						|
        // Test whether a positive iteration iteration can step past the limit
 | 
						|
        // value and past the maximum value for its type in a single step.
 | 
						|
        if (isSigned) {
 | 
						|
          APInt Max = APInt::getSignedMaxValue(BitWidth);
 | 
						|
          if ((Max - CStep->getValue()->getValue())
 | 
						|
                .slt(CLimit->getValue()->getValue()))
 | 
						|
            return UnknownValue;
 | 
						|
        } else {
 | 
						|
          APInt Max = APInt::getMaxValue(BitWidth);
 | 
						|
          if ((Max - CStep->getValue()->getValue())
 | 
						|
                .ult(CLimit->getValue()->getValue()))
 | 
						|
            return UnknownValue;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        // TODO: handle non-constant limit values below.
 | 
						|
        return UnknownValue;
 | 
						|
    } else
 | 
						|
      // TODO: handle negative strides below.
 | 
						|
      return UnknownValue;
 | 
						|
 | 
						|
    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
 | 
						|
    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
 | 
						|
    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
 | 
						|
    // treat m-n as signed nor unsigned due to overflow possibility.
 | 
						|
 | 
						|
    // First, we get the value of the LHS in the first iteration: n
 | 
						|
    SCEVHandle Start = AddRec->getOperand(0);
 | 
						|
 | 
						|
    // Determine the minimum constant start value.
 | 
						|
    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
 | 
						|
      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
 | 
						|
                             APInt::getMinValue(BitWidth));
 | 
						|
 | 
						|
    // If we know that the condition is true in order to enter the loop,
 | 
						|
    // then we know that it will run exactly (m-n)/s times. Otherwise, we
 | 
						|
    // only know if will execute (max(m,n)-n)/s times. In both cases, the
 | 
						|
    // division must round up.
 | 
						|
    SCEVHandle End = RHS;
 | 
						|
    if (!isLoopGuardedByCond(L,
 | 
						|
                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | 
						|
                             getMinusSCEV(Start, Step), RHS))
 | 
						|
      End = isSigned ? getSMaxExpr(RHS, Start)
 | 
						|
                     : getUMaxExpr(RHS, Start);
 | 
						|
 | 
						|
    // Determine the maximum constant end value.
 | 
						|
    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
 | 
						|
      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
 | 
						|
                             APInt::getMaxValue(BitWidth));
 | 
						|
 | 
						|
    // Finally, we subtract these two values and divide, rounding up, to get
 | 
						|
    // the number of times the backedge is executed.
 | 
						|
    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
 | 
						|
                                                getAddExpr(Step, NegOne)),
 | 
						|
                                     Step);
 | 
						|
 | 
						|
    // The maximum backedge count is similar, except using the minimum start
 | 
						|
    // value and the maximum end value.
 | 
						|
    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
 | 
						|
                                                                MinStart),
 | 
						|
                                                   getAddExpr(Step, NegOne)),
 | 
						|
                                        Step);
 | 
						|
 | 
						|
    return BackedgeTakenInfo(BECount, MaxBECount);
 | 
						|
  }
 | 
						|
 | 
						|
  return UnknownValue;
 | 
						|
}
 | 
						|
 | 
						|
/// getNumIterationsInRange - Return the number of iterations of this loop that
 | 
						|
/// produce values in the specified constant range.  Another way of looking at
 | 
						|
/// this is that it returns the first iteration number where the value is not in
 | 
						|
/// the condition, thus computing the exit count. If the iteration count can't
 | 
						|
/// be computed, an instance of SCEVCouldNotCompute is returned.
 | 
						|
SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
 | 
						|
                                                   ScalarEvolution &SE) const {
 | 
						|
  if (Range.isFullSet())  // Infinite loop.
 | 
						|
    return SE.getCouldNotCompute();
 | 
						|
 | 
						|
  // If the start is a non-zero constant, shift the range to simplify things.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | 
						|
    if (!SC->getValue()->isZero()) {
 | 
						|
      std::vector<SCEVHandle> Operands(op_begin(), op_end());
 | 
						|
      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
 | 
						|
      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
 | 
						|
      if (const SCEVAddRecExpr *ShiftedAddRec =
 | 
						|
            dyn_cast<SCEVAddRecExpr>(Shifted))
 | 
						|
        return ShiftedAddRec->getNumIterationsInRange(
 | 
						|
                           Range.subtract(SC->getValue()->getValue()), SE);
 | 
						|
      // This is strange and shouldn't happen.
 | 
						|
      return SE.getCouldNotCompute();
 | 
						|
    }
 | 
						|
 | 
						|
  // The only time we can solve this is when we have all constant indices.
 | 
						|
  // Otherwise, we cannot determine the overflow conditions.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!isa<SCEVConstant>(getOperand(i)))
 | 
						|
      return SE.getCouldNotCompute();
 | 
						|
 | 
						|
 | 
						|
  // Okay at this point we know that all elements of the chrec are constants and
 | 
						|
  // that the start element is zero.
 | 
						|
 | 
						|
  // First check to see if the range contains zero.  If not, the first
 | 
						|
  // iteration exits.
 | 
						|
  unsigned BitWidth = SE.getTypeSizeInBits(getType());
 | 
						|
  if (!Range.contains(APInt(BitWidth, 0)))
 | 
						|
    return SE.getConstant(ConstantInt::get(getType(),0));
 | 
						|
 | 
						|
  if (isAffine()) {
 | 
						|
    // If this is an affine expression then we have this situation:
 | 
						|
    //   Solve {0,+,A} in Range  ===  Ax in Range
 | 
						|
 | 
						|
    // We know that zero is in the range.  If A is positive then we know that
 | 
						|
    // the upper value of the range must be the first possible exit value.
 | 
						|
    // If A is negative then the lower of the range is the last possible loop
 | 
						|
    // value.  Also note that we already checked for a full range.
 | 
						|
    APInt One(BitWidth,1);
 | 
						|
    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
 | 
						|
    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
 | 
						|
 | 
						|
    // The exit value should be (End+A)/A.
 | 
						|
    APInt ExitVal = (End + A).udiv(A);
 | 
						|
    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
 | 
						|
 | 
						|
    // Evaluate at the exit value.  If we really did fall out of the valid
 | 
						|
    // range, then we computed our trip count, otherwise wrap around or other
 | 
						|
    // things must have happened.
 | 
						|
    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
 | 
						|
    if (Range.contains(Val->getValue()))
 | 
						|
      return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
 | 
						|
    // Ensure that the previous value is in the range.  This is a sanity check.
 | 
						|
    assert(Range.contains(
 | 
						|
           EvaluateConstantChrecAtConstant(this, 
 | 
						|
           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
 | 
						|
           "Linear scev computation is off in a bad way!");
 | 
						|
    return SE.getConstant(ExitValue);
 | 
						|
  } else if (isQuadratic()) {
 | 
						|
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
 | 
						|
    // quadratic equation to solve it.  To do this, we must frame our problem in
 | 
						|
    // terms of figuring out when zero is crossed, instead of when
 | 
						|
    // Range.getUpper() is crossed.
 | 
						|
    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
 | 
						|
    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
 | 
						|
    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
 | 
						|
 | 
						|
    // Next, solve the constructed addrec
 | 
						|
    std::pair<SCEVHandle,SCEVHandle> Roots =
 | 
						|
      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
 | 
						|
    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | 
						|
    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | 
						|
    if (R1) {
 | 
						|
      // Pick the smallest positive root value.
 | 
						|
      if (ConstantInt *CB =
 | 
						|
          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
 | 
						|
                                   R1->getValue(), R2->getValue()))) {
 | 
						|
        if (CB->getZExtValue() == false)
 | 
						|
          std::swap(R1, R2);   // R1 is the minimum root now.
 | 
						|
 | 
						|
        // Make sure the root is not off by one.  The returned iteration should
 | 
						|
        // not be in the range, but the previous one should be.  When solving
 | 
						|
        // for "X*X < 5", for example, we should not return a root of 2.
 | 
						|
        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
 | 
						|
                                                             R1->getValue(),
 | 
						|
                                                             SE);
 | 
						|
        if (Range.contains(R1Val->getValue())) {
 | 
						|
          // The next iteration must be out of the range...
 | 
						|
          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
 | 
						|
 | 
						|
          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | 
						|
          if (!Range.contains(R1Val->getValue()))
 | 
						|
            return SE.getConstant(NextVal);
 | 
						|
          return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
        }
 | 
						|
 | 
						|
        // If R1 was not in the range, then it is a good return value.  Make
 | 
						|
        // sure that R1-1 WAS in the range though, just in case.
 | 
						|
        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
 | 
						|
        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | 
						|
        if (Range.contains(R1Val->getValue()))
 | 
						|
          return R1;
 | 
						|
        return SE.getCouldNotCompute();  // Something strange happened
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SE.getCouldNotCompute();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   SCEVCallbackVH Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void SCEVCallbackVH::deleted() {
 | 
						|
  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
 | 
						|
    SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
  SE->Scalars.erase(getValPtr());
 | 
						|
  // this now dangles!
 | 
						|
}
 | 
						|
 | 
						|
void SCEVCallbackVH::allUsesReplacedWith(Value *) {
 | 
						|
  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
 | 
						|
 | 
						|
  // Forget all the expressions associated with users of the old value,
 | 
						|
  // so that future queries will recompute the expressions using the new
 | 
						|
  // value.
 | 
						|
  SmallVector<User *, 16> Worklist;
 | 
						|
  Value *Old = getValPtr();
 | 
						|
  bool DeleteOld = false;
 | 
						|
  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    Worklist.push_back(*UI);
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    User *U = Worklist.pop_back_val();
 | 
						|
    // Deleting the Old value will cause this to dangle. Postpone
 | 
						|
    // that until everything else is done.
 | 
						|
    if (U == Old) {
 | 
						|
      DeleteOld = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(U))
 | 
						|
      SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
    if (SE->Scalars.erase(U))
 | 
						|
      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        Worklist.push_back(*UI);
 | 
						|
  }
 | 
						|
  if (DeleteOld) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(Old))
 | 
						|
      SE->ConstantEvolutionLoopExitValue.erase(PN);
 | 
						|
    SE->Scalars.erase(Old);
 | 
						|
    // this now dangles!
 | 
						|
  }
 | 
						|
  // this may dangle!
 | 
						|
}
 | 
						|
 | 
						|
SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
 | 
						|
  : CallbackVH(V), SE(se) {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   ScalarEvolution Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ScalarEvolution::ScalarEvolution()
 | 
						|
  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::runOnFunction(Function &F) {
 | 
						|
  this->F = &F;
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::releaseMemory() {
 | 
						|
  Scalars.clear();
 | 
						|
  BackedgeTakenCounts.clear();
 | 
						|
  ConstantEvolutionLoopExitValue.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<LoopInfo>();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
 | 
						|
  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
 | 
						|
}
 | 
						|
 | 
						|
static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
 | 
						|
                          const Loop *L) {
 | 
						|
  // Print all inner loops first
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    PrintLoopInfo(OS, SE, *I);
 | 
						|
 | 
						|
  OS << "Loop " << L->getHeader()->getName() << ": ";
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1)
 | 
						|
    OS << "<multiple exits> ";
 | 
						|
 | 
						|
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | 
						|
    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
 | 
						|
  } else {
 | 
						|
    OS << "Unpredictable backedge-taken count. ";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
 | 
						|
  // ScalarEvolution's implementaiton of the print method is to print
 | 
						|
  // out SCEV values of all instructions that are interesting. Doing
 | 
						|
  // this potentially causes it to create new SCEV objects though,
 | 
						|
  // which technically conflicts with the const qualifier. This isn't
 | 
						|
  // observable from outside the class though (the hasSCEV function
 | 
						|
  // notwithstanding), so casting away the const isn't dangerous.
 | 
						|
  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
 | 
						|
 | 
						|
  OS << "Classifying expressions for: " << F->getName() << "\n";
 | 
						|
  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | 
						|
    if (isSCEVable(I->getType())) {
 | 
						|
      OS << *I;
 | 
						|
      OS << "  -->  ";
 | 
						|
      SCEVHandle SV = SE.getSCEV(&*I);
 | 
						|
      SV->print(OS);
 | 
						|
      OS << "\t\t";
 | 
						|
 | 
						|
      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
 | 
						|
        OS << "Exits: ";
 | 
						|
        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
 | 
						|
        if (isa<SCEVCouldNotCompute>(ExitValue)) {
 | 
						|
          OS << "<<Unknown>>";
 | 
						|
        } else {
 | 
						|
          OS << *ExitValue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      OS << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
  OS << "Determining loop execution counts for: " << F->getName() << "\n";
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    PrintLoopInfo(OS, &SE, *I);
 | 
						|
}
 | 
						|
 | 
						|
void ScalarEvolution::print(std::ostream &o, const Module *M) const {
 | 
						|
  raw_os_ostream OS(o);
 | 
						|
  print(OS, M);
 | 
						|
}
 |