forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4860 lines
		
	
	
		
			168 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4860 lines
		
	
	
		
			168 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--------- ScopInfo.cpp ----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Create a polyhedral description for a static control flow region.
 | 
						|
//
 | 
						|
// The pass creates a polyhedral description of the Scops detected by the Scop
 | 
						|
// detection derived from their LLVM-IR code.
 | 
						|
//
 | 
						|
// This representation is shared among several tools in the polyhedral
 | 
						|
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "polly/ScopInfo.h"
 | 
						|
#include "polly/LinkAllPasses.h"
 | 
						|
#include "polly/Options.h"
 | 
						|
#include "polly/ScopBuilder.h"
 | 
						|
#include "polly/Support/GICHelper.h"
 | 
						|
#include "polly/Support/SCEVValidator.h"
 | 
						|
#include "polly/Support/ScopHelper.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/RegionIterator.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "isl/aff.h"
 | 
						|
#include "isl/constraint.h"
 | 
						|
#include "isl/local_space.h"
 | 
						|
#include "isl/map.h"
 | 
						|
#include "isl/options.h"
 | 
						|
#include "isl/printer.h"
 | 
						|
#include "isl/schedule.h"
 | 
						|
#include "isl/schedule_node.h"
 | 
						|
#include "isl/set.h"
 | 
						|
#include "isl/union_map.h"
 | 
						|
#include "isl/union_set.h"
 | 
						|
#include "isl/val.h"
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace polly;
 | 
						|
 | 
						|
#define DEBUG_TYPE "polly-scops"
 | 
						|
 | 
						|
STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken.");
 | 
						|
STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken.");
 | 
						|
STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken.");
 | 
						|
STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken.");
 | 
						|
STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs.");
 | 
						|
STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs.");
 | 
						|
STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken.");
 | 
						|
STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken.");
 | 
						|
STATISTIC(AssumptionsInvariantLoad,
 | 
						|
          "Number of invariant loads assumptions taken.");
 | 
						|
STATISTIC(AssumptionsDelinearization,
 | 
						|
          "Number of delinearization assumptions taken.");
 | 
						|
 | 
						|
STATISTIC(NumLoopsInScop, "Number of loops in scops");
 | 
						|
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
 | 
						|
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
 | 
						|
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
 | 
						|
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
 | 
						|
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
 | 
						|
STATISTIC(NumScopsDepthLarger,
 | 
						|
          "Number of scops with maximal loop depth 6 and larger");
 | 
						|
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
 | 
						|
 | 
						|
// The maximal number of basic sets we allow during domain construction to
 | 
						|
// be created. More complex scops will result in very high compile time and
 | 
						|
// are also unlikely to result in good code
 | 
						|
static int const MaxDisjunctsInDomain = 20;
 | 
						|
 | 
						|
// The number of disjunct in the context after which we stop to add more
 | 
						|
// disjuncts. This parameter is there to avoid exponential growth in the
 | 
						|
// number of disjunct when adding non-convex sets to the context.
 | 
						|
static int const MaxDisjunctsInContext = 4;
 | 
						|
 | 
						|
static cl::opt<bool> PollyRemarksMinimal(
 | 
						|
    "polly-remarks-minimal",
 | 
						|
    cl::desc("Do not emit remarks about assumptions that are known"),
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
// Multiplicative reductions can be disabled separately as these kind of
 | 
						|
// operations can overflow easily. Additive reductions and bit operations
 | 
						|
// are in contrast pretty stable.
 | 
						|
static cl::opt<bool> DisableMultiplicativeReductions(
 | 
						|
    "polly-disable-multiplicative-reductions",
 | 
						|
    cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<unsigned> RunTimeChecksMaxParameters(
 | 
						|
    "polly-rtc-max-parameters",
 | 
						|
    cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
 | 
						|
    cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
 | 
						|
    "polly-rtc-max-arrays-per-group",
 | 
						|
    cl::desc("The maximal number of arrays to compare in each alias group."),
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<std::string> UserContextStr(
 | 
						|
    "polly-context", cl::value_desc("isl parameter set"),
 | 
						|
    cl::desc("Provide additional constraints on the context parameters"),
 | 
						|
    cl::init(""), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> DetectReductions("polly-detect-reductions",
 | 
						|
                                      cl::desc("Detect and exploit reductions"),
 | 
						|
                                      cl::Hidden, cl::ZeroOrMore,
 | 
						|
                                      cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    IslOnErrorAbort("polly-on-isl-error-abort",
 | 
						|
                    cl::desc("Abort if an isl error is encountered"),
 | 
						|
                    cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> PollyPreciseInbounds(
 | 
						|
    "polly-precise-inbounds",
 | 
						|
    cl::desc("Take more precise inbounds assumptions (do not scale well)"),
 | 
						|
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    PollyIgnoreInbounds("polly-ignore-inbounds",
 | 
						|
                        cl::desc("Do not take inbounds assumptions at all"),
 | 
						|
                        cl::Hidden, cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> PollyIgnoreParamBounds(
 | 
						|
    "polly-ignore-parameter-bounds",
 | 
						|
    cl::desc(
 | 
						|
        "Do not add parameter bounds and do no gist simplify sets accordingly"),
 | 
						|
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> PollyPreciseFoldAccesses(
 | 
						|
    "polly-precise-fold-accesses",
 | 
						|
    cl::desc("Fold memory accesses to model more possible delinearizations "
 | 
						|
             "(does not scale well)"),
 | 
						|
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::UseInstructionNames;
 | 
						|
static cl::opt<bool, true> XUseInstructionNames(
 | 
						|
    "polly-use-llvm-names",
 | 
						|
    cl::desc("Use LLVM-IR names when deriving statement names"),
 | 
						|
    cl::location(UseInstructionNames), cl::Hidden, cl::init(false),
 | 
						|
    cl::ZeroOrMore, cl::cat(PollyCategory));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Create a sequence of two schedules. Either argument may be null and is
 | 
						|
// interpreted as the empty schedule. Can also return null if both schedules are
 | 
						|
// empty.
 | 
						|
static __isl_give isl_schedule *
 | 
						|
combineInSequence(__isl_take isl_schedule *Prev,
 | 
						|
                  __isl_take isl_schedule *Succ) {
 | 
						|
  if (!Prev)
 | 
						|
    return Succ;
 | 
						|
  if (!Succ)
 | 
						|
    return Prev;
 | 
						|
 | 
						|
  return isl_schedule_sequence(Prev, Succ);
 | 
						|
}
 | 
						|
 | 
						|
static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S,
 | 
						|
                                               const ConstantRange &Range,
 | 
						|
                                               int dim,
 | 
						|
                                               enum isl_dim_type type) {
 | 
						|
  isl_val *V;
 | 
						|
  isl_ctx *Ctx = isl_set_get_ctx(S);
 | 
						|
 | 
						|
  // The upper and lower bound for a parameter value is derived either from
 | 
						|
  // the data type of the parameter or from the - possibly more restrictive -
 | 
						|
  // range metadata.
 | 
						|
  V = isl_valFromAPInt(Ctx, Range.getSignedMin(), true);
 | 
						|
  S = isl_set_lower_bound_val(S, type, dim, V);
 | 
						|
  V = isl_valFromAPInt(Ctx, Range.getSignedMax(), true);
 | 
						|
  S = isl_set_upper_bound_val(S, type, dim, V);
 | 
						|
 | 
						|
  if (Range.isFullSet())
 | 
						|
    return S;
 | 
						|
 | 
						|
  if (isl_set_n_basic_set(S) > MaxDisjunctsInContext)
 | 
						|
    return S;
 | 
						|
 | 
						|
  // In case of signed wrapping, we can refine the set of valid values by
 | 
						|
  // excluding the part not covered by the wrapping range.
 | 
						|
  if (Range.isSignWrappedSet()) {
 | 
						|
    V = isl_valFromAPInt(Ctx, Range.getLower(), true);
 | 
						|
    isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V);
 | 
						|
 | 
						|
    V = isl_valFromAPInt(Ctx, Range.getUpper(), true);
 | 
						|
    V = isl_val_sub_ui(V, 1);
 | 
						|
    isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V);
 | 
						|
    S = isl_set_union(SLB, SUB);
 | 
						|
  }
 | 
						|
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
 | 
						|
  LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
 | 
						|
  if (!BasePtrLI)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!S->contains(BasePtrLI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ScalarEvolution &SE = *S->getSE();
 | 
						|
 | 
						|
  auto *OriginBaseSCEV =
 | 
						|
      SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
 | 
						|
  if (!OriginBaseSCEV)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
 | 
						|
  if (!OriginBaseSCEVUnknown)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
 | 
						|
                             MemoryKind::Array);
 | 
						|
}
 | 
						|
 | 
						|
ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx,
 | 
						|
                             ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
 | 
						|
                             const DataLayout &DL, Scop *S,
 | 
						|
                             const char *BaseName)
 | 
						|
    : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
 | 
						|
  std::string BasePtrName =
 | 
						|
      BaseName ? BaseName
 | 
						|
               : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(),
 | 
						|
                                      Kind == MemoryKind::PHI ? "__phi" : "",
 | 
						|
                                      UseInstructionNames);
 | 
						|
  Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
 | 
						|
 | 
						|
  updateSizes(Sizes);
 | 
						|
 | 
						|
  if (!BasePtr || Kind != MemoryKind::Array) {
 | 
						|
    BasePtrOriginSAI = nullptr;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
 | 
						|
  if (BasePtrOriginSAI)
 | 
						|
    const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_space *ScopArrayInfo::getSpace() const {
 | 
						|
  auto *Space =
 | 
						|
      isl_space_set_alloc(isl_id_get_ctx(Id), 0, getNumberOfDimensions());
 | 
						|
  Space = isl_space_set_tuple_id(Space, isl_dim_set, isl_id_copy(Id));
 | 
						|
  return Space;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopArrayInfo::isReadOnly() {
 | 
						|
  isl_union_set *WriteSet = isl_union_map_range(S.getWrites());
 | 
						|
  isl_space *Space = getSpace();
 | 
						|
  WriteSet = isl_union_set_intersect(
 | 
						|
      WriteSet, isl_union_set_from_set(isl_set_universe(Space)));
 | 
						|
 | 
						|
  bool IsReadOnly = isl_union_set_is_empty(WriteSet);
 | 
						|
  isl_union_set_free(WriteSet);
 | 
						|
 | 
						|
  return IsReadOnly;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const {
 | 
						|
  if (Array->getElementType() != getElementType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Array->getNumberOfDimensions() != getNumberOfDimensions())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < getNumberOfDimensions(); i++)
 | 
						|
    if (Array->getDimensionSize(i) != getDimensionSize(i))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ScopArrayInfo::updateElementType(Type *NewElementType) {
 | 
						|
  if (NewElementType == ElementType)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType);
 | 
						|
  auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType);
 | 
						|
 | 
						|
  if (NewElementSize == OldElementSize || NewElementSize == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) {
 | 
						|
    ElementType = NewElementType;
 | 
						|
  } else {
 | 
						|
    auto GCD = GreatestCommonDivisor64(NewElementSize, OldElementSize);
 | 
						|
    ElementType = IntegerType::get(ElementType->getContext(), GCD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes,
 | 
						|
                                bool CheckConsistency) {
 | 
						|
  int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
 | 
						|
  int ExtraDimsNew = NewSizes.size() - SharedDims;
 | 
						|
  int ExtraDimsOld = DimensionSizes.size() - SharedDims;
 | 
						|
 | 
						|
  if (CheckConsistency) {
 | 
						|
    for (int i = 0; i < SharedDims; i++) {
 | 
						|
      auto *NewSize = NewSizes[i + ExtraDimsNew];
 | 
						|
      auto *KnownSize = DimensionSizes[i + ExtraDimsOld];
 | 
						|
      if (NewSize && KnownSize && NewSize != KnownSize)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DimensionSizes.size() >= NewSizes.size())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  DimensionSizes.clear();
 | 
						|
  DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
 | 
						|
                        NewSizes.end());
 | 
						|
  for (isl_pw_aff *Size : DimensionSizesPw)
 | 
						|
    isl_pw_aff_free(Size);
 | 
						|
  DimensionSizesPw.clear();
 | 
						|
  for (const SCEV *Expr : DimensionSizes) {
 | 
						|
    if (!Expr) {
 | 
						|
      DimensionSizesPw.push_back(nullptr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    isl_pw_aff *Size = S.getPwAffOnly(Expr);
 | 
						|
    DimensionSizesPw.push_back(Size);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ScopArrayInfo::~ScopArrayInfo() {
 | 
						|
  isl_id_free(Id);
 | 
						|
  for (isl_pw_aff *Size : DimensionSizesPw)
 | 
						|
    isl_pw_aff_free(Size);
 | 
						|
}
 | 
						|
 | 
						|
std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); }
 | 
						|
 | 
						|
int ScopArrayInfo::getElemSizeInBytes() const {
 | 
						|
  return DL.getTypeAllocSize(ElementType);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *ScopArrayInfo::getBasePtrId() const {
 | 
						|
  return isl_id_copy(Id);
 | 
						|
}
 | 
						|
 | 
						|
void ScopArrayInfo::dump() const { print(errs()); }
 | 
						|
 | 
						|
void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
 | 
						|
  OS.indent(8) << *getElementType() << " " << getName();
 | 
						|
  unsigned u = 0;
 | 
						|
  if (getNumberOfDimensions() > 0 && !getDimensionSize(0)) {
 | 
						|
    OS << "[*]";
 | 
						|
    u++;
 | 
						|
  }
 | 
						|
  for (; u < getNumberOfDimensions(); u++) {
 | 
						|
    OS << "[";
 | 
						|
 | 
						|
    if (SizeAsPwAff) {
 | 
						|
      auto *Size = getDimensionSizePw(u);
 | 
						|
      OS << " " << Size << " ";
 | 
						|
      isl_pw_aff_free(Size);
 | 
						|
    } else {
 | 
						|
      OS << *getDimensionSize(u);
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "]";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << ";";
 | 
						|
 | 
						|
  if (BasePtrOriginSAI)
 | 
						|
    OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
 | 
						|
 | 
						|
  OS << " // Element size " << getElemSizeInBytes() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *
 | 
						|
ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
 | 
						|
  isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
 | 
						|
  assert(Id && "Output dimension didn't have an ID");
 | 
						|
  return getFromId(Id);
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *ScopArrayInfo::getFromId(__isl_take isl_id *Id) {
 | 
						|
  void *User = isl_id_get_user(Id);
 | 
						|
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
 | 
						|
  isl_id_free(Id);
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::wrapConstantDimensions() {
 | 
						|
  auto *SAI = getScopArrayInfo();
 | 
						|
  auto *ArraySpace = SAI->getSpace();
 | 
						|
  auto *Ctx = isl_space_get_ctx(ArraySpace);
 | 
						|
  unsigned DimsArray = SAI->getNumberOfDimensions();
 | 
						|
 | 
						|
  auto *DivModAff = isl_multi_aff_identity(isl_space_map_from_domain_and_range(
 | 
						|
      isl_space_copy(ArraySpace), isl_space_copy(ArraySpace)));
 | 
						|
  auto *LArraySpace = isl_local_space_from_space(ArraySpace);
 | 
						|
 | 
						|
  // Begin with last dimension, to iteratively carry into higher dimensions.
 | 
						|
  for (int i = DimsArray - 1; i > 0; i--) {
 | 
						|
    auto *DimSize = SAI->getDimensionSize(i);
 | 
						|
    auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize);
 | 
						|
 | 
						|
    // This transformation is not applicable to dimensions with dynamic size.
 | 
						|
    if (!DimSizeCst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This transformation is not applicable to dimensions of size zero.
 | 
						|
    if (DimSize->isZero())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *DimSizeVal = isl_valFromAPInt(Ctx, DimSizeCst->getAPInt(), false);
 | 
						|
    auto *Var = isl_aff_var_on_domain(isl_local_space_copy(LArraySpace),
 | 
						|
                                      isl_dim_set, i);
 | 
						|
    auto *PrevVar = isl_aff_var_on_domain(isl_local_space_copy(LArraySpace),
 | 
						|
                                          isl_dim_set, i - 1);
 | 
						|
 | 
						|
    // Compute: index % size
 | 
						|
    // Modulo must apply in the divide of the previous iteration, if any.
 | 
						|
    auto *Modulo = isl_aff_copy(Var);
 | 
						|
    Modulo = isl_aff_mod_val(Modulo, isl_val_copy(DimSizeVal));
 | 
						|
    Modulo = isl_aff_pullback_multi_aff(Modulo, isl_multi_aff_copy(DivModAff));
 | 
						|
 | 
						|
    // Compute: floor(index / size)
 | 
						|
    auto *Divide = Var;
 | 
						|
    Divide = isl_aff_div(
 | 
						|
        Divide,
 | 
						|
        isl_aff_val_on_domain(isl_local_space_copy(LArraySpace), DimSizeVal));
 | 
						|
    Divide = isl_aff_floor(Divide);
 | 
						|
    Divide = isl_aff_add(Divide, PrevVar);
 | 
						|
    Divide = isl_aff_pullback_multi_aff(Divide, isl_multi_aff_copy(DivModAff));
 | 
						|
 | 
						|
    // Apply Modulo and Divide.
 | 
						|
    DivModAff = isl_multi_aff_set_aff(DivModAff, i, Modulo);
 | 
						|
    DivModAff = isl_multi_aff_set_aff(DivModAff, i - 1, Divide);
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply all modulo/divides on the accesses.
 | 
						|
  AccessRelation =
 | 
						|
      isl_map_apply_range(AccessRelation, isl_map_from_multi_aff(DivModAff));
 | 
						|
  AccessRelation = isl_map_detect_equalities(AccessRelation);
 | 
						|
  isl_local_space_free(LArraySpace);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::updateDimensionality() {
 | 
						|
  auto *SAI = getScopArrayInfo();
 | 
						|
  auto *ArraySpace = SAI->getSpace();
 | 
						|
  auto *AccessSpace = isl_space_range(isl_map_get_space(AccessRelation));
 | 
						|
  auto *Ctx = isl_space_get_ctx(AccessSpace);
 | 
						|
 | 
						|
  auto DimsArray = isl_space_dim(ArraySpace, isl_dim_set);
 | 
						|
  auto DimsAccess = isl_space_dim(AccessSpace, isl_dim_set);
 | 
						|
  auto DimsMissing = DimsArray - DimsAccess;
 | 
						|
 | 
						|
  auto *BB = getStatement()->getEntryBlock();
 | 
						|
  auto &DL = BB->getModule()->getDataLayout();
 | 
						|
  unsigned ArrayElemSize = SAI->getElemSizeInBytes();
 | 
						|
  unsigned ElemBytes = DL.getTypeAllocSize(getElementType());
 | 
						|
 | 
						|
  auto *Map = isl_map_from_domain_and_range(
 | 
						|
      isl_set_universe(AccessSpace),
 | 
						|
      isl_set_universe(isl_space_copy(ArraySpace)));
 | 
						|
 | 
						|
  for (unsigned i = 0; i < DimsMissing; i++)
 | 
						|
    Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
 | 
						|
 | 
						|
  for (unsigned i = DimsMissing; i < DimsArray; i++)
 | 
						|
    Map = isl_map_equate(Map, isl_dim_in, i - DimsMissing, isl_dim_out, i);
 | 
						|
 | 
						|
  AccessRelation = isl_map_apply_range(AccessRelation, Map);
 | 
						|
 | 
						|
  // For the non delinearized arrays, divide the access function of the last
 | 
						|
  // subscript by the size of the elements in the array.
 | 
						|
  //
 | 
						|
  // A stride one array access in C expressed as A[i] is expressed in
 | 
						|
  // LLVM-IR as something like A[i * elementsize]. This hides the fact that
 | 
						|
  // two subsequent values of 'i' index two values that are stored next to
 | 
						|
  // each other in memory. By this division we make this characteristic
 | 
						|
  // obvious again. If the base pointer was accessed with offsets not divisible
 | 
						|
  // by the accesses element size, we will have chosen a smaller ArrayElemSize
 | 
						|
  // that divides the offsets of all accesses to this base pointer.
 | 
						|
  if (DimsAccess == 1) {
 | 
						|
    isl_val *V = isl_val_int_from_si(Ctx, ArrayElemSize);
 | 
						|
    AccessRelation = isl_map_floordiv_val(AccessRelation, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // We currently do this only if we added at least one dimension, which means
 | 
						|
  // some dimension's indices have not been specified, an indicator that some
 | 
						|
  // index values have been added together.
 | 
						|
  // TODO: Investigate general usefulness; Effect on unit tests is to make index
 | 
						|
  // expressions more complicated.
 | 
						|
  if (DimsMissing)
 | 
						|
    wrapConstantDimensions();
 | 
						|
 | 
						|
  if (!isAffine())
 | 
						|
    computeBoundsOnAccessRelation(ArrayElemSize);
 | 
						|
 | 
						|
  // Introduce multi-element accesses in case the type loaded by this memory
 | 
						|
  // access is larger than the canonical element type of the array.
 | 
						|
  //
 | 
						|
  // An access ((float *)A)[i] to an array char *A is modeled as
 | 
						|
  // {[i] -> A[o] : 4 i <= o <= 4 i + 3
 | 
						|
  if (ElemBytes > ArrayElemSize) {
 | 
						|
    assert(ElemBytes % ArrayElemSize == 0 &&
 | 
						|
           "Loaded element size should be multiple of canonical element size");
 | 
						|
    auto *Map = isl_map_from_domain_and_range(
 | 
						|
        isl_set_universe(isl_space_copy(ArraySpace)),
 | 
						|
        isl_set_universe(isl_space_copy(ArraySpace)));
 | 
						|
    for (unsigned i = 0; i < DimsArray - 1; i++)
 | 
						|
      Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
 | 
						|
 | 
						|
    isl_constraint *C;
 | 
						|
    isl_local_space *LS;
 | 
						|
 | 
						|
    LS = isl_local_space_from_space(isl_map_get_space(Map));
 | 
						|
    int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes();
 | 
						|
 | 
						|
    C = isl_constraint_alloc_inequality(isl_local_space_copy(LS));
 | 
						|
    C = isl_constraint_set_constant_val(C, isl_val_int_from_si(Ctx, Num - 1));
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_in, DimsArray - 1, 1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_out, DimsArray - 1, -1);
 | 
						|
    Map = isl_map_add_constraint(Map, C);
 | 
						|
 | 
						|
    C = isl_constraint_alloc_inequality(LS);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_in, DimsArray - 1, -1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_out, DimsArray - 1, 1);
 | 
						|
    C = isl_constraint_set_constant_val(C, isl_val_int_from_si(Ctx, 0));
 | 
						|
    Map = isl_map_add_constraint(Map, C);
 | 
						|
    AccessRelation = isl_map_apply_range(AccessRelation, Map);
 | 
						|
  }
 | 
						|
 | 
						|
  isl_space_free(ArraySpace);
 | 
						|
}
 | 
						|
 | 
						|
const std::string
 | 
						|
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
 | 
						|
  switch (RT) {
 | 
						|
  case MemoryAccess::RT_NONE:
 | 
						|
    llvm_unreachable("Requested a reduction operator string for a memory "
 | 
						|
                     "access which isn't a reduction");
 | 
						|
  case MemoryAccess::RT_ADD:
 | 
						|
    return "+";
 | 
						|
  case MemoryAccess::RT_MUL:
 | 
						|
    return "*";
 | 
						|
  case MemoryAccess::RT_BOR:
 | 
						|
    return "|";
 | 
						|
  case MemoryAccess::RT_BXOR:
 | 
						|
    return "^";
 | 
						|
  case MemoryAccess::RT_BAND:
 | 
						|
    return "&";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown reduction type");
 | 
						|
  return "";
 | 
						|
}
 | 
						|
 | 
						|
/// Return the reduction type for a given binary operator.
 | 
						|
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
 | 
						|
                                                    const Instruction *Load) {
 | 
						|
  if (!BinOp)
 | 
						|
    return MemoryAccess::RT_NONE;
 | 
						|
  switch (BinOp->getOpcode()) {
 | 
						|
  case Instruction::FAdd:
 | 
						|
    if (!BinOp->hasUnsafeAlgebra())
 | 
						|
      return MemoryAccess::RT_NONE;
 | 
						|
  // Fall through
 | 
						|
  case Instruction::Add:
 | 
						|
    return MemoryAccess::RT_ADD;
 | 
						|
  case Instruction::Or:
 | 
						|
    return MemoryAccess::RT_BOR;
 | 
						|
  case Instruction::Xor:
 | 
						|
    return MemoryAccess::RT_BXOR;
 | 
						|
  case Instruction::And:
 | 
						|
    return MemoryAccess::RT_BAND;
 | 
						|
  case Instruction::FMul:
 | 
						|
    if (!BinOp->hasUnsafeAlgebra())
 | 
						|
      return MemoryAccess::RT_NONE;
 | 
						|
  // Fall through
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (DisableMultiplicativeReductions)
 | 
						|
      return MemoryAccess::RT_NONE;
 | 
						|
    return MemoryAccess::RT_MUL;
 | 
						|
  default:
 | 
						|
    return MemoryAccess::RT_NONE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess::~MemoryAccess() {
 | 
						|
  isl_id_free(Id);
 | 
						|
  isl_set_free(InvalidDomain);
 | 
						|
  isl_map_free(AccessRelation);
 | 
						|
  isl_map_free(NewAccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const {
 | 
						|
  isl_id *ArrayId = getArrayId();
 | 
						|
  void *User = isl_id_get_user(ArrayId);
 | 
						|
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
 | 
						|
  isl_id_free(ArrayId);
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const {
 | 
						|
  isl_id *ArrayId = getLatestArrayId();
 | 
						|
  void *User = isl_id_get_user(ArrayId);
 | 
						|
  const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
 | 
						|
  isl_id_free(ArrayId);
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *MemoryAccess::getOriginalArrayId() const {
 | 
						|
  return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *MemoryAccess::getLatestArrayId() const {
 | 
						|
  if (!hasNewAccessRelation())
 | 
						|
    return getOriginalArrayId();
 | 
						|
  return isl_map_get_tuple_id(NewAccessRelation, isl_dim_out);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_map *MemoryAccess::getAddressFunction() const {
 | 
						|
  return isl_map_lexmin(getAccessRelation());
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation(
 | 
						|
    __isl_take isl_union_map *USchedule) const {
 | 
						|
  isl_map *Schedule, *ScheduledAccRel;
 | 
						|
  isl_union_set *UDomain;
 | 
						|
 | 
						|
  UDomain = isl_union_set_from_set(getStatement()->getDomain());
 | 
						|
  USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
 | 
						|
  Schedule = isl_map_from_union_map(USchedule);
 | 
						|
  ScheduledAccRel = isl_map_apply_domain(getAddressFunction(), Schedule);
 | 
						|
  return isl_pw_multi_aff_from_map(ScheduledAccRel);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const {
 | 
						|
  return isl_map_copy(AccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
std::string MemoryAccess::getOriginalAccessRelationStr() const {
 | 
						|
  return stringFromIslObj(AccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
 | 
						|
  return isl_map_get_space(AccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_map *MemoryAccess::getNewAccessRelation() const {
 | 
						|
  return isl_map_copy(NewAccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
std::string MemoryAccess::getNewAccessRelationStr() const {
 | 
						|
  return stringFromIslObj(NewAccessRelation);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_basic_map *
 | 
						|
MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
 | 
						|
  isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
 | 
						|
  Space = isl_space_align_params(Space, Statement->getDomainSpace());
 | 
						|
 | 
						|
  return isl_basic_map_from_domain_and_range(
 | 
						|
      isl_basic_set_universe(Statement->getDomainSpace()),
 | 
						|
      isl_basic_set_universe(Space));
 | 
						|
}
 | 
						|
 | 
						|
// Formalize no out-of-bound access assumption
 | 
						|
//
 | 
						|
// When delinearizing array accesses we optimistically assume that the
 | 
						|
// delinearized accesses do not access out of bound locations (the subscript
 | 
						|
// expression of each array evaluates for each statement instance that is
 | 
						|
// executed to a value that is larger than zero and strictly smaller than the
 | 
						|
// size of the corresponding dimension). The only exception is the outermost
 | 
						|
// dimension for which we do not need to assume any upper bound.  At this point
 | 
						|
// we formalize this assumption to ensure that at code generation time the
 | 
						|
// relevant run-time checks can be generated.
 | 
						|
//
 | 
						|
// To find the set of constraints necessary to avoid out of bound accesses, we
 | 
						|
// first build the set of data locations that are not within array bounds. We
 | 
						|
// then apply the reverse access relation to obtain the set of iterations that
 | 
						|
// may contain invalid accesses and reduce this set of iterations to the ones
 | 
						|
// that are actually executed by intersecting them with the domain of the
 | 
						|
// statement. If we now project out all loop dimensions, we obtain a set of
 | 
						|
// parameters that may cause statement instances to be executed that may
 | 
						|
// possibly yield out of bound memory accesses. The complement of these
 | 
						|
// constraints is the set of constraints that needs to be assumed to ensure such
 | 
						|
// statement instances are never executed.
 | 
						|
void MemoryAccess::assumeNoOutOfBound() {
 | 
						|
  if (PollyIgnoreInbounds)
 | 
						|
    return;
 | 
						|
  auto *SAI = getScopArrayInfo();
 | 
						|
  isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
 | 
						|
  isl_set *Outside = isl_set_empty(isl_space_copy(Space));
 | 
						|
  for (int i = 1, Size = isl_space_dim(Space, isl_dim_set); i < Size; ++i) {
 | 
						|
    isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
 | 
						|
    isl_pw_aff *Var =
 | 
						|
        isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
 | 
						|
    isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
 | 
						|
 | 
						|
    isl_set *DimOutside;
 | 
						|
 | 
						|
    DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
 | 
						|
    isl_pw_aff *SizeE = SAI->getDimensionSizePw(i);
 | 
						|
    SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
 | 
						|
                                isl_space_dim(Space, isl_dim_set));
 | 
						|
    SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
 | 
						|
                                    isl_space_get_tuple_id(Space, isl_dim_set));
 | 
						|
 | 
						|
    DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
 | 
						|
 | 
						|
    Outside = isl_set_union(Outside, DimOutside);
 | 
						|
  }
 | 
						|
 | 
						|
  Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
 | 
						|
  Outside = isl_set_intersect(Outside, Statement->getDomain());
 | 
						|
  Outside = isl_set_params(Outside);
 | 
						|
 | 
						|
  // Remove divs to avoid the construction of overly complicated assumptions.
 | 
						|
  // Doing so increases the set of parameter combinations that are assumed to
 | 
						|
  // not appear. This is always save, but may make the resulting run-time check
 | 
						|
  // bail out more often than strictly necessary.
 | 
						|
  Outside = isl_set_remove_divs(Outside);
 | 
						|
  Outside = isl_set_complement(Outside);
 | 
						|
  const auto &Loc = getAccessInstruction()
 | 
						|
                        ? getAccessInstruction()->getDebugLoc()
 | 
						|
                        : DebugLoc();
 | 
						|
  if (!PollyPreciseInbounds)
 | 
						|
    Outside = isl_set_gist(Outside, isl_set_params(Statement->getDomain()));
 | 
						|
  Statement->getParent()->recordAssumption(INBOUNDS, Outside, Loc,
 | 
						|
                                           AS_ASSUMPTION);
 | 
						|
  isl_space_free(Space);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::buildMemIntrinsicAccessRelation() {
 | 
						|
  assert(isMemoryIntrinsic());
 | 
						|
  assert(Subscripts.size() == 2 && Sizes.size() == 1);
 | 
						|
 | 
						|
  auto *SubscriptPWA = getPwAff(Subscripts[0]);
 | 
						|
  auto *SubscriptMap = isl_map_from_pw_aff(SubscriptPWA);
 | 
						|
 | 
						|
  isl_map *LengthMap;
 | 
						|
  if (Subscripts[1] == nullptr) {
 | 
						|
    LengthMap = isl_map_universe(isl_map_get_space(SubscriptMap));
 | 
						|
  } else {
 | 
						|
    auto *LengthPWA = getPwAff(Subscripts[1]);
 | 
						|
    LengthMap = isl_map_from_pw_aff(LengthPWA);
 | 
						|
    auto *RangeSpace = isl_space_range(isl_map_get_space(LengthMap));
 | 
						|
    LengthMap = isl_map_apply_range(LengthMap, isl_map_lex_gt(RangeSpace));
 | 
						|
  }
 | 
						|
  LengthMap = isl_map_lower_bound_si(LengthMap, isl_dim_out, 0, 0);
 | 
						|
  LengthMap = isl_map_align_params(LengthMap, isl_map_get_space(SubscriptMap));
 | 
						|
  SubscriptMap =
 | 
						|
      isl_map_align_params(SubscriptMap, isl_map_get_space(LengthMap));
 | 
						|
  LengthMap = isl_map_sum(LengthMap, SubscriptMap);
 | 
						|
  AccessRelation = isl_map_set_tuple_id(LengthMap, isl_dim_in,
 | 
						|
                                        getStatement()->getDomainId());
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
 | 
						|
  ScalarEvolution *SE = Statement->getParent()->getSE();
 | 
						|
 | 
						|
  auto MAI = MemAccInst(getAccessInstruction());
 | 
						|
  if (isa<MemIntrinsic>(MAI))
 | 
						|
    return;
 | 
						|
 | 
						|
  Value *Ptr = MAI.getPointerOperand();
 | 
						|
  if (!Ptr || !SE->isSCEVable(Ptr->getType()))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *PtrSCEV = SE->getSCEV(Ptr);
 | 
						|
  if (isa<SCEVCouldNotCompute>(PtrSCEV))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
 | 
						|
  if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
 | 
						|
    PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
 | 
						|
 | 
						|
  const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
 | 
						|
  if (Range.isFullSet())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Range.isWrappedSet() | Range.isSignWrappedSet())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool isWrapping = Range.isSignWrappedSet();
 | 
						|
 | 
						|
  unsigned BW = Range.getBitWidth();
 | 
						|
  const auto One = APInt(BW, 1);
 | 
						|
  const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
 | 
						|
  const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax();
 | 
						|
 | 
						|
  auto Min = LB.sdiv(APInt(BW, ElementSize));
 | 
						|
  auto Max = UB.sdiv(APInt(BW, ElementSize)) + One;
 | 
						|
 | 
						|
  assert(Min.sle(Max) && "Minimum expected to be less or equal than max");
 | 
						|
 | 
						|
  isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation));
 | 
						|
  AccessRange =
 | 
						|
      addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set);
 | 
						|
  AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::foldAccessRelation() {
 | 
						|
  if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1]))
 | 
						|
    return;
 | 
						|
 | 
						|
  int Size = Subscripts.size();
 | 
						|
 | 
						|
  isl_map *OldAccessRelation = isl_map_copy(AccessRelation);
 | 
						|
 | 
						|
  for (int i = Size - 2; i >= 0; --i) {
 | 
						|
    isl_space *Space;
 | 
						|
    isl_map *MapOne, *MapTwo;
 | 
						|
    isl_pw_aff *DimSize = getPwAff(Sizes[i + 1]);
 | 
						|
 | 
						|
    isl_space *SpaceSize = isl_pw_aff_get_space(DimSize);
 | 
						|
    isl_pw_aff_free(DimSize);
 | 
						|
    isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0);
 | 
						|
 | 
						|
    Space = isl_map_get_space(AccessRelation);
 | 
						|
    Space = isl_space_map_from_set(isl_space_range(Space));
 | 
						|
    Space = isl_space_align_params(Space, SpaceSize);
 | 
						|
 | 
						|
    int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId);
 | 
						|
    isl_id_free(ParamId);
 | 
						|
 | 
						|
    MapOne = isl_map_universe(isl_space_copy(Space));
 | 
						|
    for (int j = 0; j < Size; ++j)
 | 
						|
      MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j);
 | 
						|
    MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0);
 | 
						|
 | 
						|
    MapTwo = isl_map_universe(isl_space_copy(Space));
 | 
						|
    for (int j = 0; j < Size; ++j)
 | 
						|
      if (j < i || j > i + 1)
 | 
						|
        MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j);
 | 
						|
 | 
						|
    isl_local_space *LS = isl_local_space_from_space(Space);
 | 
						|
    isl_constraint *C;
 | 
						|
    C = isl_equality_alloc(isl_local_space_copy(LS));
 | 
						|
    C = isl_constraint_set_constant_si(C, -1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1);
 | 
						|
    MapTwo = isl_map_add_constraint(MapTwo, C);
 | 
						|
    C = isl_equality_alloc(LS);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1);
 | 
						|
    MapTwo = isl_map_add_constraint(MapTwo, C);
 | 
						|
    MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1);
 | 
						|
 | 
						|
    MapOne = isl_map_union(MapOne, MapTwo);
 | 
						|
    AccessRelation = isl_map_apply_range(AccessRelation, MapOne);
 | 
						|
  }
 | 
						|
 | 
						|
  isl_id *BaseAddrId = getScopArrayInfo()->getBasePtrId();
 | 
						|
  auto Space = Statement->getDomainSpace();
 | 
						|
  AccessRelation = isl_map_set_tuple_id(
 | 
						|
      AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
 | 
						|
  AccessRelation =
 | 
						|
      isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
 | 
						|
  AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
 | 
						|
 | 
						|
  // Access dimension folding might in certain cases increase the number of
 | 
						|
  // disjuncts in the memory access, which can possibly complicate the generated
 | 
						|
  // run-time checks and can lead to costly compilation.
 | 
						|
  if (!PollyPreciseFoldAccesses && isl_map_n_basic_map(AccessRelation) >
 | 
						|
                                       isl_map_n_basic_map(OldAccessRelation)) {
 | 
						|
    isl_map_free(AccessRelation);
 | 
						|
    AccessRelation = OldAccessRelation;
 | 
						|
  } else {
 | 
						|
    isl_map_free(OldAccessRelation);
 | 
						|
  }
 | 
						|
 | 
						|
  isl_space_free(Space);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if @p Expr is divisible by @p Size.
 | 
						|
static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
 | 
						|
  assert(Size != 0);
 | 
						|
  if (Size == 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Only one factor needs to be divisible.
 | 
						|
  if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
 | 
						|
    for (auto *FactorExpr : MulExpr->operands())
 | 
						|
      if (isDivisible(FactorExpr, Size, SE))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For other n-ary expressions (Add, AddRec, Max,...) all operands need
 | 
						|
  // to be divisble.
 | 
						|
  if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
 | 
						|
    for (auto *OpExpr : NAryExpr->operands())
 | 
						|
      if (!isDivisible(OpExpr, Size, SE))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
 | 
						|
  auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
 | 
						|
  auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
 | 
						|
  return MulSCEV == Expr;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
 | 
						|
  assert(!AccessRelation && "AccessReltation already built");
 | 
						|
 | 
						|
  // Initialize the invalid domain which describes all iterations for which the
 | 
						|
  // access relation is not modeled correctly.
 | 
						|
  auto *StmtInvalidDomain = getStatement()->getInvalidDomain();
 | 
						|
  InvalidDomain = isl_set_empty(isl_set_get_space(StmtInvalidDomain));
 | 
						|
  isl_set_free(StmtInvalidDomain);
 | 
						|
 | 
						|
  isl_ctx *Ctx = isl_id_get_ctx(Id);
 | 
						|
  isl_id *BaseAddrId = SAI->getBasePtrId();
 | 
						|
 | 
						|
  if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) {
 | 
						|
    buildMemIntrinsicAccessRelation();
 | 
						|
    AccessRelation =
 | 
						|
        isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isAffine()) {
 | 
						|
    // We overapproximate non-affine accesses with a possible access to the
 | 
						|
    // whole array. For read accesses it does not make a difference, if an
 | 
						|
    // access must or may happen. However, for write accesses it is important to
 | 
						|
    // differentiate between writes that must happen and writes that may happen.
 | 
						|
    if (!AccessRelation)
 | 
						|
      AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
 | 
						|
 | 
						|
    AccessRelation =
 | 
						|
        isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
 | 
						|
  AccessRelation = isl_map_universe(Space);
 | 
						|
 | 
						|
  for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
 | 
						|
    isl_pw_aff *Affine = getPwAff(Subscripts[i]);
 | 
						|
    isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
 | 
						|
    AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
 | 
						|
  }
 | 
						|
 | 
						|
  Space = Statement->getDomainSpace();
 | 
						|
  AccessRelation = isl_map_set_tuple_id(
 | 
						|
      AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
 | 
						|
  AccessRelation =
 | 
						|
      isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
 | 
						|
 | 
						|
  AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
 | 
						|
  isl_space_free(Space);
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
 | 
						|
                           AccessType AccType, Value *BaseAddress,
 | 
						|
                           Type *ElementType, bool Affine,
 | 
						|
                           ArrayRef<const SCEV *> Subscripts,
 | 
						|
                           ArrayRef<const SCEV *> Sizes, Value *AccessValue,
 | 
						|
                           MemoryKind Kind)
 | 
						|
    : Kind(Kind), AccType(AccType), RedType(RT_NONE), Statement(Stmt),
 | 
						|
      InvalidDomain(nullptr), BaseAddr(BaseAddress), ElementType(ElementType),
 | 
						|
      Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
 | 
						|
      AccessValue(AccessValue), IsAffine(Affine),
 | 
						|
      Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
 | 
						|
      NewAccessRelation(nullptr), FAD(nullptr) {
 | 
						|
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
 | 
						|
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
 | 
						|
 | 
						|
  std::string IdName = Stmt->getBaseName() + Access;
 | 
						|
  Id = isl_id_alloc(Stmt->getParent()->getIslCtx(), IdName.c_str(), this);
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType,
 | 
						|
                           __isl_take isl_map *AccRel)
 | 
						|
    : Kind(MemoryKind::Array), AccType(AccType), RedType(RT_NONE),
 | 
						|
      Statement(Stmt), InvalidDomain(nullptr), AccessInstruction(nullptr),
 | 
						|
      IsAffine(true), AccessRelation(nullptr), NewAccessRelation(AccRel),
 | 
						|
      FAD(nullptr) {
 | 
						|
  auto *ArrayInfoId = isl_map_get_tuple_id(NewAccessRelation, isl_dim_out);
 | 
						|
  auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId);
 | 
						|
  Sizes.push_back(nullptr);
 | 
						|
  for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++)
 | 
						|
    Sizes.push_back(SAI->getDimensionSize(i));
 | 
						|
  ElementType = SAI->getElementType();
 | 
						|
  BaseAddr = SAI->getBasePtr();
 | 
						|
  static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
 | 
						|
  const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
 | 
						|
 | 
						|
  std::string IdName = Stmt->getBaseName() + Access;
 | 
						|
  Id = isl_id_alloc(Stmt->getParent()->getIslCtx(), IdName.c_str(), this);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::realignParams() {
 | 
						|
  auto *Ctx = Statement->getParent()->getContext();
 | 
						|
  InvalidDomain = isl_set_gist_params(InvalidDomain, isl_set_copy(Ctx));
 | 
						|
  AccessRelation = isl_map_gist_params(AccessRelation, Ctx);
 | 
						|
}
 | 
						|
 | 
						|
const std::string MemoryAccess::getReductionOperatorStr() const {
 | 
						|
  return MemoryAccess::getReductionOperatorStr(getReductionType());
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); }
 | 
						|
 | 
						|
raw_ostream &polly::operator<<(raw_ostream &OS,
 | 
						|
                               MemoryAccess::ReductionType RT) {
 | 
						|
  if (RT == MemoryAccess::RT_NONE)
 | 
						|
    OS << "NONE";
 | 
						|
  else
 | 
						|
    OS << MemoryAccess::getReductionOperatorStr(RT);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::setFortranArrayDescriptor(GlobalValue *FAD) {
 | 
						|
  this->FAD = FAD;
 | 
						|
 | 
						|
// TODO: write checks to make sure it looks _exactly_ like a Fortran array
 | 
						|
// descriptor
 | 
						|
#ifdef NDEBUG
 | 
						|
  StructType *ty = dyn_cast<StructType>(Descriptor->getValueType());
 | 
						|
  assert(ty && "expected value of type Fortran array descriptor");
 | 
						|
  assert(ty->hasName() && ty->getName().startswith("struct.array") &&
 | 
						|
         "expected global to follow Fortran array descriptor type naming "
 | 
						|
         "convention");
 | 
						|
  assert(ty->getNumElements() == 4 &&
 | 
						|
         "expected layout to be like Fortran array descriptor type");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::print(raw_ostream &OS) const {
 | 
						|
  switch (AccType) {
 | 
						|
  case READ:
 | 
						|
    OS.indent(12) << "ReadAccess :=\t";
 | 
						|
    break;
 | 
						|
  case MUST_WRITE:
 | 
						|
    OS.indent(12) << "MustWriteAccess :=\t";
 | 
						|
    break;
 | 
						|
  case MAY_WRITE:
 | 
						|
    OS.indent(12) << "MayWriteAccess :=\t";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "[Reduction Type: " << getReductionType() << "] ";
 | 
						|
 | 
						|
  if (FAD) {
 | 
						|
    OS << "[Fortran array descriptor: " << FAD->getName();
 | 
						|
    OS << "] ";
 | 
						|
  };
 | 
						|
 | 
						|
  OS << "[Scalar: " << isScalarKind() << "]\n";
 | 
						|
  OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
 | 
						|
  if (hasNewAccessRelation())
 | 
						|
    OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::dump() const { print(errs()); }
 | 
						|
 | 
						|
__isl_give isl_pw_aff *MemoryAccess::getPwAff(const SCEV *E) {
 | 
						|
  auto *Stmt = getStatement();
 | 
						|
  PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock());
 | 
						|
  isl_set *StmtDom = isl_set_reset_tuple_id(getStatement()->getDomain());
 | 
						|
  isl_set *NewInvalidDom = isl_set_intersect(StmtDom, PWAC.second);
 | 
						|
  InvalidDomain = isl_set_union(InvalidDomain, NewInvalidDom);
 | 
						|
  return PWAC.first;
 | 
						|
}
 | 
						|
 | 
						|
// Create a map in the size of the provided set domain, that maps from the
 | 
						|
// one element of the provided set domain to another element of the provided
 | 
						|
// set domain.
 | 
						|
// The mapping is limited to all points that are equal in all but the last
 | 
						|
// dimension and for which the last dimension of the input is strict smaller
 | 
						|
// than the last dimension of the output.
 | 
						|
//
 | 
						|
//   getEqualAndLarger(set[i0, i1, ..., iX]):
 | 
						|
//
 | 
						|
//   set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
 | 
						|
//     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
 | 
						|
//
 | 
						|
static isl_map *getEqualAndLarger(__isl_take isl_space *setDomain) {
 | 
						|
  isl_space *Space = isl_space_map_from_set(setDomain);
 | 
						|
  isl_map *Map = isl_map_universe(Space);
 | 
						|
  unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
 | 
						|
 | 
						|
  // Set all but the last dimension to be equal for the input and output
 | 
						|
  //
 | 
						|
  //   input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
 | 
						|
  //     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
 | 
						|
  for (unsigned i = 0; i < lastDimension; ++i)
 | 
						|
    Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
 | 
						|
 | 
						|
  // Set the last dimension of the input to be strict smaller than the
 | 
						|
  // last dimension of the output.
 | 
						|
  //
 | 
						|
  //   input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
 | 
						|
  Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out,
 | 
						|
                         lastDimension);
 | 
						|
  return Map;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *
 | 
						|
MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
 | 
						|
  isl_map *S = const_cast<isl_map *>(Schedule);
 | 
						|
  isl_map *AccessRelation = getAccessRelation();
 | 
						|
  isl_space *Space = isl_space_range(isl_map_get_space(S));
 | 
						|
  isl_map *NextScatt = getEqualAndLarger(Space);
 | 
						|
 | 
						|
  S = isl_map_reverse(S);
 | 
						|
  NextScatt = isl_map_lexmin(NextScatt);
 | 
						|
 | 
						|
  NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
 | 
						|
  NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
 | 
						|
  NextScatt = isl_map_apply_domain(NextScatt, S);
 | 
						|
  NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
 | 
						|
 | 
						|
  isl_set *Deltas = isl_map_deltas(NextScatt);
 | 
						|
  return Deltas;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
 | 
						|
                             int StrideWidth) const {
 | 
						|
  isl_set *Stride, *StrideX;
 | 
						|
  bool IsStrideX;
 | 
						|
 | 
						|
  Stride = getStride(Schedule);
 | 
						|
  StrideX = isl_set_universe(isl_set_get_space(Stride));
 | 
						|
  for (unsigned i = 0; i < isl_set_dim(StrideX, isl_dim_set) - 1; i++)
 | 
						|
    StrideX = isl_set_fix_si(StrideX, isl_dim_set, i, 0);
 | 
						|
  StrideX = isl_set_fix_si(StrideX, isl_dim_set,
 | 
						|
                           isl_set_dim(StrideX, isl_dim_set) - 1, StrideWidth);
 | 
						|
  IsStrideX = isl_set_is_subset(Stride, StrideX);
 | 
						|
 | 
						|
  isl_set_free(StrideX);
 | 
						|
  isl_set_free(Stride);
 | 
						|
 | 
						|
  return IsStrideX;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryAccess::isStrideZero(__isl_take const isl_map *Schedule) const {
 | 
						|
  return isStrideX(Schedule, 0);
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryAccess::isStrideOne(__isl_take const isl_map *Schedule) const {
 | 
						|
  return isStrideX(Schedule, 1);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::setAccessRelation(__isl_take isl_map *NewAccess) {
 | 
						|
  isl_map_free(AccessRelation);
 | 
						|
  AccessRelation = NewAccess;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryAccess::setNewAccessRelation(__isl_take isl_map *NewAccess) {
 | 
						|
  assert(NewAccess);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check domain space compatibility.
 | 
						|
  auto *NewSpace = isl_map_get_space(NewAccess);
 | 
						|
  auto *NewDomainSpace = isl_space_domain(isl_space_copy(NewSpace));
 | 
						|
  auto *OriginalDomainSpace = getStatement()->getDomainSpace();
 | 
						|
  assert(isl_space_has_equal_tuples(OriginalDomainSpace, NewDomainSpace));
 | 
						|
  isl_space_free(NewDomainSpace);
 | 
						|
  isl_space_free(OriginalDomainSpace);
 | 
						|
 | 
						|
  // Check whether there is an access for every statement instance.
 | 
						|
  auto *StmtDomain = getStatement()->getDomain();
 | 
						|
  StmtDomain = isl_set_intersect_params(
 | 
						|
      StmtDomain, getStatement()->getParent()->getContext());
 | 
						|
  auto *NewDomain = isl_map_domain(isl_map_copy(NewAccess));
 | 
						|
  assert(isl_set_is_subset(StmtDomain, NewDomain) &&
 | 
						|
         "Partial accesses not supported");
 | 
						|
  isl_set_free(NewDomain);
 | 
						|
  isl_set_free(StmtDomain);
 | 
						|
 | 
						|
  auto *NewAccessSpace = isl_space_range(NewSpace);
 | 
						|
  assert(isl_space_has_tuple_id(NewAccessSpace, isl_dim_set) &&
 | 
						|
         "Must specify the array that is accessed");
 | 
						|
  auto *NewArrayId = isl_space_get_tuple_id(NewAccessSpace, isl_dim_set);
 | 
						|
  auto *SAI = static_cast<ScopArrayInfo *>(isl_id_get_user(NewArrayId));
 | 
						|
  assert(SAI && "Must set a ScopArrayInfo");
 | 
						|
 | 
						|
  if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) {
 | 
						|
    InvariantEquivClassTy *EqClass =
 | 
						|
        getStatement()->getParent()->lookupInvariantEquivClass(
 | 
						|
            SAI->getBasePtr());
 | 
						|
    assert(EqClass &&
 | 
						|
           "Access functions to indirect arrays must have an invariant and "
 | 
						|
           "hoisted base pointer");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether access dimensions correspond to number of dimensions of the
 | 
						|
  // accesses array.
 | 
						|
  auto Dims = SAI->getNumberOfDimensions();
 | 
						|
  assert(isl_space_dim(NewAccessSpace, isl_dim_set) == Dims &&
 | 
						|
         "Access dims must match array dims");
 | 
						|
  isl_space_free(NewAccessSpace);
 | 
						|
  isl_id_free(NewArrayId);
 | 
						|
#endif
 | 
						|
 | 
						|
  isl_map_free(NewAccessRelation);
 | 
						|
  NewAccessRelation = NewAccess;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
__isl_give isl_map *ScopStmt::getSchedule() const {
 | 
						|
  isl_set *Domain = getDomain();
 | 
						|
  if (isl_set_is_empty(Domain)) {
 | 
						|
    isl_set_free(Domain);
 | 
						|
    return isl_map_from_aff(
 | 
						|
        isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
 | 
						|
  }
 | 
						|
  auto *Schedule = getParent()->getSchedule();
 | 
						|
  if (!Schedule) {
 | 
						|
    isl_set_free(Domain);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  Schedule = isl_union_map_intersect_domain(
 | 
						|
      Schedule, isl_union_set_from_set(isl_set_copy(Domain)));
 | 
						|
  if (isl_union_map_is_empty(Schedule)) {
 | 
						|
    isl_set_free(Domain);
 | 
						|
    isl_union_map_free(Schedule);
 | 
						|
    return isl_map_from_aff(
 | 
						|
        isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
 | 
						|
  }
 | 
						|
  auto *M = isl_map_from_union_map(Schedule);
 | 
						|
  M = isl_map_coalesce(M);
 | 
						|
  M = isl_map_gist_domain(M, Domain);
 | 
						|
  M = isl_map_coalesce(M);
 | 
						|
  return M;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_pw_aff *ScopStmt::getPwAff(const SCEV *E, bool NonNegative) {
 | 
						|
  PWACtx PWAC = getParent()->getPwAff(E, getEntryBlock(), NonNegative);
 | 
						|
  InvalidDomain = isl_set_union(InvalidDomain, PWAC.second);
 | 
						|
  return PWAC.first;
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
 | 
						|
  assert(isl_set_is_subset(NewDomain, Domain) &&
 | 
						|
         "New domain is not a subset of old domain!");
 | 
						|
  isl_set_free(Domain);
 | 
						|
  Domain = NewDomain;
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::buildAccessRelations() {
 | 
						|
  Scop &S = *getParent();
 | 
						|
  for (MemoryAccess *Access : MemAccs) {
 | 
						|
    Type *ElementType = Access->getElementType();
 | 
						|
 | 
						|
    MemoryKind Ty;
 | 
						|
    if (Access->isPHIKind())
 | 
						|
      Ty = MemoryKind::PHI;
 | 
						|
    else if (Access->isExitPHIKind())
 | 
						|
      Ty = MemoryKind::ExitPHI;
 | 
						|
    else if (Access->isValueKind())
 | 
						|
      Ty = MemoryKind::Value;
 | 
						|
    else
 | 
						|
      Ty = MemoryKind::Array;
 | 
						|
 | 
						|
    auto *SAI = S.getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(),
 | 
						|
                                           ElementType, Access->Sizes, Ty);
 | 
						|
    Access->buildAccessRelation(SAI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::addAccess(MemoryAccess *Access) {
 | 
						|
  Instruction *AccessInst = Access->getAccessInstruction();
 | 
						|
 | 
						|
  if (Access->isArrayKind()) {
 | 
						|
    MemoryAccessList &MAL = InstructionToAccess[AccessInst];
 | 
						|
    MAL.emplace_front(Access);
 | 
						|
  } else if (Access->isValueKind() && Access->isWrite()) {
 | 
						|
    Instruction *AccessVal = cast<Instruction>(Access->getAccessValue());
 | 
						|
    assert(Parent.getStmtFor(AccessVal) == this);
 | 
						|
    assert(!ValueWrites.lookup(AccessVal));
 | 
						|
 | 
						|
    ValueWrites[AccessVal] = Access;
 | 
						|
  } else if (Access->isValueKind() && Access->isRead()) {
 | 
						|
    Value *AccessVal = Access->getAccessValue();
 | 
						|
    assert(!ValueReads.lookup(AccessVal));
 | 
						|
 | 
						|
    ValueReads[AccessVal] = Access;
 | 
						|
  } else if (Access->isAnyPHIKind() && Access->isWrite()) {
 | 
						|
    PHINode *PHI = cast<PHINode>(Access->getAccessValue());
 | 
						|
    assert(!PHIWrites.lookup(PHI));
 | 
						|
 | 
						|
    PHIWrites[PHI] = Access;
 | 
						|
  }
 | 
						|
 | 
						|
  MemAccs.push_back(Access);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::realignParams() {
 | 
						|
  for (MemoryAccess *MA : *this)
 | 
						|
    MA->realignParams();
 | 
						|
 | 
						|
  auto *Ctx = Parent.getContext();
 | 
						|
  InvalidDomain = isl_set_gist_params(InvalidDomain, isl_set_copy(Ctx));
 | 
						|
  Domain = isl_set_gist_params(Domain, Ctx);
 | 
						|
}
 | 
						|
 | 
						|
/// Add @p BSet to the set @p User if @p BSet is bounded.
 | 
						|
static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet,
 | 
						|
                                    void *User) {
 | 
						|
  isl_set **BoundedParts = static_cast<isl_set **>(User);
 | 
						|
  if (isl_basic_set_is_bounded(BSet))
 | 
						|
    *BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet));
 | 
						|
  else
 | 
						|
    isl_basic_set_free(BSet);
 | 
						|
  return isl_stat_ok;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the bounded parts of @p S.
 | 
						|
static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) {
 | 
						|
  isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S));
 | 
						|
  isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts);
 | 
						|
  isl_set_free(S);
 | 
						|
  return BoundedParts;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
 | 
						|
///
 | 
						|
/// @returns A separation of @p S into first an unbounded then a bounded subset,
 | 
						|
///          both with regards to the dimension @p Dim.
 | 
						|
static std::pair<__isl_give isl_set *, __isl_give isl_set *>
 | 
						|
partitionSetParts(__isl_take isl_set *S, unsigned Dim) {
 | 
						|
 | 
						|
  for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++)
 | 
						|
    S = isl_set_lower_bound_si(S, isl_dim_set, u, 0);
 | 
						|
 | 
						|
  unsigned NumDimsS = isl_set_n_dim(S);
 | 
						|
  isl_set *OnlyDimS = isl_set_copy(S);
 | 
						|
 | 
						|
  // Remove dimensions that are greater than Dim as they are not interesting.
 | 
						|
  assert(NumDimsS >= Dim + 1);
 | 
						|
  OnlyDimS =
 | 
						|
      isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1);
 | 
						|
 | 
						|
  // Create artificial parametric upper bounds for dimensions smaller than Dim
 | 
						|
  // as we are not interested in them.
 | 
						|
  OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim);
 | 
						|
  for (unsigned u = 0; u < Dim; u++) {
 | 
						|
    isl_constraint *C = isl_inequality_alloc(
 | 
						|
        isl_local_space_from_space(isl_set_get_space(OnlyDimS)));
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1);
 | 
						|
    C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1);
 | 
						|
    OnlyDimS = isl_set_add_constraint(OnlyDimS, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect all bounded parts of OnlyDimS.
 | 
						|
  isl_set *BoundedParts = collectBoundedParts(OnlyDimS);
 | 
						|
 | 
						|
  // Create the dimensions greater than Dim again.
 | 
						|
  BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1,
 | 
						|
                                     NumDimsS - Dim - 1);
 | 
						|
 | 
						|
  // Remove the artificial upper bound parameters again.
 | 
						|
  BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim);
 | 
						|
 | 
						|
  isl_set *UnboundedParts = isl_set_subtract(S, isl_set_copy(BoundedParts));
 | 
						|
  return std::make_pair(UnboundedParts, BoundedParts);
 | 
						|
}
 | 
						|
 | 
						|
/// Set the dimension Ids from @p From in @p To.
 | 
						|
static __isl_give isl_set *setDimensionIds(__isl_keep isl_set *From,
 | 
						|
                                           __isl_take isl_set *To) {
 | 
						|
  for (unsigned u = 0, e = isl_set_n_dim(From); u < e; u++) {
 | 
						|
    isl_id *DimId = isl_set_get_dim_id(From, isl_dim_set, u);
 | 
						|
    To = isl_set_set_dim_id(To, isl_dim_set, u, DimId);
 | 
						|
  }
 | 
						|
  return To;
 | 
						|
}
 | 
						|
 | 
						|
/// Create the conditions under which @p L @p Pred @p R is true.
 | 
						|
static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
 | 
						|
                                             __isl_take isl_pw_aff *L,
 | 
						|
                                             __isl_take isl_pw_aff *R) {
 | 
						|
  switch (Pred) {
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
    return isl_pw_aff_eq_set(L, R);
 | 
						|
  case ICmpInst::ICMP_NE:
 | 
						|
    return isl_pw_aff_ne_set(L, R);
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
    return isl_pw_aff_lt_set(L, R);
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    return isl_pw_aff_le_set(L, R);
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    return isl_pw_aff_gt_set(L, R);
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    return isl_pw_aff_ge_set(L, R);
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    return isl_pw_aff_lt_set(L, R);
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    return isl_pw_aff_gt_set(L, R);
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    return isl_pw_aff_le_set(L, R);
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    return isl_pw_aff_ge_set(L, R);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Non integer predicate not supported");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create the conditions under which @p L @p Pred @p R is true.
 | 
						|
///
 | 
						|
/// Helper function that will make sure the dimensions of the result have the
 | 
						|
/// same isl_id's as the @p Domain.
 | 
						|
static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
 | 
						|
                                             __isl_take isl_pw_aff *L,
 | 
						|
                                             __isl_take isl_pw_aff *R,
 | 
						|
                                             __isl_keep isl_set *Domain) {
 | 
						|
  isl_set *ConsequenceCondSet = buildConditionSet(Pred, L, R);
 | 
						|
  return setDimensionIds(Domain, ConsequenceCondSet);
 | 
						|
}
 | 
						|
 | 
						|
/// Build the conditions sets for the switch @p SI in the @p Domain.
 | 
						|
///
 | 
						|
/// This will fill @p ConditionSets with the conditions under which control
 | 
						|
/// will be moved from @p SI to its successors. Hence, @p ConditionSets will
 | 
						|
/// have as many elements as @p SI has successors.
 | 
						|
static bool
 | 
						|
buildConditionSets(ScopStmt &Stmt, SwitchInst *SI, Loop *L,
 | 
						|
                   __isl_keep isl_set *Domain,
 | 
						|
                   SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
 | 
						|
 | 
						|
  Value *Condition = getConditionFromTerminator(SI);
 | 
						|
  assert(Condition && "No condition for switch");
 | 
						|
 | 
						|
  Scop &S = *Stmt.getParent();
 | 
						|
  ScalarEvolution &SE = *S.getSE();
 | 
						|
  isl_pw_aff *LHS, *RHS;
 | 
						|
  LHS = Stmt.getPwAff(SE.getSCEVAtScope(Condition, L));
 | 
						|
 | 
						|
  unsigned NumSuccessors = SI->getNumSuccessors();
 | 
						|
  ConditionSets.resize(NumSuccessors);
 | 
						|
  for (auto &Case : SI->cases()) {
 | 
						|
    unsigned Idx = Case.getSuccessorIndex();
 | 
						|
    ConstantInt *CaseValue = Case.getCaseValue();
 | 
						|
 | 
						|
    RHS = Stmt.getPwAff(SE.getSCEV(CaseValue));
 | 
						|
    isl_set *CaseConditionSet =
 | 
						|
        buildConditionSet(ICmpInst::ICMP_EQ, isl_pw_aff_copy(LHS), RHS, Domain);
 | 
						|
    ConditionSets[Idx] = isl_set_coalesce(
 | 
						|
        isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ConditionSets[0] == nullptr && "Default condition set was set");
 | 
						|
  isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
 | 
						|
  for (unsigned u = 2; u < NumSuccessors; u++)
 | 
						|
    ConditionSetUnion =
 | 
						|
        isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
 | 
						|
  ConditionSets[0] = setDimensionIds(
 | 
						|
      Domain, isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion));
 | 
						|
 | 
						|
  isl_pw_aff_free(LHS);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Build the conditions sets for the branch condition @p Condition in
 | 
						|
/// the @p Domain.
 | 
						|
///
 | 
						|
/// This will fill @p ConditionSets with the conditions under which control
 | 
						|
/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
 | 
						|
/// have as many elements as @p TI has successors. If @p TI is nullptr the
 | 
						|
/// context under which @p Condition is true/false will be returned as the
 | 
						|
/// new elements of @p ConditionSets.
 | 
						|
static bool
 | 
						|
buildConditionSets(ScopStmt &Stmt, Value *Condition, TerminatorInst *TI,
 | 
						|
                   Loop *L, __isl_keep isl_set *Domain,
 | 
						|
                   SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
 | 
						|
 | 
						|
  Scop &S = *Stmt.getParent();
 | 
						|
  isl_set *ConsequenceCondSet = nullptr;
 | 
						|
  if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
 | 
						|
    if (CCond->isZero())
 | 
						|
      ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
 | 
						|
    else
 | 
						|
      ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
 | 
						|
  } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
 | 
						|
    auto Opcode = BinOp->getOpcode();
 | 
						|
    assert(Opcode == Instruction::And || Opcode == Instruction::Or);
 | 
						|
 | 
						|
    bool Valid = buildConditionSets(Stmt, BinOp->getOperand(0), TI, L, Domain,
 | 
						|
                                    ConditionSets) &&
 | 
						|
                 buildConditionSets(Stmt, BinOp->getOperand(1), TI, L, Domain,
 | 
						|
                                    ConditionSets);
 | 
						|
    if (!Valid) {
 | 
						|
      while (!ConditionSets.empty())
 | 
						|
        isl_set_free(ConditionSets.pop_back_val());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    isl_set_free(ConditionSets.pop_back_val());
 | 
						|
    isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
 | 
						|
    isl_set_free(ConditionSets.pop_back_val());
 | 
						|
    isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
 | 
						|
 | 
						|
    if (Opcode == Instruction::And)
 | 
						|
      ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
 | 
						|
    else
 | 
						|
      ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
 | 
						|
  } else {
 | 
						|
    auto *ICond = dyn_cast<ICmpInst>(Condition);
 | 
						|
    assert(ICond &&
 | 
						|
           "Condition of exiting branch was neither constant nor ICmp!");
 | 
						|
 | 
						|
    ScalarEvolution &SE = *S.getSE();
 | 
						|
    isl_pw_aff *LHS, *RHS;
 | 
						|
    // For unsigned comparisons we assumed the signed bit of neither operand
 | 
						|
    // to be set. The comparison is equal to a signed comparison under this
 | 
						|
    // assumption.
 | 
						|
    bool NonNeg = ICond->isUnsigned();
 | 
						|
    LHS = Stmt.getPwAff(SE.getSCEVAtScope(ICond->getOperand(0), L), NonNeg);
 | 
						|
    RHS = Stmt.getPwAff(SE.getSCEVAtScope(ICond->getOperand(1), L), NonNeg);
 | 
						|
    ConsequenceCondSet =
 | 
						|
        buildConditionSet(ICond->getPredicate(), LHS, RHS, Domain);
 | 
						|
  }
 | 
						|
 | 
						|
  // If no terminator was given we are only looking for parameter constraints
 | 
						|
  // under which @p Condition is true/false.
 | 
						|
  if (!TI)
 | 
						|
    ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
 | 
						|
  assert(ConsequenceCondSet);
 | 
						|
  ConsequenceCondSet = isl_set_coalesce(
 | 
						|
      isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)));
 | 
						|
 | 
						|
  isl_set *AlternativeCondSet = nullptr;
 | 
						|
  bool TooComplex =
 | 
						|
      isl_set_n_basic_set(ConsequenceCondSet) >= MaxDisjunctsInDomain;
 | 
						|
 | 
						|
  if (!TooComplex) {
 | 
						|
    AlternativeCondSet = isl_set_subtract(isl_set_copy(Domain),
 | 
						|
                                          isl_set_copy(ConsequenceCondSet));
 | 
						|
    TooComplex =
 | 
						|
        isl_set_n_basic_set(AlternativeCondSet) >= MaxDisjunctsInDomain;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TooComplex) {
 | 
						|
    S.invalidate(COMPLEXITY, TI ? TI->getDebugLoc() : DebugLoc());
 | 
						|
    isl_set_free(AlternativeCondSet);
 | 
						|
    isl_set_free(ConsequenceCondSet);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ConditionSets.push_back(ConsequenceCondSet);
 | 
						|
  ConditionSets.push_back(isl_set_coalesce(AlternativeCondSet));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Build the conditions sets for the terminator @p TI in the @p Domain.
 | 
						|
///
 | 
						|
/// This will fill @p ConditionSets with the conditions under which control
 | 
						|
/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
 | 
						|
/// have as many elements as @p TI has successors.
 | 
						|
static bool
 | 
						|
buildConditionSets(ScopStmt &Stmt, TerminatorInst *TI, Loop *L,
 | 
						|
                   __isl_keep isl_set *Domain,
 | 
						|
                   SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
 | 
						|
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
 | 
						|
    return buildConditionSets(Stmt, SI, L, Domain, ConditionSets);
 | 
						|
 | 
						|
  assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
 | 
						|
 | 
						|
  if (TI->getNumSuccessors() == 1) {
 | 
						|
    ConditionSets.push_back(isl_set_copy(Domain));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Condition = getConditionFromTerminator(TI);
 | 
						|
  assert(Condition && "No condition for Terminator");
 | 
						|
 | 
						|
  return buildConditionSets(Stmt, Condition, TI, L, Domain, ConditionSets);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::buildDomain() {
 | 
						|
  isl_id *Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
 | 
						|
 | 
						|
  Domain = getParent()->getDomainConditions(this);
 | 
						|
  Domain = isl_set_set_tuple_id(Domain, Id);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::collectSurroundingLoops() {
 | 
						|
  for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) {
 | 
						|
    isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u);
 | 
						|
    NestLoops.push_back(static_cast<Loop *>(isl_id_get_user(DimId)));
 | 
						|
    isl_id_free(DimId);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt::ScopStmt(Scop &parent, Region &R, Loop *SurroundingLoop)
 | 
						|
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(nullptr),
 | 
						|
      R(&R), Build(nullptr), SurroundingLoop(SurroundingLoop) {
 | 
						|
 | 
						|
  BaseName = getIslCompatibleName(
 | 
						|
      "Stmt", R.getNameStr(), parent.getNextStmtIdx(), "", UseInstructionNames);
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, Loop *SurroundingLoop)
 | 
						|
    : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(&bb),
 | 
						|
      R(nullptr), Build(nullptr), SurroundingLoop(SurroundingLoop) {
 | 
						|
 | 
						|
  BaseName = getIslCompatibleName("Stmt", &bb, parent.getNextStmtIdx(), "",
 | 
						|
                                  UseInstructionNames);
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt::ScopStmt(Scop &parent, __isl_take isl_map *SourceRel,
 | 
						|
                   __isl_take isl_map *TargetRel, __isl_take isl_set *NewDomain)
 | 
						|
    : Parent(parent), InvalidDomain(nullptr), Domain(NewDomain), BB(nullptr),
 | 
						|
      R(nullptr), Build(nullptr) {
 | 
						|
  BaseName = getIslCompatibleName("CopyStmt_", "",
 | 
						|
                                  std::to_string(parent.getCopyStmtsNum()));
 | 
						|
  auto *Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
 | 
						|
  Domain = isl_set_set_tuple_id(Domain, isl_id_copy(Id));
 | 
						|
  TargetRel = isl_map_set_tuple_id(TargetRel, isl_dim_in, Id);
 | 
						|
  auto *Access =
 | 
						|
      new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel);
 | 
						|
  parent.addAccessFunction(Access);
 | 
						|
  addAccess(Access);
 | 
						|
  SourceRel = isl_map_set_tuple_id(SourceRel, isl_dim_in, isl_id_copy(Id));
 | 
						|
  Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel);
 | 
						|
  parent.addAccessFunction(Access);
 | 
						|
  addAccess(Access);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::init(LoopInfo &LI) {
 | 
						|
  assert(!Domain && "init must be called only once");
 | 
						|
 | 
						|
  buildDomain();
 | 
						|
  collectSurroundingLoops();
 | 
						|
  buildAccessRelations();
 | 
						|
 | 
						|
  if (DetectReductions)
 | 
						|
    checkForReductions();
 | 
						|
}
 | 
						|
 | 
						|
/// Collect loads which might form a reduction chain with @p StoreMA.
 | 
						|
///
 | 
						|
/// Check if the stored value for @p StoreMA is a binary operator with one or
 | 
						|
/// two loads as operands. If the binary operand is commutative & associative,
 | 
						|
/// used only once (by @p StoreMA) and its load operands are also used only
 | 
						|
/// once, we have found a possible reduction chain. It starts at an operand
 | 
						|
/// load and includes the binary operator and @p StoreMA.
 | 
						|
///
 | 
						|
/// Note: We allow only one use to ensure the load and binary operator cannot
 | 
						|
///       escape this block or into any other store except @p StoreMA.
 | 
						|
void ScopStmt::collectCandiateReductionLoads(
 | 
						|
    MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
 | 
						|
  auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
 | 
						|
  if (!Store)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip if there is not one binary operator between the load and the store
 | 
						|
  auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
 | 
						|
  if (!BinOp)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip if the binary operators has multiple uses
 | 
						|
  if (BinOp->getNumUses() != 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip if the opcode of the binary operator is not commutative/associative
 | 
						|
  if (!BinOp->isCommutative() || !BinOp->isAssociative())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip if the binary operator is outside the current SCoP
 | 
						|
  if (BinOp->getParent() != Store->getParent())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip if it is a multiplicative reduction and we disabled them
 | 
						|
  if (DisableMultiplicativeReductions &&
 | 
						|
      (BinOp->getOpcode() == Instruction::Mul ||
 | 
						|
       BinOp->getOpcode() == Instruction::FMul))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check the binary operator operands for a candidate load
 | 
						|
  auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
 | 
						|
  auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
 | 
						|
  if (!PossibleLoad0 && !PossibleLoad1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // A load is only a candidate if it cannot escape (thus has only this use)
 | 
						|
  if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
 | 
						|
    if (PossibleLoad0->getParent() == Store->getParent())
 | 
						|
      Loads.push_back(&getArrayAccessFor(PossibleLoad0));
 | 
						|
  if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
 | 
						|
    if (PossibleLoad1->getParent() == Store->getParent())
 | 
						|
      Loads.push_back(&getArrayAccessFor(PossibleLoad1));
 | 
						|
}
 | 
						|
 | 
						|
/// Check for reductions in this ScopStmt.
 | 
						|
///
 | 
						|
/// Iterate over all store memory accesses and check for valid binary reduction
 | 
						|
/// like chains. For all candidates we check if they have the same base address
 | 
						|
/// and there are no other accesses which overlap with them. The base address
 | 
						|
/// check rules out impossible reductions candidates early. The overlap check,
 | 
						|
/// together with the "only one user" check in collectCandiateReductionLoads,
 | 
						|
/// guarantees that none of the intermediate results will escape during
 | 
						|
/// execution of the loop nest. We basically check here that no other memory
 | 
						|
/// access can access the same memory as the potential reduction.
 | 
						|
void ScopStmt::checkForReductions() {
 | 
						|
  SmallVector<MemoryAccess *, 2> Loads;
 | 
						|
  SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
 | 
						|
 | 
						|
  // First collect candidate load-store reduction chains by iterating over all
 | 
						|
  // stores and collecting possible reduction loads.
 | 
						|
  for (MemoryAccess *StoreMA : MemAccs) {
 | 
						|
    if (StoreMA->isRead())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Loads.clear();
 | 
						|
    collectCandiateReductionLoads(StoreMA, Loads);
 | 
						|
    for (MemoryAccess *LoadMA : Loads)
 | 
						|
      Candidates.push_back(std::make_pair(LoadMA, StoreMA));
 | 
						|
  }
 | 
						|
 | 
						|
  // Then check each possible candidate pair.
 | 
						|
  for (const auto &CandidatePair : Candidates) {
 | 
						|
    bool Valid = true;
 | 
						|
    isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
 | 
						|
    isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
 | 
						|
 | 
						|
    // Skip those with obviously unequal base addresses.
 | 
						|
    if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
 | 
						|
      isl_map_free(LoadAccs);
 | 
						|
      isl_map_free(StoreAccs);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // And check if the remaining for overlap with other memory accesses.
 | 
						|
    isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
 | 
						|
    AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
 | 
						|
    isl_set *AllAccs = isl_map_range(AllAccsRel);
 | 
						|
 | 
						|
    for (MemoryAccess *MA : MemAccs) {
 | 
						|
      if (MA == CandidatePair.first || MA == CandidatePair.second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      isl_map *AccRel =
 | 
						|
          isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
 | 
						|
      isl_set *Accs = isl_map_range(AccRel);
 | 
						|
 | 
						|
      if (isl_set_has_equal_space(AllAccs, Accs)) {
 | 
						|
        isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
 | 
						|
        Valid = Valid && isl_set_is_empty(OverlapAccs);
 | 
						|
        isl_set_free(OverlapAccs);
 | 
						|
      } else {
 | 
						|
        isl_set_free(Accs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    isl_set_free(AllAccs);
 | 
						|
    if (!Valid)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const LoadInst *Load =
 | 
						|
        dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
 | 
						|
    MemoryAccess::ReductionType RT =
 | 
						|
        getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
 | 
						|
 | 
						|
    // If no overlapping access was found we mark the load and store as
 | 
						|
    // reduction like.
 | 
						|
    CandidatePair.first->markAsReductionLike(RT);
 | 
						|
    CandidatePair.second->markAsReductionLike(RT);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
 | 
						|
 | 
						|
std::string ScopStmt::getScheduleStr() const {
 | 
						|
  auto *S = getSchedule();
 | 
						|
  if (!S)
 | 
						|
    return "";
 | 
						|
  auto Str = stringFromIslObj(S);
 | 
						|
  isl_map_free(S);
 | 
						|
  return Str;
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::setInvalidDomain(__isl_take isl_set *ID) {
 | 
						|
  isl_set_free(InvalidDomain);
 | 
						|
  InvalidDomain = ID;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *ScopStmt::getEntryBlock() const {
 | 
						|
  if (isBlockStmt())
 | 
						|
    return getBasicBlock();
 | 
						|
  return getRegion()->getEntry();
 | 
						|
}
 | 
						|
 | 
						|
unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
 | 
						|
 | 
						|
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
 | 
						|
 | 
						|
Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
 | 
						|
  return NestLoops[Dimension];
 | 
						|
}
 | 
						|
 | 
						|
isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
 | 
						|
 | 
						|
__isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
 | 
						|
 | 
						|
__isl_give isl_space *ScopStmt::getDomainSpace() const {
 | 
						|
  return isl_set_get_space(Domain);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *ScopStmt::getDomainId() const {
 | 
						|
  return isl_set_get_tuple_id(Domain);
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt::~ScopStmt() {
 | 
						|
  isl_set_free(Domain);
 | 
						|
  isl_set_free(InvalidDomain);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::print(raw_ostream &OS) const {
 | 
						|
  OS << "\t" << getBaseName() << "\n";
 | 
						|
  OS.indent(12) << "Domain :=\n";
 | 
						|
 | 
						|
  if (Domain) {
 | 
						|
    OS.indent(16) << getDomainStr() << ";\n";
 | 
						|
  } else
 | 
						|
    OS.indent(16) << "n/a\n";
 | 
						|
 | 
						|
  OS.indent(12) << "Schedule :=\n";
 | 
						|
 | 
						|
  if (Domain) {
 | 
						|
    OS.indent(16) << getScheduleStr() << ";\n";
 | 
						|
  } else
 | 
						|
    OS.indent(16) << "n/a\n";
 | 
						|
 | 
						|
  for (MemoryAccess *Access : MemAccs)
 | 
						|
    Access->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
void ScopStmt::removeMemoryAccess(MemoryAccess *MA) {
 | 
						|
  // Remove the memory accesses from this statement together with all scalar
 | 
						|
  // accesses that were caused by it. MemoryKind::Value READs have no access
 | 
						|
  // instruction, hence would not be removed by this function. However, it is
 | 
						|
  // only used for invariant LoadInst accesses, its arguments are always affine,
 | 
						|
  // hence synthesizable, and therefore there are no MemoryKind::Value READ
 | 
						|
  // accesses to be removed.
 | 
						|
  auto Predicate = [&](MemoryAccess *Acc) {
 | 
						|
    return Acc->getAccessInstruction() == MA->getAccessInstruction();
 | 
						|
  };
 | 
						|
  MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
 | 
						|
                MemAccs.end());
 | 
						|
  InstructionToAccess.erase(MA->getAccessInstruction());
 | 
						|
}
 | 
						|
 | 
						|
void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA) {
 | 
						|
  auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA);
 | 
						|
  assert(MAIt != MemAccs.end());
 | 
						|
  MemAccs.erase(MAIt);
 | 
						|
 | 
						|
  auto It = InstructionToAccess.find(MA->getAccessInstruction());
 | 
						|
  if (It != InstructionToAccess.end()) {
 | 
						|
    It->second.remove(MA);
 | 
						|
    if (It->second.empty())
 | 
						|
      InstructionToAccess.erase(MA->getAccessInstruction());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// Scop class implement
 | 
						|
 | 
						|
void Scop::setContext(__isl_take isl_set *NewContext) {
 | 
						|
  NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
 | 
						|
  isl_set_free(Context);
 | 
						|
  Context = NewContext;
 | 
						|
}
 | 
						|
 | 
						|
/// Remap parameter values but keep AddRecs valid wrt. invariant loads.
 | 
						|
struct SCEVSensitiveParameterRewriter
 | 
						|
    : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> {
 | 
						|
  ValueToValueMap &VMap;
 | 
						|
 | 
						|
public:
 | 
						|
  SCEVSensitiveParameterRewriter(ValueToValueMap &VMap, ScalarEvolution &SE)
 | 
						|
      : SCEVRewriteVisitor(SE), VMap(VMap) {}
 | 
						|
 | 
						|
  static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
 | 
						|
                             ValueToValueMap &VMap) {
 | 
						|
    SCEVSensitiveParameterRewriter SSPR(VMap, SE);
 | 
						|
    return SSPR.visit(E);
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
 | 
						|
    auto *Start = visit(E->getStart());
 | 
						|
    auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
 | 
						|
                                    visit(E->getStepRecurrence(SE)),
 | 
						|
                                    E->getLoop(), SCEV::FlagAnyWrap);
 | 
						|
    return SE.getAddExpr(Start, AddRec);
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *visitUnknown(const SCEVUnknown *E) {
 | 
						|
    if (auto *NewValue = VMap.lookup(E->getValue()))
 | 
						|
      return SE.getUnknown(NewValue);
 | 
						|
    return E;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *S) {
 | 
						|
  return SCEVSensitiveParameterRewriter::rewrite(S, *SE, InvEquivClassVMap);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::createParameterId(const SCEV *Parameter) {
 | 
						|
  assert(Parameters.count(Parameter));
 | 
						|
  assert(!ParameterIds.count(Parameter));
 | 
						|
 | 
						|
  std::string ParameterName = "p_" + std::to_string(getNumParams() - 1);
 | 
						|
 | 
						|
  if (UseInstructionNames) {
 | 
						|
    if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
 | 
						|
      Value *Val = ValueParameter->getValue();
 | 
						|
 | 
						|
      // If this parameter references a specific Value and this value has a name
 | 
						|
      // we use this name as it is likely to be unique and more useful than just
 | 
						|
      // a number.
 | 
						|
      if (Val->hasName())
 | 
						|
        ParameterName = Val->getName();
 | 
						|
      else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
 | 
						|
        auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
 | 
						|
        if (LoadOrigin->hasName()) {
 | 
						|
          ParameterName += "_loaded_from_";
 | 
						|
          ParameterName +=
 | 
						|
              LI->getPointerOperand()->stripInBoundsOffsets()->getName();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ParameterName = getIslCompatibleName("", ParameterName, "");
 | 
						|
  }
 | 
						|
 | 
						|
  auto *Id = isl_id_alloc(getIslCtx(), ParameterName.c_str(),
 | 
						|
                          const_cast<void *>((const void *)Parameter));
 | 
						|
  ParameterIds[Parameter] = Id;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addParams(const ParameterSetTy &NewParameters) {
 | 
						|
  for (const SCEV *Parameter : NewParameters) {
 | 
						|
    // Normalize the SCEV to get the representing element for an invariant load.
 | 
						|
    Parameter = extractConstantFactor(Parameter, *SE).second;
 | 
						|
    Parameter = getRepresentingInvariantLoadSCEV(Parameter);
 | 
						|
 | 
						|
    if (Parameters.insert(Parameter))
 | 
						|
      createParameterId(Parameter);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) {
 | 
						|
  // Normalize the SCEV to get the representing element for an invariant load.
 | 
						|
  Parameter = getRepresentingInvariantLoadSCEV(Parameter);
 | 
						|
  return isl_id_copy(ParameterIds.lookup(Parameter));
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *
 | 
						|
Scop::addNonEmptyDomainConstraints(__isl_take isl_set *C) const {
 | 
						|
  isl_set *DomainContext = isl_union_set_params(getDomains());
 | 
						|
  return isl_set_intersect_params(C, DomainContext);
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const {
 | 
						|
  return DT.dominates(BB, getEntry());
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addUserAssumptions(AssumptionCache &AC, DominatorTree &DT,
 | 
						|
                              LoopInfo &LI) {
 | 
						|
  auto &F = getFunction();
 | 
						|
  for (auto &Assumption : AC.assumptions()) {
 | 
						|
    auto *CI = dyn_cast_or_null<CallInst>(Assumption);
 | 
						|
    if (!CI || CI->getNumArgOperands() != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool InScop = contains(CI);
 | 
						|
    if (!InScop && !isDominatedBy(DT, CI->getParent()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *L = LI.getLoopFor(CI->getParent());
 | 
						|
    auto *Val = CI->getArgOperand(0);
 | 
						|
    ParameterSetTy DetectedParams;
 | 
						|
    if (!isAffineConstraint(Val, &R, L, *SE, DetectedParams)) {
 | 
						|
      emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE, F,
 | 
						|
                                     CI->getDebugLoc(),
 | 
						|
                                     "Non-affine user assumption ignored.");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Collect all newly introduced parameters.
 | 
						|
    ParameterSetTy NewParams;
 | 
						|
    for (auto *Param : DetectedParams) {
 | 
						|
      Param = extractConstantFactor(Param, *SE).second;
 | 
						|
      Param = getRepresentingInvariantLoadSCEV(Param);
 | 
						|
      if (Parameters.count(Param))
 | 
						|
        continue;
 | 
						|
      NewParams.insert(Param);
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<isl_set *, 2> ConditionSets;
 | 
						|
    auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
 | 
						|
    auto &Stmt = InScop ? *getStmtFor(CI->getParent()) : *Stmts.begin();
 | 
						|
    auto *Dom = InScop ? getDomainConditions(&Stmt) : isl_set_copy(Context);
 | 
						|
    bool Valid = buildConditionSets(Stmt, Val, TI, L, Dom, ConditionSets);
 | 
						|
    isl_set_free(Dom);
 | 
						|
 | 
						|
    if (!Valid)
 | 
						|
      continue;
 | 
						|
 | 
						|
    isl_set *AssumptionCtx = nullptr;
 | 
						|
    if (InScop) {
 | 
						|
      AssumptionCtx = isl_set_complement(isl_set_params(ConditionSets[1]));
 | 
						|
      isl_set_free(ConditionSets[0]);
 | 
						|
    } else {
 | 
						|
      AssumptionCtx = isl_set_complement(ConditionSets[1]);
 | 
						|
      AssumptionCtx = isl_set_intersect(AssumptionCtx, ConditionSets[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Project out newly introduced parameters as they are not otherwise useful.
 | 
						|
    if (!NewParams.empty()) {
 | 
						|
      for (unsigned u = 0; u < isl_set_n_param(AssumptionCtx); u++) {
 | 
						|
        auto *Id = isl_set_get_dim_id(AssumptionCtx, isl_dim_param, u);
 | 
						|
        auto *Param = static_cast<const SCEV *>(isl_id_get_user(Id));
 | 
						|
        isl_id_free(Id);
 | 
						|
 | 
						|
        if (!NewParams.count(Param))
 | 
						|
          continue;
 | 
						|
 | 
						|
        AssumptionCtx =
 | 
						|
            isl_set_project_out(AssumptionCtx, isl_dim_param, u--, 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    emitOptimizationRemarkAnalysis(
 | 
						|
        F.getContext(), DEBUG_TYPE, F, CI->getDebugLoc(),
 | 
						|
        "Use user assumption: " + stringFromIslObj(AssumptionCtx));
 | 
						|
    Context = isl_set_intersect(Context, AssumptionCtx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addUserContext() {
 | 
						|
  if (UserContextStr.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  isl_set *UserContext =
 | 
						|
      isl_set_read_from_str(getIslCtx(), UserContextStr.c_str());
 | 
						|
  isl_space *Space = getParamSpace();
 | 
						|
  if (isl_space_dim(Space, isl_dim_param) !=
 | 
						|
      isl_set_dim(UserContext, isl_dim_param)) {
 | 
						|
    auto SpaceStr = isl_space_to_str(Space);
 | 
						|
    errs() << "Error: the context provided in -polly-context has not the same "
 | 
						|
           << "number of dimensions than the computed context. Due to this "
 | 
						|
           << "mismatch, the -polly-context option is ignored. Please provide "
 | 
						|
           << "the context in the parameter space: " << SpaceStr << ".\n";
 | 
						|
    free(SpaceStr);
 | 
						|
    isl_set_free(UserContext);
 | 
						|
    isl_space_free(Space);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
 | 
						|
    auto *NameContext = isl_set_get_dim_name(Context, isl_dim_param, i);
 | 
						|
    auto *NameUserContext = isl_set_get_dim_name(UserContext, isl_dim_param, i);
 | 
						|
 | 
						|
    if (strcmp(NameContext, NameUserContext) != 0) {
 | 
						|
      auto SpaceStr = isl_space_to_str(Space);
 | 
						|
      errs() << "Error: the name of dimension " << i
 | 
						|
             << " provided in -polly-context "
 | 
						|
             << "is '" << NameUserContext << "', but the name in the computed "
 | 
						|
             << "context is '" << NameContext
 | 
						|
             << "'. Due to this name mismatch, "
 | 
						|
             << "the -polly-context option is ignored. Please provide "
 | 
						|
             << "the context in the parameter space: " << SpaceStr << ".\n";
 | 
						|
      free(SpaceStr);
 | 
						|
      isl_set_free(UserContext);
 | 
						|
      isl_space_free(Space);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    UserContext =
 | 
						|
        isl_set_set_dim_id(UserContext, isl_dim_param, i,
 | 
						|
                           isl_space_get_dim_id(Space, isl_dim_param, i));
 | 
						|
  }
 | 
						|
 | 
						|
  Context = isl_set_intersect(Context, UserContext);
 | 
						|
  isl_space_free(Space);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::buildInvariantEquivalenceClasses() {
 | 
						|
  DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;
 | 
						|
 | 
						|
  const InvariantLoadsSetTy &RIL = getRequiredInvariantLoads();
 | 
						|
  for (LoadInst *LInst : RIL) {
 | 
						|
    const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
 | 
						|
 | 
						|
    Type *Ty = LInst->getType();
 | 
						|
    LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)];
 | 
						|
    if (ClassRep) {
 | 
						|
      InvEquivClassVMap[LInst] = ClassRep;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ClassRep = LInst;
 | 
						|
    InvariantEquivClasses.emplace_back(
 | 
						|
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), nullptr, Ty});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::buildContext() {
 | 
						|
  isl_space *Space = isl_space_params_alloc(getIslCtx(), 0);
 | 
						|
  Context = isl_set_universe(isl_space_copy(Space));
 | 
						|
  InvalidContext = isl_set_empty(isl_space_copy(Space));
 | 
						|
  AssumedContext = isl_set_universe(Space);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addParameterBounds() {
 | 
						|
  unsigned PDim = 0;
 | 
						|
  for (auto *Parameter : Parameters) {
 | 
						|
    ConstantRange SRange = SE->getSignedRange(Parameter);
 | 
						|
    Context = addRangeBoundsToSet(Context, SRange, PDim++, isl_dim_param);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::realignParams() {
 | 
						|
  if (PollyIgnoreParamBounds)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add all parameters into a common model.
 | 
						|
  isl_space *Space = isl_space_params_alloc(getIslCtx(), ParameterIds.size());
 | 
						|
 | 
						|
  unsigned PDim = 0;
 | 
						|
  for (const auto *Parameter : Parameters) {
 | 
						|
    isl_id *id = getIdForParam(Parameter);
 | 
						|
    Space = isl_space_set_dim_id(Space, isl_dim_param, PDim++, id);
 | 
						|
  }
 | 
						|
 | 
						|
  // Align the parameters of all data structures to the model.
 | 
						|
  Context = isl_set_align_params(Context, Space);
 | 
						|
 | 
						|
  // As all parameters are known add bounds to them.
 | 
						|
  addParameterBounds();
 | 
						|
 | 
						|
  for (ScopStmt &Stmt : *this)
 | 
						|
    Stmt.realignParams();
 | 
						|
 | 
						|
  // Simplify the schedule according to the context too.
 | 
						|
  Schedule = isl_schedule_gist_domain_params(Schedule, getContext());
 | 
						|
}
 | 
						|
 | 
						|
static __isl_give isl_set *
 | 
						|
simplifyAssumptionContext(__isl_take isl_set *AssumptionContext,
 | 
						|
                          const Scop &S) {
 | 
						|
  // If we have modeled all blocks in the SCoP that have side effects we can
 | 
						|
  // simplify the context with the constraints that are needed for anything to
 | 
						|
  // be executed at all. However, if we have error blocks in the SCoP we already
 | 
						|
  // assumed some parameter combinations cannot occur and removed them from the
 | 
						|
  // domains, thus we cannot use the remaining domain to simplify the
 | 
						|
  // assumptions.
 | 
						|
  if (!S.hasErrorBlock()) {
 | 
						|
    isl_set *DomainParameters = isl_union_set_params(S.getDomains());
 | 
						|
    AssumptionContext =
 | 
						|
        isl_set_gist_params(AssumptionContext, DomainParameters);
 | 
						|
  }
 | 
						|
 | 
						|
  AssumptionContext = isl_set_gist_params(AssumptionContext, S.getContext());
 | 
						|
  return AssumptionContext;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::simplifyContexts() {
 | 
						|
  // The parameter constraints of the iteration domains give us a set of
 | 
						|
  // constraints that need to hold for all cases where at least a single
 | 
						|
  // statement iteration is executed in the whole scop. We now simplify the
 | 
						|
  // assumed context under the assumption that such constraints hold and at
 | 
						|
  // least a single statement iteration is executed. For cases where no
 | 
						|
  // statement instances are executed, the assumptions we have taken about
 | 
						|
  // the executed code do not matter and can be changed.
 | 
						|
  //
 | 
						|
  // WARNING: This only holds if the assumptions we have taken do not reduce
 | 
						|
  //          the set of statement instances that are executed. Otherwise we
 | 
						|
  //          may run into a case where the iteration domains suggest that
 | 
						|
  //          for a certain set of parameter constraints no code is executed,
 | 
						|
  //          but in the original program some computation would have been
 | 
						|
  //          performed. In such a case, modifying the run-time conditions and
 | 
						|
  //          possibly influencing the run-time check may cause certain scops
 | 
						|
  //          to not be executed.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   When delinearizing the following code:
 | 
						|
  //
 | 
						|
  //     for (long i = 0; i < 100; i++)
 | 
						|
  //       for (long j = 0; j < m; j++)
 | 
						|
  //         A[i+p][j] = 1.0;
 | 
						|
  //
 | 
						|
  //   we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
 | 
						|
  //   otherwise we would access out of bound data. Now, knowing that code is
 | 
						|
  //   only executed for the case m >= 0, it is sufficient to assume p >= 0.
 | 
						|
  AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
 | 
						|
  InvalidContext = isl_set_align_params(InvalidContext, getParamSpace());
 | 
						|
}
 | 
						|
 | 
						|
/// Add the minimal/maximal access in @p Set to @p User.
 | 
						|
static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
 | 
						|
  Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
 | 
						|
  isl_pw_multi_aff *MinPMA, *MaxPMA;
 | 
						|
  isl_pw_aff *LastDimAff;
 | 
						|
  isl_aff *OneAff;
 | 
						|
  unsigned Pos;
 | 
						|
 | 
						|
  Set = isl_set_remove_divs(Set);
 | 
						|
 | 
						|
  if (isl_set_n_basic_set(Set) >= MaxDisjunctsInDomain) {
 | 
						|
    isl_set_free(Set);
 | 
						|
    return isl_stat_error;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restrict the number of parameters involved in the access as the lexmin/
 | 
						|
  // lexmax computation will take too long if this number is high.
 | 
						|
  //
 | 
						|
  // Experiments with a simple test case using an i7 4800MQ:
 | 
						|
  //
 | 
						|
  //  #Parameters involved | Time (in sec)
 | 
						|
  //            6          |     0.01
 | 
						|
  //            7          |     0.04
 | 
						|
  //            8          |     0.12
 | 
						|
  //            9          |     0.40
 | 
						|
  //           10          |     1.54
 | 
						|
  //           11          |     6.78
 | 
						|
  //           12          |    30.38
 | 
						|
  //
 | 
						|
  if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
 | 
						|
    unsigned InvolvedParams = 0;
 | 
						|
    for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
 | 
						|
      if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
 | 
						|
        InvolvedParams++;
 | 
						|
 | 
						|
    if (InvolvedParams > RunTimeChecksMaxParameters) {
 | 
						|
      isl_set_free(Set);
 | 
						|
      return isl_stat_error;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
 | 
						|
  MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
 | 
						|
 | 
						|
  MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
 | 
						|
  MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
 | 
						|
 | 
						|
  // Adjust the last dimension of the maximal access by one as we want to
 | 
						|
  // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
 | 
						|
  // we test during code generation might now point after the end of the
 | 
						|
  // allocated array but we will never dereference it anyway.
 | 
						|
  assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&
 | 
						|
         "Assumed at least one output dimension");
 | 
						|
  Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
 | 
						|
  LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
 | 
						|
  OneAff = isl_aff_zero_on_domain(
 | 
						|
      isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
 | 
						|
  OneAff = isl_aff_add_constant_si(OneAff, 1);
 | 
						|
  LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
 | 
						|
  MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
 | 
						|
 | 
						|
  MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
 | 
						|
 | 
						|
  isl_set_free(Set);
 | 
						|
  return isl_stat_ok;
 | 
						|
}
 | 
						|
 | 
						|
static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
 | 
						|
  isl_set *Domain = MA->getStatement()->getDomain();
 | 
						|
  Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
 | 
						|
  return isl_set_reset_tuple_id(Domain);
 | 
						|
}
 | 
						|
 | 
						|
/// Wrapper function to calculate minimal/maximal accesses to each array.
 | 
						|
static bool calculateMinMaxAccess(Scop::AliasGroupTy AliasGroup, Scop &S,
 | 
						|
                                  Scop::MinMaxVectorTy &MinMaxAccesses) {
 | 
						|
 | 
						|
  MinMaxAccesses.reserve(AliasGroup.size());
 | 
						|
 | 
						|
  isl_union_set *Domains = S.getDomains();
 | 
						|
  isl_union_map *Accesses = isl_union_map_empty(S.getParamSpace());
 | 
						|
 | 
						|
  for (MemoryAccess *MA : AliasGroup)
 | 
						|
    Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
 | 
						|
 | 
						|
  Accesses = isl_union_map_intersect_domain(Accesses, Domains);
 | 
						|
  isl_union_set *Locations = isl_union_map_range(Accesses);
 | 
						|
  Locations = isl_union_set_coalesce(Locations);
 | 
						|
  Locations = isl_union_set_detect_equalities(Locations);
 | 
						|
  bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
 | 
						|
                                               &MinMaxAccesses));
 | 
						|
  isl_union_set_free(Locations);
 | 
						|
  return Valid;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper to treat non-affine regions and basic blocks the same.
 | 
						|
///
 | 
						|
///{
 | 
						|
 | 
						|
/// Return the block that is the representing block for @p RN.
 | 
						|
static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
 | 
						|
  return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
 | 
						|
                           : RN->getNodeAs<BasicBlock>();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the @p idx'th block that is executed after @p RN.
 | 
						|
static inline BasicBlock *
 | 
						|
getRegionNodeSuccessor(RegionNode *RN, TerminatorInst *TI, unsigned idx) {
 | 
						|
  if (RN->isSubRegion()) {
 | 
						|
    assert(idx == 0);
 | 
						|
    return RN->getNodeAs<Region>()->getExit();
 | 
						|
  }
 | 
						|
  return TI->getSuccessor(idx);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the smallest loop surrounding @p RN.
 | 
						|
static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
 | 
						|
  if (!RN->isSubRegion()) {
 | 
						|
    BasicBlock *BB = RN->getNodeAs<BasicBlock>();
 | 
						|
    Loop *L = LI.getLoopFor(BB);
 | 
						|
 | 
						|
    // Unreachable statements are not considered to belong to a LLVM loop, as
 | 
						|
    // they are not part of an actual loop in the control flow graph.
 | 
						|
    // Nevertheless, we handle certain unreachable statements that are common
 | 
						|
    // when modeling run-time bounds checks as being part of the loop to be
 | 
						|
    // able to model them and to later eliminate the run-time bounds checks.
 | 
						|
    //
 | 
						|
    // Specifically, for basic blocks that terminate in an unreachable and
 | 
						|
    // where the immeditate predecessor is part of a loop, we assume these
 | 
						|
    // basic blocks belong to the loop the predecessor belongs to. This
 | 
						|
    // allows us to model the following code.
 | 
						|
    //
 | 
						|
    // for (i = 0; i < N; i++) {
 | 
						|
    //   if (i > 1024)
 | 
						|
    //     abort();            <- this abort might be translated to an
 | 
						|
    //                            unreachable
 | 
						|
    //
 | 
						|
    //   A[i] = ...
 | 
						|
    // }
 | 
						|
    if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
 | 
						|
      L = LI.getLoopFor(BB->getPrevNode());
 | 
						|
    return L;
 | 
						|
  }
 | 
						|
 | 
						|
  Region *NonAffineSubRegion = RN->getNodeAs<Region>();
 | 
						|
  Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
 | 
						|
  while (L && NonAffineSubRegion->contains(L))
 | 
						|
    L = L->getParentLoop();
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the number of blocks in @p L.
 | 
						|
///
 | 
						|
/// The number of blocks in a loop are the number of basic blocks actually
 | 
						|
/// belonging to the loop, as well as all single basic blocks that the loop
 | 
						|
/// exits to and which terminate in an unreachable instruction. We do not
 | 
						|
/// allow such basic blocks in the exit of a scop, hence they belong to the
 | 
						|
/// scop and represent run-time conditions which we want to model and
 | 
						|
/// subsequently speculate away.
 | 
						|
///
 | 
						|
/// @see getRegionNodeLoop for additional details.
 | 
						|
long getNumBlocksInLoop(Loop *L) {
 | 
						|
  long NumBlocks = L->getNumBlocks();
 | 
						|
  SmallVector<llvm::BasicBlock *, 4> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  for (auto ExitBlock : ExitBlocks) {
 | 
						|
    if (isa<UnreachableInst>(ExitBlock->getTerminator()))
 | 
						|
      NumBlocks++;
 | 
						|
  }
 | 
						|
  return NumBlocks;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) {
 | 
						|
  if (!RN->isSubRegion())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  Region *R = RN->getNodeAs<Region>();
 | 
						|
  return std::distance(R->block_begin(), R->block_end());
 | 
						|
}
 | 
						|
 | 
						|
static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
 | 
						|
                               const DominatorTree &DT) {
 | 
						|
  if (!RN->isSubRegion())
 | 
						|
    return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
 | 
						|
  for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
 | 
						|
    if (isErrorBlock(*BB, R, LI, DT))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
///}
 | 
						|
 | 
						|
static inline __isl_give isl_set *addDomainDimId(__isl_take isl_set *Domain,
 | 
						|
                                                 unsigned Dim, Loop *L) {
 | 
						|
  Domain = isl_set_lower_bound_si(Domain, isl_dim_set, Dim, -1);
 | 
						|
  isl_id *DimId =
 | 
						|
      isl_id_alloc(isl_set_get_ctx(Domain), nullptr, static_cast<void *>(L));
 | 
						|
  return isl_set_set_dim_id(Domain, isl_dim_set, Dim, DimId);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getDomainConditions(const ScopStmt *Stmt) const {
 | 
						|
  return getDomainConditions(Stmt->getEntryBlock());
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getDomainConditions(BasicBlock *BB) const {
 | 
						|
  auto DIt = DomainMap.find(BB);
 | 
						|
  if (DIt != DomainMap.end())
 | 
						|
    return isl_set_copy(DIt->getSecond());
 | 
						|
 | 
						|
  auto &RI = *R.getRegionInfo();
 | 
						|
  auto *BBR = RI.getRegionFor(BB);
 | 
						|
  while (BBR->getEntry() == BB)
 | 
						|
    BBR = BBR->getParent();
 | 
						|
  return getDomainConditions(BBR->getEntry());
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI) {
 | 
						|
 | 
						|
  bool IsOnlyNonAffineRegion = isNonAffineSubRegion(R);
 | 
						|
  auto *EntryBB = R->getEntry();
 | 
						|
  auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(EntryBB);
 | 
						|
  int LD = getRelativeLoopDepth(L);
 | 
						|
  auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx(), 0, LD + 1));
 | 
						|
 | 
						|
  while (LD-- >= 0) {
 | 
						|
    S = addDomainDimId(S, LD + 1, L);
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the invalid domain.
 | 
						|
  auto *EntryStmt = getStmtFor(EntryBB);
 | 
						|
  EntryStmt->setInvalidDomain(isl_set_empty(isl_set_get_space(S)));
 | 
						|
 | 
						|
  DomainMap[EntryBB] = S;
 | 
						|
 | 
						|
  if (IsOnlyNonAffineRegion)
 | 
						|
    return !containsErrorBlock(R->getNode(), *R, LI, DT);
 | 
						|
 | 
						|
  if (!buildDomainsWithBranchConstraints(R, DT, LI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!propagateDomainConstraints(R, DT, LI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Error blocks and blocks dominated by them have been assumed to never be
 | 
						|
  // executed. Representing them in the Scop does not add any value. In fact,
 | 
						|
  // it is likely to cause issues during construction of the ScopStmts. The
 | 
						|
  // contents of error blocks have not been verified to be expressible and
 | 
						|
  // will cause problems when building up a ScopStmt for them.
 | 
						|
  // Furthermore, basic blocks dominated by error blocks may reference
 | 
						|
  // instructions in the error block which, if the error block is not modeled,
 | 
						|
  // can themselves not be constructed properly. To this end we will replace
 | 
						|
  // the domains of error blocks and those only reachable via error blocks
 | 
						|
  // with an empty set. Additionally, we will record for each block under which
 | 
						|
  // parameter combination it would be reached via an error block in its
 | 
						|
  // InvalidDomain. This information is needed during load hoisting.
 | 
						|
  if (!propagateInvalidStmtDomains(R, DT, LI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Adjust the dimensions of @p Dom that was constructed for @p OldL
 | 
						|
///        to be compatible to domains constructed for loop @p NewL.
 | 
						|
///
 | 
						|
/// This function assumes @p NewL and @p OldL are equal or there is a CFG
 | 
						|
/// edge from @p OldL to @p NewL.
 | 
						|
static __isl_give isl_set *adjustDomainDimensions(Scop &S,
 | 
						|
                                                  __isl_take isl_set *Dom,
 | 
						|
                                                  Loop *OldL, Loop *NewL) {
 | 
						|
 | 
						|
  // If the loops are the same there is nothing to do.
 | 
						|
  if (NewL == OldL)
 | 
						|
    return Dom;
 | 
						|
 | 
						|
  int OldDepth = S.getRelativeLoopDepth(OldL);
 | 
						|
  int NewDepth = S.getRelativeLoopDepth(NewL);
 | 
						|
  // If both loops are non-affine loops there is nothing to do.
 | 
						|
  if (OldDepth == -1 && NewDepth == -1)
 | 
						|
    return Dom;
 | 
						|
 | 
						|
  // Distinguish three cases:
 | 
						|
  //   1) The depth is the same but the loops are not.
 | 
						|
  //      => One loop was left one was entered.
 | 
						|
  //   2) The depth increased from OldL to NewL.
 | 
						|
  //      => One loop was entered, none was left.
 | 
						|
  //   3) The depth decreased from OldL to NewL.
 | 
						|
  //      => Loops were left were difference of the depths defines how many.
 | 
						|
  if (OldDepth == NewDepth) {
 | 
						|
    assert(OldL->getParentLoop() == NewL->getParentLoop());
 | 
						|
    Dom = isl_set_project_out(Dom, isl_dim_set, NewDepth, 1);
 | 
						|
    Dom = isl_set_add_dims(Dom, isl_dim_set, 1);
 | 
						|
    Dom = addDomainDimId(Dom, NewDepth, NewL);
 | 
						|
  } else if (OldDepth < NewDepth) {
 | 
						|
    assert(OldDepth + 1 == NewDepth);
 | 
						|
    auto &R = S.getRegion();
 | 
						|
    (void)R;
 | 
						|
    assert(NewL->getParentLoop() == OldL ||
 | 
						|
           ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
 | 
						|
    Dom = isl_set_add_dims(Dom, isl_dim_set, 1);
 | 
						|
    Dom = addDomainDimId(Dom, NewDepth, NewL);
 | 
						|
  } else {
 | 
						|
    assert(OldDepth > NewDepth);
 | 
						|
    int Diff = OldDepth - NewDepth;
 | 
						|
    int NumDim = isl_set_n_dim(Dom);
 | 
						|
    assert(NumDim >= Diff);
 | 
						|
    Dom = isl_set_project_out(Dom, isl_dim_set, NumDim - Diff, Diff);
 | 
						|
  }
 | 
						|
 | 
						|
  return Dom;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::propagateInvalidStmtDomains(Region *R, DominatorTree &DT,
 | 
						|
                                       LoopInfo &LI) {
 | 
						|
  ReversePostOrderTraversal<Region *> RTraversal(R);
 | 
						|
  for (auto *RN : RTraversal) {
 | 
						|
 | 
						|
    // Recurse for affine subregions but go on for basic blocks and non-affine
 | 
						|
    // subregions.
 | 
						|
    if (RN->isSubRegion()) {
 | 
						|
      Region *SubRegion = RN->getNodeAs<Region>();
 | 
						|
      if (!isNonAffineSubRegion(SubRegion)) {
 | 
						|
        propagateInvalidStmtDomains(SubRegion, DT, LI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool ContainsErrorBlock = containsErrorBlock(RN, getRegion(), LI, DT);
 | 
						|
    BasicBlock *BB = getRegionNodeBasicBlock(RN);
 | 
						|
    ScopStmt *Stmt = getStmtFor(BB);
 | 
						|
    isl_set *&Domain = DomainMap[BB];
 | 
						|
    assert(Domain && "Cannot propagate a nullptr");
 | 
						|
 | 
						|
    auto *InvalidDomain = Stmt->getInvalidDomain();
 | 
						|
    bool IsInvalidBlock =
 | 
						|
        ContainsErrorBlock || isl_set_is_subset(Domain, InvalidDomain);
 | 
						|
 | 
						|
    if (!IsInvalidBlock) {
 | 
						|
      InvalidDomain = isl_set_intersect(InvalidDomain, isl_set_copy(Domain));
 | 
						|
    } else {
 | 
						|
      isl_set_free(InvalidDomain);
 | 
						|
      InvalidDomain = Domain;
 | 
						|
      isl_set *DomPar = isl_set_params(isl_set_copy(Domain));
 | 
						|
      recordAssumption(ERRORBLOCK, DomPar, BB->getTerminator()->getDebugLoc(),
 | 
						|
                       AS_RESTRICTION);
 | 
						|
      Domain = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isl_set_is_empty(InvalidDomain)) {
 | 
						|
      Stmt->setInvalidDomain(InvalidDomain);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *BBLoop = getRegionNodeLoop(RN, LI);
 | 
						|
    auto *TI = BB->getTerminator();
 | 
						|
    unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
 | 
						|
    for (unsigned u = 0; u < NumSuccs; u++) {
 | 
						|
      auto *SuccBB = getRegionNodeSuccessor(RN, TI, u);
 | 
						|
      auto *SuccStmt = getStmtFor(SuccBB);
 | 
						|
 | 
						|
      // Skip successors outside the SCoP.
 | 
						|
      if (!SuccStmt)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Skip backedges.
 | 
						|
      if (DT.dominates(SuccBB, BB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto *SuccBBLoop = SuccStmt->getSurroundingLoop();
 | 
						|
      auto *AdjustedInvalidDomain = adjustDomainDimensions(
 | 
						|
          *this, isl_set_copy(InvalidDomain), BBLoop, SuccBBLoop);
 | 
						|
      auto *SuccInvalidDomain = SuccStmt->getInvalidDomain();
 | 
						|
      SuccInvalidDomain =
 | 
						|
          isl_set_union(SuccInvalidDomain, AdjustedInvalidDomain);
 | 
						|
      SuccInvalidDomain = isl_set_coalesce(SuccInvalidDomain);
 | 
						|
      unsigned NumConjucts = isl_set_n_basic_set(SuccInvalidDomain);
 | 
						|
      SuccStmt->setInvalidDomain(SuccInvalidDomain);
 | 
						|
 | 
						|
      // Check if the maximal number of domain disjunctions was reached.
 | 
						|
      // In case this happens we will bail.
 | 
						|
      if (NumConjucts < MaxDisjunctsInDomain)
 | 
						|
        continue;
 | 
						|
 | 
						|
      isl_set_free(InvalidDomain);
 | 
						|
      invalidate(COMPLEXITY, TI->getDebugLoc());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Stmt->setInvalidDomain(InvalidDomain);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::propagateDomainConstraintsToRegionExit(
 | 
						|
    BasicBlock *BB, Loop *BBLoop,
 | 
						|
    SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI) {
 | 
						|
 | 
						|
  // Check if the block @p BB is the entry of a region. If so we propagate it's
 | 
						|
  // domain to the exit block of the region. Otherwise we are done.
 | 
						|
  auto *RI = R.getRegionInfo();
 | 
						|
  auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
 | 
						|
  auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
 | 
						|
  if (!BBReg || BBReg->getEntry() != BB || !contains(ExitBB))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do not propagate the domain if there is a loop backedge inside the region
 | 
						|
  // that would prevent the exit block from being executed.
 | 
						|
  auto *L = BBLoop;
 | 
						|
  while (L && contains(L)) {
 | 
						|
    SmallVector<BasicBlock *, 4> LatchBBs;
 | 
						|
    BBLoop->getLoopLatches(LatchBBs);
 | 
						|
    for (auto *LatchBB : LatchBBs)
 | 
						|
      if (BB != LatchBB && BBReg->contains(LatchBB))
 | 
						|
        return;
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
 | 
						|
  auto *Domain = DomainMap[BB];
 | 
						|
  assert(Domain && "Cannot propagate a nullptr");
 | 
						|
 | 
						|
  auto *ExitStmt = getStmtFor(ExitBB);
 | 
						|
  auto *ExitBBLoop = ExitStmt->getSurroundingLoop();
 | 
						|
 | 
						|
  // Since the dimensions of @p BB and @p ExitBB might be different we have to
 | 
						|
  // adjust the domain before we can propagate it.
 | 
						|
  auto *AdjustedDomain =
 | 
						|
      adjustDomainDimensions(*this, isl_set_copy(Domain), BBLoop, ExitBBLoop);
 | 
						|
  auto *&ExitDomain = DomainMap[ExitBB];
 | 
						|
 | 
						|
  // If the exit domain is not yet created we set it otherwise we "add" the
 | 
						|
  // current domain.
 | 
						|
  ExitDomain =
 | 
						|
      ExitDomain ? isl_set_union(AdjustedDomain, ExitDomain) : AdjustedDomain;
 | 
						|
 | 
						|
  // Initialize the invalid domain.
 | 
						|
  ExitStmt->setInvalidDomain(isl_set_empty(isl_set_get_space(ExitDomain)));
 | 
						|
 | 
						|
  FinishedExitBlocks.insert(ExitBB);
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::buildDomainsWithBranchConstraints(Region *R, DominatorTree &DT,
 | 
						|
                                             LoopInfo &LI) {
 | 
						|
  // To create the domain for each block in R we iterate over all blocks and
 | 
						|
  // subregions in R and propagate the conditions under which the current region
 | 
						|
  // element is executed. To this end we iterate in reverse post order over R as
 | 
						|
  // it ensures that we first visit all predecessors of a region node (either a
 | 
						|
  // basic block or a subregion) before we visit the region node itself.
 | 
						|
  // Initially, only the domain for the SCoP region entry block is set and from
 | 
						|
  // there we propagate the current domain to all successors, however we add the
 | 
						|
  // condition that the successor is actually executed next.
 | 
						|
  // As we are only interested in non-loop carried constraints here we can
 | 
						|
  // simply skip loop back edges.
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
 | 
						|
  ReversePostOrderTraversal<Region *> RTraversal(R);
 | 
						|
  for (auto *RN : RTraversal) {
 | 
						|
 | 
						|
    // Recurse for affine subregions but go on for basic blocks and non-affine
 | 
						|
    // subregions.
 | 
						|
    if (RN->isSubRegion()) {
 | 
						|
      Region *SubRegion = RN->getNodeAs<Region>();
 | 
						|
      if (!isNonAffineSubRegion(SubRegion)) {
 | 
						|
        if (!buildDomainsWithBranchConstraints(SubRegion, DT, LI))
 | 
						|
          return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (containsErrorBlock(RN, getRegion(), LI, DT))
 | 
						|
      HasErrorBlock = true;
 | 
						|
 | 
						|
    BasicBlock *BB = getRegionNodeBasicBlock(RN);
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
 | 
						|
    if (isa<UnreachableInst>(TI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    isl_set *Domain = DomainMap.lookup(BB);
 | 
						|
    if (!Domain)
 | 
						|
      continue;
 | 
						|
    MaxLoopDepth = std::max(MaxLoopDepth, isl_set_n_dim(Domain));
 | 
						|
 | 
						|
    auto *BBLoop = getRegionNodeLoop(RN, LI);
 | 
						|
    // Propagate the domain from BB directly to blocks that have a superset
 | 
						|
    // domain, at the moment only region exit nodes of regions that start in BB.
 | 
						|
    propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks, LI);
 | 
						|
 | 
						|
    // If all successors of BB have been set a domain through the propagation
 | 
						|
    // above we do not need to build condition sets but can just skip this
 | 
						|
    // block. However, it is important to note that this is a local property
 | 
						|
    // with regards to the region @p R. To this end FinishedExitBlocks is a
 | 
						|
    // local variable.
 | 
						|
    auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
 | 
						|
      return FinishedExitBlocks.count(SuccBB);
 | 
						|
    };
 | 
						|
    if (std::all_of(succ_begin(BB), succ_end(BB), IsFinishedRegionExit))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Build the condition sets for the successor nodes of the current region
 | 
						|
    // node. If it is a non-affine subregion we will always execute the single
 | 
						|
    // exit node, hence the single entry node domain is the condition set. For
 | 
						|
    // basic blocks we use the helper function buildConditionSets.
 | 
						|
    SmallVector<isl_set *, 8> ConditionSets;
 | 
						|
    if (RN->isSubRegion())
 | 
						|
      ConditionSets.push_back(isl_set_copy(Domain));
 | 
						|
    else if (!buildConditionSets(*getStmtFor(BB), TI, BBLoop, Domain,
 | 
						|
                                 ConditionSets))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Now iterate over the successors and set their initial domain based on
 | 
						|
    // their condition set. We skip back edges here and have to be careful when
 | 
						|
    // we leave a loop not to keep constraints over a dimension that doesn't
 | 
						|
    // exist anymore.
 | 
						|
    assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
 | 
						|
    for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
 | 
						|
      isl_set *CondSet = ConditionSets[u];
 | 
						|
      BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
 | 
						|
 | 
						|
      auto *SuccStmt = getStmtFor(SuccBB);
 | 
						|
      // Skip blocks outside the region.
 | 
						|
      if (!SuccStmt) {
 | 
						|
        isl_set_free(CondSet);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we propagate the domain of some block to "SuccBB" we do not have to
 | 
						|
      // adjust the domain.
 | 
						|
      if (FinishedExitBlocks.count(SuccBB)) {
 | 
						|
        isl_set_free(CondSet);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Skip back edges.
 | 
						|
      if (DT.dominates(SuccBB, BB)) {
 | 
						|
        isl_set_free(CondSet);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto *SuccBBLoop = SuccStmt->getSurroundingLoop();
 | 
						|
      CondSet = adjustDomainDimensions(*this, CondSet, BBLoop, SuccBBLoop);
 | 
						|
 | 
						|
      // Set the domain for the successor or merge it with an existing domain in
 | 
						|
      // case there are multiple paths (without loop back edges) to the
 | 
						|
      // successor block.
 | 
						|
      isl_set *&SuccDomain = DomainMap[SuccBB];
 | 
						|
 | 
						|
      if (SuccDomain) {
 | 
						|
        SuccDomain = isl_set_coalesce(isl_set_union(SuccDomain, CondSet));
 | 
						|
      } else {
 | 
						|
        // Initialize the invalid domain.
 | 
						|
        SuccStmt->setInvalidDomain(isl_set_empty(isl_set_get_space(CondSet)));
 | 
						|
        SuccDomain = CondSet;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if the maximal number of domain disjunctions was reached.
 | 
						|
      // In case this happens we will clean up and bail.
 | 
						|
      if (isl_set_n_basic_set(SuccDomain) < MaxDisjunctsInDomain)
 | 
						|
        continue;
 | 
						|
 | 
						|
      invalidate(COMPLEXITY, DebugLoc());
 | 
						|
      while (++u < ConditionSets.size())
 | 
						|
        isl_set_free(ConditionSets[u]);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *
 | 
						|
Scop::getPredecessorDomainConstraints(BasicBlock *BB,
 | 
						|
                                      __isl_keep isl_set *Domain,
 | 
						|
                                      DominatorTree &DT, LoopInfo &LI) {
 | 
						|
  // If @p BB is the ScopEntry we are done
 | 
						|
  if (R.getEntry() == BB)
 | 
						|
    return isl_set_universe(isl_set_get_space(Domain));
 | 
						|
 | 
						|
  // The region info of this function.
 | 
						|
  auto &RI = *R.getRegionInfo();
 | 
						|
 | 
						|
  auto *BBLoop = getStmtFor(BB)->getSurroundingLoop();
 | 
						|
 | 
						|
  // A domain to collect all predecessor domains, thus all conditions under
 | 
						|
  // which the block is executed. To this end we start with the empty domain.
 | 
						|
  isl_set *PredDom = isl_set_empty(isl_set_get_space(Domain));
 | 
						|
 | 
						|
  // Set of regions of which the entry block domain has been propagated to BB.
 | 
						|
  // all predecessors inside any of the regions can be skipped.
 | 
						|
  SmallSet<Region *, 8> PropagatedRegions;
 | 
						|
 | 
						|
  for (auto *PredBB : predecessors(BB)) {
 | 
						|
    // Skip backedges.
 | 
						|
    if (DT.dominates(BB, PredBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the predecessor is in a region we used for propagation we can skip it.
 | 
						|
    auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(PredBB); };
 | 
						|
    if (std::any_of(PropagatedRegions.begin(), PropagatedRegions.end(),
 | 
						|
                    PredBBInRegion)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if there is a valid region we can use for propagation, thus look
 | 
						|
    // for a region that contains the predecessor and has @p BB as exit block.
 | 
						|
    auto *PredR = RI.getRegionFor(PredBB);
 | 
						|
    while (PredR->getExit() != BB && !PredR->contains(BB))
 | 
						|
      PredR->getParent();
 | 
						|
 | 
						|
    // If a valid region for propagation was found use the entry of that region
 | 
						|
    // for propagation, otherwise the PredBB directly.
 | 
						|
    if (PredR->getExit() == BB) {
 | 
						|
      PredBB = PredR->getEntry();
 | 
						|
      PropagatedRegions.insert(PredR);
 | 
						|
    }
 | 
						|
 | 
						|
    auto *PredBBDom = getDomainConditions(PredBB);
 | 
						|
    auto *PredBBLoop = getStmtFor(PredBB)->getSurroundingLoop();
 | 
						|
    PredBBDom = adjustDomainDimensions(*this, PredBBDom, PredBBLoop, BBLoop);
 | 
						|
 | 
						|
    PredDom = isl_set_union(PredDom, PredBBDom);
 | 
						|
  }
 | 
						|
 | 
						|
  return PredDom;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::propagateDomainConstraints(Region *R, DominatorTree &DT,
 | 
						|
                                      LoopInfo &LI) {
 | 
						|
  // Iterate over the region R and propagate the domain constrains from the
 | 
						|
  // predecessors to the current node. In contrast to the
 | 
						|
  // buildDomainsWithBranchConstraints function, this one will pull the domain
 | 
						|
  // information from the predecessors instead of pushing it to the successors.
 | 
						|
  // Additionally, we assume the domains to be already present in the domain
 | 
						|
  // map here. However, we iterate again in reverse post order so we know all
 | 
						|
  // predecessors have been visited before a block or non-affine subregion is
 | 
						|
  // visited.
 | 
						|
 | 
						|
  ReversePostOrderTraversal<Region *> RTraversal(R);
 | 
						|
  for (auto *RN : RTraversal) {
 | 
						|
 | 
						|
    // Recurse for affine subregions but go on for basic blocks and non-affine
 | 
						|
    // subregions.
 | 
						|
    if (RN->isSubRegion()) {
 | 
						|
      Region *SubRegion = RN->getNodeAs<Region>();
 | 
						|
      if (!isNonAffineSubRegion(SubRegion)) {
 | 
						|
        if (!propagateDomainConstraints(SubRegion, DT, LI))
 | 
						|
          return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock *BB = getRegionNodeBasicBlock(RN);
 | 
						|
    isl_set *&Domain = DomainMap[BB];
 | 
						|
    assert(Domain);
 | 
						|
 | 
						|
    // Under the union of all predecessor conditions we can reach this block.
 | 
						|
    auto *PredDom = getPredecessorDomainConstraints(BB, Domain, DT, LI);
 | 
						|
    Domain = isl_set_coalesce(isl_set_intersect(Domain, PredDom));
 | 
						|
    Domain = isl_set_align_params(Domain, getParamSpace());
 | 
						|
 | 
						|
    Loop *BBLoop = getRegionNodeLoop(RN, LI);
 | 
						|
    if (BBLoop && BBLoop->getHeader() == BB && contains(BBLoop))
 | 
						|
      if (!addLoopBoundsToHeaderDomain(BBLoop, LI))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a map to map from a given iteration to a subsequent iteration.
 | 
						|
///
 | 
						|
/// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
 | 
						|
/// is incremented by one and all other dimensions are equal, e.g.,
 | 
						|
///             [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
 | 
						|
///
 | 
						|
/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
 | 
						|
static __isl_give isl_map *
 | 
						|
createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) {
 | 
						|
  auto *MapSpace = isl_space_map_from_set(SetSpace);
 | 
						|
  auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace));
 | 
						|
  for (unsigned u = 0; u < isl_map_dim(NextIterationMap, isl_dim_in); u++)
 | 
						|
    if (u != Dim)
 | 
						|
      NextIterationMap =
 | 
						|
          isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u);
 | 
						|
  auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace));
 | 
						|
  C = isl_constraint_set_constant_si(C, 1);
 | 
						|
  C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1);
 | 
						|
  C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1);
 | 
						|
  NextIterationMap = isl_map_add_constraint(NextIterationMap, C);
 | 
						|
  return NextIterationMap;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::addLoopBoundsToHeaderDomain(Loop *L, LoopInfo &LI) {
 | 
						|
  int LoopDepth = getRelativeLoopDepth(L);
 | 
						|
  assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
 | 
						|
 | 
						|
  BasicBlock *HeaderBB = L->getHeader();
 | 
						|
  assert(DomainMap.count(HeaderBB));
 | 
						|
  isl_set *&HeaderBBDom = DomainMap[HeaderBB];
 | 
						|
 | 
						|
  isl_map *NextIterationMap =
 | 
						|
      createNextIterationMap(isl_set_get_space(HeaderBBDom), LoopDepth);
 | 
						|
 | 
						|
  isl_set *UnionBackedgeCondition =
 | 
						|
      isl_set_empty(isl_set_get_space(HeaderBBDom));
 | 
						|
 | 
						|
  SmallVector<llvm::BasicBlock *, 4> LatchBlocks;
 | 
						|
  L->getLoopLatches(LatchBlocks);
 | 
						|
 | 
						|
  for (BasicBlock *LatchBB : LatchBlocks) {
 | 
						|
 | 
						|
    // If the latch is only reachable via error statements we skip it.
 | 
						|
    isl_set *LatchBBDom = DomainMap.lookup(LatchBB);
 | 
						|
    if (!LatchBBDom)
 | 
						|
      continue;
 | 
						|
 | 
						|
    isl_set *BackedgeCondition = nullptr;
 | 
						|
 | 
						|
    TerminatorInst *TI = LatchBB->getTerminator();
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(TI);
 | 
						|
    assert(BI && "Only branch instructions allowed in loop latches");
 | 
						|
 | 
						|
    if (BI->isUnconditional())
 | 
						|
      BackedgeCondition = isl_set_copy(LatchBBDom);
 | 
						|
    else {
 | 
						|
      SmallVector<isl_set *, 8> ConditionSets;
 | 
						|
      int idx = BI->getSuccessor(0) != HeaderBB;
 | 
						|
      if (!buildConditionSets(*getStmtFor(LatchBB), TI, L, LatchBBDom,
 | 
						|
                              ConditionSets)) {
 | 
						|
        isl_map_free(NextIterationMap);
 | 
						|
        isl_set_free(UnionBackedgeCondition);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Free the non back edge condition set as we do not need it.
 | 
						|
      isl_set_free(ConditionSets[1 - idx]);
 | 
						|
 | 
						|
      BackedgeCondition = ConditionSets[idx];
 | 
						|
    }
 | 
						|
 | 
						|
    int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB));
 | 
						|
    assert(LatchLoopDepth >= LoopDepth);
 | 
						|
    BackedgeCondition =
 | 
						|
        isl_set_project_out(BackedgeCondition, isl_dim_set, LoopDepth + 1,
 | 
						|
                            LatchLoopDepth - LoopDepth);
 | 
						|
    UnionBackedgeCondition =
 | 
						|
        isl_set_union(UnionBackedgeCondition, BackedgeCondition);
 | 
						|
  }
 | 
						|
 | 
						|
  isl_map *ForwardMap = isl_map_lex_le(isl_set_get_space(HeaderBBDom));
 | 
						|
  for (int i = 0; i < LoopDepth; i++)
 | 
						|
    ForwardMap = isl_map_equate(ForwardMap, isl_dim_in, i, isl_dim_out, i);
 | 
						|
 | 
						|
  isl_set *UnionBackedgeConditionComplement =
 | 
						|
      isl_set_complement(UnionBackedgeCondition);
 | 
						|
  UnionBackedgeConditionComplement = isl_set_lower_bound_si(
 | 
						|
      UnionBackedgeConditionComplement, isl_dim_set, LoopDepth, 0);
 | 
						|
  UnionBackedgeConditionComplement =
 | 
						|
      isl_set_apply(UnionBackedgeConditionComplement, ForwardMap);
 | 
						|
  HeaderBBDom = isl_set_subtract(HeaderBBDom, UnionBackedgeConditionComplement);
 | 
						|
  HeaderBBDom = isl_set_apply(HeaderBBDom, NextIterationMap);
 | 
						|
 | 
						|
  auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
 | 
						|
  HeaderBBDom = Parts.second;
 | 
						|
 | 
						|
  // Check if there is a <nsw> tagged AddRec for this loop and if so do not add
 | 
						|
  // the bounded assumptions to the context as they are already implied by the
 | 
						|
  // <nsw> tag.
 | 
						|
  if (Affinator.hasNSWAddRecForLoop(L)) {
 | 
						|
    isl_set_free(Parts.first);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  isl_set *UnboundedCtx = isl_set_params(Parts.first);
 | 
						|
  recordAssumption(INFINITELOOP, UnboundedCtx,
 | 
						|
                   HeaderBB->getTerminator()->getDebugLoc(), AS_RESTRICTION);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) {
 | 
						|
  Value *PointerBase = MA->getOriginalBaseAddr();
 | 
						|
 | 
						|
  auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase);
 | 
						|
  if (!PointerBaseInst)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *BasePtrStmt = getStmtFor(PointerBaseInst);
 | 
						|
  if (!BasePtrStmt)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst);
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
 | 
						|
                                        __isl_keep isl_union_map *Writes) {
 | 
						|
  if (auto *BasePtrMA = lookupBasePtrAccess(MA)) {
 | 
						|
    auto *NHCtx = getNonHoistableCtx(BasePtrMA, Writes);
 | 
						|
    bool Hoistable = NHCtx != nullptr;
 | 
						|
    isl_set_free(NHCtx);
 | 
						|
    return !Hoistable;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *BaseAddr = MA->getOriginalBaseAddr();
 | 
						|
  if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr))
 | 
						|
    if (!isa<LoadInst>(BasePtrInst))
 | 
						|
      return contains(BasePtrInst);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::buildAliasChecks(AliasAnalysis &AA) {
 | 
						|
  if (!PollyUseRuntimeAliasChecks)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (buildAliasGroups(AA)) {
 | 
						|
    // Aliasing assumptions do not go through addAssumption but we still want to
 | 
						|
    // collect statistics so we do it here explicitly.
 | 
						|
    if (MinMaxAliasGroups.size())
 | 
						|
      AssumptionsAliasing++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a problem occurs while building the alias groups we need to delete
 | 
						|
  // this SCoP and pretend it wasn't valid in the first place. To this end
 | 
						|
  // we make the assumed context infeasible.
 | 
						|
  invalidate(ALIASING, DebugLoc());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << getNameStr()
 | 
						|
               << " could not be created as the number of parameters involved "
 | 
						|
                  "is too high. The SCoP will be "
 | 
						|
                  "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
 | 
						|
                  "the maximal number of parameters but be advised that the "
 | 
						|
                  "compile time might increase exponentially.\n\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::tuple<Scop::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
 | 
						|
Scop::buildAliasGroupsForAccesses(AliasAnalysis &AA) {
 | 
						|
  AliasSetTracker AST(AA);
 | 
						|
 | 
						|
  DenseMap<Value *, MemoryAccess *> PtrToAcc;
 | 
						|
  DenseSet<const ScopArrayInfo *> HasWriteAccess;
 | 
						|
  for (ScopStmt &Stmt : *this) {
 | 
						|
 | 
						|
    isl_set *StmtDomain = Stmt.getDomain();
 | 
						|
    bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
 | 
						|
    isl_set_free(StmtDomain);
 | 
						|
 | 
						|
    // Statements with an empty domain will never be executed.
 | 
						|
    if (StmtDomainEmpty)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (MemoryAccess *MA : Stmt) {
 | 
						|
      if (MA->isScalarKind())
 | 
						|
        continue;
 | 
						|
      if (!MA->isRead())
 | 
						|
        HasWriteAccess.insert(MA->getScopArrayInfo());
 | 
						|
      MemAccInst Acc(MA->getAccessInstruction());
 | 
						|
      if (MA->isRead() && isa<MemTransferInst>(Acc))
 | 
						|
        PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA;
 | 
						|
      else
 | 
						|
        PtrToAcc[Acc.getPointerOperand()] = MA;
 | 
						|
      AST.add(Acc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AliasGroupVectorTy AliasGroups;
 | 
						|
  for (AliasSet &AS : AST) {
 | 
						|
    if (AS.isMustAlias() || AS.isForwardingAliasSet())
 | 
						|
      continue;
 | 
						|
    AliasGroupTy AG;
 | 
						|
    for (auto &PR : AS)
 | 
						|
      AG.push_back(PtrToAcc[PR.getValue()]);
 | 
						|
    if (AG.size() < 2)
 | 
						|
      continue;
 | 
						|
    AliasGroups.push_back(std::move(AG));
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_tuple(AliasGroups, HasWriteAccess);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
 | 
						|
  for (unsigned u = 0; u < AliasGroups.size(); u++) {
 | 
						|
    AliasGroupTy NewAG;
 | 
						|
    AliasGroupTy &AG = AliasGroups[u];
 | 
						|
    AliasGroupTy::iterator AGI = AG.begin();
 | 
						|
    isl_set *AGDomain = getAccessDomain(*AGI);
 | 
						|
    while (AGI != AG.end()) {
 | 
						|
      MemoryAccess *MA = *AGI;
 | 
						|
      isl_set *MADomain = getAccessDomain(MA);
 | 
						|
      if (isl_set_is_disjoint(AGDomain, MADomain)) {
 | 
						|
        NewAG.push_back(MA);
 | 
						|
        AGI = AG.erase(AGI);
 | 
						|
        isl_set_free(MADomain);
 | 
						|
      } else {
 | 
						|
        AGDomain = isl_set_union(AGDomain, MADomain);
 | 
						|
        AGI++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NewAG.size() > 1)
 | 
						|
      AliasGroups.push_back(std::move(NewAG));
 | 
						|
    isl_set_free(AGDomain);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::buildAliasGroups(AliasAnalysis &AA) {
 | 
						|
  // To create sound alias checks we perform the following steps:
 | 
						|
  //   o) We partition each group into read only and non read only accesses.
 | 
						|
  //   o) For each group with more than one base pointer we then compute minimal
 | 
						|
  //      and maximal accesses to each array of a group in read only and non
 | 
						|
  //      read only partitions separately.
 | 
						|
  AliasGroupVectorTy AliasGroups;
 | 
						|
  DenseSet<const ScopArrayInfo *> HasWriteAccess;
 | 
						|
 | 
						|
  std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses(AA);
 | 
						|
 | 
						|
  splitAliasGroupsByDomain(AliasGroups);
 | 
						|
 | 
						|
  for (AliasGroupTy &AG : AliasGroups) {
 | 
						|
    bool Valid = buildAliasGroup(AG, HasWriteAccess);
 | 
						|
    if (!Valid)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::buildAliasGroup(Scop::AliasGroupTy &AliasGroup,
 | 
						|
                           DenseSet<const ScopArrayInfo *> HasWriteAccess) {
 | 
						|
  AliasGroupTy ReadOnlyAccesses;
 | 
						|
  AliasGroupTy ReadWriteAccesses;
 | 
						|
  SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
 | 
						|
  SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;
 | 
						|
 | 
						|
  auto &F = getFunction();
 | 
						|
 | 
						|
  if (AliasGroup.size() < 2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (MemoryAccess *Access : AliasGroup) {
 | 
						|
    emitOptimizationRemarkAnalysis(
 | 
						|
        F.getContext(), DEBUG_TYPE, F,
 | 
						|
        Access->getAccessInstruction()->getDebugLoc(),
 | 
						|
        "Possibly aliasing pointer, use restrict keyword.");
 | 
						|
 | 
						|
    const ScopArrayInfo *Array = Access->getScopArrayInfo();
 | 
						|
    if (HasWriteAccess.count(Array)) {
 | 
						|
      ReadWriteArrays.insert(Array);
 | 
						|
      ReadWriteAccesses.push_back(Access);
 | 
						|
    } else {
 | 
						|
      ReadOnlyArrays.insert(Array);
 | 
						|
      ReadOnlyAccesses.push_back(Access);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no read-only pointers, and less than two read-write pointers,
 | 
						|
  // no alias check is needed.
 | 
						|
  if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If there is no read-write pointer, no alias check is needed.
 | 
						|
  if (ReadWriteArrays.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For non-affine accesses, no alias check can be generated as we cannot
 | 
						|
  // compute a sufficiently tight lower and upper bound: bail out.
 | 
						|
  for (MemoryAccess *MA : AliasGroup) {
 | 
						|
    if (!MA->isAffine()) {
 | 
						|
      invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that for all memory accesses for which we generate alias checks,
 | 
						|
  // their base pointers are available.
 | 
						|
  for (MemoryAccess *MA : AliasGroup) {
 | 
						|
    if (MemoryAccess *BasePtrMA = lookupBasePtrAccess(MA))
 | 
						|
      addRequiredInvariantLoad(
 | 
						|
          cast<LoadInst>(BasePtrMA->getAccessInstruction()));
 | 
						|
  }
 | 
						|
 | 
						|
  MinMaxAliasGroups.emplace_back();
 | 
						|
  MinMaxVectorPairTy &pair = MinMaxAliasGroups.back();
 | 
						|
  MinMaxVectorTy &MinMaxAccessesReadWrite = pair.first;
 | 
						|
  MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second;
 | 
						|
 | 
						|
  bool Valid;
 | 
						|
 | 
						|
  Valid =
 | 
						|
      calculateMinMaxAccess(ReadWriteAccesses, *this, MinMaxAccessesReadWrite);
 | 
						|
 | 
						|
  if (!Valid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Bail out if the number of values we need to compare is too large.
 | 
						|
  // This is important as the number of comparisons grows quadratically with
 | 
						|
  // the number of values we need to compare.
 | 
						|
  if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
 | 
						|
      RunTimeChecksMaxArraysPerGroup)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Valid =
 | 
						|
      calculateMinMaxAccess(ReadOnlyAccesses, *this, MinMaxAccessesReadOnly);
 | 
						|
 | 
						|
  if (!Valid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the smallest loop that contains @p S but is not in @p S.
 | 
						|
static Loop *getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
 | 
						|
  // Start with the smallest loop containing the entry and expand that
 | 
						|
  // loop until it contains all blocks in the region. If there is a loop
 | 
						|
  // containing all blocks in the region check if it is itself contained
 | 
						|
  // and if so take the parent loop as it will be the smallest containing
 | 
						|
  // the region but not contained by it.
 | 
						|
  Loop *L = LI.getLoopFor(S.getEntry());
 | 
						|
  while (L) {
 | 
						|
    bool AllContained = true;
 | 
						|
    for (auto *BB : S.blocks())
 | 
						|
      AllContained &= L->contains(BB);
 | 
						|
    if (AllContained)
 | 
						|
      break;
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
 | 
						|
  return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
 | 
						|
           ScopDetection::DetectionContext &DC)
 | 
						|
    : SE(&ScalarEvolution), R(R), IsOptimized(false),
 | 
						|
      HasSingleExitEdge(R.getExitingBlock()), HasErrorBlock(false),
 | 
						|
      MaxLoopDepth(0), CopyStmtsNum(0), DC(DC),
 | 
						|
      IslCtx(isl_ctx_alloc(), isl_ctx_free), Context(nullptr),
 | 
						|
      Affinator(this, LI), AssumedContext(nullptr), InvalidContext(nullptr),
 | 
						|
      Schedule(nullptr) {
 | 
						|
  if (IslOnErrorAbort)
 | 
						|
    isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_ABORT);
 | 
						|
  buildContext();
 | 
						|
}
 | 
						|
 | 
						|
void Scop::foldSizeConstantsToRight() {
 | 
						|
  isl_union_set *Accessed = isl_union_map_range(getAccesses());
 | 
						|
 | 
						|
  for (auto Array : arrays()) {
 | 
						|
    if (Array->getNumberOfDimensions() <= 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    isl_space *Space = Array->getSpace();
 | 
						|
 | 
						|
    Space = isl_space_align_params(Space, isl_union_set_get_space(Accessed));
 | 
						|
 | 
						|
    if (!isl_union_set_contains(Accessed, Space)) {
 | 
						|
      isl_space_free(Space);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    isl_set *Elements = isl_union_set_extract_set(Accessed, Space);
 | 
						|
 | 
						|
    isl_map *Transform =
 | 
						|
        isl_map_universe(isl_space_map_from_set(Array->getSpace()));
 | 
						|
 | 
						|
    std::vector<int> Int;
 | 
						|
 | 
						|
    int Dims = isl_set_dim(Elements, isl_dim_set);
 | 
						|
    for (int i = 0; i < Dims; i++) {
 | 
						|
      isl_set *DimOnly =
 | 
						|
          isl_set_project_out(isl_set_copy(Elements), isl_dim_set, 0, i);
 | 
						|
      DimOnly = isl_set_project_out(DimOnly, isl_dim_set, 1, Dims - i - 1);
 | 
						|
      DimOnly = isl_set_lower_bound_si(DimOnly, isl_dim_set, 0, 0);
 | 
						|
 | 
						|
      isl_basic_set *DimHull = isl_set_affine_hull(DimOnly);
 | 
						|
 | 
						|
      if (i == Dims - 1) {
 | 
						|
        Int.push_back(1);
 | 
						|
        Transform = isl_map_equate(Transform, isl_dim_in, i, isl_dim_out, i);
 | 
						|
        isl_basic_set_free(DimHull);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isl_basic_set_dim(DimHull, isl_dim_div) == 1) {
 | 
						|
        isl_aff *Diff = isl_basic_set_get_div(DimHull, 0);
 | 
						|
        isl_val *Val = isl_aff_get_denominator_val(Diff);
 | 
						|
        isl_aff_free(Diff);
 | 
						|
 | 
						|
        int ValInt = 1;
 | 
						|
 | 
						|
        if (isl_val_is_int(Val))
 | 
						|
          ValInt = isl_val_get_num_si(Val);
 | 
						|
        isl_val_free(Val);
 | 
						|
 | 
						|
        Int.push_back(ValInt);
 | 
						|
 | 
						|
        isl_constraint *C = isl_constraint_alloc_equality(
 | 
						|
            isl_local_space_from_space(isl_map_get_space(Transform)));
 | 
						|
        C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, ValInt);
 | 
						|
        C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, -1);
 | 
						|
        Transform = isl_map_add_constraint(Transform, C);
 | 
						|
        isl_basic_set_free(DimHull);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      isl_basic_set *ZeroSet = isl_basic_set_copy(DimHull);
 | 
						|
      ZeroSet = isl_basic_set_fix_si(ZeroSet, isl_dim_set, 0, 0);
 | 
						|
 | 
						|
      int ValInt = 1;
 | 
						|
      if (isl_basic_set_is_equal(ZeroSet, DimHull)) {
 | 
						|
        ValInt = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      Int.push_back(ValInt);
 | 
						|
      Transform = isl_map_equate(Transform, isl_dim_in, i, isl_dim_out, i);
 | 
						|
      isl_basic_set_free(DimHull);
 | 
						|
      isl_basic_set_free(ZeroSet);
 | 
						|
    }
 | 
						|
 | 
						|
    isl_set *MappedElements = isl_map_domain(isl_map_copy(Transform));
 | 
						|
 | 
						|
    if (!isl_set_is_subset(Elements, MappedElements)) {
 | 
						|
      isl_set_free(Elements);
 | 
						|
      isl_set_free(MappedElements);
 | 
						|
      isl_map_free(Transform);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    isl_set_free(MappedElements);
 | 
						|
 | 
						|
    bool CanFold = true;
 | 
						|
 | 
						|
    if (Int[0] <= 1)
 | 
						|
      CanFold = false;
 | 
						|
 | 
						|
    unsigned NumDims = Array->getNumberOfDimensions();
 | 
						|
    for (unsigned i = 1; i < NumDims - 1; i++)
 | 
						|
      if (Int[0] != Int[i] && Int[i])
 | 
						|
        CanFold = false;
 | 
						|
 | 
						|
    if (!CanFold) {
 | 
						|
      isl_set_free(Elements);
 | 
						|
      isl_map_free(Transform);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &Access : AccessFunctions)
 | 
						|
      if (Access->getScopArrayInfo() == Array)
 | 
						|
        Access->setAccessRelation(isl_map_apply_range(
 | 
						|
            Access->getAccessRelation(), isl_map_copy(Transform)));
 | 
						|
 | 
						|
    isl_map_free(Transform);
 | 
						|
 | 
						|
    std::vector<const SCEV *> Sizes;
 | 
						|
    for (unsigned i = 0; i < NumDims; i++) {
 | 
						|
      auto Size = Array->getDimensionSize(i);
 | 
						|
 | 
						|
      if (i == NumDims - 1)
 | 
						|
        Size = SE->getMulExpr(Size, SE->getConstant(Size->getType(), Int[0]));
 | 
						|
      Sizes.push_back(Size);
 | 
						|
    }
 | 
						|
 | 
						|
    Array->updateSizes(Sizes, false /* CheckConsistency */);
 | 
						|
 | 
						|
    isl_set_free(Elements);
 | 
						|
  }
 | 
						|
  isl_union_set_free(Accessed);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::finalizeAccesses() {
 | 
						|
  updateAccessDimensionality();
 | 
						|
  foldSizeConstantsToRight();
 | 
						|
  foldAccessRelations();
 | 
						|
  assumeNoOutOfBounds();
 | 
						|
}
 | 
						|
 | 
						|
Scop::~Scop() {
 | 
						|
  isl_set_free(Context);
 | 
						|
  isl_set_free(AssumedContext);
 | 
						|
  isl_set_free(InvalidContext);
 | 
						|
  isl_schedule_free(Schedule);
 | 
						|
 | 
						|
  for (auto &It : ParameterIds)
 | 
						|
    isl_id_free(It.second);
 | 
						|
 | 
						|
  for (auto It : DomainMap)
 | 
						|
    isl_set_free(It.second);
 | 
						|
 | 
						|
  for (auto &AS : RecordedAssumptions)
 | 
						|
    isl_set_free(AS.Set);
 | 
						|
 | 
						|
  // Free the alias groups
 | 
						|
  for (MinMaxVectorPairTy &MinMaxAccessPair : MinMaxAliasGroups) {
 | 
						|
    for (MinMaxAccessTy &MMA : MinMaxAccessPair.first) {
 | 
						|
      isl_pw_multi_aff_free(MMA.first);
 | 
						|
      isl_pw_multi_aff_free(MMA.second);
 | 
						|
    }
 | 
						|
    for (MinMaxAccessTy &MMA : MinMaxAccessPair.second) {
 | 
						|
      isl_pw_multi_aff_free(MMA.first);
 | 
						|
      isl_pw_multi_aff_free(MMA.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &IAClass : InvariantEquivClasses)
 | 
						|
    isl_set_free(IAClass.ExecutionContext);
 | 
						|
 | 
						|
  // Explicitly release all Scop objects and the underlying isl objects before
 | 
						|
  // we release the isl context.
 | 
						|
  Stmts.clear();
 | 
						|
  ScopArrayInfoSet.clear();
 | 
						|
  ScopArrayInfoMap.clear();
 | 
						|
  ScopArrayNameMap.clear();
 | 
						|
  AccessFunctions.clear();
 | 
						|
}
 | 
						|
 | 
						|
void Scop::updateAccessDimensionality() {
 | 
						|
  // Check all array accesses for each base pointer and find a (virtual) element
 | 
						|
  // size for the base pointer that divides all access functions.
 | 
						|
  for (ScopStmt &Stmt : *this)
 | 
						|
    for (MemoryAccess *Access : Stmt) {
 | 
						|
      if (!Access->isArrayKind())
 | 
						|
        continue;
 | 
						|
      ScopArrayInfo *Array =
 | 
						|
          const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());
 | 
						|
 | 
						|
      if (Array->getNumberOfDimensions() != 1)
 | 
						|
        continue;
 | 
						|
      unsigned DivisibleSize = Array->getElemSizeInBytes();
 | 
						|
      const SCEV *Subscript = Access->getSubscript(0);
 | 
						|
      while (!isDivisible(Subscript, DivisibleSize, *SE))
 | 
						|
        DivisibleSize /= 2;
 | 
						|
      auto *Ty = IntegerType::get(SE->getContext(), DivisibleSize * 8);
 | 
						|
      Array->updateElementType(Ty);
 | 
						|
    }
 | 
						|
 | 
						|
  for (auto &Stmt : *this)
 | 
						|
    for (auto &Access : Stmt)
 | 
						|
      Access->updateDimensionality();
 | 
						|
}
 | 
						|
 | 
						|
void Scop::foldAccessRelations() {
 | 
						|
  for (auto &Stmt : *this)
 | 
						|
    for (auto &Access : Stmt)
 | 
						|
      Access->foldAccessRelation();
 | 
						|
}
 | 
						|
 | 
						|
void Scop::assumeNoOutOfBounds() {
 | 
						|
  for (auto &Stmt : *this)
 | 
						|
    for (auto &Access : Stmt)
 | 
						|
      Access->assumeNoOutOfBound();
 | 
						|
}
 | 
						|
 | 
						|
void Scop::simplifySCoP(bool AfterHoisting) {
 | 
						|
  for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
 | 
						|
    ScopStmt &Stmt = *StmtIt;
 | 
						|
 | 
						|
    bool RemoveStmt = Stmt.isEmpty();
 | 
						|
    if (!RemoveStmt)
 | 
						|
      RemoveStmt = !DomainMap[Stmt.getEntryBlock()];
 | 
						|
 | 
						|
    // Remove read only statements only after invariant loop hoisting.
 | 
						|
    if (!RemoveStmt && AfterHoisting) {
 | 
						|
      bool OnlyRead = true;
 | 
						|
      for (MemoryAccess *MA : Stmt) {
 | 
						|
        if (MA->isRead())
 | 
						|
          continue;
 | 
						|
 | 
						|
        OnlyRead = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      RemoveStmt = OnlyRead;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!RemoveStmt) {
 | 
						|
      StmtIt++;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the statement because it is unnecessary.
 | 
						|
    if (Stmt.isRegionStmt())
 | 
						|
      for (BasicBlock *BB : Stmt.getRegion()->blocks())
 | 
						|
        StmtMap.erase(BB);
 | 
						|
    else
 | 
						|
      StmtMap.erase(Stmt.getBasicBlock());
 | 
						|
 | 
						|
    StmtIt = Stmts.erase(StmtIt);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) {
 | 
						|
  LoadInst *LInst = dyn_cast<LoadInst>(Val);
 | 
						|
  if (!LInst)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Value *Rep = InvEquivClassVMap.lookup(LInst))
 | 
						|
    LInst = cast<LoadInst>(Rep);
 | 
						|
 | 
						|
  Type *Ty = LInst->getType();
 | 
						|
  const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
 | 
						|
  for (auto &IAClass : InvariantEquivClasses) {
 | 
						|
    if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto &MAs = IAClass.InvariantAccesses;
 | 
						|
    for (auto *MA : MAs)
 | 
						|
      if (MA->getAccessInstruction() == Val)
 | 
						|
        return &IAClass;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if @p MA can always be hoisted without execution context.
 | 
						|
static bool canAlwaysBeHoisted(MemoryAccess *MA, bool StmtInvalidCtxIsEmpty,
 | 
						|
                               bool MAInvalidCtxIsEmpty,
 | 
						|
                               bool NonHoistableCtxIsEmpty) {
 | 
						|
  LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
 | 
						|
  const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout();
 | 
						|
  // TODO: We can provide more information for better but more expensive
 | 
						|
  //       results.
 | 
						|
  if (!isDereferenceableAndAlignedPointer(LInst->getPointerOperand(),
 | 
						|
                                          LInst->getAlignment(), DL))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the location might be overwritten we do not hoist it unconditionally.
 | 
						|
  //
 | 
						|
  // TODO: This is probably to conservative.
 | 
						|
  if (!NonHoistableCtxIsEmpty)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If a dereferencable load is in a statement that is modeled precisely we can
 | 
						|
  // hoist it.
 | 
						|
  if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Even if the statement is not modeled precisely we can hoist the load if it
 | 
						|
  // does not involve any parameters that might have been specialized by the
 | 
						|
  // statement domain.
 | 
						|
  for (unsigned u = 0, e = MA->getNumSubscripts(); u < e; u++)
 | 
						|
    if (!isa<SCEVConstant>(MA->getSubscript(u)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs) {
 | 
						|
 | 
						|
  if (InvMAs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *StmtInvalidCtx = Stmt.getInvalidContext();
 | 
						|
  bool StmtInvalidCtxIsEmpty = isl_set_is_empty(StmtInvalidCtx);
 | 
						|
 | 
						|
  // Get the context under which the statement is executed but remove the error
 | 
						|
  // context under which this statement is reached.
 | 
						|
  isl_set *DomainCtx = isl_set_params(Stmt.getDomain());
 | 
						|
  DomainCtx = isl_set_subtract(DomainCtx, StmtInvalidCtx);
 | 
						|
 | 
						|
  if (isl_set_n_basic_set(DomainCtx) >= MaxDisjunctsInDomain) {
 | 
						|
    auto *AccInst = InvMAs.front().MA->getAccessInstruction();
 | 
						|
    invalidate(COMPLEXITY, AccInst->getDebugLoc());
 | 
						|
    isl_set_free(DomainCtx);
 | 
						|
    for (auto &InvMA : InvMAs)
 | 
						|
      isl_set_free(InvMA.NonHoistableCtx);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Project out all parameters that relate to loads in the statement. Otherwise
 | 
						|
  // we could have cyclic dependences on the constraints under which the
 | 
						|
  // hoisted loads are executed and we could not determine an order in which to
 | 
						|
  // pre-load them. This happens because not only lower bounds are part of the
 | 
						|
  // domain but also upper bounds.
 | 
						|
  for (auto &InvMA : InvMAs) {
 | 
						|
    auto *MA = InvMA.MA;
 | 
						|
    Instruction *AccInst = MA->getAccessInstruction();
 | 
						|
    if (SE->isSCEVable(AccInst->getType())) {
 | 
						|
      SetVector<Value *> Values;
 | 
						|
      for (const SCEV *Parameter : Parameters) {
 | 
						|
        Values.clear();
 | 
						|
        findValues(Parameter, *SE, Values);
 | 
						|
        if (!Values.count(AccInst))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (isl_id *ParamId = getIdForParam(Parameter)) {
 | 
						|
          int Dim = isl_set_find_dim_by_id(DomainCtx, isl_dim_param, ParamId);
 | 
						|
          if (Dim >= 0)
 | 
						|
            DomainCtx = isl_set_eliminate(DomainCtx, isl_dim_param, Dim, 1);
 | 
						|
          isl_id_free(ParamId);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &InvMA : InvMAs) {
 | 
						|
    auto *MA = InvMA.MA;
 | 
						|
    auto *NHCtx = InvMA.NonHoistableCtx;
 | 
						|
 | 
						|
    // Check for another invariant access that accesses the same location as
 | 
						|
    // MA and if found consolidate them. Otherwise create a new equivalence
 | 
						|
    // class at the end of InvariantEquivClasses.
 | 
						|
    LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
 | 
						|
    Type *Ty = LInst->getType();
 | 
						|
    const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
 | 
						|
 | 
						|
    auto *MAInvalidCtx = MA->getInvalidContext();
 | 
						|
    bool NonHoistableCtxIsEmpty = isl_set_is_empty(NHCtx);
 | 
						|
    bool MAInvalidCtxIsEmpty = isl_set_is_empty(MAInvalidCtx);
 | 
						|
 | 
						|
    isl_set *MACtx;
 | 
						|
    // Check if we know that this pointer can be speculatively accessed.
 | 
						|
    if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
 | 
						|
                           NonHoistableCtxIsEmpty)) {
 | 
						|
      MACtx = isl_set_universe(isl_set_get_space(DomainCtx));
 | 
						|
      isl_set_free(MAInvalidCtx);
 | 
						|
      isl_set_free(NHCtx);
 | 
						|
    } else {
 | 
						|
      MACtx = isl_set_copy(DomainCtx);
 | 
						|
      MACtx = isl_set_subtract(MACtx, isl_set_union(MAInvalidCtx, NHCtx));
 | 
						|
      MACtx = isl_set_gist_params(MACtx, getContext());
 | 
						|
    }
 | 
						|
 | 
						|
    bool Consolidated = false;
 | 
						|
    for (auto &IAClass : InvariantEquivClasses) {
 | 
						|
      if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the pointer and the type is equal check if the access function wrt.
 | 
						|
      // to the domain is equal too. It can happen that the domain fixes
 | 
						|
      // parameter values and these can be different for distinct part of the
 | 
						|
      // SCoP. If this happens we cannot consolidate the loads but need to
 | 
						|
      // create a new invariant load equivalence class.
 | 
						|
      auto &MAs = IAClass.InvariantAccesses;
 | 
						|
      if (!MAs.empty()) {
 | 
						|
        auto *LastMA = MAs.front();
 | 
						|
 | 
						|
        auto *AR = isl_map_range(MA->getAccessRelation());
 | 
						|
        auto *LastAR = isl_map_range(LastMA->getAccessRelation());
 | 
						|
        bool SameAR = isl_set_is_equal(AR, LastAR);
 | 
						|
        isl_set_free(AR);
 | 
						|
        isl_set_free(LastAR);
 | 
						|
 | 
						|
        if (!SameAR)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add MA to the list of accesses that are in this class.
 | 
						|
      MAs.push_front(MA);
 | 
						|
 | 
						|
      Consolidated = true;
 | 
						|
 | 
						|
      // Unify the execution context of the class and this statement.
 | 
						|
      isl_set *&IAClassDomainCtx = IAClass.ExecutionContext;
 | 
						|
      if (IAClassDomainCtx)
 | 
						|
        IAClassDomainCtx =
 | 
						|
            isl_set_coalesce(isl_set_union(IAClassDomainCtx, MACtx));
 | 
						|
      else
 | 
						|
        IAClassDomainCtx = MACtx;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Consolidated)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we did not consolidate MA, thus did not find an equivalence class
 | 
						|
    // for it, we create a new one.
 | 
						|
    InvariantEquivClasses.emplace_back(
 | 
						|
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty});
 | 
						|
  }
 | 
						|
 | 
						|
  isl_set_free(DomainCtx);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getNonHoistableCtx(MemoryAccess *Access,
 | 
						|
                                             __isl_keep isl_union_map *Writes) {
 | 
						|
  // TODO: Loads that are not loop carried, hence are in a statement with
 | 
						|
  //       zero iterators, are by construction invariant, though we
 | 
						|
  //       currently "hoist" them anyway. This is necessary because we allow
 | 
						|
  //       them to be treated as parameters (e.g., in conditions) and our code
 | 
						|
  //       generation would otherwise use the old value.
 | 
						|
 | 
						|
  auto &Stmt = *Access->getStatement();
 | 
						|
  BasicBlock *BB = Stmt.getEntryBlock();
 | 
						|
 | 
						|
  if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
 | 
						|
      Access->isMemoryIntrinsic())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Skip accesses that have an invariant base pointer which is defined but
 | 
						|
  // not loaded inside the SCoP. This can happened e.g., if a readnone call
 | 
						|
  // returns a pointer that is used as a base address. However, as we want
 | 
						|
  // to hoist indirect pointers, we allow the base pointer to be defined in
 | 
						|
  // the region if it is also a memory access. Each ScopArrayInfo object
 | 
						|
  // that has a base pointer origin has a base pointer that is loaded and
 | 
						|
  // that it is invariant, thus it will be hoisted too. However, if there is
 | 
						|
  // no base pointer origin we check that the base pointer is defined
 | 
						|
  // outside the region.
 | 
						|
  auto *LI = cast<LoadInst>(Access->getAccessInstruction());
 | 
						|
  if (hasNonHoistableBasePtrInScop(Access, Writes))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  isl_map *AccessRelation = Access->getAccessRelation();
 | 
						|
  assert(!isl_map_is_empty(AccessRelation));
 | 
						|
 | 
						|
  if (isl_map_involves_dims(AccessRelation, isl_dim_in, 0,
 | 
						|
                            Stmt.getNumIterators())) {
 | 
						|
    isl_map_free(AccessRelation);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  AccessRelation = isl_map_intersect_domain(AccessRelation, Stmt.getDomain());
 | 
						|
  isl_set *SafeToLoad;
 | 
						|
 | 
						|
  auto &DL = getFunction().getParent()->getDataLayout();
 | 
						|
  if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getAlignment(),
 | 
						|
                                  DL)) {
 | 
						|
    SafeToLoad =
 | 
						|
        isl_set_universe(isl_space_range(isl_map_get_space(AccessRelation)));
 | 
						|
    isl_map_free(AccessRelation);
 | 
						|
  } else if (BB != LI->getParent()) {
 | 
						|
    // Skip accesses in non-affine subregions as they might not be executed
 | 
						|
    // under the same condition as the entry of the non-affine subregion.
 | 
						|
    isl_map_free(AccessRelation);
 | 
						|
    return nullptr;
 | 
						|
  } else {
 | 
						|
    SafeToLoad = isl_map_range(AccessRelation);
 | 
						|
  }
 | 
						|
 | 
						|
  isl_union_map *Written = isl_union_map_intersect_range(
 | 
						|
      isl_union_map_copy(Writes), isl_union_set_from_set(SafeToLoad));
 | 
						|
  auto *WrittenCtx = isl_union_map_params(Written);
 | 
						|
  bool IsWritten = !isl_set_is_empty(WrittenCtx);
 | 
						|
 | 
						|
  if (!IsWritten)
 | 
						|
    return WrittenCtx;
 | 
						|
 | 
						|
  WrittenCtx = isl_set_remove_divs(WrittenCtx);
 | 
						|
  bool TooComplex = isl_set_n_basic_set(WrittenCtx) >= MaxDisjunctsInDomain;
 | 
						|
  if (TooComplex || !isRequiredInvariantLoad(LI)) {
 | 
						|
    isl_set_free(WrittenCtx);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  addAssumption(INVARIANTLOAD, isl_set_copy(WrittenCtx), LI->getDebugLoc(),
 | 
						|
                AS_RESTRICTION);
 | 
						|
  return WrittenCtx;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::verifyInvariantLoads() {
 | 
						|
  auto &RIL = getRequiredInvariantLoads();
 | 
						|
  for (LoadInst *LI : RIL) {
 | 
						|
    assert(LI && contains(LI));
 | 
						|
    ScopStmt *Stmt = getStmtFor(LI);
 | 
						|
    if (Stmt && Stmt->getArrayAccessOrNULLFor(LI)) {
 | 
						|
      invalidate(INVARIANTLOAD, LI->getDebugLoc());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::hoistInvariantLoads() {
 | 
						|
  if (!PollyInvariantLoadHoisting)
 | 
						|
    return;
 | 
						|
 | 
						|
  isl_union_map *Writes = getWrites();
 | 
						|
  for (ScopStmt &Stmt : *this) {
 | 
						|
    InvariantAccessesTy InvariantAccesses;
 | 
						|
 | 
						|
    for (MemoryAccess *Access : Stmt)
 | 
						|
      if (auto *NHCtx = getNonHoistableCtx(Access, Writes))
 | 
						|
        InvariantAccesses.push_back({Access, NHCtx});
 | 
						|
 | 
						|
    // Transfer the memory access from the statement to the SCoP.
 | 
						|
    for (auto InvMA : InvariantAccesses)
 | 
						|
      Stmt.removeMemoryAccess(InvMA.MA);
 | 
						|
    addInvariantLoads(Stmt, InvariantAccesses);
 | 
						|
  }
 | 
						|
  isl_union_map_free(Writes);
 | 
						|
}
 | 
						|
 | 
						|
/// Find the canonical scop array info object for a set of invariant load
 | 
						|
/// hoisted loads. The canonical array is the one that corresponds to the
 | 
						|
/// first load in the list of accesses which is used as base pointer of a
 | 
						|
/// scop array.
 | 
						|
static const ScopArrayInfo *findCanonicalArray(Scop *S,
 | 
						|
                                               MemoryAccessList &Accesses) {
 | 
						|
  for (MemoryAccess *Access : Accesses) {
 | 
						|
    const ScopArrayInfo *CanonicalArray = S->getScopArrayInfoOrNull(
 | 
						|
        Access->getAccessInstruction(), MemoryKind::Array);
 | 
						|
    if (CanonicalArray)
 | 
						|
      return CanonicalArray;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if @p Array severs as base array in an invariant load.
 | 
						|
static bool isUsedForIndirectHoistedLoad(Scop *S, const ScopArrayInfo *Array) {
 | 
						|
  for (InvariantEquivClassTy &EqClass2 : S->getInvariantAccesses())
 | 
						|
    for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
 | 
						|
      if (Access2->getScopArrayInfo() == Array)
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the base pointer arrays in all memory accesses referencing @p Old,
 | 
						|
/// with a reference to @p New.
 | 
						|
static void replaceBasePtrArrays(Scop *S, const ScopArrayInfo *Old,
 | 
						|
                                 const ScopArrayInfo *New) {
 | 
						|
  for (ScopStmt &Stmt : *S)
 | 
						|
    for (MemoryAccess *Access : Stmt) {
 | 
						|
      if (Access->getLatestScopArrayInfo() != Old)
 | 
						|
        continue;
 | 
						|
 | 
						|
      isl_id *Id = New->getBasePtrId();
 | 
						|
      isl_map *Map = Access->getAccessRelation();
 | 
						|
      Map = isl_map_set_tuple_id(Map, isl_dim_out, Id);
 | 
						|
      Access->setAccessRelation(Map);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::canonicalizeDynamicBasePtrs() {
 | 
						|
  for (InvariantEquivClassTy &EqClass : InvariantEquivClasses) {
 | 
						|
    MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;
 | 
						|
 | 
						|
    const ScopArrayInfo *CanonicalBasePtrSAI =
 | 
						|
        findCanonicalArray(this, BasePtrAccesses);
 | 
						|
 | 
						|
    if (!CanonicalBasePtrSAI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
 | 
						|
      const ScopArrayInfo *BasePtrSAI = getScopArrayInfoOrNull(
 | 
						|
          BasePtrAccess->getAccessInstruction(), MemoryKind::Array);
 | 
						|
      if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
 | 
						|
          !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // we currently do not canonicalize arrays where some accesses are
 | 
						|
      // hoisted as invariant loads. If we would, we need to update the access
 | 
						|
      // function of the invariant loads as well. However, as this is not a
 | 
						|
      // very common situation, we leave this for now to avoid further
 | 
						|
      // complexity increases.
 | 
						|
      if (isUsedForIndirectHoistedLoad(this, BasePtrSAI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      replaceBasePtrArrays(this, BasePtrSAI, CanonicalBasePtrSAI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *
 | 
						|
Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
 | 
						|
                               ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
 | 
						|
                               const char *BaseName) {
 | 
						|
  assert((BasePtr || BaseName) &&
 | 
						|
         "BasePtr and BaseName can not be nullptr at the same time.");
 | 
						|
  assert(!(BasePtr && BaseName) && "BaseName is redundant.");
 | 
						|
  auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)]
 | 
						|
                      : ScopArrayNameMap[BaseName];
 | 
						|
  if (!SAI) {
 | 
						|
    auto &DL = getFunction().getParent()->getDataLayout();
 | 
						|
    SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind,
 | 
						|
                                DL, this, BaseName));
 | 
						|
    ScopArrayInfoSet.insert(SAI.get());
 | 
						|
  } else {
 | 
						|
    SAI->updateElementType(ElementType);
 | 
						|
    // In case of mismatching array sizes, we bail out by setting the run-time
 | 
						|
    // context to false.
 | 
						|
    if (!SAI->updateSizes(Sizes))
 | 
						|
      invalidate(DELINEARIZATION, DebugLoc());
 | 
						|
  }
 | 
						|
  return SAI.get();
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *
 | 
						|
Scop::createScopArrayInfo(Type *ElementType, const std::string &BaseName,
 | 
						|
                          const std::vector<unsigned> &Sizes) {
 | 
						|
  auto *DimSizeType = Type::getInt64Ty(getSE()->getContext());
 | 
						|
  std::vector<const SCEV *> SCEVSizes;
 | 
						|
 | 
						|
  for (auto size : Sizes)
 | 
						|
    if (size)
 | 
						|
      SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false));
 | 
						|
    else
 | 
						|
      SCEVSizes.push_back(nullptr);
 | 
						|
 | 
						|
  auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes,
 | 
						|
                                       MemoryKind::Array, BaseName.c_str());
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr,
 | 
						|
                                                  MemoryKind Kind) {
 | 
						|
  auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
 | 
						|
  auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind);
 | 
						|
  assert(SAI && "No ScopArrayInfo available for this base pointer");
 | 
						|
  return SAI;
 | 
						|
}
 | 
						|
 | 
						|
std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
 | 
						|
 | 
						|
std::string Scop::getAssumedContextStr() const {
 | 
						|
  assert(AssumedContext && "Assumed context not yet built");
 | 
						|
  return stringFromIslObj(AssumedContext);
 | 
						|
}
 | 
						|
 | 
						|
std::string Scop::getInvalidContextStr() const {
 | 
						|
  return stringFromIslObj(InvalidContext);
 | 
						|
}
 | 
						|
 | 
						|
std::string Scop::getNameStr() const {
 | 
						|
  std::string ExitName, EntryName;
 | 
						|
  raw_string_ostream ExitStr(ExitName);
 | 
						|
  raw_string_ostream EntryStr(EntryName);
 | 
						|
 | 
						|
  R.getEntry()->printAsOperand(EntryStr, false);
 | 
						|
  EntryStr.str();
 | 
						|
 | 
						|
  if (R.getExit()) {
 | 
						|
    R.getExit()->printAsOperand(ExitStr, false);
 | 
						|
    ExitStr.str();
 | 
						|
  } else
 | 
						|
    ExitName = "FunctionExit";
 | 
						|
 | 
						|
  return EntryName + "---" + ExitName;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
 | 
						|
__isl_give isl_space *Scop::getParamSpace() const {
 | 
						|
  return isl_set_get_space(Context);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getAssumedContext() const {
 | 
						|
  assert(AssumedContext && "Assumed context not yet built");
 | 
						|
  return isl_set_copy(AssumedContext);
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::isProfitable(bool ScalarsAreUnprofitable) const {
 | 
						|
  if (PollyProcessUnprofitable)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (isEmpty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned OptimizableStmtsOrLoops = 0;
 | 
						|
  for (auto &Stmt : *this) {
 | 
						|
    if (Stmt.getNumIterators() == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool ContainsArrayAccs = false;
 | 
						|
    bool ContainsScalarAccs = false;
 | 
						|
    for (auto *MA : Stmt) {
 | 
						|
      if (MA->isRead())
 | 
						|
        continue;
 | 
						|
      ContainsArrayAccs |= MA->isLatestArrayKind();
 | 
						|
      ContainsScalarAccs |= MA->isLatestScalarKind();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs))
 | 
						|
      OptimizableStmtsOrLoops += Stmt.getNumIterators();
 | 
						|
  }
 | 
						|
 | 
						|
  return OptimizableStmtsOrLoops > 1;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::hasFeasibleRuntimeContext() const {
 | 
						|
  auto *PositiveContext = getAssumedContext();
 | 
						|
  auto *NegativeContext = getInvalidContext();
 | 
						|
  PositiveContext = addNonEmptyDomainConstraints(PositiveContext);
 | 
						|
  bool IsFeasible = !(isl_set_is_empty(PositiveContext) ||
 | 
						|
                      isl_set_is_subset(PositiveContext, NegativeContext));
 | 
						|
  isl_set_free(PositiveContext);
 | 
						|
  if (!IsFeasible) {
 | 
						|
    isl_set_free(NegativeContext);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *DomainContext = isl_union_set_params(getDomains());
 | 
						|
  IsFeasible = !isl_set_is_subset(DomainContext, NegativeContext);
 | 
						|
  IsFeasible &= !isl_set_is_subset(Context, NegativeContext);
 | 
						|
  isl_set_free(NegativeContext);
 | 
						|
  isl_set_free(DomainContext);
 | 
						|
 | 
						|
  return IsFeasible;
 | 
						|
}
 | 
						|
 | 
						|
static std::string toString(AssumptionKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case ALIASING:
 | 
						|
    return "No-aliasing";
 | 
						|
  case INBOUNDS:
 | 
						|
    return "Inbounds";
 | 
						|
  case WRAPPING:
 | 
						|
    return "No-overflows";
 | 
						|
  case UNSIGNED:
 | 
						|
    return "Signed-unsigned";
 | 
						|
  case COMPLEXITY:
 | 
						|
    return "Low complexity";
 | 
						|
  case PROFITABLE:
 | 
						|
    return "Profitable";
 | 
						|
  case ERRORBLOCK:
 | 
						|
    return "No-error";
 | 
						|
  case INFINITELOOP:
 | 
						|
    return "Finite loop";
 | 
						|
  case INVARIANTLOAD:
 | 
						|
    return "Invariant load";
 | 
						|
  case DELINEARIZATION:
 | 
						|
    return "Delinearization";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown AssumptionKind!");
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::isEffectiveAssumption(__isl_keep isl_set *Set, AssumptionSign Sign) {
 | 
						|
  if (Sign == AS_ASSUMPTION) {
 | 
						|
    if (isl_set_is_subset(Context, Set))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (isl_set_is_subset(AssumedContext, Set))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (isl_set_is_disjoint(Set, Context))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (isl_set_is_subset(Set, InvalidContext))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
 | 
						|
                           DebugLoc Loc, AssumptionSign Sign) {
 | 
						|
  if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do never emit trivial assumptions as they only clutter the output.
 | 
						|
  if (!PollyRemarksMinimal) {
 | 
						|
    isl_set *Univ = nullptr;
 | 
						|
    if (Sign == AS_ASSUMPTION)
 | 
						|
      Univ = isl_set_universe(isl_set_get_space(Set));
 | 
						|
 | 
						|
    bool IsTrivial = (Sign == AS_RESTRICTION && isl_set_is_empty(Set)) ||
 | 
						|
                     (Sign == AS_ASSUMPTION && isl_set_is_equal(Univ, Set));
 | 
						|
    isl_set_free(Univ);
 | 
						|
 | 
						|
    if (IsTrivial)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
  case ALIASING:
 | 
						|
    AssumptionsAliasing++;
 | 
						|
    break;
 | 
						|
  case INBOUNDS:
 | 
						|
    AssumptionsInbounds++;
 | 
						|
    break;
 | 
						|
  case WRAPPING:
 | 
						|
    AssumptionsWrapping++;
 | 
						|
    break;
 | 
						|
  case UNSIGNED:
 | 
						|
    AssumptionsUnsigned++;
 | 
						|
    break;
 | 
						|
  case COMPLEXITY:
 | 
						|
    AssumptionsComplexity++;
 | 
						|
    break;
 | 
						|
  case PROFITABLE:
 | 
						|
    AssumptionsUnprofitable++;
 | 
						|
    break;
 | 
						|
  case ERRORBLOCK:
 | 
						|
    AssumptionsErrorBlock++;
 | 
						|
    break;
 | 
						|
  case INFINITELOOP:
 | 
						|
    AssumptionsInfiniteLoop++;
 | 
						|
    break;
 | 
						|
  case INVARIANTLOAD:
 | 
						|
    AssumptionsInvariantLoad++;
 | 
						|
    break;
 | 
						|
  case DELINEARIZATION:
 | 
						|
    AssumptionsDelinearization++;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  auto &F = getFunction();
 | 
						|
  auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t";
 | 
						|
  std::string Msg = toString(Kind) + Suffix + stringFromIslObj(Set);
 | 
						|
  emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE, F, Loc, Msg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
 | 
						|
                         DebugLoc Loc, AssumptionSign Sign) {
 | 
						|
  // Simplify the assumptions/restrictions first.
 | 
						|
  Set = isl_set_gist_params(Set, getContext());
 | 
						|
 | 
						|
  if (!trackAssumption(Kind, Set, Loc, Sign)) {
 | 
						|
    isl_set_free(Set);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Sign == AS_ASSUMPTION) {
 | 
						|
    AssumedContext = isl_set_intersect(AssumedContext, Set);
 | 
						|
    AssumedContext = isl_set_coalesce(AssumedContext);
 | 
						|
  } else {
 | 
						|
    InvalidContext = isl_set_union(InvalidContext, Set);
 | 
						|
    InvalidContext = isl_set_coalesce(InvalidContext);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::recordAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
 | 
						|
                            DebugLoc Loc, AssumptionSign Sign, BasicBlock *BB) {
 | 
						|
  assert((isl_set_is_params(Set) || BB) &&
 | 
						|
         "Assumptions without a basic block must be parameter sets");
 | 
						|
  RecordedAssumptions.push_back({Kind, Sign, Set, Loc, BB});
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addRecordedAssumptions() {
 | 
						|
  while (!RecordedAssumptions.empty()) {
 | 
						|
    const Assumption &AS = RecordedAssumptions.pop_back_val();
 | 
						|
 | 
						|
    if (!AS.BB) {
 | 
						|
      addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the domain was deleted the assumptions are void.
 | 
						|
    isl_set *Dom = getDomainConditions(AS.BB);
 | 
						|
    if (!Dom) {
 | 
						|
      isl_set_free(AS.Set);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If a basic block was given use its domain to simplify the assumption.
 | 
						|
    // In case of restrictions we know they only have to hold on the domain,
 | 
						|
    // thus we can intersect them with the domain of the block. However, for
 | 
						|
    // assumptions the domain has to imply them, thus:
 | 
						|
    //                     _              _____
 | 
						|
    //   Dom => S   <==>   A v B   <==>   A - B
 | 
						|
    //
 | 
						|
    // To avoid the complement we will register A - B as a restriction not an
 | 
						|
    // assumption.
 | 
						|
    isl_set *S = AS.Set;
 | 
						|
    if (AS.Sign == AS_RESTRICTION)
 | 
						|
      S = isl_set_params(isl_set_intersect(S, Dom));
 | 
						|
    else /* (AS.Sign == AS_ASSUMPTION) */
 | 
						|
      S = isl_set_params(isl_set_subtract(Dom, S));
 | 
						|
 | 
						|
    addAssumption(AS.Kind, S, AS.Loc, AS_RESTRICTION);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc) {
 | 
						|
  addAssumption(Kind, isl_set_empty(getParamSpace()), Loc, AS_ASSUMPTION);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_set *Scop::getInvalidContext() const {
 | 
						|
  return isl_set_copy(InvalidContext);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::printContext(raw_ostream &OS) const {
 | 
						|
  OS << "Context:\n";
 | 
						|
  OS.indent(4) << Context << "\n";
 | 
						|
 | 
						|
  OS.indent(4) << "Assumed Context:\n";
 | 
						|
  OS.indent(4) << AssumedContext << "\n";
 | 
						|
 | 
						|
  OS.indent(4) << "Invalid Context:\n";
 | 
						|
  OS.indent(4) << InvalidContext << "\n";
 | 
						|
 | 
						|
  unsigned Dim = 0;
 | 
						|
  for (const SCEV *Parameter : Parameters)
 | 
						|
    OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void Scop::printAliasAssumptions(raw_ostream &OS) const {
 | 
						|
  int noOfGroups = 0;
 | 
						|
  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
 | 
						|
    if (Pair.second.size() == 0)
 | 
						|
      noOfGroups += 1;
 | 
						|
    else
 | 
						|
      noOfGroups += Pair.second.size();
 | 
						|
  }
 | 
						|
 | 
						|
  OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
 | 
						|
  if (MinMaxAliasGroups.empty()) {
 | 
						|
    OS.indent(8) << "n/a\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
 | 
						|
 | 
						|
    // If the group has no read only accesses print the write accesses.
 | 
						|
    if (Pair.second.empty()) {
 | 
						|
      OS.indent(8) << "[[";
 | 
						|
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
 | 
						|
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
 | 
						|
           << ">";
 | 
						|
      }
 | 
						|
      OS << " ]]\n";
 | 
						|
    }
 | 
						|
 | 
						|
    for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
 | 
						|
      OS.indent(8) << "[[";
 | 
						|
      OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
 | 
						|
      for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
 | 
						|
        OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
 | 
						|
           << ">";
 | 
						|
      }
 | 
						|
      OS << " ]]\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Scop::printStatements(raw_ostream &OS) const {
 | 
						|
  OS << "Statements {\n";
 | 
						|
 | 
						|
  for (const ScopStmt &Stmt : *this)
 | 
						|
    OS.indent(4) << Stmt;
 | 
						|
 | 
						|
  OS.indent(4) << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
void Scop::printArrayInfo(raw_ostream &OS) const {
 | 
						|
  OS << "Arrays {\n";
 | 
						|
 | 
						|
  for (auto &Array : arrays())
 | 
						|
    Array->print(OS);
 | 
						|
 | 
						|
  OS.indent(4) << "}\n";
 | 
						|
 | 
						|
  OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
 | 
						|
 | 
						|
  for (auto &Array : arrays())
 | 
						|
    Array->print(OS, /* SizeAsPwAff */ true);
 | 
						|
 | 
						|
  OS.indent(4) << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
void Scop::print(raw_ostream &OS) const {
 | 
						|
  OS.indent(4) << "Function: " << getFunction().getName() << "\n";
 | 
						|
  OS.indent(4) << "Region: " << getNameStr() << "\n";
 | 
						|
  OS.indent(4) << "Max Loop Depth:  " << getMaxLoopDepth() << "\n";
 | 
						|
  OS.indent(4) << "Invariant Accesses: {\n";
 | 
						|
  for (const auto &IAClass : InvariantEquivClasses) {
 | 
						|
    const auto &MAs = IAClass.InvariantAccesses;
 | 
						|
    if (MAs.empty()) {
 | 
						|
      OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n";
 | 
						|
    } else {
 | 
						|
      MAs.front()->print(OS);
 | 
						|
      OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext
 | 
						|
                    << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS.indent(4) << "}\n";
 | 
						|
  printContext(OS.indent(4));
 | 
						|
  printArrayInfo(OS.indent(4));
 | 
						|
  printAliasAssumptions(OS);
 | 
						|
  printStatements(OS.indent(4));
 | 
						|
}
 | 
						|
 | 
						|
void Scop::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
isl_ctx *Scop::getIslCtx() const { return IslCtx.get(); }
 | 
						|
 | 
						|
__isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB,
 | 
						|
                                 bool NonNegative) {
 | 
						|
  // First try to use the SCEVAffinator to generate a piecewise defined
 | 
						|
  // affine function from @p E in the context of @p BB. If that tasks becomes to
 | 
						|
  // complex the affinator might return a nullptr. In such a case we invalidate
 | 
						|
  // the SCoP and return a dummy value. This way we do not need to add error
 | 
						|
  // handling code to all users of this function.
 | 
						|
  auto PWAC = Affinator.getPwAff(E, BB);
 | 
						|
  if (PWAC.first) {
 | 
						|
    // TODO: We could use a heuristic and either use:
 | 
						|
    //         SCEVAffinator::takeNonNegativeAssumption
 | 
						|
    //       or
 | 
						|
    //         SCEVAffinator::interpretAsUnsigned
 | 
						|
    //       to deal with unsigned or "NonNegative" SCEVs.
 | 
						|
    if (NonNegative)
 | 
						|
      Affinator.takeNonNegativeAssumption(PWAC);
 | 
						|
    return PWAC;
 | 
						|
  }
 | 
						|
 | 
						|
  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
 | 
						|
  invalidate(COMPLEXITY, DL);
 | 
						|
  return Affinator.getPwAff(SE->getZero(E->getType()), BB);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_set *Scop::getDomains() const {
 | 
						|
  isl_space *EmptySpace = isl_space_params_alloc(getIslCtx(), 0);
 | 
						|
  isl_union_set *Domain = isl_union_set_empty(EmptySpace);
 | 
						|
 | 
						|
  for (const ScopStmt &Stmt : *this)
 | 
						|
    Domain = isl_union_set_add_set(Domain, Stmt.getDomain());
 | 
						|
 | 
						|
  return Domain;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_pw_aff *Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB) {
 | 
						|
  PWACtx PWAC = getPwAff(E, BB);
 | 
						|
  isl_set_free(PWAC.second);
 | 
						|
  return PWAC.first;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *
 | 
						|
Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
 | 
						|
  isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
 | 
						|
 | 
						|
  for (ScopStmt &Stmt : *this) {
 | 
						|
    for (MemoryAccess *MA : Stmt) {
 | 
						|
      if (!Predicate(*MA))
 | 
						|
        continue;
 | 
						|
 | 
						|
      isl_set *Domain = Stmt.getDomain();
 | 
						|
      isl_map *AccessDomain = MA->getAccessRelation();
 | 
						|
      AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
 | 
						|
      Accesses = isl_union_map_add_map(Accesses, AccessDomain);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return isl_union_map_coalesce(Accesses);
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getMustWrites() {
 | 
						|
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getMayWrites() {
 | 
						|
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getWrites() {
 | 
						|
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getReads() {
 | 
						|
  return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getAccesses() {
 | 
						|
  return getAccessesOfType([](MemoryAccess &MA) { return true; });
 | 
						|
}
 | 
						|
 | 
						|
// Check whether @p Node is an extension node.
 | 
						|
//
 | 
						|
// @return true if @p Node is an extension node.
 | 
						|
isl_bool isNotExtNode(__isl_keep isl_schedule_node *Node, void *User) {
 | 
						|
  if (isl_schedule_node_get_type(Node) == isl_schedule_node_extension)
 | 
						|
    return isl_bool_error;
 | 
						|
  else
 | 
						|
    return isl_bool_true;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::containsExtensionNode(__isl_keep isl_schedule *Schedule) {
 | 
						|
  return isl_schedule_foreach_schedule_node_top_down(Schedule, isNotExtNode,
 | 
						|
                                                     nullptr) == isl_stat_error;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_union_map *Scop::getSchedule() const {
 | 
						|
  auto *Tree = getScheduleTree();
 | 
						|
  if (containsExtensionNode(Tree)) {
 | 
						|
    isl_schedule_free(Tree);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  auto *S = isl_schedule_get_map(Tree);
 | 
						|
  isl_schedule_free(Tree);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
__isl_give isl_schedule *Scop::getScheduleTree() const {
 | 
						|
  return isl_schedule_intersect_domain(isl_schedule_copy(Schedule),
 | 
						|
                                       getDomains());
 | 
						|
}
 | 
						|
 | 
						|
void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) {
 | 
						|
  auto *S = isl_schedule_from_domain(getDomains());
 | 
						|
  S = isl_schedule_insert_partial_schedule(
 | 
						|
      S, isl_multi_union_pw_aff_from_union_map(NewSchedule));
 | 
						|
  isl_schedule_free(Schedule);
 | 
						|
  Schedule = S;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) {
 | 
						|
  isl_schedule_free(Schedule);
 | 
						|
  Schedule = NewSchedule;
 | 
						|
}
 | 
						|
 | 
						|
bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (ScopStmt &Stmt : *this) {
 | 
						|
    isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain());
 | 
						|
    isl_union_set *NewStmtDomain = isl_union_set_intersect(
 | 
						|
        isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
 | 
						|
 | 
						|
    if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
 | 
						|
      isl_union_set_free(StmtDomain);
 | 
						|
      isl_union_set_free(NewStmtDomain);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    isl_union_set_free(StmtDomain);
 | 
						|
    NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
 | 
						|
 | 
						|
    if (isl_union_set_is_empty(NewStmtDomain)) {
 | 
						|
      Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace()));
 | 
						|
      isl_union_set_free(NewStmtDomain);
 | 
						|
    } else
 | 
						|
      Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain));
 | 
						|
  }
 | 
						|
  isl_union_set_free(Domain);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
ScalarEvolution *Scop::getSE() const { return SE; }
 | 
						|
 | 
						|
struct MapToDimensionDataTy {
 | 
						|
  int N;
 | 
						|
  isl_union_pw_multi_aff *Res;
 | 
						|
};
 | 
						|
 | 
						|
// Create a function that maps the elements of 'Set' to its N-th dimension and
 | 
						|
// add it to User->Res.
 | 
						|
//
 | 
						|
// @param Set        The input set.
 | 
						|
// @param User->N    The dimension to map to.
 | 
						|
// @param User->Res  The isl_union_pw_multi_aff to which to add the result.
 | 
						|
//
 | 
						|
// @returns   isl_stat_ok if no error occured, othewise isl_stat_error.
 | 
						|
static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) {
 | 
						|
  struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User;
 | 
						|
  int Dim;
 | 
						|
  isl_space *Space;
 | 
						|
  isl_pw_multi_aff *PMA;
 | 
						|
 | 
						|
  Dim = isl_set_dim(Set, isl_dim_set);
 | 
						|
  Space = isl_set_get_space(Set);
 | 
						|
  PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N,
 | 
						|
                                         Dim - Data->N);
 | 
						|
  if (Data->N > 1)
 | 
						|
    PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1);
 | 
						|
  Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA);
 | 
						|
 | 
						|
  isl_set_free(Set);
 | 
						|
 | 
						|
  return isl_stat_ok;
 | 
						|
}
 | 
						|
 | 
						|
// Create an isl_multi_union_aff that defines an identity mapping from the
 | 
						|
// elements of USet to their N-th dimension.
 | 
						|
//
 | 
						|
// # Example:
 | 
						|
//
 | 
						|
//            Domain: { A[i,j]; B[i,j,k] }
 | 
						|
//                 N: 1
 | 
						|
//
 | 
						|
// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
 | 
						|
//
 | 
						|
// @param USet   A union set describing the elements for which to generate a
 | 
						|
//               mapping.
 | 
						|
// @param N      The dimension to map to.
 | 
						|
// @returns      A mapping from USet to its N-th dimension.
 | 
						|
static __isl_give isl_multi_union_pw_aff *
 | 
						|
mapToDimension(__isl_take isl_union_set *USet, int N) {
 | 
						|
  assert(N >= 0);
 | 
						|
  assert(USet);
 | 
						|
  assert(!isl_union_set_is_empty(USet));
 | 
						|
 | 
						|
  struct MapToDimensionDataTy Data;
 | 
						|
 | 
						|
  auto *Space = isl_union_set_get_space(USet);
 | 
						|
  auto *PwAff = isl_union_pw_multi_aff_empty(Space);
 | 
						|
 | 
						|
  Data = {N, PwAff};
 | 
						|
 | 
						|
  auto Res = isl_union_set_foreach_set(USet, &mapToDimension_AddSet, &Data);
 | 
						|
  (void)Res;
 | 
						|
 | 
						|
  assert(Res == isl_stat_ok);
 | 
						|
 | 
						|
  isl_union_set_free(USet);
 | 
						|
  return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res);
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addScopStmt(BasicBlock *BB, Loop *SurroundingLoop) {
 | 
						|
  assert(BB && "Unexpected nullptr!");
 | 
						|
  Stmts.emplace_back(*this, *BB, SurroundingLoop);
 | 
						|
  auto *Stmt = &Stmts.back();
 | 
						|
  StmtMap[BB] = Stmt;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::addScopStmt(Region *R, Loop *SurroundingLoop) {
 | 
						|
  assert(R && "Unexpected nullptr!");
 | 
						|
  Stmts.emplace_back(*this, *R, SurroundingLoop);
 | 
						|
  auto *Stmt = &Stmts.back();
 | 
						|
  for (BasicBlock *BB : R->blocks())
 | 
						|
    StmtMap[BB] = Stmt;
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt *Scop::addScopStmt(__isl_take isl_map *SourceRel,
 | 
						|
                            __isl_take isl_map *TargetRel,
 | 
						|
                            __isl_take isl_set *Domain) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  isl_set *SourceDomain = isl_map_domain(isl_map_copy(SourceRel));
 | 
						|
  isl_set *TargetDomain = isl_map_domain(isl_map_copy(TargetRel));
 | 
						|
  assert(isl_set_is_subset(Domain, TargetDomain) &&
 | 
						|
         "Target access not defined for complete statement domain");
 | 
						|
  assert(isl_set_is_subset(Domain, SourceDomain) &&
 | 
						|
         "Source access not defined for complete statement domain");
 | 
						|
  isl_set_free(SourceDomain);
 | 
						|
  isl_set_free(TargetDomain);
 | 
						|
#endif
 | 
						|
  Stmts.emplace_back(*this, SourceRel, TargetRel, Domain);
 | 
						|
  CopyStmtsNum++;
 | 
						|
  return &(Stmts.back());
 | 
						|
}
 | 
						|
 | 
						|
void Scop::buildSchedule(LoopInfo &LI) {
 | 
						|
  Loop *L = getLoopSurroundingScop(*this, LI);
 | 
						|
  LoopStackTy LoopStack({LoopStackElementTy(L, nullptr, 0)});
 | 
						|
  buildSchedule(getRegion().getNode(), LoopStack, LI);
 | 
						|
  assert(LoopStack.size() == 1 && LoopStack.back().L == L);
 | 
						|
  Schedule = LoopStack[0].Schedule;
 | 
						|
}
 | 
						|
 | 
						|
/// To generate a schedule for the elements in a Region we traverse the Region
 | 
						|
/// in reverse-post-order and add the contained RegionNodes in traversal order
 | 
						|
/// to the schedule of the loop that is currently at the top of the LoopStack.
 | 
						|
/// For loop-free codes, this results in a correct sequential ordering.
 | 
						|
///
 | 
						|
/// Example:
 | 
						|
///           bb1(0)
 | 
						|
///         /     \.
 | 
						|
///      bb2(1)   bb3(2)
 | 
						|
///         \    /  \.
 | 
						|
///          bb4(3)  bb5(4)
 | 
						|
///             \   /
 | 
						|
///              bb6(5)
 | 
						|
///
 | 
						|
/// Including loops requires additional processing. Whenever a loop header is
 | 
						|
/// encountered, the corresponding loop is added to the @p LoopStack. Starting
 | 
						|
/// from an empty schedule, we first process all RegionNodes that are within
 | 
						|
/// this loop and complete the sequential schedule at this loop-level before
 | 
						|
/// processing about any other nodes. To implement this
 | 
						|
/// loop-nodes-first-processing, the reverse post-order traversal is
 | 
						|
/// insufficient. Hence, we additionally check if the traversal yields
 | 
						|
/// sub-regions or blocks that are outside the last loop on the @p LoopStack.
 | 
						|
/// These region-nodes are then queue and only traverse after the all nodes
 | 
						|
/// within the current loop have been processed.
 | 
						|
void Scop::buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI) {
 | 
						|
  Loop *OuterScopLoop = getLoopSurroundingScop(*this, LI);
 | 
						|
 | 
						|
  ReversePostOrderTraversal<Region *> RTraversal(R);
 | 
						|
  std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
 | 
						|
  std::deque<RegionNode *> DelayList;
 | 
						|
  bool LastRNWaiting = false;
 | 
						|
 | 
						|
  // Iterate over the region @p R in reverse post-order but queue
 | 
						|
  // sub-regions/blocks iff they are not part of the last encountered but not
 | 
						|
  // completely traversed loop. The variable LastRNWaiting is a flag to indicate
 | 
						|
  // that we queued the last sub-region/block from the reverse post-order
 | 
						|
  // iterator. If it is set we have to explore the next sub-region/block from
 | 
						|
  // the iterator (if any) to guarantee progress. If it is not set we first try
 | 
						|
  // the next queued sub-region/blocks.
 | 
						|
  while (!WorkList.empty() || !DelayList.empty()) {
 | 
						|
    RegionNode *RN;
 | 
						|
 | 
						|
    if ((LastRNWaiting && !WorkList.empty()) || DelayList.size() == 0) {
 | 
						|
      RN = WorkList.front();
 | 
						|
      WorkList.pop_front();
 | 
						|
      LastRNWaiting = false;
 | 
						|
    } else {
 | 
						|
      RN = DelayList.front();
 | 
						|
      DelayList.pop_front();
 | 
						|
    }
 | 
						|
 | 
						|
    Loop *L = getRegionNodeLoop(RN, LI);
 | 
						|
    if (!contains(L))
 | 
						|
      L = OuterScopLoop;
 | 
						|
 | 
						|
    Loop *LastLoop = LoopStack.back().L;
 | 
						|
    if (LastLoop != L) {
 | 
						|
      if (LastLoop && !LastLoop->contains(L)) {
 | 
						|
        LastRNWaiting = true;
 | 
						|
        DelayList.push_back(RN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      LoopStack.push_back({L, nullptr, 0});
 | 
						|
    }
 | 
						|
    buildSchedule(RN, LoopStack, LI);
 | 
						|
  }
 | 
						|
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void Scop::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI) {
 | 
						|
 | 
						|
  if (RN->isSubRegion()) {
 | 
						|
    auto *LocalRegion = RN->getNodeAs<Region>();
 | 
						|
    if (!isNonAffineSubRegion(LocalRegion)) {
 | 
						|
      buildSchedule(LocalRegion, LoopStack, LI);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto &LoopData = LoopStack.back();
 | 
						|
  LoopData.NumBlocksProcessed += getNumBlocksInRegionNode(RN);
 | 
						|
 | 
						|
  if (auto *Stmt = getStmtFor(RN)) {
 | 
						|
    auto *UDomain = isl_union_set_from_set(Stmt->getDomain());
 | 
						|
    auto *StmtSchedule = isl_schedule_from_domain(UDomain);
 | 
						|
    LoopData.Schedule = combineInSequence(LoopData.Schedule, StmtSchedule);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we just processed the last node in this loop. If we did, finalize
 | 
						|
  // the loop by:
 | 
						|
  //
 | 
						|
  //   - adding new schedule dimensions
 | 
						|
  //   - folding the resulting schedule into the parent loop schedule
 | 
						|
  //   - dropping the loop schedule from the LoopStack.
 | 
						|
  //
 | 
						|
  // Then continue to check surrounding loops, which might also have been
 | 
						|
  // completed by this node.
 | 
						|
  while (LoopData.L &&
 | 
						|
         LoopData.NumBlocksProcessed == getNumBlocksInLoop(LoopData.L)) {
 | 
						|
    auto *Schedule = LoopData.Schedule;
 | 
						|
    auto NumBlocksProcessed = LoopData.NumBlocksProcessed;
 | 
						|
 | 
						|
    LoopStack.pop_back();
 | 
						|
    auto &NextLoopData = LoopStack.back();
 | 
						|
 | 
						|
    if (Schedule) {
 | 
						|
      auto *Domain = isl_schedule_get_domain(Schedule);
 | 
						|
      auto *MUPA = mapToDimension(Domain, LoopStack.size());
 | 
						|
      Schedule = isl_schedule_insert_partial_schedule(Schedule, MUPA);
 | 
						|
      NextLoopData.Schedule =
 | 
						|
          combineInSequence(NextLoopData.Schedule, Schedule);
 | 
						|
    }
 | 
						|
 | 
						|
    NextLoopData.NumBlocksProcessed += NumBlocksProcessed;
 | 
						|
    LoopData = NextLoopData;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt *Scop::getStmtFor(BasicBlock *BB) const {
 | 
						|
  auto StmtMapIt = StmtMap.find(BB);
 | 
						|
  if (StmtMapIt == StmtMap.end())
 | 
						|
    return nullptr;
 | 
						|
  return StmtMapIt->second;
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt *Scop::getStmtFor(RegionNode *RN) const {
 | 
						|
  if (RN->isSubRegion())
 | 
						|
    return getStmtFor(RN->getNodeAs<Region>());
 | 
						|
  return getStmtFor(RN->getNodeAs<BasicBlock>());
 | 
						|
}
 | 
						|
 | 
						|
ScopStmt *Scop::getStmtFor(Region *R) const {
 | 
						|
  ScopStmt *Stmt = getStmtFor(R->getEntry());
 | 
						|
  assert(!Stmt || Stmt->getRegion() == R);
 | 
						|
  return Stmt;
 | 
						|
}
 | 
						|
 | 
						|
int Scop::getRelativeLoopDepth(const Loop *L) const {
 | 
						|
  Loop *OuterLoop =
 | 
						|
      L ? R.outermostLoopInRegion(const_cast<Loop *>(L)) : nullptr;
 | 
						|
  if (!OuterLoop)
 | 
						|
    return -1;
 | 
						|
  return L->getLoopDepth() - OuterLoop->getLoopDepth();
 | 
						|
}
 | 
						|
 | 
						|
ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) {
 | 
						|
  for (auto &SAI : arrays()) {
 | 
						|
    if (SAI->getName() == BaseName)
 | 
						|
      return SAI;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequired<RegionInfoPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<ScopDetection>();
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
void updateLoopCountStatistic(ScopDetection::LoopStats Stats) {
 | 
						|
  NumLoopsInScop += Stats.NumLoops;
 | 
						|
  MaxNumLoopsInScop =
 | 
						|
      std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
 | 
						|
 | 
						|
  if (Stats.MaxDepth == 1)
 | 
						|
    NumScopsDepthOne++;
 | 
						|
  else if (Stats.MaxDepth == 2)
 | 
						|
    NumScopsDepthTwo++;
 | 
						|
  else if (Stats.MaxDepth == 3)
 | 
						|
    NumScopsDepthThree++;
 | 
						|
  else if (Stats.MaxDepth == 4)
 | 
						|
    NumScopsDepthFour++;
 | 
						|
  else if (Stats.MaxDepth == 5)
 | 
						|
    NumScopsDepthFive++;
 | 
						|
  else
 | 
						|
    NumScopsDepthLarger++;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) {
 | 
						|
  auto &SD = getAnalysis<ScopDetection>();
 | 
						|
 | 
						|
  if (!SD.isMaxRegionInScop(*R))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Function *F = R->getEntry()->getParent();
 | 
						|
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto const &DL = F->getParent()->getDataLayout();
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
 | 
						|
 | 
						|
  ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE);
 | 
						|
  S = SB.getScop(); // take ownership of scop object
 | 
						|
 | 
						|
  if (S) {
 | 
						|
    ScopDetection::LoopStats Stats =
 | 
						|
        ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
 | 
						|
    updateLoopCountStatistic(Stats);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const {
 | 
						|
  if (S)
 | 
						|
    S->print(OS);
 | 
						|
  else
 | 
						|
    OS << "Invalid Scop!\n";
 | 
						|
}
 | 
						|
 | 
						|
char ScopInfoRegionPass::ID = 0;
 | 
						|
 | 
						|
Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops",
 | 
						|
                      "Polly - Create polyhedral description of Scops", false,
 | 
						|
                      false);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
 | 
						|
INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops",
 | 
						|
                    "Polly - Create polyhedral description of Scops", false,
 | 
						|
                    false)
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequired<RegionInfoPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<ScopDetection>();
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool ScopInfoWrapperPass::runOnFunction(Function &F) {
 | 
						|
  auto &SD = getAnalysis<ScopDetection>();
 | 
						|
 | 
						|
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto const &DL = F.getParent()->getDataLayout();
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
 | 
						|
  /// Create polyhedral descripton of scops for all the valid regions of a
 | 
						|
  /// function.
 | 
						|
  for (auto &It : SD) {
 | 
						|
    Region *R = const_cast<Region *>(It);
 | 
						|
    if (!SD.isMaxRegionInScop(*R))
 | 
						|
      continue;
 | 
						|
 | 
						|
    ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE);
 | 
						|
    std::unique_ptr<Scop> S = SB.getScop();
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
    bool Inserted =
 | 
						|
        RegionToScopMap.insert(std::make_pair(R, std::move(S))).second;
 | 
						|
    assert(Inserted && "Building Scop for the same region twice!");
 | 
						|
    (void)Inserted;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
 | 
						|
  for (auto &It : RegionToScopMap) {
 | 
						|
    if (It.second)
 | 
						|
      It.second->print(OS);
 | 
						|
    else
 | 
						|
      OS << "Invalid Scop!\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char ScopInfoWrapperPass::ID = 0;
 | 
						|
 | 
						|
Pass *polly::createScopInfoWrapperPassPass() {
 | 
						|
  return new ScopInfoWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(
 | 
						|
    ScopInfoWrapperPass, "polly-function-scops",
 | 
						|
    "Polly - Create polyhedral description of all Scops of a function", false,
 | 
						|
    false);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
 | 
						|
INITIALIZE_PASS_END(
 | 
						|
    ScopInfoWrapperPass, "polly-function-scops",
 | 
						|
    "Polly - Create polyhedral description of all Scops of a function", false,
 | 
						|
    false)
 |