forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			812 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines ExprEngine's support for C expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
using llvm::APSInt;
 | 
						|
 | 
						|
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
 | 
						|
                                     ExplodedNode *Pred,
 | 
						|
                                     ExplodedNodeSet &Dst) {
 | 
						|
 | 
						|
  Expr *LHS = B->getLHS()->IgnoreParens();
 | 
						|
  Expr *RHS = B->getRHS()->IgnoreParens();
 | 
						|
  
 | 
						|
  // FIXME: Prechecks eventually go in ::Visit().
 | 
						|
  ExplodedNodeSet CheckedSet;
 | 
						|
  ExplodedNodeSet Tmp2;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
 | 
						|
    
 | 
						|
  // With both the LHS and RHS evaluated, process the operation itself.    
 | 
						|
  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
 | 
						|
         it != ei; ++it) {
 | 
						|
      
 | 
						|
    ProgramStateRef state = (*it)->getState();
 | 
						|
    const LocationContext *LCtx = (*it)->getLocationContext();
 | 
						|
    SVal LeftV = state->getSVal(LHS, LCtx);
 | 
						|
    SVal RightV = state->getSVal(RHS, LCtx);
 | 
						|
      
 | 
						|
    BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
      
 | 
						|
    if (Op == BO_Assign) {
 | 
						|
      // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
      // FIXME: Handle structs.
 | 
						|
      if (RightV.isUnknown()) {
 | 
						|
        unsigned Count = currentBuilderContext->getCurrentBlockCount();
 | 
						|
        RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx, Count);
 | 
						|
      }
 | 
						|
      // Simulate the effects of a "store":  bind the value of the RHS
 | 
						|
      // to the L-Value represented by the LHS.
 | 
						|
      SVal ExprVal = B->isLValue() ? LeftV : RightV;
 | 
						|
      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
 | 
						|
                LeftV, RightV);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    if (!B->isAssignmentOp()) {
 | 
						|
      StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
 | 
						|
      // Process non-assignments except commas or short-circuited
 | 
						|
      // logical expressions (LAnd and LOr).
 | 
						|
      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());      
 | 
						|
      if (Result.isUnknown()) {
 | 
						|
        Bldr.generateNode(B, *it, state);
 | 
						|
        continue;
 | 
						|
      }        
 | 
						|
 | 
						|
      state = state->BindExpr(B, LCtx, Result);      
 | 
						|
      Bldr.generateNode(B, *it, state);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    assert (B->isCompoundAssignmentOp());
 | 
						|
    
 | 
						|
    switch (Op) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Invalid opcode for compound assignment.");
 | 
						|
      case BO_MulAssign: Op = BO_Mul; break;
 | 
						|
      case BO_DivAssign: Op = BO_Div; break;
 | 
						|
      case BO_RemAssign: Op = BO_Rem; break;
 | 
						|
      case BO_AddAssign: Op = BO_Add; break;
 | 
						|
      case BO_SubAssign: Op = BO_Sub; break;
 | 
						|
      case BO_ShlAssign: Op = BO_Shl; break;
 | 
						|
      case BO_ShrAssign: Op = BO_Shr; break;
 | 
						|
      case BO_AndAssign: Op = BO_And; break;
 | 
						|
      case BO_XorAssign: Op = BO_Xor; break;
 | 
						|
      case BO_OrAssign:  Op = BO_Or;  break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Perform a load (the LHS).  This performs the checks for
 | 
						|
    // null dereferences, and so on.
 | 
						|
    ExplodedNodeSet Tmp;
 | 
						|
    SVal location = LeftV;
 | 
						|
    evalLoad(Tmp, B, LHS, *it, state, location);
 | 
						|
    
 | 
						|
    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
 | 
						|
         ++I) {
 | 
						|
 | 
						|
      state = (*I)->getState();
 | 
						|
      const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
      SVal V = state->getSVal(LHS, LCtx);
 | 
						|
      
 | 
						|
      // Get the computation type.
 | 
						|
      QualType CTy =
 | 
						|
        cast<CompoundAssignOperator>(B)->getComputationResultType();
 | 
						|
      CTy = getContext().getCanonicalType(CTy);
 | 
						|
      
 | 
						|
      QualType CLHSTy =
 | 
						|
        cast<CompoundAssignOperator>(B)->getComputationLHSType();
 | 
						|
      CLHSTy = getContext().getCanonicalType(CLHSTy);
 | 
						|
      
 | 
						|
      QualType LTy = getContext().getCanonicalType(LHS->getType());
 | 
						|
      
 | 
						|
      // Promote LHS.
 | 
						|
      V = svalBuilder.evalCast(V, CLHSTy, LTy);
 | 
						|
      
 | 
						|
      // Compute the result of the operation.
 | 
						|
      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
 | 
						|
                                         B->getType(), CTy);
 | 
						|
      
 | 
						|
      // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
      // FIXME: Handle structs.
 | 
						|
      
 | 
						|
      SVal LHSVal;
 | 
						|
      
 | 
						|
      if (Result.isUnknown()) {
 | 
						|
        
 | 
						|
        unsigned Count = currentBuilderContext->getCurrentBlockCount();
 | 
						|
        
 | 
						|
        // The symbolic value is actually for the type of the left-hand side
 | 
						|
        // expression, not the computation type, as this is the value the
 | 
						|
        // LValue on the LHS will bind to.
 | 
						|
        LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx,
 | 
						|
						  LTy, Count);
 | 
						|
        
 | 
						|
        // However, we need to convert the symbol to the computation type.
 | 
						|
        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // The left-hand side may bind to a different value then the
 | 
						|
        // computation type.
 | 
						|
        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // In C++, assignment and compound assignment operators return an 
 | 
						|
      // lvalue.
 | 
						|
      if (B->isLValue())
 | 
						|
        state = state->BindExpr(B, LCtx, location);
 | 
						|
      else
 | 
						|
        state = state->BindExpr(B, LCtx, Result);
 | 
						|
      
 | 
						|
      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: postvisits eventually go in ::Visit()
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
 | 
						|
                                ExplodedNodeSet &Dst) {
 | 
						|
  
 | 
						|
  CanQualType T = getContext().getCanonicalType(BE->getType());
 | 
						|
  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
 | 
						|
                                       Pred->getLocationContext());
 | 
						|
  
 | 
						|
  ExplodedNodeSet Tmp;
 | 
						|
  StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
 | 
						|
  Bldr.generateNode(BE, Pred,
 | 
						|
                    Pred->getState()->BindExpr(BE, Pred->getLocationContext(),
 | 
						|
                                               V),
 | 
						|
                    false, 0,
 | 
						|
                    ProgramPoint::PostLValueKind);
 | 
						|
  
 | 
						|
  // FIXME: Move all post/pre visits to ::Visit().
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 
 | 
						|
                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | 
						|
  
 | 
						|
  ExplodedNodeSet dstPreStmt;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
 | 
						|
  
 | 
						|
  if (CastE->getCastKind() == CK_LValueToRValue) {
 | 
						|
    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | 
						|
         I!=E; ++I) {
 | 
						|
      ExplodedNode *subExprNode = *I;
 | 
						|
      ProgramStateRef state = subExprNode->getState();
 | 
						|
      const LocationContext *LCtx = subExprNode->getLocationContext();
 | 
						|
      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // All other casts.  
 | 
						|
  QualType T = CastE->getType();
 | 
						|
  QualType ExTy = Ex->getType();
 | 
						|
  
 | 
						|
  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
 | 
						|
    T = ExCast->getTypeAsWritten();
 | 
						|
  
 | 
						|
  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
 | 
						|
  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    
 | 
						|
    Pred = *I;
 | 
						|
    
 | 
						|
    switch (CastE->getCastKind()) {
 | 
						|
      case CK_LValueToRValue:
 | 
						|
        llvm_unreachable("LValueToRValue casts handled earlier.");
 | 
						|
      case CK_ToVoid:
 | 
						|
        continue;
 | 
						|
        // The analyzer doesn't do anything special with these casts,
 | 
						|
        // since it understands retain/release semantics already.
 | 
						|
      case CK_ARCProduceObject:
 | 
						|
      case CK_ARCConsumeObject:
 | 
						|
      case CK_ARCReclaimReturnedObject:
 | 
						|
      case CK_ARCExtendBlockObject: // Fall-through.
 | 
						|
      case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
        // The analyser can ignore atomic casts for now, although some future
 | 
						|
        // checkers may want to make certain that you're not modifying the same
 | 
						|
        // value through atomic and nonatomic pointers.
 | 
						|
      case CK_AtomicToNonAtomic:
 | 
						|
      case CK_NonAtomicToAtomic:
 | 
						|
        // True no-ops.
 | 
						|
      case CK_NoOp:
 | 
						|
      case CK_FunctionToPointerDecay: {
 | 
						|
        // Copy the SVal of Ex to CastE.
 | 
						|
        ProgramStateRef state = Pred->getState();
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_Dependent:
 | 
						|
      case CK_ArrayToPointerDecay:
 | 
						|
      case CK_BitCast:
 | 
						|
      case CK_LValueBitCast:
 | 
						|
      case CK_IntegralCast:
 | 
						|
      case CK_NullToPointer:
 | 
						|
      case CK_IntegralToPointer:
 | 
						|
      case CK_PointerToIntegral:
 | 
						|
      case CK_PointerToBoolean:
 | 
						|
      case CK_IntegralToBoolean:
 | 
						|
      case CK_IntegralToFloating:
 | 
						|
      case CK_FloatingToIntegral:
 | 
						|
      case CK_FloatingToBoolean:
 | 
						|
      case CK_FloatingCast:
 | 
						|
      case CK_FloatingRealToComplex:
 | 
						|
      case CK_FloatingComplexToReal:
 | 
						|
      case CK_FloatingComplexToBoolean:
 | 
						|
      case CK_FloatingComplexCast:
 | 
						|
      case CK_FloatingComplexToIntegralComplex:
 | 
						|
      case CK_IntegralRealToComplex:
 | 
						|
      case CK_IntegralComplexToReal:
 | 
						|
      case CK_IntegralComplexToBoolean:
 | 
						|
      case CK_IntegralComplexCast:
 | 
						|
      case CK_IntegralComplexToFloatingComplex:
 | 
						|
      case CK_CPointerToObjCPointerCast:
 | 
						|
      case CK_BlockPointerToObjCPointerCast:
 | 
						|
      case CK_AnyPointerToBlockPointerCast:  
 | 
						|
      case CK_ObjCObjectLValueCast: {
 | 
						|
        // Delegate to SValBuilder to process.
 | 
						|
        ProgramStateRef state = Pred->getState();
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        V = svalBuilder.evalCast(V, T, ExTy);
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_DerivedToBase:
 | 
						|
      case CK_UncheckedDerivedToBase: {
 | 
						|
        // For DerivedToBase cast, delegate to the store manager.
 | 
						|
        ProgramStateRef state = Pred->getState();
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal val = state->getSVal(Ex, LCtx);
 | 
						|
        val = getStoreManager().evalDerivedToBase(val, T);
 | 
						|
        state = state->BindExpr(CastE, LCtx, val);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Handle C++ dyn_cast.
 | 
						|
      case CK_Dynamic: {
 | 
						|
        ProgramStateRef state = Pred->getState();
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal val = state->getSVal(Ex, LCtx);
 | 
						|
 | 
						|
        // Compute the type of the result.
 | 
						|
        QualType resultType = CastE->getType();
 | 
						|
        if (CastE->isLValue())
 | 
						|
          resultType = getContext().getPointerType(resultType);
 | 
						|
 | 
						|
        bool Failed = false;
 | 
						|
 | 
						|
        // Check if the value being cast evaluates to 0.
 | 
						|
        if (val.isZeroConstant())
 | 
						|
          Failed = true;
 | 
						|
        // Else, evaluate the cast.
 | 
						|
        else
 | 
						|
          val = getStoreManager().evalDynamicCast(val, T, Failed);
 | 
						|
 | 
						|
        if (Failed) {
 | 
						|
          if (T->isReferenceType()) {
 | 
						|
            // A bad_cast exception is thrown if input value is a reference.
 | 
						|
            // Currently, we model this, by generating a sink.
 | 
						|
            Bldr.generateNode(CastE, Pred, state, true);
 | 
						|
            continue;
 | 
						|
          } else {
 | 
						|
            // If the cast fails on a pointer, bind to 0.
 | 
						|
            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // If we don't know if the cast succeeded, conjure a new symbol.
 | 
						|
          if (val.isUnknown()) {
 | 
						|
            DefinedOrUnknownSVal NewSym = svalBuilder.getConjuredSymbolVal(NULL,
 | 
						|
                                 CastE, LCtx, resultType,
 | 
						|
                                 currentBuilderContext->getCurrentBlockCount());
 | 
						|
            state = state->BindExpr(CastE, LCtx, NewSym);
 | 
						|
          } else 
 | 
						|
            // Else, bind to the derived region value.
 | 
						|
            state = state->BindExpr(CastE, LCtx, val);
 | 
						|
        }
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Various C++ casts that are not handled yet.
 | 
						|
      case CK_ToUnion:
 | 
						|
      case CK_BaseToDerived:
 | 
						|
      case CK_NullToMemberPointer:
 | 
						|
      case CK_BaseToDerivedMemberPointer:
 | 
						|
      case CK_DerivedToBaseMemberPointer:
 | 
						|
      case CK_ReinterpretMemberPointer:
 | 
						|
      case CK_UserDefinedConversion:
 | 
						|
      case CK_ConstructorConversion:
 | 
						|
      case CK_VectorSplat:
 | 
						|
      case CK_MemberPointerToBoolean: {
 | 
						|
        // Recover some path-sensitivty by conjuring a new value.
 | 
						|
        QualType resultType = CastE->getType();
 | 
						|
        if (CastE->isLValue())
 | 
						|
          resultType = getContext().getPointerType(resultType);
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, LCtx,
 | 
						|
                    resultType, currentBuilderContext->getCurrentBlockCount());
 | 
						|
        ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
 | 
						|
                                                               result);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
 | 
						|
                                          ExplodedNode *Pred,
 | 
						|
                                          ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
 | 
						|
 | 
						|
  const InitListExpr *ILE 
 | 
						|
    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
 | 
						|
  
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
 | 
						|
  const LocationContext *LC = Pred->getLocationContext();
 | 
						|
  state = state->bindCompoundLiteral(CL, LC, ILV);
 | 
						|
  
 | 
						|
  if (CL->isLValue())
 | 
						|
    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
 | 
						|
  else
 | 
						|
    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
 | 
						|
                               ExplodedNodeSet &Dst) {
 | 
						|
  
 | 
						|
  // FIXME: static variables may have an initializer, but the second
 | 
						|
  //  time a function is called those values may not be current.
 | 
						|
  //  This may need to be reflected in the CFG.
 | 
						|
  
 | 
						|
  // Assumption: The CFG has one DeclStmt per Decl.
 | 
						|
  const Decl *D = *DS->decl_begin();
 | 
						|
  
 | 
						|
  if (!D || !isa<VarDecl>(D)) {
 | 
						|
    //TODO:AZ: remove explicit insertion after refactoring is done.
 | 
						|
    Dst.insert(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: all pre/post visits should eventually be handled by ::Visit().
 | 
						|
  ExplodedNodeSet dstPreVisit;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
 | 
						|
  
 | 
						|
  StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
 | 
						|
  const VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
 | 
						|
       I!=E; ++I) {
 | 
						|
    ExplodedNode *N = *I;
 | 
						|
    ProgramStateRef state = N->getState();
 | 
						|
    
 | 
						|
    // Decls without InitExpr are not initialized explicitly.
 | 
						|
    const LocationContext *LC = N->getLocationContext();
 | 
						|
    
 | 
						|
    if (const Expr *InitEx = VD->getInit()) {
 | 
						|
      SVal InitVal = state->getSVal(InitEx, Pred->getLocationContext());
 | 
						|
      
 | 
						|
      // We bound the temp obj region to the CXXConstructExpr. Now recover
 | 
						|
      // the lazy compound value when the variable is not a reference.
 | 
						|
      if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 
 | 
						|
          !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
 | 
						|
        InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
 | 
						|
        assert(isa<nonloc::LazyCompoundVal>(InitVal));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Recover some path-sensitivity if a scalar value evaluated to
 | 
						|
      // UnknownVal.
 | 
						|
      if (InitVal.isUnknown()) {
 | 
						|
	QualType Ty = InitEx->getType();
 | 
						|
	if (InitEx->isLValue()) {
 | 
						|
	  Ty = getContext().getPointerType(Ty);
 | 
						|
	}
 | 
						|
 | 
						|
        InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, LC, Ty,
 | 
						|
                                 currentBuilderContext->getCurrentBlockCount());
 | 
						|
      }
 | 
						|
      B.takeNodes(N);
 | 
						|
      ExplodedNodeSet Dst2;
 | 
						|
      evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
 | 
						|
      B.addNodes(Dst2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
 | 
						|
                                  ExplodedNodeSet &Dst) {
 | 
						|
  assert(B->getOpcode() == BO_LAnd ||
 | 
						|
         B->getOpcode() == BO_LOr);
 | 
						|
 | 
						|
  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  SVal X = state->getSVal(B, LCtx);
 | 
						|
  assert(X.isUndef());
 | 
						|
  
 | 
						|
  const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  assert(Ex);
 | 
						|
  
 | 
						|
  if (Ex == B->getRHS()) {
 | 
						|
    X = state->getSVal(Ex, LCtx);
 | 
						|
    
 | 
						|
    // Handle undefined values.
 | 
						|
    if (X.isUndef()) {
 | 
						|
      Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
 | 
						|
    
 | 
						|
    // We took the RHS.  Because the value of the '&&' or '||' expression must
 | 
						|
    // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
 | 
						|
    // or 1.  Alternatively, we could take a lazy approach, and calculate this
 | 
						|
    // value later when necessary.  We don't have the machinery in place for
 | 
						|
    // this right now, and since most logical expressions are used for branches,
 | 
						|
    // the payoff is not likely to be large.  Instead, we do eager evaluation.
 | 
						|
    if (ProgramStateRef newState = state->assume(XD, true))
 | 
						|
      Bldr.generateNode(B, Pred,
 | 
						|
               newState->BindExpr(B, LCtx,
 | 
						|
                                  svalBuilder.makeIntVal(1U, B->getType())));
 | 
						|
    
 | 
						|
    if (ProgramStateRef newState = state->assume(XD, false))
 | 
						|
      Bldr.generateNode(B, Pred,
 | 
						|
               newState->BindExpr(B, LCtx,
 | 
						|
                                  svalBuilder.makeIntVal(0U, B->getType())));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // We took the LHS expression.  Depending on whether we are '&&' or
 | 
						|
    // '||' we know what the value of the expression is via properties of
 | 
						|
    // the short-circuiting.
 | 
						|
    X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
 | 
						|
                               B->getType());
 | 
						|
    Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
 | 
						|
                                   ExplodedNode *Pred,
 | 
						|
                                   ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
 | 
						|
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  QualType T = getContext().getCanonicalType(IE->getType());
 | 
						|
  unsigned NumInitElements = IE->getNumInits();
 | 
						|
  
 | 
						|
  if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
 | 
						|
    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
 | 
						|
    
 | 
						|
    // Handle base case where the initializer has no elements.
 | 
						|
    // e.g: static int* myArray[] = {};
 | 
						|
    if (NumInitElements == 0) {
 | 
						|
      SVal V = svalBuilder.makeCompoundVal(T, vals);
 | 
						|
      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
 | 
						|
         ei = IE->rend(); it != ei; ++it) {
 | 
						|
      vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
 | 
						|
                                     vals);
 | 
						|
    }
 | 
						|
    
 | 
						|
    B.generateNode(IE, Pred,
 | 
						|
                   state->BindExpr(IE, LCtx,
 | 
						|
                                   svalBuilder.makeCompoundVal(T, vals)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Loc::isLocType(T) || T->isIntegerType()) {
 | 
						|
    assert(IE->getNumInits() == 1);
 | 
						|
    const Expr *initEx = IE->getInit(0);
 | 
						|
    B.generateNode(IE, Pred, state->BindExpr(IE, LCtx,
 | 
						|
                                             state->getSVal(initEx, LCtx)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm_unreachable("unprocessed InitListExpr type");
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
 | 
						|
                                  const Expr *L, 
 | 
						|
                                  const Expr *R,
 | 
						|
                                  ExplodedNode *Pred,
 | 
						|
                                  ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
 | 
						|
  
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  SVal X = state->getSVal(Ex, LCtx);  
 | 
						|
  assert (X.isUndef());  
 | 
						|
  const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  assert(SE);
 | 
						|
  X = state->getSVal(SE, LCtx);
 | 
						|
  
 | 
						|
  // Make sure that we invalidate the previous binding.
 | 
						|
  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, X, true));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::
 | 
						|
VisitOffsetOfExpr(const OffsetOfExpr *OOE, 
 | 
						|
                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
 | 
						|
  APSInt IV;
 | 
						|
  if (OOE->EvaluateAsInt(IV, getContext())) {
 | 
						|
    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
 | 
						|
    assert(OOE->getType()->isIntegerType());
 | 
						|
    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
 | 
						|
    SVal X = svalBuilder.makeIntVal(IV);
 | 
						|
    B.generateNode(OOE, Pred,
 | 
						|
                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
 | 
						|
                                              X));
 | 
						|
  }
 | 
						|
  // FIXME: Handle the case where __builtin_offsetof is not a constant.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ExprEngine::
 | 
						|
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
 | 
						|
                              ExplodedNode *Pred,
 | 
						|
                              ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
 | 
						|
 | 
						|
  QualType T = Ex->getTypeOfArgument();
 | 
						|
  
 | 
						|
  if (Ex->getKind() == UETT_SizeOf) {
 | 
						|
    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
 | 
						|
      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
 | 
						|
      
 | 
						|
      // FIXME: Add support for VLA type arguments and VLA expressions.
 | 
						|
      // When that happens, we should probably refactor VLASizeChecker's code.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    else if (T->getAs<ObjCObjectType>()) {
 | 
						|
      // Some code tries to take the sizeof an ObjCObjectType, relying that
 | 
						|
      // the compiler has laid out its representation.  Just report Unknown
 | 
						|
      // for these.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
 | 
						|
  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
 | 
						|
  
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  state = state->BindExpr(Ex, Pred->getLocationContext(),
 | 
						|
                          svalBuilder.makeIntVal(amt.getQuantity(),
 | 
						|
                                                     Ex->getType()));
 | 
						|
  Bldr.generateNode(Ex, Pred, state);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 
 | 
						|
                                    ExplodedNode *Pred,
 | 
						|
                                    ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
 | 
						|
  switch (U->getOpcode()) {
 | 
						|
    default: {
 | 
						|
      Bldr.takeNodes(Pred);
 | 
						|
      ExplodedNodeSet Tmp;
 | 
						|
      VisitIncrementDecrementOperator(U, Pred, Tmp);
 | 
						|
      Bldr.addNodes(Tmp);
 | 
						|
    }
 | 
						|
      break;
 | 
						|
    case UO_Real: {
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
        
 | 
						|
      // FIXME: We don't have complex SValues yet.
 | 
						|
      if (Ex->getType()->isAnyComplexType()) {
 | 
						|
        // Just report "Unknown."
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      // For all other types, UO_Real is an identity operation.
 | 
						|
      assert (U->getType() == Ex->getType());
 | 
						|
      ProgramStateRef state = Pred->getState();
 | 
						|
      const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
 | 
						|
                                                 state->getSVal(Ex, LCtx)));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UO_Imag: {      
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      // FIXME: We don't have complex SValues yet.
 | 
						|
      if (Ex->getType()->isAnyComplexType()) {
 | 
						|
        // Just report "Unknown."
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // For all other types, UO_Imag returns 0.
 | 
						|
      ProgramStateRef state = Pred->getState();
 | 
						|
      const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
      SVal X = svalBuilder.makeZeroVal(Ex->getType());
 | 
						|
      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UO_Plus:
 | 
						|
      assert(!U->isLValue());
 | 
						|
      // FALL-THROUGH.
 | 
						|
    case UO_Deref:
 | 
						|
    case UO_AddrOf:
 | 
						|
    case UO_Extension: {
 | 
						|
      // FIXME: We can probably just have some magic in Environment::getSVal()
 | 
						|
      // that propagates values, instead of creating a new node here.
 | 
						|
      //
 | 
						|
      // Unary "+" is a no-op, similar to a parentheses.  We still have places
 | 
						|
      // where it may be a block-level expression, so we need to
 | 
						|
      // generate an extra node that just propagates the value of the
 | 
						|
      // subexpression.      
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      ProgramStateRef state = Pred->getState();
 | 
						|
      const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
 | 
						|
                                                 state->getSVal(Ex, LCtx)));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UO_LNot:
 | 
						|
    case UO_Minus:
 | 
						|
    case UO_Not: {
 | 
						|
      assert (!U->isLValue());
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      ProgramStateRef state = Pred->getState();
 | 
						|
      const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        
 | 
						|
      // Get the value of the subexpression.
 | 
						|
      SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        
 | 
						|
      if (V.isUnknownOrUndef()) {
 | 
						|
        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      switch (U->getOpcode()) {
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid Opcode.");
 | 
						|
        case UO_Not:
 | 
						|
          // FIXME: Do we need to handle promotions?
 | 
						|
          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
 | 
						|
          break;
 | 
						|
        case UO_Minus:
 | 
						|
          // FIXME: Do we need to handle promotions?
 | 
						|
          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
 | 
						|
          break;
 | 
						|
        case UO_LNot:
 | 
						|
          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
 | 
						|
          //
 | 
						|
          //  Note: technically we do "E == 0", but this is the same in the
 | 
						|
          //    transfer functions as "0 == E".
 | 
						|
          SVal Result;          
 | 
						|
          if (isa<Loc>(V)) {
 | 
						|
            Loc X = svalBuilder.makeNull();
 | 
						|
            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
 | 
						|
                               U->getType());
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
 | 
						|
            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
 | 
						|
                               U->getType());
 | 
						|
          }
 | 
						|
          
 | 
						|
          state = state->BindExpr(U, LCtx, Result);          
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      Bldr.generateNode(U, Pred, state);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
 | 
						|
                                                 ExplodedNode *Pred,
 | 
						|
                                                 ExplodedNodeSet &Dst) {
 | 
						|
  // Handle ++ and -- (both pre- and post-increment).
 | 
						|
  assert (U->isIncrementDecrementOp());
 | 
						|
  const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
  
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  SVal loc = state->getSVal(Ex, LCtx);
 | 
						|
  
 | 
						|
  // Perform a load.
 | 
						|
  ExplodedNodeSet Tmp;
 | 
						|
  evalLoad(Tmp, U, Ex, Pred, state, loc);
 | 
						|
  
 | 
						|
  ExplodedNodeSet Dst2;
 | 
						|
  StmtNodeBuilder Bldr(Tmp, Dst2, *currentBuilderContext);
 | 
						|
  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
 | 
						|
    
 | 
						|
    state = (*I)->getState();
 | 
						|
    assert(LCtx == (*I)->getLocationContext());
 | 
						|
    SVal V2_untested = state->getSVal(Ex, LCtx);
 | 
						|
    
 | 
						|
    // Propagate unknown and undefined values.
 | 
						|
    if (V2_untested.isUnknownOrUndef()) {
 | 
						|
      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
 | 
						|
    
 | 
						|
    // Handle all other values.
 | 
						|
    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
 | 
						|
    
 | 
						|
    // If the UnaryOperator has non-location type, use its type to create the
 | 
						|
    // constant value. If the UnaryOperator has location type, create the
 | 
						|
    // constant with int type and pointer width.
 | 
						|
    SVal RHS;
 | 
						|
    
 | 
						|
    if (U->getType()->isAnyPointerType())
 | 
						|
      RHS = svalBuilder.makeArrayIndex(1);
 | 
						|
    else
 | 
						|
      RHS = svalBuilder.makeIntVal(1, U->getType());
 | 
						|
    
 | 
						|
    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
 | 
						|
    
 | 
						|
    // Conjure a new symbol if necessary to recover precision.
 | 
						|
    if (Result.isUnknown()){
 | 
						|
      DefinedOrUnknownSVal SymVal =
 | 
						|
	svalBuilder.getConjuredSymbolVal(NULL, Ex, LCtx,
 | 
						|
                               currentBuilderContext->getCurrentBlockCount());
 | 
						|
      Result = SymVal;
 | 
						|
      
 | 
						|
      // If the value is a location, ++/-- should always preserve
 | 
						|
      // non-nullness.  Check if the original value was non-null, and if so
 | 
						|
      // propagate that constraint.
 | 
						|
      if (Loc::isLocType(U->getType())) {
 | 
						|
        DefinedOrUnknownSVal Constraint =
 | 
						|
        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
 | 
						|
        
 | 
						|
        if (!state->assume(Constraint, true)) {
 | 
						|
          // It isn't feasible for the original value to be null.
 | 
						|
          // Propagate this constraint.
 | 
						|
          Constraint = svalBuilder.evalEQ(state, SymVal,
 | 
						|
                                       svalBuilder.makeZeroVal(U->getType()));
 | 
						|
          
 | 
						|
          
 | 
						|
          state = state->assume(Constraint, false);
 | 
						|
          assert(state);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Since the lvalue-to-rvalue conversion is explicit in the AST,
 | 
						|
    // we bind an l-value if the operator is prefix and an lvalue (in C++).
 | 
						|
    if (U->isLValue())
 | 
						|
      state = state->BindExpr(U, LCtx, loc);
 | 
						|
    else
 | 
						|
      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
 | 
						|
    
 | 
						|
    // Perform the store.
 | 
						|
    Bldr.takeNodes(*I);
 | 
						|
    ExplodedNodeSet Dst3;
 | 
						|
    evalStore(Dst3, U, U, *I, state, loc, Result);
 | 
						|
    Bldr.addNodes(Dst3);
 | 
						|
  }
 | 
						|
  Dst.insert(Dst2);
 | 
						|
}
 |