forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2834 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2834 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  Created by Greg Clayton on 6/25/07.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#if defined (__arm__)
 | 
						|
 | 
						|
#include "MacOSX/arm/DNBArchImpl.h"
 | 
						|
#include "MacOSX/MachProcess.h"
 | 
						|
#include "MacOSX/MachThread.h"
 | 
						|
#include "DNBBreakpoint.h"
 | 
						|
#include "DNBLog.h"
 | 
						|
#include "DNBRegisterInfo.h"
 | 
						|
#include "DNB.h"
 | 
						|
#include "ARM_GCC_Registers.h"
 | 
						|
#include "ARM_DWARF_Registers.h"
 | 
						|
 | 
						|
#include <sys/sysctl.h>
 | 
						|
 | 
						|
// BCR address match type
 | 
						|
#define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
 | 
						|
#define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
 | 
						|
#define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
 | 
						|
#define BCR_M_RESERVED          ((uint32_t)(3u << 21))
 | 
						|
 | 
						|
// Link a BVR/BCR or WVR/WCR pair to another
 | 
						|
#define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
 | 
						|
 | 
						|
// Byte Address Select
 | 
						|
#define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
 | 
						|
#define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
 | 
						|
#define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
 | 
						|
#define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
 | 
						|
#define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
 | 
						|
#define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
 | 
						|
#define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
 | 
						|
 | 
						|
// Break only in priveleged or user mode
 | 
						|
#define S_RSVD                  ((uint32_t)(0u << 1))
 | 
						|
#define S_PRIV                  ((uint32_t)(1u << 1))
 | 
						|
#define S_USER                  ((uint32_t)(2u << 1))
 | 
						|
#define S_PRIV_USER             ((S_PRIV) | (S_USER))
 | 
						|
 | 
						|
#define BCR_ENABLE              ((uint32_t)(1u))
 | 
						|
#define WCR_ENABLE              ((uint32_t)(1u))
 | 
						|
 | 
						|
// Watchpoint load/store
 | 
						|
#define WCR_LOAD                ((uint32_t)(1u << 3))
 | 
						|
#define WCR_STORE               ((uint32_t)(1u << 4))
 | 
						|
 | 
						|
//#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1
 | 
						|
 | 
						|
static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
 | 
						|
static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
 | 
						|
 | 
						|
// ARM constants used during decoding
 | 
						|
#define REG_RD          0
 | 
						|
#define LDM_REGLIST     1
 | 
						|
#define PC_REG          15
 | 
						|
#define PC_REGLIST_BIT  0x8000
 | 
						|
 | 
						|
// ARM conditions
 | 
						|
#define COND_EQ     0x0
 | 
						|
#define COND_NE     0x1
 | 
						|
#define COND_CS     0x2
 | 
						|
#define COND_HS     0x2
 | 
						|
#define COND_CC     0x3
 | 
						|
#define COND_LO     0x3
 | 
						|
#define COND_MI     0x4
 | 
						|
#define COND_PL     0x5
 | 
						|
#define COND_VS     0x6
 | 
						|
#define COND_VC     0x7
 | 
						|
#define COND_HI     0x8
 | 
						|
#define COND_LS     0x9
 | 
						|
#define COND_GE     0xA
 | 
						|
#define COND_LT     0xB
 | 
						|
#define COND_GT     0xC
 | 
						|
#define COND_LE     0xD
 | 
						|
#define COND_AL     0xE
 | 
						|
#define COND_UNCOND 0xF
 | 
						|
 | 
						|
#define MASK_CPSR_T (1u << 5)
 | 
						|
#define MASK_CPSR_J (1u << 24)
 | 
						|
 | 
						|
#define MNEMONIC_STRING_SIZE 32
 | 
						|
#define OPERAND_STRING_SIZE 128
 | 
						|
 | 
						|
const uint8_t * const
 | 
						|
DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
 | 
						|
{
 | 
						|
    switch (byte_size)
 | 
						|
    {
 | 
						|
    case 2: return g_thumb_breakpooint_opcode;
 | 
						|
    case 4: return g_arm_breakpoint_opcode;
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t
 | 
						|
DNBArchMachARM::GetCPUType()
 | 
						|
{
 | 
						|
    return CPU_TYPE_ARM;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
DNBArchMachARM::GetPC(uint64_t failValue)
 | 
						|
{
 | 
						|
    // Get program counter
 | 
						|
    if (GetGPRState(false) == KERN_SUCCESS)
 | 
						|
        return m_state.context.gpr.__pc;
 | 
						|
    return failValue;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetPC(uint64_t value)
 | 
						|
{
 | 
						|
    // Get program counter
 | 
						|
    kern_return_t err = GetGPRState(false);
 | 
						|
    if (err == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        m_state.context.gpr.__pc = value;
 | 
						|
        err = SetGPRState();
 | 
						|
    }
 | 
						|
    return err == KERN_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
DNBArchMachARM::GetSP(uint64_t failValue)
 | 
						|
{
 | 
						|
    // Get stack pointer
 | 
						|
    if (GetGPRState(false) == KERN_SUCCESS)
 | 
						|
        return m_state.context.gpr.__sp;
 | 
						|
    return failValue;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::GetGPRState(bool force)
 | 
						|
{
 | 
						|
    int set = e_regSetGPR;
 | 
						|
    // Check if we have valid cached registers
 | 
						|
    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | 
						|
        return KERN_SUCCESS;
 | 
						|
 | 
						|
    // Read the registers from our thread
 | 
						|
    mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
 | 
						|
    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
 | 
						|
    uint32_t *r = &m_state.context.gpr.__r[0];
 | 
						|
    DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", m_thread->ThreadID(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT, kret,
 | 
						|
     r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
 | 
						|
    m_state.SetError(set, Read, kret);
 | 
						|
    return kret;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::GetVFPState(bool force)
 | 
						|
{
 | 
						|
    int set = e_regSetVFP;
 | 
						|
    // Check if we have valid cached registers
 | 
						|
    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | 
						|
        return KERN_SUCCESS;
 | 
						|
 | 
						|
    // Read the registers from our thread
 | 
						|
    mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
 | 
						|
    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
 | 
						|
    m_state.SetError(set, Read, kret);
 | 
						|
    return kret;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::GetEXCState(bool force)
 | 
						|
{
 | 
						|
    int set = e_regSetEXC;
 | 
						|
    // Check if we have valid cached registers
 | 
						|
    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | 
						|
        return KERN_SUCCESS;
 | 
						|
 | 
						|
    // Read the registers from our thread
 | 
						|
    mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
 | 
						|
    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
 | 
						|
    m_state.SetError(set, Read, kret);
 | 
						|
    return kret;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
DumpDBGState(const arm_debug_state_t& dbg)
 | 
						|
{
 | 
						|
    uint32_t i = 0;
 | 
						|
    for (i=0; i<16; i++)
 | 
						|
        DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
 | 
						|
            i, i, dbg.__bvr[i], dbg.__bcr[i],
 | 
						|
            i, i, dbg.__wvr[i], dbg.__wcr[i]);
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::GetDBGState(bool force)
 | 
						|
{
 | 
						|
    int set = e_regSetDBG;
 | 
						|
 | 
						|
    // Check if we have valid cached registers
 | 
						|
    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | 
						|
        return KERN_SUCCESS;
 | 
						|
 | 
						|
    // Read the registers from our thread
 | 
						|
    mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
 | 
						|
    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
 | 
						|
    m_state.SetError(set, Read, kret);
 | 
						|
    return kret;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetGPRState()
 | 
						|
{
 | 
						|
    int set = e_regSetGPR;
 | 
						|
    kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
 | 
						|
    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | 
						|
    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | 
						|
    return kret;                                // Return the error code
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetVFPState()
 | 
						|
{
 | 
						|
    int set = e_regSetVFP;
 | 
						|
    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
 | 
						|
    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | 
						|
    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | 
						|
    return kret;                                // Return the error code
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetEXCState()
 | 
						|
{
 | 
						|
    int set = e_regSetEXC;
 | 
						|
    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
 | 
						|
    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | 
						|
    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | 
						|
    return kret;                                // Return the error code
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetDBGState()
 | 
						|
{
 | 
						|
    int set = e_regSetDBG;
 | 
						|
    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
 | 
						|
    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | 
						|
    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | 
						|
    return kret;                                // Return the error code
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
DNBArchMachARM::ThreadWillResume()
 | 
						|
{
 | 
						|
    // Do we need to step this thread? If so, let the mach thread tell us so.
 | 
						|
    if (m_thread->IsStepping())
 | 
						|
    {
 | 
						|
        bool step_handled = false;
 | 
						|
        // This is the primary thread, let the arch do anything it needs
 | 
						|
        if (NumSupportedHardwareBreakpoints() > 0)
 | 
						|
        {
 | 
						|
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
 | 
						|
            bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS;
 | 
						|
#endif
 | 
						|
            step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS;
 | 
						|
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
 | 
						|
            if (!half_step)
 | 
						|
                step_handled = false;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
 | 
						|
        if (!step_handled)
 | 
						|
        {
 | 
						|
            SetSingleStepSoftwareBreakpoints();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::ThreadDidStop()
 | 
						|
{
 | 
						|
    bool success = true;
 | 
						|
 | 
						|
    m_state.InvalidateRegisterSetState (e_regSetALL);
 | 
						|
 | 
						|
    // Are we stepping a single instruction?
 | 
						|
    if (GetGPRState(true) == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        // We are single stepping, was this the primary thread?
 | 
						|
        if (m_thread->IsStepping())
 | 
						|
        {
 | 
						|
#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
 | 
						|
            success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
 | 
						|
            // Hardware single step must work if we are going to test software
 | 
						|
            // single step functionality
 | 
						|
            assert(success);
 | 
						|
            if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS)
 | 
						|
            {
 | 
						|
                uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu;
 | 
						|
                bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0;
 | 
						|
                bool actual_next_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
 | 
						|
                if (m_state.context.gpr.__pc != sw_step_next_pc)
 | 
						|
                {
 | 
						|
                    DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.context.gpr.__pc, sw_step_next_pc, m_state.context.gpr.__pc);
 | 
						|
                    exit(1);
 | 
						|
                }
 | 
						|
                if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb)
 | 
						|
                {
 | 
						|
                    DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s",
 | 
						|
                                m_state.context.gpr.__pc,
 | 
						|
                                actual_next_pc_is_thumb ? "Thumb" : "ARM",
 | 
						|
                                sw_step_next_pc_is_thumb ? "Thumb" : "ARM");
 | 
						|
                    exit(1);
 | 
						|
                }
 | 
						|
                m_sw_single_step_next_pc = INVALID_NUB_ADDRESS;
 | 
						|
            }
 | 
						|
#else
 | 
						|
            // Are we software single stepping?
 | 
						|
            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
 | 
						|
            {
 | 
						|
                // Remove any software single stepping breakpoints that we have set
 | 
						|
 | 
						|
                // Do we have a normal software single step breakpoint?
 | 
						|
                if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
 | 
						|
                {
 | 
						|
                    DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
 | 
						|
                    success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
 | 
						|
                    m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
 | 
						|
                }
 | 
						|
 | 
						|
                // Do we have any Thumb IT breakpoints?
 | 
						|
                if (m_sw_single_step_itblock_break_count > 0)
 | 
						|
                {
 | 
						|
                    // See if we hit one of our Thumb IT breakpoints?
 | 
						|
                    DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc);
 | 
						|
 | 
						|
                    if (step_bp)
 | 
						|
                    {
 | 
						|
                        // We did hit our breakpoint, tell the breakpoint it was
 | 
						|
                        // hit so that it can run its callback routine and fixup
 | 
						|
                        // the PC.
 | 
						|
                        DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
 | 
						|
                        step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Remove all Thumb IT breakpoints
 | 
						|
                    for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
 | 
						|
                    {
 | 
						|
                        if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
 | 
						|
                        {
 | 
						|
                            DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
 | 
						|
                            success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
 | 
						|
                            m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    m_sw_single_step_itblock_break_count = 0;
 | 
						|
 | 
						|
                    // Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block
 | 
						|
                    // The decoder has to decode each instruction in the IT block even if it is not executed so that
 | 
						|
                    // the fields are correctly updated
 | 
						|
                    DecodeITBlockInstructions(m_state.context.gpr.__pc);
 | 
						|
                }
 | 
						|
 | 
						|
            }
 | 
						|
            else
 | 
						|
                success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // The MachThread will automatically restore the suspend count
 | 
						|
            // in ThreadDidStop(), so we don't need to do anything here if
 | 
						|
            // we weren't the primary thread the last time
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return success;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::StepNotComplete ()
 | 
						|
{
 | 
						|
    if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
 | 
						|
    {
 | 
						|
        kern_return_t kret = KERN_INVALID_ARGUMENT;
 | 
						|
        kret = GetGPRState(false);
 | 
						|
        if (kret == KERN_SUCCESS)
 | 
						|
        {
 | 
						|
            if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc)
 | 
						|
 | 
						|
{
 | 
						|
    uint16_t opcode16;
 | 
						|
    uint32_t opcode32;
 | 
						|
    nub_addr_t next_pc_in_itblock;
 | 
						|
    nub_addr_t pc_in_itblock = m_last_decode_pc;
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
 | 
						|
 | 
						|
    // Decode IT block instruction from the instruction following the m_last_decoded_instruction at
 | 
						|
    // PC m_last_decode_pc upto and including the instruction at curr_pc
 | 
						|
    if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
 | 
						|
    {
 | 
						|
        opcode32 = opcode16;
 | 
						|
        pc_in_itblock += 2;
 | 
						|
        // Check for 32 bit thumb opcode and read the upper 16 bits if needed
 | 
						|
        if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800)
 | 
						|
        {
 | 
						|
            // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
 | 
						|
            // a 32 bit Thumb opcode
 | 
						|
            // Read bits 31:16 of a 32 bit Thumb opcode
 | 
						|
            if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
 | 
						|
            {
 | 
						|
                pc_in_itblock += 2;
 | 
						|
                // 32 bit thumb opcode
 | 
						|
                opcode32 = (opcode32 << 16) | opcode16;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", __FUNCTION__, pc_in_itblock);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock);
 | 
						|
    }
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc);
 | 
						|
 | 
						|
    next_pc_in_itblock = pc_in_itblock;
 | 
						|
    while (next_pc_in_itblock <= curr_pc)
 | 
						|
    {
 | 
						|
        arm_error_t decodeError;
 | 
						|
 | 
						|
        m_last_decode_pc = pc_in_itblock;
 | 
						|
        decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.context.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock);
 | 
						|
 | 
						|
        pc_in_itblock = next_pc_in_itblock;
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Set the single step bit in the processor status register.
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::EnableHardwareSingleStep (bool enable)
 | 
						|
{
 | 
						|
    DNBError err;
 | 
						|
    DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
 | 
						|
 | 
						|
    err = GetGPRState(false);
 | 
						|
 | 
						|
    if (err.Fail())
 | 
						|
    {
 | 
						|
        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
 | 
						|
        return err.Error();
 | 
						|
    }
 | 
						|
 | 
						|
    err = GetDBGState(false);
 | 
						|
 | 
						|
    if (err.Fail())
 | 
						|
    {
 | 
						|
        err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
 | 
						|
        return err.Error();
 | 
						|
    }
 | 
						|
 | 
						|
    const uint32_t i = 0;
 | 
						|
    if (enable)
 | 
						|
    {
 | 
						|
        m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
 | 
						|
 | 
						|
        // Save our previous state
 | 
						|
        m_dbg_save = m_state.dbg;
 | 
						|
        // Set a breakpoint that will stop when the PC doesn't match the current one!
 | 
						|
        m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
 | 
						|
        m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
 | 
						|
                               S_USER |                 // Stop only in user mode
 | 
						|
                               BCR_ENABLE;              // Enable this breakpoint
 | 
						|
        if (m_state.context.gpr.__cpsr & 0x20)
 | 
						|
        {
 | 
						|
            // Thumb breakpoint
 | 
						|
            if (m_state.context.gpr.__pc & 2)
 | 
						|
                m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
 | 
						|
            else
 | 
						|
                m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
 | 
						|
 | 
						|
            uint16_t opcode;
 | 
						|
            if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
 | 
						|
            {
 | 
						|
                if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
 | 
						|
                {
 | 
						|
                    // 32 bit thumb opcode...
 | 
						|
                    if (m_state.context.gpr.__pc & 2)
 | 
						|
                    {
 | 
						|
                        // We can't take care of a 32 bit thumb instruction single step
 | 
						|
                        // with just IVA mismatching. We will need to chain an extra
 | 
						|
                        // hardware single step in order to complete this single step...
 | 
						|
                        m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        // Extend the number of bits to ignore for the mismatch
 | 
						|
                        m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // ARM breakpoint
 | 
						|
            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
 | 
						|
        }
 | 
						|
 | 
						|
        DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
 | 
						|
 | 
						|
        for (uint32_t j=i+1; j<16; ++j)
 | 
						|
        {
 | 
						|
            // Disable all others
 | 
						|
            m_state.dbg.__bvr[j] = 0;
 | 
						|
            m_state.dbg.__bcr[j] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Just restore the state we had before we did single stepping
 | 
						|
        m_state.dbg = m_dbg_save;
 | 
						|
    }
 | 
						|
 | 
						|
    return SetDBGState();
 | 
						|
}
 | 
						|
 | 
						|
// return 1 if bit "BIT" is set in "value"
 | 
						|
static inline uint32_t bit(uint32_t value, uint32_t bit)
 | 
						|
{
 | 
						|
    return (value >> bit) & 1u;
 | 
						|
}
 | 
						|
 | 
						|
// return the bitfield "value[msbit:lsbit]".
 | 
						|
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
 | 
						|
{
 | 
						|
    assert(msbit >= lsbit);
 | 
						|
    uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
 | 
						|
    value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
 | 
						|
    value >>= shift_left + lsbit;   // shift it back again down to the lsbit (including undoing any shift from above)
 | 
						|
    return value;                   // return our result
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
 | 
						|
{
 | 
						|
    uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
 | 
						|
    uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
 | 
						|
    uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
 | 
						|
    uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
 | 
						|
 | 
						|
    switch (condition) {
 | 
						|
        case COND_EQ: // (0x0)
 | 
						|
            if (cpsr_z == 1) return true;
 | 
						|
            break;
 | 
						|
        case COND_NE: // (0x1)
 | 
						|
            if (cpsr_z == 0) return true;
 | 
						|
            break;
 | 
						|
        case COND_CS: // (0x2)
 | 
						|
            if (cpsr_c == 1) return true;
 | 
						|
            break;
 | 
						|
        case COND_CC: // (0x3)
 | 
						|
            if (cpsr_c == 0) return true;
 | 
						|
            break;
 | 
						|
        case COND_MI: // (0x4)
 | 
						|
            if (cpsr_n == 1) return true;
 | 
						|
            break;
 | 
						|
        case COND_PL: // (0x5)
 | 
						|
            if (cpsr_n == 0) return true;
 | 
						|
            break;
 | 
						|
        case COND_VS: // (0x6)
 | 
						|
            if (cpsr_v == 1) return true;
 | 
						|
            break;
 | 
						|
        case COND_VC: // (0x7)
 | 
						|
            if (cpsr_v == 0) return true;
 | 
						|
            break;
 | 
						|
        case COND_HI: // (0x8)
 | 
						|
            if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
 | 
						|
            break;
 | 
						|
        case COND_LS: // (0x9)
 | 
						|
            if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
 | 
						|
            break;
 | 
						|
        case COND_GE: // (0xA)
 | 
						|
            if (cpsr_n == cpsr_v) return true;
 | 
						|
            break;
 | 
						|
        case COND_LT: // (0xB)
 | 
						|
            if (cpsr_n != cpsr_v) return true;
 | 
						|
            break;
 | 
						|
        case COND_GT: // (0xC)
 | 
						|
            if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
 | 
						|
            break;
 | 
						|
        case COND_LE: // (0xD)
 | 
						|
            if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return true;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC)
 | 
						|
{
 | 
						|
    nub_addr_t myTargetPC, addressWherePCLives;
 | 
						|
    pid_t mypid;
 | 
						|
 | 
						|
    uint32_t cpsr_c = bit(m_state.context.gpr.__cpsr, 29); // Carry condition code flag
 | 
						|
 | 
						|
    uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0;
 | 
						|
    uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift;
 | 
						|
    uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX;
 | 
						|
    uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX;
 | 
						|
    uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX;
 | 
						|
    uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX;
 | 
						|
    uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX;
 | 
						|
    uint16_t registerList16, registerList16NoPC;
 | 
						|
    uint8_t registerList8;
 | 
						|
    uint32_t numRegistersToLoad=0;
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code);
 | 
						|
 | 
						|
    // Get the following in this switch statement:
 | 
						|
    //   - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions
 | 
						|
    //   - baseAddress, immediateOffset, shiftAmount: For LDR
 | 
						|
    //   - numRegistersToLoad: For LDM and POP instructions
 | 
						|
    switch (decodedInstruction.instruction->code)
 | 
						|
    {
 | 
						|
            // Arithmetic operations that can change the PC
 | 
						|
        case ARM_INST_ADC:
 | 
						|
        case ARM_INST_ADCS:
 | 
						|
        case ARM_INST_ADD:
 | 
						|
        case ARM_INST_ADDS:
 | 
						|
        case ARM_INST_AND:
 | 
						|
        case ARM_INST_ANDS:
 | 
						|
        case ARM_INST_ASR:
 | 
						|
        case ARM_INST_ASRS:
 | 
						|
        case ARM_INST_BIC:
 | 
						|
        case ARM_INST_BICS:
 | 
						|
        case ARM_INST_EOR:
 | 
						|
        case ARM_INST_EORS:
 | 
						|
        case ARM_INST_ORR:
 | 
						|
        case ARM_INST_ORRS:
 | 
						|
        case ARM_INST_RSB:
 | 
						|
        case ARM_INST_RSBS:
 | 
						|
        case ARM_INST_RSC:
 | 
						|
        case ARM_INST_RSCS:
 | 
						|
        case ARM_INST_SBC:
 | 
						|
        case ARM_INST_SBCS:
 | 
						|
        case ARM_INST_SUB:
 | 
						|
        case ARM_INST_SUBS:
 | 
						|
            switch (decodedInstruction.addressMode)
 | 
						|
            {
 | 
						|
                case ARM_ADDR_DATA_IMM:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get firstOperand register value (at index=1)
 | 
						|
                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
 | 
						|
                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
 | 
						|
 | 
						|
                    // Get immediateValue (at index=2)
 | 
						|
                    immediateValue = decodedInstruction.op[2].value;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_REG:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get firstOperand register value (at index=1)
 | 
						|
                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
 | 
						|
                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=2)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_SCALED_IMM:
 | 
						|
                    if (decodedInstruction.numOperands != 4)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get firstOperand register value (at index=1)
 | 
						|
                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
 | 
						|
                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=2)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    // Get shiftAmount as immediate value (at index=3)
 | 
						|
                    shiftAmount = decodedInstruction.op[3].value;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_SCALED_REG:
 | 
						|
                    if (decodedInstruction.numOperands != 4)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get firstOperand register value (at index=1)
 | 
						|
                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
 | 
						|
                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=2)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    // Get shiftAmount from register (at index=3)
 | 
						|
                    shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index
 | 
						|
                    shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case THUMB_ADDR_HR_HR:
 | 
						|
                    if (decodedInstruction.numOperands != 2)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get firstOperand register value (at index=0)
 | 
						|
                    firstOperandIndex = decodedInstruction.op[0].value; // first operand register index
 | 
						|
                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=1)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
            // Logical shifts and move operations that can change the PC
 | 
						|
        case ARM_INST_LSL:
 | 
						|
        case ARM_INST_LSLS:
 | 
						|
        case ARM_INST_LSR:
 | 
						|
        case ARM_INST_LSRS:
 | 
						|
        case ARM_INST_MOV:
 | 
						|
        case ARM_INST_MOVS:
 | 
						|
        case ARM_INST_MVN:
 | 
						|
        case ARM_INST_MVNS:
 | 
						|
        case ARM_INST_ROR:
 | 
						|
        case ARM_INST_RORS:
 | 
						|
        case ARM_INST_RRX:
 | 
						|
        case ARM_INST_RRXS:
 | 
						|
            // In these cases, the firstOperand is always 0, as if it does not exist
 | 
						|
            switch (decodedInstruction.addressMode)
 | 
						|
            {
 | 
						|
                case ARM_ADDR_DATA_IMM:
 | 
						|
                    if (decodedInstruction.numOperands != 2)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get immediateValue (at index=1)
 | 
						|
                    immediateValue = decodedInstruction.op[1].value;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_REG:
 | 
						|
                    if (decodedInstruction.numOperands != 2)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=1)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_SCALED_IMM:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=1)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    // Get shiftAmount as immediate value (at index=2)
 | 
						|
                    shiftAmount = decodedInstruction.op[2].value;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
 | 
						|
                case ARM_ADDR_DATA_SCALED_REG:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=1)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    // Get shiftAmount from register (at index=2)
 | 
						|
                    shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index
 | 
						|
                    shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case THUMB_ADDR_HR_HR:
 | 
						|
                    if (decodedInstruction.numOperands != 2)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (decodedInstruction.op[0].value != PC_REG)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get secondOperand register value (at index=1)
 | 
						|
                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
 | 
						|
                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
 | 
						|
            // Simple branches, used to hop around within a routine
 | 
						|
        case ARM_INST_B:
 | 
						|
            *targetPC = decodedInstruction.targetPC; // Known targetPC
 | 
						|
            return true;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Branch-and-link, used to call ARM subroutines
 | 
						|
        case ARM_INST_BL:
 | 
						|
            *targetPC = decodedInstruction.targetPC; // Known targetPC
 | 
						|
            return true;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Branch-and-link with exchange, used to call opposite-mode subroutines
 | 
						|
        case ARM_INST_BLX:
 | 
						|
            if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) ||
 | 
						|
                (decodedInstruction.addressMode == THUMB_ADDR_UNCOND))
 | 
						|
            {
 | 
						|
                *targetPC = decodedInstruction.targetPC; // Known targetPC
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            else    // addressMode == ARM_ADDR_BRANCH_REG
 | 
						|
            {
 | 
						|
                // Unknown target unless we're branching to the PC itself,
 | 
						|
                //  although this may not work properly with BLX
 | 
						|
                if (decodedInstruction.op[REG_RD].value == PC_REG)
 | 
						|
                {
 | 
						|
                    // this should (almost) never happen
 | 
						|
                    *targetPC = decodedInstruction.targetPC; // Known targetPC
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
 | 
						|
                // Get the branch address and return
 | 
						|
                if (decodedInstruction.numOperands != 1)
 | 
						|
                {
 | 
						|
                    DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
 | 
						|
                // Get branch address in register (at index=0)
 | 
						|
                *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
            // Branch with exchange, used to hop to opposite-mode code
 | 
						|
            // Branch to Jazelle code, used to execute Java; included here since it
 | 
						|
            //  acts just like BX unless the Jazelle unit is active and JPC is
 | 
						|
            //  already loaded into it.
 | 
						|
        case ARM_INST_BX:
 | 
						|
        case ARM_INST_BXJ:
 | 
						|
            // Unknown target unless we're branching to the PC itself,
 | 
						|
            //  although this can never switch to Thumb mode and is
 | 
						|
            //  therefore pretty much useless
 | 
						|
            if (decodedInstruction.op[REG_RD].value == PC_REG)
 | 
						|
            {
 | 
						|
                // this should (almost) never happen
 | 
						|
                *targetPC = decodedInstruction.targetPC; // Known targetPC
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
 | 
						|
            // Get the branch address and return
 | 
						|
            if (decodedInstruction.numOperands != 1)
 | 
						|
            {
 | 
						|
                DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            // Get branch address in register (at index=0)
 | 
						|
            *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
 | 
						|
            return true;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Compare and branch on zero/non-zero (Thumb-16 only)
 | 
						|
            // Unusual condition check built into the instruction
 | 
						|
        case ARM_INST_CBZ:
 | 
						|
        case ARM_INST_CBNZ:
 | 
						|
            // Branch address is known at compile time
 | 
						|
            // Get the branch address and return
 | 
						|
            if (decodedInstruction.numOperands != 2)
 | 
						|
            {
 | 
						|
                DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            // Get branch address as an immediate value (at index=1)
 | 
						|
            *targetPC = decodedInstruction.op[1].value;
 | 
						|
            return true;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Load register can be used to load PC, usually with a function pointer
 | 
						|
        case ARM_INST_LDR:
 | 
						|
            if (decodedInstruction.op[REG_RD].value != PC_REG)
 | 
						|
            {
 | 
						|
                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            switch (decodedInstruction.addressMode)
 | 
						|
            {
 | 
						|
                case ARM_ADDR_LSWUB_IMM:
 | 
						|
                case ARM_ADDR_LSWUB_IMM_PRE:
 | 
						|
                case ARM_ADDR_LSWUB_IMM_POST:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get baseAddress from register (at index=1)
 | 
						|
                    baseAddressIndex = decodedInstruction.op[1].value;
 | 
						|
                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
 | 
						|
 | 
						|
                    // Get immediateOffset (at index=2)
 | 
						|
                    immediateOffset = decodedInstruction.op[2].value;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_LSWUB_REG:
 | 
						|
                case ARM_ADDR_LSWUB_REG_PRE:
 | 
						|
                case ARM_ADDR_LSWUB_REG_POST:
 | 
						|
                    if (decodedInstruction.numOperands != 3)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get baseAddress from register (at index=1)
 | 
						|
                    baseAddressIndex = decodedInstruction.op[1].value;
 | 
						|
                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
 | 
						|
 | 
						|
                    // Get immediateOffset from register (at index=2)
 | 
						|
                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
 | 
						|
                    addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_LSWUB_SCALED:
 | 
						|
                case ARM_ADDR_LSWUB_SCALED_PRE:
 | 
						|
                case ARM_ADDR_LSWUB_SCALED_POST:
 | 
						|
                    if (decodedInstruction.numOperands != 4)
 | 
						|
                    {
 | 
						|
                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Get baseAddress from register (at index=1)
 | 
						|
                    baseAddressIndex = decodedInstruction.op[1].value;
 | 
						|
                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
 | 
						|
 | 
						|
                    // Get immediateOffset from register (at index=2)
 | 
						|
                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
 | 
						|
                    addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
 | 
						|
 | 
						|
                    // Get shiftAmount (at index=3)
 | 
						|
                    shiftAmount = decodedInstruction.op[3].value;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
            // 32b load multiple operations can load the PC along with everything else,
 | 
						|
            //  usually to return from a function call
 | 
						|
        case ARM_INST_LDMDA:
 | 
						|
        case ARM_INST_LDMDB:
 | 
						|
        case ARM_INST_LDMIA:
 | 
						|
        case ARM_INST_LDMIB:
 | 
						|
            if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT)
 | 
						|
            {
 | 
						|
                if (decodedInstruction.numOperands != 2)
 | 
						|
                {
 | 
						|
                    DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
 | 
						|
                // Get baseAddress from register (at index=0)
 | 
						|
                baseAddressIndex = decodedInstruction.op[0].value;
 | 
						|
                baseAddress = m_state.context.gpr.__r[baseAddressIndex];
 | 
						|
 | 
						|
                // Get registerList from register (at index=1)
 | 
						|
                registerList16 = (uint16_t)decodedInstruction.op[1].value;
 | 
						|
 | 
						|
                // Count number of registers to load in the multiple register list excluding the PC
 | 
						|
                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
 | 
						|
                numRegistersToLoad=0;
 | 
						|
                for (int i = 0; i < 16; i++)
 | 
						|
                {
 | 
						|
                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
 | 
						|
                    registerList16NoPC = registerList16NoPC >> 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
            // Normal 16-bit LD multiple can't touch R15, but POP can
 | 
						|
        case ARM_INST_POP:  // Can also get the PC & updates SP
 | 
						|
            // Get baseAddress from SP (at index=0)
 | 
						|
            baseAddress = m_state.context.gpr.__sp;
 | 
						|
 | 
						|
            if (decodedInstruction.thumb16b)
 | 
						|
            {
 | 
						|
                // Get registerList from register (at index=0)
 | 
						|
                registerList8 = (uint8_t)decodedInstruction.op[0].value;
 | 
						|
 | 
						|
                // Count number of registers to load in the multiple register list
 | 
						|
                numRegistersToLoad=0;
 | 
						|
                for (int i = 0; i < 8; i++)
 | 
						|
                {
 | 
						|
                    if (registerList8 & 0x1) numRegistersToLoad++;
 | 
						|
                    registerList8 = registerList8 >> 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // Get registerList from register (at index=0)
 | 
						|
                registerList16 = (uint16_t)decodedInstruction.op[0].value;
 | 
						|
 | 
						|
                // Count number of registers to load in the multiple register list excluding the PC
 | 
						|
                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
 | 
						|
                numRegistersToLoad=0;
 | 
						|
                for (int i = 0; i < 16; i++)
 | 
						|
                {
 | 
						|
                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
 | 
						|
                    registerList16NoPC = registerList16NoPC >> 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
            // 16b TBB and TBH instructions load a jump address from a table
 | 
						|
        case ARM_INST_TBB:
 | 
						|
        case ARM_INST_TBH:
 | 
						|
            // Get baseAddress from register (at index=0)
 | 
						|
            baseAddressIndex = decodedInstruction.op[0].value;
 | 
						|
            baseAddress = m_state.context.gpr.__r[baseAddressIndex];
 | 
						|
 | 
						|
            // Get immediateOffset from register (at index=1)
 | 
						|
            addressOffsetFromRegisterIndex = decodedInstruction.op[1].value;
 | 
						|
            addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
 | 
						|
            break;
 | 
						|
 | 
						|
            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
 | 
						|
            //  from a special base pointer register (which is unknown at disassembly time)
 | 
						|
        case ARM_INST_HB:
 | 
						|
        case ARM_INST_HBP:
 | 
						|
//          TODO: ARM_INST_HB, ARM_INST_HBP
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_HBL:
 | 
						|
        case ARM_INST_HBLP:
 | 
						|
//          TODO: ARM_INST_HBL, ARM_INST_HBLP
 | 
						|
            break;
 | 
						|
 | 
						|
            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
 | 
						|
        case ARM_INST_BKPT:
 | 
						|
        case ARM_INST_SMC:
 | 
						|
        case ARM_INST_SVC:
 | 
						|
 | 
						|
            // Return from exception, obviously modifies PC [interrupt only!]
 | 
						|
        case ARM_INST_RFEDA:
 | 
						|
        case ARM_INST_RFEDB:
 | 
						|
        case ARM_INST_RFEIA:
 | 
						|
        case ARM_INST_RFEIB:
 | 
						|
 | 
						|
            // Other instructions either can't change R15 or are "undefined" if you do,
 | 
						|
            //  so no sane compiler should ever generate them & we don't care here.
 | 
						|
            //  Also, R15 can only legally be used in a read-only manner for the
 | 
						|
            //  various ARM addressing mode (to get PC-relative addressing of constants),
 | 
						|
            //  but can NOT be used with any of the update modes.
 | 
						|
        default:
 | 
						|
            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
 | 
						|
            return false;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust PC if PC is one of the input operands
 | 
						|
    if (baseAddressIndex == PC_REG)
 | 
						|
    {
 | 
						|
        if (currentPCIsThumb)
 | 
						|
            baseAddress += 4;
 | 
						|
        else
 | 
						|
            baseAddress += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (firstOperandIndex == PC_REG)
 | 
						|
    {
 | 
						|
        if (currentPCIsThumb)
 | 
						|
            firstOperand += 4;
 | 
						|
        else
 | 
						|
            firstOperand += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (secondOperandIndex == PC_REG)
 | 
						|
    {
 | 
						|
        if (currentPCIsThumb)
 | 
						|
            secondOperand += 4;
 | 
						|
        else
 | 
						|
            secondOperand += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (addressOffsetFromRegisterIndex == PC_REG)
 | 
						|
    {
 | 
						|
        if (currentPCIsThumb)
 | 
						|
            addressOffsetFromRegister += 4;
 | 
						|
        else
 | 
						|
            addressOffsetFromRegister += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
 | 
						|
        "%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d",
 | 
						|
        __FUNCTION__,
 | 
						|
        firstOperand,
 | 
						|
        secondOperand,
 | 
						|
        immediateValue,
 | 
						|
        shiftAmount,
 | 
						|
        baseAddress,
 | 
						|
        addressOffsetFromRegister,
 | 
						|
        immediateOffset,
 | 
						|
        numRegistersToLoad);
 | 
						|
 | 
						|
 | 
						|
    // Calculate following values after applying shiftAmount:
 | 
						|
    //   - immediateOffsetAfterShift, secondOperandAfterShift
 | 
						|
 | 
						|
    switch (decodedInstruction.scaleMode)
 | 
						|
    {
 | 
						|
        case ARM_SCALE_NONE:
 | 
						|
            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister;
 | 
						|
            secondOperandAfterShift = secondOperand;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_SCALE_LSL:             // Logical shift left
 | 
						|
            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount;
 | 
						|
            secondOperandAfterShift = secondOperand << shiftAmount;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_SCALE_LSR:             // Logical shift right
 | 
						|
            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount;
 | 
						|
            secondOperandAfterShift = secondOperand >> shiftAmount;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_SCALE_ASR:             // Arithmetic shift right
 | 
						|
            asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
 | 
						|
            asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_SCALE_ROR:             // Rotate right
 | 
						|
            asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
 | 
						|
            asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_SCALE_RRX:             // Rotate right, pulling in carry (1-bit shift only)
 | 
						|
            asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister));
 | 
						|
            asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand));
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Emulate instruction to calculate targetPC
 | 
						|
    // All branches are already handled in the first switch statement. A branch should not reach this switch
 | 
						|
    switch (decodedInstruction.instruction->code)
 | 
						|
    {
 | 
						|
            // Arithmetic operations that can change the PC
 | 
						|
        case ARM_INST_ADC:
 | 
						|
        case ARM_INST_ADCS:
 | 
						|
            // Add with Carry
 | 
						|
            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_ADD:
 | 
						|
        case ARM_INST_ADDS:
 | 
						|
            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue);
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_AND:
 | 
						|
        case ARM_INST_ANDS:
 | 
						|
            *targetPC = firstOperand & (secondOperandAfterShift + immediateValue);
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_ASR:
 | 
						|
        case ARM_INST_ASRS:
 | 
						|
            asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_BIC:
 | 
						|
        case ARM_INST_BICS:
 | 
						|
            asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_EOR:
 | 
						|
        case ARM_INST_EORS:
 | 
						|
            asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_ORR:
 | 
						|
        case ARM_INST_ORRS:
 | 
						|
            asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_RSB:
 | 
						|
        case ARM_INST_RSBS:
 | 
						|
            asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_RSC:
 | 
						|
        case ARM_INST_RSCS:
 | 
						|
            myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c);
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_SBC:
 | 
						|
        case ARM_INST_SBCS:
 | 
						|
            asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue  + !cpsr_c));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_SUB:
 | 
						|
        case ARM_INST_SUBS:
 | 
						|
            asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Logical shifts and move operations that can change the PC
 | 
						|
        case ARM_INST_LSL:
 | 
						|
        case ARM_INST_LSLS:
 | 
						|
        case ARM_INST_LSR:
 | 
						|
        case ARM_INST_LSRS:
 | 
						|
        case ARM_INST_MOV:
 | 
						|
        case ARM_INST_MOVS:
 | 
						|
        case ARM_INST_ROR:
 | 
						|
        case ARM_INST_RORS:
 | 
						|
        case ARM_INST_RRX:
 | 
						|
        case ARM_INST_RRXS:
 | 
						|
            myTargetPC = secondOperandAfterShift + immediateValue;
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_MVN:
 | 
						|
        case ARM_INST_MVNS:
 | 
						|
            myTargetPC = !(secondOperandAfterShift + immediateValue);
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
            // Load register can be used to load PC, usually with a function pointer
 | 
						|
        case ARM_INST_LDR:
 | 
						|
            switch (decodedInstruction.addressMode) {
 | 
						|
                case ARM_ADDR_LSWUB_IMM_POST:
 | 
						|
                case ARM_ADDR_LSWUB_REG_POST:
 | 
						|
                case ARM_ADDR_LSWUB_SCALED_POST:
 | 
						|
                    addressWherePCLives = baseAddress;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case ARM_ADDR_LSWUB_IMM:
 | 
						|
                case ARM_ADDR_LSWUB_REG:
 | 
						|
                case ARM_ADDR_LSWUB_SCALED:
 | 
						|
                case ARM_ADDR_LSWUB_IMM_PRE:
 | 
						|
                case ARM_ADDR_LSWUB_REG_PRE:
 | 
						|
                case ARM_ADDR_LSWUB_SCALED_PRE:
 | 
						|
                    addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset);
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
            // 32b load multiple operations can load the PC along with everything else,
 | 
						|
            //  usually to return from a function call
 | 
						|
        case ARM_INST_LDMDA:
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = baseAddress;
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_LDMDB:
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = baseAddress - 4;
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_LDMIB:
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4;
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_LDMIA: // same as pop
 | 
						|
            // Normal 16-bit LD multiple can't touch R15, but POP can
 | 
						|
        case ARM_INST_POP:  // Can also get the PC & updates SP
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = baseAddress + numRegistersToLoad*4;
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            *targetPC = myTargetPC;
 | 
						|
            break;
 | 
						|
 | 
						|
            // 16b TBB and TBH instructions load a jump address from a table
 | 
						|
        case ARM_INST_TBB:
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift;
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) !=  1)
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
 | 
						|
            *targetPC = (currentPC + 4) + 2*halfwords;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_TBH:
 | 
						|
            mypid = m_thread->ProcessID();
 | 
						|
            addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1);
 | 
						|
            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) !=  2)
 | 
						|
            {
 | 
						|
                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
 | 
						|
            *targetPC = (currentPC + 4) + 2*halfwords;
 | 
						|
            break;
 | 
						|
 | 
						|
            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
 | 
						|
            //  from a special base pointer register (which is unknown at disassembly time)
 | 
						|
        case ARM_INST_HB:
 | 
						|
        case ARM_INST_HBP:
 | 
						|
            //          TODO: ARM_INST_HB, ARM_INST_HBP
 | 
						|
            break;
 | 
						|
 | 
						|
        case ARM_INST_HBL:
 | 
						|
        case ARM_INST_HBLP:
 | 
						|
            //          TODO: ARM_INST_HBL, ARM_INST_HBLP
 | 
						|
            break;
 | 
						|
 | 
						|
            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
 | 
						|
        case ARM_INST_BKPT:
 | 
						|
        case ARM_INST_SMC:
 | 
						|
        case ARM_INST_SVC:
 | 
						|
            //          TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC
 | 
						|
            break;
 | 
						|
 | 
						|
            // Return from exception, obviously modifies PC [interrupt only!]
 | 
						|
        case ARM_INST_RFEDA:
 | 
						|
        case ARM_INST_RFEDB:
 | 
						|
        case ARM_INST_RFEIA:
 | 
						|
        case ARM_INST_RFEIB:
 | 
						|
            //          TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB
 | 
						|
            break;
 | 
						|
 | 
						|
            // Other instructions either can't change R15 or are "undefined" if you do,
 | 
						|
            //  so no sane compiler should ever generate them & we don't care here.
 | 
						|
            //  Also, R15 can only legally be used in a read-only manner for the
 | 
						|
            //  various ARM addressing mode (to get PC-relative addressing of constants),
 | 
						|
            //  but can NOT be used with any of the update modes.
 | 
						|
        default:
 | 
						|
            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
 | 
						|
            return false;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb)
 | 
						|
{
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called");
 | 
						|
 | 
						|
    nub_addr_t targetPC = INVALID_NUB_ADDRESS;
 | 
						|
    uint32_t registerValue;
 | 
						|
    arm_error_t decodeError;
 | 
						|
    nub_addr_t currentPCInITBlock, nextPCInITBlock;
 | 
						|
    int i;
 | 
						|
    bool last_decoded_instruction_executes = true;
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
 | 
						|
 | 
						|
    // Update *nextPC and *nextPCIsThumb for special cases
 | 
						|
    if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block
 | 
						|
    {
 | 
						|
        // Set the nextPC to the PC of the instruction which will execute in the IT block
 | 
						|
        // If none of the instruction execute in the IT block based on the condition flags,
 | 
						|
        // then point to the instruction immediately following the IT block
 | 
						|
        const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining;
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining);
 | 
						|
 | 
						|
        // Determine the PC at which the next instruction resides
 | 
						|
        if (m_last_decode_arm.thumb16b)
 | 
						|
            currentPCInITBlock = currentPC + 2;
 | 
						|
        else
 | 
						|
            currentPCInITBlock = currentPC + 4;
 | 
						|
 | 
						|
        for (i = 0; i < itBlockRemaining; i++)
 | 
						|
        {
 | 
						|
            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock);
 | 
						|
            decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock);
 | 
						|
 | 
						|
            if (decodeError != ARM_SUCCESS)
 | 
						|
                DNBLogError("unable to disassemble instruction at 0x%8.8lx", currentPCInITBlock);
 | 
						|
 | 
						|
            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition);
 | 
						|
            if (ConditionPassed(m_last_decode_arm.condition, cpsr))
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i);
 | 
						|
                break; // break from the for loop
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i);
 | 
						|
            }
 | 
						|
 | 
						|
            // update currentPC and nextPCInITBlock
 | 
						|
            currentPCInITBlock = nextPCInITBlock;
 | 
						|
        }
 | 
						|
 | 
						|
        if (i == itBlockRemaining) // We came out of the IT block without executing any instructions
 | 
						|
            last_decoded_instruction_executes = false;
 | 
						|
 | 
						|
        *nextPC = currentPCInITBlock;
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC);
 | 
						|
    }
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
 | 
						|
                    "%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d",
 | 
						|
                    __FUNCTION__,
 | 
						|
                    cpsr,
 | 
						|
                    m_last_decode_arm.thumb16b,
 | 
						|
                    m_last_decode_arm.thumb,
 | 
						|
                    m_last_decode_arm.branch,
 | 
						|
                    m_last_decode_arm.conditional,
 | 
						|
                    m_last_decode_arm.knownTarget,
 | 
						|
                    m_last_decode_arm.links,
 | 
						|
                    m_last_decode_arm.canSwitchMode,
 | 
						|
                    m_last_decode_arm.doesSwitchMode);
 | 
						|
 | 
						|
 | 
						|
    if (last_decoded_instruction_executes &&                    // Was this a conditional instruction that did execute?
 | 
						|
        m_last_decode_arm.branch &&                             // Can this instruction change the PC?
 | 
						|
        (m_last_decode_arm.instruction->code != ARM_INST_SVC))  // If this instruction is not an SVC instruction
 | 
						|
    {
 | 
						|
        // Set targetPC. Compute if needed.
 | 
						|
        if (m_last_decode_arm.knownTarget)
 | 
						|
        {
 | 
						|
            // Fixed, known PC-relative
 | 
						|
            targetPC = m_last_decode_arm.targetPC;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // if targetPC is not known at compile time (PC-relative target), compute targetPC
 | 
						|
            if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC))
 | 
						|
            {
 | 
						|
                DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8lx", __FUNCTION__, currentPC);
 | 
						|
                targetPC = INVALID_NUB_ADDRESS;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition);
 | 
						|
 | 
						|
        // Refine nextPC computation
 | 
						|
        if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) ||
 | 
						|
            (m_last_decode_arm.instruction->code == ARM_INST_CBNZ))
 | 
						|
        {
 | 
						|
            // Compare and branch on zero/non-zero (Thumb-16 only)
 | 
						|
            // Unusual condition check built into the instruction
 | 
						|
            registerValue = m_state.context.gpr.__r[m_last_decode_arm.op[REG_RD].value];
 | 
						|
 | 
						|
            if (m_last_decode_arm.instruction->code == ARM_INST_CBZ)
 | 
						|
            {
 | 
						|
                if (registerValue == 0)
 | 
						|
                    *nextPC = targetPC;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (registerValue != 0)
 | 
						|
                    *nextPC = targetPC;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else if (m_last_decode_arm.conditional) // Is the change conditional on flag results?
 | 
						|
        {
 | 
						|
            if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__);
 | 
						|
                *nextPC = targetPC;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            *nextPC = targetPC;
 | 
						|
        }
 | 
						|
 | 
						|
        // Refine nextPCIsThumb computation
 | 
						|
        if (m_last_decode_arm.doesSwitchMode)
 | 
						|
        {
 | 
						|
            *nextPCIsThumb = !currentPCIsThumb;
 | 
						|
        }
 | 
						|
        else if (m_last_decode_arm.canSwitchMode)
 | 
						|
        {
 | 
						|
            // Legal to switch ARM <--> Thumb mode with this branch
 | 
						|
            // dependent on bit[0] of targetPC
 | 
						|
            *nextPCIsThumb = (*nextPC & 1u) != 0;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            *nextPCIsThumb = currentPCIsThumb;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
arm_error_t
 | 
						|
DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc)
 | 
						|
{
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr);
 | 
						|
 | 
						|
    const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J;
 | 
						|
    const uint32_t curr_isetstate = curr_cpsr & isetstate_mask;
 | 
						|
    uint32_t opcode32;
 | 
						|
    nub_addr_t nextPC = curr_pc;
 | 
						|
    arm_error_t decodeReturnCode = ARM_SUCCESS;
 | 
						|
 | 
						|
    m_last_decode_pc = curr_pc;
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
 | 
						|
 | 
						|
    switch (curr_isetstate) {
 | 
						|
        case 0x0: // ARM Instruction
 | 
						|
            // Read the ARM opcode
 | 
						|
            if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4)
 | 
						|
            {
 | 
						|
                DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8lx", curr_pc);
 | 
						|
                decodeReturnCode = ARM_ERROR;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                nextPC += 4;
 | 
						|
                decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0);
 | 
						|
 | 
						|
                if (decodeReturnCode != ARM_SUCCESS)
 | 
						|
                    DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8lx", opcode32, curr_pc);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case 0x20: // Thumb Instruction
 | 
						|
            uint16_t opcode16;
 | 
						|
            // Read the a 16 bit Thumb opcode
 | 
						|
            if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2)
 | 
						|
            {
 | 
						|
                DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc);
 | 
						|
                decodeReturnCode = ARM_ERROR;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                nextPC += 2;
 | 
						|
                opcode32 = opcode16;
 | 
						|
 | 
						|
                decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
 | 
						|
 | 
						|
                switch (decodeReturnCode) {
 | 
						|
                    case ARM_SKIP:
 | 
						|
                        // 32 bit thumb opcode
 | 
						|
                        nextPC += 2;
 | 
						|
                        if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2)
 | 
						|
                        {
 | 
						|
                            DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc+2);
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            opcode32 = (opcode32 << 16) | opcode16;
 | 
						|
 | 
						|
                            decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
 | 
						|
 | 
						|
                            if (decodeReturnCode != ARM_SUCCESS)
 | 
						|
                                DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc+2);
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case ARM_SUCCESS:
 | 
						|
                        // 16 bit thumb opcode; at this point we are done decoding the opcode
 | 
						|
                        break;
 | 
						|
 | 
						|
                    default:
 | 
						|
                        DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc);
 | 
						|
                        decodeReturnCode = ARM_ERROR;
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (next_pc)
 | 
						|
        *next_pc = nextPC;
 | 
						|
 | 
						|
    return decodeReturnCode;
 | 
						|
}
 | 
						|
 | 
						|
nub_bool_t
 | 
						|
DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
 | 
						|
{
 | 
						|
    nub_addr_t bkpt_pc = (nub_addr_t)baton;
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
 | 
						|
    
 | 
						|
    DNBRegisterValue pc_value;
 | 
						|
    DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
 | 
						|
    pc_value.value.uint32 = bkpt_pc;
 | 
						|
    return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
 | 
						|
}
 | 
						|
 | 
						|
// Set the single step bit in the processor status register.
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetSingleStepSoftwareBreakpoints()
 | 
						|
{
 | 
						|
    DNBError err;
 | 
						|
    err = GetGPRState(false);
 | 
						|
 | 
						|
    if (err.Fail())
 | 
						|
    {
 | 
						|
        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
 | 
						|
        return err.Error();
 | 
						|
    }
 | 
						|
 | 
						|
    nub_addr_t curr_pc = m_state.context.gpr.__pc;
 | 
						|
    uint32_t curr_cpsr = m_state.context.gpr.__cpsr;
 | 
						|
    nub_addr_t next_pc = curr_pc;
 | 
						|
 | 
						|
    bool curr_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
 | 
						|
    bool next_pc_is_thumb = curr_pc_is_thumb;
 | 
						|
 | 
						|
    uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8);
 | 
						|
    bool inITBlock = (curr_itstate & 0xF) ? 1 : 0;
 | 
						|
    bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0;
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock);
 | 
						|
 | 
						|
    // If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc
 | 
						|
    if (!inITBlock)
 | 
						|
    {
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__);
 | 
						|
 | 
						|
        arm_error_t decodeReturnCode =  DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc);
 | 
						|
 | 
						|
        if (decodeReturnCode != ARM_SUCCESS)
 | 
						|
        {
 | 
						|
            err = KERN_INVALID_ARGUMENT;
 | 
						|
            DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8lx", curr_pc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4);
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction is NOT in the IT block OR
 | 
						|
    if (!inITBlock)
 | 
						|
    {
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__);
 | 
						|
        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
 | 
						|
    }
 | 
						|
    else if (inITBlock && !m_last_decode_arm.setsFlags)
 | 
						|
    {
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__);
 | 
						|
        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
 | 
						|
    }
 | 
						|
    else if (lastInITBlock && m_last_decode_arm.branch)
 | 
						|
    {
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__);
 | 
						|
        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Instruction is in IT block and can modify the CPSR flags
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__);
 | 
						|
 | 
						|
        // NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded
 | 
						|
        // inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb
 | 
						|
        // reflect the decoded instruction at curr_pc
 | 
						|
 | 
						|
        // If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR),
 | 
						|
        // we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately
 | 
						|
        // following this one AND a breakpoint at the instruction immediately following the IT block. We do this because
 | 
						|
        // we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we
 | 
						|
        // insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations
 | 
						|
        // starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[],
 | 
						|
        // and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'.
 | 
						|
 | 
						|
        // The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE)
 | 
						|
        // instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced  Thumb
 | 
						|
        // by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the
 | 
						|
        // breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1)
 | 
						|
        // instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits.
 | 
						|
        // We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit
 | 
						|
        // Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save
 | 
						|
        // the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint
 | 
						|
        // we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine
 | 
						|
        // adjusts the PC based on the baton that is passed to it.
 | 
						|
 | 
						|
        nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock;
 | 
						|
        uint16_t opcode16;
 | 
						|
        uint32_t opcode32;
 | 
						|
 | 
						|
        addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4;
 | 
						|
 | 
						|
        pcInITBlock = addrOfNextInstructionInITBlock;
 | 
						|
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining);
 | 
						|
 | 
						|
        m_sw_single_step_itblock_break_count = 0;
 | 
						|
        for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++)
 | 
						|
        {
 | 
						|
            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
 | 
						|
            {
 | 
						|
                DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                nextPCInITBlock = pcInITBlock;
 | 
						|
                // Compute nextPCInITBlock based on opcode present at pcInITBlock
 | 
						|
                if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2)
 | 
						|
                {
 | 
						|
                    opcode32 = opcode16;
 | 
						|
                    nextPCInITBlock += 2;
 | 
						|
 | 
						|
                    // Check for 32 bit thumb opcode and read the upper 16 bits if needed
 | 
						|
                    if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800))
 | 
						|
                    {
 | 
						|
                        // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
 | 
						|
                        // a 32 bit Thumb opcode
 | 
						|
                        // Read bits 31:16 of a 32 bit Thumb opcode
 | 
						|
                        if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2)
 | 
						|
                        {
 | 
						|
                            // 32 bit thumb opcode
 | 
						|
                            opcode32 = (opcode32 << 16) | opcode16;
 | 
						|
                            nextPCInITBlock += 2;
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", nextPCInITBlock);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock);
 | 
						|
                }
 | 
						|
 | 
						|
 | 
						|
                // Set breakpoint and associate a callback function with it
 | 
						|
                bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i;
 | 
						|
                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock);
 | 
						|
 | 
						|
                m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID());
 | 
						|
                if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
 | 
						|
                    err = KERN_INVALID_ARGUMENT;
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock);
 | 
						|
 | 
						|
                    // Set the breakpoint callback for these special IT breakpoints
 | 
						|
                    // so that if one of these breakpoints gets hit, it knows to
 | 
						|
                    // update the PC to the original address of the conditional
 | 
						|
                    // IT instruction.
 | 
						|
                    DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock);
 | 
						|
                    m_sw_single_step_itblock_break_count++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            pcInITBlock = nextPCInITBlock;
 | 
						|
        }
 | 
						|
 | 
						|
        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count);
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM");
 | 
						|
 | 
						|
    if (next_pc & 0x1)
 | 
						|
    {
 | 
						|
        assert(next_pc_is_thumb);
 | 
						|
    }
 | 
						|
 | 
						|
    if (next_pc_is_thumb)
 | 
						|
    {
 | 
						|
        next_pc &= ~0x1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        assert((next_pc & 0x3) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch))
 | 
						|
    {
 | 
						|
        err = KERN_SUCCESS;
 | 
						|
 | 
						|
#if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP
 | 
						|
        m_sw_single_step_next_pc = next_pc;
 | 
						|
        if (next_pc_is_thumb)
 | 
						|
            m_sw_single_step_next_pc |= 1;  // Set bit zero if the next PC is expected to be Thumb
 | 
						|
#else
 | 
						|
        const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc);
 | 
						|
 | 
						|
        if (bp == NULL)
 | 
						|
        {
 | 
						|
            m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID());
 | 
						|
            if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
 | 
						|
                err = KERN_INVALID_ARGUMENT;
 | 
						|
            DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    return err.Error();
 | 
						|
}
 | 
						|
 | 
						|
uint32_t
 | 
						|
DNBArchMachARM::NumSupportedHardwareBreakpoints()
 | 
						|
{
 | 
						|
    // Set the init value to something that will let us know that we need to
 | 
						|
    // autodetect how many breakpoints are supported dynamically...
 | 
						|
    static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
 | 
						|
    if (g_num_supported_hw_breakpoints == UINT_MAX)
 | 
						|
    {
 | 
						|
        // Set this to zero in case we can't tell if there are any HW breakpoints
 | 
						|
        g_num_supported_hw_breakpoints = 0;
 | 
						|
 | 
						|
        // Read the DBGDIDR to get the number of available hardware breakpoints
 | 
						|
        // However, in some of our current armv7 processors, hardware
 | 
						|
        // breakpoints/watchpoints were not properly connected. So detect those
 | 
						|
        // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
 | 
						|
        // field to distinguish CPU architectures. This is a hack until we can
 | 
						|
        // get <rdar://problem/6372672> fixed, at which point we will switch to
 | 
						|
        // using a different sysctl string that will tell us how many BRPs
 | 
						|
        // are available to us directly without having to read DBGDIDR.
 | 
						|
        uint32_t register_DBGDIDR;
 | 
						|
 | 
						|
        asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
 | 
						|
        uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
 | 
						|
        // Zero is reserved for the BRP count, so don't increment it if it is zero
 | 
						|
        if (numBRPs > 0)
 | 
						|
            numBRPs++;
 | 
						|
        DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
 | 
						|
 | 
						|
        if (numBRPs > 0)
 | 
						|
        {
 | 
						|
            uint32_t cpusubtype;
 | 
						|
            size_t len;
 | 
						|
            len = sizeof(cpusubtype);
 | 
						|
            // TODO: remove this hack and change to using hw.optional.xx when implmented
 | 
						|
            if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
 | 
						|
                if (cpusubtype == CPU_SUBTYPE_ARM_V7)
 | 
						|
                    DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
 | 
						|
                else
 | 
						|
                    g_num_supported_hw_breakpoints = numBRPs;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
    return g_num_supported_hw_breakpoints;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
uint32_t
 | 
						|
DNBArchMachARM::NumSupportedHardwareWatchpoints()
 | 
						|
{
 | 
						|
    // Set the init value to something that will let us know that we need to
 | 
						|
    // autodetect how many watchpoints are supported dynamically...
 | 
						|
    static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
 | 
						|
    if (g_num_supported_hw_watchpoints == UINT_MAX)
 | 
						|
    {
 | 
						|
        // Set this to zero in case we can't tell if there are any HW breakpoints
 | 
						|
        g_num_supported_hw_watchpoints = 0;
 | 
						|
        // Read the DBGDIDR to get the number of available hardware breakpoints
 | 
						|
        // However, in some of our current armv7 processors, hardware
 | 
						|
        // breakpoints/watchpoints were not properly connected. So detect those
 | 
						|
        // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
 | 
						|
        // field to distinguish CPU architectures. This is a hack until we can
 | 
						|
        // get <rdar://problem/6372672> fixed, at which point we will switch to
 | 
						|
        // using a different sysctl string that will tell us how many WRPs
 | 
						|
        // are available to us directly without having to read DBGDIDR.
 | 
						|
 | 
						|
        uint32_t register_DBGDIDR;
 | 
						|
        asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
 | 
						|
        uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
 | 
						|
        DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
 | 
						|
 | 
						|
        if (numWRPs > 0)
 | 
						|
        {
 | 
						|
            uint32_t cpusubtype;
 | 
						|
            size_t len;
 | 
						|
            len = sizeof(cpusubtype);
 | 
						|
            // TODO: remove this hack and change to using hw.optional.xx when implmented
 | 
						|
            if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
 | 
						|
            {
 | 
						|
                DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
 | 
						|
 | 
						|
                if (cpusubtype == CPU_SUBTYPE_ARM_V7)
 | 
						|
                    DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
 | 
						|
                else
 | 
						|
                    g_num_supported_hw_watchpoints = numWRPs;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
    return g_num_supported_hw_watchpoints;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
uint32_t
 | 
						|
DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
 | 
						|
{
 | 
						|
    // Make sure our address isn't bogus
 | 
						|
    if (addr & 1)
 | 
						|
        return INVALID_NUB_HW_INDEX;
 | 
						|
 | 
						|
    kern_return_t kret = GetDBGState(false);
 | 
						|
 | 
						|
    if (kret == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
 | 
						|
        uint32_t i;
 | 
						|
        for (i=0; i<num_hw_breakpoints; ++i)
 | 
						|
        {
 | 
						|
            if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
 | 
						|
                break; // We found an available hw breakpoint slot (in i)
 | 
						|
        }
 | 
						|
 | 
						|
        // See if we found an available hw breakpoint slot above
 | 
						|
        if (i < num_hw_breakpoints)
 | 
						|
        {
 | 
						|
            // Make sure bits 1:0 are clear in our address
 | 
						|
            m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
 | 
						|
 | 
						|
            if (size == 2 || addr & 2)
 | 
						|
            {
 | 
						|
                uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
 | 
						|
 | 
						|
                // We have a thumb breakpoint
 | 
						|
                // We have an ARM breakpoint
 | 
						|
                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
 | 
						|
                                        byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
 | 
						|
                                        S_USER |            // Which modes should this breakpoint stop in?
 | 
						|
                                        BCR_ENABLE;         // Enable this hardware breakpoint
 | 
						|
                DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
 | 
						|
                        addr,
 | 
						|
                        size,
 | 
						|
                        i,
 | 
						|
                        i,
 | 
						|
                        m_state.dbg.__bvr[i],
 | 
						|
                        m_state.dbg.__bcr[i]);
 | 
						|
            }
 | 
						|
            else if (size == 4)
 | 
						|
            {
 | 
						|
                // We have an ARM breakpoint
 | 
						|
                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
 | 
						|
                                        BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
 | 
						|
                                        S_USER |            // Which modes should this breakpoint stop in?
 | 
						|
                                        BCR_ENABLE;         // Enable this hardware breakpoint
 | 
						|
                DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
 | 
						|
                        addr,
 | 
						|
                        size,
 | 
						|
                        i,
 | 
						|
                        i,
 | 
						|
                        m_state.dbg.__bvr[i],
 | 
						|
                        m_state.dbg.__bcr[i]);
 | 
						|
            }
 | 
						|
 | 
						|
            kret = SetDBGState();
 | 
						|
            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
 | 
						|
 | 
						|
            if (kret == KERN_SUCCESS)
 | 
						|
                return i;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = %8.8p, size = %u) => all hardware breakpoint resources are being used.", addr, size);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return INVALID_NUB_HW_INDEX;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
 | 
						|
{
 | 
						|
    kern_return_t kret = GetDBGState(false);
 | 
						|
 | 
						|
    const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
 | 
						|
    if (kret == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        if (hw_index < num_hw_points)
 | 
						|
        {
 | 
						|
            m_state.dbg.__bcr[hw_index] = 0;
 | 
						|
            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
 | 
						|
                    hw_index,
 | 
						|
                    hw_index,
 | 
						|
                    m_state.dbg.__bvr[hw_index],
 | 
						|
                    hw_index,
 | 
						|
                    m_state.dbg.__bcr[hw_index]);
 | 
						|
 | 
						|
            kret = SetDBGState();
 | 
						|
 | 
						|
            if (kret == KERN_SUCCESS)
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t
 | 
						|
DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
 | 
						|
{
 | 
						|
    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = %8.8p, size = %u, read = %u, write = %u)", addr, size, read, write);
 | 
						|
 | 
						|
    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
 | 
						|
 | 
						|
    // Can't watch zero bytes
 | 
						|
    if (size == 0)
 | 
						|
        return INVALID_NUB_HW_INDEX;
 | 
						|
 | 
						|
    // We must watch for either read or write
 | 
						|
    if (read == false && write == false)
 | 
						|
        return INVALID_NUB_HW_INDEX;
 | 
						|
 | 
						|
    // Can't watch more than 4 bytes per WVR/WCR pair
 | 
						|
    if (size > 4)
 | 
						|
        return INVALID_NUB_HW_INDEX;
 | 
						|
 | 
						|
    // We can only watch up to four bytes that follow a 4 byte aligned address
 | 
						|
    // per watchpoint register pair. Since we have at most so we can only watch
 | 
						|
    // until the next 4 byte boundary and we need to make sure we can properly
 | 
						|
    // encode this.
 | 
						|
    uint32_t addr_word_offset = addr % 4;
 | 
						|
    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
 | 
						|
 | 
						|
    uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
 | 
						|
    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
 | 
						|
    if (byte_mask > 0xfu)
 | 
						|
        return INVALID_NUB_HW_INDEX;
 | 
						|
 | 
						|
    // Read the debug state
 | 
						|
    kern_return_t kret = GetDBGState(false);
 | 
						|
 | 
						|
    if (kret == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        // Check to make sure we have the needed hardware support
 | 
						|
        uint32_t i = 0;
 | 
						|
 | 
						|
        for (i=0; i<num_hw_watchpoints; ++i)
 | 
						|
        {
 | 
						|
            if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
 | 
						|
                break; // We found an available hw breakpoint slot (in i)
 | 
						|
        }
 | 
						|
 | 
						|
        // See if we found an available hw breakpoint slot above
 | 
						|
        if (i < num_hw_watchpoints)
 | 
						|
        {
 | 
						|
            // Make the byte_mask into a valid Byte Address Select mask
 | 
						|
            uint32_t byte_address_select = byte_mask << 5;
 | 
						|
            // Make sure bits 1:0 are clear in our address
 | 
						|
            m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);
 | 
						|
            m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the IMVA that we will watch
 | 
						|
                                    S_USER |                    // Stop only in user mode
 | 
						|
                                    (read ? WCR_LOAD : 0) |     // Stop on read access?
 | 
						|
                                    (write ? WCR_STORE : 0) |   // Stop on write access?
 | 
						|
                                    WCR_ENABLE;                 // Enable this watchpoint;
 | 
						|
 | 
						|
            kret = SetDBGState();
 | 
						|
            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
 | 
						|
 | 
						|
            if (kret == KERN_SUCCESS)
 | 
						|
                return i;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return INVALID_NUB_HW_INDEX;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
 | 
						|
{
 | 
						|
    kern_return_t kret = GetDBGState(false);
 | 
						|
 | 
						|
    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
 | 
						|
    if (kret == KERN_SUCCESS)
 | 
						|
    {
 | 
						|
        if (hw_index < num_hw_points)
 | 
						|
        {
 | 
						|
            m_state.dbg.__wcr[hw_index] = 0;
 | 
						|
            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ClearHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
 | 
						|
                    hw_index,
 | 
						|
                    hw_index,
 | 
						|
                    m_state.dbg.__wvr[hw_index],
 | 
						|
                    hw_index,
 | 
						|
                    m_state.dbg.__wcr[hw_index]);
 | 
						|
 | 
						|
            kret = SetDBGState();
 | 
						|
 | 
						|
            if (kret == KERN_SUCCESS)
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
//----------------------------------------------------------------------
 | 
						|
// Register information defintions for 32 bit ARMV6.
 | 
						|
//----------------------------------------------------------------------
 | 
						|
enum gpr_regnums
 | 
						|
{
 | 
						|
    gpr_r0 = 0,
 | 
						|
    gpr_r1,
 | 
						|
    gpr_r2,
 | 
						|
    gpr_r3,
 | 
						|
    gpr_r4,
 | 
						|
    gpr_r5,
 | 
						|
    gpr_r6,
 | 
						|
    gpr_r7,
 | 
						|
    gpr_r8,
 | 
						|
    gpr_r9,
 | 
						|
    gpr_r10,
 | 
						|
    gpr_r11,
 | 
						|
    gpr_r12,
 | 
						|
    gpr_sp,
 | 
						|
    gpr_lr,
 | 
						|
    gpr_pc,
 | 
						|
    gpr_cpsr
 | 
						|
};
 | 
						|
 | 
						|
enum 
 | 
						|
{
 | 
						|
    vfp_s0 = 0,
 | 
						|
    vfp_s1,
 | 
						|
    vfp_s2,
 | 
						|
    vfp_s3,
 | 
						|
    vfp_s4,
 | 
						|
    vfp_s5,
 | 
						|
    vfp_s6,
 | 
						|
    vfp_s7,
 | 
						|
    vfp_s8,
 | 
						|
    vfp_s9,
 | 
						|
    vfp_s10,
 | 
						|
    vfp_s11,
 | 
						|
    vfp_s12,
 | 
						|
    vfp_s13,
 | 
						|
    vfp_s14,
 | 
						|
    vfp_s15,
 | 
						|
    vfp_s16,
 | 
						|
    vfp_s17,
 | 
						|
    vfp_s18,
 | 
						|
    vfp_s19,
 | 
						|
    vfp_s20,
 | 
						|
    vfp_s21,
 | 
						|
    vfp_s22,
 | 
						|
    vfp_s23,
 | 
						|
    vfp_s24,
 | 
						|
    vfp_s25,
 | 
						|
    vfp_s26,
 | 
						|
    vfp_s27,
 | 
						|
    vfp_s28,
 | 
						|
    vfp_s29,
 | 
						|
    vfp_s30,
 | 
						|
    vfp_s31,
 | 
						|
    vfp_d16,
 | 
						|
    vfp_d17,
 | 
						|
    vfp_d18,
 | 
						|
    vfp_d19,
 | 
						|
    vfp_d20,
 | 
						|
    vfp_d21,
 | 
						|
    vfp_d22,
 | 
						|
    vfp_d23,
 | 
						|
    vfp_d24,
 | 
						|
    vfp_d25,
 | 
						|
    vfp_d26,
 | 
						|
    vfp_d27,
 | 
						|
    vfp_d28,
 | 
						|
    vfp_d29,
 | 
						|
    vfp_d30,
 | 
						|
    vfp_d31,
 | 
						|
    vfp_fpscr
 | 
						|
};
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    exc_exception,
 | 
						|
	exc_fsr,
 | 
						|
	exc_far,
 | 
						|
};
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    gdb_r0 = 0,
 | 
						|
    gdb_r1,
 | 
						|
    gdb_r2,
 | 
						|
    gdb_r3,
 | 
						|
    gdb_r4,
 | 
						|
    gdb_r5,
 | 
						|
    gdb_r6,
 | 
						|
    gdb_r7,
 | 
						|
    gdb_r8,
 | 
						|
    gdb_r9,
 | 
						|
    gdb_r10,
 | 
						|
    gdb_r11,
 | 
						|
    gdb_r12,
 | 
						|
    gdb_sp,
 | 
						|
    gdb_lr,
 | 
						|
    gdb_pc,
 | 
						|
    gdb_f0,
 | 
						|
    gdb_f1,
 | 
						|
    gdb_f2,
 | 
						|
    gdb_f3,
 | 
						|
    gdb_f4,
 | 
						|
    gdb_f5,
 | 
						|
    gdb_f6,
 | 
						|
    gdb_f7,
 | 
						|
    gdb_f8,
 | 
						|
    gdb_cpsr,
 | 
						|
    gdb_s0,
 | 
						|
    gdb_s1,
 | 
						|
    gdb_s2,
 | 
						|
    gdb_s3,
 | 
						|
    gdb_s4,
 | 
						|
    gdb_s5,
 | 
						|
    gdb_s6,
 | 
						|
    gdb_s7,
 | 
						|
    gdb_s8,
 | 
						|
    gdb_s9,
 | 
						|
    gdb_s10,
 | 
						|
    gdb_s11,
 | 
						|
    gdb_s12,
 | 
						|
    gdb_s13,
 | 
						|
    gdb_s14,
 | 
						|
    gdb_s15,
 | 
						|
    gdb_s16,
 | 
						|
    gdb_s17,
 | 
						|
    gdb_s18,
 | 
						|
    gdb_s19,
 | 
						|
    gdb_s20,
 | 
						|
    gdb_s21,
 | 
						|
    gdb_s22,
 | 
						|
    gdb_s23,
 | 
						|
    gdb_s24,
 | 
						|
    gdb_s25,
 | 
						|
    gdb_s26,
 | 
						|
    gdb_s27,
 | 
						|
    gdb_s28,
 | 
						|
    gdb_s29,
 | 
						|
    gdb_s30,
 | 
						|
    gdb_s31,
 | 
						|
    gdb_fpscr,
 | 
						|
    gdb_d0,
 | 
						|
    gdb_d1,
 | 
						|
    gdb_d2,
 | 
						|
    gdb_d3,
 | 
						|
    gdb_d4,
 | 
						|
    gdb_d5,
 | 
						|
    gdb_d6,
 | 
						|
    gdb_d7,
 | 
						|
    gdb_d8,
 | 
						|
    gdb_d9,
 | 
						|
    gdb_d10,
 | 
						|
    gdb_d11,
 | 
						|
    gdb_d12,
 | 
						|
    gdb_d13,
 | 
						|
    gdb_d14,
 | 
						|
    gdb_d15
 | 
						|
};
 | 
						|
 | 
						|
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
 | 
						|
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
 | 
						|
#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[idx]) + offsetof (DNBArchMachARM::Context, vfp))
 | 
						|
#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX (32) + (((idx) - 16) * 8))
 | 
						|
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
 | 
						|
#define EXC_OFFSET(reg)      (offsetof (DNBArchMachARM::EXC, __##reg)  + offsetof (DNBArchMachARM::Context, exc))
 | 
						|
 | 
						|
// These macros will auto define the register name, alt name, register size,
 | 
						|
// register offset, encoding, format and native register. This ensures that
 | 
						|
// the register state structures are defined correctly and have the correct
 | 
						|
// sizes and offsets.
 | 
						|
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
 | 
						|
#define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
 | 
						|
 | 
						|
#define DEFINE_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, 4, Float, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx }
 | 
						|
#define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, 8, Float, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx }
 | 
						|
 | 
						|
// General purpose registers
 | 
						|
const DNBRegisterInfo
 | 
						|
DNBArchMachARM::g_gpr_registers[] =
 | 
						|
{
 | 
						|
    DEFINE_GPR_IDX ( 0,  r0,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 1,  r1,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 2,  r2,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 3,  r3,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 4,  r4,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 5,  r5,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 6,  r6,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 7,  r7,  NULL, GENERIC_REGNUM_FP    ),
 | 
						|
    DEFINE_GPR_IDX ( 8,  r8,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX ( 9,  r9,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX (10, r10,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX (11, r11,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_IDX (12, r12,  NULL, INVALID_NUB_REGNUM   ),
 | 
						|
    DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP    ),
 | 
						|
    DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA    ),
 | 
						|
    DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC    ),
 | 
						|
    DEFINE_GPR_NAME (cpsr,  NULL, GENERIC_REGNUM_FLAGS )
 | 
						|
};
 | 
						|
 | 
						|
// Floating point registers
 | 
						|
const DNBRegisterInfo
 | 
						|
DNBArchMachARM::g_vfp_registers[] =
 | 
						|
{
 | 
						|
    DEFINE_VFP_S_IDX ( 0),
 | 
						|
    DEFINE_VFP_S_IDX ( 1),
 | 
						|
    DEFINE_VFP_S_IDX ( 2),
 | 
						|
    DEFINE_VFP_S_IDX ( 3),
 | 
						|
    DEFINE_VFP_S_IDX ( 4),
 | 
						|
    DEFINE_VFP_S_IDX ( 5),
 | 
						|
    DEFINE_VFP_S_IDX ( 6),
 | 
						|
    DEFINE_VFP_S_IDX ( 7),
 | 
						|
    DEFINE_VFP_S_IDX ( 8),
 | 
						|
    DEFINE_VFP_S_IDX ( 9),
 | 
						|
    DEFINE_VFP_S_IDX (10),
 | 
						|
    DEFINE_VFP_S_IDX (11),
 | 
						|
    DEFINE_VFP_S_IDX (12),
 | 
						|
    DEFINE_VFP_S_IDX (13),
 | 
						|
    DEFINE_VFP_S_IDX (14),
 | 
						|
    DEFINE_VFP_S_IDX (15),
 | 
						|
    DEFINE_VFP_S_IDX (16),
 | 
						|
    DEFINE_VFP_S_IDX (17),
 | 
						|
    DEFINE_VFP_S_IDX (18),
 | 
						|
    DEFINE_VFP_S_IDX (19),
 | 
						|
    DEFINE_VFP_S_IDX (20),
 | 
						|
    DEFINE_VFP_S_IDX (21),
 | 
						|
    DEFINE_VFP_S_IDX (22),
 | 
						|
    DEFINE_VFP_S_IDX (23),
 | 
						|
    DEFINE_VFP_S_IDX (24),
 | 
						|
    DEFINE_VFP_S_IDX (25),
 | 
						|
    DEFINE_VFP_S_IDX (26),
 | 
						|
    DEFINE_VFP_S_IDX (27),
 | 
						|
    DEFINE_VFP_S_IDX (28),
 | 
						|
    DEFINE_VFP_S_IDX (29),
 | 
						|
    DEFINE_VFP_S_IDX (30),
 | 
						|
    DEFINE_VFP_S_IDX (31),
 | 
						|
    DEFINE_VFP_D_IDX (16),
 | 
						|
    DEFINE_VFP_D_IDX (17),
 | 
						|
    DEFINE_VFP_D_IDX (18),
 | 
						|
    DEFINE_VFP_D_IDX (19),
 | 
						|
    DEFINE_VFP_D_IDX (20),
 | 
						|
    DEFINE_VFP_D_IDX (21),
 | 
						|
    DEFINE_VFP_D_IDX (22),
 | 
						|
    DEFINE_VFP_D_IDX (23),
 | 
						|
    DEFINE_VFP_D_IDX (24),
 | 
						|
    DEFINE_VFP_D_IDX (25),
 | 
						|
    DEFINE_VFP_D_IDX (26),
 | 
						|
    DEFINE_VFP_D_IDX (27),
 | 
						|
    DEFINE_VFP_D_IDX (28),
 | 
						|
    DEFINE_VFP_D_IDX (29),
 | 
						|
    DEFINE_VFP_D_IDX (30),
 | 
						|
    DEFINE_VFP_D_IDX (31),
 | 
						|
    { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, 4, Hex, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_fpscr }
 | 
						|
};
 | 
						|
 | 
						|
// Exception registers
 | 
						|
 | 
						|
const DNBRegisterInfo
 | 
						|
DNBArchMachARM::g_exc_registers[] =
 | 
						|
{
 | 
						|
  { e_regSetVFP, exc_exception  , "exception"   , NULL, Uint, 4, Hex, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
 | 
						|
  { e_regSetVFP, exc_fsr        , "fsr"         , NULL, Uint, 4, Hex, EXC_OFFSET(fsr)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
 | 
						|
  { e_regSetVFP, exc_far        , "far"         , NULL, Uint, 4, Hex, EXC_OFFSET(far)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
 | 
						|
};
 | 
						|
 | 
						|
// Number of registers in each register set
 | 
						|
const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
 | 
						|
const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
 | 
						|
const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
 | 
						|
const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
 | 
						|
 | 
						|
//----------------------------------------------------------------------
 | 
						|
// Register set definitions. The first definitions at register set index
 | 
						|
// of zero is for all registers, followed by other registers sets. The
 | 
						|
// register information for the all register set need not be filled in.
 | 
						|
//----------------------------------------------------------------------
 | 
						|
const DNBRegisterSetInfo
 | 
						|
DNBArchMachARM::g_reg_sets[] =
 | 
						|
{
 | 
						|
    { "ARM Registers",              NULL,               k_num_all_registers     },
 | 
						|
    { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
 | 
						|
    { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
 | 
						|
    { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
 | 
						|
};
 | 
						|
// Total number of register sets for this architecture
 | 
						|
const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
 | 
						|
 | 
						|
 | 
						|
const DNBRegisterSetInfo *
 | 
						|
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
 | 
						|
{
 | 
						|
    *num_reg_sets = k_num_register_sets;
 | 
						|
    return g_reg_sets;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
 | 
						|
{
 | 
						|
    if (set == REGISTER_SET_GENERIC)
 | 
						|
    {
 | 
						|
        switch (reg)
 | 
						|
        {
 | 
						|
        case GENERIC_REGNUM_PC:     // Program Counter
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_pc;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_SP:     // Stack Pointer
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_sp;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_FP:     // Frame Pointer
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_r7;   // is this the right reg?
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_RA:     // Return Address
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_lr;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_FLAGS:  // Processor flags register
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_cpsr;
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetRegisterState(set, false) != KERN_SUCCESS)
 | 
						|
        return false;
 | 
						|
 | 
						|
    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
 | 
						|
    if (regInfo)
 | 
						|
    {
 | 
						|
        value->info = *regInfo;
 | 
						|
        switch (set)
 | 
						|
        {
 | 
						|
        case e_regSetGPR:
 | 
						|
            if (reg < k_num_gpr_registers)
 | 
						|
            {
 | 
						|
                value->value.uint32 = m_state.context.gpr.__r[reg];
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case e_regSetVFP:
 | 
						|
            if (reg < 32)
 | 
						|
            {
 | 
						|
                value->value.uint32 = m_state.context.vfp.__r[reg];
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            else if (reg == 32)
 | 
						|
            {
 | 
						|
                value->value.uint32 = m_state.context.vfp.__fpscr;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case e_regSetEXC:
 | 
						|
            if (reg < k_num_exc_registers)
 | 
						|
            {
 | 
						|
                value->value.uint32 = (&m_state.context.exc.__exception)[reg];
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
 | 
						|
{
 | 
						|
    if (set == REGISTER_SET_GENERIC)
 | 
						|
    {
 | 
						|
        switch (reg)
 | 
						|
        {
 | 
						|
        case GENERIC_REGNUM_PC:     // Program Counter
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_pc;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_SP:     // Stack Pointer
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_sp;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_FP:     // Frame Pointer
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_r7;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_RA:     // Return Address
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_lr;
 | 
						|
            break;
 | 
						|
 | 
						|
        case GENERIC_REGNUM_FLAGS:  // Processor flags register
 | 
						|
            set = e_regSetGPR;
 | 
						|
            reg = gpr_cpsr;
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetRegisterState(set, false) != KERN_SUCCESS)
 | 
						|
        return false;
 | 
						|
 | 
						|
    bool success = false;
 | 
						|
    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
 | 
						|
    if (regInfo)
 | 
						|
    {
 | 
						|
        switch (set)
 | 
						|
        {
 | 
						|
        case e_regSetGPR:
 | 
						|
            if (reg < k_num_gpr_registers)
 | 
						|
            {
 | 
						|
                m_state.context.gpr.__r[reg] = value->value.uint32;
 | 
						|
                success = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case e_regSetVFP:
 | 
						|
            if (reg < 32)
 | 
						|
            {
 | 
						|
                m_state.context.vfp.__r[reg] = value->value.float64;
 | 
						|
                success = true;
 | 
						|
            }
 | 
						|
            else if (reg == 32)
 | 
						|
            {
 | 
						|
                m_state.context.vfp.__fpscr = value->value.uint32;
 | 
						|
                success = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case e_regSetEXC:
 | 
						|
            if (reg < k_num_exc_registers)
 | 
						|
            {
 | 
						|
                (&m_state.context.exc.__exception)[reg] = value->value.uint32;
 | 
						|
                success = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
    if (success)
 | 
						|
        return SetRegisterState(set) == KERN_SUCCESS;
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::GetRegisterState(int set, bool force)
 | 
						|
{
 | 
						|
    switch (set)
 | 
						|
    {
 | 
						|
    case e_regSetALL:   return GetGPRState(force) |
 | 
						|
                               GetVFPState(force) |
 | 
						|
                               GetEXCState(force) |
 | 
						|
                               GetDBGState(force);
 | 
						|
    case e_regSetGPR:   return GetGPRState(force);
 | 
						|
    case e_regSetVFP:   return GetVFPState(force);
 | 
						|
    case e_regSetEXC:   return GetEXCState(force);
 | 
						|
    case e_regSetDBG:   return GetDBGState(force);
 | 
						|
    default: break;
 | 
						|
    }
 | 
						|
    return KERN_INVALID_ARGUMENT;
 | 
						|
}
 | 
						|
 | 
						|
kern_return_t
 | 
						|
DNBArchMachARM::SetRegisterState(int set)
 | 
						|
{
 | 
						|
    // Make sure we have a valid context to set.
 | 
						|
    kern_return_t err = GetRegisterState(set, false);
 | 
						|
    if (err != KERN_SUCCESS)
 | 
						|
        return err;
 | 
						|
 | 
						|
    switch (set)
 | 
						|
    {
 | 
						|
    case e_regSetALL:   return SetGPRState() |
 | 
						|
                               SetVFPState() |
 | 
						|
                               SetEXCState() |
 | 
						|
                               SetDBGState();
 | 
						|
    case e_regSetGPR:   return SetGPRState();
 | 
						|
    case e_regSetVFP:   return SetVFPState();
 | 
						|
    case e_regSetEXC:   return SetEXCState();
 | 
						|
    case e_regSetDBG:   return SetDBGState();
 | 
						|
    default: break;
 | 
						|
    }
 | 
						|
    return KERN_INVALID_ARGUMENT;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
DNBArchMachARM::RegisterSetStateIsValid (int set) const
 | 
						|
{
 | 
						|
    return m_state.RegsAreValid(set);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
nub_size_t
 | 
						|
DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
 | 
						|
{
 | 
						|
    nub_size_t size = sizeof (m_state.context);
 | 
						|
    
 | 
						|
    if (buf && buf_len)
 | 
						|
    {
 | 
						|
        if (size > buf_len)
 | 
						|
            size = buf_len;
 | 
						|
 | 
						|
        bool force = false;
 | 
						|
        if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
 | 
						|
            return 0;
 | 
						|
        ::memcpy (buf, &m_state.context, size);
 | 
						|
    }
 | 
						|
    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
 | 
						|
    // Return the size of the register context even if NULL was passed in
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
nub_size_t
 | 
						|
DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
 | 
						|
{
 | 
						|
    nub_size_t size = sizeof (m_state.context);
 | 
						|
    if (buf == NULL || buf_len == 0)
 | 
						|
        size = 0;
 | 
						|
    
 | 
						|
    if (size)
 | 
						|
    {
 | 
						|
        if (size > buf_len)
 | 
						|
            size = buf_len;
 | 
						|
 | 
						|
        ::memcpy (&m_state.context, buf, size);
 | 
						|
        SetGPRState();
 | 
						|
        SetVFPState();
 | 
						|
        SetEXCState();
 | 
						|
    }
 | 
						|
    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#endif    // #if defined (__arm__)
 | 
						|
 |