forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1274 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1274 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// MachineScheduler schedules machine instructions after phi elimination. It
 | 
						|
// preserves LiveIntervals so it can be invoked before register allocation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineScheduler.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/PriorityQueue.h"
 | 
						|
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | 
						|
                           cl::desc("Force top-down list scheduling"));
 | 
						|
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | 
						|
                            cl::desc("Force bottom-up list scheduling"));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | 
						|
  cl::desc("Pop up a window to show MISched dags after they are processed"));
 | 
						|
 | 
						|
static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | 
						|
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | 
						|
#else
 | 
						|
static bool ViewMISchedDAGs = false;
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Scheduling Pass and Registry
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
MachineSchedContext::MachineSchedContext():
 | 
						|
    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
 | 
						|
  RegClassInfo = new RegisterClassInfo();
 | 
						|
}
 | 
						|
 | 
						|
MachineSchedContext::~MachineSchedContext() {
 | 
						|
  delete RegClassInfo;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// MachineScheduler runs after coalescing and before register allocation.
 | 
						|
class MachineScheduler : public MachineSchedContext,
 | 
						|
                         public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  MachineScheduler();
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
  virtual void releaseMemory() {}
 | 
						|
 | 
						|
  virtual bool runOnMachineFunction(MachineFunction&);
 | 
						|
 | 
						|
  virtual void print(raw_ostream &O, const Module* = 0) const;
 | 
						|
 | 
						|
  static char ID; // Class identification, replacement for typeinfo
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char MachineScheduler::ID = 0;
 | 
						|
 | 
						|
char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
 | 
						|
                      "Machine Instruction Scheduler", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_END(MachineScheduler, "misched",
 | 
						|
                    "Machine Instruction Scheduler", false, false)
 | 
						|
 | 
						|
MachineScheduler::MachineScheduler()
 | 
						|
: MachineFunctionPass(ID) {
 | 
						|
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequiredID(MachineDominatorsID);
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<TargetPassConfig>();
 | 
						|
  AU.addRequired<SlotIndexes>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
MachinePassRegistry MachineSchedRegistry::Registry;
 | 
						|
 | 
						|
/// A dummy default scheduler factory indicates whether the scheduler
 | 
						|
/// is overridden on the command line.
 | 
						|
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// MachineSchedOpt allows command line selection of the scheduler.
 | 
						|
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | 
						|
               RegisterPassParser<MachineSchedRegistry> >
 | 
						|
MachineSchedOpt("misched",
 | 
						|
                cl::init(&useDefaultMachineSched), cl::Hidden,
 | 
						|
                cl::desc("Machine instruction scheduler to use"));
 | 
						|
 | 
						|
static MachineSchedRegistry
 | 
						|
DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | 
						|
                     useDefaultMachineSched);
 | 
						|
 | 
						|
/// Forward declare the standard machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
 | 
						|
 | 
						|
 | 
						|
/// Decrement this iterator until reaching the top or a non-debug instr.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
 | 
						|
  assert(I != Beg && "reached the top of the region, cannot decrement");
 | 
						|
  while (--I != Beg) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// If this iterator is a debug value, increment until reaching the End or a
 | 
						|
/// non-debug instruction.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
 | 
						|
  for(; I != End; ++I) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Top-level MachineScheduler pass driver.
 | 
						|
///
 | 
						|
/// Visit blocks in function order. Divide each block into scheduling regions
 | 
						|
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | 
						|
/// consistent with the DAG builder, which traverses the interior of the
 | 
						|
/// scheduling regions bottom-up.
 | 
						|
///
 | 
						|
/// This design avoids exposing scheduling boundaries to the DAG builder,
 | 
						|
/// simplifying the DAG builder's support for "special" target instructions.
 | 
						|
/// At the same time the design allows target schedulers to operate across
 | 
						|
/// scheduling boundaries, for example to bundle the boudary instructions
 | 
						|
/// without reordering them. This creates complexity, because the target
 | 
						|
/// scheduler must update the RegionBegin and RegionEnd positions cached by
 | 
						|
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | 
						|
/// design would be to split blocks at scheduling boundaries, but LLVM has a
 | 
						|
/// general bias against block splitting purely for implementation simplicity.
 | 
						|
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
 | 
						|
 | 
						|
  // Initialize the context of the pass.
 | 
						|
  MF = &mf;
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  PassConfig = &getAnalysis<TargetPassConfig>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  LIS = &getAnalysis<LiveIntervals>();
 | 
						|
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
 | 
						|
  RegClassInfo->runOnMachineFunction(*MF);
 | 
						|
 | 
						|
  // Select the scheduler, or set the default.
 | 
						|
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | 
						|
  if (Ctor == useDefaultMachineSched) {
 | 
						|
    // Get the default scheduler set by the target.
 | 
						|
    Ctor = MachineSchedRegistry::getDefault();
 | 
						|
    if (!Ctor) {
 | 
						|
      Ctor = createConvergingSched;
 | 
						|
      MachineSchedRegistry::setDefault(Ctor);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Instantiate the selected scheduler.
 | 
						|
  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
 | 
						|
 | 
						|
  // Visit all machine basic blocks.
 | 
						|
  //
 | 
						|
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | 
						|
  // loop tree. Then we can optionally compute global RegPressure.
 | 
						|
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | 
						|
       MBB != MBBEnd; ++MBB) {
 | 
						|
 | 
						|
    Scheduler->startBlock(MBB);
 | 
						|
 | 
						|
    // Break the block into scheduling regions [I, RegionEnd), and schedule each
 | 
						|
    // region as soon as it is discovered. RegionEnd points the scheduling
 | 
						|
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
 | 
						|
    // but the region does (i.e. the next RegionEnd is above the previous
 | 
						|
    // RegionBegin). If the current block has no terminator then RegionEnd ==
 | 
						|
    // MBB->end() for the bottom region.
 | 
						|
    //
 | 
						|
    // The Scheduler may insert instructions during either schedule() or
 | 
						|
    // exitRegion(), even for empty regions. So the local iterators 'I' and
 | 
						|
    // 'RegionEnd' are invalid across these calls.
 | 
						|
    unsigned RemainingCount = MBB->size();
 | 
						|
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | 
						|
        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
 | 
						|
 | 
						|
      // Avoid decrementing RegionEnd for blocks with no terminator.
 | 
						|
      if (RegionEnd != MBB->end()
 | 
						|
          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
 | 
						|
        --RegionEnd;
 | 
						|
        // Count the boundary instruction.
 | 
						|
        --RemainingCount;
 | 
						|
      }
 | 
						|
 | 
						|
      // The next region starts above the previous region. Look backward in the
 | 
						|
      // instruction stream until we find the nearest boundary.
 | 
						|
      MachineBasicBlock::iterator I = RegionEnd;
 | 
						|
      for(;I != MBB->begin(); --I, --RemainingCount) {
 | 
						|
        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      // Notify the scheduler of the region, even if we may skip scheduling
 | 
						|
      // it. Perhaps it still needs to be bundled.
 | 
						|
      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
 | 
						|
 | 
						|
      // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | 
						|
      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
 | 
						|
        // Close the current region. Bundle the terminator if needed.
 | 
						|
        // This invalidates 'RegionEnd' and 'I'.
 | 
						|
        Scheduler->exitRegion();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | 
						|
      DEBUG(dbgs() << MF->getName()
 | 
						|
            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
 | 
						|
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | 
						|
            else dbgs() << "End";
 | 
						|
            dbgs() << " Remaining: " << RemainingCount << "\n");
 | 
						|
 | 
						|
      // Schedule a region: possibly reorder instructions.
 | 
						|
      // This invalidates 'RegionEnd' and 'I'.
 | 
						|
      Scheduler->schedule();
 | 
						|
 | 
						|
      // Close the current region.
 | 
						|
      Scheduler->exitRegion();
 | 
						|
 | 
						|
      // Scheduling has invalidated the current iterator 'I'. Ask the
 | 
						|
      // scheduler for the top of it's scheduled region.
 | 
						|
      RegionEnd = Scheduler->begin();
 | 
						|
    }
 | 
						|
    assert(RemainingCount == 0 && "Instruction count mismatch!");
 | 
						|
    Scheduler->finishBlock();
 | 
						|
  }
 | 
						|
  Scheduler->finalizeSchedule();
 | 
						|
  DEBUG(LIS->print(dbgs()));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineScheduler::print(raw_ostream &O, const Module* m) const {
 | 
						|
  // unimplemented
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ReadyQueue::dump() {
 | 
						|
  dbgs() << Name << ": ";
 | 
						|
  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
 | 
						|
    dbgs() << Queue[i]->NodeNum << " ";
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
 | 
						|
// preservation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | 
						|
/// NumPredsLeft reaches zero, release the successor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust SuccSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | 
						|
    SchedImpl->releaseTopNode(SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | 
						|
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releaseSucc(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | 
						|
/// NumSuccsLeft reaches zero, release the predecessor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust PredSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    PredSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | 
						|
    SchedImpl->releaseBottomNode(PredSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releasePredecessors - Call releasePred on each of SU's predecessors.
 | 
						|
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releasePred(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
 | 
						|
                                    MachineBasicBlock::iterator InsertPos) {
 | 
						|
  // Advance RegionBegin if the first instruction moves down.
 | 
						|
  if (&*RegionBegin == MI)
 | 
						|
    ++RegionBegin;
 | 
						|
 | 
						|
  // Update the instruction stream.
 | 
						|
  BB->splice(InsertPos, BB, MI);
 | 
						|
 | 
						|
  // Update LiveIntervals
 | 
						|
  LIS->handleMove(MI);
 | 
						|
 | 
						|
  // Recede RegionBegin if an instruction moves above the first.
 | 
						|
  if (RegionBegin == InsertPos)
 | 
						|
    RegionBegin = MI;
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::checkSchedLimit() {
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | 
						|
    CurrentTop = CurrentBottom;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  ++NumInstrsScheduled;
 | 
						|
#endif
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | 
						|
/// crossing a scheduling boundary. [begin, end) includes all instructions in
 | 
						|
/// the region, including the boundary itself and single-instruction regions
 | 
						|
/// that don't get scheduled.
 | 
						|
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                MachineBasicBlock::iterator begin,
 | 
						|
                                MachineBasicBlock::iterator end,
 | 
						|
                                unsigned endcount)
 | 
						|
{
 | 
						|
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
 | 
						|
 | 
						|
  // For convenience remember the end of the liveness region.
 | 
						|
  LiveRegionEnd =
 | 
						|
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
 | 
						|
}
 | 
						|
 | 
						|
// Setup the register pressure trackers for the top scheduled top and bottom
 | 
						|
// scheduled regions.
 | 
						|
void ScheduleDAGMI::initRegPressure() {
 | 
						|
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
 | 
						|
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | 
						|
 | 
						|
  // Close the RPTracker to finalize live ins.
 | 
						|
  RPTracker.closeRegion();
 | 
						|
 | 
						|
  DEBUG(RPTracker.getPressure().dump(TRI));
 | 
						|
 | 
						|
  // Initialize the live ins and live outs.
 | 
						|
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | 
						|
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | 
						|
 | 
						|
  // Close one end of the tracker so we can call
 | 
						|
  // getMaxUpward/DownwardPressureDelta before advancing across any
 | 
						|
  // instructions. This converts currently live regs into live ins/outs.
 | 
						|
  TopRPTracker.closeTop();
 | 
						|
  BotRPTracker.closeBottom();
 | 
						|
 | 
						|
  // Account for liveness generated by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd)
 | 
						|
    BotRPTracker.recede();
 | 
						|
 | 
						|
  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
 | 
						|
 | 
						|
  // Cache the list of excess pressure sets in this region. This will also track
 | 
						|
  // the max pressure in the scheduled code for these sets.
 | 
						|
  RegionCriticalPSets.clear();
 | 
						|
  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
 | 
						|
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | 
						|
    unsigned Limit = TRI->getRegPressureSetLimit(i);
 | 
						|
    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
 | 
						|
          << "Limit " << Limit
 | 
						|
          << " Actual " << RegionPressure[i] << "\n");
 | 
						|
    if (RegionPressure[i] > Limit)
 | 
						|
      RegionCriticalPSets.push_back(PressureElement(i, 0));
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Excess PSets: ";
 | 
						|
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
 | 
						|
          dbgs() << TRI->getRegPressureSetName(
 | 
						|
            RegionCriticalPSets[i].PSetID) << " ";
 | 
						|
        dbgs() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: When the pressure tracker deals in pressure differences then we won't
 | 
						|
// iterate over all RegionCriticalPSets[i].
 | 
						|
void ScheduleDAGMI::
 | 
						|
updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
 | 
						|
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
 | 
						|
    unsigned ID = RegionCriticalPSets[i].PSetID;
 | 
						|
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
 | 
						|
    if ((int)NewMaxPressure[ID] > MaxUnits)
 | 
						|
      MaxUnits = NewMaxPressure[ID];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Release all DAG roots for scheduling.
 | 
						|
void ScheduleDAGMI::releaseRoots() {
 | 
						|
  SmallVector<SUnit*, 16> BotRoots;
 | 
						|
 | 
						|
  for (std::vector<SUnit>::iterator
 | 
						|
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
 | 
						|
    // A SUnit is ready to top schedule if it has no predecessors.
 | 
						|
    if (I->Preds.empty())
 | 
						|
      SchedImpl->releaseTopNode(&(*I));
 | 
						|
    // A SUnit is ready to bottom schedule if it has no successors.
 | 
						|
    if (I->Succs.empty())
 | 
						|
      BotRoots.push_back(&(*I));
 | 
						|
  }
 | 
						|
  // Release bottom roots in reverse order so the higher priority nodes appear
 | 
						|
  // first. This is more natural and slightly more efficient.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | 
						|
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
 | 
						|
    SchedImpl->releaseBottomNode(*I);
 | 
						|
}
 | 
						|
 | 
						|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
 | 
						|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | 
						|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
 | 
						|
///
 | 
						|
/// This is a skeletal driver, with all the functionality pushed into helpers,
 | 
						|
/// so that it can be easilly extended by experimental schedulers. Generally,
 | 
						|
/// implementing MachineSchedStrategy should be sufficient to implement a new
 | 
						|
/// scheduling algorithm. However, if a scheduler further subclasses
 | 
						|
/// ScheduleDAGMI then it will want to override this virtual method in order to
 | 
						|
/// update any specialized state.
 | 
						|
void ScheduleDAGMI::schedule() {
 | 
						|
  buildDAGWithRegPressure();
 | 
						|
 | 
						|
  postprocessDAG();
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
  if (ViewMISchedDAGs) viewGraph();
 | 
						|
 | 
						|
  initQueues();
 | 
						|
 | 
						|
  bool IsTopNode = false;
 | 
						|
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | 
						|
    if (!checkSchedLimit())
 | 
						|
      break;
 | 
						|
 | 
						|
    scheduleMI(SU, IsTopNode);
 | 
						|
 | 
						|
    updateQueues(SU, IsTopNode);
 | 
						|
  }
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
}
 | 
						|
 | 
						|
/// Build the DAG and setup three register pressure trackers.
 | 
						|
void ScheduleDAGMI::buildDAGWithRegPressure() {
 | 
						|
  // Initialize the register pressure tracker used by buildSchedGraph.
 | 
						|
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | 
						|
 | 
						|
  // Account for liveness generate by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd)
 | 
						|
    RPTracker.recede();
 | 
						|
 | 
						|
  // Build the DAG, and compute current register pressure.
 | 
						|
  buildSchedGraph(AA, &RPTracker);
 | 
						|
  if (ViewMISchedDAGs) viewGraph();
 | 
						|
 | 
						|
  // Initialize top/bottom trackers after computing region pressure.
 | 
						|
  initRegPressure();
 | 
						|
}
 | 
						|
 | 
						|
/// Apply each ScheduleDAGMutation step in order.
 | 
						|
void ScheduleDAGMI::postprocessDAG() {
 | 
						|
  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
 | 
						|
    Mutations[i]->apply(this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Identify DAG roots and setup scheduler queues.
 | 
						|
void ScheduleDAGMI::initQueues() {
 | 
						|
  // Initialize the strategy before modifying the DAG.
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
 | 
						|
  // Release edges from the special Entry node or to the special Exit node.
 | 
						|
  releaseSuccessors(&EntrySU);
 | 
						|
  releasePredecessors(&ExitSU);
 | 
						|
 | 
						|
  // Release all DAG roots for scheduling.
 | 
						|
  releaseRoots();
 | 
						|
 | 
						|
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | 
						|
  CurrentBottom = RegionEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// Move an instruction and update register pressure.
 | 
						|
void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Move the instruction to its new location in the instruction stream.
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
 | 
						|
  if (IsTopNode) {
 | 
						|
    assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | 
						|
    if (&*CurrentTop == MI)
 | 
						|
      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | 
						|
    else {
 | 
						|
      moveInstruction(MI, CurrentTop);
 | 
						|
      TopRPTracker.setPos(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update top scheduled pressure.
 | 
						|
    TopRPTracker.advance();
 | 
						|
    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | 
						|
    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | 
						|
    MachineBasicBlock::iterator priorII =
 | 
						|
      priorNonDebug(CurrentBottom, CurrentTop);
 | 
						|
    if (&*priorII == MI)
 | 
						|
      CurrentBottom = priorII;
 | 
						|
    else {
 | 
						|
      if (&*CurrentTop == MI) {
 | 
						|
        CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | 
						|
        TopRPTracker.setPos(CurrentTop);
 | 
						|
      }
 | 
						|
      moveInstruction(MI, CurrentBottom);
 | 
						|
      CurrentBottom = MI;
 | 
						|
    }
 | 
						|
    // Update bottom scheduled pressure.
 | 
						|
    BotRPTracker.recede();
 | 
						|
    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | 
						|
    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update scheduler queues after scheduling an instruction.
 | 
						|
void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Release dependent instructions for scheduling.
 | 
						|
  if (IsTopNode)
 | 
						|
    releaseSuccessors(SU);
 | 
						|
  else
 | 
						|
    releasePredecessors(SU);
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
 | 
						|
  // Notify the scheduling strategy after updating the DAG.
 | 
						|
  SchedImpl->schedNode(SU, IsTopNode);
 | 
						|
}
 | 
						|
 | 
						|
/// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | 
						|
void ScheduleDAGMI::placeDebugValues() {
 | 
						|
  // If first instruction was a DBG_VALUE then put it back.
 | 
						|
  if (FirstDbgValue) {
 | 
						|
    BB->splice(RegionBegin, BB, FirstDbgValue);
 | 
						|
    RegionBegin = FirstDbgValue;
 | 
						|
  }
 | 
						|
 | 
						|
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | 
						|
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | 
						|
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | 
						|
    MachineInstr *DbgValue = P.first;
 | 
						|
    MachineBasicBlock::iterator OrigPrevMI = P.second;
 | 
						|
    BB->splice(++OrigPrevMI, BB, DbgValue);
 | 
						|
    if (OrigPrevMI == llvm::prior(RegionEnd))
 | 
						|
      RegionEnd = DbgValue;
 | 
						|
  }
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
 | 
						|
/// the schedule.
 | 
						|
class ConvergingScheduler : public MachineSchedStrategy {
 | 
						|
 | 
						|
  /// Store the state used by ConvergingScheduler heuristics, required for the
 | 
						|
  /// lifetime of one invocation of pickNode().
 | 
						|
  struct SchedCandidate {
 | 
						|
    // The best SUnit candidate.
 | 
						|
    SUnit *SU;
 | 
						|
 | 
						|
    // Register pressure values for the best candidate.
 | 
						|
    RegPressureDelta RPDelta;
 | 
						|
 | 
						|
    SchedCandidate(): SU(NULL) {}
 | 
						|
  };
 | 
						|
  /// Represent the type of SchedCandidate found within a single queue.
 | 
						|
  enum CandResult {
 | 
						|
    NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
 | 
						|
 | 
						|
  /// Each Scheduling boundary is associated with ready queues. It tracks the
 | 
						|
  /// current cycle in whichever direction at has moved, and maintains the state
 | 
						|
  /// of "hazards" and other interlocks at the current cycle.
 | 
						|
  struct SchedBoundary {
 | 
						|
    ScheduleDAGMI *DAG;
 | 
						|
 | 
						|
    ReadyQueue Available;
 | 
						|
    ReadyQueue Pending;
 | 
						|
    bool CheckPending;
 | 
						|
 | 
						|
    ScheduleHazardRecognizer *HazardRec;
 | 
						|
 | 
						|
    unsigned CurrCycle;
 | 
						|
    unsigned IssueCount;
 | 
						|
 | 
						|
    /// MinReadyCycle - Cycle of the soonest available instruction.
 | 
						|
    unsigned MinReadyCycle;
 | 
						|
 | 
						|
    // Remember the greatest min operand latency.
 | 
						|
    unsigned MaxMinLatency;
 | 
						|
 | 
						|
    /// Pending queues extend the ready queues with the same ID and the
 | 
						|
    /// PendingFlag set.
 | 
						|
    SchedBoundary(unsigned ID, const Twine &Name):
 | 
						|
      DAG(0), Available(ID, Name+".A"),
 | 
						|
      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
 | 
						|
      CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0),
 | 
						|
      MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}
 | 
						|
 | 
						|
    ~SchedBoundary() { delete HazardRec; }
 | 
						|
 | 
						|
    bool isTop() const {
 | 
						|
      return Available.getID() == ConvergingScheduler::TopQID;
 | 
						|
    }
 | 
						|
 | 
						|
    bool checkHazard(SUnit *SU);
 | 
						|
 | 
						|
    void releaseNode(SUnit *SU, unsigned ReadyCycle);
 | 
						|
 | 
						|
    void bumpCycle();
 | 
						|
 | 
						|
    void bumpNode(SUnit *SU);
 | 
						|
 | 
						|
    void releasePending();
 | 
						|
 | 
						|
    void removeReady(SUnit *SU);
 | 
						|
 | 
						|
    SUnit *pickOnlyChoice();
 | 
						|
  };
 | 
						|
 | 
						|
  ScheduleDAGMI *DAG;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
 | 
						|
  // State of the top and bottom scheduled instruction boundaries.
 | 
						|
  SchedBoundary Top;
 | 
						|
  SchedBoundary Bot;
 | 
						|
 | 
						|
public:
 | 
						|
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
 | 
						|
  enum {
 | 
						|
    TopQID = 1,
 | 
						|
    BotQID = 2,
 | 
						|
    LogMaxQID = 2
 | 
						|
  };
 | 
						|
 | 
						|
  ConvergingScheduler():
 | 
						|
    DAG(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
 | 
						|
 | 
						|
  virtual void initialize(ScheduleDAGMI *dag);
 | 
						|
 | 
						|
  virtual SUnit *pickNode(bool &IsTopNode);
 | 
						|
 | 
						|
  virtual void schedNode(SUnit *SU, bool IsTopNode);
 | 
						|
 | 
						|
  virtual void releaseTopNode(SUnit *SU);
 | 
						|
 | 
						|
  virtual void releaseBottomNode(SUnit *SU);
 | 
						|
 | 
						|
protected:
 | 
						|
  SUnit *pickNodeBidrectional(bool &IsTopNode);
 | 
						|
 | 
						|
  CandResult pickNodeFromQueue(ReadyQueue &Q,
 | 
						|
                               const RegPressureTracker &RPTracker,
 | 
						|
                               SchedCandidate &Candidate);
 | 
						|
#ifndef NDEBUG
 | 
						|
  void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU,
 | 
						|
                      PressureElement P = PressureElement());
 | 
						|
#endif
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
 | 
						|
  DAG = dag;
 | 
						|
  TRI = DAG->TRI;
 | 
						|
  Top.DAG = dag;
 | 
						|
  Bot.DAG = dag;
 | 
						|
 | 
						|
  // Initialize the HazardRecognizers.
 | 
						|
  const TargetMachine &TM = DAG->MF.getTarget();
 | 
						|
  const InstrItineraryData *Itin = TM.getInstrItineraryData();
 | 
						|
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
 | 
						|
  assert((!ForceTopDown || !ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::releaseTopNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
 | 
						|
    unsigned MinLatency = I->getMinLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
 | 
						|
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Top.releaseNode(SU, SU->TopReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
 | 
						|
    unsigned MinLatency = I->getMinLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
 | 
						|
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Bot.releaseNode(SU, SU->BotReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
/// Does this SU have a hazard within the current instruction group.
 | 
						|
///
 | 
						|
/// The scheduler supports two modes of hazard recognition. The first is the
 | 
						|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | 
						|
/// supports highly complicated in-order reservation tables
 | 
						|
/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
 | 
						|
///
 | 
						|
/// The second is a streamlined mechanism that checks for hazards based on
 | 
						|
/// simple counters that the scheduler itself maintains. It explicitly checks
 | 
						|
/// for instruction dispatch limitations, including the number of micro-ops that
 | 
						|
/// can dispatch per cycle.
 | 
						|
///
 | 
						|
/// TODO: Also check whether the SU must start a new group.
 | 
						|
bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
 | 
						|
  if (HazardRec->isEnabled())
 | 
						|
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
 | 
						|
 | 
						|
  if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
 | 
						|
                                                     unsigned ReadyCycle) {
 | 
						|
  if (ReadyCycle < MinReadyCycle)
 | 
						|
    MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
  // Check for interlocks first. For the purpose of other heuristics, an
 | 
						|
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | 
						|
  if (ReadyCycle > CurrCycle || checkHazard(SU))
 | 
						|
    Pending.push(SU);
 | 
						|
  else
 | 
						|
    Available.push(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one cycle.
 | 
						|
void ConvergingScheduler::SchedBoundary::bumpCycle() {
 | 
						|
  unsigned Width = DAG->getIssueWidth();
 | 
						|
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
 | 
						|
 | 
						|
  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | 
						|
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
 | 
						|
 | 
						|
  if (!HazardRec->isEnabled()) {
 | 
						|
    // Bypass HazardRec virtual calls.
 | 
						|
    CurrCycle = NextCycle;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // Bypass getHazardType calls in case of long latency.
 | 
						|
    for (; CurrCycle != NextCycle; ++CurrCycle) {
 | 
						|
      if (isTop())
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      else
 | 
						|
        HazardRec->RecedeCycle();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CheckPending = true;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
 | 
						|
        << CurrCycle << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one SUnit.
 | 
						|
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
 | 
						|
  // Update the reservation table.
 | 
						|
  if (HazardRec->isEnabled()) {
 | 
						|
    if (!isTop() && SU->isCall) {
 | 
						|
      // Calls are scheduled with their preceding instructions. For bottom-up
 | 
						|
      // scheduling, clear the pipeline state before emitting.
 | 
						|
      HazardRec->Reset();
 | 
						|
    }
 | 
						|
    HazardRec->EmitInstruction(SU);
 | 
						|
  }
 | 
						|
  // Check the instruction group dispatch limit.
 | 
						|
  // TODO: Check if this SU must end a dispatch group.
 | 
						|
  IssueCount += DAG->getNumMicroOps(SU->getInstr());
 | 
						|
  if (IssueCount >= DAG->getIssueWidth()) {
 | 
						|
    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
 | 
						|
    bumpCycle();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Release pending ready nodes in to the available queue. This makes them
 | 
						|
/// visible to heuristics.
 | 
						|
void ConvergingScheduler::SchedBoundary::releasePending() {
 | 
						|
  // If the available queue is empty, it is safe to reset MinReadyCycle.
 | 
						|
  if (Available.empty())
 | 
						|
    MinReadyCycle = UINT_MAX;
 | 
						|
 | 
						|
  // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
  // so, add them to the available queue.
 | 
						|
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = *(Pending.begin()+i);
 | 
						|
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle < MinReadyCycle)
 | 
						|
      MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle > CurrCycle)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (checkHazard(SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Available.push(SU);
 | 
						|
    Pending.remove(Pending.begin()+i);
 | 
						|
    --i; --e;
 | 
						|
  }
 | 
						|
  CheckPending = false;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove SU from the ready set for this boundary.
 | 
						|
void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
 | 
						|
  if (Available.isInQueue(SU))
 | 
						|
    Available.remove(Available.find(SU));
 | 
						|
  else {
 | 
						|
    assert(Pending.isInQueue(SU) && "bad ready count");
 | 
						|
    Pending.remove(Pending.find(SU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If this queue only has one ready candidate, return it. As a side effect,
 | 
						|
/// advance the cycle until at least one node is ready. If multiple instructions
 | 
						|
/// are ready, return NULL.
 | 
						|
SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
 | 
						|
  if (CheckPending)
 | 
						|
    releasePending();
 | 
						|
 | 
						|
  for (unsigned i = 0; Available.empty(); ++i) {
 | 
						|
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
 | 
						|
           "permanent hazard"); (void)i;
 | 
						|
    bumpCycle();
 | 
						|
    releasePending();
 | 
						|
  }
 | 
						|
  if (Available.size() == 1)
 | 
						|
    return *Available.begin();
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void ConvergingScheduler::traceCandidate(const char *Label, const ReadyQueue &Q,
 | 
						|
                                         SUnit *SU, PressureElement P) {
 | 
						|
  dbgs() << Label << " " << Q.getName() << " ";
 | 
						|
  if (P.isValid())
 | 
						|
    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
 | 
						|
           << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "     ";
 | 
						|
  SU->dump(DAG);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
 | 
						|
/// more desirable than RHS from scheduling standpoint.
 | 
						|
static bool compareRPDelta(const RegPressureDelta &LHS,
 | 
						|
                           const RegPressureDelta &RHS) {
 | 
						|
  // Compare each component of pressure in decreasing order of importance
 | 
						|
  // without checking if any are valid. Invalid PressureElements are assumed to
 | 
						|
  // have UnitIncrease==0, so are neutral.
 | 
						|
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease)
 | 
						|
    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
 | 
						|
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease)
 | 
						|
    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
 | 
						|
 | 
						|
  // Avoid increasing the max pressure of the entire region.
 | 
						|
  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease)
 | 
						|
    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate from the top queue.
 | 
						|
///
 | 
						|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | 
						|
/// DAG building. To adjust for the current scheduling location we need to
 | 
						|
/// maintain the number of vreg uses remaining to be top-scheduled.
 | 
						|
ConvergingScheduler::CandResult ConvergingScheduler::
 | 
						|
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
 | 
						|
                  SchedCandidate &Candidate) {
 | 
						|
  DEBUG(Q.dump());
 | 
						|
 | 
						|
  // getMaxPressureDelta temporarily modifies the tracker.
 | 
						|
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | 
						|
 | 
						|
  // BestSU remains NULL if no top candidates beat the best existing candidate.
 | 
						|
  CandResult FoundCandidate = NoCand;
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
    RegPressureDelta RPDelta;
 | 
						|
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
 | 
						|
                                    DAG->getRegionCriticalPSets(),
 | 
						|
                                    DAG->getRegPressure().MaxSetPressure);
 | 
						|
 | 
						|
    // Initialize the candidate if needed.
 | 
						|
    if (!Candidate.SU) {
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      FoundCandidate = NodeOrder;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Avoid exceeding the target's limit.
 | 
						|
    if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) {
 | 
						|
      DEBUG(traceCandidate("ECAND", Q, *I, RPDelta.Excess));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      FoundCandidate = SingleExcess;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease)
 | 
						|
      continue;
 | 
						|
    if (FoundCandidate == SingleExcess)
 | 
						|
      FoundCandidate = MultiPressure;
 | 
						|
 | 
						|
    // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
    if (RPDelta.CriticalMax.UnitIncrease
 | 
						|
        < Candidate.RPDelta.CriticalMax.UnitIncrease) {
 | 
						|
      DEBUG(traceCandidate("PCAND", Q, *I, RPDelta.CriticalMax));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      FoundCandidate = SingleCritical;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RPDelta.CriticalMax.UnitIncrease
 | 
						|
        > Candidate.RPDelta.CriticalMax.UnitIncrease)
 | 
						|
      continue;
 | 
						|
    if (FoundCandidate == SingleCritical)
 | 
						|
      FoundCandidate = MultiPressure;
 | 
						|
 | 
						|
    // Avoid increasing the max pressure of the entire region.
 | 
						|
    if (RPDelta.CurrentMax.UnitIncrease
 | 
						|
        < Candidate.RPDelta.CurrentMax.UnitIncrease) {
 | 
						|
      DEBUG(traceCandidate("MCAND", Q, *I, RPDelta.CurrentMax));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      FoundCandidate = SingleMax;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RPDelta.CurrentMax.UnitIncrease
 | 
						|
        > Candidate.RPDelta.CurrentMax.UnitIncrease)
 | 
						|
      continue;
 | 
						|
    if (FoundCandidate == SingleMax)
 | 
						|
      FoundCandidate = MultiPressure;
 | 
						|
 | 
						|
    // Fall through to original instruction order.
 | 
						|
    // Only consider node order if Candidate was chosen from this Q.
 | 
						|
    if (FoundCandidate == NoCand)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
 | 
						|
        || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
 | 
						|
      DEBUG(traceCandidate("NCAND", Q, *I));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      FoundCandidate = NodeOrder;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FoundCandidate;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate node from either the top or bottom queue.
 | 
						|
SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
 | 
						|
  // Schedule as far as possible in the direction of no choice. This is most
 | 
						|
  // efficient, but also provides the best heuristics for CriticalPSets.
 | 
						|
  if (SUnit *SU = Bot.pickOnlyChoice()) {
 | 
						|
    IsTopNode = false;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  if (SUnit *SU = Top.pickOnlyChoice()) {
 | 
						|
    IsTopNode = true;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  SchedCandidate BotCand;
 | 
						|
  // Prefer bottom scheduling when heuristics are silent.
 | 
						|
  CandResult BotResult = pickNodeFromQueue(Bot.Available,
 | 
						|
                                           DAG->getBotRPTracker(), BotCand);
 | 
						|
  assert(BotResult != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // If either Q has a single candidate that provides the least increase in
 | 
						|
  // Excess pressure, we can immediately schedule from that Q.
 | 
						|
  //
 | 
						|
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | 
						|
  // affects picking from either Q. If scheduling in one direction must
 | 
						|
  // increase pressure for one of the excess PSets, then schedule in that
 | 
						|
  // direction first to provide more freedom in the other direction.
 | 
						|
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
 | 
						|
    IsTopNode = false;
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  // Check if the top Q has a better candidate.
 | 
						|
  SchedCandidate TopCand;
 | 
						|
  CandResult TopResult = pickNodeFromQueue(Top.Available,
 | 
						|
                                           DAG->getTopRPTracker(), TopCand);
 | 
						|
  assert(TopResult != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  if (TopResult == SingleExcess || TopResult == SingleCritical) {
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // If either Q has a single candidate that minimizes pressure above the
 | 
						|
  // original region's pressure pick it.
 | 
						|
  if (BotResult == SingleMax) {
 | 
						|
    IsTopNode = false;
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  if (TopResult == SingleMax) {
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // Check for a salient pressure difference and pick the best from either side.
 | 
						|
  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // Otherwise prefer the bottom candidate in node order.
 | 
						|
  IsTopNode = false;
 | 
						|
  return BotCand.SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | 
						|
SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
 | 
						|
  if (DAG->top() == DAG->bottom()) {
 | 
						|
    assert(Top.Available.empty() && Top.Pending.empty() &&
 | 
						|
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  SUnit *SU;
 | 
						|
  if (ForceTopDown) {
 | 
						|
    SU = Top.pickOnlyChoice();
 | 
						|
    if (!SU) {
 | 
						|
      SchedCandidate TopCand;
 | 
						|
      CandResult TopResult =
 | 
						|
        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
 | 
						|
      assert(TopResult != NoCand && "failed to find the first candidate");
 | 
						|
      (void)TopResult;
 | 
						|
      SU = TopCand.SU;
 | 
						|
    }
 | 
						|
    IsTopNode = true;
 | 
						|
  }
 | 
						|
  else if (ForceBottomUp) {
 | 
						|
    SU = Bot.pickOnlyChoice();
 | 
						|
    if (!SU) {
 | 
						|
      SchedCandidate BotCand;
 | 
						|
      CandResult BotResult =
 | 
						|
        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
 | 
						|
      assert(BotResult != NoCand && "failed to find the first candidate");
 | 
						|
      (void)BotResult;
 | 
						|
      SU = BotCand.SU;
 | 
						|
    }
 | 
						|
    IsTopNode = false;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    SU = pickNodeBidrectional(IsTopNode);
 | 
						|
  }
 | 
						|
  if (SU->isTopReady())
 | 
						|
    Top.removeReady(SU);
 | 
						|
  if (SU->isBottomReady())
 | 
						|
    Bot.removeReady(SU);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
 | 
						|
        << " Scheduling Instruction in cycle "
 | 
						|
        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
 | 
						|
        SU->dump(DAG));
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the scheduler's state after scheduling a node. This is the same node
 | 
						|
/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
 | 
						|
/// it's state based on the current cycle before MachineSchedStrategy does.
 | 
						|
void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  if (IsTopNode) {
 | 
						|
    SU->TopReadyCycle = Top.CurrCycle;
 | 
						|
    Top.bumpNode(SU);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    SU->BotReadyCycle = Bot.CurrCycle;
 | 
						|
    Bot.bumpNode(SU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create the standard converging machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
 | 
						|
  assert((!ForceTopDown || !ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  return new ScheduleDAGMI(C, new ConvergingScheduler());
 | 
						|
}
 | 
						|
static MachineSchedRegistry
 | 
						|
ConvergingSchedRegistry("converge", "Standard converging scheduler.",
 | 
						|
                        createConvergingSched);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Shuffler for Correctness Testing
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
namespace {
 | 
						|
/// Apply a less-than relation on the node order, which corresponds to the
 | 
						|
/// instruction order prior to scheduling. IsReverse implements greater-than.
 | 
						|
template<bool IsReverse>
 | 
						|
struct SUnitOrder {
 | 
						|
  bool operator()(SUnit *A, SUnit *B) const {
 | 
						|
    if (IsReverse)
 | 
						|
      return A->NodeNum > B->NodeNum;
 | 
						|
    else
 | 
						|
      return A->NodeNum < B->NodeNum;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Reorder instructions as much as possible.
 | 
						|
class InstructionShuffler : public MachineSchedStrategy {
 | 
						|
  bool IsAlternating;
 | 
						|
  bool IsTopDown;
 | 
						|
 | 
						|
  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | 
						|
  // gives nodes with a higher number higher priority causing the latest
 | 
						|
  // instructions to be scheduled first.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
 | 
						|
    TopQ;
 | 
						|
  // When scheduling bottom-up, use greater-than as the queue priority.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
 | 
						|
    BottomQ;
 | 
						|
public:
 | 
						|
  InstructionShuffler(bool alternate, bool topdown)
 | 
						|
    : IsAlternating(alternate), IsTopDown(topdown) {}
 | 
						|
 | 
						|
  virtual void initialize(ScheduleDAGMI *) {
 | 
						|
    TopQ.clear();
 | 
						|
    BottomQ.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement MachineSchedStrategy interface.
 | 
						|
  /// -----------------------------------------
 | 
						|
 | 
						|
  virtual SUnit *pickNode(bool &IsTopNode) {
 | 
						|
    SUnit *SU;
 | 
						|
    if (IsTopDown) {
 | 
						|
      do {
 | 
						|
        if (TopQ.empty()) return NULL;
 | 
						|
        SU = TopQ.top();
 | 
						|
        TopQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = true;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      do {
 | 
						|
        if (BottomQ.empty()) return NULL;
 | 
						|
        SU = BottomQ.top();
 | 
						|
        BottomQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = false;
 | 
						|
    }
 | 
						|
    if (IsAlternating)
 | 
						|
      IsTopDown = !IsTopDown;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
 | 
						|
 | 
						|
  virtual void releaseTopNode(SUnit *SU) {
 | 
						|
    TopQ.push(SU);
 | 
						|
  }
 | 
						|
  virtual void releaseBottomNode(SUnit *SU) {
 | 
						|
    BottomQ.push(SU);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | 
						|
  bool Alternate = !ForceTopDown && !ForceBottomUp;
 | 
						|
  bool TopDown = !ForceBottomUp;
 | 
						|
  assert((TopDown || !ForceTopDown) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
 | 
						|
}
 | 
						|
static MachineSchedRegistry ShufflerRegistry(
 | 
						|
  "shuffle", "Shuffle machine instructions alternating directions",
 | 
						|
  createInstructionShuffler);
 | 
						|
#endif // !NDEBUG
 |