forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2612 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2612 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation implements the well known scalar replacement of
 | 
						|
// aggregates transformation.  This xform breaks up alloca instructions of
 | 
						|
// aggregate type (structure or array) into individual alloca instructions for
 | 
						|
// each member (if possible).  Then, if possible, it transforms the individual
 | 
						|
// alloca instructions into nice clean scalar SSA form.
 | 
						|
//
 | 
						|
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
 | 
						|
// often interact, especially for C++ programs.  As such, iterating between
 | 
						|
// SRoA, then Mem2Reg until we run out of things to promote works well.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalarrepl"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DIBuilder.h"
 | 
						|
#include "llvm/DebugInfo.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/IRBuilder.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumReplaced,  "Number of allocas broken up");
 | 
						|
STATISTIC(NumPromoted,  "Number of allocas promoted");
 | 
						|
STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
 | 
						|
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct SROA : public FunctionPass {
 | 
						|
    SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
 | 
						|
      : FunctionPass(ID), HasDomTree(hasDT) {
 | 
						|
      if (T == -1)
 | 
						|
        SRThreshold = 128;
 | 
						|
      else
 | 
						|
        SRThreshold = T;
 | 
						|
      if (ST == -1)
 | 
						|
        StructMemberThreshold = 32;
 | 
						|
      else
 | 
						|
        StructMemberThreshold = ST;
 | 
						|
      if (AT == -1)
 | 
						|
        ArrayElementThreshold = 8;
 | 
						|
      else
 | 
						|
        ArrayElementThreshold = AT;
 | 
						|
      if (SLT == -1)
 | 
						|
        // Do not limit the scalar integer load size if no threshold is given.
 | 
						|
        ScalarLoadThreshold = -1;
 | 
						|
      else
 | 
						|
        ScalarLoadThreshold = SLT;
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    bool performScalarRepl(Function &F);
 | 
						|
    bool performPromotion(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool HasDomTree;
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// DeadInsts - Keep track of instructions we have made dead, so that
 | 
						|
    /// we can remove them after we are done working.
 | 
						|
    SmallVector<Value*, 32> DeadInsts;
 | 
						|
 | 
						|
    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
 | 
						|
    /// information about the uses.  All these fields are initialized to false
 | 
						|
    /// and set to true when something is learned.
 | 
						|
    struct AllocaInfo {
 | 
						|
      /// The alloca to promote.
 | 
						|
      AllocaInst *AI;
 | 
						|
 | 
						|
      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
 | 
						|
      /// looping and avoid redundant work.
 | 
						|
      SmallPtrSet<PHINode*, 8> CheckedPHIs;
 | 
						|
 | 
						|
      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
 | 
						|
      bool isUnsafe : 1;
 | 
						|
 | 
						|
      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
 | 
						|
      bool isMemCpySrc : 1;
 | 
						|
 | 
						|
      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
 | 
						|
      bool isMemCpyDst : 1;
 | 
						|
 | 
						|
      /// hasSubelementAccess - This is true if a subelement of the alloca is
 | 
						|
      /// ever accessed, or false if the alloca is only accessed with mem
 | 
						|
      /// intrinsics or load/store that only access the entire alloca at once.
 | 
						|
      bool hasSubelementAccess : 1;
 | 
						|
 | 
						|
      /// hasALoadOrStore - This is true if there are any loads or stores to it.
 | 
						|
      /// The alloca may just be accessed with memcpy, for example, which would
 | 
						|
      /// not set this.
 | 
						|
      bool hasALoadOrStore : 1;
 | 
						|
 | 
						|
      explicit AllocaInfo(AllocaInst *ai)
 | 
						|
        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
 | 
						|
          hasSubelementAccess(false), hasALoadOrStore(false) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// SRThreshold - The maximum alloca size to considered for SROA.
 | 
						|
    unsigned SRThreshold;
 | 
						|
 | 
						|
    /// StructMemberThreshold - The maximum number of members a struct can
 | 
						|
    /// contain to be considered for SROA.
 | 
						|
    unsigned StructMemberThreshold;
 | 
						|
 | 
						|
    /// ArrayElementThreshold - The maximum number of elements an array can
 | 
						|
    /// have to be considered for SROA.
 | 
						|
    unsigned ArrayElementThreshold;
 | 
						|
 | 
						|
    /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
 | 
						|
    /// converting to scalar
 | 
						|
    unsigned ScalarLoadThreshold;
 | 
						|
 | 
						|
    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
 | 
						|
      I.isUnsafe = true;
 | 
						|
      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
 | 
						|
    }
 | 
						|
 | 
						|
    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
 | 
						|
 | 
						|
    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
 | 
						|
    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
 | 
						|
                                         AllocaInfo &Info);
 | 
						|
    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
 | 
						|
    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
 | 
						|
                         Type *MemOpType, bool isStore, AllocaInfo &Info,
 | 
						|
                         Instruction *TheAccess, bool AllowWholeAccess);
 | 
						|
    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
 | 
						|
    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
 | 
						|
                                  Type *&IdxTy);
 | 
						|
 | 
						|
    void DoScalarReplacement(AllocaInst *AI,
 | 
						|
                             std::vector<AllocaInst*> &WorkList);
 | 
						|
    void DeleteDeadInstructions();
 | 
						|
 | 
						|
    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                              SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | 
						|
                        SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | 
						|
                    SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
 | 
						|
                                  uint64_t Offset,
 | 
						|
                                  SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | 
						|
                                      AllocaInst *AI,
 | 
						|
                                      SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | 
						|
                                       SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | 
						|
                                      SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    bool ShouldAttemptScalarRepl(AllocaInst *AI);
 | 
						|
  };
 | 
						|
 | 
						|
  // SROA_DT - SROA that uses DominatorTree.
 | 
						|
  struct SROA_DT : public SROA {
 | 
						|
    static char ID;
 | 
						|
  public:
 | 
						|
    SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
 | 
						|
        SROA(T, true, ID, ST, AT, SLT) {
 | 
						|
      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    // getAnalysisUsage - This pass does not require any passes, but we know it
 | 
						|
    // will not alter the CFG, so say so.
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // SROA_SSAUp - SROA that uses SSAUpdater.
 | 
						|
  struct SROA_SSAUp : public SROA {
 | 
						|
    static char ID;
 | 
						|
  public:
 | 
						|
    SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
 | 
						|
        SROA(T, false, ID, ST, AT, SLT) {
 | 
						|
      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    // getAnalysisUsage - This pass does not require any passes, but we know it
 | 
						|
    // will not alter the CFG, so say so.
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
char SROA_DT::ID = 0;
 | 
						|
char SROA_SSAUp::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
 | 
						|
                "Scalar Replacement of Aggregates (DT)", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
 | 
						|
                "Scalar Replacement of Aggregates (DT)", false, false)
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
 | 
						|
                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
 | 
						|
INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
 | 
						|
                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
 | 
						|
 | 
						|
// Public interface to the ScalarReplAggregates pass
 | 
						|
FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
 | 
						|
                                                   bool UseDomTree,
 | 
						|
                                                   int StructMemberThreshold,
 | 
						|
                                                   int ArrayElementThreshold,
 | 
						|
                                                   int ScalarLoadThreshold) {
 | 
						|
  if (UseDomTree)
 | 
						|
    return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
 | 
						|
                       ScalarLoadThreshold);
 | 
						|
  return new SROA_SSAUp(Threshold, StructMemberThreshold,
 | 
						|
                        ArrayElementThreshold, ScalarLoadThreshold);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Convert To Scalar Optimization.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
 | 
						|
/// optimization, which scans the uses of an alloca and determines if it can
 | 
						|
/// rewrite it in terms of a single new alloca that can be mem2reg'd.
 | 
						|
class ConvertToScalarInfo {
 | 
						|
  /// AllocaSize - The size of the alloca being considered in bytes.
 | 
						|
  unsigned AllocaSize;
 | 
						|
  const TargetData &TD;
 | 
						|
  unsigned ScalarLoadThreshold;
 | 
						|
 | 
						|
  /// IsNotTrivial - This is set to true if there is some access to the object
 | 
						|
  /// which means that mem2reg can't promote it.
 | 
						|
  bool IsNotTrivial;
 | 
						|
 | 
						|
  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
 | 
						|
  /// computed based on the uses of the alloca rather than the LLVM type system.
 | 
						|
  enum {
 | 
						|
    Unknown,
 | 
						|
 | 
						|
    // Accesses via GEPs that are consistent with element access of a vector
 | 
						|
    // type. This will not be converted into a vector unless there is a later
 | 
						|
    // access using an actual vector type.
 | 
						|
    ImplicitVector,
 | 
						|
 | 
						|
    // Accesses via vector operations and GEPs that are consistent with the
 | 
						|
    // layout of a vector type.
 | 
						|
    Vector,
 | 
						|
 | 
						|
    // An integer bag-of-bits with bitwise operations for insertion and
 | 
						|
    // extraction. Any combination of types can be converted into this kind
 | 
						|
    // of scalar.
 | 
						|
    Integer
 | 
						|
  } ScalarKind;
 | 
						|
 | 
						|
  /// VectorTy - This tracks the type that we should promote the vector to if
 | 
						|
  /// it is possible to turn it into a vector.  This starts out null, and if it
 | 
						|
  /// isn't possible to turn into a vector type, it gets set to VoidTy.
 | 
						|
  VectorType *VectorTy;
 | 
						|
 | 
						|
  /// HadNonMemTransferAccess - True if there is at least one access to the
 | 
						|
  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
 | 
						|
  /// large integers unless there is some potential for optimization.
 | 
						|
  bool HadNonMemTransferAccess;
 | 
						|
 | 
						|
  /// HadDynamicAccess - True if some element of this alloca was dynamic.
 | 
						|
  /// We don't yet have support for turning a dynamic access into a large
 | 
						|
  /// integer.
 | 
						|
  bool HadDynamicAccess;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td,
 | 
						|
                               unsigned SLT)
 | 
						|
    : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
 | 
						|
    ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
 | 
						|
    HadDynamicAccess(false) { }
 | 
						|
 | 
						|
  AllocaInst *TryConvert(AllocaInst *AI);
 | 
						|
 | 
						|
private:
 | 
						|
  bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
 | 
						|
  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
 | 
						|
  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
 | 
						|
  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
 | 
						|
                           Value *NonConstantIdx);
 | 
						|
 | 
						|
  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
 | 
						|
                                    uint64_t Offset, Value* NonConstantIdx,
 | 
						|
                                    IRBuilder<> &Builder);
 | 
						|
  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
 | 
						|
                                   uint64_t Offset, Value* NonConstantIdx,
 | 
						|
                                   IRBuilder<> &Builder);
 | 
						|
};
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
 | 
						|
/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
 | 
						|
/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
 | 
						|
/// alloca if possible or null if not.
 | 
						|
AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
 | 
						|
  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
 | 
						|
  // out.
 | 
						|
  if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If an alloca has only memset / memcpy uses, it may still have an Unknown
 | 
						|
  // ScalarKind. Treat it as an Integer below.
 | 
						|
  if (ScalarKind == Unknown)
 | 
						|
    ScalarKind = Integer;
 | 
						|
 | 
						|
  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
 | 
						|
    ScalarKind = Integer;
 | 
						|
 | 
						|
  // If we were able to find a vector type that can handle this with
 | 
						|
  // insert/extract elements, and if there was at least one use that had
 | 
						|
  // a vector type, promote this to a vector.  We don't want to promote
 | 
						|
  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
 | 
						|
  // we just get a lot of insert/extracts.  If at least one vector is
 | 
						|
  // involved, then we probably really do have a union of vector/array.
 | 
						|
  Type *NewTy;
 | 
						|
  if (ScalarKind == Vector) {
 | 
						|
    assert(VectorTy && "Missing type for vector scalar.");
 | 
						|
    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
 | 
						|
          << *VectorTy << '\n');
 | 
						|
    NewTy = VectorTy;  // Use the vector type.
 | 
						|
  } else {
 | 
						|
    unsigned BitWidth = AllocaSize * 8;
 | 
						|
 | 
						|
    // Do not convert to scalar integer if the alloca size exceeds the
 | 
						|
    // scalar load threshold.
 | 
						|
    if (BitWidth > ScalarLoadThreshold)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
 | 
						|
        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
 | 
						|
      return 0;
 | 
						|
    // Dynamic accesses on integers aren't yet supported.  They need us to shift
 | 
						|
    // by a dynamic amount which could be difficult to work out as we might not
 | 
						|
    // know whether to use a left or right shift.
 | 
						|
    if (ScalarKind == Integer && HadDynamicAccess)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
 | 
						|
    // Create and insert the integer alloca.
 | 
						|
    NewTy = IntegerType::get(AI->getContext(), BitWidth);
 | 
						|
  }
 | 
						|
  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
 | 
						|
  ConvertUsesToScalar(AI, NewAI, 0, 0);
 | 
						|
  return NewAI;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
 | 
						|
/// (VectorTy) so far at the offset specified by Offset (which is specified in
 | 
						|
/// bytes).
 | 
						|
///
 | 
						|
/// There are two cases we handle here:
 | 
						|
///   1) A union of vector types of the same size and potentially its elements.
 | 
						|
///      Here we turn element accesses into insert/extract element operations.
 | 
						|
///      This promotes a <4 x float> with a store of float to the third element
 | 
						|
///      into a <4 x float> that uses insert element.
 | 
						|
///   2) A fully general blob of memory, which we turn into some (potentially
 | 
						|
///      large) integer type with extract and insert operations where the loads
 | 
						|
///      and stores would mutate the memory.  We mark this by setting VectorTy
 | 
						|
///      to VoidTy.
 | 
						|
void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
 | 
						|
                                                    uint64_t Offset) {
 | 
						|
  // If we already decided to turn this into a blob of integer memory, there is
 | 
						|
  // nothing to be done.
 | 
						|
  if (ScalarKind == Integer)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this could be contributing to a vector, analyze it.
 | 
						|
 | 
						|
  // If the In type is a vector that is the same size as the alloca, see if it
 | 
						|
  // matches the existing VecTy.
 | 
						|
  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
 | 
						|
    if (MergeInVectorType(VInTy, Offset))
 | 
						|
      return;
 | 
						|
  } else if (In->isFloatTy() || In->isDoubleTy() ||
 | 
						|
             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
 | 
						|
              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
 | 
						|
    // Full width accesses can be ignored, because they can always be turned
 | 
						|
    // into bitcasts.
 | 
						|
    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
 | 
						|
    if (EltSize == AllocaSize)
 | 
						|
      return;
 | 
						|
 | 
						|
    // If we're accessing something that could be an element of a vector, see
 | 
						|
    // if the implied vector agrees with what we already have and if Offset is
 | 
						|
    // compatible with it.
 | 
						|
    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
 | 
						|
        (!VectorTy || EltSize == VectorTy->getElementType()
 | 
						|
                                         ->getPrimitiveSizeInBits()/8)) {
 | 
						|
      if (!VectorTy) {
 | 
						|
        ScalarKind = ImplicitVector;
 | 
						|
        VectorTy = VectorType::get(In, AllocaSize/EltSize);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have a case that we can't handle with an optimized vector
 | 
						|
  // form.  We can still turn this into a large integer.
 | 
						|
  ScalarKind = Integer;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
 | 
						|
/// returning true if the type was successfully merged and false otherwise.
 | 
						|
bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
 | 
						|
                                            uint64_t Offset) {
 | 
						|
  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
 | 
						|
    // If we're storing/loading a vector of the right size, allow it as a
 | 
						|
    // vector.  If this the first vector we see, remember the type so that
 | 
						|
    // we know the element size. If this is a subsequent access, ignore it
 | 
						|
    // even if it is a differing type but the same size. Worst case we can
 | 
						|
    // bitcast the resultant vectors.
 | 
						|
    if (!VectorTy)
 | 
						|
      VectorTy = VInTy;
 | 
						|
    ScalarKind = Vector;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
 | 
						|
/// its accesses to a single vector type, return true and set VecTy to
 | 
						|
/// the new type.  If we could convert the alloca into a single promotable
 | 
						|
/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
 | 
						|
/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
 | 
						|
/// is the current offset from the base of the alloca being analyzed.
 | 
						|
///
 | 
						|
/// If we see at least one access to the value that is as a vector type, set the
 | 
						|
/// SawVec flag.
 | 
						|
bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
 | 
						|
                                             Value* NonConstantIdx) {
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      // Don't break volatile loads.
 | 
						|
      if (!LI->isSimple())
 | 
						|
        return false;
 | 
						|
      // Don't touch MMX operations.
 | 
						|
      if (LI->getType()->isX86_MMXTy())
 | 
						|
        return false;
 | 
						|
      HadNonMemTransferAccess = true;
 | 
						|
      MergeInTypeForLoadOrStore(LI->getType(), Offset);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      // Storing the pointer, not into the value?
 | 
						|
      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
 | 
						|
      // Don't touch MMX operations.
 | 
						|
      if (SI->getOperand(0)->getType()->isX86_MMXTy())
 | 
						|
        return false;
 | 
						|
      HadNonMemTransferAccess = true;
 | 
						|
      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
 | 
						|
      if (!onlyUsedByLifetimeMarkers(BCI))
 | 
						|
        IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      // If this is a GEP with a variable indices, we can't handle it.
 | 
						|
      PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
 | 
						|
      if (!PtrTy)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Compute the offset that this GEP adds to the pointer.
 | 
						|
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | 
						|
      Value *GEPNonConstantIdx = 0;
 | 
						|
      if (!GEP->hasAllConstantIndices()) {
 | 
						|
        if (!isa<VectorType>(PtrTy->getElementType()))
 | 
						|
          return false;
 | 
						|
        if (NonConstantIdx)
 | 
						|
          return false;
 | 
						|
        GEPNonConstantIdx = Indices.pop_back_val();
 | 
						|
        if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
 | 
						|
          return false;
 | 
						|
        HadDynamicAccess = true;
 | 
						|
      } else
 | 
						|
        GEPNonConstantIdx = NonConstantIdx;
 | 
						|
      uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
 | 
						|
                                               Indices);
 | 
						|
      // See if all uses can be converted.
 | 
						|
      if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
 | 
						|
        return false;
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      HadNonMemTransferAccess = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a constant sized memset of a constant value (e.g. 0) we can
 | 
						|
    // handle it.
 | 
						|
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | 
						|
      // Store to dynamic index.
 | 
						|
      if (NonConstantIdx)
 | 
						|
        return false;
 | 
						|
      // Store of constant value.
 | 
						|
      if (!isa<ConstantInt>(MSI->getValue()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Store of constant size.
 | 
						|
      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
 | 
						|
      if (!Len)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If the size differs from the alloca, we can only convert the alloca to
 | 
						|
      // an integer bag-of-bits.
 | 
						|
      // FIXME: This should handle all of the cases that are currently accepted
 | 
						|
      // as vector element insertions.
 | 
						|
      if (Len->getZExtValue() != AllocaSize || Offset != 0)
 | 
						|
        ScalarKind = Integer;
 | 
						|
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      HadNonMemTransferAccess = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a memcpy or memmove into or out of the whole allocation, we
 | 
						|
    // can handle it like a load or store of the scalar type.
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | 
						|
      // Store to dynamic index.
 | 
						|
      if (NonConstantIdx)
 | 
						|
        return false;
 | 
						|
      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
 | 
						|
      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
 | 
						|
        return false;
 | 
						|
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a lifetime intrinsic, we can handle it.
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we cannot handle this!
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | 
						|
/// directly.  This happens when we are converting an "integer union" to a
 | 
						|
/// single integer scalar, or when we are converting a "vector union" to a
 | 
						|
/// vector with insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | 
						|
void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
 | 
						|
                                              uint64_t Offset,
 | 
						|
                                              Value* NonConstantIdx) {
 | 
						|
  while (!Ptr->use_empty()) {
 | 
						|
    Instruction *User = cast<Instruction>(Ptr->use_back());
 | 
						|
 | 
						|
    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | 
						|
      ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
 | 
						|
      CI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      // Compute the offset that this GEP adds to the pointer.
 | 
						|
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | 
						|
      Value* GEPNonConstantIdx = 0;
 | 
						|
      if (!GEP->hasAllConstantIndices()) {
 | 
						|
        assert(!NonConstantIdx &&
 | 
						|
               "Dynamic GEP reading from dynamic GEP unsupported");
 | 
						|
        GEPNonConstantIdx = Indices.pop_back_val();
 | 
						|
      } else
 | 
						|
        GEPNonConstantIdx = NonConstantIdx;
 | 
						|
      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
 | 
						|
                                               Indices);
 | 
						|
      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
 | 
						|
      GEP->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    IRBuilder<> Builder(User);
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      // The load is a bit extract from NewAI shifted right by Offset bits.
 | 
						|
      Value *LoadedVal = Builder.CreateLoad(NewAI);
 | 
						|
      Value *NewLoadVal
 | 
						|
        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
 | 
						|
                                     NonConstantIdx, Builder);
 | 
						|
      LI->replaceAllUsesWith(NewLoadVal);
 | 
						|
      LI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | 
						|
      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | 
						|
      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
 | 
						|
                                             NonConstantIdx, Builder);
 | 
						|
      Builder.CreateStore(New, NewAI);
 | 
						|
      SI->eraseFromParent();
 | 
						|
 | 
						|
      // If the load we just inserted is now dead, then the inserted store
 | 
						|
      // overwrote the entire thing.
 | 
						|
      if (Old->use_empty())
 | 
						|
        Old->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a constant sized memset of a constant value (e.g. 0) we can
 | 
						|
    // transform it into a store of the expanded constant value.
 | 
						|
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | 
						|
      assert(MSI->getRawDest() == Ptr && "Consistency error!");
 | 
						|
      assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
 | 
						|
      int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
 | 
						|
      if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
 | 
						|
        unsigned NumBytes = static_cast<unsigned>(SNumBytes);
 | 
						|
        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
 | 
						|
 | 
						|
        // Compute the value replicated the right number of times.
 | 
						|
        APInt APVal(NumBytes*8, Val);
 | 
						|
 | 
						|
        // Splat the value if non-zero.
 | 
						|
        if (Val)
 | 
						|
          for (unsigned i = 1; i != NumBytes; ++i)
 | 
						|
            APVal |= APVal << 8;
 | 
						|
 | 
						|
        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | 
						|
        Value *New = ConvertScalar_InsertValue(
 | 
						|
                                    ConstantInt::get(User->getContext(), APVal),
 | 
						|
                                               Old, Offset, 0, Builder);
 | 
						|
        Builder.CreateStore(New, NewAI);
 | 
						|
 | 
						|
        // If the load we just inserted is now dead, then the memset overwrote
 | 
						|
        // the entire thing.
 | 
						|
        if (Old->use_empty())
 | 
						|
          Old->eraseFromParent();
 | 
						|
      }
 | 
						|
      MSI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a memcpy or memmove into or out of the whole allocation, we
 | 
						|
    // can handle it like a load or store of the scalar type.
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | 
						|
      assert(Offset == 0 && "must be store to start of alloca");
 | 
						|
      assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
 | 
						|
 | 
						|
      // If the source and destination are both to the same alloca, then this is
 | 
						|
      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
 | 
						|
      // as appropriate.
 | 
						|
      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
 | 
						|
 | 
						|
      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
 | 
						|
        // Dest must be OrigAI, change this to be a load from the original
 | 
						|
        // pointer (bitcasted), then a store to our new alloca.
 | 
						|
        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
 | 
						|
        Value *SrcPtr = MTI->getSource();
 | 
						|
        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
 | 
						|
        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
 | 
						|
        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
 | 
						|
          AIPTy = PointerType::get(AIPTy->getElementType(),
 | 
						|
                                   SPTy->getAddressSpace());
 | 
						|
        }
 | 
						|
        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
 | 
						|
 | 
						|
        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
 | 
						|
        SrcVal->setAlignment(MTI->getAlignment());
 | 
						|
        Builder.CreateStore(SrcVal, NewAI);
 | 
						|
      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
 | 
						|
        // Src must be OrigAI, change this to be a load from NewAI then a store
 | 
						|
        // through the original dest pointer (bitcasted).
 | 
						|
        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
 | 
						|
        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
 | 
						|
 | 
						|
        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
 | 
						|
        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
 | 
						|
        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
 | 
						|
          AIPTy = PointerType::get(AIPTy->getElementType(),
 | 
						|
                                   DPTy->getAddressSpace());
 | 
						|
        }
 | 
						|
        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
 | 
						|
 | 
						|
        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
 | 
						|
        NewStore->setAlignment(MTI->getAlignment());
 | 
						|
      } else {
 | 
						|
        // Noop transfer. Src == Dst
 | 
						|
      }
 | 
						|
 | 
						|
      MTI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        // There's no need to preserve these, as the resulting alloca will be
 | 
						|
        // converted to a register anyways.
 | 
						|
        II->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm_unreachable("Unsupported operation!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
 | 
						|
/// or vector value FromVal, extracting the bits from the offset specified by
 | 
						|
/// Offset.  This returns the value, which is of type ToType.
 | 
						|
///
 | 
						|
/// This happens when we are converting an "integer union" to a single
 | 
						|
/// integer scalar, or when we are converting a "vector union" to a vector with
 | 
						|
/// insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.
 | 
						|
Value *ConvertToScalarInfo::
 | 
						|
ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
 | 
						|
                           uint64_t Offset, Value* NonConstantIdx,
 | 
						|
                           IRBuilder<> &Builder) {
 | 
						|
  // If the load is of the whole new alloca, no conversion is needed.
 | 
						|
  Type *FromType = FromVal->getType();
 | 
						|
  if (FromType == ToType && Offset == 0)
 | 
						|
    return FromVal;
 | 
						|
 | 
						|
  // If the result alloca is a vector type, this is either an element
 | 
						|
  // access or a bitcast to another vector type of the same size.
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
 | 
						|
    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
 | 
						|
    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
 | 
						|
    if (FromTypeSize == ToTypeSize)
 | 
						|
        return Builder.CreateBitCast(FromVal, ToType);
 | 
						|
 | 
						|
    // Otherwise it must be an element access.
 | 
						|
    unsigned Elt = 0;
 | 
						|
    if (Offset) {
 | 
						|
      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
 | 
						|
      Elt = Offset/EltSize;
 | 
						|
      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
 | 
						|
    }
 | 
						|
    // Return the element extracted out of it.
 | 
						|
    Value *Idx;
 | 
						|
    if (NonConstantIdx) {
 | 
						|
      if (Elt)
 | 
						|
        Idx = Builder.CreateAdd(NonConstantIdx,
 | 
						|
                                Builder.getInt32(Elt),
 | 
						|
                                "dyn.offset");
 | 
						|
      else
 | 
						|
        Idx = NonConstantIdx;
 | 
						|
    } else
 | 
						|
      Idx = Builder.getInt32(Elt);
 | 
						|
    Value *V = Builder.CreateExtractElement(FromVal, Idx);
 | 
						|
    if (V->getType() != ToType)
 | 
						|
      V = Builder.CreateBitCast(V, ToType);
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // If ToType is a first class aggregate, extract out each of the pieces and
 | 
						|
  // use insertvalue's to form the FCA.
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(ToType)) {
 | 
						|
    assert(!NonConstantIdx &&
 | 
						|
           "Dynamic indexing into struct types not supported");
 | 
						|
    const StructLayout &Layout = *TD.getStructLayout(ST);
 | 
						|
    Value *Res = UndefValue::get(ST);
 | 
						|
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
 | 
						|
                                        Offset+Layout.getElementOffsetInBits(i),
 | 
						|
                                              0, Builder);
 | 
						|
      Res = Builder.CreateInsertValue(Res, Elt, i);
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
 | 
						|
    assert(!NonConstantIdx &&
 | 
						|
           "Dynamic indexing into array types not supported");
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | 
						|
    Value *Res = UndefValue::get(AT);
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
 | 
						|
                                              Offset+i*EltSize, 0, Builder);
 | 
						|
      Res = Builder.CreateInsertValue(Res, Elt, i);
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this must be a union that was converted to an integer value.
 | 
						|
  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
 | 
						|
 | 
						|
  // If this is a big-endian system and the load is narrower than the
 | 
						|
  // full alloca type, we need to do a shift to get the right bits.
 | 
						|
  int ShAmt = 0;
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    // On big-endian machines, the lowest bit is stored at the bit offset
 | 
						|
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | 
						|
    // integers with a bitwidth that is not a multiple of 8.
 | 
						|
    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
 | 
						|
            TD.getTypeStoreSizeInBits(ToType) - Offset;
 | 
						|
  } else {
 | 
						|
    ShAmt = Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: we support negative bitwidths (with shl) which are not defined.
 | 
						|
  // We do this to support (f.e.) loads off the end of a structure where
 | 
						|
  // only some bits are used.
 | 
						|
  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
 | 
						|
    FromVal = Builder.CreateLShr(FromVal,
 | 
						|
                                 ConstantInt::get(FromVal->getType(), ShAmt));
 | 
						|
  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
 | 
						|
    FromVal = Builder.CreateShl(FromVal,
 | 
						|
                                ConstantInt::get(FromVal->getType(), -ShAmt));
 | 
						|
 | 
						|
  // Finally, unconditionally truncate the integer to the right width.
 | 
						|
  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
 | 
						|
  if (LIBitWidth < NTy->getBitWidth())
 | 
						|
    FromVal =
 | 
						|
      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
 | 
						|
                                                    LIBitWidth));
 | 
						|
  else if (LIBitWidth > NTy->getBitWidth())
 | 
						|
    FromVal =
 | 
						|
       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
 | 
						|
                                                    LIBitWidth));
 | 
						|
 | 
						|
  // If the result is an integer, this is a trunc or bitcast.
 | 
						|
  if (ToType->isIntegerTy()) {
 | 
						|
    // Should be done.
 | 
						|
  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
 | 
						|
    // Just do a bitcast, we know the sizes match up.
 | 
						|
    FromVal = Builder.CreateBitCast(FromVal, ToType);
 | 
						|
  } else {
 | 
						|
    // Otherwise must be a pointer.
 | 
						|
    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
 | 
						|
  }
 | 
						|
  assert(FromVal->getType() == ToType && "Didn't convert right?");
 | 
						|
  return FromVal;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
 | 
						|
/// or vector value "Old" at the offset specified by Offset.
 | 
						|
///
 | 
						|
/// This happens when we are converting an "integer union" to a
 | 
						|
/// single integer scalar, or when we are converting a "vector union" to a
 | 
						|
/// vector with insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.
 | 
						|
///
 | 
						|
/// NonConstantIdx is an index value if there was a GEP with a non-constant
 | 
						|
/// index value.  If this is 0 then all GEPs used to find this insert address
 | 
						|
/// are constant.
 | 
						|
Value *ConvertToScalarInfo::
 | 
						|
ConvertScalar_InsertValue(Value *SV, Value *Old,
 | 
						|
                          uint64_t Offset, Value* NonConstantIdx,
 | 
						|
                          IRBuilder<> &Builder) {
 | 
						|
  // Convert the stored type to the actual type, shift it left to insert
 | 
						|
  // then 'or' into place.
 | 
						|
  Type *AllocaType = Old->getType();
 | 
						|
  LLVMContext &Context = Old->getContext();
 | 
						|
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
 | 
						|
    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
 | 
						|
    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
 | 
						|
 | 
						|
    // Changing the whole vector with memset or with an access of a different
 | 
						|
    // vector type?
 | 
						|
    if (ValSize == VecSize)
 | 
						|
        return Builder.CreateBitCast(SV, AllocaType);
 | 
						|
 | 
						|
    // Must be an element insertion.
 | 
						|
    Type *EltTy = VTy->getElementType();
 | 
						|
    if (SV->getType() != EltTy)
 | 
						|
      SV = Builder.CreateBitCast(SV, EltTy);
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
 | 
						|
    unsigned Elt = Offset/EltSize;
 | 
						|
    Value *Idx;
 | 
						|
    if (NonConstantIdx) {
 | 
						|
      if (Elt)
 | 
						|
        Idx = Builder.CreateAdd(NonConstantIdx,
 | 
						|
                                Builder.getInt32(Elt),
 | 
						|
                                "dyn.offset");
 | 
						|
      else
 | 
						|
        Idx = NonConstantIdx;
 | 
						|
    } else
 | 
						|
      Idx = Builder.getInt32(Elt);
 | 
						|
    return Builder.CreateInsertElement(Old, SV, Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  // If SV is a first-class aggregate value, insert each value recursively.
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
 | 
						|
    assert(!NonConstantIdx &&
 | 
						|
           "Dynamic indexing into struct types not supported");
 | 
						|
    const StructLayout &Layout = *TD.getStructLayout(ST);
 | 
						|
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = Builder.CreateExtractValue(SV, i);
 | 
						|
      Old = ConvertScalar_InsertValue(Elt, Old,
 | 
						|
                                      Offset+Layout.getElementOffsetInBits(i),
 | 
						|
                                      0, Builder);
 | 
						|
    }
 | 
						|
    return Old;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
 | 
						|
    assert(!NonConstantIdx &&
 | 
						|
           "Dynamic indexing into array types not supported");
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = Builder.CreateExtractValue(SV, i);
 | 
						|
      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
 | 
						|
    }
 | 
						|
    return Old;
 | 
						|
  }
 | 
						|
 | 
						|
  // If SV is a float, convert it to the appropriate integer type.
 | 
						|
  // If it is a pointer, do the same.
 | 
						|
  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
 | 
						|
  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
 | 
						|
  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
 | 
						|
  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
 | 
						|
  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
 | 
						|
    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
 | 
						|
  else if (SV->getType()->isPointerTy())
 | 
						|
    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
 | 
						|
 | 
						|
  // Zero extend or truncate the value if needed.
 | 
						|
  if (SV->getType() != AllocaType) {
 | 
						|
    if (SV->getType()->getPrimitiveSizeInBits() <
 | 
						|
             AllocaType->getPrimitiveSizeInBits())
 | 
						|
      SV = Builder.CreateZExt(SV, AllocaType);
 | 
						|
    else {
 | 
						|
      // Truncation may be needed if storing more than the alloca can hold
 | 
						|
      // (undefined behavior).
 | 
						|
      SV = Builder.CreateTrunc(SV, AllocaType);
 | 
						|
      SrcWidth = DestWidth;
 | 
						|
      SrcStoreWidth = DestStoreWidth;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a big-endian system and the store is narrower than the
 | 
						|
  // full alloca type, we need to do a shift to get the right bits.
 | 
						|
  int ShAmt = 0;
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    // On big-endian machines, the lowest bit is stored at the bit offset
 | 
						|
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | 
						|
    // integers with a bitwidth that is not a multiple of 8.
 | 
						|
    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
 | 
						|
  } else {
 | 
						|
    ShAmt = Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: we support negative bitwidths (with shr) which are not defined.
 | 
						|
  // We do this to support (f.e.) stores off the end of a structure where
 | 
						|
  // only some bits in the structure are set.
 | 
						|
  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
 | 
						|
  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
 | 
						|
    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
 | 
						|
    Mask <<= ShAmt;
 | 
						|
  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
 | 
						|
    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
 | 
						|
    Mask = Mask.lshr(-ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mask out the bits we are about to insert from the old value, and or
 | 
						|
  // in the new bits.
 | 
						|
  if (SrcWidth != DestWidth) {
 | 
						|
    assert(DestWidth > SrcWidth);
 | 
						|
    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
 | 
						|
    SV = Builder.CreateOr(Old, SV, "ins");
 | 
						|
  }
 | 
						|
  return SV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SRoA Driver
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
bool SROA::runOnFunction(Function &F) {
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
  bool Changed = performPromotion(F);
 | 
						|
 | 
						|
  // FIXME: ScalarRepl currently depends on TargetData more than it
 | 
						|
  // theoretically needs to. It should be refactored in order to support
 | 
						|
  // target-independent IR. Until this is done, just skip the actual
 | 
						|
  // scalar-replacement portion of this pass.
 | 
						|
  if (!TD) return Changed;
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    bool LocalChange = performScalarRepl(F);
 | 
						|
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | 
						|
    Changed = true;
 | 
						|
    LocalChange = performPromotion(F);
 | 
						|
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class AllocaPromoter : public LoadAndStorePromoter {
 | 
						|
  AllocaInst *AI;
 | 
						|
  DIBuilder *DIB;
 | 
						|
  SmallVector<DbgDeclareInst *, 4> DDIs;
 | 
						|
  SmallVector<DbgValueInst *, 4> DVIs;
 | 
						|
public:
 | 
						|
  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
 | 
						|
                 DIBuilder *DB)
 | 
						|
    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
 | 
						|
 | 
						|
  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
 | 
						|
    // Remember which alloca we're promoting (for isInstInList).
 | 
						|
    this->AI = AI;
 | 
						|
    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
 | 
						|
      for (Value::use_iterator UI = DebugNode->use_begin(),
 | 
						|
             E = DebugNode->use_end(); UI != E; ++UI)
 | 
						|
        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | 
						|
          DDIs.push_back(DDI);
 | 
						|
        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
 | 
						|
          DVIs.push_back(DVI);
 | 
						|
    }
 | 
						|
 | 
						|
    LoadAndStorePromoter::run(Insts);
 | 
						|
    AI->eraseFromParent();
 | 
						|
    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
 | 
						|
           E = DDIs.end(); I != E; ++I) {
 | 
						|
      DbgDeclareInst *DDI = *I;
 | 
						|
      DDI->eraseFromParent();
 | 
						|
    }
 | 
						|
    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
 | 
						|
           E = DVIs.end(); I != E; ++I) {
 | 
						|
      DbgValueInst *DVI = *I;
 | 
						|
      DVI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool isInstInList(Instruction *I,
 | 
						|
                            const SmallVectorImpl<Instruction*> &Insts) const {
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
      return LI->getOperand(0) == AI;
 | 
						|
    return cast<StoreInst>(I)->getPointerOperand() == AI;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void updateDebugInfo(Instruction *Inst) const {
 | 
						|
    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
 | 
						|
           E = DDIs.end(); I != E; ++I) {
 | 
						|
      DbgDeclareInst *DDI = *I;
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
 | 
						|
      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
 | 
						|
    }
 | 
						|
    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
 | 
						|
           E = DVIs.end(); I != E; ++I) {
 | 
						|
      DbgValueInst *DVI = *I;
 | 
						|
      Value *Arg = NULL;
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
        // If an argument is zero extended then use argument directly. The ZExt
 | 
						|
        // may be zapped by an optimization pass in future.
 | 
						|
        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | 
						|
          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
 | 
						|
        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | 
						|
          Arg = dyn_cast<Argument>(SExt->getOperand(0));
 | 
						|
        if (!Arg)
 | 
						|
          Arg = SI->getOperand(0);
 | 
						|
      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
        Arg = LI->getOperand(0);
 | 
						|
      } else {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      Instruction *DbgVal =
 | 
						|
        DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
 | 
						|
                                     Inst);
 | 
						|
      DbgVal->setDebugLoc(DVI->getDebugLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anon namespace
 | 
						|
 | 
						|
/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
 | 
						|
/// subsequently loaded can be rewritten to load both input pointers and then
 | 
						|
/// select between the result, allowing the load of the alloca to be promoted.
 | 
						|
/// From this:
 | 
						|
///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
 | 
						|
///   %V = load i32* %P2
 | 
						|
/// to:
 | 
						|
///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | 
						|
///   %V2 = load i32* %Other
 | 
						|
///   %V = select i1 %cond, i32 %V1, i32 %V2
 | 
						|
///
 | 
						|
/// We can do this to a select if its only uses are loads and if the operand to
 | 
						|
/// the select can be loaded unconditionally.
 | 
						|
static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
 | 
						|
  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
 | 
						|
  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
 | 
						|
 | 
						|
  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | 
						|
    if (LI == 0 || !LI->isSimple()) return false;
 | 
						|
 | 
						|
    // Both operands to the select need to be dereferencable, either absolutely
 | 
						|
    // (e.g. allocas) or at this point because we can see other accesses to it.
 | 
						|
    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
 | 
						|
                                                    LI->getAlignment(), TD))
 | 
						|
      return false;
 | 
						|
    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
 | 
						|
                                                    LI->getAlignment(), TD))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
 | 
						|
/// subsequently loaded can be rewritten to load both input pointers in the pred
 | 
						|
/// blocks and then PHI the results, allowing the load of the alloca to be
 | 
						|
/// promoted.
 | 
						|
/// From this:
 | 
						|
///   %P2 = phi [i32* %Alloca, i32* %Other]
 | 
						|
///   %V = load i32* %P2
 | 
						|
/// to:
 | 
						|
///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | 
						|
///   ...
 | 
						|
///   %V2 = load i32* %Other
 | 
						|
///   ...
 | 
						|
///   %V = phi [i32 %V1, i32 %V2]
 | 
						|
///
 | 
						|
/// We can do this to a select if its only uses are loads and if the operand to
 | 
						|
/// the select can be loaded unconditionally.
 | 
						|
static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
 | 
						|
  // For now, we can only do this promotion if the load is in the same block as
 | 
						|
  // the PHI, and if there are no stores between the phi and load.
 | 
						|
  // TODO: Allow recursive phi users.
 | 
						|
  // TODO: Allow stores.
 | 
						|
  BasicBlock *BB = PN->getParent();
 | 
						|
  unsigned MaxAlign = 0;
 | 
						|
  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | 
						|
    if (LI == 0 || !LI->isSimple()) return false;
 | 
						|
 | 
						|
    // For now we only allow loads in the same block as the PHI.  This is a
 | 
						|
    // common case that happens when instcombine merges two loads through a PHI.
 | 
						|
    if (LI->getParent() != BB) return false;
 | 
						|
 | 
						|
    // Ensure that there are no instructions between the PHI and the load that
 | 
						|
    // could store.
 | 
						|
    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
 | 
						|
      if (BBI->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
 | 
						|
    MaxAlign = std::max(MaxAlign, LI->getAlignment());
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know that we have one or more loads in the same block as the PHI.
 | 
						|
  // We can transform this if it is safe to push the loads into the predecessor
 | 
						|
  // blocks.  The only thing to watch out for is that we can't put a possibly
 | 
						|
  // trapping load in the predecessor if it is a critical edge.
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = PN->getIncomingBlock(i);
 | 
						|
    Value *InVal = PN->getIncomingValue(i);
 | 
						|
 | 
						|
    // If the terminator of the predecessor has side-effects (an invoke),
 | 
						|
    // there is no safe place to put a load in the predecessor.
 | 
						|
    if (Pred->getTerminator()->mayHaveSideEffects())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the value is produced by the terminator of the predecessor
 | 
						|
    // (an invoke), there is no valid place to put a load in the predecessor.
 | 
						|
    if (Pred->getTerminator() == InVal)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the predecessor has a single successor, then the edge isn't critical.
 | 
						|
    if (Pred->getTerminator()->getNumSuccessors() == 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this pointer is always safe to load, or if we can prove that there is
 | 
						|
    // already a load in the block, then we can move the load to the pred block.
 | 
						|
    if (InVal->isDereferenceablePointer() ||
 | 
						|
        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
 | 
						|
      continue;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
 | 
						|
/// direct (non-volatile) loads and stores to it.  If the alloca is close but
 | 
						|
/// not quite there, this will transform the code to allow promotion.  As such,
 | 
						|
/// it is a non-pure predicate.
 | 
						|
static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
 | 
						|
  SetVector<Instruction*, SmallVector<Instruction*, 4>,
 | 
						|
            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    User *U = *UI;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      if (!LI->isSimple())
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
      if (SI->getOperand(0) == AI || !SI->isSimple())
 | 
						|
        return false;   // Don't allow a store OF the AI, only INTO the AI.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
 | 
						|
      // If the condition being selected on is a constant, fold the select, yes
 | 
						|
      // this does (rarely) happen early on.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
 | 
						|
        Value *Result = SI->getOperand(1+CI->isZero());
 | 
						|
        SI->replaceAllUsesWith(Result);
 | 
						|
        SI->eraseFromParent();
 | 
						|
 | 
						|
        // This is very rare and we just scrambled the use list of AI, start
 | 
						|
        // over completely.
 | 
						|
        return tryToMakeAllocaBePromotable(AI, TD);
 | 
						|
      }
 | 
						|
 | 
						|
      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
 | 
						|
      // loads, then we can transform this by rewriting the select.
 | 
						|
      if (!isSafeSelectToSpeculate(SI, TD))
 | 
						|
        return false;
 | 
						|
 | 
						|
      InstsToRewrite.insert(SI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(U)) {
 | 
						|
      if (PN->use_empty()) {  // Dead PHIs can be stripped.
 | 
						|
        InstsToRewrite.insert(PN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
 | 
						|
      // in the pred blocks, then we can transform this by rewriting the PHI.
 | 
						|
      if (!isSafePHIToSpeculate(PN, TD))
 | 
						|
        return false;
 | 
						|
 | 
						|
      InstsToRewrite.insert(PN);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | 
						|
      if (onlyUsedByLifetimeMarkers(BCI)) {
 | 
						|
        InstsToRewrite.insert(BCI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no instructions to rewrite, then all uses are load/stores and
 | 
						|
  // we're done!
 | 
						|
  if (InstsToRewrite.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we have instructions that need to be rewritten for this to be promotable
 | 
						|
  // take care of it now.
 | 
						|
  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
 | 
						|
      // This could only be a bitcast used by nothing but lifetime intrinsics.
 | 
						|
      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
 | 
						|
           I != E;) {
 | 
						|
        Use &U = I.getUse();
 | 
						|
        ++I;
 | 
						|
        cast<Instruction>(U.getUser())->eraseFromParent();
 | 
						|
      }
 | 
						|
      BCI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
 | 
						|
      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
 | 
						|
      // loads with a new select.
 | 
						|
      while (!SI->use_empty()) {
 | 
						|
        LoadInst *LI = cast<LoadInst>(SI->use_back());
 | 
						|
 | 
						|
        IRBuilder<> Builder(LI);
 | 
						|
        LoadInst *TrueLoad =
 | 
						|
          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
 | 
						|
        LoadInst *FalseLoad =
 | 
						|
          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
 | 
						|
 | 
						|
        // Transfer alignment and TBAA info if present.
 | 
						|
        TrueLoad->setAlignment(LI->getAlignment());
 | 
						|
        FalseLoad->setAlignment(LI->getAlignment());
 | 
						|
        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
 | 
						|
          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | 
						|
          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
 | 
						|
        V->takeName(LI);
 | 
						|
        LI->replaceAllUsesWith(V);
 | 
						|
        LI->eraseFromParent();
 | 
						|
      }
 | 
						|
 | 
						|
      // Now that all the loads are gone, the select is gone too.
 | 
						|
      SI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have a PHI node which allows us to push the loads into the
 | 
						|
    // predecessors.
 | 
						|
    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
 | 
						|
    if (PN->use_empty()) {
 | 
						|
      PN->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
 | 
						|
    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
 | 
						|
                                     PN->getName()+".ld", PN);
 | 
						|
 | 
						|
    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
 | 
						|
    // matter which one we get and if any differ, it doesn't matter.
 | 
						|
    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
 | 
						|
    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
 | 
						|
    unsigned Align = SomeLoad->getAlignment();
 | 
						|
 | 
						|
    // Rewrite all loads of the PN to use the new PHI.
 | 
						|
    while (!PN->use_empty()) {
 | 
						|
      LoadInst *LI = cast<LoadInst>(PN->use_back());
 | 
						|
      LI->replaceAllUsesWith(NewPN);
 | 
						|
      LI->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // Inject loads into all of the pred blocks.  Keep track of which blocks we
 | 
						|
    // insert them into in case we have multiple edges from the same block.
 | 
						|
    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *Pred = PN->getIncomingBlock(i);
 | 
						|
      LoadInst *&Load = InsertedLoads[Pred];
 | 
						|
      if (Load == 0) {
 | 
						|
        Load = new LoadInst(PN->getIncomingValue(i),
 | 
						|
                            PN->getName() + "." + Pred->getName(),
 | 
						|
                            Pred->getTerminator());
 | 
						|
        Load->setAlignment(Align);
 | 
						|
        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | 
						|
      }
 | 
						|
 | 
						|
      NewPN->addIncoming(Load, Pred);
 | 
						|
    }
 | 
						|
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumAdjusted;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SROA::performPromotion(Function &F) {
 | 
						|
  std::vector<AllocaInst*> Allocas;
 | 
						|
  DominatorTree *DT = 0;
 | 
						|
  if (HasDomTree)
 | 
						|
    DT = &getAnalysis<DominatorTree>();
 | 
						|
 | 
						|
  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | 
						|
  DIBuilder DIB(*F.getParent());
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<Instruction*, 64> Insts;
 | 
						|
  while (1) {
 | 
						|
    Allocas.clear();
 | 
						|
 | 
						|
    // Find allocas that are safe to promote, by looking at all instructions in
 | 
						|
    // the entry node
 | 
						|
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | 
						|
        if (tryToMakeAllocaBePromotable(AI, TD))
 | 
						|
          Allocas.push_back(AI);
 | 
						|
 | 
						|
    if (Allocas.empty()) break;
 | 
						|
 | 
						|
    if (HasDomTree)
 | 
						|
      PromoteMemToReg(Allocas, *DT);
 | 
						|
    else {
 | 
						|
      SSAUpdater SSA;
 | 
						|
      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
 | 
						|
        AllocaInst *AI = Allocas[i];
 | 
						|
 | 
						|
        // Build list of instructions to promote.
 | 
						|
        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          Insts.push_back(cast<Instruction>(*UI));
 | 
						|
        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
 | 
						|
        Insts.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NumPromoted += Allocas.size();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
 | 
						|
/// SROA.  It must be a struct or array type with a small number of elements.
 | 
						|
bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
 | 
						|
  Type *T = AI->getAllocatedType();
 | 
						|
  // Do not promote any struct that has too many members.
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(T))
 | 
						|
    return ST->getNumElements() <= StructMemberThreshold;
 | 
						|
  // Do not promote any array that has too many elements.
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(T))
 | 
						|
    return AT->getNumElements() <= ArrayElementThreshold;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | 
						|
// which runs on all of the alloca instructions in the function, removing them
 | 
						|
// if they are only used by getelementptr instructions.
 | 
						|
//
 | 
						|
bool SROA::performScalarRepl(Function &F) {
 | 
						|
  std::vector<AllocaInst*> WorkList;
 | 
						|
 | 
						|
  // Scan the entry basic block, adding allocas to the worklist.
 | 
						|
  BasicBlock &BB = F.getEntryBlock();
 | 
						|
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | 
						|
    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
 | 
						|
      WorkList.push_back(A);
 | 
						|
 | 
						|
  // Process the worklist
 | 
						|
  bool Changed = false;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    AllocaInst *AI = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
 | 
						|
    // with unused elements.
 | 
						|
    if (AI->use_empty()) {
 | 
						|
      AI->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this alloca is impossible for us to promote, reject it early.
 | 
						|
    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check to see if we can perform the core SROA transformation.  We cannot
 | 
						|
    // transform the allocation instruction if it is an array allocation
 | 
						|
    // (allocations OF arrays are ok though), and an allocation of a scalar
 | 
						|
    // value cannot be decomposed at all.
 | 
						|
    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 | 
						|
 | 
						|
    // Do not promote [0 x %struct].
 | 
						|
    if (AllocaSize == 0) continue;
 | 
						|
 | 
						|
    // Do not promote any struct whose size is too big.
 | 
						|
    if (AllocaSize > SRThreshold) continue;
 | 
						|
 | 
						|
    // If the alloca looks like a good candidate for scalar replacement, and if
 | 
						|
    // all its users can be transformed, then split up the aggregate into its
 | 
						|
    // separate elements.
 | 
						|
    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
 | 
						|
      DoScalarReplacement(AI, WorkList);
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can turn this aggregate value (potentially with casts) into a
 | 
						|
    // simple scalar value that can be mem2reg'd into a register value.
 | 
						|
    // IsNotTrivial tracks whether this is something that mem2reg could have
 | 
						|
    // promoted itself.  If so, we don't want to transform it needlessly.  Note
 | 
						|
    // that we can't just check based on the type: the alloca may be of an i32
 | 
						|
    // but that has pointer arithmetic to set byte 3 of it or something.
 | 
						|
    if (AllocaInst *NewAI = ConvertToScalarInfo(
 | 
						|
              (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
 | 
						|
      NewAI->takeName(AI);
 | 
						|
      AI->eraseFromParent();
 | 
						|
      ++NumConverted;
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, couldn't process this alloca.
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 | 
						|
/// predicate, do SROA now.
 | 
						|
void SROA::DoScalarReplacement(AllocaInst *AI,
 | 
						|
                               std::vector<AllocaInst*> &WorkList) {
 | 
						|
  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
 | 
						|
  SmallVector<AllocaInst*, 32> ElementAllocas;
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | 
						|
    ElementAllocas.reserve(ST->getNumContainedTypes());
 | 
						|
    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | 
						|
      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
 | 
						|
                                      AI->getAlignment(),
 | 
						|
                                      AI->getName() + "." + Twine(i), AI);
 | 
						|
      ElementAllocas.push_back(NA);
 | 
						|
      WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | 
						|
    ElementAllocas.reserve(AT->getNumElements());
 | 
						|
    Type *ElTy = AT->getElementType();
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | 
						|
                                      AI->getName() + "." + Twine(i), AI);
 | 
						|
      ElementAllocas.push_back(NA);
 | 
						|
      WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have created the new alloca instructions, rewrite all the
 | 
						|
  // uses of the old alloca.
 | 
						|
  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
 | 
						|
 | 
						|
  // Now erase any instructions that were made dead while rewriting the alloca.
 | 
						|
  DeleteDeadInstructions();
 | 
						|
  AI->eraseFromParent();
 | 
						|
 | 
						|
  ++NumReplaced;
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
 | 
						|
/// recursively including all their operands that become trivially dead.
 | 
						|
void SROA::DeleteDeadInstructions() {
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
 | 
						|
 | 
						|
    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | 
						|
        // Zero out the operand and see if it becomes trivially dead.
 | 
						|
        // (But, don't add allocas to the dead instruction list -- they are
 | 
						|
        // already on the worklist and will be deleted separately.)
 | 
						|
        *OI = 0;
 | 
						|
        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
 | 
						|
          DeadInsts.push_back(U);
 | 
						|
      }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
 | 
						|
/// performing scalar replacement of alloca AI.  The results are flagged in
 | 
						|
/// the Info parameter.  Offset indicates the position within AI that is
 | 
						|
/// referenced by this instruction.
 | 
						|
void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
 | 
						|
                               AllocaInfo &Info) {
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | 
						|
      isSafeForScalarRepl(BC, Offset, Info);
 | 
						|
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      uint64_t GEPOffset = Offset;
 | 
						|
      isSafeGEP(GEPI, GEPOffset, Info);
 | 
						|
      if (!Info.isUnsafe)
 | 
						|
        isSafeForScalarRepl(GEPI, GEPOffset, Info);
 | 
						|
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | 
						|
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
      if (Length == 0)
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
      if (Length->isNegative())
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
 | 
						|
      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
 | 
						|
                      UI.getOperandNo() == 0, Info, MI,
 | 
						|
                      true /*AllowWholeAccess*/);
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      if (!LI->isSimple())
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
      Type *LIType = LI->getType();
 | 
						|
      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
 | 
						|
                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
 | 
						|
      Info.hasALoadOrStore = true;
 | 
						|
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      // Store is ok if storing INTO the pointer, not storing the pointer
 | 
						|
      if (!SI->isSimple() || SI->getOperand(0) == I)
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
 | 
						|
      Type *SIType = SI->getOperand(0)->getType();
 | 
						|
      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
 | 
						|
                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
 | 
						|
      Info.hasALoadOrStore = true;
 | 
						|
    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | 
						|
      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
 | 
						|
          II->getIntrinsicID() != Intrinsic::lifetime_end)
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
 | 
						|
      isSafePHISelectUseForScalarRepl(User, Offset, Info);
 | 
						|
    } else {
 | 
						|
      return MarkUnsafe(Info, User);
 | 
						|
    }
 | 
						|
    if (Info.isUnsafe) return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
 | 
						|
/// derived from the alloca, we can often still split the alloca into elements.
 | 
						|
/// This is useful if we have a large alloca where one element is phi'd
 | 
						|
/// together somewhere: we can SRoA and promote all the other elements even if
 | 
						|
/// we end up not being able to promote this one.
 | 
						|
///
 | 
						|
/// All we require is that the uses of the PHI do not index into other parts of
 | 
						|
/// the alloca.  The most important use case for this is single load and stores
 | 
						|
/// that are PHI'd together, which can happen due to code sinking.
 | 
						|
void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
 | 
						|
                                           AllocaInfo &Info) {
 | 
						|
  // If we've already checked this PHI, don't do it again.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
    if (!Info.CheckedPHIs.insert(PN))
 | 
						|
      return;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | 
						|
      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
 | 
						|
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
 | 
						|
      // but would have to prove that we're staying inside of an element being
 | 
						|
      // promoted.
 | 
						|
      if (!GEPI->hasAllZeroIndices())
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      if (!LI->isSimple())
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
      Type *LIType = LI->getType();
 | 
						|
      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
 | 
						|
                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
 | 
						|
      Info.hasALoadOrStore = true;
 | 
						|
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      // Store is ok if storing INTO the pointer, not storing the pointer
 | 
						|
      if (!SI->isSimple() || SI->getOperand(0) == I)
 | 
						|
        return MarkUnsafe(Info, User);
 | 
						|
 | 
						|
      Type *SIType = SI->getOperand(0)->getType();
 | 
						|
      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
 | 
						|
                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
 | 
						|
      Info.hasALoadOrStore = true;
 | 
						|
    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
 | 
						|
      isSafePHISelectUseForScalarRepl(User, Offset, Info);
 | 
						|
    } else {
 | 
						|
      return MarkUnsafe(Info, User);
 | 
						|
    }
 | 
						|
    if (Info.isUnsafe) return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeGEP - Check if a GEP instruction can be handled for scalar
 | 
						|
/// replacement.  It is safe when all the indices are constant, in-bounds
 | 
						|
/// references, and when the resulting offset corresponds to an element within
 | 
						|
/// the alloca type.  The results are flagged in the Info parameter.  Upon
 | 
						|
/// return, Offset is adjusted as specified by the GEP indices.
 | 
						|
void SROA::isSafeGEP(GetElementPtrInst *GEPI,
 | 
						|
                     uint64_t &Offset, AllocaInfo &Info) {
 | 
						|
  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | 
						|
  if (GEPIt == E)
 | 
						|
    return;
 | 
						|
  bool NonConstant = false;
 | 
						|
  unsigned NonConstantIdxSize = 0;
 | 
						|
 | 
						|
  // Walk through the GEP type indices, checking the types that this indexes
 | 
						|
  // into.
 | 
						|
  for (; GEPIt != E; ++GEPIt) {
 | 
						|
    // Ignore struct elements, no extra checking needed for these.
 | 
						|
    if ((*GEPIt)->isStructTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
 | 
						|
    if (!IdxVal) {
 | 
						|
      // Non constant GEPs are only a problem on arrays, structs, and pointers
 | 
						|
      // Vectors can be dynamically indexed.
 | 
						|
      // FIXME: Add support for dynamic indexing on arrays.  This should be
 | 
						|
      // ok on any subarrays of the alloca array, eg, a[0][i] is ok, but a[i][0]
 | 
						|
      // isn't.
 | 
						|
      if (!(*GEPIt)->isVectorTy())
 | 
						|
        return MarkUnsafe(Info, GEPI);
 | 
						|
      NonConstant = true;
 | 
						|
      NonConstantIdxSize = TD->getTypeAllocSize(*GEPIt);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the offset due to this GEP and check if the alloca has a
 | 
						|
  // component element at that offset.
 | 
						|
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | 
						|
  // If this GEP is non constant then the last operand must have been a
 | 
						|
  // dynamic index into a vector.  Pop this now as it has no impact on the
 | 
						|
  // constant part of the offset.
 | 
						|
  if (NonConstant)
 | 
						|
    Indices.pop_back();
 | 
						|
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
 | 
						|
  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
 | 
						|
                        NonConstantIdxSize))
 | 
						|
    MarkUnsafe(Info, GEPI);
 | 
						|
}
 | 
						|
 | 
						|
/// isHomogeneousAggregate - Check if type T is a struct or array containing
 | 
						|
/// elements of the same type (which is always true for arrays).  If so,
 | 
						|
/// return true with NumElts and EltTy set to the number of elements and the
 | 
						|
/// element type, respectively.
 | 
						|
static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
 | 
						|
                                   Type *&EltTy) {
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    NumElts = AT->getNumElements();
 | 
						|
    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(T)) {
 | 
						|
    NumElts = ST->getNumContainedTypes();
 | 
						|
    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
 | 
						|
    for (unsigned n = 1; n < NumElts; ++n) {
 | 
						|
      if (ST->getContainedType(n) != EltTy)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
 | 
						|
/// "homogeneous" aggregates with the same element type and number of elements.
 | 
						|
static bool isCompatibleAggregate(Type *T1, Type *T2) {
 | 
						|
  if (T1 == T2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  unsigned NumElts1, NumElts2;
 | 
						|
  Type *EltTy1, *EltTy2;
 | 
						|
  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
 | 
						|
      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
 | 
						|
      NumElts1 == NumElts2 &&
 | 
						|
      EltTy1 == EltTy2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
 | 
						|
/// alloca or has an offset and size that corresponds to a component element
 | 
						|
/// within it.  The offset checked here may have been formed from a GEP with a
 | 
						|
/// pointer bitcasted to a different type.
 | 
						|
///
 | 
						|
/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
 | 
						|
/// unit.  If false, it only allows accesses known to be in a single element.
 | 
						|
void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
 | 
						|
                           Type *MemOpType, bool isStore,
 | 
						|
                           AllocaInfo &Info, Instruction *TheAccess,
 | 
						|
                           bool AllowWholeAccess) {
 | 
						|
  // Check if this is a load/store of the entire alloca.
 | 
						|
  if (Offset == 0 && AllowWholeAccess &&
 | 
						|
      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
 | 
						|
    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
 | 
						|
    // loads/stores (which are essentially the same as the MemIntrinsics with
 | 
						|
    // regard to copying padding between elements).  But, if an alloca is
 | 
						|
    // flagged as both a source and destination of such operations, we'll need
 | 
						|
    // to check later for padding between elements.
 | 
						|
    if (!MemOpType || MemOpType->isIntegerTy()) {
 | 
						|
      if (isStore)
 | 
						|
        Info.isMemCpyDst = true;
 | 
						|
      else
 | 
						|
        Info.isMemCpySrc = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // This is also safe for references using a type that is compatible with
 | 
						|
    // the type of the alloca, so that loads/stores can be rewritten using
 | 
						|
    // insertvalue/extractvalue.
 | 
						|
    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
 | 
						|
      Info.hasSubelementAccess = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Check if the offset/size correspond to a component within the alloca type.
 | 
						|
  Type *T = Info.AI->getAllocatedType();
 | 
						|
  if (TypeHasComponent(T, Offset, MemSize)) {
 | 
						|
    Info.hasSubelementAccess = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  return MarkUnsafe(Info, TheAccess);
 | 
						|
}
 | 
						|
 | 
						|
/// TypeHasComponent - Return true if T has a component type with the
 | 
						|
/// specified offset and size.  If Size is zero, do not check the size.
 | 
						|
bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
 | 
						|
  Type *EltTy;
 | 
						|
  uint64_t EltSize;
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(T)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(ST);
 | 
						|
    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
 | 
						|
    EltTy = ST->getContainedType(EltIdx);
 | 
						|
    EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    Offset -= Layout->getElementOffset(EltIdx);
 | 
						|
  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    EltTy = AT->getElementType();
 | 
						|
    EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    if (Offset >= AT->getNumElements() * EltSize)
 | 
						|
      return false;
 | 
						|
    Offset %= EltSize;
 | 
						|
  } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
 | 
						|
    EltTy = VT->getElementType();
 | 
						|
    EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    if (Offset >= VT->getNumElements() * EltSize)
 | 
						|
      return false;
 | 
						|
    Offset %= EltSize;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (Offset == 0 && (Size == 0 || EltSize == Size))
 | 
						|
    return true;
 | 
						|
  // Check if the component spans multiple elements.
 | 
						|
  if (Offset + Size > EltSize)
 | 
						|
    return false;
 | 
						|
  return TypeHasComponent(EltTy, Offset, Size);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
 | 
						|
/// the instruction I, which references it, to use the separate elements.
 | 
						|
/// Offset indicates the position within AI that is referenced by this
 | 
						|
/// instruction.
 | 
						|
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                                SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI++);
 | 
						|
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | 
						|
      RewriteBitCast(BC, AI, Offset, NewElts);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      RewriteGEP(GEPI, AI, Offset, NewElts);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | 
						|
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
      uint64_t MemSize = Length->getZExtValue();
 | 
						|
      if (Offset == 0 &&
 | 
						|
          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
 | 
						|
        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
 | 
						|
      // Otherwise the intrinsic can only touch a single element and the
 | 
						|
      // address operand will be updated, so nothing else needs to be done.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      Type *LIType = LI->getType();
 | 
						|
 | 
						|
      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
 | 
						|
        // Replace:
 | 
						|
        //   %res = load { i32, i32 }* %alloc
 | 
						|
        // with:
 | 
						|
        //   %load.0 = load i32* %alloc.0
 | 
						|
        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
 | 
						|
        //   %load.1 = load i32* %alloc.1
 | 
						|
        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
 | 
						|
        // (Also works for arrays instead of structs)
 | 
						|
        Value *Insert = UndefValue::get(LIType);
 | 
						|
        IRBuilder<> Builder(LI);
 | 
						|
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
          Value *Load = Builder.CreateLoad(NewElts[i], "load");
 | 
						|
          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
 | 
						|
        }
 | 
						|
        LI->replaceAllUsesWith(Insert);
 | 
						|
        DeadInsts.push_back(LI);
 | 
						|
      } else if (LIType->isIntegerTy() &&
 | 
						|
                 TD->getTypeAllocSize(LIType) ==
 | 
						|
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
 | 
						|
        // If this is a load of the entire alloca to an integer, rewrite it.
 | 
						|
        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      Value *Val = SI->getOperand(0);
 | 
						|
      Type *SIType = Val->getType();
 | 
						|
      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
 | 
						|
        // Replace:
 | 
						|
        //   store { i32, i32 } %val, { i32, i32 }* %alloc
 | 
						|
        // with:
 | 
						|
        //   %val.0 = extractvalue { i32, i32 } %val, 0
 | 
						|
        //   store i32 %val.0, i32* %alloc.0
 | 
						|
        //   %val.1 = extractvalue { i32, i32 } %val, 1
 | 
						|
        //   store i32 %val.1, i32* %alloc.1
 | 
						|
        // (Also works for arrays instead of structs)
 | 
						|
        IRBuilder<> Builder(SI);
 | 
						|
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
 | 
						|
          Builder.CreateStore(Extract, NewElts[i]);
 | 
						|
        }
 | 
						|
        DeadInsts.push_back(SI);
 | 
						|
      } else if (SIType->isIntegerTy() &&
 | 
						|
                 TD->getTypeAllocSize(SIType) ==
 | 
						|
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
 | 
						|
        // If this is a store of the entire alloca from an integer, rewrite it.
 | 
						|
        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
 | 
						|
      // If we have a PHI user of the alloca itself (as opposed to a GEP or
 | 
						|
      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
 | 
						|
      // the new pointer.
 | 
						|
      if (!isa<AllocaInst>(I)) continue;
 | 
						|
 | 
						|
      assert(Offset == 0 && NewElts[0] &&
 | 
						|
             "Direct alloca use should have a zero offset");
 | 
						|
 | 
						|
      // If we have a use of the alloca, we know the derived uses will be
 | 
						|
      // utilizing just the first element of the scalarized result.  Insert a
 | 
						|
      // bitcast of the first alloca before the user as required.
 | 
						|
      AllocaInst *NewAI = NewElts[0];
 | 
						|
      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
 | 
						|
      NewAI->moveBefore(BCI);
 | 
						|
      TheUse = BCI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
 | 
						|
/// and recursively continue updating all of its uses.
 | 
						|
void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | 
						|
                          SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  RewriteForScalarRepl(BC, AI, Offset, NewElts);
 | 
						|
  if (BC->getOperand(0) != AI)
 | 
						|
    return;
 | 
						|
 | 
						|
  // The bitcast references the original alloca.  Replace its uses with
 | 
						|
  // references to the alloca containing offset zero (which is normally at
 | 
						|
  // index zero, but might not be in cases involving structs with elements
 | 
						|
  // of size zero).
 | 
						|
  Type *T = AI->getAllocatedType();
 | 
						|
  uint64_t EltOffset = 0;
 | 
						|
  Type *IdxTy;
 | 
						|
  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
 | 
						|
  Instruction *Val = NewElts[Idx];
 | 
						|
  if (Val->getType() != BC->getDestTy()) {
 | 
						|
    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
 | 
						|
    Val->takeName(BC);
 | 
						|
  }
 | 
						|
  BC->replaceAllUsesWith(Val);
 | 
						|
  DeadInsts.push_back(BC);
 | 
						|
}
 | 
						|
 | 
						|
/// FindElementAndOffset - Return the index of the element containing Offset
 | 
						|
/// within the specified type, which must be either a struct or an array.
 | 
						|
/// Sets T to the type of the element and Offset to the offset within that
 | 
						|
/// element.  IdxTy is set to the type of the index result to be used in a
 | 
						|
/// GEP instruction.
 | 
						|
uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
 | 
						|
                                    Type *&IdxTy) {
 | 
						|
  uint64_t Idx = 0;
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(T)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(ST);
 | 
						|
    Idx = Layout->getElementContainingOffset(Offset);
 | 
						|
    T = ST->getContainedType(Idx);
 | 
						|
    Offset -= Layout->getElementOffset(Idx);
 | 
						|
    IdxTy = Type::getInt32Ty(T->getContext());
 | 
						|
    return Idx;
 | 
						|
  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    T = AT->getElementType();
 | 
						|
    uint64_t EltSize = TD->getTypeAllocSize(T);
 | 
						|
    Idx = Offset / EltSize;
 | 
						|
    Offset -= Idx * EltSize;
 | 
						|
    IdxTy = Type::getInt64Ty(T->getContext());
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
  VectorType *VT = cast<VectorType>(T);
 | 
						|
  T = VT->getElementType();
 | 
						|
  uint64_t EltSize = TD->getTypeAllocSize(T);
 | 
						|
  Idx = Offset / EltSize;
 | 
						|
  Offset -= Idx * EltSize;
 | 
						|
  IdxTy = Type::getInt64Ty(T->getContext());
 | 
						|
  return Idx;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteGEP - Check if this GEP instruction moves the pointer across
 | 
						|
/// elements of the alloca that are being split apart, and if so, rewrite
 | 
						|
/// the GEP to be relative to the new element.
 | 
						|
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | 
						|
                      SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  uint64_t OldOffset = Offset;
 | 
						|
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | 
						|
  // If the GEP was dynamic then it must have been a dynamic vector lookup.
 | 
						|
  // In this case, it must be the last GEP operand which is dynamic so keep that
 | 
						|
  // aside until we've found the constant GEP offset then add it back in at the
 | 
						|
  // end.
 | 
						|
  Value* NonConstantIdx = 0;
 | 
						|
  if (!GEPI->hasAllConstantIndices())
 | 
						|
    NonConstantIdx = Indices.pop_back_val();
 | 
						|
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
 | 
						|
 | 
						|
  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
 | 
						|
 | 
						|
  Type *T = AI->getAllocatedType();
 | 
						|
  Type *IdxTy;
 | 
						|
  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
 | 
						|
  if (GEPI->getOperand(0) == AI)
 | 
						|
    OldIdx = ~0ULL; // Force the GEP to be rewritten.
 | 
						|
 | 
						|
  T = AI->getAllocatedType();
 | 
						|
  uint64_t EltOffset = Offset;
 | 
						|
  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
 | 
						|
 | 
						|
  // If this GEP does not move the pointer across elements of the alloca
 | 
						|
  // being split, then it does not needs to be rewritten.
 | 
						|
  if (Idx == OldIdx)
 | 
						|
    return;
 | 
						|
 | 
						|
  Type *i32Ty = Type::getInt32Ty(AI->getContext());
 | 
						|
  SmallVector<Value*, 8> NewArgs;
 | 
						|
  NewArgs.push_back(Constant::getNullValue(i32Ty));
 | 
						|
  while (EltOffset != 0) {
 | 
						|
    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
 | 
						|
    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
 | 
						|
  }
 | 
						|
  if (NonConstantIdx) {
 | 
						|
    Type* GepTy = T;
 | 
						|
    // This GEP has a dynamic index.  We need to add "i32 0" to index through
 | 
						|
    // any structs or arrays in the original type until we get to the vector
 | 
						|
    // to index.
 | 
						|
    while (!isa<VectorType>(GepTy)) {
 | 
						|
      NewArgs.push_back(Constant::getNullValue(i32Ty));
 | 
						|
      GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
 | 
						|
    }
 | 
						|
    NewArgs.push_back(NonConstantIdx);
 | 
						|
  }
 | 
						|
  Instruction *Val = NewElts[Idx];
 | 
						|
  if (NewArgs.size() > 1) {
 | 
						|
    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
 | 
						|
    Val->takeName(GEPI);
 | 
						|
  }
 | 
						|
  if (Val->getType() != GEPI->getType())
 | 
						|
    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
 | 
						|
  GEPI->replaceAllUsesWith(Val);
 | 
						|
  DeadInsts.push_back(GEPI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
 | 
						|
/// to mark the lifetime of the scalarized memory.
 | 
						|
void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
 | 
						|
                                    uint64_t Offset,
 | 
						|
                                    SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
 | 
						|
  // Put matching lifetime markers on everything from Offset up to
 | 
						|
  // Offset+OldSize.
 | 
						|
  Type *AIType = AI->getAllocatedType();
 | 
						|
  uint64_t NewOffset = Offset;
 | 
						|
  Type *IdxTy;
 | 
						|
  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
 | 
						|
 | 
						|
  IRBuilder<> Builder(II);
 | 
						|
  uint64_t Size = OldSize->getLimitedValue();
 | 
						|
 | 
						|
  if (NewOffset) {
 | 
						|
    // Splice the first element and index 'NewOffset' bytes in.  SROA will
 | 
						|
    // split the alloca again later.
 | 
						|
    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
 | 
						|
    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
 | 
						|
 | 
						|
    IdxTy = NewElts[Idx]->getAllocatedType();
 | 
						|
    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
 | 
						|
    if (EltSize > Size) {
 | 
						|
      EltSize = Size;
 | 
						|
      Size = 0;
 | 
						|
    } else {
 | 
						|
      Size -= EltSize;
 | 
						|
    }
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
 | 
						|
    else
 | 
						|
      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
 | 
						|
    ++Idx;
 | 
						|
  }
 | 
						|
 | 
						|
  for (; Idx != NewElts.size() && Size; ++Idx) {
 | 
						|
    IdxTy = NewElts[Idx]->getAllocatedType();
 | 
						|
    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
 | 
						|
    if (EltSize > Size) {
 | 
						|
      EltSize = Size;
 | 
						|
      Size = 0;
 | 
						|
    } else {
 | 
						|
      Size -= EltSize;
 | 
						|
    }
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
      Builder.CreateLifetimeStart(NewElts[Idx],
 | 
						|
                                  Builder.getInt64(EltSize));
 | 
						|
    else
 | 
						|
      Builder.CreateLifetimeEnd(NewElts[Idx],
 | 
						|
                                Builder.getInt64(EltSize));
 | 
						|
  }
 | 
						|
  DeadInsts.push_back(II);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
 | 
						|
/// Rewrite it to copy or set the elements of the scalarized memory.
 | 
						|
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | 
						|
                                        AllocaInst *AI,
 | 
						|
                                        SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  // If this is a memcpy/memmove, construct the other pointer as the
 | 
						|
  // appropriate type.  The "Other" pointer is the pointer that goes to memory
 | 
						|
  // that doesn't have anything to do with the alloca that we are promoting. For
 | 
						|
  // memset, this Value* stays null.
 | 
						|
  Value *OtherPtr = 0;
 | 
						|
  unsigned MemAlignment = MI->getAlignment();
 | 
						|
  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
 | 
						|
    if (Inst == MTI->getRawDest())
 | 
						|
      OtherPtr = MTI->getRawSource();
 | 
						|
    else {
 | 
						|
      assert(Inst == MTI->getRawSource());
 | 
						|
      OtherPtr = MTI->getRawDest();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is an other pointer, we want to convert it to the same pointer
 | 
						|
  // type as AI has, so we can GEP through it safely.
 | 
						|
  if (OtherPtr) {
 | 
						|
    unsigned AddrSpace =
 | 
						|
      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
 | 
						|
 | 
						|
    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
 | 
						|
    // optimization, but it's also required to detect the corner case where
 | 
						|
    // both pointer operands are referencing the same memory, and where
 | 
						|
    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
 | 
						|
    // function is only called for mem intrinsics that access the whole
 | 
						|
    // aggregate, so non-zero GEPs are not an issue here.)
 | 
						|
    OtherPtr = OtherPtr->stripPointerCasts();
 | 
						|
 | 
						|
    // Copying the alloca to itself is a no-op: just delete it.
 | 
						|
    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
 | 
						|
      // This code will run twice for a no-op memcpy -- once for each operand.
 | 
						|
      // Put only one reference to MI on the DeadInsts list.
 | 
						|
      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
 | 
						|
             E = DeadInsts.end(); I != E; ++I)
 | 
						|
        if (*I == MI) return;
 | 
						|
      DeadInsts.push_back(MI);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the pointer is not the right type, insert a bitcast to the right
 | 
						|
    // type.
 | 
						|
    Type *NewTy =
 | 
						|
      PointerType::get(AI->getType()->getElementType(), AddrSpace);
 | 
						|
 | 
						|
    if (OtherPtr->getType() != NewTy)
 | 
						|
      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process each element of the aggregate.
 | 
						|
  bool SROADest = MI->getRawDest() == Inst;
 | 
						|
 | 
						|
  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
    // If this is a memcpy/memmove, emit a GEP of the other element address.
 | 
						|
    Value *OtherElt = 0;
 | 
						|
    unsigned OtherEltAlign = MemAlignment;
 | 
						|
 | 
						|
    if (OtherPtr) {
 | 
						|
      Value *Idx[2] = { Zero,
 | 
						|
                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
 | 
						|
      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
 | 
						|
                                              OtherPtr->getName()+"."+Twine(i),
 | 
						|
                                                   MI);
 | 
						|
      uint64_t EltOffset;
 | 
						|
      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
 | 
						|
      Type *OtherTy = OtherPtrTy->getElementType();
 | 
						|
      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
 | 
						|
        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
 | 
						|
      } else {
 | 
						|
        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
 | 
						|
        EltOffset = TD->getTypeAllocSize(EltTy)*i;
 | 
						|
      }
 | 
						|
 | 
						|
      // The alignment of the other pointer is the guaranteed alignment of the
 | 
						|
      // element, which is affected by both the known alignment of the whole
 | 
						|
      // mem intrinsic and the alignment of the element.  If the alignment of
 | 
						|
      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
 | 
						|
      // known alignment is just 4 bytes.
 | 
						|
      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *EltPtr = NewElts[i];
 | 
						|
    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
 | 
						|
 | 
						|
    // If we got down to a scalar, insert a load or store as appropriate.
 | 
						|
    if (EltTy->isSingleValueType()) {
 | 
						|
      if (isa<MemTransferInst>(MI)) {
 | 
						|
        if (SROADest) {
 | 
						|
          // From Other to Alloca.
 | 
						|
          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
 | 
						|
          new StoreInst(Elt, EltPtr, MI);
 | 
						|
        } else {
 | 
						|
          // From Alloca to Other.
 | 
						|
          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
 | 
						|
          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      assert(isa<MemSetInst>(MI));
 | 
						|
 | 
						|
      // If the stored element is zero (common case), just store a null
 | 
						|
      // constant.
 | 
						|
      Constant *StoreVal;
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
 | 
						|
        if (CI->isZero()) {
 | 
						|
          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
 | 
						|
        } else {
 | 
						|
          // If EltTy is a vector type, get the element type.
 | 
						|
          Type *ValTy = EltTy->getScalarType();
 | 
						|
 | 
						|
          // Construct an integer with the right value.
 | 
						|
          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
 | 
						|
          APInt OneVal(EltSize, CI->getZExtValue());
 | 
						|
          APInt TotalVal(OneVal);
 | 
						|
          // Set each byte.
 | 
						|
          for (unsigned i = 0; 8*i < EltSize; ++i) {
 | 
						|
            TotalVal = TotalVal.shl(8);
 | 
						|
            TotalVal |= OneVal;
 | 
						|
          }
 | 
						|
 | 
						|
          // Convert the integer value to the appropriate type.
 | 
						|
          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
 | 
						|
          if (ValTy->isPointerTy())
 | 
						|
            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
 | 
						|
          else if (ValTy->isFloatingPointTy())
 | 
						|
            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
 | 
						|
          assert(StoreVal->getType() == ValTy && "Type mismatch!");
 | 
						|
 | 
						|
          // If the requested value was a vector constant, create it.
 | 
						|
          if (EltTy->isVectorTy()) {
 | 
						|
            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
 | 
						|
            StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        new StoreInst(StoreVal, EltPtr, MI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Otherwise, if we're storing a byte variable, use a memset call for
 | 
						|
      // this element.
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    if (!EltSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    IRBuilder<> Builder(MI);
 | 
						|
 | 
						|
    // Finally, insert the meminst for this element.
 | 
						|
    if (isa<MemSetInst>(MI)) {
 | 
						|
      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
 | 
						|
                           MI->isVolatile());
 | 
						|
    } else {
 | 
						|
      assert(isa<MemTransferInst>(MI));
 | 
						|
      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
 | 
						|
      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
 | 
						|
 | 
						|
      if (isa<MemCpyInst>(MI))
 | 
						|
        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
 | 
						|
      else
 | 
						|
        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DeadInsts.push_back(MI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
 | 
						|
/// overwrites the entire allocation.  Extract out the pieces of the stored
 | 
						|
/// integer and store them individually.
 | 
						|
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | 
						|
                                         SmallVector<AllocaInst*, 32> &NewElts){
 | 
						|
  // Extract each element out of the integer according to its structure offset
 | 
						|
  // and store the element value to the individual alloca.
 | 
						|
  Value *SrcVal = SI->getOperand(0);
 | 
						|
  Type *AllocaEltTy = AI->getAllocatedType();
 | 
						|
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | 
						|
 | 
						|
  IRBuilder<> Builder(SI);
 | 
						|
 | 
						|
  // Handle tail padding by extending the operand
 | 
						|
  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
 | 
						|
    SrcVal = Builder.CreateZExt(SrcVal,
 | 
						|
                            IntegerType::get(SI->getContext(), AllocaSizeBits));
 | 
						|
 | 
						|
  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  // There are two forms here: AI could be an array or struct.  Both cases
 | 
						|
  // have different ways to compute the element offset.
 | 
						|
  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(EltSTy);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
      // Get the number of bits to shift SrcVal to get the value.
 | 
						|
      Type *FieldTy = EltSTy->getElementType(i);
 | 
						|
      uint64_t Shift = Layout->getElementOffsetInBits(i);
 | 
						|
 | 
						|
      if (TD->isBigEndian())
 | 
						|
        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
 | 
						|
 | 
						|
      Value *EltVal = SrcVal;
 | 
						|
      if (Shift) {
 | 
						|
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | 
						|
        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
 | 
						|
      }
 | 
						|
 | 
						|
      // Truncate down to an integer of the right size.
 | 
						|
      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | 
						|
 | 
						|
      // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
      if (FieldSizeBits == 0) continue;
 | 
						|
 | 
						|
      if (FieldSizeBits != AllocaSizeBits)
 | 
						|
        EltVal = Builder.CreateTrunc(EltVal,
 | 
						|
                             IntegerType::get(SI->getContext(), FieldSizeBits));
 | 
						|
      Value *DestField = NewElts[i];
 | 
						|
      if (EltVal->getType() == FieldTy) {
 | 
						|
        // Storing to an integer field of this size, just do it.
 | 
						|
      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
 | 
						|
        // Bitcast to the right element type (for fp/vector values).
 | 
						|
        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
 | 
						|
      } else {
 | 
						|
        // Otherwise, bitcast the dest pointer (for aggregates).
 | 
						|
        DestField = Builder.CreateBitCast(DestField,
 | 
						|
                                     PointerType::getUnqual(EltVal->getType()));
 | 
						|
      }
 | 
						|
      new StoreInst(EltVal, DestField, SI);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
 | 
						|
    Type *ArrayEltTy = ATy->getElementType();
 | 
						|
    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | 
						|
    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 | 
						|
 | 
						|
    uint64_t Shift;
 | 
						|
 | 
						|
    if (TD->isBigEndian())
 | 
						|
      Shift = AllocaSizeBits-ElementOffset;
 | 
						|
    else
 | 
						|
      Shift = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
      // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
      if (ElementSizeBits == 0) continue;
 | 
						|
 | 
						|
      Value *EltVal = SrcVal;
 | 
						|
      if (Shift) {
 | 
						|
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | 
						|
        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
 | 
						|
      }
 | 
						|
 | 
						|
      // Truncate down to an integer of the right size.
 | 
						|
      if (ElementSizeBits != AllocaSizeBits)
 | 
						|
        EltVal = Builder.CreateTrunc(EltVal,
 | 
						|
                                     IntegerType::get(SI->getContext(),
 | 
						|
                                                      ElementSizeBits));
 | 
						|
      Value *DestField = NewElts[i];
 | 
						|
      if (EltVal->getType() == ArrayEltTy) {
 | 
						|
        // Storing to an integer field of this size, just do it.
 | 
						|
      } else if (ArrayEltTy->isFloatingPointTy() ||
 | 
						|
                 ArrayEltTy->isVectorTy()) {
 | 
						|
        // Bitcast to the right element type (for fp/vector values).
 | 
						|
        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
 | 
						|
      } else {
 | 
						|
        // Otherwise, bitcast the dest pointer (for aggregates).
 | 
						|
        DestField = Builder.CreateBitCast(DestField,
 | 
						|
                                     PointerType::getUnqual(EltVal->getType()));
 | 
						|
      }
 | 
						|
      new StoreInst(EltVal, DestField, SI);
 | 
						|
 | 
						|
      if (TD->isBigEndian())
 | 
						|
        Shift -= ElementOffset;
 | 
						|
      else
 | 
						|
        Shift += ElementOffset;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DeadInsts.push_back(SI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
 | 
						|
/// an integer.  Load the individual pieces to form the aggregate value.
 | 
						|
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | 
						|
                                        SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  // Extract each element out of the NewElts according to its structure offset
 | 
						|
  // and form the result value.
 | 
						|
  Type *AllocaEltTy = AI->getAllocatedType();
 | 
						|
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  // There are two forms here: AI could be an array or struct.  Both cases
 | 
						|
  // have different ways to compute the element offset.
 | 
						|
  const StructLayout *Layout = 0;
 | 
						|
  uint64_t ArrayEltBitOffset = 0;
 | 
						|
  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | 
						|
    Layout = TD->getStructLayout(EltSTy);
 | 
						|
  } else {
 | 
						|
    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
 | 
						|
    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *ResultVal =
 | 
						|
    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
    // Load the value from the alloca.  If the NewElt is an aggregate, cast
 | 
						|
    // the pointer to an integer of the same size before doing the load.
 | 
						|
    Value *SrcField = NewElts[i];
 | 
						|
    Type *FieldTy =
 | 
						|
      cast<PointerType>(SrcField->getType())->getElementType();
 | 
						|
    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | 
						|
 | 
						|
    // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
    if (FieldSizeBits == 0) continue;
 | 
						|
 | 
						|
    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
 | 
						|
                                                     FieldSizeBits);
 | 
						|
    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
 | 
						|
        !FieldTy->isVectorTy())
 | 
						|
      SrcField = new BitCastInst(SrcField,
 | 
						|
                                 PointerType::getUnqual(FieldIntTy),
 | 
						|
                                 "", LI);
 | 
						|
    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
 | 
						|
 | 
						|
    // If SrcField is a fp or vector of the right size but that isn't an
 | 
						|
    // integer type, bitcast to an integer so we can shift it.
 | 
						|
    if (SrcField->getType() != FieldIntTy)
 | 
						|
      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
 | 
						|
 | 
						|
    // Zero extend the field to be the same size as the final alloca so that
 | 
						|
    // we can shift and insert it.
 | 
						|
    if (SrcField->getType() != ResultVal->getType())
 | 
						|
      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
 | 
						|
 | 
						|
    // Determine the number of bits to shift SrcField.
 | 
						|
    uint64_t Shift;
 | 
						|
    if (Layout) // Struct case.
 | 
						|
      Shift = Layout->getElementOffsetInBits(i);
 | 
						|
    else  // Array case.
 | 
						|
      Shift = i*ArrayEltBitOffset;
 | 
						|
 | 
						|
    if (TD->isBigEndian())
 | 
						|
      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
 | 
						|
 | 
						|
    if (Shift) {
 | 
						|
      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
 | 
						|
      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't create an 'or x, 0' on the first iteration.
 | 
						|
    if (!isa<Constant>(ResultVal) ||
 | 
						|
        !cast<Constant>(ResultVal)->isNullValue())
 | 
						|
      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
 | 
						|
    else
 | 
						|
      ResultVal = SrcField;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle tail padding by truncating the result
 | 
						|
  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
 | 
						|
    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(ResultVal);
 | 
						|
  DeadInsts.push_back(LI);
 | 
						|
}
 | 
						|
 | 
						|
/// HasPadding - Return true if the specified type has any structure or
 | 
						|
/// alignment padding in between the elements that would be split apart
 | 
						|
/// by SROA; return false otherwise.
 | 
						|
static bool HasPadding(Type *Ty, const TargetData &TD) {
 | 
						|
  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Ty = ATy->getElementType();
 | 
						|
    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  // SROA currently handles only Arrays and Structs.
 | 
						|
  StructType *STy = cast<StructType>(Ty);
 | 
						|
  const StructLayout *SL = TD.getStructLayout(STy);
 | 
						|
  unsigned PrevFieldBitOffset = 0;
 | 
						|
  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
 | 
						|
 | 
						|
    // Check to see if there is any padding between this element and the
 | 
						|
    // previous one.
 | 
						|
    if (i) {
 | 
						|
      unsigned PrevFieldEnd =
 | 
						|
        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
 | 
						|
      if (PrevFieldEnd < FieldBitOffset)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    PrevFieldBitOffset = FieldBitOffset;
 | 
						|
  }
 | 
						|
  // Check for tail padding.
 | 
						|
  if (unsigned EltCount = STy->getNumElements()) {
 | 
						|
    unsigned PrevFieldEnd = PrevFieldBitOffset +
 | 
						|
      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
 | 
						|
    if (PrevFieldEnd < SL->getSizeInBits())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | 
						|
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | 
						|
/// or 1 if safe after canonicalization has been performed.
 | 
						|
bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
 | 
						|
  // Loop over the use list of the alloca.  We can only transform it if all of
 | 
						|
  // the users are safe to transform.
 | 
						|
  AllocaInfo Info(AI);
 | 
						|
 | 
						|
  isSafeForScalarRepl(AI, 0, Info);
 | 
						|
  if (Info.isUnsafe) {
 | 
						|
    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
 | 
						|
  // source and destination, we have to be careful.  In particular, the memcpy
 | 
						|
  // could be moving around elements that live in structure padding of the LLVM
 | 
						|
  // types, but may actually be used.  In these cases, we refuse to promote the
 | 
						|
  // struct.
 | 
						|
  if (Info.isMemCpySrc && Info.isMemCpyDst &&
 | 
						|
      HasPadding(AI->getAllocatedType(), *TD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the alloca never has an access to just *part* of it, but is accessed
 | 
						|
  // via loads and stores, then we should use ConvertToScalarInfo to promote
 | 
						|
  // the alloca instead of promoting each piece at a time and inserting fission
 | 
						|
  // and fusion code.
 | 
						|
  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
 | 
						|
    // If the struct/array just has one element, use basic SRoA.
 | 
						|
    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | 
						|
      if (ST->getNumElements() > 1) return false;
 | 
						|
    } else {
 | 
						|
      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |