forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2438 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2438 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a basic-block vectorization pass. The algorithm was
 | 
						|
// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
 | 
						|
// et al. It works by looking for chains of pairable operations and then
 | 
						|
// pairing them.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define BBV_NAME "bb-vectorize"
 | 
						|
#define DEBUG_TYPE BBV_NAME
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Metadata.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Vectorize.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
 | 
						|
  cl::desc("The required chain depth for vectorization"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
 | 
						|
  cl::desc("The maximum search distance for instruction pairs"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Replicating one element to a pair breaks the chain"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
 | 
						|
  cl::desc("The size of the native vector registers"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
 | 
						|
  cl::desc("The maximum number of pairing iterations"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to form non-2^n-length vectors"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
 | 
						|
  cl::desc("The maximum number of pairable instructions per group"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
 | 
						|
  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
 | 
						|
                       " a full cycle check"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize boolean (i1) values"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize integer values"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize floating-point values"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize pointer values"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize casting (conversion) operations"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize floating-point math intrinsics"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize select instructions"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize comparison instructions"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize getelementptr instructions"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't try to vectorize loads and stores"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Only generate aligned loads and stores"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NoMemOpBoost("bb-vectorize-no-mem-op-boost",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Use a fast instruction dependency analysis"));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("When debugging is enabled, output information on the"
 | 
						|
           " instruction-examination process"));
 | 
						|
static cl::opt<bool>
 | 
						|
DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("When debugging is enabled, output information on the"
 | 
						|
           " candidate-selection process"));
 | 
						|
static cl::opt<bool>
 | 
						|
DebugPairSelection("bb-vectorize-debug-pair-selection",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("When debugging is enabled, output information on the"
 | 
						|
           " pair-selection process"));
 | 
						|
static cl::opt<bool>
 | 
						|
DebugCycleCheck("bb-vectorize-debug-cycle-check",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("When debugging is enabled, output information on the"
 | 
						|
           " cycle-checking process"));
 | 
						|
#endif
 | 
						|
 | 
						|
STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct BBVectorize : public BasicBlockPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
    const VectorizeConfig Config;
 | 
						|
 | 
						|
    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
 | 
						|
      : BasicBlockPass(ID), Config(C) {
 | 
						|
      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    BBVectorize(Pass *P, const VectorizeConfig &C)
 | 
						|
      : BasicBlockPass(ID), Config(C) {
 | 
						|
      AA = &P->getAnalysis<AliasAnalysis>();
 | 
						|
      SE = &P->getAnalysis<ScalarEvolution>();
 | 
						|
      TD = P->getAnalysisIfAvailable<TargetData>();
 | 
						|
    }
 | 
						|
 | 
						|
    typedef std::pair<Value *, Value *> ValuePair;
 | 
						|
    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
 | 
						|
    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
 | 
						|
    typedef std::pair<std::multimap<Value *, Value *>::iterator,
 | 
						|
              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
 | 
						|
    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
 | 
						|
              std::multimap<ValuePair, ValuePair>::iterator>
 | 
						|
                VPPIteratorPair;
 | 
						|
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    // FIXME: const correct?
 | 
						|
 | 
						|
    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
 | 
						|
 | 
						|
    bool getCandidatePairs(BasicBlock &BB,
 | 
						|
                       BasicBlock::iterator &Start,
 | 
						|
                       std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
 | 
						|
 | 
						|
    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                       std::vector<Value *> &PairableInsts,
 | 
						|
                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
 | 
						|
 | 
						|
    void buildDepMap(BasicBlock &BB,
 | 
						|
                       std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                       std::vector<Value *> &PairableInsts,
 | 
						|
                       DenseSet<ValuePair> &PairableInstUsers);
 | 
						|
 | 
						|
    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                        std::vector<Value *> &PairableInsts,
 | 
						|
                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                        DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                        DenseMap<Value *, Value *>& ChosenPairs);
 | 
						|
 | 
						|
    void fuseChosenPairs(BasicBlock &BB,
 | 
						|
                     std::vector<Value *> &PairableInsts,
 | 
						|
                     DenseMap<Value *, Value *>& ChosenPairs);
 | 
						|
 | 
						|
    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
 | 
						|
 | 
						|
    bool areInstsCompatible(Instruction *I, Instruction *J,
 | 
						|
                       bool IsSimpleLoadStore, bool NonPow2Len);
 | 
						|
 | 
						|
    bool trackUsesOfI(DenseSet<Value *> &Users,
 | 
						|
                      AliasSetTracker &WriteSet, Instruction *I,
 | 
						|
                      Instruction *J, bool UpdateUsers = true,
 | 
						|
                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
 | 
						|
 | 
						|
    void computePairsConnectedTo(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      ValuePair P);
 | 
						|
 | 
						|
    bool pairsConflict(ValuePair P, ValuePair Q,
 | 
						|
                 DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
 | 
						|
 | 
						|
    bool pairWillFormCycle(ValuePair P,
 | 
						|
                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
 | 
						|
                       DenseSet<ValuePair> &CurrentPairs);
 | 
						|
 | 
						|
    void pruneTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseMap<ValuePair, size_t> &Tree,
 | 
						|
                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
 | 
						|
                      bool UseCycleCheck);
 | 
						|
 | 
						|
    void buildInitialTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
 | 
						|
 | 
						|
    void findBestTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
 | 
						|
                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
 | 
						|
                      bool UseCycleCheck);
 | 
						|
 | 
						|
    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, unsigned o, bool FlipMemInputs);
 | 
						|
 | 
						|
    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | 
						|
                     unsigned MaskOffset, unsigned NumInElem,
 | 
						|
                     unsigned NumInElem1, unsigned IdxOffset,
 | 
						|
                     std::vector<Constant*> &Mask);
 | 
						|
 | 
						|
    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J);
 | 
						|
 | 
						|
    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
 | 
						|
                       unsigned o, Value *&LOp, unsigned numElemL,
 | 
						|
                       Type *ArgTypeL, Type *ArgTypeR,
 | 
						|
                       unsigned IdxOff = 0);
 | 
						|
 | 
						|
    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, unsigned o, bool FlipMemInputs);
 | 
						|
 | 
						|
    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
 | 
						|
                     bool FlipMemInputs);
 | 
						|
 | 
						|
    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, Instruction *K,
 | 
						|
                     Instruction *&InsertionPt, Instruction *&K1,
 | 
						|
                     Instruction *&K2, bool FlipMemInputs);
 | 
						|
 | 
						|
    void collectPairLoadMoveSet(BasicBlock &BB,
 | 
						|
                     DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *I);
 | 
						|
 | 
						|
    void collectLoadMoveSet(BasicBlock &BB,
 | 
						|
                     std::vector<Value *> &PairableInsts,
 | 
						|
                     DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet);
 | 
						|
 | 
						|
    void collectPtrInfo(std::vector<Value *> &PairableInsts,
 | 
						|
                        DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                        DenseSet<Value *> &LowPtrInsts);
 | 
						|
 | 
						|
    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *I, Instruction *J);
 | 
						|
 | 
						|
    void moveUsesOfIAfterJ(BasicBlock &BB,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *&InsertionPt,
 | 
						|
                     Instruction *I, Instruction *J);
 | 
						|
 | 
						|
    void combineMetadata(Instruction *K, const Instruction *J);
 | 
						|
 | 
						|
    bool vectorizeBB(BasicBlock &BB) {
 | 
						|
      bool changed = false;
 | 
						|
      // Iterate a sufficient number of times to merge types of size 1 bit,
 | 
						|
      // then 2 bits, then 4, etc. up to half of the target vector width of the
 | 
						|
      // target vector register.
 | 
						|
      unsigned n = 1;
 | 
						|
      for (unsigned v = 2;
 | 
						|
           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
 | 
						|
           v *= 2, ++n) {
 | 
						|
        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
 | 
						|
              " for " << BB.getName() << " in " <<
 | 
						|
              BB.getParent()->getName() << "...\n");
 | 
						|
        if (vectorizePairs(BB))
 | 
						|
          changed = true;
 | 
						|
        else
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (changed && !Pow2LenOnly) {
 | 
						|
        ++n;
 | 
						|
        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
 | 
						|
          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
 | 
						|
                n << " for " << BB.getName() << " in " <<
 | 
						|
                BB.getParent()->getName() << "...\n");
 | 
						|
          if (!vectorizePairs(BB, true)) break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << "BBV: done!\n");
 | 
						|
      return changed;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnBasicBlock(BasicBlock &BB) {
 | 
						|
      AA = &getAnalysis<AliasAnalysis>();
 | 
						|
      SE = &getAnalysis<ScalarEvolution>();
 | 
						|
      TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
      return vectorizeBB(BB);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      BasicBlockPass::getAnalysisUsage(AU);
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
 | 
						|
      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
 | 
						|
             "Cannot form vector from incompatible scalar types");
 | 
						|
      Type *STy = ElemTy->getScalarType();
 | 
						|
 | 
						|
      unsigned numElem;
 | 
						|
      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
 | 
						|
        numElem = VTy->getNumElements();
 | 
						|
      } else {
 | 
						|
        numElem = 1;
 | 
						|
      }
 | 
						|
 | 
						|
      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
 | 
						|
        numElem += VTy->getNumElements();
 | 
						|
      } else {
 | 
						|
        numElem += 1;
 | 
						|
      }
 | 
						|
 | 
						|
      return VectorType::get(STy, numElem);
 | 
						|
    }
 | 
						|
 | 
						|
    static inline void getInstructionTypes(Instruction *I,
 | 
						|
                                           Type *&T1, Type *&T2) {
 | 
						|
      if (isa<StoreInst>(I)) {
 | 
						|
        // For stores, it is the value type, not the pointer type that matters
 | 
						|
        // because the value is what will come from a vector register.
 | 
						|
  
 | 
						|
        Value *IVal = cast<StoreInst>(I)->getValueOperand();
 | 
						|
        T1 = IVal->getType();
 | 
						|
      } else {
 | 
						|
        T1 = I->getType();
 | 
						|
      }
 | 
						|
  
 | 
						|
      if (I->isCast())
 | 
						|
        T2 = cast<CastInst>(I)->getSrcTy();
 | 
						|
      else
 | 
						|
        T2 = T1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns the weight associated with the provided value. A chain of
 | 
						|
    // candidate pairs has a length given by the sum of the weights of its
 | 
						|
    // members (one weight per pair; the weight of each member of the pair
 | 
						|
    // is assumed to be the same). This length is then compared to the
 | 
						|
    // chain-length threshold to determine if a given chain is significant
 | 
						|
    // enough to be vectorized. The length is also used in comparing
 | 
						|
    // candidate chains where longer chains are considered to be better.
 | 
						|
    // Note: when this function returns 0, the resulting instructions are
 | 
						|
    // not actually fused.
 | 
						|
    inline size_t getDepthFactor(Value *V) {
 | 
						|
      // InsertElement and ExtractElement have a depth factor of zero. This is
 | 
						|
      // for two reasons: First, they cannot be usefully fused. Second, because
 | 
						|
      // the pass generates a lot of these, they can confuse the simple metric
 | 
						|
      // used to compare the trees in the next iteration. Thus, giving them a
 | 
						|
      // weight of zero allows the pass to essentially ignore them in
 | 
						|
      // subsequent iterations when looking for vectorization opportunities
 | 
						|
      // while still tracking dependency chains that flow through those
 | 
						|
      // instructions.
 | 
						|
      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // Give a load or store half of the required depth so that load/store
 | 
						|
      // pairs will vectorize.
 | 
						|
      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
 | 
						|
        return Config.ReqChainDepth/2;
 | 
						|
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // This determines the relative offset of two loads or stores, returning
 | 
						|
    // true if the offset could be determined to be some constant value.
 | 
						|
    // For example, if OffsetInElmts == 1, then J accesses the memory directly
 | 
						|
    // after I; if OffsetInElmts == -1 then I accesses the memory
 | 
						|
    // directly after J.
 | 
						|
    bool getPairPtrInfo(Instruction *I, Instruction *J,
 | 
						|
        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
 | 
						|
        int64_t &OffsetInElmts) {
 | 
						|
      OffsetInElmts = 0;
 | 
						|
      if (isa<LoadInst>(I)) {
 | 
						|
        IPtr = cast<LoadInst>(I)->getPointerOperand();
 | 
						|
        JPtr = cast<LoadInst>(J)->getPointerOperand();
 | 
						|
        IAlignment = cast<LoadInst>(I)->getAlignment();
 | 
						|
        JAlignment = cast<LoadInst>(J)->getAlignment();
 | 
						|
      } else {
 | 
						|
        IPtr = cast<StoreInst>(I)->getPointerOperand();
 | 
						|
        JPtr = cast<StoreInst>(J)->getPointerOperand();
 | 
						|
        IAlignment = cast<StoreInst>(I)->getAlignment();
 | 
						|
        JAlignment = cast<StoreInst>(J)->getAlignment();
 | 
						|
      }
 | 
						|
 | 
						|
      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
 | 
						|
      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
 | 
						|
 | 
						|
      // If this is a trivial offset, then we'll get something like
 | 
						|
      // 1*sizeof(type). With target data, which we need anyway, this will get
 | 
						|
      // constant folded into a number.
 | 
						|
      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
 | 
						|
      if (const SCEVConstant *ConstOffSCEV =
 | 
						|
            dyn_cast<SCEVConstant>(OffsetSCEV)) {
 | 
						|
        ConstantInt *IntOff = ConstOffSCEV->getValue();
 | 
						|
        int64_t Offset = IntOff->getSExtValue();
 | 
						|
 | 
						|
        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
 | 
						|
        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
 | 
						|
 | 
						|
        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
 | 
						|
        if (VTy != VTy2 && Offset < 0) {
 | 
						|
          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
 | 
						|
          OffsetInElmts = Offset/VTy2TSS;
 | 
						|
          return (abs64(Offset) % VTy2TSS) == 0;
 | 
						|
        }
 | 
						|
 | 
						|
        OffsetInElmts = Offset/VTyTSS;
 | 
						|
        return (abs64(Offset) % VTyTSS) == 0;
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns true if the provided CallInst represents an intrinsic that can
 | 
						|
    // be vectorized.
 | 
						|
    bool isVectorizableIntrinsic(CallInst* I) {
 | 
						|
      Function *F = I->getCalledFunction();
 | 
						|
      if (!F) return false;
 | 
						|
 | 
						|
      unsigned IID = F->getIntrinsicID();
 | 
						|
      if (!IID) return false;
 | 
						|
 | 
						|
      switch(IID) {
 | 
						|
      default:
 | 
						|
        return false;
 | 
						|
      case Intrinsic::sqrt:
 | 
						|
      case Intrinsic::powi:
 | 
						|
      case Intrinsic::sin:
 | 
						|
      case Intrinsic::cos:
 | 
						|
      case Intrinsic::log:
 | 
						|
      case Intrinsic::log2:
 | 
						|
      case Intrinsic::log10:
 | 
						|
      case Intrinsic::exp:
 | 
						|
      case Intrinsic::exp2:
 | 
						|
      case Intrinsic::pow:
 | 
						|
        return Config.VectorizeMath;
 | 
						|
      case Intrinsic::fma:
 | 
						|
        return Config.VectorizeFMA;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns true if J is the second element in some pair referenced by
 | 
						|
    // some multimap pair iterator pair.
 | 
						|
    template <typename V>
 | 
						|
    bool isSecondInIteratorPair(V J, std::pair<
 | 
						|
           typename std::multimap<V, V>::iterator,
 | 
						|
           typename std::multimap<V, V>::iterator> PairRange) {
 | 
						|
      for (typename std::multimap<V, V>::iterator K = PairRange.first;
 | 
						|
           K != PairRange.second; ++K)
 | 
						|
        if (K->second == J) return true;
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // This function implements one vectorization iteration on the provided
 | 
						|
  // basic block. It returns true if the block is changed.
 | 
						|
  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
 | 
						|
    bool ShouldContinue;
 | 
						|
    BasicBlock::iterator Start = BB.getFirstInsertionPt();
 | 
						|
 | 
						|
    std::vector<Value *> AllPairableInsts;
 | 
						|
    DenseMap<Value *, Value *> AllChosenPairs;
 | 
						|
 | 
						|
    do {
 | 
						|
      std::vector<Value *> PairableInsts;
 | 
						|
      std::multimap<Value *, Value *> CandidatePairs;
 | 
						|
      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
 | 
						|
                                         PairableInsts, NonPow2Len);
 | 
						|
      if (PairableInsts.empty()) continue;
 | 
						|
 | 
						|
      // Now we have a map of all of the pairable instructions and we need to
 | 
						|
      // select the best possible pairing. A good pairing is one such that the
 | 
						|
      // users of the pair are also paired. This defines a (directed) forest
 | 
						|
      // over the pairs such that two pairs are connected iff the second pair
 | 
						|
      // uses the first.
 | 
						|
 | 
						|
      // Note that it only matters that both members of the second pair use some
 | 
						|
      // element of the first pair (to allow for splatting).
 | 
						|
 | 
						|
      std::multimap<ValuePair, ValuePair> ConnectedPairs;
 | 
						|
      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
 | 
						|
      if (ConnectedPairs.empty()) continue;
 | 
						|
 | 
						|
      // Build the pairable-instruction dependency map
 | 
						|
      DenseSet<ValuePair> PairableInstUsers;
 | 
						|
      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
 | 
						|
 | 
						|
      // There is now a graph of the connected pairs. For each variable, pick
 | 
						|
      // the pairing with the largest tree meeting the depth requirement on at
 | 
						|
      // least one branch. Then select all pairings that are part of that tree
 | 
						|
      // and remove them from the list of available pairings and pairable
 | 
						|
      // variables.
 | 
						|
 | 
						|
      DenseMap<Value *, Value *> ChosenPairs;
 | 
						|
      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
 | 
						|
        PairableInstUsers, ChosenPairs);
 | 
						|
 | 
						|
      if (ChosenPairs.empty()) continue;
 | 
						|
      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
 | 
						|
                              PairableInsts.end());
 | 
						|
      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
 | 
						|
    } while (ShouldContinue);
 | 
						|
 | 
						|
    if (AllChosenPairs.empty()) return false;
 | 
						|
    NumFusedOps += AllChosenPairs.size();
 | 
						|
 | 
						|
    // A set of pairs has now been selected. It is now necessary to replace the
 | 
						|
    // paired instructions with vector instructions. For this procedure each
 | 
						|
    // operand must be replaced with a vector operand. This vector is formed
 | 
						|
    // by using build_vector on the old operands. The replaced values are then
 | 
						|
    // replaced with a vector_extract on the result.  Subsequent optimization
 | 
						|
    // passes should coalesce the build/extract combinations.
 | 
						|
 | 
						|
    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
 | 
						|
 | 
						|
    // It is important to cleanup here so that future iterations of this
 | 
						|
    // function have less work to do.
 | 
						|
    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // This function returns true if the provided instruction is capable of being
 | 
						|
  // fused into a vector instruction. This determination is based only on the
 | 
						|
  // type and other attributes of the instruction.
 | 
						|
  bool BBVectorize::isInstVectorizable(Instruction *I,
 | 
						|
                                         bool &IsSimpleLoadStore) {
 | 
						|
    IsSimpleLoadStore = false;
 | 
						|
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(I)) {
 | 
						|
      if (!isVectorizableIntrinsic(C))
 | 
						|
        return false;
 | 
						|
    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | 
						|
      // Vectorize simple loads if possbile:
 | 
						|
      IsSimpleLoadStore = L->isSimple();
 | 
						|
      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
 | 
						|
        return false;
 | 
						|
    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | 
						|
      // Vectorize simple stores if possbile:
 | 
						|
      IsSimpleLoadStore = S->isSimple();
 | 
						|
      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
 | 
						|
        return false;
 | 
						|
    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
 | 
						|
      // We can vectorize casts, but not casts of pointer types, etc.
 | 
						|
      if (!Config.VectorizeCasts)
 | 
						|
        return false;
 | 
						|
 | 
						|
      Type *SrcTy = C->getSrcTy();
 | 
						|
      if (!SrcTy->isSingleValueType())
 | 
						|
        return false;
 | 
						|
 | 
						|
      Type *DestTy = C->getDestTy();
 | 
						|
      if (!DestTy->isSingleValueType())
 | 
						|
        return false;
 | 
						|
    } else if (isa<SelectInst>(I)) {
 | 
						|
      if (!Config.VectorizeSelect)
 | 
						|
        return false;
 | 
						|
    } else if (isa<CmpInst>(I)) {
 | 
						|
      if (!Config.VectorizeCmp)
 | 
						|
        return false;
 | 
						|
    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      if (!Config.VectorizeGEP)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Currently, vector GEPs exist only with one index.
 | 
						|
      if (G->getNumIndices() != 1)
 | 
						|
        return false;
 | 
						|
    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
 | 
						|
        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can't vectorize memory operations without target data
 | 
						|
    if (TD == 0 && IsSimpleLoadStore)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Type *T1, *T2;
 | 
						|
    getInstructionTypes(I, T1, T2);
 | 
						|
 | 
						|
    // Not every type can be vectorized...
 | 
						|
    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
 | 
						|
        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
 | 
						|
      if (!Config.VectorizeBools)
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      if (!Config.VectorizeInts
 | 
						|
          && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  
 | 
						|
    if (!Config.VectorizeFloats
 | 
						|
        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Don't vectorize target-specific types.
 | 
						|
    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
 | 
						|
      return false;
 | 
						|
    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if ((!Config.VectorizePointers || TD == 0) &&
 | 
						|
        (T1->getScalarType()->isPointerTy() ||
 | 
						|
         T2->getScalarType()->isPointerTy()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
 | 
						|
        T2->getPrimitiveSizeInBits() >= Config.VectorBits)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // This function returns true if the two provided instructions are compatible
 | 
						|
  // (meaning that they can be fused into a vector instruction). This assumes
 | 
						|
  // that I has already been determined to be vectorizable and that J is not
 | 
						|
  // in the use tree of I.
 | 
						|
  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
 | 
						|
                       bool IsSimpleLoadStore, bool NonPow2Len) {
 | 
						|
    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
 | 
						|
                     " <-> " << *J << "\n");
 | 
						|
 | 
						|
    // Loads and stores can be merged if they have different alignments,
 | 
						|
    // but are otherwise the same.
 | 
						|
    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
 | 
						|
                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Type *IT1, *IT2, *JT1, *JT2;
 | 
						|
    getInstructionTypes(I, IT1, IT2);
 | 
						|
    getInstructionTypes(J, JT1, JT2);
 | 
						|
    unsigned MaxTypeBits = std::max(
 | 
						|
      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
 | 
						|
      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
 | 
						|
    if (MaxTypeBits > Config.VectorBits)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: handle addsub-type operations!
 | 
						|
 | 
						|
    if (IsSimpleLoadStore) {
 | 
						|
      Value *IPtr, *JPtr;
 | 
						|
      unsigned IAlignment, JAlignment;
 | 
						|
      int64_t OffsetInElmts = 0;
 | 
						|
      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | 
						|
            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
 | 
						|
        if (Config.AlignedOnly) {
 | 
						|
          Type *aTypeI = isa<StoreInst>(I) ?
 | 
						|
            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
 | 
						|
          Type *aTypeJ = isa<StoreInst>(J) ?
 | 
						|
            cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
 | 
						|
 | 
						|
          // An aligned load or store is possible only if the instruction
 | 
						|
          // with the lower offset has an alignment suitable for the
 | 
						|
          // vector type.
 | 
						|
 | 
						|
          unsigned BottomAlignment = IAlignment;
 | 
						|
          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
 | 
						|
 | 
						|
          Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
 | 
						|
          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
 | 
						|
          if (BottomAlignment < VecAlignment)
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The powi intrinsic is special because only the first argument is
 | 
						|
    // vectorized, the second arguments must be equal.
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
    Function *FI;
 | 
						|
    if (CI && (FI = CI->getCalledFunction()) &&
 | 
						|
        FI->getIntrinsicID() == Intrinsic::powi) {
 | 
						|
 | 
						|
      Value *A1I = CI->getArgOperand(1),
 | 
						|
            *A1J = cast<CallInst>(J)->getArgOperand(1);
 | 
						|
      const SCEV *A1ISCEV = SE->getSCEV(A1I),
 | 
						|
                 *A1JSCEV = SE->getSCEV(A1J);
 | 
						|
      return (A1ISCEV == A1JSCEV);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out whether or not J uses I and update the users and write-set
 | 
						|
  // structures associated with I. Specifically, Users represents the set of
 | 
						|
  // instructions that depend on I. WriteSet represents the set
 | 
						|
  // of memory locations that are dependent on I. If UpdateUsers is true,
 | 
						|
  // and J uses I, then Users is updated to contain J and WriteSet is updated
 | 
						|
  // to contain any memory locations to which J writes. The function returns
 | 
						|
  // true if J uses I. By default, alias analysis is used to determine
 | 
						|
  // whether J reads from memory that overlaps with a location in WriteSet.
 | 
						|
  // If LoadMoveSet is not null, then it is a previously-computed multimap
 | 
						|
  // where the key is the memory-based user instruction and the value is
 | 
						|
  // the instruction to be compared with I. So, if LoadMoveSet is provided,
 | 
						|
  // then the alias analysis is not used. This is necessary because this
 | 
						|
  // function is called during the process of moving instructions during
 | 
						|
  // vectorization and the results of the alias analysis are not stable during
 | 
						|
  // that process.
 | 
						|
  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
 | 
						|
                       AliasSetTracker &WriteSet, Instruction *I,
 | 
						|
                       Instruction *J, bool UpdateUsers,
 | 
						|
                       std::multimap<Value *, Value *> *LoadMoveSet) {
 | 
						|
    bool UsesI = false;
 | 
						|
 | 
						|
    // This instruction may already be marked as a user due, for example, to
 | 
						|
    // being a member of a selected pair.
 | 
						|
    if (Users.count(J))
 | 
						|
      UsesI = true;
 | 
						|
 | 
						|
    if (!UsesI)
 | 
						|
      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
 | 
						|
           JU != JE; ++JU) {
 | 
						|
        Value *V = *JU;
 | 
						|
        if (I == V || Users.count(V)) {
 | 
						|
          UsesI = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    if (!UsesI && J->mayReadFromMemory()) {
 | 
						|
      if (LoadMoveSet) {
 | 
						|
        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
 | 
						|
        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
 | 
						|
      } else {
 | 
						|
        for (AliasSetTracker::iterator W = WriteSet.begin(),
 | 
						|
             WE = WriteSet.end(); W != WE; ++W) {
 | 
						|
          if (W->aliasesUnknownInst(J, *AA)) {
 | 
						|
            UsesI = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (UsesI && UpdateUsers) {
 | 
						|
      if (J->mayWriteToMemory()) WriteSet.add(J);
 | 
						|
      Users.insert(J);
 | 
						|
    }
 | 
						|
 | 
						|
    return UsesI;
 | 
						|
  }
 | 
						|
 | 
						|
  // This function iterates over all instruction pairs in the provided
 | 
						|
  // basic block and collects all candidate pairs for vectorization.
 | 
						|
  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
 | 
						|
                       BasicBlock::iterator &Start,
 | 
						|
                       std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
 | 
						|
    BasicBlock::iterator E = BB.end();
 | 
						|
    if (Start == E) return false;
 | 
						|
 | 
						|
    bool ShouldContinue = false, IAfterStart = false;
 | 
						|
    for (BasicBlock::iterator I = Start++; I != E; ++I) {
 | 
						|
      if (I == Start) IAfterStart = true;
 | 
						|
 | 
						|
      bool IsSimpleLoadStore;
 | 
						|
      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
 | 
						|
 | 
						|
      // Look for an instruction with which to pair instruction *I...
 | 
						|
      DenseSet<Value *> Users;
 | 
						|
      AliasSetTracker WriteSet(*AA);
 | 
						|
      bool JAfterStart = IAfterStart;
 | 
						|
      BasicBlock::iterator J = llvm::next(I);
 | 
						|
      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
 | 
						|
        if (J == Start) JAfterStart = true;
 | 
						|
 | 
						|
        // Determine if J uses I, if so, exit the loop.
 | 
						|
        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
 | 
						|
        if (Config.FastDep) {
 | 
						|
          // Note: For this heuristic to be effective, independent operations
 | 
						|
          // must tend to be intermixed. This is likely to be true from some
 | 
						|
          // kinds of grouped loop unrolling (but not the generic LLVM pass),
 | 
						|
          // but otherwise may require some kind of reordering pass.
 | 
						|
 | 
						|
          // When using fast dependency analysis,
 | 
						|
          // stop searching after first use:
 | 
						|
          if (UsesI) break;
 | 
						|
        } else {
 | 
						|
          if (UsesI) continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // J does not use I, and comes before the first use of I, so it can be
 | 
						|
        // merged with I if the instructions are compatible.
 | 
						|
        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue;
 | 
						|
 | 
						|
        // J is a candidate for merging with I.
 | 
						|
        if (!PairableInsts.size() ||
 | 
						|
             PairableInsts[PairableInsts.size()-1] != I) {
 | 
						|
          PairableInsts.push_back(I);
 | 
						|
        }
 | 
						|
 | 
						|
        CandidatePairs.insert(ValuePair(I, J));
 | 
						|
 | 
						|
        // The next call to this function must start after the last instruction
 | 
						|
        // selected during this invocation.
 | 
						|
        if (JAfterStart) {
 | 
						|
          Start = llvm::next(J);
 | 
						|
          IAfterStart = JAfterStart = false;
 | 
						|
        }
 | 
						|
 | 
						|
        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
 | 
						|
                     << *I << " <-> " << *J << "\n");
 | 
						|
 | 
						|
        // If we have already found too many pairs, break here and this function
 | 
						|
        // will be called again starting after the last instruction selected
 | 
						|
        // during this invocation.
 | 
						|
        if (PairableInsts.size() >= Config.MaxInsts) {
 | 
						|
          ShouldContinue = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ShouldContinue)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
 | 
						|
           << " instructions with candidate pairs\n");
 | 
						|
 | 
						|
    return ShouldContinue;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
 | 
						|
  // it looks for pairs such that both members have an input which is an
 | 
						|
  // output of PI or PJ.
 | 
						|
  void BBVectorize::computePairsConnectedTo(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      ValuePair P) {
 | 
						|
    StoreInst *SI, *SJ;
 | 
						|
 | 
						|
    // For each possible pairing for this variable, look at the uses of
 | 
						|
    // the first value...
 | 
						|
    for (Value::use_iterator I = P.first->use_begin(),
 | 
						|
         E = P.first->use_end(); I != E; ++I) {
 | 
						|
      if (isa<LoadInst>(*I)) {
 | 
						|
        // A pair cannot be connected to a load because the load only takes one
 | 
						|
        // operand (the address) and it is a scalar even after vectorization.
 | 
						|
        continue;
 | 
						|
      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
 | 
						|
                 P.first == SI->getPointerOperand()) {
 | 
						|
        // Similarly, a pair cannot be connected to a store through its
 | 
						|
        // pointer operand.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
 | 
						|
 | 
						|
      // For each use of the first variable, look for uses of the second
 | 
						|
      // variable...
 | 
						|
      for (Value::use_iterator J = P.second->use_begin(),
 | 
						|
           E2 = P.second->use_end(); J != E2; ++J) {
 | 
						|
        if ((SJ = dyn_cast<StoreInst>(*J)) &&
 | 
						|
            P.second == SJ->getPointerOperand())
 | 
						|
          continue;
 | 
						|
 | 
						|
        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
 | 
						|
 | 
						|
        // Look for <I, J>:
 | 
						|
        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | 
						|
          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | 
						|
 | 
						|
        // Look for <J, I>:
 | 
						|
        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
 | 
						|
          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
 | 
						|
      }
 | 
						|
 | 
						|
      if (Config.SplatBreaksChain) continue;
 | 
						|
      // Look for cases where just the first value in the pair is used by
 | 
						|
      // both members of another pair (splatting).
 | 
						|
      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
 | 
						|
        if ((SJ = dyn_cast<StoreInst>(*J)) &&
 | 
						|
            P.first == SJ->getPointerOperand())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | 
						|
          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Config.SplatBreaksChain) return;
 | 
						|
    // Look for cases where just the second value in the pair is used by
 | 
						|
    // both members of another pair (splatting).
 | 
						|
    for (Value::use_iterator I = P.second->use_begin(),
 | 
						|
         E = P.second->use_end(); I != E; ++I) {
 | 
						|
      if (isa<LoadInst>(*I))
 | 
						|
        continue;
 | 
						|
      else if ((SI = dyn_cast<StoreInst>(*I)) &&
 | 
						|
               P.second == SI->getPointerOperand())
 | 
						|
        continue;
 | 
						|
 | 
						|
      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
 | 
						|
 | 
						|
      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
 | 
						|
        if ((SJ = dyn_cast<StoreInst>(*J)) &&
 | 
						|
            P.second == SJ->getPointerOperand())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | 
						|
          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This function figures out which pairs are connected.  Two pairs are
 | 
						|
  // connected if some output of the first pair forms an input to both members
 | 
						|
  // of the second pair.
 | 
						|
  void BBVectorize::computeConnectedPairs(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
 | 
						|
 | 
						|
    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | 
						|
         PE = PairableInsts.end(); PI != PE; ++PI) {
 | 
						|
      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
 | 
						|
 | 
						|
      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
 | 
						|
           P != choiceRange.second; ++P)
 | 
						|
        computePairsConnectedTo(CandidatePairs, PairableInsts,
 | 
						|
                                ConnectedPairs, *P);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
 | 
						|
                 << " pair connections.\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // This function builds a set of use tuples such that <A, B> is in the set
 | 
						|
  // if B is in the use tree of A. If B is in the use tree of A, then B
 | 
						|
  // depends on the output of A.
 | 
						|
  void BBVectorize::buildDepMap(
 | 
						|
                      BasicBlock &BB,
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers) {
 | 
						|
    DenseSet<Value *> IsInPair;
 | 
						|
    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
 | 
						|
         E = CandidatePairs.end(); C != E; ++C) {
 | 
						|
      IsInPair.insert(C->first);
 | 
						|
      IsInPair.insert(C->second);
 | 
						|
    }
 | 
						|
 | 
						|
    // Iterate through the basic block, recording all Users of each
 | 
						|
    // pairable instruction.
 | 
						|
 | 
						|
    BasicBlock::iterator E = BB.end();
 | 
						|
    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
 | 
						|
      if (IsInPair.find(I) == IsInPair.end()) continue;
 | 
						|
 | 
						|
      DenseSet<Value *> Users;
 | 
						|
      AliasSetTracker WriteSet(*AA);
 | 
						|
      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
 | 
						|
        (void) trackUsesOfI(Users, WriteSet, I, J);
 | 
						|
 | 
						|
      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
 | 
						|
           U != E; ++U)
 | 
						|
        PairableInstUsers.insert(ValuePair(I, *U));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true if an input to pair P is an output of pair Q and also an
 | 
						|
  // input of pair Q is an output of pair P. If this is the case, then these
 | 
						|
  // two pairs cannot be simultaneously fused.
 | 
						|
  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
 | 
						|
                     DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
 | 
						|
    // Two pairs are in conflict if they are mutual Users of eachother.
 | 
						|
    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
 | 
						|
                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
 | 
						|
                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
 | 
						|
                  PairableInstUsers.count(ValuePair(P.second, Q.second));
 | 
						|
    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
 | 
						|
                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
 | 
						|
                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
 | 
						|
                  PairableInstUsers.count(ValuePair(Q.second, P.second));
 | 
						|
    if (PairableInstUserMap) {
 | 
						|
      // FIXME: The expensive part of the cycle check is not so much the cycle
 | 
						|
      // check itself but this edge insertion procedure. This needs some
 | 
						|
      // profiling and probably a different data structure (same is true of
 | 
						|
      // most uses of std::multimap).
 | 
						|
      if (PUsesQ) {
 | 
						|
        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
 | 
						|
        if (!isSecondInIteratorPair(P, QPairRange))
 | 
						|
          PairableInstUserMap->insert(VPPair(Q, P));
 | 
						|
      }
 | 
						|
      if (QUsesP) {
 | 
						|
        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
 | 
						|
        if (!isSecondInIteratorPair(Q, PPairRange))
 | 
						|
          PairableInstUserMap->insert(VPPair(P, Q));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return (QUsesP && PUsesQ);
 | 
						|
  }
 | 
						|
 | 
						|
  // This function walks the use graph of current pairs to see if, starting
 | 
						|
  // from P, the walk returns to P.
 | 
						|
  bool BBVectorize::pairWillFormCycle(ValuePair P,
 | 
						|
                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | 
						|
                       DenseSet<ValuePair> &CurrentPairs) {
 | 
						|
    DEBUG(if (DebugCycleCheck)
 | 
						|
            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
 | 
						|
                   << *P.second << "\n");
 | 
						|
    // A lookup table of visisted pairs is kept because the PairableInstUserMap
 | 
						|
    // contains non-direct associations.
 | 
						|
    DenseSet<ValuePair> Visited;
 | 
						|
    SmallVector<ValuePair, 32> Q;
 | 
						|
    // General depth-first post-order traversal:
 | 
						|
    Q.push_back(P);
 | 
						|
    do {
 | 
						|
      ValuePair QTop = Q.pop_back_val();
 | 
						|
      Visited.insert(QTop);
 | 
						|
 | 
						|
      DEBUG(if (DebugCycleCheck)
 | 
						|
              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
 | 
						|
                     << *QTop.second << "\n");
 | 
						|
      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
 | 
						|
      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
 | 
						|
           C != QPairRange.second; ++C) {
 | 
						|
        if (C->second == P) {
 | 
						|
          DEBUG(dbgs()
 | 
						|
                 << "BBV: rejected to prevent non-trivial cycle formation: "
 | 
						|
                 << *C->first.first << " <-> " << *C->first.second << "\n");
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
 | 
						|
          Q.push_back(C->second);
 | 
						|
      }
 | 
						|
    } while (!Q.empty());
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // This function builds the initial tree of connected pairs with the
 | 
						|
  // pair J at the root.
 | 
						|
  void BBVectorize::buildInitialTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
 | 
						|
    // Each of these pairs is viewed as the root node of a Tree. The Tree
 | 
						|
    // is then walked (depth-first). As this happens, we keep track of
 | 
						|
    // the pairs that compose the Tree and the maximum depth of the Tree.
 | 
						|
    SmallVector<ValuePairWithDepth, 32> Q;
 | 
						|
    // General depth-first post-order traversal:
 | 
						|
    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | 
						|
    do {
 | 
						|
      ValuePairWithDepth QTop = Q.back();
 | 
						|
 | 
						|
      // Push each child onto the queue:
 | 
						|
      bool MoreChildren = false;
 | 
						|
      size_t MaxChildDepth = QTop.second;
 | 
						|
      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
 | 
						|
      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
 | 
						|
           k != qtRange.second; ++k) {
 | 
						|
        // Make sure that this child pair is still a candidate:
 | 
						|
        bool IsStillCand = false;
 | 
						|
        VPIteratorPair checkRange =
 | 
						|
          CandidatePairs.equal_range(k->second.first);
 | 
						|
        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
 | 
						|
             m != checkRange.second; ++m) {
 | 
						|
          if (m->second == k->second.second) {
 | 
						|
            IsStillCand = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (IsStillCand) {
 | 
						|
          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
 | 
						|
          if (C == Tree.end()) {
 | 
						|
            size_t d = getDepthFactor(k->second.first);
 | 
						|
            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
 | 
						|
            MoreChildren = true;
 | 
						|
          } else {
 | 
						|
            MaxChildDepth = std::max(MaxChildDepth, C->second);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MoreChildren) {
 | 
						|
        // Record the current pair as part of the Tree:
 | 
						|
        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
 | 
						|
        Q.pop_back();
 | 
						|
      }
 | 
						|
    } while (!Q.empty());
 | 
						|
  }
 | 
						|
 | 
						|
  // Given some initial tree, prune it by removing conflicting pairs (pairs
 | 
						|
  // that cannot be simultaneously chosen for vectorization).
 | 
						|
  void BBVectorize::pruneTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseMap<ValuePair, size_t> &Tree,
 | 
						|
                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
 | 
						|
                      bool UseCycleCheck) {
 | 
						|
    SmallVector<ValuePairWithDepth, 32> Q;
 | 
						|
    // General depth-first post-order traversal:
 | 
						|
    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | 
						|
    do {
 | 
						|
      ValuePairWithDepth QTop = Q.pop_back_val();
 | 
						|
      PrunedTree.insert(QTop.first);
 | 
						|
 | 
						|
      // Visit each child, pruning as necessary...
 | 
						|
      DenseMap<ValuePair, size_t> BestChildren;
 | 
						|
      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
 | 
						|
      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
 | 
						|
           K != QTopRange.second; ++K) {
 | 
						|
        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
 | 
						|
        if (C == Tree.end()) continue;
 | 
						|
 | 
						|
        // This child is in the Tree, now we need to make sure it is the
 | 
						|
        // best of any conflicting children. There could be multiple
 | 
						|
        // conflicting children, so first, determine if we're keeping
 | 
						|
        // this child, then delete conflicting children as necessary.
 | 
						|
 | 
						|
        // It is also necessary to guard against pairing-induced
 | 
						|
        // dependencies. Consider instructions a .. x .. y .. b
 | 
						|
        // such that (a,b) are to be fused and (x,y) are to be fused
 | 
						|
        // but a is an input to x and b is an output from y. This
 | 
						|
        // means that y cannot be moved after b but x must be moved
 | 
						|
        // after b for (a,b) to be fused. In other words, after
 | 
						|
        // fusing (a,b) we have y .. a/b .. x where y is an input
 | 
						|
        // to a/b and x is an output to a/b: x and y can no longer
 | 
						|
        // be legally fused. To prevent this condition, we must
 | 
						|
        // make sure that a child pair added to the Tree is not
 | 
						|
        // both an input and output of an already-selected pair.
 | 
						|
 | 
						|
        // Pairing-induced dependencies can also form from more complicated
 | 
						|
        // cycles. The pair vs. pair conflicts are easy to check, and so
 | 
						|
        // that is done explicitly for "fast rejection", and because for
 | 
						|
        // child vs. child conflicts, we may prefer to keep the current
 | 
						|
        // pair in preference to the already-selected child.
 | 
						|
        DenseSet<ValuePair> CurrentPairs;
 | 
						|
 | 
						|
        bool CanAdd = true;
 | 
						|
        for (DenseMap<ValuePair, size_t>::iterator C2
 | 
						|
              = BestChildren.begin(), E2 = BestChildren.end();
 | 
						|
             C2 != E2; ++C2) {
 | 
						|
          if (C2->first.first == C->first.first ||
 | 
						|
              C2->first.first == C->first.second ||
 | 
						|
              C2->first.second == C->first.first ||
 | 
						|
              C2->first.second == C->first.second ||
 | 
						|
              pairsConflict(C2->first, C->first, PairableInstUsers,
 | 
						|
                            UseCycleCheck ? &PairableInstUserMap : 0)) {
 | 
						|
            if (C2->second >= C->second) {
 | 
						|
              CanAdd = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
 | 
						|
            CurrentPairs.insert(C2->first);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!CanAdd) continue;
 | 
						|
 | 
						|
        // Even worse, this child could conflict with another node already
 | 
						|
        // selected for the Tree. If that is the case, ignore this child.
 | 
						|
        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
 | 
						|
             E2 = PrunedTree.end(); T != E2; ++T) {
 | 
						|
          if (T->first == C->first.first ||
 | 
						|
              T->first == C->first.second ||
 | 
						|
              T->second == C->first.first ||
 | 
						|
              T->second == C->first.second ||
 | 
						|
              pairsConflict(*T, C->first, PairableInstUsers,
 | 
						|
                            UseCycleCheck ? &PairableInstUserMap : 0)) {
 | 
						|
            CanAdd = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          CurrentPairs.insert(*T);
 | 
						|
        }
 | 
						|
        if (!CanAdd) continue;
 | 
						|
 | 
						|
        // And check the queue too...
 | 
						|
        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
 | 
						|
             E2 = Q.end(); C2 != E2; ++C2) {
 | 
						|
          if (C2->first.first == C->first.first ||
 | 
						|
              C2->first.first == C->first.second ||
 | 
						|
              C2->first.second == C->first.first ||
 | 
						|
              C2->first.second == C->first.second ||
 | 
						|
              pairsConflict(C2->first, C->first, PairableInstUsers,
 | 
						|
                            UseCycleCheck ? &PairableInstUserMap : 0)) {
 | 
						|
            CanAdd = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          CurrentPairs.insert(C2->first);
 | 
						|
        }
 | 
						|
        if (!CanAdd) continue;
 | 
						|
 | 
						|
        // Last but not least, check for a conflict with any of the
 | 
						|
        // already-chosen pairs.
 | 
						|
        for (DenseMap<Value *, Value *>::iterator C2 =
 | 
						|
              ChosenPairs.begin(), E2 = ChosenPairs.end();
 | 
						|
             C2 != E2; ++C2) {
 | 
						|
          if (pairsConflict(*C2, C->first, PairableInstUsers,
 | 
						|
                            UseCycleCheck ? &PairableInstUserMap : 0)) {
 | 
						|
            CanAdd = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          CurrentPairs.insert(*C2);
 | 
						|
        }
 | 
						|
        if (!CanAdd) continue;
 | 
						|
 | 
						|
        // To check for non-trivial cycles formed by the addition of the
 | 
						|
        // current pair we've formed a list of all relevant pairs, now use a
 | 
						|
        // graph walk to check for a cycle. We start from the current pair and
 | 
						|
        // walk the use tree to see if we again reach the current pair. If we
 | 
						|
        // do, then the current pair is rejected.
 | 
						|
 | 
						|
        // FIXME: It may be more efficient to use a topological-ordering
 | 
						|
        // algorithm to improve the cycle check. This should be investigated.
 | 
						|
        if (UseCycleCheck &&
 | 
						|
            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // This child can be added, but we may have chosen it in preference
 | 
						|
        // to an already-selected child. Check for this here, and if a
 | 
						|
        // conflict is found, then remove the previously-selected child
 | 
						|
        // before adding this one in its place.
 | 
						|
        for (DenseMap<ValuePair, size_t>::iterator C2
 | 
						|
              = BestChildren.begin(); C2 != BestChildren.end();) {
 | 
						|
          if (C2->first.first == C->first.first ||
 | 
						|
              C2->first.first == C->first.second ||
 | 
						|
              C2->first.second == C->first.first ||
 | 
						|
              C2->first.second == C->first.second ||
 | 
						|
              pairsConflict(C2->first, C->first, PairableInstUsers))
 | 
						|
            BestChildren.erase(C2++);
 | 
						|
          else
 | 
						|
            ++C2;
 | 
						|
        }
 | 
						|
 | 
						|
        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
 | 
						|
      }
 | 
						|
 | 
						|
      for (DenseMap<ValuePair, size_t>::iterator C
 | 
						|
            = BestChildren.begin(), E2 = BestChildren.end();
 | 
						|
           C != E2; ++C) {
 | 
						|
        size_t DepthF = getDepthFactor(C->first.first);
 | 
						|
        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
 | 
						|
      }
 | 
						|
    } while (!Q.empty());
 | 
						|
  }
 | 
						|
 | 
						|
  // This function finds the best tree of mututally-compatible connected
 | 
						|
  // pairs, given the choice of root pairs as an iterator range.
 | 
						|
  void BBVectorize::findBestTreeFor(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | 
						|
                      DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
 | 
						|
                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
 | 
						|
                      bool UseCycleCheck) {
 | 
						|
    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
 | 
						|
         J != ChoiceRange.second; ++J) {
 | 
						|
 | 
						|
      // Before going any further, make sure that this pair does not
 | 
						|
      // conflict with any already-selected pairs (see comment below
 | 
						|
      // near the Tree pruning for more details).
 | 
						|
      DenseSet<ValuePair> ChosenPairSet;
 | 
						|
      bool DoesConflict = false;
 | 
						|
      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
 | 
						|
           E = ChosenPairs.end(); C != E; ++C) {
 | 
						|
        if (pairsConflict(*C, *J, PairableInstUsers,
 | 
						|
                          UseCycleCheck ? &PairableInstUserMap : 0)) {
 | 
						|
          DoesConflict = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        ChosenPairSet.insert(*C);
 | 
						|
      }
 | 
						|
      if (DoesConflict) continue;
 | 
						|
 | 
						|
      if (UseCycleCheck &&
 | 
						|
          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
 | 
						|
        continue;
 | 
						|
 | 
						|
      DenseMap<ValuePair, size_t> Tree;
 | 
						|
      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | 
						|
                          PairableInstUsers, ChosenPairs, Tree, *J);
 | 
						|
 | 
						|
      // Because we'll keep the child with the largest depth, the largest
 | 
						|
      // depth is still the same in the unpruned Tree.
 | 
						|
      size_t MaxDepth = Tree.lookup(*J);
 | 
						|
 | 
						|
      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
 | 
						|
                   << *J->first << " <-> " << *J->second << "} of depth " <<
 | 
						|
                   MaxDepth << " and size " << Tree.size() << "\n");
 | 
						|
 | 
						|
      // At this point the Tree has been constructed, but, may contain
 | 
						|
      // contradictory children (meaning that different children of
 | 
						|
      // some tree node may be attempting to fuse the same instruction).
 | 
						|
      // So now we walk the tree again, in the case of a conflict,
 | 
						|
      // keep only the child with the largest depth. To break a tie,
 | 
						|
      // favor the first child.
 | 
						|
 | 
						|
      DenseSet<ValuePair> PrunedTree;
 | 
						|
      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | 
						|
                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
 | 
						|
                   PrunedTree, *J, UseCycleCheck);
 | 
						|
 | 
						|
      size_t EffSize = 0;
 | 
						|
      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
 | 
						|
           E = PrunedTree.end(); S != E; ++S)
 | 
						|
        EffSize += getDepthFactor(S->first);
 | 
						|
 | 
						|
      DEBUG(if (DebugPairSelection)
 | 
						|
             dbgs() << "BBV: found pruned Tree for pair {"
 | 
						|
             << *J->first << " <-> " << *J->second << "} of depth " <<
 | 
						|
             MaxDepth << " and size " << PrunedTree.size() <<
 | 
						|
            " (effective size: " << EffSize << ")\n");
 | 
						|
      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
 | 
						|
        BestMaxDepth = MaxDepth;
 | 
						|
        BestEffSize = EffSize;
 | 
						|
        BestTree = PrunedTree;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Given the list of candidate pairs, this function selects those
 | 
						|
  // that will be fused into vector instructions.
 | 
						|
  void BBVectorize::choosePairs(
 | 
						|
                      std::multimap<Value *, Value *> &CandidatePairs,
 | 
						|
                      std::vector<Value *> &PairableInsts,
 | 
						|
                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | 
						|
                      DenseSet<ValuePair> &PairableInstUsers,
 | 
						|
                      DenseMap<Value *, Value *>& ChosenPairs) {
 | 
						|
    bool UseCycleCheck =
 | 
						|
     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
 | 
						|
    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
 | 
						|
    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
 | 
						|
         E = PairableInsts.end(); I != E; ++I) {
 | 
						|
      // The number of possible pairings for this variable:
 | 
						|
      size_t NumChoices = CandidatePairs.count(*I);
 | 
						|
      if (!NumChoices) continue;
 | 
						|
 | 
						|
      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
 | 
						|
 | 
						|
      // The best pair to choose and its tree:
 | 
						|
      size_t BestMaxDepth = 0, BestEffSize = 0;
 | 
						|
      DenseSet<ValuePair> BestTree;
 | 
						|
      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | 
						|
                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
 | 
						|
                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
 | 
						|
                      UseCycleCheck);
 | 
						|
 | 
						|
      // A tree has been chosen (or not) at this point. If no tree was
 | 
						|
      // chosen, then this instruction, I, cannot be paired (and is no longer
 | 
						|
      // considered).
 | 
						|
 | 
						|
      DEBUG(if (BestTree.size() > 0)
 | 
						|
              dbgs() << "BBV: selected pairs in the best tree for: "
 | 
						|
                     << *cast<Instruction>(*I) << "\n");
 | 
						|
 | 
						|
      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
 | 
						|
           SE2 = BestTree.end(); S != SE2; ++S) {
 | 
						|
        // Insert the members of this tree into the list of chosen pairs.
 | 
						|
        ChosenPairs.insert(ValuePair(S->first, S->second));
 | 
						|
        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
 | 
						|
               *S->second << "\n");
 | 
						|
 | 
						|
        // Remove all candidate pairs that have values in the chosen tree.
 | 
						|
        for (std::multimap<Value *, Value *>::iterator K =
 | 
						|
               CandidatePairs.begin(); K != CandidatePairs.end();) {
 | 
						|
          if (K->first == S->first || K->second == S->first ||
 | 
						|
              K->second == S->second || K->first == S->second) {
 | 
						|
            // Don't remove the actual pair chosen so that it can be used
 | 
						|
            // in subsequent tree selections.
 | 
						|
            if (!(K->first == S->first && K->second == S->second))
 | 
						|
              CandidatePairs.erase(K++);
 | 
						|
            else
 | 
						|
              ++K;
 | 
						|
          } else {
 | 
						|
            ++K;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
 | 
						|
  }
 | 
						|
 | 
						|
  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
 | 
						|
                     unsigned n = 0) {
 | 
						|
    if (!I->hasName())
 | 
						|
      return "";
 | 
						|
 | 
						|
    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
 | 
						|
             (n > 0 ? "." + utostr(n) : "")).str();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the value that is to be used as the pointer input to the vector
 | 
						|
  // instruction that fuses I with J.
 | 
						|
  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
 | 
						|
                     Instruction *I, Instruction *J, unsigned o,
 | 
						|
                     bool FlipMemInputs) {
 | 
						|
    Value *IPtr, *JPtr;
 | 
						|
    unsigned IAlignment, JAlignment;
 | 
						|
    int64_t OffsetInElmts;
 | 
						|
 | 
						|
    // Note: the analysis might fail here, that is why FlipMemInputs has
 | 
						|
    // been precomputed (OffsetInElmts must be unused here).
 | 
						|
    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | 
						|
                          OffsetInElmts);
 | 
						|
 | 
						|
    // The pointer value is taken to be the one with the lowest offset.
 | 
						|
    Value *VPtr;
 | 
						|
    if (!FlipMemInputs) {
 | 
						|
      VPtr = IPtr;
 | 
						|
    } else {
 | 
						|
      VPtr = JPtr;
 | 
						|
    }
 | 
						|
 | 
						|
    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
 | 
						|
    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
 | 
						|
    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | 
						|
    Type *VArgPtrType = PointerType::get(VArgType,
 | 
						|
      cast<PointerType>(IPtr->getType())->getAddressSpace());
 | 
						|
    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
 | 
						|
                        /* insert before */ FlipMemInputs ? J : I);
 | 
						|
  }
 | 
						|
 | 
						|
  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | 
						|
                     unsigned MaskOffset, unsigned NumInElem,
 | 
						|
                     unsigned NumInElem1, unsigned IdxOffset,
 | 
						|
                     std::vector<Constant*> &Mask) {
 | 
						|
    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
 | 
						|
    for (unsigned v = 0; v < NumElem1; ++v) {
 | 
						|
      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
 | 
						|
      if (m < 0) {
 | 
						|
        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
      } else {
 | 
						|
        unsigned mm = m + (int) IdxOffset;
 | 
						|
        if (m >= (int) NumInElem1)
 | 
						|
          mm += (int) NumInElem;
 | 
						|
 | 
						|
        Mask[v+MaskOffset] =
 | 
						|
          ConstantInt::get(Type::getInt32Ty(Context), mm);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the value that is to be used as the vector-shuffle mask to the
 | 
						|
  // vector instruction that fuses I with J.
 | 
						|
  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
 | 
						|
                     Instruction *I, Instruction *J) {
 | 
						|
    // This is the shuffle mask. We need to append the second
 | 
						|
    // mask to the first, and the numbers need to be adjusted.
 | 
						|
 | 
						|
    Type *ArgTypeI = I->getType();
 | 
						|
    Type *ArgTypeJ = J->getType();
 | 
						|
    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | 
						|
 | 
						|
    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
 | 
						|
 | 
						|
    // Get the total number of elements in the fused vector type.
 | 
						|
    // By definition, this must equal the number of elements in
 | 
						|
    // the final mask.
 | 
						|
    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
 | 
						|
    std::vector<Constant*> Mask(NumElem);
 | 
						|
 | 
						|
    Type *OpTypeI = I->getOperand(0)->getType();
 | 
						|
    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
 | 
						|
    Type *OpTypeJ = J->getOperand(0)->getType();
 | 
						|
    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
 | 
						|
 | 
						|
    // The fused vector will be:
 | 
						|
    // -----------------------------------------------------
 | 
						|
    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
 | 
						|
    // -----------------------------------------------------
 | 
						|
    // from which we'll extract NumElem total elements (where the first NumElemI
 | 
						|
    // of them come from the mask in I and the remainder come from the mask
 | 
						|
    // in J.
 | 
						|
 | 
						|
    // For the mask from the first pair...
 | 
						|
    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
 | 
						|
                       0,          Mask);
 | 
						|
 | 
						|
    // For the mask from the second pair...
 | 
						|
    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
 | 
						|
                       NumInElemI, Mask);
 | 
						|
 | 
						|
    return ConstantVector::get(Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
 | 
						|
                                  Instruction *J, unsigned o, Value *&LOp,
 | 
						|
                                  unsigned numElemL,
 | 
						|
                                  Type *ArgTypeL, Type *ArgTypeH,
 | 
						|
                                  unsigned IdxOff) {
 | 
						|
    bool ExpandedIEChain = false;
 | 
						|
    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
 | 
						|
      // If we have a pure insertelement chain, then this can be rewritten
 | 
						|
      // into a chain that directly builds the larger type.
 | 
						|
      bool PureChain = true;
 | 
						|
      InsertElementInst *LIENext = LIE;
 | 
						|
      do {
 | 
						|
        if (!isa<UndefValue>(LIENext->getOperand(0)) &&
 | 
						|
            !isa<InsertElementInst>(LIENext->getOperand(0))) {
 | 
						|
          PureChain = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } while ((LIENext =
 | 
						|
                 dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
 | 
						|
 | 
						|
      if (PureChain) {
 | 
						|
        SmallVector<Value *, 8> VectElemts(numElemL,
 | 
						|
          UndefValue::get(ArgTypeL->getScalarType()));
 | 
						|
        InsertElementInst *LIENext = LIE;
 | 
						|
        do {
 | 
						|
          unsigned Idx =
 | 
						|
            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
 | 
						|
          VectElemts[Idx] = LIENext->getOperand(1);
 | 
						|
        } while ((LIENext =
 | 
						|
                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
 | 
						|
 | 
						|
        LIENext = 0;
 | 
						|
        Value *LIEPrev = UndefValue::get(ArgTypeH);
 | 
						|
        for (unsigned i = 0; i < numElemL; ++i) {
 | 
						|
          if (isa<UndefValue>(VectElemts[i])) continue;
 | 
						|
          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
 | 
						|
                             ConstantInt::get(Type::getInt32Ty(Context),
 | 
						|
                                              i + IdxOff),
 | 
						|
                             getReplacementName(I, true, o, i+1));
 | 
						|
          LIENext->insertBefore(J);
 | 
						|
          LIEPrev = LIENext;
 | 
						|
        }
 | 
						|
 | 
						|
        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
 | 
						|
        ExpandedIEChain = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return ExpandedIEChain;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the value to be used as the specified operand of the vector
 | 
						|
  // instruction that fuses I with J.
 | 
						|
  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, unsigned o, bool FlipMemInputs) {
 | 
						|
    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | 
						|
    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | 
						|
 | 
						|
    // Compute the fused vector type for this operand
 | 
						|
    Type *ArgTypeI = I->getOperand(o)->getType();
 | 
						|
    Type *ArgTypeJ = J->getOperand(o)->getType();
 | 
						|
    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | 
						|
 | 
						|
    Instruction *L = I, *H = J;
 | 
						|
    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
 | 
						|
    if (FlipMemInputs) {
 | 
						|
      L = J;
 | 
						|
      H = I;
 | 
						|
      ArgTypeL = ArgTypeJ;
 | 
						|
      ArgTypeH = ArgTypeI;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned numElemL;
 | 
						|
    if (ArgTypeL->isVectorTy())
 | 
						|
      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
 | 
						|
    else
 | 
						|
      numElemL = 1;
 | 
						|
 | 
						|
    unsigned numElemH;
 | 
						|
    if (ArgTypeH->isVectorTy())
 | 
						|
      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
 | 
						|
    else
 | 
						|
      numElemH = 1;
 | 
						|
 | 
						|
    Value *LOp = L->getOperand(o);
 | 
						|
    Value *HOp = H->getOperand(o);
 | 
						|
    unsigned numElem = VArgType->getNumElements();
 | 
						|
 | 
						|
    // First, we check if we can reuse the "original" vector outputs (if these
 | 
						|
    // exist). We might need a shuffle.
 | 
						|
    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
 | 
						|
    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
 | 
						|
    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
 | 
						|
    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
 | 
						|
 | 
						|
    // FIXME: If we're fusing shuffle instructions, then we can't apply this
 | 
						|
    // optimization. The input vectors to the shuffle might be a different
 | 
						|
    // length from the shuffle outputs. Unfortunately, the replacement
 | 
						|
    // shuffle mask has already been formed, and the mask entries are sensitive
 | 
						|
    // to the sizes of the inputs.
 | 
						|
    bool IsSizeChangeShuffle =
 | 
						|
      isa<ShuffleVectorInst>(L) &&
 | 
						|
        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
 | 
						|
 | 
						|
    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
 | 
						|
      // We can have at most two unique vector inputs.
 | 
						|
      bool CanUseInputs = true;
 | 
						|
      Value *I1, *I2 = 0;
 | 
						|
      if (LEE) {
 | 
						|
        I1 = LEE->getOperand(0);
 | 
						|
      } else {
 | 
						|
        I1 = LSV->getOperand(0);
 | 
						|
        I2 = LSV->getOperand(1);
 | 
						|
        if (I2 == I1 || isa<UndefValue>(I2))
 | 
						|
          I2 = 0;
 | 
						|
      }
 | 
						|
  
 | 
						|
      if (HEE) {
 | 
						|
        Value *I3 = HEE->getOperand(0);
 | 
						|
        if (!I2 && I3 != I1)
 | 
						|
          I2 = I3;
 | 
						|
        else if (I3 != I1 && I3 != I2)
 | 
						|
          CanUseInputs = false;
 | 
						|
      } else {
 | 
						|
        Value *I3 = HSV->getOperand(0);
 | 
						|
        if (!I2 && I3 != I1)
 | 
						|
          I2 = I3;
 | 
						|
        else if (I3 != I1 && I3 != I2)
 | 
						|
          CanUseInputs = false;
 | 
						|
 | 
						|
        if (CanUseInputs) {
 | 
						|
          Value *I4 = HSV->getOperand(1);
 | 
						|
          if (!isa<UndefValue>(I4)) {
 | 
						|
            if (!I2 && I4 != I1)
 | 
						|
              I2 = I4;
 | 
						|
            else if (I4 != I1 && I4 != I2)
 | 
						|
              CanUseInputs = false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (CanUseInputs) {
 | 
						|
        unsigned LOpElem =
 | 
						|
          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
 | 
						|
            ->getNumElements();
 | 
						|
        unsigned HOpElem =
 | 
						|
          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
 | 
						|
            ->getNumElements();
 | 
						|
 | 
						|
        // We have one or two input vectors. We need to map each index of the
 | 
						|
        // operands to the index of the original vector.
 | 
						|
        SmallVector<std::pair<int, int>, 8>  II(numElem);
 | 
						|
        for (unsigned i = 0; i < numElemL; ++i) {
 | 
						|
          int Idx, INum;
 | 
						|
          if (LEE) {
 | 
						|
            Idx =
 | 
						|
              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
 | 
						|
            INum = LEE->getOperand(0) == I1 ? 0 : 1;
 | 
						|
          } else {
 | 
						|
            Idx = LSV->getMaskValue(i);
 | 
						|
            if (Idx < (int) LOpElem) {
 | 
						|
              INum = LSV->getOperand(0) == I1 ? 0 : 1;
 | 
						|
            } else {
 | 
						|
              Idx -= LOpElem;
 | 
						|
              INum = LSV->getOperand(1) == I1 ? 0 : 1;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          II[i] = std::pair<int, int>(Idx, INum);
 | 
						|
        }
 | 
						|
        for (unsigned i = 0; i < numElemH; ++i) {
 | 
						|
          int Idx, INum;
 | 
						|
          if (HEE) {
 | 
						|
            Idx =
 | 
						|
              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
 | 
						|
            INum = HEE->getOperand(0) == I1 ? 0 : 1;
 | 
						|
          } else {
 | 
						|
            Idx = HSV->getMaskValue(i);
 | 
						|
            if (Idx < (int) HOpElem) {
 | 
						|
              INum = HSV->getOperand(0) == I1 ? 0 : 1;
 | 
						|
            } else {
 | 
						|
              Idx -= HOpElem;
 | 
						|
              INum = HSV->getOperand(1) == I1 ? 0 : 1;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          II[i + numElemL] = std::pair<int, int>(Idx, INum);
 | 
						|
        }
 | 
						|
 | 
						|
        // We now have an array which tells us from which index of which
 | 
						|
        // input vector each element of the operand comes.
 | 
						|
        VectorType *I1T = cast<VectorType>(I1->getType());
 | 
						|
        unsigned I1Elem = I1T->getNumElements();
 | 
						|
 | 
						|
        if (!I2) {
 | 
						|
          // In this case there is only one underlying vector input. Check for
 | 
						|
          // the trivial case where we can use the input directly.
 | 
						|
          if (I1Elem == numElem) {
 | 
						|
            bool ElemInOrder = true;
 | 
						|
            for (unsigned i = 0; i < numElem; ++i) {
 | 
						|
              if (II[i].first != (int) i && II[i].first != -1) {
 | 
						|
                ElemInOrder = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            if (ElemInOrder)
 | 
						|
              return I1;
 | 
						|
          }
 | 
						|
 | 
						|
          // A shuffle is needed.
 | 
						|
          std::vector<Constant *> Mask(numElem);
 | 
						|
          for (unsigned i = 0; i < numElem; ++i) {
 | 
						|
            int Idx = II[i].first;
 | 
						|
            if (Idx == -1)
 | 
						|
              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
            else
 | 
						|
              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | 
						|
          }
 | 
						|
 | 
						|
          Instruction *S =
 | 
						|
            new ShuffleVectorInst(I1, UndefValue::get(I1T),
 | 
						|
                                  ConstantVector::get(Mask),
 | 
						|
                                  getReplacementName(I, true, o));
 | 
						|
          S->insertBefore(J);
 | 
						|
          return S;
 | 
						|
        }
 | 
						|
 | 
						|
        VectorType *I2T = cast<VectorType>(I2->getType());
 | 
						|
        unsigned I2Elem = I2T->getNumElements();
 | 
						|
 | 
						|
        // This input comes from two distinct vectors. The first step is to
 | 
						|
        // make sure that both vectors are the same length. If not, the
 | 
						|
        // smaller one will need to grow before they can be shuffled together.
 | 
						|
        if (I1Elem < I2Elem) {
 | 
						|
          std::vector<Constant *> Mask(I2Elem);
 | 
						|
          unsigned v = 0;
 | 
						|
          for (; v < I1Elem; ++v)
 | 
						|
            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          for (; v < I2Elem; ++v)
 | 
						|
            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
 | 
						|
          Instruction *NewI1 =
 | 
						|
            new ShuffleVectorInst(I1, UndefValue::get(I1T),
 | 
						|
                                  ConstantVector::get(Mask),
 | 
						|
                                  getReplacementName(I, true, o, 1));
 | 
						|
          NewI1->insertBefore(J);
 | 
						|
          I1 = NewI1;
 | 
						|
          I1T = I2T;
 | 
						|
          I1Elem = I2Elem;
 | 
						|
        } else if (I1Elem > I2Elem) {
 | 
						|
          std::vector<Constant *> Mask(I1Elem);
 | 
						|
          unsigned v = 0;
 | 
						|
          for (; v < I2Elem; ++v)
 | 
						|
            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          for (; v < I1Elem; ++v)
 | 
						|
            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
 | 
						|
          Instruction *NewI2 =
 | 
						|
            new ShuffleVectorInst(I2, UndefValue::get(I2T),
 | 
						|
                                  ConstantVector::get(Mask),
 | 
						|
                                  getReplacementName(I, true, o, 1));
 | 
						|
          NewI2->insertBefore(J);
 | 
						|
          I2 = NewI2;
 | 
						|
          I2T = I1T;
 | 
						|
          I2Elem = I1Elem;
 | 
						|
        }
 | 
						|
 | 
						|
        // Now that both I1 and I2 are the same length we can shuffle them
 | 
						|
        // together (and use the result).
 | 
						|
        std::vector<Constant *> Mask(numElem);
 | 
						|
        for (unsigned v = 0; v < numElem; ++v) {
 | 
						|
          if (II[v].first == -1) {
 | 
						|
            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
          } else {
 | 
						|
            int Idx = II[v].first + II[v].second * I1Elem;
 | 
						|
            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        Instruction *NewOp =
 | 
						|
          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
 | 
						|
                                getReplacementName(I, true, o));
 | 
						|
        NewOp->insertBefore(J);
 | 
						|
        return NewOp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Type *ArgType = ArgTypeL;
 | 
						|
    if (numElemL < numElemH) {
 | 
						|
      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
 | 
						|
                                         ArgTypeL, VArgType, 1)) {
 | 
						|
        // This is another short-circuit case: we're combining a scalar into
 | 
						|
        // a vector that is formed by an IE chain. We've just expanded the IE
 | 
						|
        // chain, now insert the scalar and we're done.
 | 
						|
 | 
						|
        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
 | 
						|
                                               getReplacementName(I, true, o));
 | 
						|
        S->insertBefore(J);
 | 
						|
        return S;
 | 
						|
      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
 | 
						|
                                ArgTypeH)) {
 | 
						|
        // The two vector inputs to the shuffle must be the same length,
 | 
						|
        // so extend the smaller vector to be the same length as the larger one.
 | 
						|
        Instruction *NLOp;
 | 
						|
        if (numElemL > 1) {
 | 
						|
  
 | 
						|
          std::vector<Constant *> Mask(numElemH);
 | 
						|
          unsigned v = 0;
 | 
						|
          for (; v < numElemL; ++v)
 | 
						|
            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          for (; v < numElemH; ++v)
 | 
						|
            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
    
 | 
						|
          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
 | 
						|
                                       ConstantVector::get(Mask),
 | 
						|
                                       getReplacementName(I, true, o, 1));
 | 
						|
        } else {
 | 
						|
          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
 | 
						|
                                           getReplacementName(I, true, o, 1));
 | 
						|
        }
 | 
						|
  
 | 
						|
        NLOp->insertBefore(J);
 | 
						|
        LOp = NLOp;
 | 
						|
      }
 | 
						|
 | 
						|
      ArgType = ArgTypeH;
 | 
						|
    } else if (numElemL > numElemH) {
 | 
						|
      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
 | 
						|
                                         ArgTypeH, VArgType)) {
 | 
						|
        Instruction *S =
 | 
						|
          InsertElementInst::Create(LOp, HOp, 
 | 
						|
                                    ConstantInt::get(Type::getInt32Ty(Context),
 | 
						|
                                                     numElemL),
 | 
						|
                                    getReplacementName(I, true, o));
 | 
						|
        S->insertBefore(J);
 | 
						|
        return S;
 | 
						|
      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
 | 
						|
                                ArgTypeL)) {
 | 
						|
        Instruction *NHOp;
 | 
						|
        if (numElemH > 1) {
 | 
						|
          std::vector<Constant *> Mask(numElemL);
 | 
						|
          unsigned v = 0;
 | 
						|
          for (; v < numElemH; ++v)
 | 
						|
            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          for (; v < numElemL; ++v)
 | 
						|
            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
 | 
						|
    
 | 
						|
          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
 | 
						|
                                       ConstantVector::get(Mask),
 | 
						|
                                       getReplacementName(I, true, o, 1));
 | 
						|
        } else {
 | 
						|
          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
 | 
						|
                                           getReplacementName(I, true, o, 1));
 | 
						|
        }
 | 
						|
  
 | 
						|
        NHOp->insertBefore(J);
 | 
						|
        HOp = NHOp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ArgType->isVectorTy()) {
 | 
						|
      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
 | 
						|
      std::vector<Constant*> Mask(numElem);
 | 
						|
      for (unsigned v = 0; v < numElem; ++v) {
 | 
						|
        unsigned Idx = v;
 | 
						|
        // If the low vector was expanded, we need to skip the extra
 | 
						|
        // undefined entries.
 | 
						|
        if (v >= numElemL && numElemH > numElemL)
 | 
						|
          Idx += (numElemH - numElemL);
 | 
						|
        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
 | 
						|
                                              ConstantVector::get(Mask),
 | 
						|
                                              getReplacementName(I, true, o));
 | 
						|
      BV->insertBefore(J);
 | 
						|
      return BV;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *BV1 = InsertElementInst::Create(
 | 
						|
                                          UndefValue::get(VArgType), LOp, CV0,
 | 
						|
                                          getReplacementName(I, true, o, 1));
 | 
						|
    BV1->insertBefore(I);
 | 
						|
    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
 | 
						|
                                          getReplacementName(I, true, o, 2));
 | 
						|
    BV2->insertBefore(J);
 | 
						|
    return BV2;
 | 
						|
  }
 | 
						|
 | 
						|
  // This function creates an array of values that will be used as the inputs
 | 
						|
  // to the vector instruction that fuses I with J.
 | 
						|
  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
 | 
						|
                     Instruction *I, Instruction *J,
 | 
						|
                     SmallVector<Value *, 3> &ReplacedOperands,
 | 
						|
                     bool FlipMemInputs) {
 | 
						|
    unsigned NumOperands = I->getNumOperands();
 | 
						|
 | 
						|
    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
 | 
						|
      // Iterate backward so that we look at the store pointer
 | 
						|
      // first and know whether or not we need to flip the inputs.
 | 
						|
 | 
						|
      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
 | 
						|
        // This is the pointer for a load/store instruction.
 | 
						|
        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
 | 
						|
                                FlipMemInputs);
 | 
						|
        continue;
 | 
						|
      } else if (isa<CallInst>(I)) {
 | 
						|
        Function *F = cast<CallInst>(I)->getCalledFunction();
 | 
						|
        unsigned IID = F->getIntrinsicID();
 | 
						|
        if (o == NumOperands-1) {
 | 
						|
          BasicBlock &BB = *I->getParent();
 | 
						|
 | 
						|
          Module *M = BB.getParent()->getParent();
 | 
						|
          Type *ArgTypeI = I->getType();
 | 
						|
          Type *ArgTypeJ = J->getType();
 | 
						|
          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
 | 
						|
 | 
						|
          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
 | 
						|
            (Intrinsic::ID) IID, VArgType);
 | 
						|
          continue;
 | 
						|
        } else if (IID == Intrinsic::powi && o == 1) {
 | 
						|
          // The second argument of powi is a single integer and we've already
 | 
						|
          // checked that both arguments are equal. As a result, we just keep
 | 
						|
          // I's second argument.
 | 
						|
          ReplacedOperands[o] = I->getOperand(o);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
 | 
						|
        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      ReplacedOperands[o] =
 | 
						|
        getReplacementInput(Context, I, J, o, FlipMemInputs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This function creates two values that represent the outputs of the
 | 
						|
  // original I and J instructions. These are generally vector shuffles
 | 
						|
  // or extracts. In many cases, these will end up being unused and, thus,
 | 
						|
  // eliminated by later passes.
 | 
						|
  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | 
						|
                     Instruction *J, Instruction *K,
 | 
						|
                     Instruction *&InsertionPt,
 | 
						|
                     Instruction *&K1, Instruction *&K2,
 | 
						|
                     bool FlipMemInputs) {
 | 
						|
    if (isa<StoreInst>(I)) {
 | 
						|
      AA->replaceWithNewValue(I, K);
 | 
						|
      AA->replaceWithNewValue(J, K);
 | 
						|
    } else {
 | 
						|
      Type *IType = I->getType();
 | 
						|
      Type *JType = J->getType();
 | 
						|
 | 
						|
      VectorType *VType = getVecTypeForPair(IType, JType);
 | 
						|
      unsigned numElem = VType->getNumElements();
 | 
						|
 | 
						|
      unsigned numElemI, numElemJ;
 | 
						|
      if (IType->isVectorTy())
 | 
						|
        numElemI = cast<VectorType>(IType)->getNumElements();
 | 
						|
      else
 | 
						|
        numElemI = 1;
 | 
						|
 | 
						|
      if (JType->isVectorTy())
 | 
						|
        numElemJ = cast<VectorType>(JType)->getNumElements();
 | 
						|
      else
 | 
						|
        numElemJ = 1;
 | 
						|
 | 
						|
      if (IType->isVectorTy()) {
 | 
						|
        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
 | 
						|
        for (unsigned v = 0; v < numElemI; ++v) {
 | 
						|
          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
 | 
						|
        }
 | 
						|
 | 
						|
        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | 
						|
                                   ConstantVector::get(
 | 
						|
                                     FlipMemInputs ? Mask2 : Mask1),
 | 
						|
                                   getReplacementName(K, false, 1));
 | 
						|
      } else {
 | 
						|
        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | 
						|
        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
 | 
						|
        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
 | 
						|
                                          getReplacementName(K, false, 1));
 | 
						|
      }
 | 
						|
 | 
						|
      if (JType->isVectorTy()) {
 | 
						|
        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
 | 
						|
        for (unsigned v = 0; v < numElemJ; ++v) {
 | 
						|
          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | 
						|
          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
 | 
						|
        }
 | 
						|
 | 
						|
        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | 
						|
                                   ConstantVector::get(
 | 
						|
                                     FlipMemInputs ? Mask1 : Mask2),
 | 
						|
                                   getReplacementName(K, false, 2));
 | 
						|
      } else {
 | 
						|
        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | 
						|
        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
 | 
						|
        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
 | 
						|
                                          getReplacementName(K, false, 2));
 | 
						|
      }
 | 
						|
 | 
						|
      K1->insertAfter(K);
 | 
						|
      K2->insertAfter(K1);
 | 
						|
      InsertionPt = K2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Move all uses of the function I (including pairing-induced uses) after J.
 | 
						|
  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *I, Instruction *J) {
 | 
						|
    // Skip to the first instruction past I.
 | 
						|
    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | 
						|
 | 
						|
    DenseSet<Value *> Users;
 | 
						|
    AliasSetTracker WriteSet(*AA);
 | 
						|
    for (; cast<Instruction>(L) != J; ++L)
 | 
						|
      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
 | 
						|
 | 
						|
    assert(cast<Instruction>(L) == J &&
 | 
						|
      "Tracking has not proceeded far enough to check for dependencies");
 | 
						|
    // If J is now in the use set of I, then trackUsesOfI will return true
 | 
						|
    // and we have a dependency cycle (and the fusing operation must abort).
 | 
						|
    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move all uses of the function I (including pairing-induced uses) after J.
 | 
						|
  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *&InsertionPt,
 | 
						|
                     Instruction *I, Instruction *J) {
 | 
						|
    // Skip to the first instruction past I.
 | 
						|
    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | 
						|
 | 
						|
    DenseSet<Value *> Users;
 | 
						|
    AliasSetTracker WriteSet(*AA);
 | 
						|
    for (; cast<Instruction>(L) != J;) {
 | 
						|
      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
 | 
						|
        // Move this instruction
 | 
						|
        Instruction *InstToMove = L; ++L;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
 | 
						|
                        " to after " << *InsertionPt << "\n");
 | 
						|
        InstToMove->removeFromParent();
 | 
						|
        InstToMove->insertAfter(InsertionPt);
 | 
						|
        InsertionPt = InstToMove;
 | 
						|
      } else {
 | 
						|
        ++L;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect all load instruction that are in the move set of a given first
 | 
						|
  // pair member.  These loads depend on the first instruction, I, and so need
 | 
						|
  // to be moved after J (the second instruction) when the pair is fused.
 | 
						|
  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
 | 
						|
                     DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet,
 | 
						|
                     Instruction *I) {
 | 
						|
    // Skip to the first instruction past I.
 | 
						|
    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | 
						|
 | 
						|
    DenseSet<Value *> Users;
 | 
						|
    AliasSetTracker WriteSet(*AA);
 | 
						|
 | 
						|
    // Note: We cannot end the loop when we reach J because J could be moved
 | 
						|
    // farther down the use chain by another instruction pairing. Also, J
 | 
						|
    // could be before I if this is an inverted input.
 | 
						|
    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
 | 
						|
      if (trackUsesOfI(Users, WriteSet, I, L)) {
 | 
						|
        if (L->mayReadFromMemory())
 | 
						|
          LoadMoveSet.insert(ValuePair(L, I));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In cases where both load/stores and the computation of their pointers
 | 
						|
  // are chosen for vectorization, we can end up in a situation where the
 | 
						|
  // aliasing analysis starts returning different query results as the
 | 
						|
  // process of fusing instruction pairs continues. Because the algorithm
 | 
						|
  // relies on finding the same use trees here as were found earlier, we'll
 | 
						|
  // need to precompute the necessary aliasing information here and then
 | 
						|
  // manually update it during the fusion process.
 | 
						|
  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
 | 
						|
                     std::vector<Value *> &PairableInsts,
 | 
						|
                     DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                     std::multimap<Value *, Value *> &LoadMoveSet) {
 | 
						|
    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | 
						|
         PIE = PairableInsts.end(); PI != PIE; ++PI) {
 | 
						|
      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
 | 
						|
      if (P == ChosenPairs.end()) continue;
 | 
						|
 | 
						|
      Instruction *I = cast<Instruction>(P->first);
 | 
						|
      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // As with the aliasing information, SCEV can also change because of
 | 
						|
  // vectorization. This information is used to compute relative pointer
 | 
						|
  // offsets; the necessary information will be cached here prior to
 | 
						|
  // fusion.
 | 
						|
  void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
 | 
						|
                                   DenseMap<Value *, Value *> &ChosenPairs,
 | 
						|
                                   DenseSet<Value *> &LowPtrInsts) {
 | 
						|
    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | 
						|
      PIE = PairableInsts.end(); PI != PIE; ++PI) {
 | 
						|
      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
 | 
						|
      if (P == ChosenPairs.end()) continue;
 | 
						|
 | 
						|
      Instruction *I = cast<Instruction>(P->first);
 | 
						|
      Instruction *J = cast<Instruction>(P->second);
 | 
						|
 | 
						|
      if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Value *IPtr, *JPtr;
 | 
						|
      unsigned IAlignment, JAlignment;
 | 
						|
      int64_t OffsetInElmts;
 | 
						|
      if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | 
						|
                          OffsetInElmts) || abs64(OffsetInElmts) != 1)
 | 
						|
        llvm_unreachable("Pre-fusion pointer analysis failed");
 | 
						|
 | 
						|
      Value *LowPI = (OffsetInElmts > 0) ? I : J;
 | 
						|
      LowPtrInsts.insert(LowPI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When the first instruction in each pair is cloned, it will inherit its
 | 
						|
  // parent's metadata. This metadata must be combined with that of the other
 | 
						|
  // instruction in a safe way.
 | 
						|
  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
 | 
						|
    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
 | 
						|
    K->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
 | 
						|
      unsigned Kind = Metadata[i].first;
 | 
						|
      MDNode *JMD = J->getMetadata(Kind);
 | 
						|
      MDNode *KMD = Metadata[i].second;
 | 
						|
 | 
						|
      switch (Kind) {
 | 
						|
      default:
 | 
						|
        K->setMetadata(Kind, 0); // Remove unknown metadata
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This function fuses the chosen instruction pairs into vector instructions,
 | 
						|
  // taking care preserve any needed scalar outputs and, then, it reorders the
 | 
						|
  // remaining instructions as needed (users of the first member of the pair
 | 
						|
  // need to be moved to after the location of the second member of the pair
 | 
						|
  // because the vector instruction is inserted in the location of the pair's
 | 
						|
  // second member).
 | 
						|
  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
 | 
						|
                     std::vector<Value *> &PairableInsts,
 | 
						|
                     DenseMap<Value *, Value *> &ChosenPairs) {
 | 
						|
    LLVMContext& Context = BB.getContext();
 | 
						|
 | 
						|
    // During the vectorization process, the order of the pairs to be fused
 | 
						|
    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
 | 
						|
    // list. After a pair is fused, the flipped pair is removed from the list.
 | 
						|
    std::vector<ValuePair> FlippedPairs;
 | 
						|
    FlippedPairs.reserve(ChosenPairs.size());
 | 
						|
    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
 | 
						|
         E = ChosenPairs.end(); P != E; ++P)
 | 
						|
      FlippedPairs.push_back(ValuePair(P->second, P->first));
 | 
						|
    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
 | 
						|
         E = FlippedPairs.end(); P != E; ++P)
 | 
						|
      ChosenPairs.insert(*P);
 | 
						|
 | 
						|
    std::multimap<Value *, Value *> LoadMoveSet;
 | 
						|
    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
 | 
						|
 | 
						|
    DenseSet<Value *> LowPtrInsts;
 | 
						|
    collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
 | 
						|
 | 
						|
    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
 | 
						|
      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
 | 
						|
      if (P == ChosenPairs.end()) {
 | 
						|
        ++PI;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (getDepthFactor(P->first) == 0) {
 | 
						|
        // These instructions are not really fused, but are tracked as though
 | 
						|
        // they are. Any case in which it would be interesting to fuse them
 | 
						|
        // will be taken care of by InstCombine.
 | 
						|
        --NumFusedOps;
 | 
						|
        ++PI;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *I = cast<Instruction>(P->first),
 | 
						|
        *J = cast<Instruction>(P->second);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "BBV: fusing: " << *I <<
 | 
						|
             " <-> " << *J << "\n");
 | 
						|
 | 
						|
      // Remove the pair and flipped pair from the list.
 | 
						|
      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
 | 
						|
      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
 | 
						|
      ChosenPairs.erase(FP);
 | 
						|
      ChosenPairs.erase(P);
 | 
						|
 | 
						|
      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
 | 
						|
        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
 | 
						|
               " <-> " << *J <<
 | 
						|
               " aborted because of non-trivial dependency cycle\n");
 | 
						|
        --NumFusedOps;
 | 
						|
        ++PI;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      bool FlipMemInputs = false;
 | 
						|
      if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | 
						|
        FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
 | 
						|
 | 
						|
      unsigned NumOperands = I->getNumOperands();
 | 
						|
      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
 | 
						|
      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
 | 
						|
        FlipMemInputs);
 | 
						|
 | 
						|
      // Make a copy of the original operation, change its type to the vector
 | 
						|
      // type and replace its operands with the vector operands.
 | 
						|
      Instruction *K = I->clone();
 | 
						|
      if (I->hasName()) K->takeName(I);
 | 
						|
 | 
						|
      if (!isa<StoreInst>(K))
 | 
						|
        K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
 | 
						|
 | 
						|
      combineMetadata(K, J);
 | 
						|
 | 
						|
      for (unsigned o = 0; o < NumOperands; ++o)
 | 
						|
        K->setOperand(o, ReplacedOperands[o]);
 | 
						|
 | 
						|
      // If we've flipped the memory inputs, make sure that we take the correct
 | 
						|
      // alignment.
 | 
						|
      if (FlipMemInputs) {
 | 
						|
        if (isa<StoreInst>(K))
 | 
						|
          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
 | 
						|
        else
 | 
						|
          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
 | 
						|
      }
 | 
						|
 | 
						|
      K->insertAfter(J);
 | 
						|
 | 
						|
      // Instruction insertion point:
 | 
						|
      Instruction *InsertionPt = K;
 | 
						|
      Instruction *K1 = 0, *K2 = 0;
 | 
						|
      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
 | 
						|
        FlipMemInputs);
 | 
						|
 | 
						|
      // The use tree of the first original instruction must be moved to after
 | 
						|
      // the location of the second instruction. The entire use tree of the
 | 
						|
      // first instruction is disjoint from the input tree of the second
 | 
						|
      // (by definition), and so commutes with it.
 | 
						|
 | 
						|
      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
 | 
						|
 | 
						|
      if (!isa<StoreInst>(I)) {
 | 
						|
        I->replaceAllUsesWith(K1);
 | 
						|
        J->replaceAllUsesWith(K2);
 | 
						|
        AA->replaceWithNewValue(I, K1);
 | 
						|
        AA->replaceWithNewValue(J, K2);
 | 
						|
      }
 | 
						|
 | 
						|
      // Instructions that may read from memory may be in the load move set.
 | 
						|
      // Once an instruction is fused, we no longer need its move set, and so
 | 
						|
      // the values of the map never need to be updated. However, when a load
 | 
						|
      // is fused, we need to merge the entries from both instructions in the
 | 
						|
      // pair in case those instructions were in the move set of some other
 | 
						|
      // yet-to-be-fused pair. The loads in question are the keys of the map.
 | 
						|
      if (I->mayReadFromMemory()) {
 | 
						|
        std::vector<ValuePair> NewSetMembers;
 | 
						|
        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
 | 
						|
        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
 | 
						|
        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
 | 
						|
             N != IPairRange.second; ++N)
 | 
						|
          NewSetMembers.push_back(ValuePair(K, N->second));
 | 
						|
        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
 | 
						|
             N != JPairRange.second; ++N)
 | 
						|
          NewSetMembers.push_back(ValuePair(K, N->second));
 | 
						|
        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
 | 
						|
             AE = NewSetMembers.end(); A != AE; ++A)
 | 
						|
          LoadMoveSet.insert(*A);
 | 
						|
      }
 | 
						|
 | 
						|
      // Before removing I, set the iterator to the next instruction.
 | 
						|
      PI = llvm::next(BasicBlock::iterator(I));
 | 
						|
      if (cast<Instruction>(PI) == J)
 | 
						|
        ++PI;
 | 
						|
 | 
						|
      SE->forgetValue(I);
 | 
						|
      SE->forgetValue(J);
 | 
						|
      I->eraseFromParent();
 | 
						|
      J->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char BBVectorize::ID = 0;
 | 
						|
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
 | 
						|
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | 
						|
 | 
						|
BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
 | 
						|
  return new BBVectorize(C);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
 | 
						|
  BBVectorize BBVectorizer(P, C);
 | 
						|
  return BBVectorizer.vectorizeBB(BB);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
VectorizeConfig::VectorizeConfig() {
 | 
						|
  VectorBits = ::VectorBits;
 | 
						|
  VectorizeBools = !::NoBools;
 | 
						|
  VectorizeInts = !::NoInts;
 | 
						|
  VectorizeFloats = !::NoFloats;
 | 
						|
  VectorizePointers = !::NoPointers;
 | 
						|
  VectorizeCasts = !::NoCasts;
 | 
						|
  VectorizeMath = !::NoMath;
 | 
						|
  VectorizeFMA = !::NoFMA;
 | 
						|
  VectorizeSelect = !::NoSelect;
 | 
						|
  VectorizeCmp = !::NoCmp;
 | 
						|
  VectorizeGEP = !::NoGEP;
 | 
						|
  VectorizeMemOps = !::NoMemOps;
 | 
						|
  AlignedOnly = ::AlignedOnly;
 | 
						|
  ReqChainDepth= ::ReqChainDepth;
 | 
						|
  SearchLimit = ::SearchLimit;
 | 
						|
  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
 | 
						|
  SplatBreaksChain = ::SplatBreaksChain;
 | 
						|
  MaxInsts = ::MaxInsts;
 | 
						|
  MaxIter = ::MaxIter;
 | 
						|
  Pow2LenOnly = ::Pow2LenOnly;
 | 
						|
  NoMemOpBoost = ::NoMemOpBoost;
 | 
						|
  FastDep = ::FastDep;
 | 
						|
}
 |